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Abstract. A Covariant Statistical Mechanics is developed for a system of electrons within the
limits of plasma physics. By using the Landau-Lifshitz equation of motion for point charged
particles, the phase space reduces to be a seven dimensional space instead of the ten dimensional
space proposed by Hakim and Mangeney [J. Math. Phys. 1968, 9, 1, 116]. A modified
Vlasov equation is obtained which permits one to deduce a general expression for the dispersion
relations. Unlike other works, neither the Special Relativity nor any of the properties of the
gauge are used to discard some of the wave modes. Instead, the continuity equation is used
as a constraint embedded in the definition of the 4−vector current. This permits to make a
mathematical analysis for calculating and discarding the transverse and longitudinal modes for
any temperature. An expression for the longitudinal wave modes is deduced for any temperature
and wave number. Usually, certain approximations are made to obtain such an expression that
matches our result. But in general, without making such approximations, the result differs by a
factor. The Landau damping and the damping due to the radiation reaction force are obtained
and contrasted at low and high temperature cases. The results are compared with the ones
obtained within Magnetohydrodynamics. Moreover, a numerical method is applied in order to
compare the dispersion relations obtained with the approximations made. Surprisingly, it is
sampled numerically that the dispersion relations are bounded for each temperature and that
there is a cut-off for each wave number.

1. Introduction
During the sixteens of the last century, Hakim developed a manifestly Covariant Statistical
Mechanics [1], [2]. The theory studied the electromagnetic interactions and described a rigorous
hierarchy of equations for suitable reduced densities. Later, Hakim and Mangeney [3], including
the radiation reaction force calculated by Dirac [5], obtained a relativistic Vlasov equation which
permits one to obtain wave dispersion relations and the conductivity tensor. They also analyzed
the irreversibility due to the interaction between the charges and the radiation reaction force and
many other properties of a relativistic plasma. However, the use of the Lorentz-Dirac equation
obligates to consider the hyper-acceleration as an independent variable since it plays the same
role than the position and the velocity. The phase space results to be a 10N−dimensional space
(12N −2N , due to the kinematic relations). In an approximation process, by using the Lorentz-
Dirac equation at first order in the characteristic time of the charges τo and by considering
absence of correlation between particles, they obtained a modified Vlasov equation at first order
in ne2τo where n, e and τo = 2e2/3mc3 represent the density of particles, the charge of the
electron and the characteristic time of the electron, respectively. Among others properties that
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can be derived, as we mentioned above, it has to be highlighted that this modified Vlasov
equation can be linearized in order to obtain dispersion relations for electromechanical waves.
They obtained general expressions for the transverse and longitudinal collective modes. They
gave a solution for the cases T = 0 and T →∞, discriminating certain results due to very vague
physical reasoning. Indeed, for T = 0, they eliminated solutions for the longitudinal mode
(w2 = w2

p + k2) arguing that this solution comes from Special Relativity. Moreover, for high
temperature without giving any proof for the longitudinal mode, they mentioned “it seems that
the extreme relativistic plasma behaves like the vacuum for both longitudinal and transverse
electromagnetic waves”. In a later article [4], they accepted the lack of severity in the choice of
the solutions and they claimed that the dispersion relations do not take into account the fact
that the 4−current vector must satisfy the continuity equation. Although for low temperatures
(T ' 0) the usual expected results are obtained just for the neighborhood of k ' wp, for the high
temperature case (T →∞), in the first paper about collective oscillations [3] they just assured
that kµkµ = 0 without any proof and they argued that the damping effects predominate and a
wave cannot propagate in a high temperature plasma. Nevertheless, these types of contradictions
were corrected in a second article [4] where they made some approximations for high temperature
showing that the plasma frequency is shifted. Indeed, this does not present a surprise since
radiation emission becomes more effective when the temperature increases. Although, for Hakim
and Mangeney [3] in extreme relativistic plasmas, their own expressions are not longer valid
since the first order approximation in ne2τo becomes meaningless if bigger order terms are
considered and, consequently, the decay of the wave must be accentuated. However, the order of
approximation is related to the value of ne2τo and high temperature systems can be considered
within their model as long as the parameter ne2τo stays small (see figure 2). Although the
Landau-Lifshitz equation [6] can be considered or not as an approximation to order τo of the
Lorentz-Dirac equation [5], the reality is that the differences with the Lorentz-Dirac equation or
with the Eliezer-Ford-O´Connell equation [12], [10], [11] are negligible except in the cases of self-
accelerations and pre-accelerations[14], [15], [13], [16]. Therefore, the method may be used to
deduce the behavior of the longitudinal modes for high temperatures. One of the purposes of this
paper consists in demonstrating that the longitudinal modes disappear when the temperatures
increase but accompanied by the trend in which the longitudinal waves are canceled; that is:
a dispersion relation is proposed for high temperature such that for T → ∞ the frequency w
becomes imaginary. Then, a cut-off exists above a temperature and all the perturbations are
damped. Particularly, a cut-off appears for high frequencies leaving just the existence of low
frequencies that does not possess any physical important effect.

On the other hand, as we mentioned before, although the Landau-Lifshitz equation is
considered as a first order approximation in τo of the Lorentz-Dirac equation [5], many authors
refer to it as the exact equation of motion for a charge particle. Indeed, for Spohn [7] and
Rohrlich [8], [9] the Lorentz-Dirac equation must be restricted to its critical surface yielding
the Landau-Lifshitz equation and consequently this last one represents the correct equation of
motion of a spinless classical point charge. Moreover, by considering a generalized quantum
Langevin equation and by giving a structure to the electron with a factor form and a finite
cut-off parameter, Ford and O’Connell [10], [11] derived a non relativistic equation of motion
for charged particles. Generalizing this equation to Special Relativity [11] they obtained an
equation that Eliezer [12] derived fifty years before using distinct arguments. Although, the
Landau-Lifshitz equation [6] and the Eliezer-Ford equation are mathematically different, their
implications are physically equivalent [14], [15], [13], [16] within the Shen´s zone [17] where
quantum effects are negligible. Recently, Hammond [18], [19], [20], [21] has proposed another
approach for deducing the reaction force which eliminates the apparent paradox of the vanishing
reaction force when a constant electric field is applied to a charge. Although for many authors
[23], [24], [25], [26], [27], [28], this apparent paradox is explained by noticing that the radiation



