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Introduction 

In colliding beam storage rings the beam collision regions 

are generally so short that the beam-beam interaction can be con- 

sidered as a series of evenly spaced non-linear kicks superimposed 

on otherwise stable linear oscillations. Most of the numerical 

studies on computers were carried out in just this manner. But for 

some reason this model has not been extensively employed in analytical 

studies. This is perhaps because all analytical work has so far been 

done by mathematicians pursuing general transcendental features of 

._ non-linear mechanics for whom this specific model'of the specific 

system of collid- ing beams is too parochial and too repugnantly 

physical. Be that as it may, this model is of direct interest to 

accelerator physicists and is amenable to (1) further simplification, 

(2) physical approximation, and (3) solution by analogy to known 

phenomena. 

We define the simplified system as follows: 

(A) head-on ccl iisions of 2 beam bunches at regular intervals, 

say, once per revolution. 

(B) the weak/strong case in which the strong beam is not affected 

by collisions with the weak beam. Thus, we have in effect, a single 

particle colliding with a beam bunch? 

(C) The strong beam bunch is short compared to the betatron 

*Transition to the strong/strong case is similar to the transition from 
single particle dynamics in an accelerator to the dynamics of a high 

,intensity beam. 
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wave length of the colliding particle so that it can be approxi- 

mated by a b-function in the longitudinal coordinate S, 

(D) Close encounters between particles are negligible, hence -_ 

- the.beam-beam force is given by a potential. Moreover, since the 

strong beam is not affected by the colliding particle, the potential 

is static. The potential depends on the transverse distribution of 

the beam bunch and can also be approximated by a &-function in s. 

Nature of the Beam-Beam Forces 

(A) Extremely non-linear 

To get a rough idea of the degree of non-linearity 

consider a simple round beam with current.1. "Outside" the beam at 

radial location r the magnetic field is 

The conventional non-linear field coefficients are 

b E 1 1 dnB .- - = 
n 5-B o dr" 

(-1)" 2;+l = 
BOr or 

(1) 

(2) 

where B is 0 the external dipole bending field. For colliding beams 

the electric and the magnetic forces add,and the non-linear force 

coefficients are, therefore, approximately 2b n' Taking normal values: 

I w amperes 

r w millimeters, 

BO - teslas 

one gets 

(3) 

This shows that when expressed in units of [r]-" the numerical values 

of bnareindependent of n, but in bigger units, say cm-", the numerical 
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(D) Close encounters between particles are negligible, hence

thetbeamrbeam force is given by a potential. Moreover, Since the

strong beam is not affected by the colliding particle, the potential

is static. The potential depends on the transverse distribution of

the beam bunch and can also be approximated by a 6—function in 5.

Nature of the Beam—Beam Forces

(A) Extremely non-linear

To get a rough idea of the degree of non-linearity

consider a simple round beam with current I. "Outside" the beam at

radial location r the magnetic field is

_ZIB - j? - (1)

The conventional non—linear field coefficients are

: dB__nZI__n_B_lb ~ ‘“ “' “—3 ' < l) '——HII ‘ ‘ 1) B ‘5 (2’dr r r0 BO 0

where B0 is the external dipole bending field. For colliding beams

the electric and the magnetic forces add,and the non-linear force

coefficients are, therefore, approximately a. Taking normal values:

I -~ amperes

I ~ millimeters

B ~ teslas

one gets

lbnl ~1o’4 r‘“. (3)
nThis shows that when expressed in units of [r]- the numerical values

of tklare independent of n, but in bigger units, say cm—n, the numerical
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values of bn increase rapidly with n. This should be compared 

to the non-linearities arising from errors in the external guide 

field. Even for the rather poor superconducting dipoles the error 

7 non-liner field coefficients fall off rather sharply with increasing 
-n n when expressed in units of cm . 

(B) Non-linear forces are localized to "surface" of beam. 

The external error non-linear fields are largest at 

the coil aperture boundary and decrease. rapidly toward the center 

where the beam resides. The non-linear beam-beam forces behave, how- 

ever, just in the opposite way. They are largest at the "surface" 

of the beam and decrease sharply toward the aperture boundary. 

Hence the beam-beam forces affect the beams much more strongly. 

