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Michael Atkins, Doctor of Philosophy

Bounds on the effective theory of gravity
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Summary

The effective theory of gravity coupled to matter represents a fully consistent low en-
ergy theory of quantum gravity coupled to the known particles and forces of the standard
model. In recent years this framework has been extensively used to make physical predic-
tions of phenomena in high energy physics and cosmology. In this thesis we use theoretical
tools and experimental data to place constraints on various popular models which utilise
this framework. We specifically derive unitarity bounds in grand unified theories, models
of low scale quantum gravity, models with extra dimensions and models of Higgs inflation.
We also derive a bound on the size of the Higgs boson’s non-minimal coupling to gravity.
This represents an important area of research because it helps us to better understand
the theories and models that many physicists are currently working on and crucially it
can inform us where we can reliably use the effective theory approach and where it breaks
down.
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Chapter 1

Introduction

The two greatest triumphs of 20th century physics are undoubtedly Einstein’s theory

of general relativity and the quantum field theory description of the standard model of

particle physics. Together they provide a predictive framework to understand virtually

all phenomena in the observable universe, from the interactions of high energy subatomic

particles to the behaviour of superclusters of galaxies at the furthest reaches of the cosmos.

The great challenge of 21st century physics is to unify these two theories into a fully

consistent theory of quantum gravity. Many promising steps have been made in this

direction but there may still be a long way to go to realising most physicist’s dream of

discovering a true theory of everything.

While the quest for a full theory of quantum gravity still remains somewhat in the

realm of conjecture with many competing ideas - string theory, loop quantum gravity,

asymptotic safety etc.1 - and few if any measurable predictions, the effective field the-

ory approach offers a fully consistent quantum field theory treatment of the low energy

physics of quantum gravity. Despite our ignorance of the true theory of quantum grav-

ity, effective field theory techniques allow us to reliably predict many of the low energy

phenomena of quantum gravity and its interactions with the standard model. Recently,

there has been an explosion in research in observable consequences of the effective theory

of gravity in the fields of both particle physics and cosmology, with a healthy exchange of

ideas and techniques between the two. This new activity has come about for two main

reasons: Firstly, in particle physics there has been a huge amount of work dedicated to

trying account for the seemingly unnatural hierarchy between the scale of quantum gravity

and the electroweak scale. Some of the more exciting models which address this problem

1For a general review of different approaches to quantum gravity see Ref. [1] and for a clear assessment

of how far we still have to go towards a full theory see Ref. [2].
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propose that the scale of quantum gravity could be much lower than typically expected

and may even be observable in high energy collisions at the Large Hadron Collider (LHC).

Secondly, with the recent precise measurements of the cosmic microwave background ra-

diation (CMB), cosmologists are beginning to be able to test theories of the early universe

which involve energies approaching the scale of quantum gravity. In order to make reli-

able predictions in both of these scenarios requires the careful use of the effective theory

of gravity consistently coupled to models of particle physics. Comparing these predictions

to experimental data, physicists have already been able to rule out and strongly constrain

various models and ideas. However, most exciting is the prospect that predictions based

on the low energy effective theory of gravity may begin to point us in the direction of the

full theory of quantum gravity and its effects may even be observed in the near future.

In this thesis we will study the effective field theory of gravity and its interplay with

particle physics in a variety of situations, including grand unified theories, extra dimensions

and cosmological inflation. The main focus will be on using both theoretical tools and

experimental data to place bounds and constraints on various parameters in these models.

This represents an important area of research because it helps us to better understand the

theories and models that many physicists are currently working on and crucially it can

inform us where and when we can reliably use the effective theory approach and where it

breaks down.

In the rest of this introductory chapter, we review the framework of the effective

theory of gravity coupled to matter in preparation for the following chapters. We also

introduce and review one of the main tools used throughout the thesis: perturbative

unitarity bounds. The rest of the thesis is laid out as follows:

• In Chapter 2 we derive unitarity bounds on models of particle physics coupled to

gravity in four dimensions such as grand unified theories (GUTs). We also employ

an original renormalisation group approach here. This is based mostly on work

published by the author and Xavier Calmet in Ref. [3].

• In Chapter 3 we derive unitarity bounds on models with extra dimensions with low

scales of quantum gravity. We specifically look at the ADD model, the Randall-

Sundrum model and the linear dilaton model. This work is based in large part on

work published by the author and Xavier Calmet in Ref. [4] and also work published

by the author, Xavier Calmet and Ignatios Antoniadis in Ref. [5]. The unitarity

bounds derived in the linear dilaton model represent original work not published

elsewhere.
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• In Chapter 4 we investigate two models of Higgs inflation and again derive unitarity

bounds in these models. We show that the unitarity bounds pose serious problems

for the predictivity of these models and discuss asymptotic safety as a framework in

which these problems could be addressed. This chapter is based on work published

by the author and Xavier Calmet in Refs. [3, 4, 6].

• In Chapter 5 we use data from the LHC to derive the first ever bound on the size

of the non-minimal coupling between the Higgs boson and gravity. This is based

mainly on work published by the author and Xavier Calmet in Ref. [7].

The rest of this chapter will be dedicated to reviewing important background material

and setting the notation in preparation for the main body of work. We begin with a review

of the effective field theory of quantum gravity.

1.1 Effective theory of gravity

In this section we review the treatment of quantum general relativity coupled to matter

as an effective field theory. There already exist a number of good reviews of this topic in

the literature, see for example Refs. [8, 9, 10, 11], many of which we have used as a guide

in writing this section.

Before we delve into the specifics of gravity, let us first review the basic concepts

underlying effective field theories in general. Again, many good reviews exist on this

subject, see for example Refs. [12, 13, 14, 15, 16]. The treatment given here is specific to

situations where we do not know the full high energy theory, as is the case for gravity.

Despite this lack of knowledge, the effective field theory can still be predictive. We list

here a procedure for constructing and using an effective theory:

• Identify the low energy degrees of freedom and symmetries.

• Using only these fields construct the most general Lagrangian including all possible

operators consistent with the symmetries. The operators can be ordered in an energy

expansion in terms of increasing dimension.

• Quantise the fields and identify the propagators.

• We may now proceed to compute observables in the usual way treating all the

additional operators as interactions. Loops can be calculated and renormalisation

can be carried out by absorbing divergences into the renormalisation of terms in the
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Lagrangian. Note that an effective theory requires an infinite amount of terms in

order to absorb all divergences.

• Because we do not know the full theory we have to determine the coefficients of the

operators by matching to experiment. This only needs to be done once per term and

once fixed each coefficient can be reliably used to compute further observables.

• Use the resulting effective field theory up to the required order in the energy expan-

sion to make reliable predictions to within a specified accuracy.

When one considers the above, there seems little difference between a conventional

renormalisable field theory and an effective field theory. In fact it is now commonly believed

that renormalisable theories simply represent the leading order terms in an effective theory,

where the operators of dimension greater than four are heavily suppressed by some large

mass scale which can be arbitrarily high. The main difference is that in a renormalisable

theory, the leading order terms can be renormalised without having to introduce higher

dimensional operators, while in a so called “non-renormalisable” effective field theory, we

technically require an infinite number of counterterms in order to absorb all the divergences

during renormalisation. Despite this, only a finite number of terms are required to make

predictions to within a required accuracy and if the terms are ordered in an efficient energy

expansion this can easily be determined.

The effective theory will only be valid up to the scale at which the full high energy

theory manifests itself. We therefore expect that there is a cutoff to the effective theory and

it is this scale that the higher order operators in the effective field theory are suppressed

by. We will see later that we may be able to use the concept of unitarity to provide an

estimate of this cutoff.

Turning now to gravity, we assume that the full unknown theory of quantum gravity

must have general relativity as the low energy limit. So the degrees of freedom in the

effective field theory are massless gravitons which are the quantum fluctuations of the

metric, and the symmetry is general coordinate invariance. The action is built from the

curvature tensors which in turn are derived from the connection which is given in terms

of the metric as

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) (1.1.1)

and the Ricci tensor is given by

Rµν = ∂µΓσνσ − ∂σΓσµν − ΓσµρΓ
ρ
νσ − ΓσµνΓρρσ. (1.1.2)
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Considering that the curvature tensor Rµν contains two derivatives of the metric, the

effective theory can be ordered in an energy expansion in the following way:

S = −
∫
d4x
√
g

(
−Λ +

M2
P

2
R+ c1R

2 + c2RµνR
µν + . . .+ Lmatter

)
, (1.1.3)

where R = gµνRµν . Λ is the cosmological constant which has been found experimentally

to have the tiny positive value 10−47 GeV4 [17] and MP is the Planck mass, defined in

terms of Newton’s constant GN as

MP =
1√

8πGN
' 2.435× 1018 GeV. (1.1.4)

Note that this definition of the Planck mass is often referred to as the reduced Planck mass

and will be used throughout this thesis. The action (1.1.3) may also contain gauge fixing

and ghost terms, however they have been suppressed here as we will not be considering

graviton loops and will therefore not require such terms. The coefficients c1 and c2 are

dimensionless parameters. It has been shown by Stelle in 1977 [18] that the terms c1R
2

and c2R
µνRµν lead to Yukawa-like corrections to the Newtonian potential of a point mass

m:

Φ(r) = −GNm
r

(
1 +

1

3
e−m0r − 4

3
e−m2r

)
, (1.1.5)

where

m−1
0 =

√
32πG (3c1 − c2), m−1

2 =
√

16πGc2. (1.1.6)

Using recent experimental advances [19], one finds that the coefficients c1 and c2 are

constrained to be less than 1061 [20] in the absence of accidental fine cancellations between

both Yukawa terms. Attempts to bound these terms using astrophysical measurements

have been reviewed in [21]. The fact that this constraint is so weak demonstrates what a

small effect these terms have in low energy physics and how effective the energy expansion

is. This is also seen by the fact that the energy expansion is in powers of E/MP , and the

large scale of MP acts to heavily suppress the contribution of higher order terms relative

to the leading order terms.

In order to quantize the theory, the metric is expanded around a background ḡµν in

the following way

gµν(x) = ḡµν(x) +

√
2

MP
hµν(x), (1.1.7)

where hµν is the graviton. For our purposes in this thesis, we will only need to expand

around flat Minkowski space2 and so we take ḡµν = ηµν from now on. We use the metric

2Despite the use of Minkowski space here, recent astrophysical data coming from type Ia supernovae [22,
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signature (+,−,−,−) throughout. The second term in the action (1.1.3) can be expanded

in terms of the graviton to give

M2
P

2

√
gR = −1

4
hµν�hµν +

1

4
hµµ�h

ν
ν −

1

2
hµν∂µ∂νh

ρ
ρ +

1

2
hµν∂µ∂αh

α
ν +O(M−2

P ). (1.1.8)

From this the graviton propagator can be determined. In harmonic gauge (∂λhµλ = 1
2∂µh)

the propagator is given by

i∆µνρσ =
i
2(ηµρηνσ + ηµσηνρ − ηµνηρσ)

q2 + iε
. (1.1.9)

From here, one may proceed to expand to higher orders in the graviton and use the

resulting interaction terms to calculate quantum effects in pure gravity. Examples of

such calculations are 2 → 2 graviton scattering at one-loop [25], quantum corrections to

Newton’s potential [26, 27] and quantum corrections to Reissner-Nordström and Kerr-

Newman metrics [28].

For the purposes of this thesis we require to focus on the coupling of the graviton

to matter. The leading order terms in the matter part of the action for scalar fields φ,

fermions ψ and vector bosons Aµ are given by

Lmatter =
√
g

(
1

2
gµνDµφDνφ+

1

2
ξφ2R− 1

2
m2
φφ

2 + ieψ̄γµDµψ −mψψ̄ψ −
1

4
FµνF

µν

)
,

(1.1.10)

where e is the vierbein defined by eaµe
b
νηab = gµν and e = det(eaµ), γµ = eµaγa and Dµ =

Dµ + 1
2ω

ab
µ σab with ω the spin connection. We have suppressed additional interaction

terms that may be present. Most of the matter Lagrangian is standard but there is one

unique term which will play an important role later. Because of the low mass dimension

of the scalar field, it is possible to include the second term in the Lagrangian which is a

dimension four operator and couples the scalar field to the Ricci curvature. The parameter

ξ is an unknown dimensionless parameter and when ξ 6= 0 this term is referred to as a non-

minimal coupling. This coupling will be of importance at a number of points throughout

this thesis, and the non-minimally coupled scalar field will often be the Higgs boson.

Given the matter Lagrangian (1.1.10), one can derive the Feynman rules for the in-

teractions of gravitons with matter. These have been worked out in Refs. [29, 30] and

23] indicate that the expansion of the universe is accelerating and point towards a small but nonvanishing

positive cosmological constant. This would mean that our universe might currently be in a de Sitter phase.

Also during the inflationary era, one assumes that the universe was also described by a de Sitter phase.

For these reasons there is much current research into describing quantum gravity in de-Sitter space, see

for example Ref. [24].
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are reproduced in Appendix E. We will later use the graviton propagator and Feynman

rules to calculate scattering amplitudes for matter fields via graviton exchange. But first

we turn our attention to an important tool for investigating the regime of validity of an

effective theory which is perturbative unitarity.

1.2 Unitarity

One of the fundamental requirements of a quantum theory is unitary time evolution. This

simple fact ensures consistency of the theory through the enforcement of the conservation

of probability. In quantum field theory it is embodied in the unitarity of the S-matrix,

S†S = SS† = 1. From this simple assumption, we are able to derive bounds on the partial

wave amplitudes and cross sections for different scattering processes. These bounds can

then be applied at any order in perturbation theory as a consistency check on the validity

of perturbative calculations. We first derive the expressions for the unitarity bounds and

will then discuss the interpretation of the breakdown of unitarity in perturbation theory.

We will also review a classic example of the use of such a unitarity bound as applied to

longitudinal W boson scattering.

There are many ways to go about the derivation, here we follow closely the derivation

given in Ref. [31]. Defining the matrix T via S ≡ 1 + iT , the unitarity of the S-matrix

can be recast as T †T = 2ImT . Taking the matrix element of both sides of this expression

between identical 2-body initial and final states and inserting a complete set of states into

the left hand side we have,∫ ∑
n

dΠn〈2|T |n〉〈n|T †|2〉 = 2Im〈2|T |2〉. (1.2.1)

where dΠn denotes the n-body phase space integration measure. Separating out the

elastic (internal quantum numbers not changed during scattering) channel from all inelastic

channels and denoting 〈a|T |b〉 ≡ (2π)4δ(pin − pout)M(a→ b) gives∫
dΠ2′ |Mel(2→ 2′)|2 +

∑
n

∫
dΠn|Minel(2→ n)|2 = 2Im [Mel(2→ 2)] (1.2.2)

where now the sum in the second term is over all possible inelastic channels. Note that in

the term on right hand side the scattering is between identical initial and final states and

so is in the forward direction (the term on the left is distinguished in this respect by the

prime). To separate the angular dependence of the amplitudes we decompose them into

partial waves ael
j via

Mel(2→ 2′) = 16πei(λ
′−λ)ϕ

∑
j

(2j + 1)djλ′λ(cos θ) ael
j (1.2.3)
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where θ and ϕ are the standard scattering angles, djλ′λ(cos θ) are the Wigner d-functions

(see Appendix B) and (λ, λ′) = (λ1−λ2, λ3−λ4) where λ1, λ2 and λ3, λ4 are the helicities of

the incoming and outgoing particles respectively. From here on we specialise to scattering

in the φ = 0 plane where in the massless limit, the 2-body phase space integral is given

by
∫
dΠ2 = 1

16π

∫ 1
−1 d cos θ. The d-functions obey an orthogonality relation∫ 1

−1
dx djλ′λ(x)dj

′

λ′λ(x) =
2δjj′

2j + 1
(1.2.4)

which we can use to invert Eq. 1.2.3 to obtain

ael
j =

1

32π

∫ 1

−1
d cos θ djλ′λ(cos θ)Mel(2→ 2′) (1.2.5)

It then follows that∫
dΠ2′ |Mel(2→ 2′)|2 =

32π

ρ

∑
j

(2j + 1) djλ′λ |ael
j |2, (1.2.6)

where ρ is a symmetry factor and ρ = 1! (2!) if the final state contains non-identical (iden-

tical) particles. Using Eqs. (1.2.5) and (1.2.6) we find the unitarity condition Eq. (1.2.2)

is

∑
j

(2j + 1)
1

ρ

[
ρ2

4
−
(

Re ael
j

)2

−
(

Im ael
j −

ρ

2

)2
]

=
1

32π

∑
n

∫
dΠn|Minel(2→ n)|2.

(1.2.7)

Now the right hand side is non-negative, and so we find for each j(
Re ael

j

)2

−
(

Im ael
j +

ρ

2

)2

≤ ρ2

4
. (1.2.8)

Which can be reinterpreted as

∣∣Re ael
j

∣∣ ≤ ρ

2
,

∣∣Im ael
j

∣∣ ≤ ρ. (1.2.9)

These are the unitarity bounds on the partial wave amplitudes we require.

Unitarity of a superposition of states

In order to derive the lowest possible unitarity bound it is often useful to consider the scat-

tering of a superposition of states. Consider the set of normalised states {A1, A2, . . . , An}
and the matrix of partial wave scattering amplitudes (aj)kl = aj(Ak → Al). For any

vector v ∈ Cn such that v†v = 1, we find∣∣∣Re
[
v†ajv

]∣∣∣ ≤ 1

2
,

∣∣∣Im[v†ajv]∣∣∣ ≤ 1. (1.2.10)
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If v is an eigenvector of aj then the above conditions apply to the eigenvalues λi of aj in

the following way

|Re(λi)| ≤
1

2
, |Im(λi)| ≤ 1. (1.2.11)

This derivation assumes that we have non-identical particles in the initial/final state.

If there exist identical particles then an additional factor of 1/
√

2 can be included in the

normalisation for these states to compensate for the factor of 2 contained in ρ in the

unitarity bound.

As a simple example of this technique, consider the scattering of n identical particles

φi. If the amplitude for φiφi → φiφi is given by aφ,j then we may consider the scattering

of the normalised state (including additional factors of 1/
√

2 to compensate ρ)

aj

(
n∑
l=1

1√
2n
φlφl →

n∑
k=1

1√
2n
φkφk

)
=
n

2
aφ,j , (1.2.12)

and the unitarity bounds become

|Re(aφ,j)| ≤
1

n
|Im(aφ,j)| ≤

2

n
. (1.2.13)

For a large number of fields the unitarity bound can be significantly reduced using this

technique.

Perturbative unitarity bounds

We may apply the unitarity bounds Eq. (1.2.9) to amplitudes at any order in perturbation

theory. However, we need to be clear in our interpretation of what it means if we find that

unitarity breaks down at a finite order in the perturbation expansion. It is clear that if

the perturbative unitarity bound is exceeded then something extra must act to cure the

unitarity problem or the theory will be inconsistent. There are two options and it is not

normally possible to determine a priori which of the two paths might be taken. The first

is that some new degrees of freedom may enter at or before the scale at which unitarity is

violated and act to restore unitarity, at least until some higher scale. The second option

is simply that the theory becomes strongly coupled at the scale at which perturbative

unitarity breaks down and all orders in perturbation theory become equally relevant and

higher order effects act to restore unitarity. In fact there are active areas of research such

as the asymptotic safety program [32, 33] and the idea of classicalisation [34], in which a

strongly coupled effective field theory is proposed to offer the full UV completion to the

theory.
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Regardless of what ultimately fixes the perturbative unitarity problem, the true utility

of unitarity bounds is that they can inform us of the energy regime of validity of an

effective theory. The lowest possible unitarity bound provides a cutoff to the effective

theory, above which the energy expansion breaks down. This scale is then likely the scale

by which the higher order terms in the effective Lagrangian are suppressed. We will use

the tool of perturbative unitarity throughout this thesis in exactly this way - to determine

the regime of validity of effective field theories that are studied in the literature.

We will often refer to the energy scale at which unitarity breaks down in a specific

model using the notation E? and if we interpret this as a cutoff to the effective theory we

may refer to the cutoff with the symbol Λ.

Before we move on to presenting our original work, we review a classic example of the

use of perturbative unitarity for both pedagogical purposes and also because we will later

require the process in Chapter 3.

1.2.1 Example - unitarity of WW scattering

The classic example of the utility of perturbative unitarity bounds is the Lee-Quigg-

Thacker (LQT) bound which was used to place a bound on the mass of the Higgs boson in

the standard model [35, 36] (see also Ref. [37]). They considered the tree level scattering

of longitudinal W bosons, WLWL →WLWL. Without the Higgs boson, this process would

take place only via the s and t-channel exchange of the photon and Z boson and the four

point contact interaction (see the first three diagrams of Fig. 1.1). The leading order j = 0

partial wave amplitude for this process is

a
(gauge)
0 = − g2 s

128πm2
W

+O
((mW

s

)0
)
, (1.2.14)

where g is the weak coupling constant and mW is the mass of the W boson. Applying the

unitarity bound |Re(a0)| ≤ 1/2, it is found that without the Higgs boson, tree level unitar-

ity would break down at a scale E? = 1.7 TeV. This alone provided a strong argument for

the expectation that we should see something at the TeV scale at the LHC connected to

the symmetry breaking sector of the standard model. Either some new degrees of freedom

would have had to appear below this scale or we would have expected to see the effects of

strongly coupled W bosons.

However, in the standard model there is a physical Higgs boson which can also be

exchanged in s and t-channel processes in WW scattering (see the last two diagrams of
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W−

W+ W+

W−

Z, γ

W−

W+ W+

W−

Z, γ

W−

W+
W+

W−

W−

W+ W+

W−

H

W−

W+ W+

W−

H

Figure 1.1: Processes contributing to the WW scattering amplitude.

