
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012073

IOP Publishing

doi:10.1088/1742-6596/1525/1/012073

1

Next Generation of HEP CPU benchmarks

Domenico Giordano, Evangelia Santorinaiou

CERN, 1211 Geneva CH

E-mail: Domenico.Giordano@cern.ch, evsantorinaiou@gmail.com

Abstract. HEPSPEC-06(HS06) is a decade old suite used to benchmark CPU resources for
WLCG. Its adoption spans from hardware vendors, to site managers, funding agencies and
software experts. Although it is stable, reproducible and accurate, it is reaching the end of its
life. Initial hints of lack of correlations with HEP applications have been collected. Looking for
suitable alternatives the HEPiX Benchmarking Working Group has evaluated SPEC CPU 2017
with a number of fast benchmarks. The studies that have been done so far do not show any
major advantage in adopting SPEC CPU 2017 with respect to HS06.

A suite based on workloads that HEP experiments run can be an alternative to industrial
standard benchmarks. The adoption by LHC experiments of modern software development
techniques simplifies the ability to package, distribute and maintain a field-specific benchmark
suite. The HEPiX Benchmarking Working Group is actively working to make this possible.

This report summarises the progress of the HEPiX Benchmarking Working Group in building
a benchmarking suite based on HEP workloads. Comparisons of results with SPEC CPU 2017
and HS06 will be discussed.

1. Introduction
Since 2009 the WLCG organization [1] adopts the HEP-SPEC06 benchmark suite (HS06)
to describe experiment requirements, lab commitments, existing compute resources and
specifications to procure new hardware [2]. This suite is based on a subset of the industrial-
standard benchmark SPEC CPU 2006 [3].

In recent years discrepancies have been highlighted between HS06 scores and the average
normalized time spent by the WLCG applications [4]. The discrepancies being more accentuated
for LHCb and Alice applications whereas ATLAS and CMS applications still show good
agreement with HS06, within 10% of accuracy. Most of the discrepancies are connected to the
introduction of Intel Haswell [5] and Broadwell [6] CPU models and the different usage of the
chipset instructions by the WLCG applications and the HS06 benchmark. Other discrepancies
can be attributed to the LHC experiments adopting 64-bit compiled applications instead of the
32-bit compiled HS06 suite.

Contrary to the initial expectations, it was proven [7] that adopting SPEC CPU 2017 as
new HEP benchmark does not bring much benefit with respect to HS06. In fact, the C++
benchmarks included in the new suite produce scores highly correlated with the HS06 scores.
Therefore the adoption of SPEC CPU 2017 would not provide more information than HS06, at
least for the range of applications and CPU models currently adopted in WLCG.

For these reasons the HEPiX Benchmark Working Group (BWG) is adopting a benchmark
suite for the typical workloads of the LHC experiments. In the following section a quantitative



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012073

IOP Publishing

doi:10.1088/1742-6596/1525/1/012073

2

comparison of several benchmarks and HEP applications is reported. In section 3 the approach
to build the HEP specific benchmark suite is reported.

2. Comparisons of benchmarks
HS06 consists of seven applications. Four applications are dominated by floating point operations
(namd, dealII, soplex, povray) and the other three are dominated by integer operation (omnetpp,
astar, xalancbmk). Similarly SPEC CPU 2017 has eight C++ applications. Some of those
applications are a readaptation of SPEC CPU 2006.

The dissimilarities between HEP applications and SPEC CPU benchmarks can be highlighted
by monitoring the usage of the CPU during the applications’ runs to collect various low-level
metrics related to the processor and the memory. In order to perform this study, an analysis
toolkit of hardware and software performance counters called Trident [8] was used. Trident
divides the instructions executed per CPU cycle into four classes: successful completion also
named retiring (RET) class; stall in CPU Front End (FE) class or Back End (BE) class; rejections
due to branch misprediction (BS) class.

The CPU counters have been collected using Trident during the execution of the applications
in the HS06 suite, SPEC CPU 2017 suite and the fast benchmark DB12 [9]. The same
analysis has been performed on several experiment workloads, such as detector simulation, signal
digitisation and event reconstruction. Applications from all four LHC experiments have been
used. Figure 1 shows a comparison between ATLAS simulation and one of the HS06 applications
(omnetpp) in terms of the percentage of CPU cycles spent in one of the four introduced categories
(FE, BE, BS, RET). The different usage of the CPU spent by the two applications is evident.

