HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES

HIP-2015-02

Aspects of Holographic Thermalization

Lasse Franti

Helsinki Institute of Physics
and
Department of Physics
Faculty of Science
University of Helsinki
Finland

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science of the University
of Helsinki, for public examination in the auditorium CK112 at Exactum, Gustav
Hiillstromin katu 2b, Helsinki, on the 13" of August 2015 at 12 o’clock.

Helsinki 2015



ISBN 978-952-10-8124-8 (printed version )
ISSN 1455-0563
ISBN 978-952-10-8125-5 (pdf version)
http://ethesis.helsinki.fi
Unigrafia
Helsinki 2015



L. Franti: Aspects of Holographic Thermalization
University of Helsinki 2015, 53 pages,

HIP Internal Report Series HIP-2015-02

ISSN 1455-0563

ISBN 978-952-10-8124-8 (printed version )

ISBN 978-952-10-8125-5 (pdf version)

Keywords: gauge/gravity duality, holography, hyperscaling violation, Lifshitz scaling,
quark gluon plasma, anisotropy

Abstract

The gauge/gravity duality connects the dynamics of gravity theories in the bulk with
the dynamics of field theories on the boundary. In this thesis we introduce two thermal-
ization scenarios and investigate them using a suitable holographic description.

We will first study the thermalization of equal-time correlators and entanglement en-
tropy in a hyperscaling violating AdS-Lifshitz-Vaidya metric. This work verifies the
agreement between numerical procedures and preceding analytical predictions and gen-
eralises the previous studies of thermalization in this kind of situations.

In the latter part we will use the duality to describe the quark-qluon plasma created
in heavy ion collisions. The anisotropic plasma is modelled by introducing anisotropies
into the source on the gravity side and letting them evolve according to the equations
of motion. The boundary dynamics is extracted by finding the boundary stress-energy
tensor. The results agree with the conventional models. The situations considered here
are rather simple but this work demonstrates the applicability of holography in the
anisotropic case.
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1 General introduction

During the last couple of years an increasing number of researchers have immersed
themselves into the emerging field of gauge/gravity dualities. This paradigm has been
spreading from its original kingdom of theoretically beautiful conformally invariant the-
ories, such as the initial N = 4 super Yang-Mills, to new less charted but more realistic
fields. These include condensed matter theory, quark gluon plasma, lattice theories
and non-equilibrium dynamics. Although the initial constructions do not have a major
role in the practical calculations presented here, historic consistence and even tradition
compels us to include a short account on the original rigid dualities by the pioneering
fathers.

1.1 Background in strings

Originally developed to explain the Regge trajectories of meson and baryon resonances,
string theory has become one of the most prominent topics in mathematical physics. One
of the issues faced in this hadron model era was the existence of massless spin-2 particles
in these theories. As QCD proved to be a much more natural and accurate theory of
quarks and gluons, string theory became somewhat less interesting in this context. The
tensor particle, however, made string theory a possible candidate for quantum gravity.
The particle content also gives a distant hope of even unifying all existing theories into
a single theory of everything. However, string theory is still hampered by many existing
issues, such as its overwhelming sortiment of different possible vacua and the very high
energy scales of observable predictions.

One of the most active branches of contemporary theoretical physics, the gauge/gravity
duality, was born in 1997 when Juan Maldacena [1] proposed that in at least one particu-
lar case string and field theories are connected in a much more surprising way. Moreover
this connection is very strong. This discovery was preceded by the holographic principle
proposed by 't Hooft and elucidated by Susskind [2], but the discovery by Maldacena
and the subsequent work by Gubser, Klebanov, Polyakov [3] and Witten [4] made the
connection between gauge and string theories much more concrete. After this initial
discovery, a multitude of more or less specific holographic models have emerged, making
Maldacena’s paper one of the most cited articles in the history of physics.

1.2 The AdS/CFT duality

The exact form of the Maldacena duality states that N = 4 U(N) super-Yang-Mills
theory in 3+1 dimensions is dual to type IIB superstring theory on AdSs x S5. The
correspondence is thought to be exact, although no mathematically rigorous proof exists.
Unfortunately, the concrete use of this duality is impeded by the rather complicated
construction of the theories involved. On the AdS-side there is a string theory living on
the product of a five-dimensional space with hyperbolic behaviour and a hypersphere,
and the field theory side is a supersymmetric N = 4 Yang-Mills theory (N =4 SYM),
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which is conformal and has a fairly complicated Lagrangian. The gauge and string sides
are thus both highly nontrivial. N = 4 SYM is also not very close to any observable
theory of nature and, in particular, its behaviour is qualitatively different from QCD,
which is confining and non-conformal.

The practical use of the AdS/CFT-correspondence thus requires one to consider vari-
ous limits. Many toy models do not really aspire to describe nature but are studied to
investigate the dynamics of the duality itself. These so-called non-physical models seem
to be especially frequently utilized in AdS/QCD. These models usually show phenom-
ena reminiscent of real QCD dynamics, but are not very satisfactory due to nonphysical
assumptions, such as a wrong number of colours or extreme limits. Many models as-
sume N to be very large, which enables the use of supergravity in the bulk and 1/N
-expansions in the field theory side. Large-N limits are widely used in holographic QCD,
although in physical situations N = 3.

Even though strings are no longer prominent in most practical gauge/gravity models,
the original duality is still relevant as a somewhat rigorous holography scheme. Several
groups are trying to derive practical models top-down from the multi-dimensional branes
to the level of field theories and thermalization problems.

Some features of the original duality are still present in most holographic models. One
of these is the use of anti-de Sitter space and its flat boundary to house the bulk and
boundary dynamics.

1.3 The AdS-geometry

The pure anti-de Sitter space describes the geometry of an empty spacetime with a neg-
ative cosmological constant. This spacetime can be written down using several different
coordinates, each describing different patches of the full space. One can define the AdS),
space as a hyperboloid of the form

i T (1)
in a flat space with the metric
ds®* =dz® + ... +dz?_| —dY?* - dZz°. (2)

If we set n = 2 this can be interpreted as a hyperboloid embedded in a three dimensional
Minkowski space.

A somewhat more illuminating and definitely more usable form is the induced metric
on the hyperboloid in Poincaré coordinates

1
ds? = ?(—dﬂ +dy? +da? + .. +da? ). (3)

This can be easily interpreted as a conformally flat space equipped with one special
spatial coordinate. In applications it is common to use the inverse coordinate r = 1/y
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and the resulting metric

d 2
ds® = —r?dt® + TLQ + 7"2(d:U2 + .+ dxi—2)- (4)

The scaling of the transverse directions suggests that the inverse coordinate can be
interpreted as a radius. With the light-cone ansatz

1
v=t+ — )
- (5)

one obtains the Eddington-Finkelstein form

ds* = —r?dv® + 2drdv + r*da?. (6)
These forms are used throughout this introduction. One can also express the metric in
spherical coordinates to obtain
2

dp

ds® = —(1+4 p*)dt’

+ deQn_g . (7)

From (3), (4), and (7) one can see that the boundary y = 0, r — oo is conformally
flat. In Poincaré coordinates this is manifestly visible from the metric. This is very
important, as the field theory lives on the AdS boundary.
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2 Hydrodynamics from gravity

Having examined the canonical cases, we can now concentrate on the actual topic of
this thesis. This requires us to drop some of the mathematical rigor in exchange of more
realistic situations on the field theory side. This kind of trade-off is not uncommon
in bottom-up models such as the ones included in this thesis. Before presenting the
models used in the accompanying papers, let us examine a purely analytic procedure
to derive classical hydrodynamics from a gravity solution to illustrate the philosophy of
introducing dynamics and reading off results for the dual theory. This review is based
on two papers [5] and [6], which complement each other in a rather nice way.

2.1 Scaling symmetry and hydrodynamic limit
It can be seen that the nonrelativistic Navier-Stokes equations for incompressible fluid

6’@- =0 (8)
Byvi — nd*v; + 8P + 01 djv; = 0 9)

retain their form in the rescaling of velocity and pressure

vé(z!, 7) = ev;(ex’, €27) (10)
P(z',7) = €P(ext, 7).
This means that rescaled quantities obey the same equations, i.e.,
s =0 (11)
Ov§ — nd*v§ + ;P + 17905 = 0. (12)

The most important feature, however, is the scaling of allowed corrections to (9) under
this transformation. From general considerations we know that these extra terms should
vanish in the hydrodynamic description of incompressible Newtonian fluids. We can
indeed achieve this by using the scaling symmetry and studying the resulting equations
in the limit of very small e. This scaling is thus called the hydrodynamic scaling, as all
reasonable corrections to the classic Navier-Stokes equations vanish at the limit € — 0.
The hydrodynamic limit can thus be rather explicitly represented in this way.