Fig. 1.1). The leading order j = 0 partial wave amplitude from Higgs exchange is

a
(higgs)
0 =

g2 s

128πm2
W

+O
(
m0
W

s0

)
, (1.2.15)

which exactly cancels the gauge boson piece.

After this cancellation, if one assumes the Higgs boson mass is large (m2
H � m2

W ), the

leading order contribution to the total amplitude is given by

a
(total)
0 = − g2m2

H

32πm2
W

, (1.2.16)

and applying the unitarity bound to this amplitude, it was found that

m2
H ≤

32πm2
W

g2
, (1.2.17)

which led to a bound on the Higgs boson mass of mH . 1.2 TeV. This bound should be

interpreted as largest the Higgs boson mass could have been for the standard model to

remain weakly coupled.

In Ref. [35] an even lower bound was found by considering the scattering of a su-

perposition of states. The individual scattering amplitudes for each process are given in

Table 1.1, note that a factor of − g2m2
H

128πm2
W

has been extracted from each of the amplitudes.

The largest eigenvalue of this matrix is

λ = − 3g2m2
H

64πm2
W

, (1.2.18)

and applying the unitarity bound (1.2.13) it was found that

mH ≤
√

32πm2
W

3g2
' 700 GeV. (1.2.19)

In 2012, the Higgs boson was indeed discovered with a mass of around 125 GeV [38, 39]

and so W boson scattering is expected to remain weakly coupled up to high energies.
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→ W+W− 1√
2
ZZ 1√

2
hh Zh

W+W− 4
√

2
√

2 0

1√
2
ZZ

√
2 3 1 0

1√
2
hh

√
2 1 3 0

Zh 0 0 0 2

Table 1.1: j = 0 partial wave scattering amplitudes for W , Z and Higgs bosons. A factor

of − g2m2
H

128πm2
W

has been extracted from each of the amplitudes.

Goldstone boson equivalence principle

We describe here one more interesting result of Ref. [35]: the Goldstone boson equivalence

principle (see also Refs. [40, 41] and for a comprehensive review see Ref. [42]). First,

consider the WW scattering amplitude described above. If one applies a naive power

counting analysis, we might expect that the amplitude in fact grows as E4/m4
W . The

polarisation vector of a longitudinally polarised W boson in the high energy limit behaves

as (see Appendix A)

εµ(p) =
pµ

mW
+O

(mW

E

)
, (1.2.20)

and each vertex for Z, γ exchange is proportional to E. Combining these, we would expect

the scattering amplitude to grow as E4/m4
W . However, as we have seen, the O(E4) terms

cancel due to the gauge structure and if a physical Higgs boson is present, the O(E2)

terms also cancel. Why does this happen? One way to understand this is to remember

that in the high energy limit, the longitudinal components of the massive gauge bosons

are effectively just the scalar degrees of freedom of the Goldstone bosons coming from the

electroweak symmetry breaking sector. The Goldstone boson equivalence theorem says

that an amplitude involving external massive gauge bosons Vi can be written in terms of

the respective Goldstone bosons ϕi as [42]

M(Vi,1, Vi,2, . . . , Vi,n, A→ Vf,1, Vf,2, . . . , Vf,nf , B) (1.2.21)

=M(ϕi,1, ϕi,2, . . . , ϕi,ni , A→ ϕf,1, ϕf,2, . . . , ϕf,nf , B)× ini−nfC
(

1 +O
(mV

E

))
(1.2.22)

where C is a constant that does not depend on energy and appears from renormalisation

effects, (C = 1 at tree level), A and B represent any other fields that may be present

and mV is the mass of the heaviest gauge boson Vi. The Goldstone bosons do not have

polarisation vectors so the power counting is made more simple and reliable, it can then

be shown that at tree level, the degree of divergence is at most O(E2) [31].
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In the case of WW scattering above, without the physical Higgs boson, the gauge

symmetry is realised non-linearly on the Goldstone bosons and the Lagrangian for the

Goldstone bosons contains terms with derivative couplings which lead to the amplitude

being of O(E2). With the inclusion of the physical Higgs boson, the gauge symmetry is

realised linearly on the Higgs sector and the interactions do not contain any derivatives,

leading to the amplitude in Eq. (1.2.16).
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Chapter 2

Unitarity of gravity coupled to

models of particle physics

As discussed in the opening chapter, one of the best ways to understand the realm of

validity for an effective theory is to calculate the energy scale where perturbative unitarity

breaks down. In the first section of this chapter we do exactly this for the effective theory

of gravity coupled to matter as given by the action (1.1.10). In the second section we apply

the bound to various grand unified theories. In the third section we incorporate renormal-

isation group (RG) effects into the bounds and are then able to compare the scale at which

unitarity breaks down with the scale of strong coupling. We discuss the consequences of

the RG improved bounds for various models of particle physics and introduce two models

which can lower the scale of quantum gravity in four dimensions. The unitarity bound

derived here will also provide an important basis for later chapters.

2.1 Unitarity of linearised general relativity

In this section we calculate the unitarity bound for the effective theory of gravity coupled

to matter as given by the action (1.1.10). The calculation was first performed by Han and

Willenbrock [43]. We have verified their calculation using FeynCalc and Mathematica.

The first step is to calculate 2 → 2 graviton exchange amplitudes for tree level scat-

tering of complex scalars s, Weyl fermions ψ and vector bosons V in the high energy

(massless) limit. We restrict ourselves to the case where initial and final states consist

of different particles. This simplifies the calculations tremendously since only s-channel

processes need to be considered. The amplitudes for all possible such processes are given

in Table (2.1) and agree with those obtained in Ref. [43]. Note that a factor of −1
4sM

−2
P
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→ s′s̄′ ψ′+ψ̄
′
− ψ′−ψ̄

′
+ V ′+V

′
− V ′−V

′
+

ss̄ 2/3 d2
0,0 − 2/3(1 + 6ξ)2 d0

0,0

√
2/3 d2

0,1

√
2/3 d2

0,−1 2
√

2/3 d2
0,2 2

√
2/3 d2

0,−2

ψ+ψ̄−
√

2/3 d2
1,0 d2

1,1 d2
1,−1 2 d2

1,2 2 d2
1,−2

ψ−ψ̄+

√
2/3 d2

−1,0 d2
−1,1 d2

−1,−1 2 d2
−1,2 2 d2

−1,−2

V+V− 2
√

2/3 d2
2,0 2 d2

2,1 2 d2
2,−1 4 d2

2,2 4 d2
2,−2

V−V+ 2
√

2/3 d2
−2,0 2 d2

−2,1 2 d2
−2,−1 4 d2

−2,2 4 d2
−2,−2

Table 2.1: Scattering amplitudes for scalars, fermions and vector bosons via s-channel

graviton exchange in terms of the Wigner d-functions in the massless limit. A factor of

−1
4sM

−2
P has been extracted from each of the amplitudes.

has been extracted from each of the amplitudes. We have used the helicity basis1 for

the ‘in’ and ‘out’ states and the subscripts + and − refer to helicity. The spinors and

polarisation vectors in this basis are given in Appendix A. We also use the Feynman rules

of Ref. [29] which are reproduced in Appendix E.

2.1.1 j=2 partial wave amplitude

The partial wave amplitudes are found using Eq. (1.2.6) and so are simply proportional

to the entries in Table (2.1) with the Wigner d-functions removed. To obtain the lowest

unitarity bound we wish to find the eigenvalues of the matrix of partial wave amplitudes

for Ns complex scalars, Nψ fermions and NV vector bosons. Since all entries contain a

j = 2 partial wave, this is what will be focussed on here. The j = 0 partial wave will be

considered separately later. Because the partial waves for opposite helicity processes are

identical, the matrix can be simplified by only considering the +,− helicity combinations

and not −,+. With Nϕ degrees of freedom we may consider the normalised state obtained

by including all Nϕ particles in the initial and final states: (1/Nϕ)
∑
ϕ+ϕ−. The matrix

of partial waves thus obtained is given in Table 2.2.

Due to the symmetric nature of the matrix it only has a single eigenvalue, given by

the trace

a2 = − 1

320π

s

M2
P

N, (2.1.1)

1Note that as in the case for WW scattering in the standard model (see Section 1.2.1) we might think

that including longitudinally polarised vector bosons in the external states may lead to the largest high

energy behaviour of the scattering amplitudes. However, as can be seen by considering the Goldstone boson

equivalence theorem, there should be cancellations that happen in the calculation of such amplitudes so

that the high energy behaviour is no stronger than for transversely polarised vector bosons. Indeed this is

the case and we have verified it for the scattering amplitudes presented here.
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→ 1√
Ns

Σs′s̄′ 1√
Nψ

Σψ′+ψ̄
′
−

1√
NV

ΣV ′+V
′
−

1√
Ns

Σss̄ 2/3Ns

√
2/3
√
NSNψ 2

√
2/3
√
NSNV

1√
Nψ

Σψ+ψ̄−
√

2/3
√
NSNψ Nψ 2

√
NψNV

1√
NV

ΣV+V− 2
√

2/3
√
NsNV 2

√
NψNV 4NV

Table 2.2: j = 2 partial wave amplitudes for Ns scalars, Nψ fermions and NV vector

bosons via s-channel graviton exchange. A factor of − 1
320πsM

−2
P has been extracted from

each of the amplitudes.

where [43]

N =
2

3
Ns +Nψ + 4NV . (2.1.2)

This amplitude is the main result of this chapter. Using this amplitude it is possible to test

where tree level unitarity breaks down in models of particle physics coupled to linearised

general relativity. Requiring that |Re(a2)| ≤ 1
2 leads to the unitarity bound

√
s ≤MP

√
160π

N
. (2.1.3)

2.1.2 j=0 partial wave amplitude

For models with large numbers of scalar fields or large non-minimal couplings, it may also

be of interest to consider the unitarity bound obtained from from the j = 0 partial wave

amplitude. First, consider the scattering of Ns scalar fields, all with identical non-minimal

coupling ξ. The partial wave amplitude for this process can be read off from Table (2.1)

giving

a0 =
(1 + 6ξ)2

96π

s

M2
P

Ns. (2.1.4)

Applying the unitarity bound to this amplitude, |Re(a0)| ≤ 1
2 for complex scalars or

|Re(a0)| ≤ 1 for real scalars gives

√
s ≤ MP

1 + 6ξ

√
96π

Ns
(2.1.5)

where Ns is the number of complex scalar fields (or twice the number of real scalar fields).

2.2 Unitarity of models of particle physics

Given the unitarity bounds (2.1.3) and (2.1.5) it is possible to find where tree level unitarity

breaks down for any model by considering its matter content. For example, in the standard
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model, Ns = 2, Nψ = 45 (we only include left handed neutrinos), NV = 12 and so we

find N = 283/3 and we find unitarity breaks down at a scale E? = 2.3MP from the j = 2

partial wave amplitude.

In Ref. [3] we calculated the scale at which unitarity breaks down in a variety of models.

The results are presented in Table 2.3. The last two columns show the scale at which

unitarity is violated for both the j = 0 and j = 2 partial wave amplitudes as a fraction of

the Planck mass MP . It is assumed that ξ = 0 in all models. Note that in some models

unitarity breaks down below MP . Naively, one may expect gravitational effects to become

strongly coupled at MP , so it may be a surprise to see unitarity problems appearing below

this scale. However, to properly interpret these results we need to analyse more carefully

the scale at which we expect gravity to become strongly coupled. This subject will be

taken up in the next section using the techniques of the renormalisation group.

2.3 Running of the Planck mass and renormalisation group

improved unitarity bound

Within the effective field theory framework of gravity, it is possible to define the Planck

mass as a coupling that runs under renormalisation group (RG) effects, analogously to

the well established RG running of the gauge couplings in the standard model. For ex-

ample, based on calculations of the renormalisation of Newton’s constant by Larsen and

Wilczek [44] (see also Ref. [45]), Calmet, Hsu and Reeb defined a running Planck mass

which depends on the RG scale µ in the following way [20]:

MP (µ)2 = MP (0)2 − 1

96π2
µ2Nl, (2.3.1)

where

Nl = Ns +Nψ − 4NV . (2.3.2)

Note that Nl is not the same as N and noticeably the sign for the contribution of vector

bosons is opposite in the two cases.

This result has been rigorously derived using heat kernel techniques (see Refs. [44, 20]

for more details). Here, we give a brief illustration of how this effect can be seen to arise.

Consider the one loop self energy correction to the graviton propagator, Fig. 2.1, where

matter particles may run in the loop. Neglecting the index structure, this correction to

the propagator is

∆(q2) ∼ i

M2
P q

2
+

i

M2
P q

2
Σ

i

M2
P q

2
+ · · · , (2.3.3)
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particle physics model N NS j=2 bound j=0 bound

standard model 283/3 4 2.3 8.7

MSSM 425/3 98 1.9 1.8

SU(5) w/ 5, 24 457/3 34 1.8 3.0

SU(5) w/ 5, 200 211 210 1.5 1.2

SU(5) w/ 5, 24, 75 532/3 109 1.7 1.7

SU(5) w/ 5, 24, 75, 200 244 309 1.4 0.99∗

SO(10) w/ 10, 16, 45 781/3 97 1.4 1.8

SO(10) w/ 10, 16, 210 946/3 262 1.3 1.1

SO(10) w/ 10, 16, 770 502 822 1.0 0.61∗

SUSY-SU(5) w/ 5, 5, 24 755/3 158 1.4 1.4

SUSY-SU(5) w/ 5, 5, 24, 75 1130/3 308 1.2 0.99∗

SUSY-SU(5) w/ 5, 5, 200 545 510 0.96∗ 0.77∗

SUSY-SO(10) w/ 10, 16, 16, 45, 54 540 378 0.96∗ 0.89∗

SUSY-SO(10) w/ 10, 16, 16, 210 725 600 0.83∗ 0.71∗

SUSY-SO(10) w/ 10, 16, 16, 770 4975/3 1720 0.55∗ 0.42∗

Table 2.3: Different grand unified models which have been considered in the literature.

The last two columns show the scale at which tree level unitarity breaks down as a fraction

of MP in each model due to the bound from the j = 2 partial wave bound (2.1.3) or the

j = 0 partial wave bound (2.1.5). It is assumed that ξ = 0. Entries marked with ∗
highlight where tree level unitarity breaks down below MP . This can be compared with

the approximate scale at which one expects strong coupling, see for example Eq. (2.3.9).

+

Figure 2.1: The one loop contribution to the running Planck mass. The curly line rep-

resents the graviton and the straight lines represents the matter particles running in the

loop.
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where Σ is the self energy insertion. Σ can be estimated from the Feynman diagram:

Σ ∼ −iq2

∫ Λ

d4p∆m(p2)2p2 + · · · , (2.3.4)

where ∆m is the propagator for the matter particle running in the loop and Λ is the

ultraviolet cutoff of the loop. For scalar fields, the loop integral is quadratically divergent,

and by absorbing the divergence in the redefinition of MP we obtain

M2
P (ren) = M2

P (bare) + cΛ2. (2.3.5)

Taking Λ = µ we recover the form of the rigorously derived running Planck mass Eq. (2.3.1)2.

It is simple to incorporate a running Planck mass into the tree level unitarity bounds

Eqs. (2.1.1) and (2.1.4) in order to give an ‘RG improved’ unitarity bound:3

√
s ≤MP (

√
s)
√

160π/N, (2.3.6)

√
s ≤MP (

√
s)
√

96π/Ns. (2.3.7)

In Ref. [3], we argued that since the running Planck mass incorporates quantum effects

into the definition of the coupling constant, a running Planck mass gives a good indica-

tion of when quantum gravitational effects become strong. The scale at which quantum

gravitational effects become strong is therefore defined as µ?, where

µ2
? 'MP (µ?)

2. (2.3.8)

This criteria ensures that the scale µ? is the scale at which the expansion parameter for the

effective theory, E/MP (E), is equal to one, i.e. the theory becomes strongly coupled. Since

loop effects are normally accompanied by a factor of 1/16π2 (coming from the integral over

unconstrained loop momenta), it could even be argued that the criteria (2.3.8) is rather

conservative and in fact the scale at which gravitational effects are expected to become

strong could easily be an order of magnitude higher than µ?. For example in Ref. [48]

2We remark here that despite the rigorous heat kernel derivation of Eq. (2.3.1), a recent publication [46]

has criticised attempts to define a running Planck mass. The main argument is that a precise definition of

the running is not independent of the process from which it was derived. This therefore leads to difficulty

in defining a universally applicable running. If true, these criticisms could cast doubt on the validity of our

arguments here. However, we only consider a single process, s-channel scattering via graviton exchange,

and so we need not worry about universality of the definition of the running. The running we employ is

defined from exactly the process we wish to consider and should therefore be applicable everywhere we

have used it, even if it were not applicable for other processes.
3A similar procedure of defining an RG improved unitarity bound was given in Ref. [47] for the bound

on the Higgs boson mass from WW scattering as outlined in Section 1.2.1.
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(see also Ref. [49]) a careful power counting analysis is carried out and it is shown that a

generic sufficient condition for successive loops of interactions to be smaller than preceding

ones is

E

4πMP
< 1. (2.3.9)

Despite this, we will retain the criteria (2.3.8) as the scale at which we expect gravita-

tional effects to become strongly coupled, safe in the knowledge that this is a conservative

estimate.

Accepting that µ? is the scale at which gravitational effects are expected to become

strong, we argued in Ref. [3] that if either of the RG improved unitarity bounds, Eq. (2.3.6)

or (2.3.7), showed unitarity problems below µ?, then the unitarity problem could not be

fixed by strong coupling effects. We are still in the weakly coupled regime and so higher

order effects can not be sizeable enough to counteract the rapid growth with energy of the

amplitudes. Additionally, higher order effects coming from the graviton self energy have

already been incorporated into the bound via the RG. The interpretation is then that the

unitarity problem is a clear sign that either new physics that fixes the unitarity problem

must enter at or below the unitarity violation scale, or the model would be inconsistent

(suffer from an incurable unitarity problem). The requirement to distinguish such cases is

therefore whether or not the theory remains unitary up to the point when
√
s = MP (

√
s).

Clearly this will occur if

N ≤ 160π (2.3.10)

and

Ns ≤ 96π. (2.3.11)

Note that these criteria are completely independent of the specific running of the Planck

mass4.

In Ref. [3] we distinguish the models analysed in Table 2.3 according to the above

criteria. Since the criteria are independent on the details of the running Planck mass, the

models in Table 2.3 can be distinguished by whether or not either of the two unitarity

bounds are below MP . Entries in Table 2.3 where unitarity breaks down below MP have

been marked with ∗. All the models for which the unitarity bound is below MP are

therefore classified as being inconsistent without the addition of new physics below the

4We remark again that the concerns raised in Ref. [47] about defining a universal running Planck mass

are not relevant here since the argument given in this section turns out to be independent of the specific

running employed.
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Figure 2.2: The parameter space for models in which unitarity is maintained up to the

scale µ?.

scale at which gravity becomes strong. The parameter space for all models for which

unitarity is maintained up to the scale µ? is plotted in Fig 2.2.

Model with large number of fields

The main motivation for investigating the running of the Planck mass in Ref. [20] was

to utilise the running to propose a model which could offer a solution to the seemingly

unnatural hierarchy between the electroweak and quantum gravity scales. By introducing

an extremely large number of scalar or fermion fields the scale at which gravity becomes

strong can be significantly lowered (note that due to the sign of the vector boson contri-

bution to Nl, a large number of spin one particles will act to increase the scale of strong

coupling). If the scale µ? is identified as the scale of quantum gravity, then the hierarchy

problem will not exist if µ? can be lowered to the electroweak scale.

If MP (µ?) � MP (0) then we find the value of Nl required to have MP (µ?) = µ? is

given by

Nl = 96π2MP (0)2

µ2
?

. (2.3.12)

In order to have MP (µ?) = µ? = 1 TeV we require Nl ' 5 × 1033. Assuming that the

entire contribution to Nl is made up of scalars, i.e. Nl = Ns, we find unitarity is violated
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(using the j = 0 bound) at a scale

E? =
µ?√
1 + π

' 0.5µ?. (2.3.13)

This is below the scale at which gravity is expected to become strong and so new physics

will need to enter at this scale in order to fix the unitarity problem.

Model with a large non-minimal coupling

In Ref. [4], we noted that one could also define a running Planck mass based on the results

of Ref. [44] for models with non-minimally coupled scalar fields. The running Planck mass

defined in this way for Ns scalar fields with non-minimal coupling ξ is given by

MP (µ)2 = MP (0)2 − (1 + 6ξ)

96π2
µ2Ns. (2.3.14)

As a result of this running, it was observed that not only could one lower the Planck mass

by introducing a large number of fields, one could also achieve this by introducing one or

more scalar fields with very large non-minimal couplings. This opened the door to yet

another model offering a solution to the hierarchy problem. If we require MP (µ?) = µ?

and assuming that MP (0)�MP (µ?) and ξ � 1 we find

ξNs = 16π2MP (0)2

µ2
?

. (2.3.15)

In order to have MP (µ?) = µ? = 1 TeV, we would require ξNs ' 9 × 1032. Assuming

Ns > 2, so that the s-channel unitarity bound is valid, we then find unitarity is violated

(using the j = 0 bound) at a scale

E? =
µ?√

1 + 6πξ
� µ?. (2.3.16)

Again this is below the scale at which gravity is expected to become strong and so new

physics will need to enter at this scale in order to fix the unitarity problem.
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Chapter 3

Unitarity of models with extra

dimensions

In this chapter we investigate a number of models that utilise extra dimensions in order

to address the seemingly unnatural hierarchy between the electroweak and Planck scales.

We specifically calculate the scale at which perturbative unitarity breaks down in order to

understand the energy regime for which the effective theory used to study these models

is valid. These models have been extensively researched and there are many experimental

searches for signatures of these models at the LHC. The search strategies rely on comparing

experimental data to predictions calculated using the effective theory and for this reason

alone it is crucial to have a firm understanding of when the effective theory is valid.