(a) (b)

Figure 1: Percentage of CPU cycles spent in FE, BE, BS, RET, as a function of the application’s
running time, for Atlas simulation (a) and HS06’s omnetpp application (b). The initialization
and finalization phase of the execution have been excluded.

In total, 25 applications have been studied with Trident. For each of them, the time series
of the extracted metrics have been analysed. After removal of the initialization and finalization
phases, the metrics’ evolution during the sequence of processed events have been summarised
by averaging on the runtime window. For the CPU counters this approach gives three average
values of the FE, BE, BS, that are representative of each studied application. The similarity
between two applications in terms of those metrics has been defined as the L1 distance of the
two points representing the given applications in the 3D metric space (FE, BE, BS). The L1

Euclidean distance was used in order to magnify the discrepancies between two points in each
metric coordinate. The applications have been then clustered using hierarchical clustering [14].
The distance between the nearest applications in the metric space, as well as the distances
between agglomerative clusters are summarised in the dendrogram tree of Figure 2b.



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012073

IOP Publishing

doi:10.1088/1742-6596/1525/1/012073

3

(a) (b)

Figure 2: 3D location of every studied benchmark in the metric space (FE, BE, BS) (a) and
dendrogram of the applications’ distance in this space (b). Different colors have been used for
the clusters in which the distance is shorter than 18%.

Most of the HEP applications have an average distance between them smaller than 0.18. This
means that the average CPU cycles spent in FE, BS, BE differ for not more than 18% of the
processing time. On the contrary, the HS06 and SPEC CPU 2017 applications are distributed in
other subspaces, reaching a discrepancy up to the order of 60%, as in the case of the deepsjeng r
application. To be also noticed that the similar applications in HS06 and SPEC CPU 2017 differ
in the usage of the CPU within 15% (namd, omnetpp, xalancbmk). The only exception about
the similarity of HEP applications is the Alice generation and simulation, that in average differs
for more than 20% from all the other HEP applications. This can be explained considering
that the Alice simulation is based on Geant3 [10] that has a completely different code base
and programming language respect to the simulation framework Geant4 [11] used by the other
experiments.

3. HEP benchmark suite
A suite based on workloads that HEP experiments run can be an alternative to industrial-
standard benchmarks and can benefit of the adoption by the experiments of modern software
development techniques such as container technologies as well as continuous integration and
development methodologies. These techniques simplify the ability to package, distribute
and maintain a field-specific benchmark suite, implementing build, test, packaging phases in
pipelines.

As for any other benchmark suite, there are essential requirements that the HEP benchmark
suite must satisfy. It must be reproducible, therefore the configuration of each application
needs to be well defined, so that the application can process the same fixed sequence of events,
with the same software version and calibration data. Moreover, it must be portable to different
platforms. In order for it to be also usable by vendors and sites not having external connectivity,
assumptions such as remote access of software and data must be dropped. Finally, the HEP
benchmark suite has an open source license.



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012073

IOP Publishing

doi:10.1088/1742-6596/1525/1/012073

4

To satisfy those requirements the HEPiX BWG has decided to adopt the approach of building
standalone containers encapsulating all and only the components needed to run the benchmark
(fig. 3). These components fall in three categories: software, configuration files and input data.
Software framework and algorithms are the same running in the typical WLCG production
jobs. The configuration file and input data define the algorithms’ sequence and the events’
complexity in order to have a benchmark representative of the most common event patterns
in the production jobs. That representation is directly connected to the LHC luminosity and
energy that affect the amount of tracks to be simulated or reconstructed per bunch crossing.

Figure 3: Standalone HEP Container

An orchestrator script manages the environment configuration, the start of the HEP
application, the error handling and the results’ parsing. The orchestrator exposes few tuning
parameters via CLI, and produces a benchmark report compliant with the defined data types.
The report is formatted as a JSON document for easy insertion in monitoring services. The
running mode of the container includes the possibility of starting a configurable number of
parallel and independent copies (processes) of the same application. The default benchmark
running-mode targets all cores of a machine under test, and makes sure that resources are not
over-committed: therefore the number of parallel processes is determined by the number of
available cores and the number of threads each process will spawn.