IARD 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012001

IOP Publishing

doi:10.1088/1742-6596/1239/1/012001

3

exits at the infinity; that is, the energy radiated to infinity is taken from the attached fields
(the Scott term or the acceleration energy) and consequently even if the total radiation term
in the equation of motion vanishes, the radiation to the infinity (the irreversible emission of
radiation) exists. Moreover, the regular Larmor formula does not describes the radiated energy
and it is substituted by a new expression that coincides with it for low accelerations [24].
Although, Hammond theory is consistent, it possesses the inconvenience that the expression
for the reaction term must be deduced for each kind of interaction making it unpractical to
deal with it when a system of particles is considered. Apart of this paradox, both equations,
Landau-Lifshitz and Eliezer-Ford-O’Connell, are second order differential equations which do
not present unphysical solutions, as pre-accelerations and runaway solutions. Whether or not
the Landau-Lifshitz equation represents an exact or approximate description of the motion of
charged particle, it must be subjected to experimental tests. However, such experiments present
a very large degree of difficulty for various reasons [13], [14], [15]. However, dispersion relations
can be easier measured and comparing them with the ones deduced by using the modified Vlasov
equation, obtained starting from the Landau-Lifshitz equation, will give validity or not to the last
equation. Otherwise, theory such as Hammond’s may have more physical acceptance because at
high speeds (high temperatures) and high accelerations great differences are presented between
the different equations [19].

Once the Landau-Lifshitz equation is chosen to describe the motion of the charges, it is
possible to eliminate the degree of liberty represented by considering the hyper-acceleration as
an independent variable in the deduction of the density function. Indeed, the hyper-acceleration
does not appear anymore. Therefore, we can follow Hakim [3] in the deduction of the density
just by considering the positions and the velocities of the particles as independent variables. The
phase space results to be a 7N−dimensional space (8N−N , due to the kinematic relations) The
final result will coincide with Hakim’s generalization of the Vlasov equation in Special Relativity
[3]. Moreover, a more general equation will be deduced by including a constant external electric
field. The wave dispersion relations will be deduced and the effects of the coupling between the
constant external electric field and the interaction of the particle will not play an important role
and the dispersion relations will not be affected. Moreover, Landau damping can be deduced and
compared with the damping due to the radiation reaction force. When a numerical method is
used in order to solve the general expression for the longitudinal modes, it turns out that although
the effect is much more pronounced in the case of very high temperatures, the dispersion relations
have no real solution above a wave number for each temperature.

The article is organized as follows: in section 2, an equivalent expression of the Landau-
Lifshitz equation of motion will be described in order to be used in the deduction of the modified
relativistic Vlasov equation in section 3. In section 3, a modified relativistic Vlasov equation
is deduced without considering the hyper-acceleration as independent variable and including
an external field. In section 4, a perturbation is made in order to obtain a perturbed current
and a constant electric field is considered in order to prove that no changes appear in the
wave dispersion relations. In section 5, the dispersion relations will be deduced for different
temperatures. The low temperature case will be analyzed for transverse and longitudinal
modes and we give the reason why the wave solution (w2 = w2

p + k2) should be discarded
for longitudinal modes without resorting to arguments based on not considering solutions that
come from relativity or the absurd theory that they depend on the chosen gauge. Nor do we
resort to the continuity equation as an extra constraint since it must already be contained in the
Vlasov equation due to the fact that the last is deduced by using the definition of point particle
current or the Maxwell´s equations. Of course, Landau damping [4] is deduced for some values
of k and temperatures. The damping due to the radiation reaction force is deduced for low
temperatures and compared with the Landau damping. In this section, the high temperature
case is analyzed obtaining the dispersion relations for longitudinal modes and explaining how
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the wave disappears as long as the temperature increases. The existence of a cut-off for the
frequencies is shown for high temperatures. Some concluding remarks are done in section 7.

2. Landau-Lifshitz Equation
For a system of N charged particles with the same mass m and equal charge e, for each particle,
the Lorentz-Dirac equation [5] is

maµi =
e

c
Fµν(i) vνi +mτo

[
·
a
µ

i +
a2i
c2
vµi

]
, i = 1, ..., N (1)

where c, Fµν(i) and τo = 2e2/3mc3 are the speed of light, the field strength tensor due to the action

of the other particles and the external field on the i−particle and the characteristic time of the

charge e, respectively. The subscript “i” represents the i−particle and vµi , aµi and
·
a
µ

i = daµi /dτi
are the 4−velocity, the 4−acceleration, the 4−hyper-acceleration of the i−particle being τi the
proper time of the i−particle, respectively. The equation can expressed in a different way as:

maµi =
e

c
Fµν(i) vνi +mτo∆

µν(vρi)
·
aνi, i = 1, ..., N, (2)

where

∆µν(viρ) = nµν −
vµi v

ν
i

c2
. (3)

In order to incorporate Landau-Lifshitz proposal on equation (2), the hyper-acceleration must
be substituted by

·
aνi →

e

mc

d

dτi
F (i)
ναv

α
i =

e

mc

[
F (i)
ναa

α
i + vρi v

α
i

∂F
(i)
να

∂xρi

]
, (4)

and in a second step, in the first term of the right side of equation (4), the acceleration aαi must
be substituted by the Lorentz force; that is:

·
aνi →

e

mc

[
e

mc
F (i)
ναF

αβ
(i) vβi + vρi v

α
i

∂F
(i)
να

∂xρi

]
. (5)

Therefore, the Landau-Lifshitz equation of motion for each particle is

maµi =
e

c
Fµν(i) vνi +mτo∆

µν(vρi)
e

mc

[
e

mc
F (i)
ναF

αβ
(i) vβi + vρi v

α
i

∂F
(i)
να

∂xρi

]
, (6)

i = 1, ..., N.

On the other hand, the force applied on each particle must be decomposed in two parts: the

external field and the field produced by the other particles on the i−particle; that is:

Fµν(i) = Fµνext +
∑
j 6=i

Fµνji (xρ), (7)

where

Fµνji (xρ) =
4πe

c

∫ ∫ ∫
dx′4dv′4dτ ′

[
v′ν∂µ − v′µ∂ν

]
Dret(xρ − x′ρ)

×δ(x′ρ − xρj(τ ′))δ(v′ρ − vρj(τ ′)), (8)
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where Dret represents the retarded Green function [29].
Finally, it is important to noticed that the equation of motion described by equation (6)

does not depends on the hyper-acceleration and consequently the phase space is described by
8N−dimensional space with the regular N constraint, vµvµ = c2. This point represents one of
the different approaches to obtain the relativistic Vlasov equation compared with the work done
by Hakim and Mangeney [3].