In the first section we introduce the general idea of extra dimensions and the concept

of Kaluza-Klein modes. We discuss how these models can be viewed as an effective theory

with a cutoff and how we may attempt to use perturbative unitarity in such models to

provide an upper limit to the size of the cutoff. We then derive a unitarity bound in a

general model independent way.

Following this we introduce and calculate unitarity bounds in three different popular

models of extra dimensions: the ADD model, the Randall-Sundrum model and the linear

dilaton model.

3.1 Extra Dimensions and Kaluza-Klein modes

The idea that there may be extra space dimensions that we have not yet observed was

first proposed by Kaluza in 1921 [50] and then expanded on by Klein in 1926 [51]. The

theory was introduced as a novel geometrical unification of electromagnetism and general
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relativity. Extra dimensions and so called Kaluza-Klein theories received renewed interest

in the 1980’s with the growth of research in supergravity and string theory and the under-

standing that string theories require extra dimensions in order to be internally consistent.

However, the extra dimensional models I will be discussing here are not motivated by the

idea of unification but instead were introduced to resolve the seemingly unnatural hier-

archy between the electroweak and Planck scales. As such they were received with great

excitement as they offered the possibility to observe strong and quantum gravitational

phenomena in particle collisions at accelerators such as the Tevatron and the LHC. The

first model of this type, introduced by Antoniadis, Arkani-Hamed, Dimopoulos and Dvali

in 1998 became known as the ADD model [52, 53]. The extra dimensions are flat and

the hierarchy problem is addressed by the observation that, in the presence of the extra

dimensions, the fundamental Planck mass can be lowered to the TeV scale, thus eliminat-

ing the hierarchy between the electroweak and Planck scales. Following this, Randall and

Sundrum developed a model with a single extra dimension with a warped geometry [54].

Here the hierarchy problem is resolved by having all the fundamental scales, including the

Higgs VEV, at the Planck scale. The warped geometry then acts to exponentially suppress

the Higgs VEV to the electroweak scale where it couples to standard model particles. Both

of these models generated huge excitement and spawned large industries of research. The

original papers [52, 54] have now received well over 4,000 citations each.

In addition to the intense research into the ADD and Randall-Sundrum (RS) models,

a number of other extra dimensional models have since been introduced to offer solutions

to the hierarchy problem. In this thesis we will consider the ADD, RS and linear dilaton

models [55].

We will expand on the specific details of each of these models in the introductions

to their respective sections below. First we will discuss a few general features of extra

dimensional models, why they need to be viewed as effective field theories, introduce the

concept of Kaluza-Klein modes and investigate what can be said about unitarity of extra

dimensional models in the most general model independent case.

3.1.1 Extra dimensional models as effective theories with a low cutoff

The common feature of the extra dimensional models discussed here is that they offer

a solution to the hierarchy problem. They do this in different ways but essentially they

remove the hierarchy by matching the extra dimensional Planck scale to the extra dimen-
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sional electroweak scale1. For this reason, a common feature of the models is that strong

gravitational effects will appear around the electroweak scale. We will see how this comes

about for each individual model separately. However, because we expect strong gravita-

tional effects at this very low scale, the cutoff for the effective theory of gravity coupled

to matter will be reduced from the Planck scale (see Section 1.1) to the TeV scale. We

would like to reliably calculate observable quantities in these models and so it is essential

to have a good idea of where we expect this cutoff to appear. As discussed in Section 1.2,

the scale at which unitarity in scattering amplitudes breaks down should provide a good

estimate for this cutoff. The main aim of this chapter is to determine the strongest uni-

tarity bounds available in these models in order to understand the regime of validity of

the effective field theory approach.

One of the exciting prospects of the extra dimensional models presented here is that

with strong gravitational effects appearing at the TeV scale, they offer the prospect of

observing quantum gravity and other phenomena such as black hole formation at particle

accelerators such as the LHC.

3.1.2 Kaluza-Klein modes

An important feature of compact extra dimensions is the concept of Kaluza-Klein (KK)

modes. For this reason we will now give a brief review of KK modes. For illustrative

purposes we first use the example of a scalar field living in a single extra dimension. We

will then briefly discuss the extension to the graviton field. The specific couplings of the

graviton field to matter are model dependent and will be introduced at the beginning of

each respective section.

For simplicity, let us consider a single flat extra dimension compactified on a circle of

radius r. We can denote the usual four dimensional Minkowski spacetime coordinates by

xµ and the coordinate in the extra dimension by y. The action for a complex scalar field

Φ(x, y) living in the full five dimensional bulk is then given by

S =

∫
d4x

∫ 2πr

0
dy

(
1

2
∂MΦ∗∂MΦ− 1

2
m2

0Φ∗Φ

)
. (3.1.1)

Capital letter indices such as M run over the full five dimensional coordinates, greek letters

will be retained for the standard four dimensional Minkowski space and lower case latin

indices (i,j etc.) will represent the extra dimensional coordinates. Compactification on

1The removal of the hierarchy can often come at the price of introducing a fine tuning in the geometry

of the extra dimension. The amount of fine tuning required is model dependent as we will see later in this

chapter.
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a circle imposes periodic boundary conditions. For example Φ must be periodic under

y → y + 2πr . This means that we can decompose Φ with the following mode expansion

Φ(x, y) =
1√
2πr

∞∑
n=−∞

φn(x)einy/r. (3.1.2)

Substituting this into Eq. (3.1.1), we find

S =
1

2πr

∫
d4x dy

∑
m,n

(
1

2
∂µφ

∗
m∂

µφn −
1

2

mn

r
φ∗mφn −m2

0φ
∗
mφn

)
ei(n−m)y/r. (3.1.3)

Now using the orthogonality of the exponential:∫ 2πr

0
dy ei(n−m)y/r = 2πrδmn (3.1.4)

we find

S =

∫
d4x

∑
n

(
1

2
∂µφ

∗
n∂

µφn −
1

2

(
m2

0 +
n2

r2

)
φ∗nφn

)
. (3.1.5)

This is a 4D action for an infinite tower of 4D fields with masses

m2
n = m2

0 +
n2

r2
, n ∈ Z. (3.1.6)

The fields φn are known as Kaluza-Klein (KK) modes. The same procedure can be carried

out for fields of any spin with no real extra complication.

The extension to more than one extra dimension is straightforward. If we extend the

idea to δ extra dimensions, all of which have common radius r, we would obtain the same

action but with a mass spectrum

m2
~n = m2

0 +
~n2

r2
, ~n = (n1, n2, . . . , nδ), (3.1.7)

m2
~n = m2

0 +
~n2

r2
, ~n = (n1, n2, . . . , nδ), (3.1.8)

where we see that the index ~n is now a vector in a discretised δ-dimensional lattice.

Kaluza-Klein gravitons

The formalism for dealing with the graviton degrees of freedom in extra dimensions has

been well developed in in Refs. [29, 30]. It is also covered in many good reviews such

as Ref. [56] which we will follow closely here. We will give a brief overview of the main

important features, some of the model dependent features will be separately developed at

the beginning of the respective sections.

In δ extra dimensions, the graviton is a D by D symmetric tensor, where D = 4 + δ is

the total number of dimensions. After consideration of the gauge symmetries of general
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coordinate invariance, the graviton is found to have D(D − 3)/2 independent degrees of

freedom. So from a 4D perspective there will be more particles than just the 4D graviton.

The full D dimensional metric gMN can be expanded in fluctuations (the graviton

modes) around flat space

gMN = ηMN +
1

2M
1+δ/2
∗

hMN , (3.1.9)

where M∗ represents the D-dimensional Planck mass. We can then expand the fluctuations

into KK modes

hMN (x, y) =
∑
~n

1

N~n
h~nMN (x)χ~n(y), (3.1.10)

where N~n is a normalisation factor which may be dependent on the mode number ~n, and

χ~n(y) is the wavefunction of the KK mode in the extra dimension.

The metric gMN can be generically decomposed into tensor, vector and scalar modes

in the following way

gMN =



g~nµν V ~nµj

V ~niν S~nij



. (3.1.11)

It can be shown [29, 30] that for compactification on a torus, some of the vector and scalar

modes are “eaten” by the graviton modes in a Higgs like mechanism to provide the extra

degrees of freedom required by the massive KK gravitons. In this compactification it will

also be seen that the remaining vector modes completely decouple from the theory and so

can be disregarded. The same is true for many of the scalar modes. The only scalar field

that remains and couples to matter is the S
(~n)i
i field which is related to the size of the extra

dimensional volume. The fluctuation of this field h
(~n)i
i is known as the radion. In more

complex geometries, the behaviour of vector and scalar modes may be more complicated.

In the models that will be considered here, the matter particles will be confined to a

brane with three space dimensions. They will experience an induced metric on the brane

gµν(x). If the action for the matter on the brane is denoted Sm then the definition of the

energy momentum tensor is as usual given by

√
gTµν =

δSm
δgµν

, (3.1.12)
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and the coupling between the graviton and matter is given by

Lint = Tµν
hµν

M
1+δ/2
∗

. (3.1.13)

Substituting in the KK mode expansion we find

Lint =
∑
~n

Tµν
1

M
1+δ/2
∗

h~nµν
N~n

=
∑
~n

Tµν
h~nµν
Λ~n

. (3.1.14)

Where Λ−1
~n represents the coupling of the associated KK graviton. We will see that it is

always the case that Λ0 = MP so that the massless zero mode graviton couples to matter

in the same way as the normal 4D graviton as required to reproduce general relativity

on large scales. Using this, the Feynman rules for KK gravitons coupled to matter are

derived in Refs. [29, 30] and reproduced in Appendix E.

The propagator for a massive KK graviton h~nµν in harmonic gauge, ∂µ(hµν− 1
2ηµνh) = 0,

is given by [29]

∆µν,ρσ(k) =
Bµν,ρσ(k)

k2 −m2
~n + iε

(3.1.15)

where

Bµν,ρσ(k) =

(
ηµρ −

kµkρ
m2
~n

)(
ηνσ −

kνkσ
m2
~n

)
+

(
ηµσ −

kµkσ
m2
~n

)(
ηνρ −

kνkρ
m2
~n

)
− 2

3

(
ηµν −

kµkν
m2
~n

)(
ηρσ −

kρkσ
m2
~n

)
. (3.1.16)

It will be useful later to make the separation

∆µν,ρσ(k) = Bµν,ρσ(k)∆~n(k2) (3.1.17)

where

∆~n(k2) =
1

k2 −m2
~n + iε

. (3.1.18)

In the high energy limit we find

Bµν,ρσ(k) = ηµρηνσ + ηµσηνρ −
2

3
ηµνηρσ. (3.1.19)

Note the factor of 2/3 that differs from Eq. (1.1.9) differentiates the massless propagator

to the massive propagator in the massless limit (this is known as the Van Dam-Veltman-

Zakharov (VDVZ) discontinuity [57, 58]). The Feynman rules for KK gravitons coupling

to matter are thus identical to those for massless gravitons with the exception of the

coupling strength and the expression for the propagator.
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→ s′s̄′ ψ′+ψ̄
′
− ψ′−ψ̄

′
+ V ′+V

′
− V ′−V

′
+

ss̄ 2/3d2
0,0

√
2/3 d2

0,1

√
2/3 d2

0,−1 2
√

2/3 d2
0,2 2

√
2/3 d2

0,−2

ψ+ψ̄−
√

2/3 d2
1,0 d2

1,1 d2
1,−1 2d2

1,2 2d2
1,−2

ψ−ψ̄+

√
2/3 d2

−1,0 d2
−1,1 d2

−1,−1 2d2
−1,2 2d2

−1,−2

V+V− 2
√

2/3 d2
2,0 2d2

2,1 2d2
2,−1 4d2

2,2 4d2
2,−2

V−V+ 2
√

2/3 d2
−2,0 2d2

−2,1 2d2
−2,−1 4d2

−2,2 4d2
−2,−2

Table 3.1: Scattering amplitudes for scalars, fermions, and vector bosons via s-channel

KK graviton exchange in terms of the Wigner d functions in the massless limit. A factor

of −1
4s

2Λ−2
n ∆n(s) has been extracted from each of the amplitudes.

3.1.3 Partial wave amplitude for KK graviton exchange

Using the Feynman rules of Refs. [29, 30] the complete set of tree level s-channel scattering

amplitudes between all different types of matter particles via KK graviton exchange can

be calculated and are given in Table (3.1). We have used the helicity basis in Appendix

A and the Feynman rules of Appendix E. We also work in the high energy limit where

external particles but not KK gravitons are taken to be massless. Note that a factor of

−1
4s

2Λ−2
n ∆n(s) has been extracted from each of the amplitudes.

The main difference between the entries in Table (3.1) and the amplitudes for the

massless graviton in Table (2.1) occurs in the ss→ s′s′ entry. The exchange of a massive

graviton occurs only in the j = 2 channel (there is no j = 0 partial wave). This difference

is related to the VDVZ discontinuity as explained in Ref. [59]. Diagonalising the matrix

of partial wave amplitudes we find the j = 2 partial wave amplitude

a
(n)
2 = − 1

320π

s2

Λ2
n

∆n(s)N. (3.1.20)

The amplitudes in Table 3.1 can occur via exchange of any of the large number of KK

gravitons and the total amplitude is the sum over all the KK modes. Incorporating this,

the total diagonalised partial wave amplitude is

a2 = − Ns
2

320π
S ′(s), (3.1.21)

where

S ′(s) =
∑
n

1

Λ2
n

∆n(s) =
∑
n

1

Λ2
n(s−m2

n + iε)
. (3.1.22)

The sum over KK modes will be model dependent and may not even converge. The

consequences for the sum of the different spectrums of KK gravitons will be discussed
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separately in the three different extra dimensional models below. In many situations, the

coupling Λn will be independent of n. We can therefore extract the coupling from the sum

and we only need consider a simplified propagator sum which we will call S defined by

S(s) =
∑
n

∆n(s) =
∑
n

1

s−m2
n + iε

. (3.1.23)

3.1.4 Width of KK gravitons

Using the Feynman rules one can also determine an expression for the decay rate of a KK

graviton. Expressions for the decay rate to different final states are given in Ref. [29],

combining these, the total decay rate of a KK graviton is

Γ(mn) =
Nm3

n

320πΛ2
n

, (3.1.24)

where N = 1
3Ns + Nψ + 4NV where Ns, Nψ and NV are respectively the number of real

scalar fields, Weyl fermions and vector bosons which the KK graviton can decay into. Note

that this is the same factor N as that appearing in (2.1.2). For the standard model with

no right handed neutrinos and treating decay products as massless we have N = 283/3

and the total KK graviton width is

Γ(mn) =
283m3

n

960πΛ2
n

. (3.1.25)

3.2 Unitarity of KK graviton resonances

Using only what has been developed so far, it is possible to show that if more than one

KK graviton mode exists in a model, then the model will suffer from unitarity problems

at the energy scale of the first KK mode. In this section, this simple observation will be

derived. We will briefly discuss that this problem appears to stem from simply adding

Breit-Wigner resonances. We then show that there are hints that if the resonances are

added by fully taking into account interference effects between different KK modes, that

it appears that this unitarity violation does not occur.

3.2.1 Sum of Breit-Wigner resonances

As mentioned, the sum over KK modes (3.1.22) will be model dependent. However, we can

already make an important observation in any general model with KK gravitons. The tree

level amplitude (3.1.20) for exchange of a single KK graviton diverges when the graviton is

on shell, k2 = m2
n. To regulate this type of divergence (resonance) the standard technique
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is to introduce a Breit-Wigner width into the propagator [60],

∆n(p2) =
1

p2 −m2
n + imnΓ(mn)

, (3.2.1)

and the sum over modes Eq. 3.1.22) will become

S ′(s) =
∑
n

1

Λ2
n(s−m2

n + imnΓ(mn))
. (3.2.2)

Inserting (3.2.1) into the amplitude for the exchange of a single KK graviton Eq. (3.1.20)

the imaginary part of the amplitude is given by

Im
[
a

(n)
2 (s)

]
=

Ns2

320πΛ2
n

mnΓ(mn)

(s−m2
n)2 +m2

nΓ(mn)2
≥ 0. (3.2.3)

The imaginary part is positive for s 6= 0. Now, if we look at the amplitude when the

exchanged graviton is on shell by setting s = m2
n and using Eq. (3.1.24) we have

Im
[
a

(n)
2 (m2

n)
]

= 1. (3.2.4)

The amplitude saturates unitarity exactly for exchange of a single on shell mode.

Now, the important point is that the addition of any further KK modes, will push

this amplitude to exceed the unitarity bound. The total amplitude is given by the sum

(3.2.2) and all modes contribute with a positive sign, Eq. (3.2.3). As a consequence, the

contribution of the exchange of any extra modes will positively increase the imaginary part,

pushing it to violate unitarity |Im[a2(mn)]| > 1. We immediately see that the presence

of more than one KK graviton leads to problems with unitarity at the first KK mode,

s = m2
1 !

Comment on the massless limit

We will apply the above unitarity bound to three different models below. We note here

that in the above we have used the massless limit. A similar derivation could be made

including the masses of the external particles but this would complicate things greatly.

If the first KK mode of the model under consideration lies well above the mass of the

top quark mt ' 173 GeV (the heaviest standard model particle) then the bound applies

without restriction. However, if the first KK mode is lower lying, then strictly speaking

we should consider a more careful analysis. However, even when including the masses of

the external particles, to a first approximation the analysis should be the same as the

massless limit and if we are to find unitarity problems below 173 GeV, this would be a big

problem for the model since the perturbative standard model has now been well tested to
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much higher energies at the Tevatron and the LHC. If we find a breakdown of unitarity

using the massless limit at energies below 173 GeV, we need not worry about determining

this scale with high accuracy, this approximation is simply enough to know that the model

suffers from serious inconsistencies with experimental observations.

3.2.2 Beyond the Breit-Wigner approximation

The unitarity problem described in the previous section comes about from summing am-

plitudes with Breit-Wigner widths. If resonances are far apart from each other (relative

to the size of the widths) this procedure is normally a very good approximation. However,

if the resonances significantly overlap, a more sophisticated procedure can be employed

which takes into account interference between the resonances. The technology for dealing

with nearby resonances has been developed in Ref. [61]. A full treatment of this topic goes

beyond the scope of this thesis, however I will show that in the simple case of two nearby

resonances, using the propagator of Ref. [61] we find that unitarity is maintained where it

would be violated if we were to naively sum the separate Breit-Wigner amplitudes as we

have done in Eq. (3.2.2) above.

First let us simply consider the behaviour of two degenerate modes with masses m2
1 =

m2
2 = s. If we simply add the amplitudes as in Eq (3.2.2) we will find Im[a2(mn)] = 2,

clearly exceeding the unitarity bound. However, since these two modes are degenerate in

mass, they fully overlap and we should consider the interference between the two modes.

Following Ref. [61], we should replace the ∆n part of the propagator for the exchange

of two nearby resonances with common width Γ and KK mode numbers i and j with

∆ij =
(
K−1

)
ij

(3.2.5)

where K is the matrix given by

Kij =
(
p2 −m2

i

)
δij + iΓ. (3.2.6)

This corrected propagator represents the possibility of interference between the resonances

and the subscripts i, j represent the fact that the KK gravitons coupling to the external

particles can be of different KK mode number as shown in Fig. 3.1. For example, the ‘in’

states could be coupled to KK mode number i and the ‘out’ states could be coupled to KK

mode number j. When we consider the self energy correction to the graviton propagator

(the shaded bubble in Fig. 3.1) which is ultimately the source of the Breit-Wigner width,

we see that we must now also consider the case where i 6= j. The sum over KK modes is

now a sum over the subscripts i and j.
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i j

Figure 3.1: The corrected propagator for KK graviton exchange.

Using this corrected propagator to calculate the amplitudes for two nearby resonances

we have plotted the size of the amplitude for different values of
√
s in Figure 3.2. The

dashed line comes from naively adding the separate amplitudes and clearly violates uni-

tarity. The solid line uses the corrected propagator (3.2.5) which includes the effect of

the interference between the modes and clearly remains unitary. Note we have chosen an

arbitrary constant value of the coupling Λn in this example, the qualitative statements

made here are not affected by the size of the coupling.

On further investigation it appears that this effect continues as we add in more and

more modes, and the amplitude continues to remain unitary in the limit that the number

of modes goes to infinity. Clearly this would imply that the full sum (3.1.21) is in fact

unitary and finite at all energies. This is an extremely strong statement and relies on

non-perturbative effects in order to be reliably verified. Also, for resonances far from the

scattering energy we should incorporate the full expression for the graviton self energy

(not just the width). For these reasons, further study of this effect goes beyond the scope

of this thesis. It is however certainly a claim that warrants further research, and if true

would overcome the unitarity problem described above which as we will see can have severe

consequences for certain extra dimensional models.

Until these interesting observations have been more fully investigated, we will work

throughout the rest of this thesis applying the unitarity bound from the previous section

where we found that for models with more than one KK graviton unitarity breaks down

at the first KK mode resonance. However, we keep in mind the caveat that this unitarity

problem may be cured by the complicated non-perturbative interference effects outlined

in this section, which could therefore provide an interesting avenue for future research.

3.3 Unitarity in the ADD model

In this section we introduce the ADD model and use a variety of approaches to attempt

to calculate the scale of unitarity violation in the model.
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Figure 3.2: Partial wave amplitudes for the exchange of two nearby resonances:

(a) Im[a2(s)] both with masses m1 = m2 = 400 GeV (b) Im[a2(s)], m1 = 400 GeV and

m2 = 405 GeV, (c) Re[a2(s)], m1 = m2 = 400 GeV and (d) Re[a2(s)], m1 = 400 GeV and

m2 = 405 GeV. The dashed line comes from naively adding the separate amplitudes and

clearly violates unitarity. The solid line includes the effect of the interference between the

modes and remains unitary.
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3.3.1 Introduction to the ADD model

The ADD model was proposed in 1998 as a novel approach to addressing the hierarchy

problem [52, 53]. The setup consists of δ flat compact extra dimensions with the standard

model fields confined to a 3-brane. The hierarchy problem is addressed by allowing the

fundamental Planck scale in the extra dimensions to be at the TeV scale. At high energies

one would probe distances smaller than the size of the extra dimensions and experience

strong gravitational effects coming from the low Planck scale. At low energies (large length

scales), the gravitational force is diluted in the extra dimensions reproducing the usual

weak force of gravity we experience.