In the process of building a standalone container the requirement on the container image
size drives another technical choice on the software installation. The size of the container is
determined by the input data size and the amount of code stored in the container. Given that,
not all the algorithms and libraries need to be executed during the benchmark run thus there is
no need of installing the full software stack. On the other hand, the input data size depends on
the single event size and on the number of events to be processed in order to get a representative
benchmark. The number of events is being carefully studied for each application in order to
reduce the statistical fluctuation of the measurement.

To install only the software that the benchmark application effectively runs, and rely on what
distributed on WLCG sites via CVMFS [12], a procedure has been developed that is based on
the CVMFS Trace and Export [13] utilities to export applications software from CVMFS to a
local folder inside a container. This procedure requires a first run of the application with access
to the real CVMFS mount point, in order to trace the accessed software files. Therefore the
Export utility copies the traced files to a local archive, that can be included in a docker image
at build time. This building procedure simplifies the amount of information requested to the
LHC Collaborations in order to be able to run a given application of their framework. No need
to have RPMs distributed and installed, and the advantage of limiting the software to what will



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012073

IOP Publishing

doi:10.1088/1742-6596/1525/1/012073

5

effectively run.
Another requirement is to provide stable procedures to build and distribute the benchmark

suite. This has been realized adopting the GitLab Continuous Integration (CI) [15] for the
automation of the container build and validation, and the GitLab Container Registry [16] for
the container distribution. Two container solutions are offered so far, Docker and Singularity.

4. Conclusion
The dissimilarities between HS06 and HEP applications have been highlighted using CPU
counters. At the same time, commonalities between HEP applications are also shown. This
evidence motivates the investigation of a new benchmark approach for HEP, that focuses on
the adoption of applications specific to the field itself. A model based on standalone containers
has been developed for software distribution. At the time of writing, generation, simulation
and reconstruction workloads from the four LHC experiments have been already distributed via
containers.

References
[1] Welcome to the Worldwide LHC Computing Grid, http://wlcg.web.cern.ch/
[2] Michelotto M et al. J. Phys. Conf. Ser. 2010 219 052009
[3] Henning, John L 2006 SPEC CPU2006 Benchmark Descriptions, SIGARCH Comput. Archit. News, September
[4] P. Charpentier, J. Phys. Conf Ser. 2017 898 082011
[5] Hammarlund P Haswell: The fourth-generation Intel core processor IEEE Micro, Mar./Apr. 2014

10.1109/MM.2014.10 34 no. 2, pp 6–20
[6] M Kumashikar, S Bendi, S Nimmagadda, A Deka, A Agarwal 4nm Broadwell Xeon processor family: Design

methodologies andoptimizations inProc. IEEE Asian Solid-State Circuits Conf., 2017 pp 17–20
[7] Alef M et al. Next Generation of HEP CPU Benchmarks, CHEP 2018 proceedings (to be published)

https://indico.cern.ch/event/587955/contributions/2937888

[8] Muralidharan S, Smith D Trident: An Automated System Tool for Collecting and Analyzing Performance
Counters

[9] Dirac Benchmark 2012 gitlab.cern.ch/mcnab/dirac-benchmark/tree/master

[10] Brun R, Bruyant F, Maire M, McPherson A C and Zanarini P,Geant3 CERN-DD-EE-84-1
[11] Cosmo G and the Geant4 Collaboration Geant4 - Towards major release 10 J. Phys. Conf Ser. 2014,513

022005
[12] CVMFS https://cernvm.cern.ch/portal/filesystem

[13] CVMFS shrinkwrap
https://github.com/nhazekam/doc-cvmfs/blob/shrinkwrap_tutorial/cpt-shrinkwrap.rst

[14] Scipy: https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html

[15] GitLab Continuous Integration Delivery: https://about.gitlab.com/product/continuous-integration/

[16] GitLab Container Registry: https://about.gitlab.com/2016/05/23/gitlab-container-registry/

[17] HEPiX HEP reference workloads
https://gitlab.cern.ch/hep-benchmarks/hep-workloads/container_registry