3. Relativistic Vlasov Equation with External Field Including Radiation Reaction
Force
Hakim [1], [2] developed a manifestly covariant Statistical Mechanics generating an equation of
BBGKY hierarchy in order to obtain a kinetic equation [3]. The work was so important that
many others relied on it to develop various ideas. For example, Horwitz [30] proposed a quantum
mechanical derivation of a manifestly covariant relativistic Boltzmann equation. We will follow
Hakim and Mangeney method [3] but using the Landau-Lifshitz equation.

The phase space in Special Relativity must be constructed by following the dynamics of the
particles in the system. By looking at the equation of motion, equation (6), It is clear that is
composed as:

Γ = {xµ}N × {vµ}N , (9)

accompanied by the constraint
vµv

µ = c2, (10)

which can be incorporated directly in the densities by using a delta function. Notice that unlike
Hakim and Mangeney [3] the hyper-acceleration is not taken as a part of the phase space since
the equation of motion to be considered is the Landau-Lifshitz equation which is a second order
differential equation. Using the regular assumptions of the Gibbs ensemble [1], [2], it is possible
to define a random one-particle density as

R1(xµ, vµ; τ) =
N∑
i=1

δ(xµ − xµi(τ))δ(vµ − vµi(τ)), (11)

where τ represents a parameter which will describe the trajectory of each particle by means
of vµi(τ) = dxµi(τ)/dτ . Also, following Hakim and Mangeney [3], we define the proper time-
dependent density,

D1(xµ, vµ; τ) = N 〈R1(xµ, vµ; τ)〉 , (12)

where the brackets 〈R1〉 represents the regular average pondered by a random initials conditions
[1], [2]. Also, we will need

R2(xµ, vµ, τ ;x′µ, v
′
µ, τ
′) =

∑
i 6=j

δ(xµ − xµi(τ))

×δ(vµ − vµi(τ))δ(x′µ − xµi(τ ′))δ(v′µ − vµi(τ ′)), (13)

and
D2 = (xµ, vµ, τ ;x′µ, v

′
µ, τ
′) = N(N − 1)

〈
R2(xµ, vµ, τ ;x′µ, v

′
µ, τ
′)
〉
. (14)

Finally, the relativistic one-particle density:

N1(xµ, vµ) =

∫ ∞
−∞

D1(xµ, vµ; τ)dτ. (15)
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Let us follow the Klimontovich method [31]: first, by using the continuity equation, we have

∂R1(xµ, vµ; τ)

∂τ
+ vµ

∂R1(xµ, vµ; τ)

∂xµ
+ aµ

∂R1(xµ, vµ; τ)

∂vµ
= 0, (16)

which can be written as

∂R1(xµ, vµ; τ)

∂τ
+ vµ

∂R1(xµ, vµ; τ)

∂xµ
+
∂aµR1(xµ, vµ; τ)

∂vµ
= 0. (17)

Notice that a difference appears with Hakim and Mangeney dependence of R1 since they obtained

R1(x
µ
i , v

µ
i ,
·
aνi) and our result is that R1 = R1(x

µ, vµ). This is obviously due to the fact that the
equation of motion is taken from the beginning as the equation (6) which does not depend on
·
aνi but just in the fields and velocities as we mention above. Therefore, by using equations (6),
(7) and (8), we arrive at:

∂R1(xµ, vµ; τ)

∂τ
+ vµ

∂R1(xµ, vµ; τ)

∂xµ

+
e

mc

∂

∂vµ

[
Fµνvν

+τo∆
µν(vρ)

[
e
mcFναF

αβvβ + vρvα ∂Fνα∂xρ

]
R1

]
= 0. (18)

Let us analyze the second line of equation (18). First, the strength tensor Fµν must be
decomposed in two terms corresponding to the external force and the internal force, see equations
(7) and (8); second, the non radiation terms are represented in the second line of equation (19).
The radiation terms are represented in the third line of equation (19).

∂R1(xµ, vµ; τ)

∂τ
+ vµ

∂R1(xµ, vµ; τ)

∂xµ

+
e

mc

∂

∂vµ
[FµνextvνR1] +

e

mc

∂

∂vµ
[FµνintvνR1]

+
e

mc
τo

∂

∂vµ

∆µν(vρ)


e
mc

[
F extνα + F intνα

]
×
[
Fαβext + Fαβint

]
vβ

+vρvα
∂[F extνα +F intνα ]

∂xρ

R1

 = 0. (19)

By using equation (8), the first two lines of equation (19) are expressed in the first two lines of
equation (20). The radiation term must be analyze as follows. Terms depending on bigger order

of e2 will be neglected. In this order of ideas, as we can notice in equation (8), the internal Fαβint
depends on e and consequently the product of the external Fαβext with the internal Fαβint as well as

the product of the internal Fαβext with the internal Fαβext will be neglected since there is a factor
eτo/mc in the radiation reaction term. Finally, the conserved terms are described in the third
and fourth lines of equation (20).

∂R1(xµ, vµ; τ)

∂τ
+ vµ

∂R1(xµ, vµ; τ)

∂xµ
+

e

mc

∂

∂vµ
[FµνextvνR1]

+
4πe2

mc2
vν

∂

∂vµ

∫
dτ ′dx4′dv4′

[{
vν′∂µ − vµ′∂ν

}
Dret(xρ − x′ρ)

]
×R2(xµ, vµ, τ ;x′µ, v

′
µ, τ
′)

+
e

mc
τo

∂

∂vµ

[
∆µν(vρ)

[
e

mc

[
F extνα

] [
Fαβext

]
vβ + vρvα

∂F extνα

∂xρ

]
R1

]
+τo

∂

∂vµ

{
∆µν(vρ)

4πe2

mc2
vρvα

∫
dτ ′dx4′dv4′[

{v′α∂ν − v′ν∂α} ∂
∂xρDret(xρ − x′ρ)

]
R2(xµ, vµ, τ ;x′µ, v

′
µ, τ
′)

}
(20)

= 0(
(
ne2τo

)2
).
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In the following, we will consider the case of an external constant electric field in the x−axis.
Therefore, due to the antisymmetry of Fµνext and remembering that the 4−current which produces
the external field are outside of the volume, we have

e

mc

∂

∂vµ
[FµνextvνR1] =

e

mc
Fµνextvν

∂

∂vµ
R1. (21)