To see how this works in more detail (again following Ref. [56]), we start with the

Einstein-Hilbert action in the full extra dimensional spacetime:

S4+δ = −M
δ+2
∗
2

∫
d4+δx

√
g(4+δ)R(4+δ). (3.3.1)

We would like to see how this is related to the usual 4D Einstein-Hilbert action

S4 = −M
2
P

2

∫
d4x

√
g(4)R(4). (3.3.2)

Since the space is flat, the full metric can be written as

ds2 = gµνdx
µdxν − r2dΩ2

(δ). (3.3.3)

From this we can see how the extra dimensional quantities in (3.3.1) relate to the 4D

quantities in (3.3.2). We find√
g(4+δ) = rn

√
g(4) , R(4+δ) = R(4). (3.3.4)

We then have

S4+δ = −M
δ+2
∗
2

∫
d4+δx

√
g(4+δ)R(4+δ) = −M

δ+2
∗
2

∫
dΩ(δ)r

n

∫
d4x

√
g(4)R(4). (3.3.5)

The factor
∫
dΩ(δ)r

n is just the extra dimensional volume, V(δ). The simplest compacti-

fication geometry is a δ-torus with common radius r. Using this we have V(δ) = (2πr)δ.

Integrating over the extra dimensions, we find the relationship

M2
P = M δ+2

∗ V(δ) ≡M δ+2
D rδ. (3.3.6)

This definition of MD was first given in Ref. [30] and is now standard in the literature.

From here on, in the context of the ADD model, we will refer to MD as the fundamental

Planck scale, rather than M∗.
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We can now see that if the extra dimensional volume is large, the fundamental Planck

scale can be much lower than the 4D Planck scale. However, on large length scales (when

we can effectively integrate out the extra dimensions), we still reproduce weak Planck

scale gravity. In order to offer a solution to the hierarchy problem we wish to lower the

fundamental Planck scale MD to the TeV scale. To do this we need to fix the size of the

extra dimensions. Imposing MD ∼ 1 TeV, we find the size of the extra dimensions to be

r ∼ 10−191032/δ m. (3.3.7)

For δ = 1 extra dimension, this gives r = 1013 m. This is roughly the size of the solar

system and is clearly ruled out. For δ = 2 extra dimensions, we find r ∼ 1 mm. The

best direct experimental constraints coming from searches for deviations from Newton’s

inverse square law place the bound r < 37µm [62]. Interestingly, allowing r = 37µm would

correspond to MD > 3.6 TeV, which would only produce a very small hierarchy between

the electroweak and fundamental Planck scales. δ > 2 extra dimensions are not ruled out

by direct experiments. There are however further bounds coming from astrophysical and

cosmological constraints. The most stringent arises from the requirement that neutron

stars are not excessively heated by KK decays into photons and leads to MD > 1700 TeV

for δ = 2 and MD > 76 TeV for δ = 3 [63]. Also, the LHC has been able to place strong

bounds on the model in searches for jets plus missing energy which would be associated

with graviton production The CMS experiment places a lower bound on MD of 4.54 TeV

for δ = 2, 2.98 TeV for δ = 4 and 2.51 TeV for δ = 6 [64]. The ATLAS experiment places

a lower bound on MD of 4.37 TeV for δ = 2, 2.97 TeV for δ = 4 and 2.53 TeV for δ = 6

[65].

The graviton KK spectrum and couplings

We now turn to deriving the graviton KK spectrum and the couplings of KK gravitons to

matter. In δ flat extra dimensions, the normalisation for the KK modes (3.1.10) is given

by

hMN (x, y) =
∑
~n

1√
V(δ)

h~nMN (x)e~n·~y/r. (3.3.8)

Inserting this into the equations of motion, we find the KK spectrum

m2
n =

(
~n

r

)2

, ~n = (n1, n2, . . . , nδ). (3.3.9)

Note that due to the large size of the extra dimensions the spacing between the modes is

very fine and we have approximately 1032 KK modes below MD.
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Substituting the mode expansion into the expression for the graviton coupling to matter

(3.1.14) we find

Lint =
∑
~n

Tµν
1

M
1+δ/2
∗

h~nµν√
V(δ)

=
∑
~n

1

MP
Tµνh~nµν . (3.3.10)

All of the KK modes couple to matter with strength M−1
P . At low energies and large

length scales, standard model matter still feels a very weak gravitational force. At high

energies the huge number of KK modes conspire to produce strong gravitational effects.

Now that we know the mass spectrum and the couplings of the KK gravitons in the

ADD model, we may proceed to calculate the partial wave amplitudes and unitarity bounds

in this model.

3.3.2 Unitarity in the ADD model

We saw in Section 3.2.1 that if an extra dimensional model contains more than one KK

graviton, unitarity will break down at the first KK mode. This is certainly the case for

the ADD model. Because the spacing between the modes in the ADD model is very

fine, the lowest lying KK mode is at an extremely low energy. For example, in δ = 4

extra dimensions, the lowest lying KK mode has a mass of approximately 20 keV. If

unitarity completely breaks down at this scale it would spell disaster for the ADD model

as no reliable perturbative calculations could be performed above the scale of the first KK

mode. We note however, that the derivation of Section 3.2.1 finds unitarity problems when

an exchanged KK graviton is on shell. In the ADD model, the width of the resonances

is extremely small, Γ ∼ m3
n/M

2
P . We also see that the width is much smaller than the

spacing between the modes Γ � δm ' 1/r. So we see that despite the problems with

unitarity at the resonance peaks as explained in Section 3.2.1, there is a large range of

energies between each resonance where the scattering amplitude will be much smaller and

may not suffer from problems with unitarity until a much higher scale. In fact, the spacing

between the modes, let alone the narrow width of the resonances, is much smaller than the

energy resolution of detectors at the LHC. For this reason, and for calculational ease, it is

extremely common in the ADD model to approximate the sum over modes by an integral

(see Ref. [66] for discussions on the validity of these approximations in light of the finite

detector resolution).

So in addition to our understanding that unitarity breaks down at the first resonance

peak, in this section we attempt to find out if we can determine a unitarity bound coming

from the parts of the amplitude which are not near resonances. We will use the standard
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technique of approximating the sum over modes by an integral which we also review here.

Unfortunately we will see that despite our best efforts, it is extremely hard to separate

non-resonant behaviour from the unitarity problems associated with resonances.

The following sections are based closely on our work in Refs. [4] and [5]. We first

present an analysis in the zero width approximation where we will see that we have to

deal with problems due to the divergent nature of the sum over KK modes as well as

divergences from on shell KK graviton exchange. In the following section we will attempt

to separate these problems by the introduction of a Breit-Wigner width. However, we

will ultimately see that the unitarity problems still stem primarily from the resonances

and that it is extremely difficult to separate the behaviour of the resonances from the

behaviour away from resonances without introducing strong dependence on an arbitrary

cutoff. We will summarise our findings in full in Section 3.3.5.

3.3.3 KK sum and unitarity in the zero width approximation

In order to see when unitarity breaks down in the ADD model we analyse the j = 2 partial

wave amplitude

a2 = − Ns2

320πM2
P

S(s), (3.3.11)

where S(s) represents the sum over the KK graviton propagators. We will first consider

this sum in the zero width approximation:

S(s) =
∑
~n

1

s−m2
~n + iε

. (3.3.12)

Due to the high density of massive modes in the ADD model, it is well known that

this sum does not converge for δ > 1 extra dimensions. It is therefore assumed that some

sort of cutoff (Λ) to the theory exists, above which new degrees of freedom appear and

the sum over modes should be curtailed here. In the ADD model the KK modes have a

very fine spacing, δm ∼ 1/r, and it is common practice to approximate the sum (3.1.22)

by an integral [29, 30] (see also Refs. [66] for detailed analysis of the validity of this

approximation). The number of modes with masses between m and m+ dm is given by

dN = Sδ−1m
δ−1rδdm (3.3.13)

where Sδ−1 = 2πδ/2/Γ(δ/2) is the surface of a unit-radius sphere in δ dimensions. Summing

all the modes with masses mn ≤ Λ, we find

S(s) =
∑
~n

1

s−m2
~n + iε

'
∫ Λ

0

mδ−1

s−m2 + iε
Sδ−1r

δdm. (3.3.14)
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Approximating the sum by an integral effectively smooths out the mass distribution of

the KK modes and hence also smooths out the resonance peaks. We therefore hope

that this method will be able to provide a unitarity bound for energies away from the

resonances. Unfortunately as we will soon see this is not possible without introducing a

strong dependence on the arbitrary cutoff.

The integral clearly diverges in the limit that the cutoff is taken to infinity for δ > 1.

However, with a finite cutoff, it can be evaluated exactly [29, 66]2 . By identifying

1

s−m2 + iε
= P

(
1

s−m2

)
− iπδ(s−m2) (3.3.15)

where P signifies the Cauchy principal value, we have

S(s) =
πδ/2rδsδ/2−1

Γ(δ/2)

(
−iπ + 2I(Λ/

√
s)
)
. (3.3.16)

where

I(Λ/
√
s) = P

∫ Λ/
√
s

0

yδ−1

1− y2
dy. (3.3.17)

This integral can be evaluated (see Appendix C) to give

I(Λ/
√
s) = −

δ/2−1∑
k=1

(Λ/
√
s)2k

2k
− 1

2
log

(
Λ√
s
− 1

)
δ = even, (3.3.18)

= −
(δ−1)/2∑
k=1

(Λ/
√
s)2k−1

2k − 1
− 1

2
log

(
Λ +
√
s

Λ−√s

)
δ = odd. (3.3.19)

The UV divergence of the sum (3.3.14) can now clearly be seen for δ > 1, note that

for δ = 2 it is only logarithmically divergent. The UV divergence comes from the high

density of states of KK gravitons and is related to the unconstrained momenta allowed to

propagate into the extra dimensions from the brane. The imaginary part of (3.3.16) arises

from the exchange of on shell KK gravitons. It is tempting to derive a unitarity bound

from this part of the amplitude as is done in Ref. [30], however, since the KK gravitons are

unstable particles, a proper expression for the width should be used and the zero width

approximation will simply give misleading results. The inclusion of a Breit-Wigner width

will be taken up in the following section, but first we look at the possibility of deriving a

unitarity bound from the real part of the zero width amplitude.

In Ref. [4] we attempted to bound the real part of the amplitude via |Re(a2)| ≤ 1/2, i.e.

find a maximum energy at which unitarity is violated. However, because the amplitude is

2Some authors choose to evaluate the divergent integral using dimensional regularisation (see e.g.[30]).

However, since the the physical picture is that we are actually cutting off all KK modes with masses

mn > Λ, we consider it more physically meaningful to calculate the integral with a hard cutoff.
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strongly dependent on both the centre of mass energy and the cutoff, it is not immediately

clear how to go about this. The argument given in Ref. [4] is that in a standard effective

field theory approach, the cutoff can be estimated as the lowest energy at which tree level

unitarity is violated. The procedure is then to set Λ =
√
s and vary

√
s to see at what

energy unitarity is violated. It can clearly be seen from Eqs. (3.3.18) and (3.3.19) that

setting Λ =
√
s results in divergences in the logarithms. (In fact under the principal value

prescription the point s = m2 is removed from the integral, and one should only consider

the limit Λ→ √s). In Ref. [4] it was therefore suggested to take Λ to range from 0.9
√
s to

0.999
√
s and show that with such a choice unitarity was violated at an energy

√
s < MD.

However, the choice of how close to take
√
s to Λ is completely arbitrary and renders the

unitarity bound derived in such a manner meaningless since one can make the amplitude

as large as one wishes by choosing Λ arbitrarily close to
√
s.

It should also be noted that by setting Λ =
√
s, the divergence does not come from a

part of the amplitude due bad high energy behaviour of off shell amplitudes, instead the

logarithmic divergences are infrared. The divergences come from attempting to integrate

up to and not beyond the singular point s = m2 in (3.3.14). Any integration in this

region is strongly dependent on the form of the amplitude where an on-shell KK graviton

is exchanged. This is the resonance region and so we in fact end up probing the unitarity

problems associated with resonances discussed in Section 3.2. Despite using the integral

approximation which smooths out the mass distribution, by choosing
√
s ∼ Λ the integral

is still strongly dependent on a resonant peak. Because of this fact, it was decided in

Ref. [4] and later in Ref. [5] that to take the analysis further, the resonance region must

be dealt with properly and so a Breit-Wigner width needs to be introduced. This will be

taken up in the following section.

Of course, one could attempt to avoid the contribution from the resonances by taking

Λ� √s, however doing so will mean any unitarity bound (in δ > 1 extra dimensions) will

be strongly dependent on the choice of Λ and therefore completely arbitrary.

3.3.4 KK sum and unitarity including Breit-Wigner width

As discussed in Section 3.1.4, KK gravitons are unstable particles and as such, the prop-

agator near the on-shell region can be approximated by the inclusion of a Breit-Wigner

width:

∆~n(s) =
1

s−m2
~n + im~nΓG(m~n)

, (3.3.20)
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where ΓG(m~n) in the ADD model is given by

ΓG(m~n) =
Nm3

~n

320πM2
P

. (3.3.21)

Including the width, the sum over propagators can again be converted to an integral

S(s) =
∑
n

1

s−m2
n + imnΓG(mn)

'
∫ Λ

0

mδ−1

s−m2 + imΓG(m)
Sδ−1r

δdm. (3.3.22)

It is now possible to set Λ =
√
s without encountering divergences. We also now have

an accurate expression for the imaginary part of the amplitude. We will derive unitarity

bounds from the imaginary part later in this section, but first we revisit attempts to place

unitarity bounds on the real part of the amplitude.

Real part with Breit-Wigner width

The integral (3.3.22) has to be evaluated numerically. Following the procedure outlined

for the zero width case, we wish to find the highest energy at which unitarity is violated.

This will define the cutoff, so we set Λ =
√
s and vary

√
s to see at what scale unitarity

is violated. Note that the Breit-Wigner width will now regulate the divergence at s = m2

and so we can follow this procedure without encountering divergences.

Evaluating the j = 2 partial wave amplitude for MD = 1 TeV, setting Λ =
√
s, and

imposing |Re(a2)| ≤ 1/2, we find unitarity breaks down at the following energies for δ

extra dimensions:

δ 1 2 3 4 5 6 7

E? (TeV) 0.41 0.39 0.41 0.44 0.48 0.51 0.55

Assuming that the leading order behaviour is the same as for the zero width case, it is

possible to see how the unitarity violation scale varies with different values of MD. First,

from Eqs. (3.3.11) and (3.3.16) we can see that a2 ∼ sδ/2+1. Next, from (3.3.22), we also

see that a2 ∼ rδ ∼ 1/M δ+2
D . Combining these we find

a2(s) ∼
( √

s

MD

)δ+2

. (3.3.23)

From this we can see that the scale of unitarity violation is proportional to MD. This

scaling behaviour has been numerically verified to hold with better than 10% accuracy for

1 TeV < MD < 104 TeV. For example, for δ = 4 extra dimensions we find that unitarity

breaks down at around 0.4MD for 1 TeV < MD < 104 TeV

In Ref. [4] we interpret this result as a clear breakdown of unitarity at the given scale

(E? ∼MD/2). In Refs. [29, 67] it is shown that by naive dimensional analysis, one expects
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gravity to become strong at around

Λstrong = [Γ (2 + δ/2)]1/(2+δ) (4π)
4+δ
4+2δMD. (3.3.24)

Note that in four dimensions this agrees with our requirement given in Eq. (2.3.9). For

any number of extra dimensions, it is found that Λstrong > 7.2MD. For this reason we

stated in Ref. [4] that it is very unlikely that higher orders in perturbation theory will

be able to fix this breakdown of unitarity and new physics would be required to enter at

around MD/2 in order to fix the unitarity problem. Two comments on this are however

in order. Firstly, the estimate of Λstrong given above does not take into account factors

of Ns, Nψ and NV that will be present when a large number of particles can circulate in

the loops. Secondly, as we properly identified in Ref. [5], the unitarity bound found using

the method described above is again appearing as a result of the large resonances. Setting

Λ =
√
s would appear to be a sensible procedure to deal with the cutoff dependence of the

sum, however it means that we are only summing up to and not beyond the point where

s = m2. The contribution from modes above
√
s come with opposite sign and so will act

to reduce the unitarity bound. For this reason, the amplitude is extremely sensitive to the

rapidly changing behaviour near the resonance peak. Increasing the cutoff by only a tiny

amount will change the amplitude significantly. Despite our best efforts, we find that by

using the real part of the amplitude, we can neither remove the extreme sensitivity to the

cutoff nor separate resonance from the non-resonance regions.

For these reasons, we decided in Ref. [5] that it is wiser to concentrate on the imaginary

part of the amplitude which appears entirely from the resonances but is not sensitive to

the cutoff. We will now focus on the imaginary part of the amplitude and derive a more

robust unitarity bound from it.

Imaginary part with Breit-Wigner width

With the principal value prescription for dealing with the sum in the zero width approx-

imation, an imaginary part is generated. As mentioned above, a unitarity bound can be

derived from this (see Ref. [30]), however since this part of the amplitude is appearing

from the exchange of an on shell graviton, we choose here to derive the unitarity bound

using the full expression for the width of KK gravitons for much greater accuracy.

Including the Breit-Wigner width, we again have to evaluate the partial wave amplitude

numerically in order to determine the imaginary part. Due to the extremely small width

of TeV scale KK gravitons (ΓG ∼ m3/M2
P ), by far the dominant contribution to the

imaginary part of the amplitude comes from the resonant region. For this reason one can
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set the cutoff to Λ = 2
√
s and capture all the important behaviour of the imaginary part

of the amplitude. Increasing the cutoff will not effect any of the bounds derived here.

Evaluating the j = 2 partial wave amplitude for MD = 1 TeV, setting Λ = 2
√
s, and

imposing |Im(a2)| ≤ 1, we find unitarity breaks down at the following energies for δ extra

dimensions:

δ 1 2 3 4 5 6 7

E? (TeV) 1.5 1.02 0.89 0.84 0.83 0.83 0.84

Again, and for the same reasons as for the real part, these bounds scale with MD,

and so we find for 4 ≤ δ ≤ 8 that unitarity breaks down at around 0.8MD. This bound

is not at all sensitive to the cutoff and is therefore a much more robust bound. However

it is generated entirely from the exchange of on-shell KK gravitons and therefore fails to

capture the behaviour of the amplitude away from resonances. Comparing the difference

between this unitarity bound and Λstrong we again concluded in Ref. [5] that new physics

would have to enter at this scale in order to fix the unitarity problem.

3.3.5 Summary of the unitarity bounds

For the sake of clarity we now review the different unitarity bounds and comment on them

in turn. We first address the bounds generated by approximating the sum S as an integral:

• In the zero width approximation, we cannot meaningfully determine a unitarity

bound on the real part of the amplitude. If we try to set Λ =
√
s we encounter

an IR divergence coming from the pole in the propagator. The unitarity bound

would be strongly dependent on any other choice for Λ and so would be completely

arbitrary.

• In the zero width approximation we can bound the imaginary part but since this

part of the amplitude is being generated by exchange of an on shell graviton, the

correct way to determine this is with the inclusion of the KK graviton widths.

• Including a Breit-Wigner width we can now set Λ =
√
s in order to bound the real

part of the amplitude. Doing this we find in general that unitarity breaks down at

about MD/2. However, the bound is still extremely sensitive to any variation in the

choice of cutoff and to the details of the resonance region. It is therefore more robust

to consider a bound coming from the imaginary part.

• Including a Breit-Wigner width, we can bound the imaginary part of the amplitude.

This bound is insensitive to the choice of cutoff and is therefore considered to be the
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only robust unitarity bound obtained in the integral approximation. For 4 ≤ δ ≤ 8

we find unitarity breaks down at around 0.8MD. This bound is coming entirely from

the resonant exchange of on shell gravitons.

All the above bulleted items are calculated by approximating the sum S by an integral.

This is an extremely common technique used in the literature to calculate cross sections

from KK graviton exchange. However, it should be noted that none of the bounds agree

with the discussion given in Section 3.2.1 where it was shown on very general grounds that

the presence of more than one KK graviton will mean a breakdown of unitarity at the

first KK mode. Why is this? The answer is that by converting the sum to an integral, we

effectively smooth out the spectrum of KK masses. For this reason, the contribution of

multiple KK modes near a resonance is smoothed out and only appears to cause problems

with unitarity at a much higher scale. Approximating the sum by an integral may be a

perfectly valid procedure for calculating phenomenological observables, particularly when

the spacing between the modes is much smaller than the detector resolution (see for

example the discussion in Ref. [66]). However, it seems that this approximation is not

suitable when one is trying to place theoretical bounds on the model, particularly when

the bounds cannot be separated from the contributions coming from resonances.

Ultimately the set up of the ADD model is clear. The extra dimensions are compact

and so the sum over KK modes is discrete. Performing this discrete sum we find that

unitarity should break down at the first KK mode as explained in Section 3.2.1. There

may be situations where approximating the sum by an integral is a satisfactory approxi-

mation, unfortunately this does not seem to be the case for deriving unitarity bounds. The

unitarity bounds derived from the integral approximation are far from the scale obtained

by performing the discrete sum. It has to be concluded that despite using a very common

technique, the unitarity bounds derived in this way grossly overestimate the scale at which

unitarity breaks down in the ADD model.