(C) The 

harmonics. 

. - 
it will have 

force potential is periodic in s but very rich in 

Indeed, if the potential is truly a B-function of s 

a llwhite" harmonic spectrum, i.e. equal harmonic 

content all the way up to infinite order. 

Measure of Beam-Beam Effects 

Although many parameters are required to specify the density 

distribution of the beam bunch and the dynamics of the particle, 

for simple beam bunch distributions the effects of the beam-beam 

forces on the colliding particle can be specified by only a few 

combinations of these parameters. Let us take a bi-Gaussian beam 

distribution. 

P 
x2 y2 = 2.rroNG 6(s) exp ---- 

XY i 1 2a; 2a2 
Y 

(4) 

where s is periodic with the periodicity of the ring circumference. 

The force potential is, then' 
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(C) The force potential is periodic in s but very rich in

harmonics.

Indeed, if the potential is truly a Grfunction of s

it will have a "white" harmonic spectrum, i.e. equal harmonic

content all the way up to infinite order.

Measure of Beam—Beam Effects

Although many parameters are required to specify the density

distribution of the beam bunch and the dynamics of the particle,

for simple beam bunch distributions the effects of the beam—beam

forces on the colliding particle can be specified by only a few

combinations of these parameters. Let us take a bi—Gaussian beam

distribution.

p = —————— 6(5) exp -3£“H-JL~ (4)
X Y

where s is periodic with the periodicity of the ring circumference.

The force potential is, then1
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1-exp - 
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X2 -y2 
2(oi+t) 2((r:+t) 3 
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rON X2 = Y2 5 
Y Gx(Gx+Gy) ’ Gy(Gx+Gy) ox 

(5) 

where in the last expressions the parametric dependence on G /G is Y x 

explictly indicated. The Hamiltonian for the. motion of the particle 

is 

H = ~(p~+Kxx~)+~~p~+Kyy~l+V~x,Y~~~s~ l (6) 

The usual canonical transformation to action-angle variables, namely 

2JX 
p,=- r d---i G sin6 -2 

‘X 
cOS$x 

X 1 

(similar for y) 

and 3 = i with 273 = circumference,gives the transformed Hamiltonian 

K= vxJx+v rON J +- F 
YY Y 

BxJx cos2Q x ByJy cos2@y 
Gx (Gx+Gy) ' Gy (Gx+Gy) 

Defining the scaled action variables 

(7) 

@xJx BYJY 
Gx bx+Gy) ’ G (G +G ) 

Y x Y 

p 2 2 102

r N 2(ox+t) 2(oy+t)
V(x,y) = —9— dt

Y

o \/(0:+t)(o§+t)

roN F X2 y2
Iy 0X(ox+oy) oy(ox+oy)

ix0x (5)

where in the last expressions the parametric dependence on oy/cX is

explictly indicated. The Hamiltonian for the-motion of the particle

is

H: ww
d (p:+Kxx2)+%(p:+Kyy2)+V(X,y)6(s). (6)

The usual canonical transformation to action-angle variables, namely

x u VZBXJX cos¢x

(similar for y)

'6 X
H I ““l

and a || | 2 p F
'- D‘ N :1 5:1 [I circumference,gives the transformed Hamiltonian

, 2 2
K = v J +v J +rON F {BXJX cos ¢X Bn cos ¢y

X X Y Y Y \ ox(ox+oy) ’ o (0 +0 )
O

O—Y 6(9). (7)
y x y x

Defining the scaled action variables

jgifi’i.“ 15%
x ox(ox+oy) y oy(ox+oy)



103 

we can write the canonical equations for K as 

f 
d4x aK roNBx ii!?- s(e) = vx-2”5, g a(e) 
w = aJ, = ‘x - yax(ax+oy) 3Jx X 

dJ +- B‘ 
Gx(G:+Gy) 

. aK roNB, - aF 
K = 

- s(e) 
yax (GxfGy) wx 

= 2”5, $- 6 (0) - (8) 
X 

(similar for y). 