2.2 The stress tensor

Extracting the field theory dynamics from a gravity solution can be made in different
ways. We will calculate the Brown-York stress tensor, which we will show to be similar
to the stress-energy of an incompressible fluid. This correspondence is demonstrated by
deriving the equations of motion for an incompressible fluid from the energy-momentum
tensor.
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The Brown-York stress-energy was derived in [7] where it was presented as a quasi-
local energy momentum tensor associated with hard spacetime boundaries which in
practice are usually realized as cutoff surfaces. According to this proposition, the energy-
momentum tensor can be calculated from the expression

Top = 2(Yap K — Kap) (13)

where K, is the extrinsic curvature of the boundary and K is its trace taken with
respect to the boundary metric 4.
The extrinsic curvature can be calculated as

1
Kap = 5 (Largap) €3¢y = (VaNs) ey (14)

where we use covariant derivatives with respect to the full metric. Here Greek indices
refer to the bulk spacetime and latin indices to the boundary. The transformation

matrices 5
xa

@ — 15

= (5 ) (15)

are constant for coordinate surfaces, which makes our calculation considerably simpler.

2.3 Boosted black hole

The worldview of an accelerating observer in Minkowski space is described by the Rindler
metric

ds* = —rdr? + 2drdr + d2* . (16)
This metric can be made dynamic by performing boosts of the form
\TeT = YA/TeT — ~Bixt (17)
gt =t — yBNreT 4+ (v — 1)ﬁ;§j ! (18)
with
== Bi=r P, (19)

which introduces an arbitrary velocity v;. Another parameter can be added by a shift
in the radial coordinate
T—=T =T (20)

followed by the rescaling
T—(1- rh/rc)_l/QT. (21)

Applying these transformations in the above order leads to the expression

is? dr? <U2 r—1r, 2yv;

2y
f — + - -
1—v2/r. 1—7“h/7"c> V1—rp/re ren/1—1h/Te

2v; r—r . Vi r— o
. < ) dz'd 8ii — e c de'ds? . (22
+1 —v2/r, (Tc—rh> v+ < 721 —v?/r.) (1 —T‘h/’l”c)> var (22)

drdr — dxtdr
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We will define the pressure in terms of the radial shift r;, as

1
- 23
P= (23)

and consider the actual hydrodynamic quantities to be small perturbations with coor-
dinate dependence, which allows us to write

w=oray)  p=r POy, (24)
Using the hydrodynamic scaling
UZ«(E) (1,2) = eui(e%‘, €xj), Pl (1, Ij) = €2P(62T, 6133') (25)

we obtain the approximate result

. . 2
ds®> = —rdr? + 2drdr + dzx;dx — 2 (1 - T) vidx'dr — —Ud:cldr

Te e
Y 2 9p
+ <1 - :) [(v2 +2P)dr? + vrﬂdzvzdx]} + (1; + r> drdr + O(e3). (26)

Let us now introduce the cut-off surface at r = r.. The normal vector with respect to
the full metric is

1 P v
NFQy = ——0r + /1o (1 — — | 0, + —0; + O(?). 27
= =t (1= 7 ) 0+ S0+ 0 (27)
Using equations (13) and (14) we can calculate the Brown-York stress tensor for the
cutoff surface and determine the associated equations of motion in the boundary theory
using covariant conservation laws.

The first nontrivial equation appears at order €2 and reads

1320, T% = 90" = 0. (28)

This is simply the condition for an incompressible fluid. Using this condition, we can
express the energy-momentum tensor in the form given in [6]
Tijdx'da? = Dy Va0 Y agidr + Mizmdajzdx] — 2% i O(é%).
VTe  \Te Ve ry! Ve
(29)

The rest of the time component 9,7°" is of fourth order or higher, so we can move to
the spatial components 0%T,;, which are of third order. By interpreting the bulk speed
of light |/r. as the square root of viscosity, one obtains

rg/Qa“Tai = 0,v; — nd*v; + O;P + vjﬁjvi =0 (30)
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i.e. the Navier-Stokes equation.

It is good to note that the field theory lives in the flat boundary. The Navier-Stokes
equation we obtained is thus describing a fluid in flat space, as is classically the case.

The main motivation for presenting this calculation is its philosophical structure,
which is very typical of holographic calculations. A suitable static metric is first chosen
to fit the needs of the calculation. Time dependent behaviour is introduced by perturbing
the metric in some way and the dynamics extracted by examining relevant boundary
quantities and re-interpreting the bulk variables in terms of the boundary theory. The
following two sections follow this philosophy to investigate thermalization in two different
boundary theories.
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3 Hyperscaling violation and Lifshitz scaling

The total number of holographic models introduced is immense and even established
fields within holography are numerous. Condensed matter applications include holo-
graphic superfluids [8], and electron stars [9], [10] as models of Fermi surfaces. The
term electron star or cloud refers to the bulk configuration with an ideal fluid of fermions
supported by a chemical potential in a gravitational field. The pursued dual theory is
similarly a system of strongly interacting fermions. AC and DC conductivities for dif-
ferent models have been calculated, see [11]. For short review papers on the various
condensed matter applications, see [12] and [13]. Studying the entanglement entropy
in non-relativistic field theories is also a major motivation for Lifshitz holography, see
[14] and [15]. Violations of the area law for Fermi surfaces [16] have been studied using
hyperscaling violation, see [17], [18] and references therein.

The Vaidya metric itself was first introduced by Prahalad Vaidya in 1951 [19] and
refined in [20]. This metric describes a spherically symmetric spacetime with either
inflowing or outflowing null dust, for which he most natural example is a nonrotating
star. We will use the asymptotically anti-de Sitter version, which is more suitable for
holography and has by now been used in numerous papers including [21] ,[22], and [23].
The precursor for this work was [24], which investigated holographic thermalisation and
entanglement by using the time dependent Lifshitz-Vaidya metric with collapsing null
dust. Its approach was a descendant of [25], which introduced the Einstein-Dilaton-
Maxwell theory in this setting. This field content is sufficient to give rise to spacetimes
with time dependence and Lifshitz scaling. In another paper [27] Alishahiha et al dis-
cussed entanglement in the case of Lifshitz geometries with added hyperscaling violation.
This paper used the same ingredients to realize the required spacetimes and cited [25]
as its main reference. In the paper [I] we investigated these matters in the time depen-
dent Hyper-Lifshitz-Vaidya metric with both hyperscaling violation and a nonrelativistic
dynamical exponent.

The leading idea in these calculations is to model thermalization by a gravitational
process. The initial vacuum corresponds to a field theoretic vacuum. By changing the
metric, we get a non-equilibrium state which evolves into a thermal state represented
by a black hole on the gravity side. The prominent role of the Vaidya metric is based on
the lightlike collapse as the falling shell remains static in Eddington-Finkelstein time.

In paper [I] we developed a holographic model for thermalization following a quench
near a quantum critical point with non-trivial dynamical critical exponent and hyper-
scaling violation. In this work the anti- de Sitter Vaidya null collapse geometry was
generalized to a Hyper-Lifshitz-Vaidya metric. Non-local observables such as two-point
functions and entanglement entropy in this background then provide information about
the length and time scales relevant to thermalization. The project started as a collab-
oration of the author with Esko Keski-Vakkuri and Ville Kerdnen. The project had
advanced to a late stage when we came aware of the other group led by Erik Tonni.
The resulting paper [I] thus consists of two rather independent calculations with two
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separate codes. The discussion here follows the route taken by the author and mainly
considers the results of this work.

3.1 Hyper-Lifshitz-Vaidya solutions

A bottom-up Einstein-Maxwell-Dilaton (EMD) gravity model with static hyperscaling
violating Lifschitz-AdS black brane solutions was introduced in [27]. In this section
we briefly review the model with its black brane solutions and generalize these results
by deriving a time-dependent solution describing a null collapse of a (flat) shell to a
black brane, which gives rise to the hyperscaling violating Lifschitz-AdS Vaidya metric
(Hyper-Lifshitz-Vaidya).