If the bounds from approximating the sum by an integral are inaccurate, and in fact

when the KK modes are simply summed unitarity breaks down at the first KK mode,

where does this leave the ADD model? Due to the large size of the extra dimensions

in the ADD model, the first KK mode has an extremely small mass. In δ = 4 extra

dimensions for example, the lowest lying KK mode has a mass of approximately 20 keV. If

perturbation theory really broke down at such a low energy, it would spell disaster for the

model. The only way out we can foresee is to return to the idea outlined in Section 3.2.2

and resum the propagator properly taking into account the interference between different
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KK modes. As mentioned previously, when this is done we begin to see a fascinating

hint that the amplitude remains unitary and the sum over modes is finite in any number

of extra dimensions! This would not only resolve all the unitarity problems in the ADD

model, it would also be of great interest to phenomenologists and experimentalists who

use the process of graviton exchange to place bounds on the fundamental scale MD. At

present, all such bounds are given in terms of an unknown cutoff. If the claim that the

sum S is finite is indeed true, it would remove all cutoff dependence and a much cleaner

extrapolation from experimental data would be possible. As mentioned before, pursuing

this idea in detail goes beyond the scope of this thesis.

3.4 Unitarity in the Randall-Sundrum Model

Following soon after the publication of the ADD model, Randall and Sundrum proposed a

new extra dimensional approach to solving the hierarchy problem [54]. The RS model has

only a single extra dimension with a large curvature, in contrast to the multiple flat extra

dimensions of the ADD model. The large curvature, known as warping, allows for a large

hierarchy of scales in the model with only a very small tuning of the model parameters.

In this section we will introduce the basics of the RS model, including the KK graviton

spectrum and couplings. We discuss the consequences for the RS model of the unitarity

bound derived in Section 3.2.1, we will see that they are far less severe than for the ADD

model. Finally we review the stabilisation mechanism which gives a mass to the radion

and review unitarity bounds derived from radion exchange.

This section is intentionally kept short since our original contribution is simply to

apply the generalised unitarity bound derived in Section 3.2.1 to the RS model. The rest

of this section is included for pedagogical reasons and for comparison to the ADD model

and later to the linear dilaton model.

3.4.1 Introduction to the Randall-Sundrum model

In this section we again follow closely the presentation in Ref. [56]. The RS model consists

of a single extra dimension, compactified on an S1/Z2 orbifold, that is, the geometry of

the circle whose upper and lower halves are identified. This provides two fixed points at

y = 0 and y = πr ≡ b, with a 3-brane at each fixed point. The warping is provided by a

cosmological constant Λ and so the Einstein Hilbert action looks like

S = −
∫
d4x

∫ +b

−b
dy
√
g
(
M3
∗R− Λ

)
. (3.4.1)
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In order that the observed 4D universe is ordinary flat Minkowski space, the components

of the 5D metric can only depend on the fifth coordinate y. The general ansatz for such

a metric is

ds2 = e−A(y)ηµνdx
µdxν − dy2. (3.4.2)

Solving Einstein’s equations for this setup, one finds

A(y) = k|y|, (3.4.3)

where k determines the curvature and is given by

k2 ≡ − Λ

12M3
∗
. (3.4.4)

However, in order to match the Einstein tensor at the end points, there also need to be

localised energy densities V1 and V2 on the branes. The full action then looks like

S = −
∫
d5x
√
g
(
M3
∗R− Λ + V1δ(y) + V2δ(y − b)

)
(3.4.5)

where we find

V1 = −V2 = 12kM3
∗ . (3.4.6)

We see that the branes have to have equal and opposite tensions in order for the Einstein

equations to be consistently solved. This then involves two fine tunings. One can be

associated with the requirement of a vanishing 4D cosmological constant. As we will see

later, the other is associated with stabilising the size of the extra dimension which will be

addressed in more detail in Section 3.4.3.

We are now able to see how the RS model addresses the hierarchy problem. Consider

the Higgs field H confined to the negative tension brane at y = b, the action will be

SHiggs =

∫
d4x
√
g̃

[
g̃µνD

µH†DνH − λ
(
H†H − v2

)2
]

(3.4.7)

=

∫
d4x e−4kb

[
e2kbηµνD

µH†DνH − λ
(
H†H − v2

)2
]
, (3.4.8)

where g̃µν is the induced metric on the negative tension brane. In order for the Higgs field

to be canonically normalised, we perform a field redefinition H = ekbH̃ and the action for

the properly normalised Higgs then looks like

SHiggs =

∫
d4x

[
DµH̃

†DµH̃ − λ
(
H̃†H̃ − e−kbv2

)2
]
. (3.4.9)

We can now see that the effective Higgs VEV is exponentially suppressed

veff = e−kbv. (3.4.10)
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As a consequence, all mass scales on the negative tension brane get warped down by the

exponential suppression factor e−kb. If the bare Higgs VEV v is of order the Planck scale,

the effective Higgs VEV could be warped down to the weak scale v ' 10−16MP by choosing

kb ' 35.

It can easily be shown that the relationship between the 4D and 5D Planck scales in

the RS model is given by

M2
P =

M3
∗
k

(
1− e−2kb

)
. (3.4.11)

For moderately large sizes of kb this expression is almost independent of the size of the

extra dimension. This means that we can have all the bare parameters M∗,Λ, k, V1 and

crucially v at a scale of order the Planck scale, but the physical Higgs VEV can easily

be exponentially suppressed down to the weak scale with only a moderately large value

of b. Thus the hierarchy problem is addressed in the RS model by having no large hi-

erarchy of scales between the bare parameters. As mentioned above, we will see later in

Section 3.4.3 how the size of the extra dimension can be stabilised at the required value

without introducing significantly extra fine tuning.

Because of the different values of the mass scales on the two branes, the positive tension

brane at y = 0 is often referred to as the ultra-violet (UV) brane whilst the negative tension

brane at y = b is known as the infra-red (IR) brane. In the original version of the RS

model, all the SM fields are confined to the IR brane along with the Higgs. For the

purposes of this thesis, we will only be considering this scenario. We note here however

that later extensions of the model allow the SM fields (excluding the Higgs) to live in the

bulk which provides further interesting phenomenology and also provides an explanation

for the fermion mass hierarchy [68, 69, 70].

The graviton KK spectrum and couplings

Computing the KK graviton wave functions and mass spectrum is somewhat involved and

was originally derived in Ref. [71, 72]. We present the main results only here.

The graviton KK spectrum consists of a massless zero mode, which is to be identified

with the usual 4D graviton, plus a tower of massive modes with masses given by

mn = kxne
−kb, n = 1, 2, 3, . . . (3.4.12)

where the xn are roots of the Bessel function: J1(xn) = 0. Note that with k of order the

Planck scale and kb ' 35 the spacing between the KK modes is of order TeV. In particular

the first KK mode is of order TeV. This is in strong distinction to the ADD model where
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the modes are very finely spaced. Also, note that the KK mode numbers run only over the

positive integers and so each KK mass is non-degenerate, again in contrast to the ADD

model.

The couplings between KK modes and matter are found to be

Lint =
1

MP
Tµνh(0)

µν +
1

MP e−kb

∞∑
n=1

Tµνh(n)
µν . (3.4.13)

We see that the massless zero mode couples with correct strength for the normal 4D

graviton, however the coupling of the KK modes is much stronger and of order TeV−1. So

like the ADD model we will see strong gravitational effects around the TeV scale. How-

ever, unlike the ADD model, where the huge number of weakly coupled modes provided

for strong gravitational effects, in the RS model individual widely spaced modes couple

strongly to matter and produce the strong effects.

The widely spaced strongly coupled modes should appear as clear resonances in pro-

cesses that involve s-channel exchange of a KK graviton, such as pp→ graviton→ e+e−.

The current lowest limits on the mass of the first KK graviton coming from the LHC

are 2.23 (1.89) TeV from the ATLAS detector [73] and 2.390 (2.030) TeV from the CMS

detector [74], both these results assume values of k/MP = 0.1 (0.05).

3.4.2 Unitarity from graviton exchange

Because the RS model has only one extra dimension, the sum over KK modes of s-channel

amplitudes in the RS model is finite. We can see this by considering the sum (3.1.22) in

this model:

S ′(s) =
∑
n

1

Λn
∆n(s) =

1

M2
P e
−2kb

∑
n

1

s−m2
n + iε

. (3.4.14)

In the limit m2
n � s, the sum over KK modes becomes (kMP )−2e4kb

∑
n x
−2
n which rapidly

converges [72].

As already discussed, s-channel scattering of KK gravitons will produce clearly defined

individual resonances. The general procedure outlined in Section 3.2.1 where we found

that unitarity breaks down at the first KK resonance in models with more than one

KK graviton applies to the RS model. The lowest lying KK mode has a mass of m1 =

x1ke
−kb ' 3.8ke−kb. This is therefore expected to be of order TeV and we have seen that

current experimental searches place a lower bound of around 2 TeV on this mass.

We want to know whether the consequence of unitarity breaking down at the first KK

mode poses a problem for the RS model as it does for the ADD model? In the ADD

model, the first KK mode is extremely light and so unitarity breaks down at a very low
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scale invalidating the effective field theory well below the scale at which we would expect

strong gravitational effects. However, in the RS model, the fist KK mode is at a much

higher scale and coincides with the scale at which we expect strong gravitational effects.

For this reason it is not unexpected for the effective theory to break down around this

scale and there still remains a large low energy regime where the effective theory is valid

and calculations are reliable.

3.4.3 The radion and unitarity

So far, the size of the extra dimension has been fixed by hand to be b ' 35/k, we have not

yet introduced any mechanism to stabilise the size. Additionally, as we saw in Section 3.1.2,

there is an extra scalar degree of freedom in the 5D metric associated with fluctuations in

the size of the extra dimension called the radion. Currently there is no potential for this

degree of freedom and so it is massless and would contribute to violations of Newton’s

law which have not been observed. Both of these problems will be solved if the radion

can obtain a potential with a minimum. The radion will want to sit at the minimum thus

stabilising the size of the extra dimension and it will then have a mass and so there will

be no additional long range forces.

In this section we will discuss briefly the most common mechanism of stabilising the

extra dimension and show how this also compensates for the additional fine tuning which

we were presented with in matching the potentials on the branes, Eq. (3.4.6). We will then

review unitarity bounds derived for the RS model by considering processes which involve

radion exchange.

The simplest and most commonly used solution to stabilising the size of the extra

dimension is known as the Goldberger-Wise mechanism [75]. Qualitatively the mechanism

works by introducing an additional bulk scalar field with a bulk mass term and a non-

trivial VEV which changes with the extra dimensional coordinate. This is achieved by

potentials for the scalar field on both of the branes with different minima. The non-trivial

bulk profile then acts to stabilise the size of the extra dimension by balancing the forces

from the mass term tending to minimise the size of the extra dimension, with forces from

the kinetic term trying to flatten the potential in order to minimize the kinetic energy.

The formalism for dealing with additional bulk scalar fields is non-trivial since the

scalar field will mix with the radion and the trace of the graviton. This mixing ultimately

gives mass to the radion. If the values of the scalar field on the two branes are Φ1 and Φ2
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then it can be shown that

b =
1

u
ln

Φ1

Φ2
, (3.4.15)

where u is a parameter which provides the mass term to the scalar field. To generate the

hierarchy between the Planck and weak scale, we require kb ' 35 and so we need

k

u
ln

Φ1

Φ2
' 35 (3.4.16)

which can easily be obtained with only a modest tuning of the ratio u/k.

Generally the radion is much lighter than the first graviton mode. The coupling of the

radion to matter is given by

L =
1√

6MP e−kb
r(x)Tµµ , (3.4.17)

where r(x) represents the canonically normalised 4D radion field and Tµµ is the trace of

the energy momentum tensor. We see that similarly to the Higgs field, the radion couples

to the mass terms of the SM fields. One also has to consider the trace anomaly term

which contributes to Tµµ for gauge fields. This means that unlike the Higgs, the radion

additionally couples to massless gauge fields such as the gluon and the photon [76].

An additional complication can arise if the Higgs boson has a non-minimal coupling

to gravity

L =
√
g̃ξH†HR(4). (3.4.18)

The Higgs now mixes with the radion and the system needs to be diagonalised to find

the physical degrees of freedom. After the system has been properly diagonalised, the

Higgs boson will no longer have standard model like couplings and this can alter the

phenomenology of Higgs physics.

With the realisation that the the radion couples similarly to the Higgs boson, it is

natural to ask if it will have any significant effects on perturbative unitarity bounds in

the SM such as those presented in Section 1.2.1. A few papers have investigated this issue

[77, 76, 78] but by far the most comprehensive analysis was performed in Ref. [79] and we

briefly present the main results here.

In Ref. [79] the contribution of the radion to longitudinal WW scattering is considered.

The radion can be exchanged in the s and t-channels, just like the Higgs and so adds an

extra component to the amplitude presented in Section 1.2.1. The cutoff for the effective

theory is defined to be Λ = e−kbMP and they test whether the contribution of the radion

to WW scattering causes a violation of unitarity at energies lower than Λ.

For the case ξ = 0 they find “no significant constraint on the radion mass or coupling”.

However, with the introduction of a non-minimal coupling between the Higgs and the
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curvature, they find “with a mixing coefficient |ξ| & 2.7, the partial wave amplitude for

W scattering does exceed the unitarity bound for scattering energies lower than the cutoff

scale”.

Note that comparing the definition of the cutoff used in Ref. [79], to the mass of the

first KK graviton we find m1/Λ ' 3.8k/MP . We therefore find that unitarity breaks down

below Λ from the process involving graviton exchange for values of k . 0.26MP .

3.5 Unitarity in the linear dilaton model

3.5.1 Introduction to the linear dilaton model

More recently a new extra dimensional solution to the hierarchy problem has been in-

troduced and will be referred to here as the linear dilaton model [80]. This model was

constructed as a holographic dual to TeV little string theory, a string theory where the

string scale and all the compact dimensions can be at the electroweak scale [55]. From the

string theoretic relation:

M2
P =

1

g2
s

M8
s V6 (3.5.1)

where gs is the string coupling, Ms is the fundamental string scale and V6 is the extra

six-dimensional volume - it can be seen that the fundamental scale can be at the TeV scale

if it is compensated by a tiny string coupling (note that this offers an alternative to the

large volume compensation provided by the ADD model).

The linear dilaton model contains a single extra dimension compactified on a S1/Z2

orbifold bounded by two 3-branes much like the RS model. The presence of a dilaton field

with a linear profile provides a unique KK spectrum with a mass gap followed by a near

continuum of modes. A stabilisation mechanism is also required to solve the hierarchy

problem. However, here the dilaton can play the role of a stabilising field without having

to introduce any additional new fields. Once this has been achieved the couplings of the

radion are known and its phenomenology can be studied [81].

In this section I review the linear dilaton model and and its graviton and radion

phenomenology. Following this I calculate the perturbative unitarity bounds that arise

from both graviton exchange and radion exchange.

The linear dilaton model contains a single extra dimension compactified on a S1/Z2

orbifold with 3-branes positioned at y = 0 and y = b. The fundamental 5D gravity scale

M∗ is of order a TeV. The SM fields are confined to the visible brane at y = 0 and the

model contains a single extra bulk scalar field ϕ called the dilaton. Following the notation
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of reference [81], the action for the linear dilaton model is given by

Sbulk = −
∫
d5x
√−g e−ϕ

(
M3
∗R+ (∇ϕ)2 − Λ

)
(3.5.2)

Sbrane =

∫
d4x
√−g4 e

−ϕ (LSM − Vvis)−
∫
d4x
√−g4 e

−ϕVhid (3.5.3)

where Vvis(hid) are the potentials on the visible (y = 0) and hidden (y = b) branes. The

easiest way to analyse this model is to transform to the Einstein frame, g̃µν = e−
2
3
ϕgµν

(see Appendix D). The action then reads

Sbulk = −
∫
d5x
√
−g̃
[
M3
∗

(
R̃− 1

3
(∇ϕ)2

)
− e 2

3
ϕΛ

]
(3.5.4)

Sbrane =

∫
d4x
√
−g̃4 e

1
3
ϕ (LSM − Vvis)−

∫
d4x
√
−g̃4 e

1
3
ϕVhid . (3.5.5)

The dilaton background φ is given a linear profile φ = α|y|, which is a solution to the

equations of motion in conjunction with the following metric which solves the gravitational

equations of motion

ds2 = e−
2
3
α|y|(ηµνdx

µdxν + dy2) (3.5.6)

with the following constraints

Λ = −M3
∗α

2 , Vvis = −Vhid = 4αM3. (3.5.7)

If we require that the 5D curvature is smaller than the fundamental scale, we also have

the constraint [81]

|α| < 3M∗

2
√

7
. (3.5.8)

The 4D Planck mass is found by integrating over the extra dimension

M2
P = 2

∫ b

0
dz e−α|y|M3

∗ = −2
M3
∗
α

(
e−αb − 1

)
. (3.5.9)

First it is seen that α < 0. Secondly, with M∗ ∼ α ∼ O(TeV), we must have |αb| ∼ 70

to produce the required value of MP . So we see that similarly to the ADD model, the

fundamental Planck scale is of order TeV and there is no hierarchy between the electroweak

and quantum gravity scales.

The graviton KK spectrum and couplings

In order to find the graviton KK spectrum the graviton fluctuations are parametrised as

hµν with

ds2 = e−
2
3
α|y| ((ηµν + hµν)dxµdxν + dy2

)
. (3.5.10)
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Expanding the fluctuations as hµν(x, y) =
∑
h

(n)
µν (x)f

(n)
h (y) and requiring the 4D modes

to be mass eigenstates, �h(n)
µν = m2

nh
(n)
µν , the equations of motion for the KK modes are

∂2
yf

(n)
h − α∂yf (n)

h = −m2
nf

(n)
h . (3.5.11)

The orbifold symmetry imposes Neumann boundary conditions which result in a massless

zero mode which is flat in the extra dimension and the rest of the KK spectrum has

solutions

f
(n)
h (y) = Nne

α
2
|y|
(

sin
nπ|y|
b
− 2nπ

αr
cos

nπ|y|
b

)
(3.5.12)

where Nn is a normalisation constant. The mass spectrum is then found to be

m2
n =

α2

4
+
(nπ
b

)2
, n = 1, 2, 3, . . . (3.5.13)

The novel graviton mass spectrum has a mass gap above the zero mode of |α| /2, and

for |α| /2 ∼ M∗ ∼ 1 TeV, we find b ∼ (30 GeV)−1 and the KK modes are closely spaced

above the mass gap. We therefore see that the linear dilaton model shares aspects of both

the ADD model with a near continuum of modes and the RS model with a distinct gap

between the zero mode and first KK mode.

The KK modes couple to the standard model fields via the stress energy tensor

L =
1

MP
h(0)
µν T

µν +
∑
n≥1

1

Λn
h(n)
µν T

µν (3.5.14)

where Λ−1
n is the coupling of the nth KK mode and is given by

1

Λn
=
|α|1/2

M
3/2
∗

1

|αb|1/2
(

4n2π2

4n2π2 + (αb)2

) 1
2

. (3.5.15)

3.5.2 Unitarity from graviton exchange

For large n the coupling and the spacing between the graviton KK modes tends to a

constant and so the sum of s-channel amplitudes (Eq. 3.1.22)

S ′(s) =
∑
n

1

Λn

1

s−m2
n + iε

. (3.5.16)

is finite. This can also be seen by approximating the sum by an integral in the following

way [82]. The spacing between the modes is approximately δm ' π/b. so the sum over n

is replaced by

∑
n

f(mn) '
∫
dx
b

π
f
(√

α2/4 + x2
)

=

∫
dm

m

(m2 − α2/4)1/2

b

π
f(m). (3.5.17)
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Substituting mn from (3.5.13) into (3.5.15) we find the compact expression

S ′(s) ' 1

πM3
∗

∫
dm

m

(
m2 − α2/4

)1/2
s−m2 + iε

(3.5.18)

which is clearly finite.

As with the RS and ADD models, the general unitarity bound derived in Section 3.2.1

applies to the linear dilaton model and we can again say that unitarity breaks down at

the mass of the first KK mode. In the linear dilaton model this is at m1 ' |α|/2. In

general, α is a free parameter which can take any value. However, for very small values of

|α| � M∗ the mass gap is reduced and the linear dilaton model can become constrained

from astrophysical considerations. In Ref. [82] it is shown that |α| needs to be at least of

order GeV to evade constraints from big bang nucleosynthesis and Supernova 1987A.

With M∗ being the extra dimensional Planck mass, we can expect that the effective the-

ory should break down at about this scale due to entering the strongly coupled/quantum

gravity regime. We would therefore like to test whether unitarity holds up to this scale.

For large values of |α| ∼M∗, the first KK mode is near to M∗ and it is therefore expected

for the effective theory to break down here. Also there is a large mass gap and there

is therefore still a large regime of validity for the low energy effective theory, much like

the case for the RS model. However, for small values |α| � M∗, the first KK mode is

extremely light and the effective theory breaks down at a very low scale well before strong

gravitational effects appear. Similarly to the ADD model this could cause problems to

reliably perform calculations in the linear dilaton model with a small mass gap.

3.5.3 The radion and dilaton modes and the associated unitarity bounds

Similarly to the RS model, the size of the extra dimension in the linear dilaton model

needs to be stabilised. Completely analogously, this will provide a mass to the radion.

However, unlike in the Goldberger-Wise mechanism, we do not need to add an additional

bulk scalar, instead the dilaton field can itself act as the stabilising field. In this section we

review how this mechanism can be achieved via the dilaton, and then we derive unitarity

bounds on WW scattering coming from exchange of the radion in the LDM.