On the other hand, for a constant electric field it is a well known fact that the radiation term
vanishes as it has been proved by many authors [23], [24], [25], [26], [27]. Indeed, consider the
part of the external radiation reaction term, since the electric field is constant, we have

∆µν(vρ)

[
e

mc

[
F extνα

] [
Fαβext

]
vβ + vρvα

∂F extνα

∂xα

]
= ∆µν(vρ)

[ e
mc

[
F extνα

] [
Fαβext

]
vβ

]
, (22)

then,

∆µν(vρ)

[
e

mc

[
F extνα

] [
Fαβext

]
vβ + vρvα

∂F extνα

∂xα

]
= (nµν − vµvν

c2
)

×
[ e
mc

[
F extνα

] [
Fαβext

]
vβ

]
= E2vµ

(
1− c2

c2

)
= 0, (23)

where E represents the constant electric field. Notice that within Hammond theory [18], the
radiation reaction force does not vanish for a constant electric field and this will predict different
dispersion relations. We arrive at

∂R1(xµ, vµ; τ)

∂τ
+ vµ

∂R1(xµ, vµ; τ)

∂xµ
+

e

mc
Fµνextvν

∂

∂vµ
R1

+
4πe2

mc2
vν

∂

∂vµ

∫
dτ ′dx4′dv4′

[{
vν′∂µ − vµ′∂ν

}
Dret(xρ − x′ρ)

]
×R2(xµ, vµ, τ ;x′µ, v

′
µ, τ
′)

+τo
∂

∂vµ

{
∆µν(vρ)

4πe2

mc2
vρvα

∫
dτ ′dx4′dv4′

×
[
{v′α∂ν − v′ν∂α} ∂

∂xρDret(xρ − x′ρ)
]
R2(xµ, vµ, τ ;x′µ, v

′
µ, τ
′)

}
= 0(

(
ne2τo

)2
). (24)

Considering that the correlation function vanishes or is of order
(
ne2τo

)2
; that is:

D2(xµ, vµ, τ ;x′µ, v
′
µ, τ
′) = D1(xµ, vµ; τ)D1(x

′
µ, v
′
µ; τ ′). (25)

By calculating the average of equation (12) and taking N − 1 ' N , we arrive at

∂D1(xµ, vµ; τ)

∂τ
+ vµ

∂D1(xµ, vµ; τ)

∂xµ
+

e

mc
Fµνextvν

∂

∂vµ
D1

+
4πe2

mc2
Nvν

∂

∂vµ

∫
dτ ′dx4′dv4′

[{
vν′∂µ − vµ′∂ν

}
Dret(xρ − x′ρ)

]
×D1(xµ, vµ; τ)D1(x

′
µ, v
′
µ; τ ′)

+τo
4πe2

mc2
N

∂

∂vµ


∆µν(vρ)v

ρvα
∫
dτ ′dx4′dv4′[

{v′α∂ν − v′ν∂α} ∂
∂xρDret(xρ − x′ρ)

]
×D1(xµ, vµ; τ)D1(x

′
µ, v
′
µ; τ ′)


= 0 (26)
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Considering that
D1

lim τ→±∞
(xµ, vµ; τ) = 0, (27)

and integrating over the proper time τ , we obtain

vµ
∂N1(xµ, vµ)

∂xµ
+

e

mc
Fµνextvν

∂

∂vµ
N1(xµ, vµ)

+
4πe2

mc2
Nvν

∂

∂vµ
N1(xµ, vµ)

×
∫
dx4′dv4′

[{
vν′∂µ − vµ′∂ν

}
Dret(xρ − x′ρ)

]
N1(x

′
µ, v
′
µ)

+τo
4πe2

mc2
N

∂

∂vµ


∆µν(vρ)v

ρvα
∫
dx4′dv4′[

{v′α∂ν − v′ν∂α} ∂
∂xρDret(xρ − x′ρ)

]
×N1(xµ, vµ)N1(x

′
µ, v
′
µ)


= 0, (28)

which represents a modified Vlasov equation with an external constant electric field up to the
order ne2τo. It has to be highlighted that no collision term is obtained because all the interaction
is electromagnetic and there are no collisions or friction forces. Nevertheless, the radiation
reaction term can be taken as a collision term because without it we recover the usual Vlasov
equation with no collisions.

4. Perturbation
4.1. Distribution function and the shielded potential
We assume now that the plasma is in an equilibrium state described by the Jüttner distribution
function [32], [33], [34], [35] without an electric field. However, when a constant electric field is
present the distribution function maybe pondered by a an exponential factor which takes into
account the potential due to the electric constant field in the x−axis; that is:

φ =
exp x

λ − exp−x
λ

exp R
λ

⇒ Neq = NJ exp− φ

κT
' NJ , (29)

where λ, R, κ, NJ and T correspond to the Debye length of the plasma in equilibrium, the length
between the plates of the capacitor which generates the electric constant field, the Boltzmann
constant, the Jüttner distribution function and the temperature, respectively. Therefore, in
an equilibrium plasma the electric field is shielded [36]. Therefore, the Jüttner distribution
function maybe considered good enough to describe an equilibrium plasma and the electric field
represented by Fµνextvν is much smaller than it would exist if there were no plasma due to the
shielding.

4.2. First order perturbation
Accordingly, a small perturbation can be described

N = N eq +Np ' NJ +Np. (30)

Therefore, applying this to equation (28), considering that Neq is solution of the unperturbed
case which does not depend on xµ, that is Neq 6= Neq(xµ), and taking into account that both
the derivatives of the perturbation and the product of perturbation can be neglected, we arrive
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at

vµ
∂Np(xµ, vµ)

∂xµ

+
4πe2

mc2
Nvν

∂

∂vµ
Neq(vµ)

∫
dx4′dv4′

×
[{
vν′∂µ − vµ′∂ν

}
Dret(xρ − x′ρ)

]
Np(x′λ, v′λ)

= −τo
4πe2

mc2
∂

∂vµ


∆µν(vρ)v

ρvα
∫
dx4′dv4′[

{v′α∂ν − v′ν∂α} ∂
∂xρDret(xρ − x′ρ)

]
×Neq(vλ)Np(x′σ, v′σ)

 . (31)