Following [27] we work with the model

1

_ d+2 ——
5= 167G d g

2
_ 1 2 v _ 1 Aid 12
R—(00)" + Voe'? — ;e F?| . (31)

The bulk spacetime dimension is D + 1 = d 4+ 2 so the spacetime boundary of the
asymptotically AdS solutions will be D = d 4+ 1 dimensional. In addition to gravity,
the EMD action contains two gauge fields and a scalar. The potential term and the
coupling constants of the gauge fields also depend on the scalar field. The strength of
the potential and coupling is controlled by four parameters v, A1, A2 and Vj.

The equations of motion obtained directly from this action read

Ry, — %RQW = % {aﬂqba,,qi) + G (—;8,@6“(;5 + Voewﬂ (32)
+1§:e)‘i¢ (F Fie~ tg P aﬁ)

2 i=1 e gl

1 1 o
\/—_798“\/—79(%(;5 + Voye?® — i ; XML FT = 0 (33)
v, (eWFi W) ~0. (34)

As shown in [27], this theory has static hyperscaling violating Lifshitz black brane
solutions with charge. The required dynamical and hyperscaling violating exponents
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(¢,0) define the metric and the source fields as

+ r2di?

Cl52 _T‘_29/d _TQCf(r)dtQ i drz
N r2f(r)
Firt =v/2(C—1)(C +d — 0) exp ( 7 ;H_e( = _dl)/_de/d) ¢0> pAH¢—6-1

(35)
—1-0/d
Fory =Q\/2(d — 0)(C — 0+ d — 2) exp (- 42(61_9)/%) p(dH¢=0-1)
e — 0,/ 2(d—0)((—1-6/d)
with the blackening factor
m Q?
flr)=1- SCFd=0 T aCrd6-1) - (36)

The free parameters m, () are the mass and the charge of the brane. The intial value
of the scalar field ¢ is not important and could be set to zero, which simplifies the
equations.

The dynamical and hyperscaling violating exponents are also related to the parameters

appearing in the action. For the relations it is convenient to introduce o« = —6/d and
8= \/ 2d(1 —1+ ¢ + «). With these definitions we can express the parameters as
200

Vo= (ad+(+d—1)(da+ ¢+ d)exp 5 (37)

v =—2a/f (38)

A = —2(a(d—1) +d)/8 (39)

2(a+¢—1)
Ay =y ———=. 40
2 dla+1) (40)

Based on this static solution and work done in [24], we can hope to find a hyperscaling-
violating Lifshitz-Vaidya (HLV) metric with nonzero hyperscaling exponent. Following
[24], we shall make an ansatz for the HLV metric by adding time dependencies to the
functions. We will then show that this metric is a solution of the Einstein-Dilaton-
Maxwell equations with an additional term in the energy-momentum tensor.

As demonstrated, the static hyper-Lifshitz metric

2

dr
r2f(r)

ds? = r2a (—r f(r)dt* + +r?da?) (41)

with
Fr)=1- 4% (42)
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can be realized for arbitrary values of the parameters ( and . We can transform this
into a Eddington-Finkelstein form by performing a specific transformation given by

do—dit g (43)
v =dt + T,
f(r)
which yields the form
ds® = 724 (=% f(r)dv? + 2dvdrr® ™t + r2da?) . (44)

As promised earlier, we shall try to generalize the static solution by simply making
the blackening factor (42) time-dependent. More boldly, we can try to achieve this by
just making the mass time-dependent and observing the corresponding changes in the
energy-momentum tensor. We shall therefore assume a metric Ansatz of the form

ds? = r_Q%(—(l — ?Zi(;)_)e)r%dﬁ + 2dvdrr¢ ! + r2da:2) (45)

and analyze the resulting equations of motion. With some precognition from [24], we

can try to search for a source consisting of the same source fields and a modified time-

dependent matter component. From now on we will set d = 2 and use pu = exp(¢o).
Following [24] and [27] we can use a radial gauge. This allows us to write

¢ = Log(urV?2-0)c=1-0/2),) (46)
and
A, = Aggi:;llu_57§f%%%ifﬁ72+c—0 (47)
SV 2+¢—0 ’
which results in a field strength given by
2-0/2
Fry = /2(C = 1)(2+ ¢ — 0)pV2e-0(—1=0/2) p 160 (48)

The equations of motion remain in the same form as in the case without time depen-
dence. By feeding the equations of motion with the modified metric, we can confirm
that the time-dependent mass can be introduced by simply adding the extra term

1 m/ (v

Eyy = 5(2 - 9) rQ(_Q)
to the bulk energy-momentum tensor appearing on the right hand side of (32). This
term is analogous to the case without hyperscaling violation and reduces to the result
found in [24] if we set # = 0. The modified exponent in the denominator seems quite
natural taking into account the scaling of area in the metric and the interpretation as
infalling massless matter. Although this demonstration is not absolutely necessary for
our discussion, the possibility to source the HLV metric with a somewhat standard field
content is naturally a very positive feature.

(49)
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3.2 The Hyper-Lifshitz-Vaidya metric

The main features of the HLV metric are the two exponents ¢ and 6 which govern the
deviation from hyperscaling and the relativistic relation between space and time. In the
absence of hyperscaling (6 = 0), the vacuum metric

d 2
ds? = r=20/d (_TZCdtQ + % + erfz) (50)
T

remains invariant in the scaling
t—= Xt z = r— A (51)

This kind of behaviour is called Lifshitz scaling and it is observed in models of quantum
systems and even phase diagrams of known materials [28] which is one of the motivations
to study this kind of theories. The standard relativistic scaling is restored if we set { = 1.
If the hyperscaling exponent 6 is nonzero, the metric (50) retains its form under (51)

with an overall scaling
ds — X5 . (52)

This corresponds to hyperscaling violation in the dual theory: Instead of the usual
scaling relation of entropy and temperature

S oc T¢ (53)

we have [26] [27]
S o T=0/¢ (54)

Roughly speaking the hyperscaling exponent lowers the apparent thermodynamical di-
mension by 6 from d to dg = d — 6.

The third parameter after ¢ and 6 is the mass of the brane, which can be set to
an arbitrary value without introducing extra sources to the metric. As shown in the
previous chapter, a “time-dependent” solution with m(v) can be realized by introducing
an extra term to the energy momentum tensor. The dependence on the Eddington-
Finkelstein time and radial coordinate indicates that this term corresponds to a shell of
pressureless lightlike dust with the natural scaling of density.

The fourth parameter is the charge which we have chosen to be zero. This choice has
also been done in [24] and [29] where similar investigations were carried out in Lifshitz-
Vaidya and HLV. The main interest in geodesic correlators and entanglement entropy
is focused on the two violation exponents. The blackening factor as a whole is used
as a quench parameter with a simple turn-on and convenient dynamics in Eddington-
Finkelstein coordinates. Even though static and even time-dependent charges are pos-
sible, they are not relevant in studying thermalization in these models.
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3.3 Geodesic correlators and entanglement entropy

To probe the thermalization of the field theory dual of the collapsing shell spacetime,
we consider two sets of non-local observables, two point correlators in the geodesic
approximation and the holographic entanglement entropy. In this section we review the
basic definitions of these quantities.

Bulk two point functions can be computed using world line path integrals[30]

(E(tg):l'g )
G(xe,x1) = / Dae Sl (55)

(t1)==1

where 21 and x2 are the end points of the world line and S[z] is the particle action.
The particle action is proportional to the mass m of the particle. Thus, in the limit
of large m the path integral can be approximated by the saddle point value

G(xy,z0) = % . (56)

This approximation corresponds to replacing all possible paths in space by the most
probable path i.e. the classical trajectory. At the limit we get purely classical behaviour,
which is a geodesic. The action of the particle is given by

dzt dx?

Scl = —m/d)\ —guyﬁa . (57)

In the following we are interested in equal time correlators for which it is more convenient

to use a modified action
dzt dxv
S:m/d/\\/g’“’d)\d)\’ (58)

which takes real values for spacelike geodesics. In terms of this action the correlator
reads

G(xg,z1) ~ e (59)

and the boundary theory correlation function is obtained as a limit of this as the points
x1 and xo approach the boundary. In the following we consider geodesics ending on
an equal time slice in the boundary [31]. Thus, we parametrize each of them using the
Eddigton-Finkelstein coordinates 1/r = z = z(x),v = v(z) and require that 2’ and v’
both vanish at the turning point of the geodesic, chosen to be located at = = 0.