The formalism for stabilising the extra dimension in the linear dilaton model was

developed in Ref. [81] and we follow closely this reference here. Potentials for the dilaton

field are added to the branes, and if φv and φh are the background values of the dilaton

field on the visible and hidden branes respectively, it can be shown that

αb = φh − φv, (3.5.19)
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i.e. the interbrane distance is stabilised. Given that to produce the Planck-weak scale

hierarchy, we have already argued that |αb| ∼ 70, this does not represent any strong fine

tuning.

Similarly to the RS model, the dilaton mixes with the radion and the trace of the 5D

graviton. The Einstein equations can be solved and provide constraint equations which

effectively reduce the radion/dilaton degrees of freedom to a single degree of freedom.

The original radion part we will call Φ, and the fluctuations of the dilaton field δφ, where

ϕ = φ+ δφ are related to Φ through the constraint δφ = 9
2α∂yΦ− 3Φ. Performing a KK

decomposition and labelling the y dependent extra dimensional profiles Φn(y), we find the

equation of motion for the Φn is given by[
d2

dy2
+m2

n −
α2

4

](
e−

1
2
αyΦn

)
= 0. (3.5.20)

The boundary conditions are non-trivial and contain the free parameters µvis(hid) which

appear in the brane potentials for the dilaton field. Solving the equation of motion subject

to the boundary conditions, we obtain the following solution for Φn,

Φn(z) = Nne
1
2
αy

[
sin(βny)− 6βnµvis

4β2
n + α(α− µvis)

cos(βny)

]
, (3.5.21)

where β2
n ≡ m2

n − α2

4 and Nn is normalisation factor. The full expression for Nn is rather

involved and is given in the appendix of Ref. [81].3 We will call the zero mode the “radion”

from now on and the KK modes (n = 1, 2, 3, . . .) will be referred to as the dilaton KK

modes.4 An analytic expression can be obtained for the radion mass in the limit |αb| � 1

and we find

m2
r =

α2

4
− α2

16ε2v

(
3−

√
9 + 4εv + 4ε2v

)2
, 0 < εv <∞, (3.5.22)

where εv ≡ |α|/µvis and µvis(hid) > 0 is required to ensure no tachyonic modes. The radion

mass has a maximum for εv → 0 which is equal to max(m2
r) = 2α2/9. If we incorporate

the requirement of Eq. (3.5.8) then we find that max(m2
r) < M2

∗ /126 and so it will always

be safe to assume mr �M∗.

The couplings for the radion and the dilaton KK modes to the SM matter on the

visible brane can also be worked out. They contain a part which couples to the trace of

3We note here a typo in the appendix of Ref. [81], the factor 3 at the beginning of the last line of their

Eq. (A.5) should be removed.
4This notation is somewhat obscure since there is essentially only one 5D degree of freedom coming

from the mixed dilaton/radion modes. However, in the limit µvis(hid) = 0, the model corresponds to the

unstabilised case where we would expect a single massless radion field and the dilaton field with a KK

tower of modes. In this limit the terminology will coincide.
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the energy momentum tensor as in the RS models but in the linear dilaton model there

is also a part which comes from the dilaton coupling to the full SM lagrangian. Following

Ref. [81] we will refer to these separate couplings as κΦ,n and κφ,n respectively. They are

given by the values of Φn(y) and the fluctuations of the dilaton field δφn(y) by their values

on the visible brane in the following way:

κΦ,n

M∗
≡ Φn(0)

2
,

κφ,n
M∗
≡ δφn(0)

3
. (3.5.23)

The full expressions for κΦ,n and κφ,n are rather involved due to the complicated form of

the wavefunctions and in particular the normalisation factors. Approximate expressions

for the radion couplings are given in Ref. [81] for when εv is small. For our purposes here,

we also require the limit of large εv where we find the radion couplings asymptote to a

maximum value given by

lim
εv→∞

κΦ = lim
εv→∞

κφ =
1

6

√
−α
M

. (3.5.24)

The Feynman rules for the radion coupled to gauge bosons are presented in Appendix E.

We now turn to deriving unitarity bounds on SM processes in the presence of the

radion, first in the case where the Higgs boson is minimally coupled to the curvature and

secondly with a non-minimal coupling

Minimal coupling

We first consider the case where the Higgs boson is minimally coupled. The radion coupling

to massive vector bosons is proportional to p2/M∗ (see Appendix E). As a result, one might

naively expect, by a power counting analysis, that the amplitude for WLWL → WLWL

scattering via radion exchange would be proportional to s3/M2
∗m

4
W . For s,M∗ � m2

W this

could easily exceed the unitarity bound well before the scattering energy reaches M∗. For

this reason we carefully derive the full amplitude for WW scattering via radion exchange.

We will see that in fact the amplitude is only proportional to s/M2 (as would be expected

via the Goldstone boson equivalence principle) and there are no unitarity problems for

energies below M∗.

With zero non-minimal coupling for the Higgs boson, the SM contribution to WW

scattering is proportional to g2m2
H/m

2
W and can be ignored here. We now consider the

contribution of radion exchange to the process WLWL →WLWL. There are two Feynman

diagrams which contribute to this process at tree level with s- and t-channel exchanges of

the radion. The invariant amplitudes for these diagrams are

Ms =

(
Am2

W +B(s− 2m2
W )
)2

M2
∗ (s−m2

r)
, (3.5.25)
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Mt =

(
A(t2 − sm2

W ) +Bs(t+ 2m2
W )
)2

s2M2
∗ (t−m2

r)
, (3.5.26)

where

A = κφ and B =
κφ
2
− κΦ. (3.5.27)

The corresponding j = 0 partial wave amplitudes, neglecting terms of O(m2
W /s), are

a
(s)
0 =

m2
W

16πM2
∗

[
B2s

m2
W

+
B2m2

r

m2
W

+ 2B(A− 2B)

(
1 +

m2
r

s

)
+B2 m

2
r

m2
W

(
m2
r

s−m2
r

)
+2B(A− 2B)

m2
r

s

(
m2
r

s−m2
r

)]
,

a
(t)
0 =

m2
W

16πM2
∗

[
− s

12m2
W

(3A2 − 8AB + 6B2) +
m2
r

3m2
W

(A2 − 3AB + 3B2) + (A− 2B)2

+
m6
r

s2m2
W

A2 − 1

s3m2
W

(
A(m4

r − sm2
W ) +Bs(m2

r + 2m2
W )
)2

log

(
1 +

s

m2
r

)
−m

4
r

2s2
A(A− 4B)

]
. (3.5.28)

We will see that for m2
r ,m

2
W �M2

∗ , the unitarity bound is at such a high energy we will

only require the leading order terms in this expansion, namely

a
(s+t)
0 ' 6B2 − 3A2 + 8AB

192π

s

M2
∗
. (3.5.29)

In order to find the lowest possible unitarity bound, we are interested in the largest

possible amplitude. We find that the maximum value of |6B2− 3A2 + 8AB| occurs in the

εv → ∞ limit. The couplings in this limit are given by Eq. (3.5.24), and inserting these

into Eq. (3.5.29) we find

max(|a0|) =
11|α|s

13, 824πM3
∗

(3.5.30)

which means that the lowest possible scale at which unitarity breaks down is

E? ' 44M∗

√
M∗
|α| . (3.5.31)

If we further require the condition (3.5.8), then we find

E? & 59M∗. (3.5.32)

This bound is far above the scale M∗ and so we find there are no unitarity problems from

radion exchange in WW scattering until well above M∗.

3.5.4 Higgs-radion mixing and the associated unitarity bounds

If the Higgs boson has a non-minimal coupling to gravity

L =
√
g̃ e

δφ
3 ξH†HR(4) (3.5.33)
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then the Higgs boson will mix with the radion and the system will need diagonalising in

order to find the physical 4D degrees of freedom. The Higgs boson no longer has standard

model couplings and therefore no longer exactly cancels the O(s/m2
W ) contribution to the

WW scattering amplitude as described in Section 1.2.1. This now makes it possible that

in the presence of ξ 6= 0 the amplitude for WLWL → WLWL could exceed the unitarity

bound at energies below M∗. We will see that this is in fact the case for certain large

values of ξ.

Ref. [81] also developed the formalism for dealing with the radion in the presence of

a non-minimally coupled Higgs. We briefly present here the main points and then we use

the couplings to derive unitarity bounds. The kinetic terms are diagonalised by a field

redefinition and then the mass matrix is diagonalised by a rotation by an angle θ. In

unitary gauge, we denote the gauge eigenstates of the Higgs boson and the radion that

appear in the original lagrangian by h and r respectively. After the field redefinitions, the

physical mass eigenstates (hm, rm) can be expressed in terms of the gauge eigenstates in

the following way:

h =

(
cos θ − 6ξκΦv

ΩM∗
sin θ

)
hm +

(
sin θ +

6ξκΦv

ΩM∗
cos θ

)
rm,

r = −sin θ

Ω
hm +

cos θ

Ω
rm,

(3.5.34)

where v is the Higgs VEV and Ω is given by

Ω2 = 1 +
6ξκΦv

2

M2
∗

(
(1− 6ξ)κΦ − κφ

)
. (3.5.35)

This expression for Ω already provides a constraint on ξ. Ω2 must be positive in order

that the radion mass term remains positive. This constraint implies

1

12κΦ

(
ρ−

√
ρ2 +

4M2
∗

v2

)
≤ ξ ≤ 1

12κΦ

(
ρ+

√
ρ2 +

4M2
∗

v2

)
, (3.5.36)

where ρ ≡ κΦ − κφ. In the limit of large εv, we find from Eq.(3.5.24) that ρ = 0 and then

−
√

3M∗/v ≤ ξ ≤
√

3M∗/v.

For notational convenience, we will also write the relationship between h and r and

hm and rm in the following way

h = a0hm + a1rm,

r = b0hm + b1rm.
(3.5.37)

We now proceed to calculate the amplitude for WW scattering. The j = 0 partial wave

amplitude for this process without the Higgs or radion is (see Eq. (1.2.14) in Section 1.2.1)

a0,gauge = − g2

128π

s

m2
W

. (3.5.38)
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The radion contribution to the amplitude is still given by Eq. (3.5.28) but now A and B

will include contributions from the Higgs in the following way

A = b1κφ and B = b1

(κφ
2
− κΦ

)
+ a1

M∗
v
. (3.5.39)

With ξ 6= 0, the Higgs boson contribution to the amplitude is equivalent to the radion

contribution (Eq. 3.5.28) but with the replacements mr → mh, A→ C and B → D, where

C = b0κφ and D = b0

(κφ
2
− κΦ

)
+ a0

M∗
v
. (3.5.40)

So at leading order we have

a0,higgs =
6D2 − 3C2 + 8CD

192π

s

M2
∗
. (3.5.41)

Combining the gauge, Higgs and radion amplitudes and taking the maximum values for

κΦ and κφ the total leading order contribution to WLWL →WLWL scattering is

a0 =
1

13824πM3
∗

[
108g2(a0 + a1)2M3

∗ + 12g

√
− α

M∗
(a0b0 + a1b1)M2

∗mW

+ 11(b0 + b21)αm2
W

]
s

m2
W

− g2

128π

s

m2
W

= −
(
432ξ2 + 24ξ − 11

)
α s

13824π (M3
∗ + ξ2v2α)

. (3.5.42)

We see that for ξ = 0 the contribution from the Higgs cancels the gauge part of the

amplitude and we are left with the radion contribution as given in Eq. (3.5.30).

We would like to test whether unitarity holds up to
√
s = M∗. Figure 3.3 shows an

exclusion plot for values of ξ and M∗. The blue shaded region represents regions of the

parameter space where unitarity breaks down in WW scattering before M∗. The orange

shaded region lying below the dashed line is excluded by the constraint Eq. (3.5.36).

The plots are given for two different values of α. We note that for large |α| = M∗/3, a

significant proportion of the parameter space is excluded by the unitarity bound, however

there remains a sizeable parameter space allowed. In particular there is no problem with

ξ ∼ O(1) for M∗ > 1 TeV. For |α| = M∗/10 the region excluded by the unitarity bound lies

entirely within the region excluded by Eq. (3.5.36) and so no new constraints are imposed

within the region plotted. For smaller values of εv the total amplitude is larger and the

unitarity bounds are even less restrictive.

Note regarding the dilaton KK modes

As mentioned previously, the mixed radion/dilaton field has a KK tower of modes. These

can also be exchanged in processes such as WW scattering and will contribute to the
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Figure 3.3: Bound on ξ as a function of M∗ (TeV). The blue shaded region is excluded by

the requirement that the unitarity bound is not exceeded before M∗, i.e. the blue region

represents E? < M∗. The orange shaded region below the dashed line is excluded by the

requirement that the radion mass remains positive, Eq. (3.5.36). We take εv →∞ and (a)

|α| = M∗/3, (b) |α| = M∗/10.

amplitude. We have carried out calculations of these effects and found that due to the

extremely small size of the couplings between the KK modes and matter (much smaller

than for the radion) they do not make any significant contribution to the bounds derived

above. The same was noted for the KK modes of the stabilising scalar in the Goldberger-

Wise mechanism in the RS model in Ref. [79].
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Chapter 4

Higgs Inflation

In this chapter we review the exciting idea that the Higgs boson of the standard model

could have caused a period of rapid inflation in the early universe. We derive unitar-

ity bounds in two separate models of Higgs inflation and discuss the consequences of

these bounds for producing reliable predictions in these models. We also discuss how the

paradigm of asymptotic safety may offer an ideal framework for the original Higgs inflation

model to accommodate the unitarity problems.

4.1 Inflation and the Higgs boson as the inflaton

Standard big bang cosmology fails to explain why today’s universe appears flat, homo-

geneous, and isotropic. However, these problems are easily solved if the early universe

went through a period of rapid accelerated expansion known as inflation [83]. During

inflation, a small causally connected area of the early universe would expand to the size

of the observable universe and all inhomogeneities would be smoothed out. Inflation has

now been widely accepted as the paradigm for the early universe, especially following the

understanding that quantum fluctuations during inflation grow to become the observed

cosmological fluctuations required to seed the formation of large scale structure in the

universe.

The mechanism that drove inflation is unknown and currently the subject of intense

research in cosmology. Arguably the simplest and certainly the most prolific models of

inflation fall into the category of “slow roll inflation” [84, 85]. Here, a scalar field (the

inflaton) slowly rolls down a flat potential, driving inflation. A vast array of models im-

plement a multitude of hypothetical scalar fields to play the role of the inflaton. However,

with the Higgs boson being the only observed fundamental scalar particle, it is an im-
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portant question whether or not the Higgs could have caused inflation in addition to its

electroweak symmetry breaking role. We will see that with a large non-minimal coupling

to gravity, the Higgs could indeed have a flat enough potential to produce viable inflation.

However, as we will show, there are questions as to whether the classical approximation

used to calculate the inflationary predictions are valid during the inflationary period. Be-

fore discussing Higgs inflation itself and its potential problems, we review the basic idea

of slow roll inflation.

Assuming a Friedmann, Robertson Walker (FRW) metric for the universe,

ds2 = dt2 − a(t)2d~x2 (4.1.1)

where a(t) is the scale factor, using Einstein’s equations, we find

ä

a
= −4πGN

3
(ρ+ 3p) (4.1.2)

where ρ and p are the density and pressure appearing in the stress energy tensor of the

vacuum of the universe. Inflation can be described as the condition ä > 0 and we see

that this will occur if p < −ρ/3, i.e. a negative pressure vacuum energy. With a certain

form of potential, V (φ), a scalar field φ can provide such a vacuum. Comparing the

energy-momentum tensor of the scalar field with that of a perfect fluid, we find

ρ =
1

2
φ̇2 + V (φ) (4.1.3)

p =
1

2
φ̇2 − V (φ) (4.1.4)

and so we see

φ̇2 < V (φ) ⇐⇒ ä > 0. (4.1.5)

With a flat enough potential, the above criteria will be met and inflation will occur as the

scalar field “slowly rolls” down the slope. The potential also requires a minimum where

inflation can eventually end. During the period of inflation the universe is supercooled.

Following inflation, the inflaton will oscillate around its final minimum transferring its

potential energy into the standard model particles that fill the universe including elec-

tromagnetic radiation which starts the radiation dominated phase of the universe. This

period after inflation ends and before the inflaton comes to rest is known as reheating.

The standard model Higgs potential is of the form

V (H) = λ

(
H†H − v2

2

)2

, (4.1.6)

where H is the standard model Higgs doublet, v = 246 GeV and the self coupling is

assumed to be λ ∼ O(10−1) (required to produce the observed Higgs boson mass of about
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125 GeV). This potential is far from flat and is certainly not capable of producing enough

inflation to solve the cosmological problems mentioned above. However, it was observed by

Bezrukov and Shaposhnikov [86] that if the Higgs field has a large non-minimal coupling

to gravity then the potential will be modified near the Planck scale allowing for slow roll

inflation. The Higgs boson’s non-minimal coupling to gravity takes the form

Sξ = −
∫
d4x
√−g

(
1

2
M2 + ξH†H

)
R (4.1.7)

where ξ is an unknown constant and M is a mass scale (the Higgs boson’s kinetic term,

potential and other interaction terms have been suppressed). In the context of Higgs

inflation we will assume that 1 < ξ � 1032 in which case M = MP to a very good

approximation. We will now see how this coupling can effect the potential and cause

inflation.

The action for the Higgs in unitary gauge, H = 1√
2
(0, h)>, with the non-minimal

coupling is

S = −
∫
d4x
√−g

[
1

2

(
M2
P + ξh2

)
R− 1

2
∂µh∂

µh+
λ

4

(
h2 − v2

)2]
, (4.1.8)

where we have ignored gauge and other interactions with standard model particles. The

simplest way to analyse the potential in this model is to make a transformation to the

Einstein frame (see Appendix D), g̃µν = Ω2gµν , where Ω2 = 1 + ξh2/M2
P . The action in

the Einstein frame then reads

S = −
∫
d4x

√
−g̃
[

1

2
M2
P R̃−

3ξ2

M2
PΩ4

h2∂µh∂
µh− 1

2Ω2
∂µh∂

µh+
1

Ω4
V (h)

]
. (4.1.9)

In order to have a canonically normalized kinetic term for the Higgs boson we need to

transform to a new field χ where

dχ

dh
=

√
1

Ω2
+

6ξ2h2

M2
PΩ4

. (4.1.10)

The action then looks like

S = −
∫
d4x

√
−g̃
[

1

2
M2
P R̃−

1

2
∂µχ∂

µχ+ U(χ)

]
, (4.1.11)

where

U(χ) =
1

Ω(χ)4

λ

4

(
h(χ)2 − v2

)2
. (4.1.12)

For small field values, the potential is the same as that for the normal Higgs potential

(4.1.6). However, for h�MP /
√
ξ (corresponding to χ�

√
6MP ) we have

h =
MP√
ξ

exp

(
χ√

6MP

)
(4.1.13)
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Figure 4.1: The Higgs potential in the Einstein frame with non-minimal coupling ξ. Dia-

gram taken from Ref [86]. χend is the field value at which slow roll inflation is defined to

end, χCOBE is value at which the CMB radiation was produced.

and the potential takes the form

U(χ) =
λM4

P

4ξ2

(
1 + exp

(
− 2χ√

6MP

))−2

. (4.1.14)

The form of the potential is plotted in Figure 4.1. So in the large field regime (h �
MP /

√
ξ) it can be seen that the potential becomes exponentially flat. This is perfect for

slow roll inflation. It was shown in Ref. [86] that matching the predicted CMB density

fluctuations to observation requires a value of ξ ∼ 104 and the predicted spectral index

and the tensor to scalar ratio are well within the observed limits.

It was later checked whether the above analysis stood up under quantum corrections.

The effective potential for the Higgs under renormalisation group effects was considered

at two-loops [87, 88] and it was concluded that the inflationary predictions are still well

with in the experimental limits at the time and continues to be in good agreement with

the latest data released from the Planck satellite [89].

With the observation of the Higgs boson at a mass of around 125 GeV [38, 39] it is

possible to extrapolate the Higgs effective potential up to the Planck scale. Two three-loop

analysis have been made [90, 91] which show that the current data lead to the conclusion

that the Higgs potential is not stable up to the Planck scale, which would rule out the

possibility of Higgs inflation without introducing other degrees of freedom to stabilise the

potential. However, there is still a small window of hope for the Higgs inflation model.

If the top quark mass lies right at the bottom of the 98% C.L. window and the strong
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coupling constant lies right at the top of its 98% C.L. window then the Higgs potential

would remain stable all the way up to the Planck scale [90, 91] and the Higgs inflation

model could again be a viability.

4.2 Unitarity of Higgs inflation

In addition to serious issues with the stability of the Higgs potential, the large size of the

non-minimal coupling (ξ ∼ 104) required for Higgs inflation raises the question whether

the model remains perturbative at the high energies at which inflation takes place. It

is critical that this is the case for the inflationary model to be predictive since all the

above calculations (including the higher order corrections to the effective potential) assume

perturbation theory is valid during the inflationary era.

A relatively simple and straightforward way to test whether perturbation theory is

valid in this model is to see whether tree level processes are unitary. In the calculation of

s-channel scattering via graviton exchange presented in Sec. (2.1) we saw that the j = 0

partial wave amplitude for φφ→ φ′φ′ with a non-minimal coupling ξ is

a0(s) =
(1 + 6ξ)2

96π

s

M2
P

. (4.2.1)

This amplitude is directly applicable to the Higgs inflation model where the Higgs field

is a complex doublet, allowing us to consider different in and out states (φ and φ′) and

therefore restrict the amplitude to an s-channel process only. Note the calculation is

carried out in the Jordan frame.

In order for the tree level amplitude to be unitary we require |Re(a0)| ≤ 1/2 which

means that unitarity is violated at an energy

E? =
4
√

3π

1 + 6ξ
MP . (4.2.2)

In the Higgs inflation model ξ ∼ O(104) and we can approximate the bound to be

E? '
Mp

ξ
. (4.2.3)

We derived this result in Ref. [3] and it was separately found in Refs. [48, 92].