Thus, we see that the motion is uniquely characterized by the five 

parameters 
roNBx 

V 
x ’ 

5,= 1 2n. yGx(Gx+Gy) ’ 

GY and 7 . 
X 

vY ' 
E,= 1 

r,NB Y 
%? yG y (Gx+Gy) 

I 

. - 
Furthermore, we can make the. following observations 

(a) To the lowest order in x and y or J, and Jy we have 

F = 23x cos2$,+2J Y 
cos2$ Y 

andhencethe first equation of Eqs. (8) becomes 

W 
--$ = vx -27iSx(2 cos20x) 6 (9) l 

(9) 

(10) 

(11) 

Since the average value of 2 cos20x is unity we see that to this order 

5, 
is just the tune shift. 

(b) The betatron wave numbers (tunes) ux and vy enter only to 

relate the phases of the kicks given by V(x,y)b(s) in the Hamiltonian 

(6). If the kicks are random (We shall discuss later what random 

means here.) ux and v y become irrelevant in so far as the overall 
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characteristics of the motion is concerned. 

(cl If there are more than one collision points around the ring 

and the perturbing kicks at these collision points are random the - 
- tune advances between collisions are again irrelevant and the beam- 

beam effects can be measured by <sx> and <cy> averaged over all the. 

collision points-. 

(d) The maximum tolerable beam-beam effects are generally reached 

when one of the two tune-shifts 5, and 5, reaches its limiting value. 

Hence if one is only interested in the beam-beam limits the parameter 

uy’ax is irrelevant and only one of the two values 5, and 5 is 
Y 

crucial. 

Semi-Quantitative Features of the Beam-Beam Effect 

We consider only the equation for one degree-of-freedom x, 

d2x -+K(s)x = - 
ds2 

dvak"' 6(s) (12) 

. - 
where the independent variable s is periodic with a period equal 

to the ring circumference. The following observations are important. 

(A) Unperturbed (g = 0) oscillation is linear and long-time 

stable. Hence accelerators are built to be "linear". Non-linearity 

can arise from im?erl 'ections in design and construction, and from 

beam-beam interactions. As was seen above, the latter is much larger 

and is unavoidable in principle. The beam-beam forces impart "kicks" 

on the colliding particle equal to 

Ax; = - 
dV (Xi) 

dx 
i 

(13) 

on the ith revolution. 

(B) If the kicks Axi ' are random the oscillation amplitude will 

grow. The increment of the Courant-Synder invariant2 w 3 yx2+2axx5$x *2 

caused by all the Ax; is 
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AW = 2(axi+Bxi)Ax{+B(Axi) 2 J 2 
= nS(Ax'lrms= 
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(14) 

Where the terms linear in Axf sum to zero for random Axf and -. 

where n"is the total number of kicks received. The corresponding 

increment in amplitude A is given by 

A (A2) = BAW = 2 nB2 (Ax') rms . (15) 

The values assumed for Eq. (3) gives a magnetic field on the 

"surface" of the beam of -1 gauss. With a beam bunch length of, 

say, 10-l m and a particle rigidity of 10 -6 gauss-meter 

(-30 GeV proton) we.get 

(Ax’)rms _ t1 gays) (lo -‘m) = lo-7. 
10 gauss-m 

(16) 

Taking a typical value of B = 10 m = lo4 mm we get 
. - 

MA21 = 10m6n mm* . (17) 

Thus it takes only 5~10~ kicks to increase A from 2 mm to 3 mm 

which is very rapid indeed. This is why a beam transport line with a 

length equivalent to more than lo7 kicks of this magnitude (not very 

long compared to the distance travelled by a particle in a storage 

ring) can not possibly work. 

(cl If the kicks are periodic all evils are concentrated into 

resonances. On resonance,Axi add coherently and A grows propor- 

tional to n. Off resonance,Axi cancell.systematically to give zero 

amplitude growth. 