We are especially interested in the thermalization time of equal time correlators in HLV
metrics. The thermalization time is found by finding the values of time and boundary
separation at the intersection of thermal and time dependent solutions. Along the
intersection curve time dependent and thermal geodesics with same endpoints have the
same length, which signifies the transition to a thermal state.
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The other observable of interest is holographic entanglement entropy. In the case of
static geometries the entanglement entropy is given by the famous area law
Amin
4Gy’

Sent = (60)
where A, is the (1,d — 1)-dimensional minimum area surface ending on the boundary
of the entangling region on the spacetime boundary at z = 0. This connection between
the minimal surface and entropy was first proposed by Ryu and Takayanagi in their
renowned paper [32] and worked further in [33]. The proposal is nowadays well estab-
lished and widely used in holographic calculations, although the microscopic picture is
not well known.

The minimum area surface is unique and well defined in the case of Euclidean space-
times. In the case of static geometries, the Euclidean result can be safely continued to
Lorentzian spacetimes, where the surface is no longer a minimal area surface but it is a
saddle point of the area functional

A= /de/det P(g), (61)

where P(g) is the induced metric on that surface. Here we will specialize to the case
where the bulk spacetime is (341)-dimensional.

For the Vaidya case the entanglement entropy formula has to be generalized to non-
static Lorentzian spacetimes. The proposal is simply to replace the area of the minimal
surface by a suitable saddle point of the area functional (61), which in general is not the
minimum area surface [34].

Currently no derivation of this formula exists (except for some special cases) for non-
static spacetimes. Still at least within the class of Vaidya geometries, the entanglement
entropy proposal satisfies many of the desired features of the entanglement entropy of
a sensible quantum system (see e.g. [35]). We shall thus assume that the entanglement
entropy formula (60) indeed gives the boundary theory entanglement entropy.

In the following we will consider the entanglement entropy of a rectangular boundary
region x € (—¢/2,¢/2) and y € (—L/2,L/2) with L > ¢. With this separation of scales
we can well approximate the minimal surface by a surface translationally invariant in
the y direction. Thus, we can parametrize the minimal surfaces in the bulk by two
functions z = 2(z) and v = v(z). As in the geodesic case, 2’ and v’ have to vanish at
the turning point of the surface, which is located at x = 0.

3.4 Geodesic results

We can calculate the geodesic length and boundary time as a function of the boundary
distance between the correlated points. As discussed in the previous chapter the values of
boundary separation and time are connected to equal-time correlators of some operator
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O in the boundary theory, since heavy fields correspond to particles travelling along
geodesics. We thus write

00w xexp [ dryf g 21 ©)

For this calculation, we shall use the inverse radial coordinate z = 1/r and the corre-
sponding metrics. In the Schwarzschild -like coordinates of (41) the transformation is
very straightforward and we get the form

2 2
ds® = 29( — 27 %b(2)dt? + zzdbz(z) + %) (63)
Transforming the Eddington-Finkelstein form (45) yields
ds? = 2° (—z*%b(z, v)dv? — 2dvdzz™71 + z*2dx2> (64)
with
b(z,v) =1 —m(v)2$T470, (65)

The equations of motion can be found from the action with the transformed metric
(64). By symmetry, we can take the geodesic to have y = const. We can also use z to
parametrize the geodesic in a simple way, i.e.

z=z(z),v=v(z). (66)

Taking these choices and following the geodesic approximation, the Lagrangian is given
by

L= \/z9—2 — 220 27 HO0=C — 20-2p (2 ). (67)

The two Lagrange equations can be combined to obtain

1
' (1) (260 =) (€= ) b 0 - 3 Db 0 =0 (65)

The other equation is given by the “conserved” Hamiltonian and its value calculated at
the turning point z(0) = z, and reads

1— 2217620 — 22720 (2, 0 )0 = 22— (69)

The necessary initial conditions are given at the turning point which we fix to be
located at © = 0. The turning point values

2(0) =z, and v(0) = v, (70)
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turn out to have a major influence on the geodesic behaviour and thus act as governing
parameters of our calculation. We shall consider symmetric geodesics with

Z(0) = 0= /(0) (71)

to have equal time correlators and solve the geodesic equations of motion for different
turning point values z, and v, numerically.

For concrete numerical solutions the explicit form of the time-dependent mass function
m(v) has to be defined. We shall turn on the mass smoothly by using the hyperbolic
tangent function and write

m(v) = %(1 + tanh(v/vo)) (72)

which according to our interpretation of equation (49) simulates a falling shell of finite
thickness. The value of v is chosen to be small to have a smooth but rapid mass quench.

1.0

| T TR S W B | |

-2 -1 1 2

Figure 1: Comparison of the smooth turn-on functions (72) (red) and (73) (blue) with
ten and fifty times the value of vy used in the main calculation. The actual value results
in a nearly perfect step function with respect to the timescale of the dynamics.

The thermalization process is examined by generating data triplets consisting of the
boundary time and separation together with the geodesic length. Geodesics probing
the inner AdS-geometry are time dependent whereas the ones completely outside the
forming horizon are thermal. Thermalization occurs when the thermal geodesic becomes
shorter than the time-dependent alternative with the same endpoints.

In the numerical procedure the values of z at the turning point are set to suitable
values inside the horizon for each of the hyperscaling exponents and the turning point
time changed in diminishing steps while the corresponding boundary time and distance
are recorded along with the geodesic length. The results are normalized by subtracting
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the vacuum length of the geodesic from the result, which sets the value to zero before
the mass quench and makes the results easier to interpret. The vacuum calculation can
be done analytically, as demonstrated in the following section. The renormalized length
plotted in the figures is thus the logarithm of the rescaled equal-time correlator G/Gy.
The integrals are divergent and must be regulated by stopping slightly before reaching
the boundary. The same distance is used for all values and situations.

The time independent thermal data is generated similarly by approaching the horizon
from outside and keeping the turning point time fixed. The data triplets are then
recorded and plotted in the same way, resulting in a figure like 2. The intersection curve
is extracted by separately fitting a surface to the two data sets, as illustrated by figure 3.
The intersection of these two surfaces represents the transition from a time dependent
initial state to a time independent thermal state. The intersection curve thus represents
the thermalization time as a function of boundary separation, as discussed earlier.

Using this scheme, we examined the thermalization of equal-time correlators as a
function of boundary separation with various values of the hyperscaling exponent 6 and
obtained the results given in figure 4. We also verified that the exact functional form of
the mass function is not important as the results remain essentially unchanged if (72)
is replaced with some other step-like function, such as the piecewise polynomial

0 t<0
f)=<¢ 65 —15tt+1063  0<t<1 (73)
1 t>1

with

t= <U + 0.5> (74)

5U0

The exact speed of the quench is not important, either. Artefacts from the turn-on
function start to appear only if the time dependence is strikingly slow, which corresponds
to a thick shell. The two turn-on functions are illustrated in figure 1.

3.5 Geodesic vacuum

For the purpose of normalizing the results we need to know the geodesic lengths in the
hyperscaling vacuum spacetime given by the metric

A2 da?
ds? = 20 (—2~ a2 + 7Z2 + z;g) . (75)

The Lagrangian has no explicit z-dependence, which allows us to construct the conserved

Hamiltonian .
)’ z—1
0L o2 (76)

H_@ 1+ (2)2
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This means that we can express the on-shell Lagrangian as

N[

1—
ES

L=2%"2, (77)

where z, denotes the value of z at the turning point. This relation is valid also for the
time-dependent case, as one can show in an analogous manner.
The boundary separation of the end points in vacuum can be found by solving (76)

and reads ; p
£:2/ N
o Jzr2-1

This can be written in a more transparent form by moving to a dimensionless variable
k = z/z, with a fixed interval

(78)

1
l ::2z*0/° dk(K9=2 —1)~1/2, (79)
0

The vacuum action is given by

Zx Z972
S:%J*ﬂ/ dz (80)
0 (z/2)0 72 =1
which in terms of k reads
1
S = 2:0/? / dkk02(K072 —1)~1/2, (81)
0

This result enables us to find the vacuum correlator for different values of 6. For example
for # = 1 we obtain

S =2vVrl. (82)

The results can be normalized in a natural way by subtracting the vacuum value from
the Vaidya result. Using this scheme has the nice feature of having zero value for the
entropy before the quench. Other schemes also exist, as illustrated by the plots in paper
[I]. These plots highlight the nontrivial and important role of choosing the regularization
in constructing a holographic model of this kind.