Notice that the term
e

mc
Fµνextvν

∂

∂vµ
Np(xµ, vµ), (32)

has been withdrawn because for high volume as it is the analyzed case the electric field is shielded
and it represents the product of two small quantities. This means that the perturbed plasma
will not be affected by an external constant electric field. Let us use the Fourier transformation
in order to obtain the Fourier 4−current. We have

∼
N p(kµ, vµ) =

1

(2π)2

∫
dx4 exp [−ikµxµ]Np(kρ, v′µ). (33)

By using equations (31) and (33), we obtain

ikµvµ
∼
N p(kµ, vµ)

+i(
4πe2

mc2
)vν

∂

∂vµ
Neq(vµ)

∫
dv4

′ kµvν′ − kνvµ′

−kλkλ
Np(kρ, v′ρ)

= (
4πe2

mc2
τo)

∂

∂vµ
{∆µν(vρ)v

ρvαNeq(vλ)}

×
∫
dv4′

v′αkν − v′vkα
−kλkλ

kρNp(kσ, v′σ). (34)

Finally, we arrive at

∼
N p(kµ, vµ) =

ω2
p

no
vν

∂

∂vµ
Neq(vµ)

× 1

kµvµ

∫
dv4

′ kµvν′ − kνvµ′

kλkλ
Np(xρ, v′ρ)

+i

(
ω2
p

no
τo

)
∂

∂vµ
{∆µν(vρ)v

ρvαNeq(vλ)}

× 1

kµvµ

∫
dv4′

v′αkν − v′vkα
kλkλ

kρNp(kσ, v′σ), (35)

where ωp represents the regular plasma frequency. If we want to calculate the Fourier component
of the 4−current vector Jβ(kv), we have

Jβ(kv) =

∫
dv4vβNp(kν , vσ). (36)
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Before continuing with the development, it is necessary to notice that some properties of the
4−vector current. Actually, we define the 4−vector point particles current for a system of point
particles,

Jα(xρ) =

∫
dτ

{
n∑
i=1

eiδ
4(xρ − xiρ(τ))

dxαi (τ)

dτ

}
, (37)

which represents a well defined 4−vector. It can be decomposed and written as:

−→
J (x, t) =

n∑
i=1

eiδ
3(−→x −−→x i(t))

d−→x i(t)
dt

and (38)

ρ(x, t) =

n∑
i=1

eiδ
3(−→x −−→x i(t)).

It is easy to show that
∂ρ(x, t)

∂t
+∇ ·

−→
J (x, t) = 0. (39)

That is, the continuity equation is satisfied. If we take the Fourier transform of the 4−vector
point particles current, the continuity equation must be satisfied. If we want to pass to a
continuous system of particles with the same charge e, we put

∂eN
∂t

+∇ ·
−→
J (x, t) = 0. (40)

where N represents a continuous particle density as the one introduced in equation (28). Of
course, the continuity equation must be accomplished if we use the Maxwell equations. However,
when a density of point particles is transformed to a continuous density, some properties can be
lost and we must impose the continuity equation. Then, in equation (36) the continuity equation
must be considered as a constraint embedded in the theory; that is:

kµJµ = wJ0(kv)−
−→
k ·
−→
J (kv) = 0. (41)

This is equivalent of the procedure used in equations (9) and (10). By using equation (35), we
arrive at

Jβ(kv) =
w2
p

kαkα

{
−Iλkβ − kαkαIβλ + kαIαg

β
λ

+iτo

(
kαkαJ

β
λ + ξαkαξ

−1gβλ − k
βξλξ

−1
) } Jλ(kv) (42)

where

Iν(kρ, ξρ) = − 1

no

∫
dv4

vv
kλuλ

Neq(vµ), (43)

and

I v
µ (kρ, ξρ) = − 1

no

∫
dv4

vµv
ν

(kλuλ)
2Neq(vρ), (44)

and

J ν
µ (kρ, ξρ) = − 1

no

∫
dv4

vµv
ν

kλuλ
Neq(vρ), (45)
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4.3. The Jüttner distribution function
The Jüttner distribution function is expressed by Hakim and Mangeney [3] as

NJ =
nomξ

4πK2(mξ)
[exp−mξµvµ] 2Θ(v0)δ(vµvµ − 1), (46)

with

ξ =
1

κTo
and ξµ = ξvµ, (47)

where κ is the Boltzmann constant, K2 represents the Kelvin function and γ(−→u ) = (1−u2)−1/2
(Normally, the Hankel function of second order is used in order to describes the Jüttner function
[33], [35] but some factors are changed) and Θ represents the Heaviside function. Noticed that
To is defined in the comoving frame of the space where the particles are moving with a velocity−→
u where −→u = d−→r /dt and −→v = γ(−→u )−→u with γ(−→u ) = (1 − u2)−1/2; that is: the rest frame
Ko where the system is at rest and the temperature is To. The existence of such rest frame is
assured because in the free particle system there is no interaction and a rest frame can be defined.
However, when there is interaction between the particles it is necessary to define a volume in
a particular frame and in such a frame the instantaneity is considered [37], [38], [39], [34], [35].
This means that Jüttner is defining the temperature in the rest frame Ko and a volume Vo where−→
u =

−→
0 . Therefore, Jüttner takes into account the effects of Relativistic Thermodynamics.

5. Dispersion Relations
Once we obtain the expression for the 4−vector current, equation (42), we need just to calculate
the determinant and equals it to zero; that is:

detGβλ = det

{
gβλ

(
1− w2

p
kαIα+iτoξαkαξ−1

kαkα

)
+ w2

p

(
Iβλ − iτoJ

β
λ

)
+w2

pk
β Iλ+iτoξλξ

−1

kαkα

}
= 0 (48)

In a reference frame (the lab frame) where ξµ = (ξ,
−→
0 ) and choosing the z−axis as the direction

of propagation of the perturbation mode, we have

kµ = (k0, 0, 0, k3) = (w, 0, 0, k). (49)

For the longitudinal mode, obtains{[
1−

w2
p

kαkα
G

]
+ w2

p

{
I00 − iτoJ0

0

}
+
w2
pk

0

kαkα
(I0 + iτo)

}

×

{[
1−

w2
p

kαkα
G

]
+ w2

p

{
I33 − iτoJ3

3

}
+
w2
pk

3

kαkα
(I3)