(D) For perturbations arising from external field errors only 

low order non-linearities are sizeable. Therefore only low order 

resonances are excited in appreciable strength. As long as these 
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_ , , , 2 _ , 2AW - 2; [2(axi+8xi)flxi+B(Axi) I - nB(AX )rms' (14)

Where the terms linear in Ax; sum to zero for random Ax; and

where n‘is the total number of kicks received. The corresponding

increment in amplitude A is given by

'2 _ ‘ _ .2 )2 'A(A) —BAW—n8 (mums. (15)

The values assumed for Eq. (3) gives a magnetic field on the

"surface" of the beam of ~1 gauss. With a beam bunch length of,

say, 10—1 m and a particle rigidity ofvlo—6 gauss-meter

(~30 GeV proton) we.get

-1(Ax’)r ~ (1 auss)(10 m) = 10—7 (16)

ms 106 gauss—m

Taking a typical value of B = 10 m = 104 mm we get

-6 2A(A2) 10 n m . (17)ll

Thus it takes only 5x106 kicks to increase A from 2 mm to 3 mm

which is very rapid indeed. This is why a beam transport line with a

length equivalent to more than 10.7 kicks of this magnitude (not very

long compared to the distance travelled by a particle in a storage

ring) can not possibly work.

(C) If the kicks are periodic all evils are concentrated into

resonances. On resonance,AX£ add coherently and A grows propor—

tional to n. Off resonance,Ax£ cancell systematically to give zero

amplitude growth.

(D) For perturbations arising from external field errors only

low order non—linearities are sizeable. Therefore only low order

resonances are excited in appreciable strength. As long as these
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resonances are avoided the amplitude growth should be negligible. 

The drop-off of high order non-linearity is a general characteristic 

of all fields generated by charges and currents outside the aperture - 
7 and. is 2 consequence of the vacuum Maxwell equations. This dis- 

cussion shows also that the resonance expansion is useful only 

when the resonances excited are limited to low.orders. 

(E) When the perturbations arise from the field generated by a 

beam bunch through which the colliding particle travels, the non- 

linearity and the harmonics of the forces extend to extremely high 

orders. The tune-space is covered dense (density of rational numbers) 

by resonances and the unperturbed tune v. sits in a continuumofhigh 

order resonances even when all strong low order resonances are avoided. 

This means that the part of Ax; which contributes to the continuum of 

resonances in the neighborhood (within the "line width") of v. appears 

to be random, the corresponding part of the motion is ergodic,and the 
\ - 

oscillation amplitude grows: This is similar to the statement that a 

signal which is random in the time domain has a continuous "white" 

spectrum in the frequency domain. The "natural line width" is rather 

small, but since v. is always wobbled by some random noises in the 

external. field, with this vo-wobble included the "total line width" 

could be substantial. 

*It may be objected that this is contrary to the KAM theorem which 
states that for 1 degree-of-freedom when the non-linear perturbation 
is sufficiently small1 well behaved KZGkl surfaces exist and prevent the 
growth of the oscillation amplitude, There is indication, however, 
that KAM theorem holds only for extremely small perturbations, much 
smaller than any physically realistic values. In any case we can always 
consider the motion in 1 degree-of-freedom as the projection of a motion 
in 2 degrees-of-freedom for which Arnol'd diffusion does occur and 
cause unrestricted growth in oscillation amplitude. 
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(F) Following the reasonings given above and using the 

bi-Gaussian potential, Eq. (5), we can derive a semi-quantitative 

formula for the amplitude growth. Putting (J~ = cs Z CT (round beam) - 
Y 

and y "0 in Eq. (5) we get 

rON V(x) = y dt 

roN = n+l 
=- c 

(-lJn 1 
Y n=O 2"(n+l)! 2(n+1) 

and 

(18) 

(19) 

If only resonances of order m (a large integer) ;Itnd above can fall 
. - 

inside the v. line-width, the random part of Ax' contains only terms 

with n>m. Thus, in the expression for (Ax')~~ the sumr?ation should only 

be from m to a~. The amplitude growth is, then, given by Eq. (14) to be 

dW drl = fB(Ax') 2 = 8n2fC2 a3 (-lJn+l 
c 

(20) 
rms n=m b+l) : 

where we have used the relations 

1 roN@ 
5-G 

w2 

X2 t I W 
-r 

-.- 
2 rms 

41T02 - = E = emittance of beam B 

and 
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(F) Following the reasonings given above and using the

bi—Gaussian potential, Eq. (5), we can derive a semi-quantitative

formula for the amplitude growth. Putting Ox = 0y 2'0 (round beam) _

a»and y = 0 in Eq. (5) we get

H 2

I 2
1-exp[—:3i—§—]

dt 2(t+0 )

Y t+o2
llV(x)

n+1
x-— (13)
02)