3.6 Minimal surface

Following [24] we shall now investigate the minimal surfaces in the HLV geometry. As
dicussed earlier, the area of a bulk surface hanging from the boundary of a region on
the spacetime boundary is associated with the entanglement entropy of this boundary
region. The boundary geometry chosen here is an infinite strip of width £. For a infinite
strip we can parametrize the hanging surface in a simple way by using the boundary
coordinates  and y. We shall take the strip to be infinite in the y direction and have
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Figure 2: Sparse set of data triplets for the case ( =2 and 6 = 1.

width £ in the z direction. Due to the symmetry in y we can take the coordinates
to be functions of x only. The bulk surface thus resembles a very long sheet with its
shorter egdes attached to two horizontal rods situated at x; = —¢/2 and x9 = ¢/2 at
the boundary.

For concrete calculations we introduce the Eddington-Finkelstein coordinates on the
surface and parametrize them in terms of x as in the geodesic case. By substituting the
expressions

z=z(x),v=v(x) (83)

we find the surface metric to be
ds? = (=27 %40 (2,0) (v))? — 22717500 2 + 27240 da? 4 27240 gy (84)

resulting in the surface action

S = /dy/dx\/(—z2<+9b(z,v)(v’)2 — 2271 G0y ) = 240) 240 (85)

Due to the infinite interval in g it is more convenient to study the entropy density

s S
=Ty
In the following we shall consider this scaled quantity while keeping in mind its structure.

In the strip case the action is again independent of z, which allows us to construct a
conserved Hamiltonian

(86)

H=2"y+ Ty p= . (87)
z (

Using the turning point value
H =72t (88)
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Figure 3: An example of a surface plot of the boundary distance and time versus geodesic
length with vacuum value subtracted. The intersection of the two fitted surfaces cor-
responds to the transition from the time dependent solution to the thermal state, as
discussed in the text.

we can use this to find the on-shell Lagrangian as
5—4+20

L=——.
220

Doing a calculation in vacuum further yields the result

2072
22 = Nizaca (90)

This can be cast in the form

/

zZ = (i

dz
20-4 _ 1 = =2
z*) dx

which gives the vacuum relation between z, and [ as

1
(= 2z*/0 (k20— —1)71/2, (92)

From the expression of L in terms of the turning point value z, we can find the vacuum
surface area or entanglement entropy to be

Z_4+20 Zx —4+260
S = /de—T'i‘O = 22’3_0/0 dz . (93)

By a change of variable this can be cast into the form

1
S — 222—1 / k29—4(k29—4 _ 1)—1/2 , (94)
0
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--- Reference line

#=1 theory
--- #=1.2 theory
--- #=1.4 theory
--- #=0.8 theory

Figure 4: Plot of thermalisation time versus distance with different values of the hy-
perscaling exponent. The theoretically predicted constant speed of thermalization (102)
for late times is given by the dashed line. The black dashed reference line has slope 1.
Numerical artefacts are visible at small values of ¢.

which tells us that S only depends on z,. This result has great significance in numer-
ical calculations. By adjusting the vacuum solution to the value of z, with the same
endpoints, we can find the vacuum value of the action.

3.7 Entanglement results

We can calculate the surface area and finishing time at the boundary as a function of
strip width for hanging surfaces with different turning point coordinates in the bulk.
According to the area-entropy duality these values will correspond to the entanglement
entropy associated with the strip at different times and its thermalization in the dual
theory.

The equations of motion can be found from the action with metric (84). The two
Lagrange equations can be again combined to obtain

0 6 -0
20" +4(1 — 5)2/1/ —2(1— i)zflJr< +(14¢—0)z1 %2 - <T23*9m(v)fu'2 =0. (95)

The other equation is given by the conserved Hamiltonian

4—-260

— 227 p(z,0)0"? — 2217 1 = 21_29 . (96)
z

The equations of motion are solved similarily to the geodesic case. We set the initial
conditions with zero derivatives at the turning point £ = 0 and solve these equations for
different values of turning point radius and time numerically. As in the geodesic case,
we will set values of z at the turning point to suitable values for each of the hyperscaling
exponents and change the turning point time in diminishing steps. This results in data
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triplets consisting of the strip width, boundary time and entanglement entropy of the
strip. A similarly modified procedure with turning point outside the horizon is performed
for the thermalized case. The results are normalized by subtracting the vacuum result,
which gives us zero entanglement entropy before the quench. The results are regulated
by stopping the integration slightly before reaching the boundary. The data triplets for
dynamic and thermalized surfaces are plotted together, which results in a figure similar
to 5. As in the geodesic case, the results are insensitive to the specific form of the quench
as long as the shell is reasonably thin.

Figure 5: Set of data points for entaglement entropy density as a function of strip
half-width and time.

We can also investigate the famous linear growth of the entanglement entropy before
thermalization by fitting a linear function to the points in the appropriate regime. This
was done with various values of { and 6, which produces the results plotted in figure 6.
The time development of entanglement entropy can also be compared to the analytical
predictions of chapter 3.8 plotted in the same figure. The agreement is fairly good, if
one takes into account the inaccuracies of the fitting process. One should also note that
the overall vertical range is quite small in this plot.

We can investigate one of the points more carefully and plot the actual data points
for one of the parameter pairs. In figure 7 we have chosen the values § = 1 and ¢ = 2
and plotted two of the data sets.

The time development can be seen even more clearly by flattening plot 7 in the a-
direction. The resulting figure 8 shows the initial growth followed by a linear regime.

We can also pick the data set around x = 8, although this is not absolutely necessary
due to the invariance in x. The corresponding plot 9 also shows the structure of the
data set more clearly.
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o

Figure 6: Linear regime for the strip: the colored squares are values of the slope found
from the numerical data similar to figure 5 with chosen flattened sequences analogous to
figure 8. The black empty circles denote the analytical predictions of section 3.8. Upper
set of points corresponds to § = 1 and lower to § = —0.5.

Figure 7: Two sets of data points in the case § =1 and { = 2.
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15

10

Figure 8: The two sets of data points in the case § = 1 and ( = 2 flattened. The slope
seems to be rather independent of x, as predicted by theory.

15+

10 - °°

Figure 9: The data set around x = 8 flattened.
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The s/t-ratio as a function of time is plotted in figure 10. The overall entanglement
entropy linearizes quite fast despite the non-linear initial growth.

S/t
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Figure 10: The s/t-ratio of the plot 9 as a function of ¢t. The pink line is the analytic
prediction for the linear regime.

Figure 8 shows that the agreement is equally good for the combination of two data
sets with z-separation, as expected.

3.8 Linear behaviour

At late times, the growth rate of entanglement entropy linearizes. In absence of hyper-
scaling violation the phenomenon was investigated by Liu and Suh in their two papers
[36] and [37]. Based on their results, the relevant formulas for the most general case
with both Lifshitz scaling and hyperscaling violation were derived in article [I]. In the
thin shell regime one finds

—F(zm) vE

t = t, (97)
ZgngrCfl thngrCfl

s = A () = 200148 1), AB 1) =

reg reg reg
where F(z) is the mass function and z,, is the minimal point of z2.
horizon distance z; = 1.

For the HLV metric the growth rate of entanglement entropy vg is

Here we set the

GRS _ 2dg+C-1)
UE—Ta /i_de——FC. (98)

Plots 8-11 show that this result agrees with the numerical calculation with good accuracy.
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Figure 11: The s/t-ratio of the plot 8 as a function of ¢t. The pink line is the analytic
prediction for the linear regime.

Also other predictions of Liu and Suh were generalized and compared to the numerics
in paper [I]. The initial non-linear behaviour of entanglement entropy is of the form

_ M Ay ¢(HFYC A+1/¢

AB) (t) 2D 7

o (99)
where M denotes the mass of the shell and ¥ is the boundary of the entangling region.
This formula agrees with numerical results obtained in our paper, which also confirms
that the result is independent of 6 as expected.

The speed of thermalization ¢/ts will also linearize at late times. At leading order,
entanglement entropy reaches the thermal value in time

-1 dg
ts = .
s %h 2z, Fy

(100)

The result depends on the boundary dimension. If the boundary is a “strip” of dimension

n, thermalization occurs at
-1 ndg
ts = +.... 101
s A 2o E T (101)

For entanglement entropy n = d and we obtain the result given above. Geodesics
correspond to a line, so the boundary has dimension 1 and the boundary of the boundary
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consists of the two endpoints. Geodesics thus thermalize at

_ d
ts:zgl 9

C+ ... 102

This prediction was tested against geodesic data in figure 4, which shows the asymptotic
linearization of thermalization velocity.