This result was interpreted as a major problem for the Higgs inflation model. In order

to maintain unitarity, one of two things must happen at or below E?: either the effective

theory enters a strongly coupled regime, or new degrees of freedom appear which couple to

the Higgs. But inflation takes place when the Higgs field is in the regime h�MP /
√
ξ > E?

so both of these scenarios jeopardise the existence of the flat potential required for slow
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roll inflation. If the theory becomes strongly coupled near E?, perturbation theory breaks

down in the inflationary regime and the leading order and loop corrected calculations of

the potential are no longer valid. If new degrees of freedom appear at or below E? which

couple to the Higgs they would be represented in the effective theory as higher order

operators such as [6, 92]

cn,m

Λ2(n+m)−4
(H†H)nRm, n ≥ 3, (4.2.4)

where cn,m are dimensionless coefficients expected to be of order one and and Λ ' E?. This

infinite tower of operators will significantly alter the shape of the potential in a completely

unpredictable way.

The lack of predictability of the Higgs potential in the inflationary regime certainly

appears to be a major problem for the Higgs inflation model. However, there have been two

subsequent claims that the unitarity bound derived above is either incorrect or irrelevant

for the Higgs inflation model. The first claim is that the unitarity bound is frame dependent

and the second is that the unitarity bound is background dependent. The first turns out

to be incorrect but the second is true and leaves open the possibility of reliable predictions

in the Higgs inflation model. I will discuss both of these claims in turn.

Frame dependence

In Ref. [93] Lerner and McDonald made the claim that the unitarity bound derived above

does not appear in the Einstein frame and therefore the Jordan frame calculation is in-

correct. Their argument is as follows: If we expand the potential in the Einstein frame

Eq. (4.1.12) for small field values we find it has the form (setting v = 0)

U(χ) =
λ

4
χ4 − 3λξ2

M2
P

χ6 + . . . (4.2.5)

The scattering amplitude corresponding to Eq. (4.2.1) would come from χχ → χχ scat-

tering which arises from the four point term in the potential and is simply proportional

to λ. In the Einstein frame χ is minimally coupled to gravity so the only problems with

unitarity coming from χχ → χχ scattering would seem to appear when gravity becomes

strongly coupled at MP . Because of this the authors of Ref. [93] concluded that there were

no unitarity problems and no need for new physics below MP .

Because the transformation between the Jordan frame and the Einstein frame is simply

a change of variables, scattering amplitudes should not be frame dependent (at the classical

level at least). So how can the seeming mismatch be reconciled and which, if either, point

of view is correct? The answer, it was later pointed out [94, 95], is that both calculations
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are correct, but they are in fact calculating different things. In the Jordan frame, the

amplitude is calculated for a complex Higgs doublet allowing for different ‘in’ and ‘out’

states and therefore only s-channel scattering needed to be considered. In contrast, if

we only had a singlet scalar we would not be able to make this restriction and s, t and

u-channel diagrams would also have to be included. When this is done, it turns out

that there is a remarkable cancellation between the diagrams and the amplitude is only

proportional to s/M2
P [96], meaning unitarity only breaks down at around MP as it does

in the Einstein frame calculation above.

The Einstein frame calculation above is certainly valid for a singlet scalar, so in this

case the two calculations match. But what happens if we have multiple degrees of freedom

in the Einstein frame. It turns out that in this case, although the transformation from

the Jordan to Einstein frame can proceed as above, once in the Einstein frame there

is no field transformation which can simultaneously make multiple scalars canonically

normalised. Terms such as the second term in Eq. (4.1.9) remain, producing an amplitude

proportional to ξ2s/M2
P and therefore unitarity breaks down at around MP /ξ as it does

in the Jordan frame with multiple non-minimally coupled scalar fields.

The upshot of all this is that calculations in either frame are consistent and the unitarity

bound is not frame dependent. For a singlet non-minimally coupled real scalar, unitarity

breaks down at E? ' MP . For multiple non-minimally coupled scalar fields, unitarity

breaks down at E? ' MP /ξ. The Higgs of the standard model is a complex doublet and

therefore of the latter type and so the unitarity bound E? ' MP /ξ remains a potential

problem for the Higgs inflation model.

Background dependence

The amplitude in Eq. (4.2.1) is calculated by expanding around h = 0. It was pointed

out in Ref. [97] that the cutoff calculated from this amplitude is not the correct bound

to consider, since during inflation the Higgs field takes a large value (h � MP /
√
ξ) and

so the expansion should be done around the field values in the inflating background.

This idea was fully developed in Ref. [98] where the cutoff was calculated in both the

Jordan and Einstein frames by separately expanding h around three different backgrounds:

h � MP /ξ, relevant for today’s universe, MP /ξ � h � MP /
√
ξ, relevant for reheating

and h�MP /
√
ξ, relevant for inflation. When the Higgs field, with non-minimal coupling,

is properly expanded around a non-zero background in the Jordan frame, there is a mixing

between the graviton and Higgs degrees of freedom. Once these fields are diagonalised and
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canonically normalised the coupling between two Higgs and a graviton is proportional to

ξ
√
M2
P + ξh0

2

M2
P + ξh0

2 + 6ξ2h0
2 (4.2.6)

where h0 is the background value of the Higgs field. Using this background dependent

coupling at large field values, h0 �MP /
√
ξ, we find the scattering amplitude for hh→ hh

scattering is proportional to s/ξh0
2, leading to unitarity breaking down at E? '

√
ξh0.

With ξ ∼ O(104) this is always well above the size of the Higgs field during inflation. The

same cutoff was also found in the Einstein frame and the analysis in the reheating regime

also finds a cutoff above the size of the Higgs field during reheating. The conclusion is

that the effective theory remains perturbative during the full history of inflation, reheating

and in today’s universe and hence the Higgs potential can be reliably extrapolated to the

inflationary regime and Higgs inflation remains a predictive model.

The above discussion of background dependence is indeed true and shows that during

inflation the Higgs inflation model remains weakly coupled. However, we pointed out

in Ref. [6] that the original unitarity bound, Eq. (4.2.3), could still spell problems for

the Higgs inflation model. Regardless of the background dependent nature of the cutoff,

we still find in today’s universe, expanding around h = 0, that unitarity breaks down at

E? 'MP /ξ. The essential question is then whether or not the tree level unitarity problem

is fixed by new degrees of freedom or whether the theory simply becomes strongly coupled

at MP /ξ and no new physics enters until around MP . As discussed in the opening chapter

of this thesis, there is no sure fire way to determine which of the two paths will be chosen

by nature to cure perturbative unitarity problems. However, if it would turn out that

new physics does indeed appear at or below MP /ξ then we would be back in the situation

where the unknown physics could be characterised by higher dimensional operators such

as Eq. (4.2.4) making the potential unpredictive again. There is no reason to believe that

these new degrees of freedom would not also be present at this scale during the inflationary

era and the Higgs inflation model would again be in trouble.

The conclusion is that if we were able to determine without ambiguity that the effective

theory simply heals its unitarity problem by becoming strongly coupled at MP /ξ, then

the model would be fully consistent and predictive. However, there remains the strong

possibility that new physics appears instead to fix the unitarity problem and the model

becomes unpredictive. There is no obvious way to determine which of the two scenarios

would happen, and with this in mind, all one can say is that the Higgs inflation model

remains consistent with the caveat that it heals its perturbative unitarity problem simply
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by entering a non-perturbative regime of the effective theory, and no new physics enters

until at least MP .

Unitarising Higgs inflation

Following the understanding that the original model of Higgs inflation [86] suffered from

unitarity problems, a number of models were proposed with the aim of providing a Higgs

inflation model which was free from unitarity problems. Two models did so via the in-

troduction of higher dimensional operators. Ref. [99] introduced additional interactions

which are proportional to products of the derivatives of the Higgs doublet. These interac-

tions were specifically introduced to counteract the parts of the amplitude in the original

model that caused problems with unitarity. Ref. [100] introduced a new coupling between

the kinetic term of the Higgs and the Einstein tensor. We will see in Section 4.4 that

despite the claims made in the paper the model in fact suffers from unitarity problems

in both the inflating background and today’s universe. Both of these models could be

criticised for employing very specific choices of higher dimensional operators. If they allow

the specific operators that are introduced to give the desired effects they offer no argument

as to why all other operators of the same dimension are suppressed. As such they can

both be considered finely tuned.

A third proposal was introduced in Ref. [101] were an additional heavy scalar coupled

to the Higgs is introduced to unitarise Higgs inflation. When we integrate out the heavy

scalar, the low energy theory looks like the model of original Higgs inflation with a large

Higgs non-minimal coupling. However, when we look at the full action we see that in the

high energy regime, the Higgs actually has a small non-minimal coupling and the new

scalar has a large non-minimal coupling and is the field that plays the dominant role of

the inflaton. As such we do not really consider this a true model of Higgs inflation, see

also Ref. [102] for similar criticisms.

Finally, there has been one more recent model of Higgs inflation proposed and is known

as generalised Higgs inflation [103]. In this model an extensive set of higher dimensional

operators has been introduced and there exists a broad area of the parameter space for

which the inflationary predictions agree with experiment. However, there has not yet been

any study of the scale of unitarity violation in this model and it would be a useful avenue

of research to determine which parts of the large parameter space are free from unitarity

problems.
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4.3 Asymptotic safety and Higgs inflation

Because it is essential for the consistency of the Higgs inflation model that no new physics

spoils the Higgs potential, it is of interest that the asymptotic safety scenario offers a

paradigm for quantum gravity which requires no new physics even above the Planck scale.

As such it offers an ideal framework in which the Higgs inflation model can exist. The

scenario of asymptotically safe gravity, first proposed by Weinberg [104], provides a fully

renormalisable UV completion to gravity (for reviews see [32, 33]). In this scenario, the

dimensionless gravitational coupling approaches a non trivial fixed point in the UV under

renormalisation group effects. The Planck mass is expected to become larger in the UV and

the growth of amplitudes with energy of type ξ2s/M2
P could be compensated by the running

of the Planck mass (see e.g. Ref. [105]). When gravity is coupled to matter the existence

of the fixed point is even more difficult to establish, however detailed investigations have

recently been carried out into scalar fields coupled to gravity [106, 107]. These studies

incorporate the non-minimal coupling used in the Higgs inflation model and indicate that

in the presence of these couplings a Gaussian matter fixed point could exist. A further

result of their work is that if a non-trivial fixed point for gravity does exist, when scalar

fields are introduced all the non-minimal couplings will be zero at the fixed point. This

implies that ξ gets smaller in the UV and would further counter the growth with energy

of amplitudes.

Although asymptotically safe gravity can provide its own paradigm for inflation [108],

it could also be the perfect framework in which the Higgs inflation model could be re-

alised. At high energies, the theory does not get replaced with new physics (as happens in

string theory for example), instead the theory becomes strongly coupled and all possible

higher dimensional operators become important. The theory remains predictive because

it is hypothesised that only finitely many couplings are relevant as the UV fixed point is

approached. No new physics beyond the standard model plus gravity is required and so

operators such as those in Eq. (4.2.4) need not be present to spoil the potential. When we

consider Higgs inflation, the background dependent cutoff still holds, meaning that per-

turbation theory remains valid during inflation. Thus asymptotically safe gravity with the

standard model Higgs boson could provide a fully consistent inflationary scenario without

having to introduce any new degrees of freedom.

Interestingly it was also suggested in [109], that if gravity were asymptotically safe

and assuming there are no intermediate energy scales between the electroweak and Planck

scales, the Higgs boson’s mass could be predicted. For a positive gravity induced anoma-
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lous dimension (as is suggested by calculations in the literature) the Higgs boson mass

would have to sit right at the bottom of the window which allows for the effective potential

to be stable up to the Planck scale. In [109] this mass was calculated to be 126 GeV. As

mentioned above, more recent studies, taking into account the observed Higgs boson mass

[90, 91], allow for this to happen if the top quark mass lies right at the bottom of the

98% C.L. window and the strong coupling constant lies right at the top of its 98% C.L.

window. If this turns out to be the case and the effective potential of the Higgs boson

remains just stable right up to the Planck mass, then the standard model with the Higgs

boson non-minimally coupled and asymptotically safe gravity could provide a complete

theory of all the known forces of nature and a fully predictive model for inflation.

4.4 Unitarity of new Higgs inflation

To overcome the unitarity problems associated with the original proposal for Higgs infla-

tion, Germani and Kehagias proposed a new model where the Higgs boson has a derivative

coupling to the Einstein tensor [100]. They claimed that this new model was free of unitar-

ity problems and could produce successful inflation. In a later paper [110] they calculated

the cosmological perturbations in the model and showed that they were consistent with

the latest WMAP data. Since the prime motivation for the new model was to overcome

the unitarity problems associated with the original model of Higgs inflation, it is important

to carry out a thorough analysis of the scale of unitarity violation in this model. We do

this here and find that contrary to the original claims, the new model of Higgs inflation

also suffers from unitarity problems during the inflationary period.

In Ref. [100] it is shown that the unique non-minimal derivative coupling of the Higgs

boson to gravity, propagating no more degrees of freedom than general relativity minimally

coupled to a scalar field, is given by the action

S = −
∫
d4x
√−g

[
M2
P

2
R− 1

2
(gµν − w2Gµν)∂µh∂νh+

λ

4
h4

]
, (4.4.1)

where Gµν = Rµν−R
2 g

µν is the Einstein tensor, w is an inverse mass scale, and h represents

one of the real degrees of freedom of the standard model Higgs doublet.

To calculate the scale at which unitarity is violated in such a theory we consider

hh→ hh scattering via graviton exchange. As in Refs. [3, 43], we simplify the calculation

by only considering s-channel scattering. This is justified for the case of the standard

model Higgs doublet, which in the high energy regime being considered, appears as four

real scalars. Expanding around the inflating background gµν = ḡµν + hµν/MP where
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ḡµν = diag(−1, a(t), a(t), a(t)) is the Friedmann-Robertson-Walker (FRW) metric, to low-

est order in hµν the Einstein tensor is Gµν = −3H2ḡµν where H ≡ ȧ/a is the Hubble

constant.

For wH � 1, we can expand h around its background value during inflation h0. We

have h = h0 + 1√
3wH

δh where δh is canonically normalized. As in Ref. [100], we find an

interaction term

I ' 1

2H2MP
∂2hµν(∂µδh) (∂νδh). (4.4.2)

A power counting analysis then gives the scale at which unitarity is violated to be

E? ' (2H2MP )1/3. (4.4.3)

In Ref. [110], by direct comparison with the WMAP data and considering the allowed

range of the standard model Higgs boson self coupling, the size of the background fields

during inflation are found to be

R ' 5.6× 10−8M2
P , (4.4.4)

2.1× 10−2MP < h0 < 2.7× 10−2MP . (4.4.5)

In order for higher dimensional operators such as Eq. (4.2.4) to be suppressed, we must

ensure that during inflation, R < E2
? and h0 < E?. We can determine H '

√
R/12 from

Eq. (4.4.4) and we find

E? ' 2× 10−3MP . (4.4.6)

In Ref. [100] only the condition R < E2
? was considered and the model was said to be free

of unitarity problems. However, considering the bound on the Higgs field, Eq. (4.4.5), we

see that h0 > E? during inflation and the model in fact suffers from unitarity problems.

It is also of interest to calculate E? around today’s background since this gives us

the lowest energy at which new physics must appear in order to unitarise the theory.

Expanding around a flat background gµν = ηµν +
√

2hµν/MP +O(M−2
P ) and the standard

model Higgs boson vacuum expectation value (which we take to be zero in the high energy

limit being considered), the cut off is found to be

E? '
(

5MP

w2

)1/3

. (4.4.7)

In Ref. [110], by comparison with the WMAP data the value of the dimensionful parameter

w is found to lie in the range

7× 10−8 MP < w−1 < 8.8× 10−8 MP . (4.4.8)
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Taking the upper bound for w−1 we find that unitarity is violated at

E? = 3.4× 10−5MP (4.4.9)

which is smaller than both
√
R and h0 during inflation.

We conclude that, during the inflationary period, new physics must be present to cure

the unitarity problem and would likely spoil the inflationary potential.
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Chapter 5

Bound on the Non-minimal

Coupling of the Higgs Boson to

Gravity

Three examples of the non-minimal coupling of the Higgs boson to gravity producing

interesting physics have already been presented: model of low scale quantum gravity (Sec-

tion 2.3), Higgs-radion mixing (Sections 3.4.3 and 3.5.4) and Higgs inflation (Chapter 4).

There has been much additional interest in this coupling over the years. It could play

an important role in cosmological models [111], inflationary scenarios [112] and models of

induced gravity [113, 114]. Also, as mentioned in the introduction, this coupling should be

generically present in the effective theory expansion unless it is forbidden by a symmetry.

The recent discovery of the Higgs boson at the LHC [38, 39] motivates the question

of how to measure the size of the Higgs boson’s non-minimal coupling ξ. In this chapter

we derive the first known bound on the size of the non-minimal coupling. The approach

utilises a decoupling effect between the physical Higgs boson and the standard model

particles that accompanies a large non-minimal coupling and the effect this would have on

the production and decay of the Higgs boson at the LHC. We also estimate the expected

reach of future high energy, high luminosity runs at the LHC and proposed International

Linear Collider (ILC) to improve the bounds on ξ. Finally we add some comments on Higgs

boson decays to gravitons, the effect of a large non-minimal coupling on the Higgs boson’s

mass and the consequences of these results for various models found in the literature.
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5.1 The decoupling effect

The action for the standard model Lagrangian (LSM ) coupled to gravity, including the

Higgs non-minimal coupling is

S = −
∫
d4x
√−g

[(
1

2
M2 + ξH†H

)
R− (DµH)†(DµH) + LSM +O(M−2

P )

]
(5.1.1)

where the cosmological constant term has been suppressed. In the first term the Planck

scale has been replaced by a generic mass scale to be fixed below. The kinetic term for

the Higgs field, which is normally contained in LSM has been explicitly written. After

electroweak symmetry breaking, the Higgs boson gains a non-zero vacuum expectation

value, v = 246 GeV, M and ξ are then fixed by the relation

(M2 + ξv2) = M2
P . (5.1.2)

From this it is clear that ξ ≤ M2
P /v

2 ' 1032. Note that ξ can be of arbitrary size if

negative. One might naively expect that if |ξ| is much below 1032 then its effects would

not be observable in low energy experiments. This however turns out to be false as will

be shown below.

The easiest way to see the decoupling effect of the Higgs boson1 is to make a transforma-

tion to the Einstein frame (see Appendix D), g̃µν = Ω2gµν , where Ω2 = (M2+2ξH†H)/M2
P .

The action in the Einstein frame then reads

S = −
∫
d4x

√
−g̃
[

1

2
M2
P R̃−

3ξ2

M2
PΩ4

∂µ(H†H)∂µ(H†H)− 1

Ω2
(DµH)†(DµH) +

LSM
Ω4

]
(5.1.3)

Expanding around the Higgs vacuum expectation value and specializing to unitary gauge,

H = 1√
2
(0, h+v)>, in order to have a canonically normalized kinetic term for the physical

Higgs boson we need to transform to a new field χ where

dχ

dh
=

√
1

Ω2
+

6ξ2v2

M2
PΩ4

. (5.1.4)

Expanding Ω−1, at leading order the field redefinition simply has the effect of a wave

function renormalisation of

h =
1√

1 + β
χ, (5.1.5)

1This effect was first realized for the Higgs boson in a paper by Van der Bij [114] where it was assumed

that M = 0 and the Planck scale is generated entirely by the Higgs boson’s vacuum expectation value with

ξ ' 1032. An earlier reference to the same effect in grand unified theories was made by Zee [115] where

he assumed the Higgs boson’s vacuum expectation value that breaks the Grand Unified Theory gauge

symmetry could dynamically generate the Planck scale. See also [116] and references in [117], where the

Planck scale is generated via a symmetry breaking mechanism.
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where

β = 6ξ2v2/M2
P . (5.1.6)

As a result, the Higgs boson’s couplings to all the standard model particles get suppressed.

For example, a Yukawa coupling to one of the standard model fermions ψ will become

yhψ̄ψ → y√
1 + β

χψ̄ψ. (5.1.7)

For ξ2 �M2
P /v

2 ' 1032 the Higgs boson effectively decouples from the rest of the standard

model.

This effect can also be understood in the original Jordan frame action (5.1.1) as arising

from a mixing between the kinetic terms of the Higgs and gravity sectors. After fully

expanding the Higgs boson (in unitary gauge) around its vacuum expectation value and

also the metric around a fixed background, gµν = ḡµν + hµν , the quadratic part of the

Lagrangian becomes

L(2) = −M
2 + ξv2

8

(
hµν�hµν + 2∂νh

µν∂ρhµρ − 2∂νh
µν∂µh

ρ
ρ − hµµ�hνν

)
+

1

2
(∂µh)2 + ξv(�hµµ − ∂µ∂νhµν)h. (5.1.8)

The final term represents a kinetic mixing between the higgs and graviton. To canonically

normalise the fields requires the following change of variables

h =
1√

1 + β
χ, (5.1.9)

hµν =
1

MP
h̃µν −

2ξv

M2
P

√
1 + β

ḡµνχ. (5.1.10)

We again find the physical Higgs boson gets renormalised by a factor 1/
√

1 + β.

5.2 Higgs Boson Production and Decay

At the LHC, the Higgs boson production and decay will be affected by the above sup-

pression. At each vertex involving the Higgs boson coupled to standard model particles,

a factor of 1/
√

1 + β will be introduced. Clearly if β � 1 the Higgs boson would simply

not be produced in a large enough abundance to be observed.

