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Abstract. Starting from a field theoretic description of the gravitational well problem
in a canonical non-commutative spacetime, we have studied the effect of time-space non-
commutativity in the gravitational well scenario. The corresponding first quantized theory
reveals a spectrum with leading order perturbation term of non-commutative origin. GRANIT
experimental data are used to estimate an upper bound on the time-space non-commutative
parameter.

1. Introduction
Non-commutative (NC) spacetime [1], where the coordinates z* satisfy the non-commutative
algebra,

[xH 2] = iOH, (1)
has regained prominence in the recent past, and field theories defined over the NC spacetime
are currently a subject of very intense research [2, 3]. Various gauge theories including gravity
are being studied in a NC perspective formally [4, 5, 6, 7, 8, 9, 10] as well as phenomenologically
[11, 12, 13, 14]. A part of the endeavour is to find the order of the NC parameter and exploring
its connection with observations [15, 16, 17, 18, 19, 20, 21].

In particular, GRANIT experimental data [22], which shows the quantum states of the
neutrons trapped in earth’s gravitational field, have been used to set an upper bound on the
momentum space NC parameters [23, 24] by analyzing the gravitational well problem using NC
quantum mechanics, where non-commutativity is introduced among the phase-space variables
at the Hamiltonian level. Therefore, non-commutativity in the time-space sector, i.e., 8% # 0 is
not accounted for. Time-space non-commutativity poses certain difficulties regarding unitarity
and causality [25, 26, 27], which could be avoided by a perturbative approach [28, 29, 30, 31].
Therefore, a search for any possible upper bound on the time-space NC parameter is very much
desirable. In this paper, we have studied the effect of time-space NC (if any) on the spectrum
of a cold neutron trapped in a gravitational quantum well, starting from a NC Schrodinger field
theory.

2. The NC Schroédinger action
To model a non-relativistic particle with a constant background gravitational field in NC
spacetime, we start with the NC Schrodinger action in the deformed phase-space, where the
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ordinary product is replaced by the star product [31, 32, 33]. Here, the fields are defined as
functions of the phase-space variables and the redefined product of two fields ¢(z) and ¥ (x) is
given by:

~ ~ ~ ~ ipapB LN ~

(@) x (@) = (6%0) (@) = 2 PGy ), _, - (2)
The action for the system in vertical z —y (i = 1,2) plane and gravitational background in the
z-direction reads:

2
S = /d:c dydt ¢f * (mao + S—maiai — mgfc> * 1. (3)

Under + composition, the Moyal bracket between the coordinates is [2#, 2], = i©O"", where the
non-trivial components are: 02 = —02! = ¢, 01" = -0 =5 and 6% = -0 =y Since
the effect of non-commutativity is expected to be small, we have expanded the star product and
considered only the first order correction terms. A physically irrelevant re-scaling! to the field
variable, re-definition of the observable mass, and the partial derivative (9,) are given by:

- ~ 10 _
b= (1= Zmg) v = (1= Lmg)m, and 5= (5, e
give the final effective NC Schrodinger action as:

R B 52 =2 92 ~
S = /dx dydt ’l,Z)T Zhat + % (8332 + 8y2) — ﬁbg&? —n (mhg ) -T‘| ¢a (5)

which gives the equation of motion for the field ().

3. Reduction to first quantized theory

In a field theoretic setting, we have imposed non-commutativity and found the only non-trivial
change in the Schrodinger equation is, indeed, originating from time-space non-commutativity.
Specifically, it shows up only in the direction of the external gravitational field g = —gex.
Since the first and second quantized formalisms are equivalent as far as Galilean systems are
concerned, we can, hereafter, reinterprete 1, the basic field, as a wave function and carry out
an equivalent NC quantum mechanical analysis.

From Eq. (5), we easily read off the Hamiltonian as:

x. (6)

The last term in Eq. (6) represents a perturbation H; in the gravitational quantum well problem
described by Hy, which we now briefly review.