As the final draft was being written, Alishahiha et al published a third article [29] with
partial overlap with our results. The analytic results are derived for the case dg > 2 — (.
It is worth noting that parts of the parameter space outside this region have a negative
effective dimension if one wants to satisfy the null energy condition. This causes both
calculational and conceptual problems.
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4 Heavy ion collisions and Holographic QGP

In recent years, heavy ion collisions have been an important way of studying nuclear
matter. In addition to its main task, finding the Higgs boson, the LHC collider at CERN
accelerated lead ions to investigate the structure of matter at unprecedented energies.
These processes had been previously studied at lower energies by using the RHIC facility
in the US. In these energetic collisions a new state of matter called Quark Gluon Plasma
(QGP) is created. This state of matter is analogous to ordinary plasma, in which the
temperature is high enough to dissociate atoms to form a mixture of free nuclei and
electrons. In QGP, however, nuclei themselves get ripped apart and even protons and
neutrons dissolve into a mixture of quarks and gluons.

This state of matter has interesting properties, one of which is its very rapid thermal-
ization after its creation. Experiments at RHIC and at the LHC have shown that the
plasma starts to behave in a collective way at very early stages of the process. This
means that the plasma is strongly coupled, which, of course, is not very surprising.
These heavy ion experiments are thus one of the few ways of experimentally studying
thermalization in a strongly coupled gauge theory.

This kind of quantum fluid is thus both interesting and difficult to study. Various
semi-phenomenological models have been developed to model and understand the ther-
malization and anisotropies of this state of matter. The most established ones are
viscous hydrodynamics [38] and free streaming. Both of these are used in modelling the
phenomena, although they are classically not expected to capture the dynamics of the
system. One of the interesting aspects is the very early applicability of hydrodynamics
which is usually thought to be a low energy description for equilibrated matter. There
exists many holographic studies on quantum fluids and QGP. Many of these have been
very successful in explaining various aspects of the dynamics. One of the most famous
results is the very low shear viscosity [39] of these fluids. The values obtained from
holographic models (e.g. [40], [41], [42]) are close to the actual measurements done on
heavy ion collisions.

In the two papers [IIJand [III] we tackled this problem by using the framework of
gauge/gravity correspondence. Our main goal was to study inhomogeneous initial states
and their behaviour. This work is an important generalization of the previously inves-
tigated holographic models, such as [43] with homogeneous and isotropic injection of
energy or boost invariant plasmas [44] with rotational and translational symmetry.

The thermalizing plasma was modelled by an infalling scalar field in an anti-de-Sitter
background. The scalar field will collapse to form a black brane, which corresponds
to thermalization in the field theory side. This model has the additional advantage of
being analytically solvable, which is not the case with the other holographic models,
such as colliding shockwaves [45, 46] and [47] or boost invariant plasmas [48],[49] where
numerical general relativity is needed.

Our approach is a generalization of the procedure used in [43], which in turn has roots
in earlier papers. The authors themseves refer to Chesler and Yaffe [50] and even earlier
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papers, like [51], arguably contained some of the ingredients. In this model we turn
on a Gaussian scalar source at the boundary of pure AdS space. This source acts as
a boundary condition for the gravity solution. To investigate the effect of fluctuations
in the initial state, we will make the source inhomogeneous in one of the transverse
directions.

The first task is to solve the Einstein equations for this situation and obtain the
metric. Following [43], we used an expansion in the small amplitude of the scalar fields
and tried to solve the equations order by order. This turned out to be the hardest part
of the work, as spatial derivatives introduced by the transverse inhomogeneity made the
solution process more tedious than expected. Several different techniques were tried in
order to solve the general form of the field equations. The solution was finally obtained
by assuming the length scale of the inhomogeneity to be large and using a cleverly
arranged double expansion in both the initial field and spatial derivatives.

The following task was to extract the boundary dynamics from the solution. This
was done by using the Fefferman-Graham expansion, which allows one to read out the
boundary stress tensor in a straightforward way, see [52]. Extracting the fluid dynamics
of QGP from the stress tensor requires one to boost the solution into the local rest frame.
Comparing the results to the established models used in the heavy ion community is not
trivial, as one has to fix the corresponding conditions for these models. In the case of
viscous hydrodynamics, we can use the local velocity as our input. In the free streaming
case one injects a stream of non-interacting null dust with the same energy distribution.

The results given by these scenarios can then be compared to the ones predicted by
AdS/CFT. In the case of pressure anisotropy, we find good agreement with the estab-
lished models. The two phenomenological models do not agree at early times, but the
holographic picture seems to follow the relevant ones in different phases of the thermal-
ization. In the early stages hydrodynamics is not relevant, as the plasma has not had
enough time to hydrodynamize. In the later stages all three models behave similarly.
This result can be used to justify the early use of minimal viscous hydrodynamics in
modelling strongly coupled plasmas. The calculations generalize the previous investiga-
tions by adding inhomogeneity to the initial conditions and prove the applicability of
the Gauge/Gravity duality in this kind of more realistic situation.

4.1 Holographic model

The gravity side consists of a collapsing shell of massless scalars in a (3+1)-dimensional
AdS-space. From the action

1 1

with
d(d—1)

2

A=— =3 (104)
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we derive the equations of motion

1
E,U'V = G/“’ — §8M¢ay¢ + guy <_3 + i(a¢)2> 0 (105)

1
06 = —=0, (V39" 96) = 0.

The scalar shell is created by setting the initial value of the field to be nonzero at
the boundary, which is located at r — oo. The equations of motion are solved and
corresponding energy-momentum tensor at the boundary calculated. By boosting this
to the local rest frame we obtain a fluid-like form, from which the hydrodynamics of
the Quark Gluon Plasma can be extracted by using the conventional interpretation. We
have chosen the dimension (3+1) to have the necessary amount of transverse directions
with an odd number of spatial dimensions in the bulk. In odd dimensions the isotropic
solution does not contain transcendental functions, as is the case in even dimensions.

4.2 Anisotropic case

The first task is to solve the dynamics from the equations of motion in the anisotropic
case. This was first tried by straightforward substitution. The z-dependent metric
Ansatz

ds* = —h(v,r, z)dv? + 2dv(dr + k(v,r, z)dz) +
+f(v, 7, x) 2P0 dz? 4 f (o, 7, x)2e BT gy (106)
¢ = ¢(U7T7x)

was substituted into the equations of motion and the resulting equations fed to the
suitable solving routines. In spite of trying several combinations with the assumption
of small source with an even smaller anisotropy these equations turned out to be too
hard to solve analytically this way. The assumption of slow spatial dependence and
expansion in derivatives with respect to x was first introduced in this phase, but alone
it did not suffice. Separating the spatial dependence and trying a wide range of ideas was,
however, quite useful in the later group discussions about possible solving techniques.
At the same time other members of the group tried to solve the original equations
by using propagators. Despite the initial successes in reproducing previous results, the
inhomogeneous case proved out to be too complicated. The solution was finally obtained
by using a double gradient expansion in the two parameters. The solution progresses
separately in orders of € and pu, which express the order of expansion in the scalar field
and spatial derivative, respectively. The unknown functions in (106) are thus expressed
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as double expansions

oo
h(’U,T,.’I)) = Z enuihn,i(vyrv M.’E) 0o
”’::O k(v,r,x) = Z 6”Mik’n,i(va7"> px)
flo,r,x) = Z €1’ fri(v,r, px) n,zo (107)
n,i=0 — n,iy
- | B(’U,’I“, .’L‘) = Z € u bn,z(varvul‘)
o(v,r ) = Z €1 dpi(v, 7, pr) - e
n,i=0

and the equations of motion are solved order by order with the boundary condition set
by the scalar source

o(v, pxr) =0 v<0
o(v, px) = epo(v, px) 0<wv<dt (108)
p(v, pxr) =0 v > 0t.

We also require the metric to be purely AdS before the injection and remain asymptot-
ically AdS after the injection.

It turns out to be easier to work with conveniently chosen linear combinations of
the equations instead of the original ones coming straight from the Lagrangian. These
equations are then solved up to second order in € and fourth order in pu. The final result
is is of the form

H H H
h(v,r,x) =1’ (1 2+ =+ T(f)) +0(&,1°)

F F F
flo,r,z) =r+ @ 4 (22) + (5) + 0 (€%, u°)
P (109)
k(v,r,x) = K + % +0 (63,,[L5)
Bo | B , B 3 5
B(U,T‘,:L’): 2 + 3 + A —I—O(e,,u)
L L L
1) 2 (3) 3 .5
pu— 1
(v, r,x) Vo) + " + 2 + -3 —|—O(6 ) ) , (110)

where the coefficients have rather complicated but elementary expressions in terms of
the boundary source, as shown in paper [III]. By setting spatial derivatives to zero one
recovers the isotropic solution of [43].