}

= w4
p

{
k3

kαkα
(I0 + iτo) + I30 − iτoJ3

0

}
×
{
I03 − iτoJ0

3 +
k0I3
kαkα

}
. (50)

where
G = kνIν + iτok

νξνξ
−1. (51)

For the transverse mode, obtains{
1−

w2
p

kαkα
G

}
+ w2

p

{
I11 + iτoJ

1
1

}
= 0, (52)
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5.1. Dispersion relations at T = 0
5.1.1. Real part of the dispersion relation for the longitudinal mode at T = 0 Let us consider
equation (50) without taking into account the imaginary part which are multiplied by τo. As a
first approximation since τo is too small, we will obtain a real dispersion relation; that is:{[

1−
w2
p

kαkα
G

]
+ w2

pI
0
0 +

w2
pk

0I0

kαkα

}

×

{[
1−

w2
p

kαkα
G

]
+ w2

pI
3
3 +

w2
pk

3I3

kαkα

}

= w4
p

{
k3I0
kαkα

+ I30

}{
I03 +

k0I3
kαkα

}
. (53)

For a temperature very close to zero, we can suppose that Neq(vρ),

Neq(vρ) = noδ (vρ − vρ) 2Θ
(
v0
)
δ (vρvρ − 1) . (54)

It has to be noted that in our case since the lab frame is at rest with the plasma,

vρ = (v0,
−→
0 ) with v0 > 1 and vρvρ = 1. (55)

Therefore, by using equation (54) in equations (43), (44) and (45), we arrive at

Iν(kρ, ξρ) = n−1o

∫
d4v

vνnoδ (vρ − vρ)
kαvα

=

∫
dv0d

3v
vνδ (v0 − v0) δ

(−→
v −−→v

)
wvo −

−→
k · −→v

, (56)

and

Iνµ(kρ, ξρ) = −n−1o
∫
d4v

vµv
νnoδ (vρ − vρ)

(kαvα)2

= −
∫
dv0d

3v
vµv

νδ (v0 − v0) δ
(−→
v −−→v

)
(
wvo −

−→
k · −→v

)2 . (57)

By substituting equation (55) in equations (56) and (57), we obtain

I0 =
1

w
and Ii = 0 for i = 1, 2, 3, (58)

and

I00 = − 1

w2
and Iνµ = 0 otherwise (59)

By using equations (58) and (59) in equation (50), we obtain{[
1−

w2
p

kαkα
G

]
−
w2
p

w2
+

w2
pk

0

kαkαw

}{[
1−

w2
p

kαkα
G

]}
= 0. (60)

Since we are not considering terms proportional to τo, from equation (51) G can be considered
as

G = kνIν = w
1

w
= 1. (61)
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Therefore, equation (60) can be expressed as

(1−
w2
p

w2
)(1−

w2
p

kαkα
) = 0. (62)

Hence, we have two solutions, the first one is

1−
w2
p

kαkα
= 0⇒ w2 = w2

p + k2, (63)

and the second is

(1−
w2
p

w2
) = 0⇒ w2 = w2

p. (64)

We can conclude that for longitudinal mode, the dispersion relations are

w2
l1 = w2

p + k2 and w2
l2 = w2

p. (65)

The second corresponds to the regular non-propagating longitudinal mode which is also found
in the non-relativistic case. However, the first dispersion relation corresponds to a mode which
does not satisfy the continuity equation described in equation (41).

5.1.2. Real part of the dispersion relation for the transverse mode at T = 0 Let us consider
equation (52) which corresponds to the transverse modes in general. If we apply the same
treatment than above using equations (59), (61) and not considering the imaginary part which
multiply the characteristic time τo, we arrive at

1−
w2
p

kαkα
= 0, (66)

which corresponds to
w2
T = w2

p + k2. (67)

5.1.3. Eigenvectors and the continuity equation In order to understand the reason why we have
to discard one of the longitudinal mode, it is necessary to remember that equation (41) must be
included in the deduction of the modes. The eigenvectors of equation (42) are

AβαJ
α(kv) = λJβ(kv) with λ = 1, (68)

and for T = 0,

Aβα =


w2
p

w2 0 0 0

0
w2
p

kµkµ
0 0

0 0
w2
p

kµkµ
0

− w2
pk

wkµkµ
0 0

w2
p

kµkµ

 . (69)

The eigenvalues and eigenvectors correspond to:
Transverse modes

λ =
w2
p

kµkµ
= 1⇒


0
J1
0
0

 and


0
0
J2
0

 (70)
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The eigenvectors correspond to the dispersion relations of equation (63).
Longitudinal modes

λ =
w2
p

w2
= 1⇒


J0

0
0
J3

 =


J0

0
0

w
k J

0

 and λ =
w2
p

kµkµ
= 1⇒


0
0
0
J3

 (71)

The first eigenvalue of equation (71) corresponds to the second dispersion relation of equation
(65) and the second eigenvalue corresponds to the first dispersion relation of equation (65).
However, in our case with kµ = (w, 0, 0, k), the continuity equation turns to be

wJ0 − kJ3 = 0. (72)

It is clear that the two transverse modes and the first transverse mode satisfy such equation.
Nevertheless, the second longitudinal mode does not satisfy the continuity equation and must
be discarded. This is why this mode does not exist and the reasons claimed by Hakim and
Mangeney [3] of arguing that it was due to the choice of the gauge or because it was a solution
coming from Special Relativity, are wrong. It is true that few years later, Hakim and Mangeney
[4] used the continuity equation to discard this mode. However, the equation was introduced
as an extra constraint of the theory and not as embedded in the theory itself as we explain
in subsection 5.2. For non vanishing temperatures we will directly incorporate the continuity
equation in the deduction of the normal modes.

5.1.4. Damping due to the radiation reaction force By neglecting the radiation term in equation
(50), we obtain the dispersion relations from equation (60) at zero temperature (T = 0) but if
we want to know the damping effect due to the radiation effect it is necessary to consider the
term containing iτo in equation (50). By using equations (58) and (59) in subsection 5.2 and
some identities of the Appendix of Hakim and Mangeney [3], for the values

J0
0 = 0, J3

3 = 0, J0
3 = 0, J3

0 = 0 and J1
1 = 0. (73)

We have

For the transverse mode{
w2 − k2 − w2

p

}
+ iτo

{
w2 − k2 − w2

p

}
w2
pJ

1
1 = 0. (74)

Since J1
1 = 0 (see equation (73)), we arrive at{

w2 − k2 − w2
p

}
= 0, (75)

which corresponds to the normal transverse mode which does not suffer any damping effect due
to the radiation reaction force.