3.1. Ordinary gravitational quantum well

The first two terms in Eq. (6) describe the quantum states of a particle with mass m trapped
in a gravitational well. Since the particle is free to move in y-direction, its energy spectrum
is continuous along y and the corresponding wave function will be a collection of plane waves
U(y) = [T g(k)e™™dk, where g(k) determines the group’s shape in phase-space. The analytical

1 Such re-scalings are only viable in a region of spacetime, where variation of the external field is negligible. Since
the results we have derived are to be compared with the outcome of a laboratory-based experiment, we can safely
assume a constant external gravitational field throughout.
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solution of the Schrédinger equation in z-direction Hot, = Eniby, is well known [34]. The
eigenfunctions can be expressed in terms of the Airy function ¢(z) as ¥, (z) = A,¢(z), with
eigenvalues given by the roots of the Airy function ay,, with n =1,2... as:

B, = — (mg2h2 /2)1/ Y (7)

1/3
The dimensionless variable z is related to the height x by 2z = (2’m29/ hQ) / (x — E,/mg). The
normalization factor for the n-th eigenstate is given by:

1
2

A, = [(n?/zng)% /a :oo dquz(z)]_ . (8)

The wave function for a particle with energy F, oscillates below the classically allowed
height x,, = g—z, and above z, it decays exponentially. This was realized experimentally by

Nesvizhevsky et al [22] by letting cold neutrons flow with horizontal velocity 6.5 ms™! through
a horizontal slit formed between a mirror below and an absorber above. The number of
transmitted neutrons as a function of absorber height is recorded, and the classical dependence
is observed to change into a stepwise quantum-mechanical dependence at a small absorber
height. The experimentally found value of the classical height for the first quantum state is
7P = 12.2 + 1.8 (syst.) &+ 0.7 (stat.) pm, and the corresponding theoretical value can be
determined from Eq. (7) for ay = —2.338, yielding x1 = 13.7 um. This value is contained in
the error bars and allow for maximum absolute shift of the first energy level with respect to the

predicted values:
AE(™ = 6.55 x 107%2 J = 0.41 peV. (9)

The values of the constants taken in this calculations are A = 10.59 x 1073° Js, g =
9.81 ms—2, and M = 167.32 x 1079 kg.

3.2. Analysis of the perturbed energy spectrum

Going back to the effective NCQM theory, we have now analyzed the perturbed system in
Eq. (6). The perturbative potential given by Hy = n (m?¢?/h) z is a direct manifestation of
time-space non-commutativity. So, we have worked out an upper bound for the time-space NC
parameter following [23] by demanding that the correction in the energy spectrum should be
smaller or equal to the maximum energy shift allowed by the experiment [22]. We have worked
out the theoretical value of the leading order energy shift of the first quantum state numerically.
It is just the expectation value of the perturbation potential, given by:

AEl = n ’ (10)

m ~ m2g? (2m2g
h

2,2 rto0 - -2 E
g * 3 19 1
d = AL+ —

e b 2 o) =0T | (Bgh) Tt

where I) = | ;1 *dz¢(2)z¢(z). The values of the first unperturbed energy level Ej is determined
from Eq. (7) with a; = —2.338 as:

Ep = 2.259 x 1073 (J) = 1.407 (peV). (11)
The normalization factor A; is calculated from Eq. (8). The integrals in A, and I; are

numerically determined for the first energy level A; = 588.109, and [ = —0.383213 . The
first order correction in the energy level is given by AE; = 2.316 x 10723y J. Comparing with
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the experimentally determined value of the energy level from Eq. (9), we have found the bound
on the time-space NC parameter is:

| ~ 2.83x107 m?. (12)

Interestingly, the value of the upper bound derived, here, can be shown [18] to be consistent
with the results of [23, 24].

4. Conclusions

In this paper, we have obtained an effective NC quantum mechanics (NCQM) for the
gravitational well problem starting from a NC Schrodinger action coupled to external
gravitational field. We have re-interpreted this one particle field theory as a first quantized
theory and obtained an effective NCQM. The outcome of our calculation shows that the time-
space sector of the NC algebra introduces non-trivial NC effects in the energy spectrum of the
system. We have demanded that the calculated perturbation in the energy level should be less
than or equal to the maximum energy shift allowed by the GRANIT experiment [22]. This
comparison leads to an upper bound on the time-space NC parameter. However, one should
keep in mind that this value is only in the sense of an upper bound, and not the value of the
parameter itself.
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