It is worth noting that the preceding calculation is based on a two-parameter expansion
around pure AdS-space. This naive perturbation theory, as it is called by Bhattcharyya
and Minwalla, is valid only at short timescales. Investigating the late-time dynamics
reliably would require resummed perturbation theory in which the expansion is carried
out in AdS-Vaidya background. The regime of validity of naive perturbation theory was
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investigated more thoroughly in [43] where it was found that the perturbative approach
around AdS is reliable if ¢t < 1/T.
In the isotropic case the metric after the injection has the AdS-Vaidya form

M
ds? = — <r2 - 7@) dv? + 2dvdr + r*(dz? + dy?) . (111)

By analogy, we define the mass function M (v) to be the coefficient of the 1/r-term in
h(v,r,z). Similarly to the isotropic case, we find the relation T" MY3 x %.

In the p-expansion the anisotropy in z is assumed to be gentle enough to allow an
expansion in the spatial derivatives. According to the considerations above, the natural
scale of the problem is given by the inverse temperature. We can thus assume the
second expansion to be valid provided that the length scale of spatial variations A is
much larger than 1/7, which also guarantees the leading behaviour of the mass to be
of the assumed form. The results of the perturbative calculation are thus applicable as
long as t < 1/T < X where A is governed by the first expansion parameter and injection
time.

4.3 Fefferman-Graham expansion and boundary dynamics

One of the main advantages of AdS-space, in addition to flat boundary, is that there
exists a very straightforward method for extracting the asymptotic form of the stress
tensor from the bulk metric. The method presented in [52] is nowadays widely used
in holographic calculations. The procedure begins with the Gibbons-Hawking bound-
ary term containing exterior curvature of the boundary and using the renormalization
scheme to get rid of the divergences. This procedure connects the asymptotic form of
the metric to the boundary stress tensor. Simply by transforming the metric into the
form

ds® = dp’j + 029up(t, p, x)dzdz? (112)
where
a5t 0, X) = 9(0)ap(t, X)) + g<2)ap2(t’ Y g(3>ap§(t’X) I (113)
we can obtain the stress energy tensor at the boundary p — oo as
(Tap) = ’ 9(3)as - (114)
167G N

In practice, the coefficients were found by finding a asymptotic coordinate transform
that brings the metric into the desired form up to suitably high order in the inverse
radius.

The next step is thus to find the form of the obtained metric in Fefferman-Graham
coordinates and extract the boundary dynamics. These calculations were carried out
for a arbitrary boundary source for maximal generality and easier interpretation of the
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results. As previously mentioned, we did not search for an exact coordinate transform,
as we do not need the higher terms in the series. By using the asymptotic transform

1 U3 —4
v R t——4+—=+0(0")
o 0

H(Q) - 3U3 r3 4
ro Q<1—302—|—93—|—O(Q ) (115)
K 4
r ~ x+ 30 +0(0™ %)
with 1
and
1 : 1. 2,
rg = —— 7‘[(3) + 4]:(2) — 4]:(1) — *7‘[(2) + 7]6(0) (117)
6 3 3
we obtain the desired term g(3) o as
1
93)08 = 3 X
—2M ) —Hiz) — 2K () + 3K 0
—Hiz) = 2K(0) + 3Ky —H) — 3B +3B2) + Ko 0 , (118)
0 0 —H sy + 3B(s) — 3B2) — /Czo)

where spatial derivatives are denoted by a comma and temporal derivatives by a dot.
The stress tensor at the boundary thus has the components

== 167r2GNH(3)

Tow = = 167T1GN (P — 3B + 3B — K o)
Tiw = —WIGN (o) + 2K —3K0))

Ty = ~Tonge (Ps) + 383 — 3By + Kl ) -

In order to get numerical results, one has to express the relevant elements of this tensor
in terms of derivatives and integrals of the boundary source. This stage was algebraically
quite demanding, so calculations were cross-checked carefully by two people.
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For the time-time component we obtain the explicit result

Te = —1673GN{;/_JT [%mmm—(¢'<m>)2

—4p(r,2)@" (7, 2) + 2¢(7, 2)" (7, 2) + 28/ (7, 2)¢' (7, @)

+2/ ds [@ s,2)¢ (s, 1) — / dw ¢/(w7iﬁ)¢(w7iﬁ)H

5 [ ar [0 + )

+§ / t drg(r, ) / " ds ¢"(s,2) (120)
;a/ di/ ds [¢(s,2)¢" (5, 2) — 20/ (5, 2)¢" (s, 7)
12 / o [ as / o {— (¢! (w,2))? — 4p(w, 2)¢" (w, 7)

+2¢(w, 2)¢" (w, 7) + 2¢' (w, 2)¢' (w, w)]

+3ad/ d / d / d / d / d ¥'(q,x) .
1523 T s w p q ¢(g,2)9'(q,
4.4 The dual theory and QGP results

In the actual modelling stage we assumed that the spatial and temporal parts are inde-
pendent i.e. that the boundary source can be written as

90(t7m) - u(m)gpo(t) ) (121)

and the temporal part has a finite support

eo(t) =0, t<0
(,Oo(t) = 6@0(15) s 0<t<dt (122)
<,00(t) =0, t > 0t

as assumed in the derivation of the gradient series. Using this Ansatz, we can write
the metric components in a more illuminating form. By using integration by parts and
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collecting terms the time-time component becomes

Te = i {U@P [ _dr o)

—00

t

—;[u'(x)2+4u(x)uﬂ($)]/ dr (¢o(7))?

> ¢ -
+;;$2u(:c)2/ dr $o(T)¢po(T)

_|_1872u / dT/ ds/ dw po(w)Po(w) (123)

—|—%u(x)u””(m) /oodT Po(r )/oods wo(s)

_é% [91/(95)1/'(:6) + 6U($)Um(x)} /_too dr po(1)?

2 2 @ @) [ ar [ s [ anrse

L /_; ar [ as [ o[ an [ ag sbo(w)‘sb'o(w)” .

The true advantage of separating the temporal and spatial dependence is that we can
express the components in the form

T = Lu@raw + 22 wwiew + 2L u@pe
tt—167rGN ulr 28x2um 28x2u$

- L (e + tulane) B0

2 ; (124)
— 55, (U@ (@) + bul@ (@) F(t) + Su(e)a" (2)G(1)

3% ., . 3 ot
o (B + (ol (@) H6) + 5 (e T0)}
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Using our assumption of a finite temporal support for the energy injection, we can write
the unknown functions as

with

and

/

ot
A= —/ dr ¢o(T)Po(T) = const

—00

at) = — / dr Go(r)o(r)

—0o0

C+ (t—6t)B + %(tQ —0tH)A

:/t dr /wa a(w)

D = dr $o(T)po(T) = const

[
/ dr Bo(r)e0()
[

“8

F(t) = —/ dr @0(7)2

— 00

6=~ [ arou) [ aseols).

—0o0 —0o0

t > ot

t <ot

t> ot

t <ot

(125)
t> 6t

t < ot

t > ot

t < ot

(126)

(127)

One can easily notice that the latter become constant for ¢t > d§¢. Following the conven-

tion set above, these constant values are denoted by F and G.

The other factors

— / toodr / ;ds / ;dw wo(w)@o(w)
-/ ;dT / ;ds / ;dw / ;dp / poodq 20(@) Bola)

(128)
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will have a simple polynomial form at late times.
When all the energy has been injected, the boundary field becomes zero and we have

2
7> = 167r1GN {u(x)2A - %%U(ﬂf <C +(t—dt)B+ %(tQ B 5t2)A>
+ 1 (300 + 202 ) D
+ é [_38$ (9¢/ (z)u" (z) + 6u(z)u” (z)) F + 3u(z)u"" (z)G (129)
+ 3;; (3w (2))* + du(z)u” (z)) <H +(t—8t) I + (¢ — 5t2)l2)>
+3(,i;u(:z:)2 <j+ (t— o6t K + (> — 5t2)§ + (- 5t3)§ +(t - &4)51” } ’

which has a polynomial time dependence due to nested integrals in time. The barred
constants are defined by integrals over the whole temporal support of the boundary
source. With a similar kind of procedure one can derive the corresponding expressions
for all components of the energy momentum tensor.