For the longitudinal mode

1−
w2
p

kαkα
(1 + τow) + w2

p

(
− 1

w2
− iτo

w

)
+
w2
pw

kαkα

(
1

w
+ τo

)
= 0. (76)

Then,
w2kαkα − w2

pk
αkα(1 + iτow) = 0. (77)
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Finally, we arrive at
w2 = w2

p(1 + iτow). (78)

In order to find the damping term, we need to put

ws = wo + iγ, (79)

where wo represents the dispersion relation at zero order that in this case is w2
o = w2

p. Therefore,

(wo + iγ)2 = w2
p(1 + iτo (wo + iγ)). (80)

We obtain
w2
o + 2iwoγ − γ2 = w2

p (1− τoγ) + iτow
2
pwo (81)

Since γ � wp ' wo, we can conclude that

γ = τo
w2
p

2
⇒ ws = wo + iτo

w2
p

2
. (82)

We conclude that the damping effect corresponds to a constant damping close to zero
temperature. This result will be verified when the damping effect is calculated for small
temperatures in subsection 6.2.

5.2. Dispersion relation for the longitudinal mode at small temperature with T 6= 0 with
damping effect (Landau and radiation reaction dampings)
5.2.1. The continuity equation and the imaginary integral Let us put on a side the transverse
mode and put our attention just in the longitudinal modes. We have assumed that I0 and I00
are real and consequently we obtained real dispersion relations. However, if we look at equations
(56) and (57), imaginary parts can be deduced. Indeed, returning to equation (53) and putting

Io = ReI0 + iImI0 and I00 = ReI00 + iImI00 (83)

and note that the frequency must have a damping term; that is:

w = w′ + iγ, (84)

where
γ � w′. (85)

We will now incorporate the continuity equation in the calculation of the dispersion relations.
Indeed, if we consider equations (42), (48), (38)and (72), we have a system of equations GβλJλ = 0

detGβλ = 0
kµJµ = wJ0 − kJ3 = 0

 , (86)

for which (see equation (48))

Gβλ =

(
G0

0 G0
3

G3
0 G3

3

)
. (87)

We obtain
wG0

3 + kG0
0 = 0 and wG0

3 + kG0
0 = 0. (88)
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However, this two equations are equivalent as we can see easily. Therefore, we will just use the
first of the two equations. In this case, and after a long way and using the relations obtained in
the Appendix by Hakim and Mangeney [4], we arrive at

k2 + w2
pk
αIα

kαkα
=

2ww2
pIo

kαkα
+ w2

p

∂Io
∂w

+iτo
w2
p

kαkα

(
w + kαkα

∂Io
∂w
− kαkα

(
kαIα +

3

α

)
Io

)
, (89)

where
α = mξ =

m

κTo
.

This result differs from Hakim and Mangeney [2] by an extra factor w/k in the imaginary part.
However, they always calculated the dispersion relations for w ' k and the results are equivalent.

Figure 1. In a typical Tokamak, PL is greater than PR which means that the losses due to the
radiation reaction damping are bigger than the one due to the Landau damping.

5.2.2. The suprathermic case the suprathermic case normally is described by using the relation

vT < vφ < 1, (90)

where vT and vφ represent the thermic velocity
√
mξ =

√
m/κTo =

√
α (for non relativistic

case) and the phase velocity w/k, respectively. However, to obtain analytical expressions, it is
necessary to add other constraints as

1/m2ξ2(1− v2φ) � 1 (91)

(1− v2φ) � m2ξ2,

which means that
w ' k and w ' wp (92)
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Figure 2. Some characteristic plasmas

and accompanied by
mξ > 1. (93)

That is: the temperature is not small. Accordingly, we can now develop around a new parameter

η2 = α−2
(
1− v2φ

)
. (94)

Without considering the imaginary quantities (Landau and radiation reaction damping terms
are neglected in first instance), equation (84) can be written as

Figure 3. For α bigger than 500, the approximation (red line) coincides with the numerical
method (blue line) as it is expected.

k2 + w2
pk
αIα = 2w2

pwIo + w2
p

(
w2 − k2

) ∂Io
∂w

. (95)
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Figure 4. For a typical Tokamak, the approximation is still valid. But it has to be noticed that
the numerical method (blue line) predicts that the value when k → 0, w = 0.98wp

In order to continuous with real part of equation (96), just ReIois considered, we follow the
same calculation done by Hakim and Mangeney [2] which make an expansion in η2, we arrive at

w2 = w2
p +

3w4
p

k2
α−1 = w2

p + 3 (kvT )2 , (96)

which represents the classical result. Now if we consider, the complex terms in equation (97),
(remember that the radiation reaction term are not considered) we obtain

kαkα − w2
p + kαkαw

2
p

(
ReI00 + iImI00

)
+ w2

pk
0 (ReI0 + iImI0) = 0. (97)

Equation (97) can be written as

kαkα − w2
p + kαkαw

2
pReI00 + w2

pk
0ReI0 + i

(
kαkαw

2
pImI

0
0 + w2

pk
0ImI0

)
= 0. (98)

By substituting the values of the real part, see equation (64), we have(
w2 − w2

p

)
kαkα + iw2w2

p

(
kαkαImI00 + k0ImI0

)
= 0. (99)

Putting
ε = kαkαImI00 + k0ImI0, (100)

we obtain (
w2 − w2

p

)
kαkα + iw2w2

pε = 0. (101)

This is equivalent to (
w2 − w2

p

) (
w2 − k2

)
+ iw2w2

pε = 0. (102)

By using equation (84), we arrive at[(
w′ + iγ

)2 − w2
p

] [(
w′ + iγ

)2 − k2]+ i
(
w′ + iγ

)2
w2
pε = 0. (103)
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Finally, (
w′2 + 2iγw′ − γ2 − w2

p

) (
w′2 + 2iγw′ − γ2 − k2

)
+ i
(
w′ + iγ

)2
w2
pε = 0. (104)

By neglecting the term γ2, w′ = wp and for the damping part, we obtain

2 (γwp) (w2
p − k2) + w4

pε = 0

γ = −
w3
pε

2(w2
p − k2)

. (105)

Obtaining the value of ε in this approximation, we arrive to

γ =
1

2

√
π

2

w4
p

k3
(mξ)3/2 exp−(mξv2φ)/2, (106)

which represents the Landau damping term. It has to be noticed that within this approximation,
the radiation reaction damping is equal to the one calculated for zero temperature. We can affirm
that the intensity of the perturbation P is damped as

P = exp−γt exp−τo
w2
p

2
t. (107)

Therefore, If we consider a typical Tokamak case with

wp = 5.6× 1011Hertz and β =
vT
c

= α−1/2 = 0.12, (108)

we can compare graphically both dampings (see figure 1)

PL = exp−γt = exp−0.16t and Pτo = exp−τo
w2
p

2
t = exp−0.98t, (109)

which shows that in this case the Bremsstrahlung generates a more important damping.