In the following we will make the assumption that there are no other degrees of freedom

beyond those present in the standard model and Einstein gravity. We will refer to the

usual standard model total cross section for Higgs boson production and decay with β = 0

as σSM. If the cross section including a non-zero β is given by σ, we are interested

in the ratio σ/σSM. The LHC experiments produce fits to the data assuming that all
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Higgs boson couplings are modified by a single parameter κ [118] which in our model

corresponds to κ = 1/
√

1 + β. Using the narrow width approximation, the cross section

for Higgs production and decay from any initial i to final state f is given by

σ(ii→ h→ ff) = σ(ii→ h) · BR(h→ ff) = κ2 σSM(ii→ h) · BRSM(h→ ff). (5.2.1)

One might naively expect the cross section to be proportional to κ4, but in the narrow

width approximation this is not the case. The presence of the branching fraction, which

is independent of a universal suppression of the couplings, leads to the cross section being

proportional to κ2. For a 125 GeV Higgs the narrow width limit is an excellent approxi-

mation and is used in the determination of the signal strength at the LHC.

The ATLAS detector has currently measured the global signal strength µ = σ/σSM =

1.4±0.3 [39] and CMS has measured this as µ = 0.87±0.23 [38]. Combining these results

gives µ = 1.07± 0.18. This excludes |ξ| > 2.6× 1015 at the 95% C.L.

Reference [119] estimates the expected reach in the accuracy of the measurement of

the Higgs boson couplings in a large number of processes in future runs at the LHC and

the proposed ILC. Combining these results gives an estimated uncertainty in the global

signal strength µ. Assuming a central value of µ = 1, at a 14 TeV LHC with an integrated

luminosity of 300 fb−1, the uncertainty in the measurement of µ is expected to be 0.07

which would lead to a bound on |ξ| < 1.6× 1015. At the ILC with a center of mass of 500

GeV and an integrated luminosity of 500 fb−1, the expected uncertainty on µ is 0.005,

which gives a bound of |ξ| < 4 × 1014. Despite expected measurements of the total cross

section to an accuracy better than 1% at future high energy runs at the ILC, one cannot

expect to push the constraints on |ξ| below about 1014.

5.3 Effects of a large non-minimal coupling on missing en-

ergy and the Higgs mass

Given a large non-minimal coupling to gravity, one might also expect to have decreased

observable rates (missing energy) for Higgs decays at the LHC arising from unobserved

decays to gravitons. The effect is in fact very small as we will now discuss. The lowest

order vertex in ξ is a three point vertex connecting a single graviton line to two Higgs

boson lines. This could introduce the possibility of a Higgs boson radiating a single

graviton before decaying to standard model particles. While this process is kinematically

allowed for an off shell Higgs boson, it turns out that due to the nature of the derivative

coupling, the amplitude for this process is always proportional the four-momentum squared
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of the emitted graviton and is therefore zero. There is no vertex allowing for a Higgs boson

decaying to two gravitons after the kinetic terms have been properly normalized. All other

higher order processes will involve multiple Higgs bosons and as such will be extremely

rare at any future collider. This leads to the conclusion that the decoupling effect is the

primary method available at particle colliders to put constraints on ξ. It would be of great

interest if any cosmological or astrophysical effects were found that could compete with

the bound derived here.

We would like to make a short comment on the effect of the wave function renormalisa-

tion on the Higgs boson self coupling. Clearly the wave function renormalisation will also

act to reduce the mass of the Higgs boson. This effect would have to be compensated by an

increase in the Higgs boson self coupling. The increased self coupling would unfortunately

not show up in direct searches attempting to measure the four point Higgs boson vertex

since this will be further suppressed by a factor of 1/(1 + β) coming from the additional

two Higgs boson lines.

As mentioned above, there has been considerable interest in the Higgs boson non-

minimal coupling to gravity in the literature. This coupling is particularly important in

models of “induced gravity” where the Planck scale is generated spontaneously by setting

M = 0 and requiring that ξ ' 1032 [111, 114, 113]. Such a setup was also shown to be able

to produce good inflation with the standard model Higgs boson acting as the inflaton [112].

Clearly the discovery of the Higgs boson rules out such models on the grounds that with

such a large ξ the Higgs boson would be almost completely decoupled from the rest of the

standard model and would never be produced at a collider. In fact the decoupling effect

for the Higgs boson used here was first observed in Ref. [114]. As we saw in chapter 4,

later models of Higgs inflation used a much smaller value of the non-minimal coupling of

the order of 104. Unfortunately the results here imply that colliders will not be able to

probe the size of the non-minimal coupling down to these scales in the foreseeable future.

Comment on a recent publication

We would like to make a brief comment here on a very recent publication related to the

work in this chapter. In Ref. [120] Xianyu, Ren and He go through the same process as we

have done above to establish the decoupling effect and their results agree with ours. They

then specifically study the effect of a large non-minimal coupling on the unitarity of gauge

boson scattering. They do so by using both the Goldstone boson equivalence principle and

directly confirm the results for gauge boson scattering. They find that amplitudes such as
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WW → ZZ are proportional to ξ2E2/M2
P and are then able to bound ξ by requesting that

unitarity holds up to a chosen energy scale. At low energies their bound is not competitive

with ours, however by requiring that unitarity holds up to high energy scales they are able

to place more stringent bounds on the size of ξ. For example, requiring unitarity to hold

all the way up to the Planck scale produces a bound of ξ . O(10). We also note here that

the bound they have derived for processes such as WW → ZZ using the Goldstone boson

equivalence principle is essentially the same as the bound we have derived for the Higgs

inflation model above.
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Chapter 6

Conclusions

The effective theory of gravity coupled to matter represents a fully consistent quantum

mechanical framework in which to study the low energy gravitational interactions of the

standard model. This framework has been extensively used in recent years in both particle

physics and cosmology. For example, in particle physics, there has been huge interest in

the last fifteen years in the idea that extra space dimensions might bring the scale of

quantum gravity within reach of experiments at the LHC. There have been thousands of

papers published discussing the consequences of these models and experimental searches

for signatures of extra dimensions are ongoing. In cosmology, one of the central areas

of investigation is into the hypothesis that the early universe went through a period of

exponential expansion. Again, hundreds of papers have been published proposing models

which could have caused this inflation and using the effective theory of gravity coupled to

matter to predict observable consequences of the models. With the recent data from the

Planck satellite, comparison of these predictions with experimental data has reached new

levels of accuracy.

With such a large amount of research time invested into projects which utilise the

framework of the effective field theory of gravity coupled to matter it is of utmost impor-

tance that we understand the theory as well as we can. In particular, since every effective

theory has a cutoff above which the theory breaks down, knowledge of the cutoff is vital

in order to be able to trust perturbative calculations. In this thesis, we have looked at a

wide variety of models which rely on this framework to make predictive calculations and

have used a variety of tools in order to place bounds and constraints on parameters in

the models. In particular we have made extensive use of perturbative unitarity bounds

to find lower bounds on the cutoff in many different models, providing new information

about the regime of validity of the effective theory in each example.
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The tool of perturbative unitarity is a powerful tool to place simple and clear bounds

on models. In the introductory chapter, we reviewed the use of this tool by Lee, Quigg

and Thacker to calculate a bound on the Higgs boson mass. Many such bounds have been

calculated since and we have extended this work by applying unitarity bounds to models

coupled to the effective theory of gravity.

In Chapter 2, we presented our general framework for many of the following chapters

by deriving the lowest unitarity bounds for all types of matter fields coupled to gravity

by considering s-channel scattering via graviton exchange. We then applied these bounds

to various grand unified models found in the literature. We improved on this bound by

incorporating renormalisation group effects into a running Planck mass. By incorporating

quantum effects, this not only gives us a much more accurate determination of the scale

of unitarity violation, it also allows us to define a notion of the scale at which we expect

gravity to become strongly coupled. We are then able to compare this to the scale of

unitarity violation in order to classify models by whether or not unitarity breaks down

before the scale at which gravity becomes strongly coupled which would then require new

physics to appear at this scale in order for the model to remain consistent. We found that

grand unified theories with particularly large field contents can fall into the category of

requiring new physics before the scale of strong gravity in order to remain unitary. We

also looked briefly at two models which utilise the running Planck mass in order to lower

the scale of quantum gravity to near the electroweak scale. This is possible by introducing

either a very large number of fields or a huge non-minimal coupling. We found that in

both these models, unitarity breaks down below the low scale of quantum gravity.

In Chapter 3, we looked at the exciting idea that there may be extra dimensions

of space that could be observable at experiments at the LHC. These models have been

proposed because they resolve the seemingly unnatural hierarchy between the Planck and

the electroweak scale. They have been studied extensively in the literature and there

are many ongoing searches for their experimental signatures. For this reason it is crucial

to understand when and where we can reliably use the effective theory and trust our

calculations. We made the model independent observation that if we have more than one

KK graviton present in a model, then we find that the partial wave amplitude for graviton

exchange exceeds the unitarity bound at the first KK mode resonance. This general

bound relies on the addition of Breit-Wigner resonances and we also showed hints that if

we include the effects of interference between the resonances this unitarity problem may

be cured. This however is a complicated non-perturbative effect and the full consequences



82

go beyond the scope of this thesis. It remains an interesting avenue for future research.

We then looked more closely at three different extra dimensional models.

We first looked at the ADD model which is characterised by an extremely fine spacing

of KK modes with the lowest lying mode having an extremely small mass. For this

reason, the general unitarity bound has severe consequences for this model. If perturbative

unitarity does break down completely at the first KK mode it means there is only a tiny

energy regime in which one can reliably perform calculations. We point out however that

the unitarity problem only exists near the top of the resonance peaks and this leaves

a broad range of energies between the peaks where unitarity will likely still hold up to

much higher energies. We have made extensive attempts to ascertain this ‘off resonance’

unitarity bound, using the common technique of approximating the sum over modes by

an integral. Unfortunately we are unable to separate the effects of the resonances from

the unitarity bound without introducing strong dependence on an arbitrary cutoff. The

most robust bound that can be calculated using this method, comes from the imaginary

part of the amplitude and in general we find from this bound that unitarity breaks down

at about 0.8MD. However, this bound comes exclusively from the resonant exchange of

on-shell KK gravitons. As such it is in competition with the bound calculated in the

model independent way without using any approximation. Since these bounds show a big

disagreement we have to conclude that approximating the sum over modes by an integral

offers a very poor approximation for the purposes of calculating unitarity bounds.

We are left to conclude in the ADD model that unitarity breaks down at the first

KK mode but there is likely a large energy range between each resonance where unitarity

is maintained to much higher energies. Unfortunately, as with most observables in the

ADD model, the specifics of this bound are strongly dependent on an arbitrary cutoff.

Because the problems with unitarity happen only very near the resonances, and the energy

resolution of current detectors is bigger than the spacing between the modes, it is likely

that our bound does not in fact pose any serious problems for phenomenology of the

ADD model and in particular the technique of approximating the sum over modes by an

integral may remain valid for calculating experimental observables. However, it is still of

theoretical interest how the ADD model deals with this unitarity problem and if there is

indeed any mechanism by which it remains unitary at the resonances. We believe that

the inclusion of interference effects between the resonances may hold the key to restoring

theoretical consistency to the ADD model and as such deserves further research.

We also looked briefly at the RS model. Applying the general model independent
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bound in this scenario does not have such severe consequences as it does for the ADD

model. The first KK mode resonance coincides with the scale at which we expect gravity

to become strong and so it is not surprising that unitarity breaks down here. Also there

is a large mass gap below the lowest lying KK mode and so there remains a large energy

range in which the effective theory remains valid. We also reviewed attempts to derive

unitarity bounds arising from exchange of the radion following a suitable stabilisation

mechanism. With a minimally coupled Higgs boson, no significant bounds can be derived,

however if the Higgs boson is non-minimally coupled, the size of the non-minimal coupling

is constrained to be |ξ| . 2.7 by requiring that the unitarity bound is not exceeded below

a cutoff defined as Λ = e−kbMP .

Finally we looked at the linear dilaton model. This model is distinguished by its unique

graviton KK spectrum which has a mass gap of |α|/2 followed by a near continuum of

modes. For large |α| the application of the general unitarity bound does not pose much

of a problem for this model for the same reasons as in the RS case. We expect gravity to

become strongly coupled around the first KK mode and there remains a sizeable region in

which the effective theory remains valid. However, for small values of |α|, the prospect of

unitarity breaking down at the first KK mode could pose problems for the model. The first

KK mode will be light and so unitarity breaks down at a very low scale and calculations

above this scale may not be reliable. We also derived unitarity bounds arising from the

exchange of the radion in a stabilised linear dilaton model. Similarly to the RS model,

we find that if the Higgs boson is minimally coupled then no significant constraints can

be placed on the model from unitarity. However, with a non-minimally coupled Higgs

boson, we find that for large values of |α|, unitarity constrains the size of the non-minimal

coupling. However, there remains a large part of the parameter space which does not

suffer from problems with unitarity.

In Chapter 4 we looked at models which propose the idea that the standard model

Higgs boson could play the role of the inflaton and have caused a period of exponential

inflation in the early universe. The original model of Higgs inflation requires a rather

large value of the non-minimal coupling ξ ∼ 104. We showed that this large non-minimal

coupling means that when the Higgs field is expanded around a small VEV, unitarity

breaks down at about MP /ξ. Inflation takes place for values of the Higgs field h > MP /
√
ξ.

If new physics appears at or below the unitarity violation scale in order to fix the unitarity

problem it would have unknown effects on the Higgs potential above this scale and destroy

the predictability of the model.
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We reviewed the background dependent bound which shows that despite unitarity

breaking down below the inflationary scale in today’s universe, during the inflationary

epoch the Higgs has a large background value and in this regime there are no unitarity

problems. Despite this claim, we maintain that if in today’s universe new physics appears

at the scale MP /ξ, there is no reason why it would not still be present at that scale during

the inflationary period and would interfere with the potential. With this in mind, there

are still major concerns for the consistency of the Higgs inflation model even though it

does remain perturbative during the inflationary period.

We briefly introduced the idea that asymptotic safety could provide a perfect frame-

work in which the Higgs inflation model could exist without having to introduce new

physics. Following this we also looked at a new model of Higgs inflation which relies on

a coupling between the kinetic term of the Higgs and the Einstein tensor. This model

was specifically introduced to overcome the unitarity problems of the original model of

Higgs inflation. However, after a thorough analysis, we find that in fact this model exceeds

the unitarity bound below the inflationary scale both in the inflating background and in

today’s universe.

Finally, in Chapter 5, we derived the first ever bound on the size of the Higgs boson’s

non-minimal coupling to gravity. We observe a decoupling effect between the standard

model particles and the Higgs boson in the presence of a large non-minimal coupling.

Using this effect and the latest data from both the ATLAS and CMS experiments at the

LHC we are able to place the bound |ξ| < 2.6× 1015. We also predict the reach of future

experiments to improve on this bound.

We have seen throughout this thesis, many places where bounds derived on the effective

theory of gravity coupled to matter have provided a better understanding of a large variety

of models. Amongst other things, this knowledge can provide us with confidence about

when we are able to reliably use the effective theory and more importantly warn us when

it is no longer valid. This remains an open area of research and this thesis provides

motivation for a number of interesting new avenues. We list four possible future research

directions here:

• The disparity between the scale at which unitarity breaks down and the scale at

which the running Planck mass becomes strongly coupled is not fully understood. It

would be of interest to properly understand why these scales are sometimes separate

and whether this signifies a true inconsistency in the model

• The breakdown of unitarity at the first KK mode in models with extra dimensions
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can be a serious problem for models with a small mass gap such as ADD. We have

seen hints that if we take into account the interference effects between resonances

it may cure this problem. This obviously provides motivation to develop this idea

further.

• Because the Higgs boson is the only observed fundamental scalar field, it is of real

interest whether it could also play the role of the inflaton in the early universe.

Unfortunately Higgs inflation models tend to suffer from unitarity problems. A new

model called generalised Higgs inflation [103] has recently been developed with a

large parameter space of couplings. It would be useful to carry out a thorough

investigation of this model to find out what areas of the parameter space are free

from unitarity problems.

• We have shown that future particle accelerators will not be able to place bounds

on the size of the Higgs boson’s non-minimal coupling below about |ξ| ' 1014. It

is possible that cosmological or astrophysical observations could improve on these

bounds and as such provide a further important research direction.
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Appendix A

Polarisations of External Particles

For the calculation of scattering amplitudes throughout this thesis, we have taken the

following values for the initial and final state four momenta:

kµ1 = (E, 0, 0, −p) , kµ3 = (E, −p sin θ, 0, −p cos θ) ,

kµ2 = (E, 0, 0, p) , kµ4 = (E, p sin θ, 0, p cos θ) .

The corresponding polarisation vectors for spin one fields are (0 represents longitudinal

polarisation and ± transverse polarisation):

εµ1 (0) = (−p, 0, 0, E) /m, εµ∗3 (0) = (p, −E sin θ, 0, −E cos θ) /m,

εµ1 (±) = (0, −1, ±i, 0) /
√

2 , εµ∗3 (±) = (0, − cos θ, ∓i, sin θ) /
√

2 ,

εµ2 (0) = (−p, 0, 0, −E) /m, εµ∗4 (0) = (p, E sin θ, 0, E cos θ) /m,

εµ2 (±) = (0, 1, ±i, 0) /
√

2 , εµ∗4 (±) = (0, cos θ, ∓i, − sin θ) /
√

2.

In the helicity basis, the Dirac fermion spinors are of the following form:

u+(p) =

 √
E − p ξ+

√
E + p ξ+

 u−(p) =

 √
E + p ξ−
√
E − p ξ−



v+(p) =

 √
E + p η+

−√E − p η+

 v−(p) =

 √
E − p η−

−√E + p η−


and the Weyl spinors ξ and η are

ξ+ =

 cos θ2

sin θ
2

 , ξ− =

 − sin θ
2

cos θ2

 , η± = ±ξ∓ .
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Appendix B

Wigner d-functions

d0
0,0 = 1

d2
0,0 =

1

2
(3 cos2 θ

d2
1,0 = −

√
3

8
sin 2θ

d2
1,1 =

1

2
(2 cos2 θ + cos θ − 1)

d2
1,−1 =

1

2
(−2 cos2 θ + cos θ + 1)

d2
2,0 =

√
3

8
sin2 θ

d2
2,1 = −1

2
sin θ(1 + cos θ)

d2
2,−1 = −1

2
sin θ(1− cos θ)

d2
2,2 =

1

4
(1 + cos θ)2

d2
2,−2 =

1

4
(1− cos θ)2

djm′,m = (−1)m−m
′
djm,m′ = dj−m,−m′
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Appendix C

Integrals

To solve the integral ∫
yd−1

1− y2
dy

we use the general formula∫
xm (a+ b xn)p dx =

xm−n+1 (a+ b xn)p+1

b(m+ n p+ 1)
− a(m− n+ 1)

b(m+ n p+ 1)

∫
xm−n (a+ b xn)p dx

which for the simplified case considered here becomes∫
xm(1− x2)−1dx = − x

m−1

m− 1
+

∫
xm−2(1− x2)−1dx.

Iterating this for even m will reduce it to

−
m/2∑
k=1

x2k−1

2k − 1
+

∫
1

1− x2
dx = −

m/2∑
k=1

x2k−1

2k − 1
+

1

2
log

∣∣∣∣1 + x

1− x

∣∣∣∣
and for odd m it will reduce to

−
m/2∑
k=1

x2k

2k
+

∫
x

1− x2
dx = −

m/2∑
k=1

x2k

2k
− 1

2
log
∣∣1− x2

∣∣ .
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Appendix D

Transforming between Einstein

and Jordan frames

In this appendix general expressions are given in n dimensional spacetime. An action

defined in the Jordan frame where a scalar field is coupled to the Ricci scalar can be

transformed to a minimally coupled Einstein frame via a conformal transformation of the

metric

g̃µν = Ω2gµν

g̃µν = Ω−2gµν ,
√
−g̃ = Ωd√−g .

Under such a transformation, the Ricci scalar transforms as

R = Ω2
[
R̃− 2(n− 1)�̃ω − (n− 1)(n− 2)g̃µν∂µω∂νω

]
where

ω ≡ ln Ω , �̃ω =
1√−g̃ ∂µ(

√
−g̃ g̃µν∂νω) .

Note that the second term will often appear as a total derivative and can then be discarded.
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Appendix E

Feynman Rules

The first three Feynman rules are for gravitons coupled to scalars, vector bosons and

fermions respectively. They are reproduced from Ref. [29].

k1

k2
hµν

−i
2
√

2Λn
(m2

φηµνCµν,ρσk
ρ
1k

σ
2 )

k1

k2
hµν −i

2
√

2Λn
((m2

A + k1 · k2)Cµν,ρσ+

Dµν,ρσ(k1, k2) + ξ−1Eµν,ρσ(k1, k2))

k1

k2
hµν −i

8
√

2Λn
(γµ(k1ν + k2ν) + γν(k1µ + k2µ)

− 2ηµν(/k1 + /k2 − 2mψ))

Where, Λn is the coupling and Λn = MP for the ususal massless 4D graviton. ξ is the
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gauge fixing parameter and

Cµν,ρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ ,

Dµν,ρσ(k1, k2) = ηµνk1σk2ρ −
[
ηµσk1νk2ρ + ηµρk1σk2ν − ηρσk1µk2ν + (µ↔ ν)

]
,

Eµν,ρσ(k1, k2) = ηµν(k1ρk1σ + k2ρk2σ + k1ρk2σ)

−
[
ηνσk1µk1ρ + ηνρk2µk2σ + (µ↔ ν)

]
.

The following Feynman rule is for the radion in the linear dilaton model coupled to

gauge bosons and is reproduced from Ref. [81].

Aρ(k1)

Aσ(k2)

r ib1κφ
M∗

(k2·k3η
σρ − kρ2kσ3 )

+ 2im2
V

(
b1
M∗

(κφ
2
− κΦ

)
+
a1

v

)
ησρ
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