N

_ o ” (—1)n 1 f
Y n=0 2n(n+l)! 2(n+1)

and

Ax’ I r N w n+1 2 ndv 0 Z: _i:33____ (§_) X, (19)
0yo: n=0 2“(n+1): 2

If only resonances of order m (a large integer) and above can fall

inside the v0 line—width, the random part of Ax’ contains only terms

with n>m. Thus, in the expression for (Ax’)rms the summation should oa

be from m to w. The amplitude growth is, then, given by Eq. (14) to be

2l I n_ , 2 _ 2 2 (~1)n+ w
— f8<AX )rms ‘ 8” fg 4;; 751:7?“ E73} W ‘20)Q»!

Q.-
(‘1‘

21'

where we have used the relations

- 1
5 “ ER 2

(x2) ~W

7? rms E

4n02
B = e = emittance of beam

and
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f dn 
=dt = rate of collision between particle and beam bunch. 

Generally, the first term in the summation is the largest and we 

have approximately 

I I 
2m 

dW 2 W dt = kf5 ~ln WI 
2 

kr2 (21) 

Two comments are useful. 

(1) The line-width cannot be derived from this crude 

model. Thus, m must be considered an adjustable parameter. Further- 

more, depending on how much reliance one puts on the measured beam 

emittance E and on the validity of the approximations,it may be well 

to consider k also as an adjustable parameter. 

(2) Larger line-width corresponds to lower m, hence larger 

k and larger dW/dt. Thus, the effect of external noise in increasing 

d9/dt is magnified by the non-linear beam-beam forces through a 

widening of the line-width. 

Comoarison of Different Systems 

(A) According to the beam and collision geometry 

(1) Continuous beams 

(a) Crossing at an angle - Kicks are one dimensional 

(only in direction perpendicular to the crossing plane), hence the 

motion should be relatively stable. 

( b : Colliding head-on - Kicks are two dimensional, 

hence the motion is expected to be more unstable. 

(2) Long bunched beams - The force potential is identical 

to that of the car responding case of continuous beams except at the 

ends of the beaT bunches which constitute only a negligible part of 

the long bunches. The synchrotron motion of particles in the beam 

bunch will, however, enhance the instability. This can be understood 
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W' kZm—aTTll!

)a 2
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ends of the beam bunches which constitute only a negligible part of

the long bunches. The synchrotron motion of particles in the beam

bunch will, however, enhance the instability. This can be understood
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simply by noting that the number of resonances is increased by the 

synchro-betatron side-bands and the continuumofresonances is 

therefore much denser than without the synchro-betatron resonances. 
- 

-c\ (3) Short bunched beams - If the length of the beam bunches 

is comparable to their widths the kicks from the beam-beam forces 

are three dimensional whether the beams are crossing at an angle or 

colliding head-on. This plus the synchrotron oscillation will make 

this the most unstable geometry. 

(B) According to the particle type 

(1) Electrons (positrons) 

At the present storage ring energies the synchrotron 

radiation from these particles is sizeable. The synchrotron radiation 

produces two major effects on the particle oscillations:(i) damping 

and (ii) quantum fluctuation which acts as random kicks to blow up 

the oscillation. In terms of the Courant-Snyder invariant W defined 
. - 

in Eq. (14) we ca1: write 

dW w dt = Q-y (22) 

where Q(>O) is the blowup due to quantum fluctuation and 'c is the 

damping time due to synchrotron radiation. With some modification 

and reinterpretation the beam-beam effect can be obtained from 

Wr- (19) l The electron beams are not round but flat ribbons with 

ux>>u 
Y 

, hence the yertical (y) effect is larger and gives the 

limitations. We first rewrite Eq. (19) as 

1 nf- 

Ay' = rON 

vy luxfoy) (ox+cr > f 
(-l)n+l y2 

1-1 

2 

y n=O 2"(n+l)! 2 
aY 

_ 2aEy n+ln 2 i 1 n+l- a3 
c 

t-11 2 
c-!-J 

Oy x n=O (n+l)! ZiJ 2 l 

Y 

(23) 
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Eq. (20) then becomes 

dW = fg(Ay')2 = 
d?i rms 1 (24.)- 

where the subscript y is omitted. Again, taking only the largest 

termn= m in the summation we get 

g= .,,zg)[$&] ,,tt k = 2 [(m:;):] 2 - (25) 

