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Introduction

In colliding beam storage rings the beam collision regions
are generally so short that the beam-beam interaction can be con-
sidered as a series of evenly spaced non-linear kicks superimposed
on otherwise stable linear oscillations. Most of the numerical
studies on computers were carried out in just this manner. But for
some reason this model has not been extensively employed in analytical
studies. This is perhaps because all analytical work has so far been
done by mathematicians pursuing general transcendental features of
non-linear mechanics for whom this specific model of the specific
system of colliding beams is too parochial and too repugnantly
physical. Be that as it may, this model is of direct interest to
accelerator physicists and is amenable to (1) further simplification,
(2) physical approximation, and (3) solution by analogy to known
phenomena.

We define the simplified system as follows:

(A) head-on collisions of 2 beam bunches at regular intervals,
say, once per revolution.

(B) the weak/strong case in which the strong beam is not affected
by collisions with the weak beam. Thus, we have in effect, a single
particle colliding with a beam bunchf

(C) The strong beam bunch is short compared to the betatron

*Transition to the strong/strong case is similar to the transition from
single particle dynamics in an accelerator to the dynamics of a high
intensity beam.
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wave length of the colliding particle so that it can be approxi-

mated by a §-function in the longitudinal coordinate s.

(D) Close encounters between particles are negligible, hence
the. beam-beam force is given by a potential. Moreover, since the
strong beam is not affected by the colliding particle, the potential
is static. The potential depends on the transverse distribution of

the beam bunch and can also be approximated by a é-function in s.

Nature of the Beam-Beam Forces

(A) Extremely non-linear
To get a rough idea of the degree of non-linearity
consider a simple round beam with current I. "Outside" the beam at

radial location r the magnetic field is

21

Bz—r—-. (l)

The conventional non-linear field coefficients are
-1 1 a8 n_ 21 _ ,..n B 1
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where B, is the external dipole bending field. For colliding beams
the electric and the magnetic forces add, and the non-linear force

coefficients are, therefore, approximately an. Taking normal values:

I ~ amperes
r ~ millimeters

B~ teslas

one gets

b | ~107% 7P, (3)

This shows that when expressed in units of [r]—n the numerical values

of kxlare independent of n, but in bigger units, say cm ™, the numerical
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to the non-linearities arising from errors in the external guide
field. Even for the rather poor superconducting dipoles the error
non-linear field coefficients fall off rather sharply with increasing
n when expressed in units of cm ™.
(B) Non-linear forces are localized to "surface" of beam.
The external error non-linear fields are largest at
the coil aperture boundary and decrease rapidly toward the center
where the beam resides. The non-linear beam-beam forces behave, how-
ever, just in the opposite way. They are largest at the "surface"
of the beam and decrease sharply toward the aperture boundary.
Hence the beam-beam forces affect the beams much more strongly.
(C) The force potential is periodic in s but very rich in
harmonics.
Indeed, if the potential is truly a §-function of s
it will have a "white" harmonic spectrum, i.e. equal harmonic

content all the way up to infinite order.

Measure of Beam-Bezam Effects

Although many parameters are required to specify the density
distribution of the beam bunch and the dynamics of the particle,
for_simple beam bunch distributions the effects of the beam-beam
forces on the colliding particle can be specified by only a few
combinations of these parameters. Let us take a bi-Gaussian beam

distribution.

§(s) exp |-Z-Xs (4)

where s is periodic with the periodicity of the ring circumference.

The force potential is, thenl
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where in the last expressions the parametric dependence on oy/cX is
explictly indicated. The Hamiltonian for the motion of the particle

is

o=

2 2
H = Z(E2+K, ) 45 (PR y ) 4V (x,7) 8 () - (6)

The usual canonical transformation to action-angle variables, namely

X = VZBXJX cos¢>x
. (similar for y)
23y Bx
Py = al B |51 7 °°S¢x)
X
and 8 = % with 27R = circumference, gives the transformed Hamiltonian
r N {B J cosz¢ B.J cosz¢ o
= X X X Yy Y Y
K=v J+v J + F , L1 8(9). (7)
XX Y Y \ ox(ox+oy) oy(ox+oy) O

Defining the scaled action variables

J = ——Efiﬁ——— R _,Elil___
X ox(ox+0y) Y oy(ox+oy)
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we can write the canonical equations for K as

/dd) r NB8
X 9K o "X oF oF
X _ 99k -, - §(8) = v_ -27f_ = 6(6)
de BJX X YGX(GX+OY) BJX X X BJx B
a7 B ~ r_NB - .
X b 4 - 3K o X oF aF
= - = §(0) = 2mE_ ==— §(8). (8)

\_ do G (G, 70,) 36 Yo, (0, ¥5.) 39, x 3¢

(similar for y).