The EM-tensor obtained is easier to interpret if we move to the local rest frame of
the fluid. In this frame the energy-momentum tensor is diagonal and reads 7%° =
diag(e, pz, py). The relation can be derived by boosting the diagonal form with rapidity

. 1 27t
o = —iartanh I:W] (130)
in the z-direction, which corresponds to local velocity V' = — tanh & of the plasma. This
results in the relations
T = ¢ cosh? & + p, sinh? & Tt — € + P sinh 2& (131)
T** = esinh? & + p,, cosh? & T =p,.

We can solve the relations (131) for the hydrodynamic quantities and eliminate the
rapidity which results in

1
e — 3 [Ttt _ ey \/(Ttt _|_Ta:x)2 _ 4(th)2} (132)
1
P = 5 [T T (T T = AT (133)
py = TY. (134)

4.5 Viscous hydrodynamics and free streaming

The two most popular models for the dynamics of QGP are free streaming and hy-
drodynamics. Free streaming models the plasma as a noninteracting dust with the
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initial energy density given by the holographic model. The time development is simply
described by the free flow and the corresponding energy-momentum tensor. Viscous hy-
drodynamics gives us the pressure anisotropy as a function of local velocity and energy
density. This involves more input data but is ab initio a more natural way of obtaining
results.
The hydrodynamic energy momentum tensor consists of the ideal fluid tensor and
additional viscous corrections up to desired order. It can thus be expressed as
T30 s = (€ + Dideat) u"u” + pigeat 1% + 117 . (135)

viscous

We define the projection operator
ARV = ph¥ 4 yby? (136)

and the fluid shear tensor
o = 28k . (137)

Here we used the transverse and traceless projection

(A7) = ZAHCAVYB(Ays + Aga) — %A””AQBAM = A, (138)

| =

With these definitions we can write the first and second order viscous corrections [53]
for a conformal fluid as

H‘()‘l’é)) = o™’ — (GNP (139)
and 1
Haﬂ = nm <D0-0¢5> + 50-0459 +on, (140)

where the directional derivative is
D =u"0y = —ut0; + vz 0, and 60 = 9d,u’. (141)

The three dots indicate the curvature and vorticity terms we have omitted. The two
parameters n and ¢ are the shear and bulk viscosities, respectively. The new parameter
1 appearing in the second order is the relaxation timescale of the fluid.

Especially for the directional derivative of the shear tensor we find

Do®? = 2(DO)M*P + 20DM*P (142)
where (o B)
peh =9 0“ . (143)

The first term in (142) is obviously transverse and traceless and the second term projects
to zero.
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Using the first order expressions together with relations (133) and (134) results in the
rest-frame pressure anisotropy given by

Pz hydro — Py hydro = _2770 (144)

Moving to second order one finds

1
afB — 1raB aB 2 a
e = 1120 + 1%y = 2n (—9+m (D0+29 >>M g (145)
and ,
Pz, hydro — Py,hydro = 2n <_9 + T <D9 + 292>> . (146)

The implementation of this formula is less complicated if one chooses an explicit param-
eterization for the fluid velocity. Using hyperbolic functions gives the transverse and
traceless matrix a rather simple form.

The shear and bulk viscosities of the conformal fluid can be found from [54] and read

U () s =0 (147)
T ne s =

The equilibrium temperature can be solved from the relation

2 4 \°
- SaT 148
© 7 167Gy <37r > ’ (148)

which determines the shear viscosity in terms of the known energy density. For numerical
results one also needs the value of the relaxation time 7y;. From [54] we find the value

3 1 1 0.180
I [1 + —Harmonic <—3>] ~N—. (149)

~ AnT 3 T

for a 241 dimensional conformal fluid.

We also want to compare our results with the free-streaming model, in which the
energy density is modeled with a noninteracting light-like dust. In this scenario, the
energy momentum tensor is

v &k BV
We assume the initial distribution to factorize into a product of spatial and momentum

parts. The momentum part is further assumed to depend only on the total momentum
i.e. energy. This results in the expression

f(x,k) =n(x)F(k) =n(x)F (k). (151)
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As we assume the dust to be noninteracting, the time development is simply
f(x,k,t) =n(x —vt)F(k) = n(z —vt)F(k). (152)
Using the parametrization
ky = kcos¢, ky=ksing, wv,=cos¢, wv,=sing. (153)

the energy momentum tensor has the components

21
Too(ac,t):/d?/-c(kl;oo>2 (x,k,t):/o d¢n(w—tcos¢)/k2dkF(k)

Tpo(z, 1) :/ko(l‘Zo)2f(x,k,t) :/27r do cos2¢n(x—tcos¢)/k2dkF(k) (154)
0

Tyy(z,t) = /d%“;yff(x, k,t) = /27r d¢ sin® ¢ n(z — t cos ¢)/k2dk:F(k)
0

k

2w
Tyy(,t) :/d2k Z];yf(x,k,t):/o do cos¢sin¢n(x—tcosq§)/kzdkF(k).

The momentum integral

€0 = 27r/ k2dkF(k) (155)
0

is not phenomenologically relevant and plays a role of an overall normalization. This
means that we do not have to specify the momentum function F(k).

For actual comparisons with hydrodynamics and free streaming, we need to drop
some of the generality and fix the source. One natural choice was to assume a Gaussian
dependence on both time and the anisotropic spatial coordinate and write

(t—v)?

o, z) = ¢ (1 + e—“2$2) e (156)

This ansatz was substituted to the previously found expression for the energy-momentum
and the corresponding energy density and pressures extracted. Fixing numerical val-
ues allows us to plot our results together with the predictions of free streaming and
hydrodynamics.

Using the explicit formulas for the energy-momentum and the rest-frame transforma-
tions (132)-(134) we get the plots given in figure 12. The dispersion of energy density is
quite small during the timescales presented here, even though there is a transverse flow.
The phenomenon is more visible in the velocity plot, which lacks a backround value. It
is good to note that the dynamics is not driven by the gaussian time dependence of the
source (156), which happens at very small timescales compared to the ones used in the
plots.
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Figure 12: The energy density in the rest frame € = p, + p,, pressures p, and p, with
parameter values v = 0.5, 02 = 0.1, u = 0.01 and e = 0.005.

The local energy density and velocity data obtained is used as an input in viscous
hydrodynamics, whereas the initial energy density and velocity determine the form of
the energy distribution in the free streaming model.

Our main motivation to generalize the scalar collapse to the case with anisotropic
initial conditions was to examine pressure anisotropies in the boundary theory. The
predictions and time development of the anisotropy in different models is compared
in figure 13. The difference in longitudinal and transverse pressure is not very large
compared to the overall values, as we can see from the vertical scale.

The plot shows good agreement with the established models. In early times, the two
nonholographic predictions disagree. It is good to note that holography follows the
free streaming result, which is probably most justified in the initial stages. The rapid
agreement of the two models is in fact more puzzling than the early disagreement, but
holography seems to perform reasonably in both regimes.
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Figure 13: The holographic prediction for pressure anisotropy (solid lines) compared
with those resulting from second order hydrodynamics (dotted) and free streaming
(dashed).

Various other configurations can be examined in a similar way. The combination of
two Gaussian peaks

=)?

o(t,z) =€ (1 + e (+-3)" + 6_“2(x+g)2) e 2 (157)

with two different separation distances d gives quite natural-looking plots of energy
density and pressure anisotropy. Figure 14 shows the form of energy density and pressure
anisotropy in two cases with overlapping and more separated Gaussian sources.

As before, holography initially follows the more natural free-steaming solution and
agrees with both classical models at later times.
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Figure 14: The energy density € in the rest frame and the spatial profile of the pressure
anisotropy obtained in the AdS/CFT computation (solid lines) compared with those
from second order hydrodynamics (dotted) and free streaming (dashed). The source
profile has the form (157), with v = 0.5, 0 = 0.1, g = 0.01 and € = 0.005. The left
column corresponds to d = 2/, the right one to d = 6/p.

5 Conclusions and outlook

The QGP-results obtained from holography look promising even though we have been
forced to restrict ourselves to a rather small interval in space and time to keep within
the domain of validity of naive perturbation theory. One could also proceed to more
realistic and adjustable initial parameters by using a large number of Gaussians to build
up the desired injection of energy. Increasing the validity domain is a very interesting
direction but seems to require resummed perturbation theory. Despite these limitations,
our work is a major generalization of the preceding isotropic models and enables more
realistic holographic modeling of strongly coupled plasmas.

Our investigation into hyperscaling violating Lifshitz-Vaidya has somewhat less direct
physical applications. Nevertheless, it acts as a first study of this sort and provides
a numerical verification of the linearizing time dependence of entanglement entropy.
Moreover, it verifies the predictions made on the speed of thermalization in these models.
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