In addition to the beam-beam effect we can also add an external noise 

term P. Altogether Eq. (22) is modified to 

2m+l 
dFJ dt = P+Q -W-+kfc . T (26) 

- The maximum tune shift cm,, that can be obtained-is given by the 

dW condition d" = 0 at a value of W of the order L 
to E/71, since the two beams are approximately 

gives 

of and proportional 

equal in height. This 

kfc2 max 

2m+l 
w 

I E/1T, 

This leads immediately to the energy (E) dependence of Emax 

because we have 

w a E/IT a E2, hence 5 a E?; 

1 --acE 3 
T I 

W hence 7 a E5, 

(27) 

Q a E5, coupled over from horizontal; 

CT is likely aperture limited, and 
X 

a E", because ~~ 

P a Eo. 

llO

Eq. (20) then becomes

1 2
w n+2“

e/n

2
dW OX (_l)n+l

, 2 2 2 __
—- = fB(Ay )rms = 8 7T fg T ngm W (24)

<33;

where the subscript y is omitted. Again, taking only the largest

term n = m in the summation we get

2o
gfl.= kfg2(_%_J

Q; t

2m+l 2
W , 2w

2: 7r) , k = 2 [(m+l) :] ' (25)

In addition to the beam-beam effect we can also add an external noise

term P. Altogether Eq. (22) is modified to

2
dw _ w 2 0x
a? — P+Q-:r—+kf§ T

W
E7?

2m+l
) . (26)

The maximum tune shift Emax that can be obtained is given by the

condition 3? = O at a value of W of the order of and proportional

to e/n, since the two beams are approximately equal in height. This

gives

2 OX2\ 2m+l
kfgmax —B—-/ -Q-P . (27)

This leads immediately to the energy (E) dependence of gmax

because we have

W « e/n s E2, hence Eg? a E.;

3 W 5
a E , hence ? m E ,

ril
l-4

Q a £5, coupled over from horizontal;

70 a BC, because Ox is likely aperture limited, and
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The energy dependence of Emax can, thus, be 

1 
z 

5 max = (aE5-b) . (28) 
- 

In actuzity the measured data from SPEAX3 can be fitted quite 

well with b=O, i.e. no external noise. Fig. 1 shows the fit with 

'5 
5 = 0.01 E z 
max (E in GeV) . (29) 

The energy dependence of the maximum luminosity Lmax is related to 

that of 5:,, by4 

L a E2 c2 a E7 . max max 

Figure 2 shows the fit to SPEAR data with 

L 
nax 

= 0.03 E' (E in GeV). 

(30) 

(31) 

(2) Protons (antiprotons) 

For present storage rings at energies less than tens 

of ?.'eV the synchrotron radiation for these particles is negligible 

and the amplitude (or W) growth equation is given by Eq. (21) for 

round beams to be 

. (32) 

Several conclusions can be drawn from this equation. 

(a) With all terms positive on the right-hand-side 

there cannot be any threshold behavior as in the case of electrons. 

The beam growth rate will simply increase with increasing c- 

(b) If the beam gror.&h rate is measured by the beam 

loss on a collimator aperture, the collimator has to be fitted 
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rather tightly around the beams. As was stated at the beginning, 

the non-linear beam-beam forces are localized to the "surface" of 

the beam and fall off rapidly going away from the beam. - 
- - 

(cl Unlike electron beams, proton (antiproton) 

beams generally do not have Gaussian transverse density distributions. 

The distribution tends to be'more squarish and more truncated. 

Nevertheless, the qualitative or perhaps even the semi-quantitative 

features of the development given above should still be valid. 

(d) Eq. (32) indicates a beam growth rate propor- 

tional to c2. The same quadratic dependence in Eq. (27) led to the 

fit shown in Eq. (29). Experiments by Kei15 and Zotter6 on the CERN-ISR 

seem, however, to indicate an exponential dependence. This discrepancy 

must be resolved. 
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BEAM-BEAM TUNE SHIFT IN SPEAR 
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Fig. 2. Maximum luminosity versus energy in SPEAR. 
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