Thus, we see that the motion is uniquely characterized by the five

parameters
v e - L __Tolx
’ 14
b4 X 27 Yox(cx+0y)
o
ana L . (9)
X
\Y 2 = zi' r(ONBy r
' o +o
Yy Y Y y Oy Y)

Furthermore, we can make the following observations

{(a) To the lowest order in x and y or Jx and Jy we have

_ 2 2
F = 2Jx cos ¢x+2JY cos ¢y (10)

and hence the first equation of Egs. (8) becomes

ds,, 2
=5 = vx-zngx(z cos ¢X)6(e). (11)

Since the average value of 2 c052¢X is unity we see that to this order
gx is just the tune shift. |

(b) The betatron wave numbers (tunes) Vo and Vy enter only to
relate the phases of the kicks given by V(x,v)6(s) in the Hamiltonian
(6). If the kicks are random (We shall discuss later what random

means here.) Vo and v become irrelevant in so far as the overall
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characteristics of the motion is concerned.

(c) If there are more than one collision points around the ring
and the perturbing kicks at these collision points are random the
tune aduances betweeh collisions are again irrelevant and the beam-
beam effects can be measured by <€x> and <£y> averaged over all the.
collision points.

(d) The maximum tolerable beam-beam effects are generally reached
when one of the two tune-shifts Ex and Ey reaches its limiting value.
Hence if one is only interested in the beam-beam limits the parameter
oy/ox is irrelevant and only one of the two values &x and gy is
crucial.

Semi-Quantitative Features of the Beam—Beam Effect

We consider only the equation for one degree-of-freedom X,

2
ax _ _adv(x)
—=+K(s)x = ~ax

§(s) (12)
ds2
where the independent variable s is periodic with a period equal
to the ring circumference. The following observations are important.
(A) Unperturbed (%% = 0) oscillation is linear and long-time
stable. Hence accelerators are built to be "linear". Non-linearity
can arise from imperfections in design and construction, and from
beam~beam interactions. As was seen above, the latter is much larger

and is unavoidable in principle. The beam-beam forces impart "kicks"”

on the colliding particle egual to

. dV(xi)
Axi = -——a—r (13)
i
on the ith revolution.
(B) If the kicks Ax{ are random the oscillation amplitude will

grow. The increment of the Courant=Synder invariant2 W = Yx2+2axx16x’2

caused by all the Ax{ is
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r R R
- » » P4 . 2
AW = }E [2(axi+8xi)Axi+B(Axi) J = ng(ax")Z . (14)

Where the terms linear in Ax{ sum to zero for random Ax{ and
where n~is the total number of kicks received. The corresponding

increment in amplitude A is given by

Aa2) = gaW = nB2(Ax”) i (15)

KN

™mea
PSR

The values assumed for Eg. (3) gives a magnetic field on the
"surface" of the beam of ~1 gauss. With a beam bunch length of,
say, 10—l m and a particle rigidity ofvl()_6 gauss-meter

(~30 GeV proton) we. get

-1
(1 gauss) (10 - 10-7- (16)

106 gauss-m

m)

L

Taking a typical value of B 10 m = 104 rm we get

-6 2

A(a%) = 10" %n mm? . (17)

i

Thus it takes only 5xlO6 kicks to increase A from 2 mm to 3 mm
which is very rapid indeed. This is why a beam transport line with a
length equivalent to more than 107 kicks of this magnitude (not very
long compared to the distance travelled by a particle in a storage
ring) can not possibly work.

(c) If the kicks are periodic all evils are concentrated into
resonances. On reéonance,Ax{ add coherently and A grows propor-
tional to n. Off resonance,Axi cancell systematically to give zero
amplitude growth.

(D) For perturbations arising from external field errors only
low order non-linearities are sizeable. Therefore only low order

resonances are excited in appreciable strength. As long as these
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resonances are avoided the amplitude growth should be negligible.
The drop-off of high order non-linearity is a general characteristic
of all fields generated by charges and currents outside the apertureﬁ
and is g consequence of the vacuum Maxwell equations. This dis-
cussion shows also that the resonance expansion is useful only
when the resonances gxcited are limited to low orders.

(E) When the perturbations arise from the field generated by a
beam bunch through which the colliding particle travels, the non-
linearity and the harmonics of the forces extend to extremely high
orders. The tune-space is covered dense (density of rational numbers)
by resonances and the unperturbed tune Vo sits in a continuum of high
order resonances even when all strong low order resonances are avoided.
This means that the part of Ax{ which contributes to the continuum of
resonances in the neighborhood (within the "line width") of vV, appears
to be random, the corresponding part of the motion is ergodic, and the
oscillation amplitude growsf This is similar to the statement that a
signal which is random in the time domain has a continuous "white”
spectrum in the freguency domain. The "natural line width" is rather
small, but since Vo is always wobbled by some random noises in the
extarnal field, with this vo—wobble included the "total line width"

could be substantial.

*It may be objected that this is contrary to the KAM theorem which
states that for 1 degree-of-freedom when the non-linear perturbation

is sufficiently small well behaved KAM surfaces exist and prevent the
growth of the oscillation amplitude. There is indication, however,

that KAM theorem holds only for extremely small perturbations, much
smaller than any physically realistic values. 1In any case we can always
consider the motion in 1 degree-of-freedom as the projection of a motion
in 2 degrees-of-freedom for which Arnol'd diffusion does occur and

cause unrestricted growth in oscillation amplitude.
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(F) Following the reasonings given above and using the
bi-Gaussian potential, Eq. (5), we can derive a semi-quantitative

formula for the amplitude growth. Putting O = oy = ¢ (round beam) _

)

and y = 0 in Eq. (5) we get

- 2
l—exp[—:ﬁi———J

r N 2
Vix) = o at 2§t+0 )
Y t+o
o
o n+l
g r )
Y nZ0 2%(n+1): 2(nFL) {42
and
n
o +
Ax” = - @V _ oM _tjﬁfif; Ei % (19)
dax 2 n 2 *
YO n=0 2 (n+l)! ‘o

If only resonances of order m (a large integer) and above can fall

inside the Vo line-width, the random part of Ax” contains only ternms
with n>m. Thus, in the expression for (Ax’)rms the summation should only
be from m to . The amplitude growth is, then, given by Eq. (14) to be

a2
ﬂ} w (20)

Q:lQ-
=

ot

_ 2220 & (1t
= £8(8x )rms = 8w £§ AE; (n+1) ! €/

where we have used the relations

emittance of beam

i
™
i

and
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f = %% = rate of collision between particle and beam bunch.
Generally, the first term in the summation is the largest and we

have approximately ‘ _

-

ol

W

2

Two comments are useful.

2m 5
W ) 27 (21)
) W, K 2 2 mi

(1) The line-width cannot be derived from this crude
model. Thus, m must be considered an adjustable parameter. Further-
more, depending on how much reliance one puts on the measured beam
emittance € and on the vélidity of the approximations, it may be well
to consider k also as an adjustable parameter.

(2) Larger line-width corresponds to lower m, hence larger
k and larger dw/dt. Thus, the effect of external noise in increasing
dw/<dt is magnified by the non-linear beam-beam forces through a
widening of the line-width.

Comparison of Different Systems

(A) According o the beam and collision geometry
(1) Continuous beams
(a) Crossing at an angle - Kicks are one dimensional
(only in direction perpendicular to the crossing plane), hence the

motion should be relatively stable.

{b) Colliding head-on - Kicks are two dimensional,
hence the motion is‘expected to be more unstable.

(2) Long bunched beams -~ The force potential 1s identical
to that of the corresponding case of continuous beams except at the
ends of the beam bunches which constitute only a negligible part of
the long bunches. The synchrotron motion of particles in the beam

bunch will, however, enhance the instability. This can be understood
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simply by noting that the number of resonances is increased by the
synchro-betatron side—-bands and the continuum of resonances is
therefore much denser than without the synchro-betatron resonances.

T - (3) short bunched beams - If the length of the beam buncheé
is comparable to their widths the kicks from the beam-beam forces
are three dimensional whether the beams are crossing at an angle or
colliding head-on. This plus the synchrotron oscillation will make
this the most unstable geometry.
(B) According to the particle type
(1) Electrons (positrons)

At the present storage ring energies the synchrotron
radiation from these particles is sizeable. The synchrotron radiation
produces two major effects on the particle oscillations: (i) damping
and (ii) quantum fluctuation which acts as random kicks to blow up

the oscillation. In terms of the Courant-Snyder invariant W defined

in Eq. (14) we can write

aw _ W (22)

where 0(>0) is the blowup due to quantum fluctuation and T is the

damping time due to synchrotron radiation. With some modification
ané reinterpretation the beam-beam effect can be obtained from

Eg. (19). The electron beams are not round but flat ribbons with
0x>>oy, hence the vertical (y) effect is larger and gives the
limitations. We first rewrite Eq. (19) as

w + 2
AY" = 15 igN+o r (0,0 L §{l’n : >’ :
YO 0470 Y n=o 2™(n+1)! o,
© 2 n+s
. 2nE,, .5 1l [y 2. (23)
By ¥ n=0 (n+l) 20 2
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Eq. (20) then becomes

1
w |M2
e/

aw c 00 (_l)n+l

_ N2 2_,.2 —
- = fB(Ay )rms = 8w fg ——B—' ngxn W (24)

dt

where the subscript y is omitted. Again, taking only the largest

term n = m in the summation we get

2
o
aw _ kf52{314

ol

t B

2m+1l 2
W , 27
e ﬂ) : k=2 [‘(ﬁﬁT‘] . (23)

In addition to the beam-beam effect we can also add an external noise

term P. Altogether Eq. (22) is modified to

2
g
= p+o-¥+xse? =

W

e/m

o7

il i (26)

}2m+l

o7
o+

The maximum tune shift Emax that can be obtained-is given by the

condition dW _ o at a value of W of the order of and proportional

dt
to ¢/m, since the two beams are approximately equal in height. This

gives

kee2 | |ox - 27
max B / _Q"P . (27)

This leads immediately to the energy (E) dependence of gmax

because we have

2

) W

W« E/TT « E, hence E-/—_ﬁ- « EQ;
1 3 W 5
= E”, hence = < EY,

Q « ES, coupled over from horizontal;

g, = E7, because O, is likely aperture limited, and
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The energy dependence of gma can, thus, be

X
1

2

£ ., = (aE>-b) . (28)

3

In éctugiity the measured data from SPEAR™ can be fitted quite

well with b=0, i.e. no external noise. Fig. 1 shows the fit with
-5

- 2 .
gmax = 0.01 E (E in GeV). (29)

The energy dependence of the maximum luminosity Lmax is related to
4

that of giax by

L «© E2

g2« E
max max

E . (30)

Figure 2 shows the fit to SPEAR data with

L. =0.03 E’

nax (E in GeV). | (31)

(2) Protons (antiprotons)
For present storage rings at energies less than tens
of TeV the synchrotron radiation for these particles is negligible
and the amplitude (or W) growth equation is given by Eq. (21) for

round beams to be

— = P+kfE /7

2m
aw _2‘ W ) . (32)

Several conclusions can be drawn from this equation.

(a) With all terms positive on the right-hand-side
there cannot be any threshold behavior as in the case of electrons.
The beam growth rate will simply increase with increasing ¢£.

(b) If the beam growth rate is measured by the beam

loss on a collimator aperture, the collimator has to be fitted
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rather tightly around the beams. As was sﬁated at the beginning,
the non-linear beam-beam forces are localized to the "surface" of
the beam and fall off rapidly going away from the beam. —
d - (c) Unlike electron beams, proton (antiproton)
beams generally do not have Gaussian transverse density distributions.
The distributioﬁ tends to be more squafish and more truncated.
Nevertheless, the qualitative or perhaps even the semi-quantitative
features of the development given above should still be valid.

(d) Eg. (32) indicates a beam growth rate propor-
tional to 52. The same quadratic dependence in Eq. (27) led to the

5 6 on the CERN-ISR

fit shown in Eqg. (29). Experiments by Keil™ and Zotter
seem, however, to indicate an exponential dependence. This discrepancy

must be resolved.
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BEAM-BEAM TUNE SHIFT IN SPEAR
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Fig. 1. Maximum vertical tune-shift versus energy in SPEAR
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Fig. 2. Maximum luminosity versus energy in SPEAR.
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