5.3. The superluminic and relativistic cases (longitudinal modes)
Let us now analyze the results which can be obtained when

vφ � 1 (110)

In this case, let us rewrite equation (89) in another form without any approximation

Ω2
p + k2 = 2w2

pwIo + w2
p(w

2 − k2)∂Io
∂w

+iτow
2
p

[
w + (w2 − k2)∂Io

∂α
+ (w2 − k2)

(
G+

3

α

)
Io

]
, (111)

where
Ω2
p = w2

p [K1(α)/K2(α)] = w2
pk
νIν = w2

pReG = w2
p=. (112)

We can make an expansion in (k/w)2 = v−2φ � 1; we arrive to
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Ω2
p + k2 = 2w2

p

[ ∞∑
l=0

(
k

w

)2l

φl (α)

]

−w2
p

(
1− k2

w2

)[ ∞∑
l=0

(
k

w

)2l

(2l + 1)φl (α)

]

+iτow
2
p

w2

k

 1 + (1− k2

w2 )
[∑∞

l=0

(
k
w

)2l dφl(α)
dα

]
+
(

1− k2

w2

)
(=+ 3

α)
[∑∞

l=0

(
k
w

)2l
φl (α)

]  , (113)

where φl(α) are defined in the Appendix by Hakim and Mangeney [3]. It has to be remembered
that

τo
w2

k
� 1 and k � w. (114)

If we do not consider the imaginary part, we arrive at

w2
o = (=− φ1)w2

p + 3k2 [(φ1 − φ2) / (=− φ1)] . (115)

5.3.1. Low temperature For low temperatures, we obtain

w2
o = w2

p + 3 (κT/m) k2. (116)

which coincides with the suprathermic case and suspects that this result is valid for any value
of k.

5.3.2. High temperature For high temperatures, and just for the first order relativistic

expansion, we need to continuous the expansion in the φl’s and it can be deduced that (we
recover the value of the speed of light c)

w2
o = w2

p + 3k2 (κT/m)− 5

2
w2
p(κT/mc

2)− 33

2

(
k2

c2

)
(κT/m)2, (117)

which means that when k → 0, the wo does not go to wp but to

w2
o = w2

p

(
1− 5

2
(κT/mc2)

)
. (118)

This relation shows that there exists a shift of the plasma frequency by a factor (1 −
(5/2) (κT/mc2)). This approximation is valid for not such high temperature since when T →∞,
w2
o → −5

2(κT/mc2) and wo will be imaginary which corresponds to a damping. Nevertheless,
high expansion in the φl’s will turn on a similar effect as we will see in the ultra-relativistic case.
Considering the imaginary part (the radiation reaction term), we have

w = wo + iγ. (119)

We arrive at
γ = τow

2
p(w

3
o/k

3) [= (=+ 3/α)] . (120)

which represents a tremendous damping effect. The Landau damping vanishes for high
temperature because the imaginary part of the integrals can be neglected.
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Figure 5. The approximation is good but the numerical method (blue line) shows that as α
decays the approximation is less accurate (red line).

Figure 6. For α ' 1, equation (116) is not anymore valid (red line) and it has to be substituted
by an equation close to equation (117) or by the numerical solution (blue line)

5.3.3. The ultra relativistic case
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The relation between α and vT We have to notice that when the temperature is ultra-
relativistic, the normal relation between the α = mξ = m

κTo
and vT must be changed. For

non relativistic temperature, the relation is (the 3 degree of liberty are taken into account)

v2T = 3/α with α−1 =
κTo
m

, (121)

with the particularity that

= = 1− 3

2α
+ 0(α−2) for α� 1. (122)

However, when the temperature is ultra-relativistic, it is clear that vT = 1 and α must constraint
to a minimum value. Nevertheless, the thermal velocity has to be calculated in different form.
Indeed, following the Special Relativity, the average energy,

〈E〉 =
m√

1− v2T
, (123)

represents an appropriate relativistic definition of the thermal velocity. On the other hand,
Synge [40] has proved that

〈E〉 = m (=+ 3/α) . (124)

Noticing that

= =
1

2
α+ 0(α2) for α� 1 (125)

which gives

v2T ' 1− 1

9
α2. (126)

Therefore, α→ 0, v2T → 1 as it was expected.

Dispersion relation for the ultra-relativistic case Now, we can continuous analyzing the ultra-
relativistic case. Taking the real part of equation (89), we arrive to (α→ 0)

k2 + w2
pk
αIα = 2ww2

p

[
α

4k
log

(
w − k
w + k

)]
+ w2

pk
αkα

α

2kαkα
. (127)

In this case,

kαIα '
α

2
. (128)

We obtain

k2 = ww2
p

[
α

2k
ln

(
w − k
w + k

)]
. (129)

In the superlumic case, k → 0, we have

k2 = −ww2
pα

[
ln (w + k)− ln (w + k)

2k

]
, (130)

that is:

k2 = −ww2
pα
d lnw

dw
= −ww2

p

1

w
= −w2

p. (131)

which means that for k → 0, there is no perturbation as we will show in section 6 (Numerical
Results of the Dispersion Relations).



IARD 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012001

IOP Publishing

doi:10.1088/1742-6596/1239/1/012001

23

Figure 7. For very low α, there is not exist a good approximation and just the numerical
method is valid. It has to be highlighted that when k → 0, w = 0.37wp

Figure 8. The value of w when k → 0 as a function of α. It has to be highlighted that the
value of w → 3 as α→ 0.

6. Numerical Results of the Dispersion Relations
Until now we have given dispersion relations in many ranges of validity but no for any α neither
k in general. Due to difficulty to solve in general equation (89), it is necessary to use numerical
methods to describe the dispersion relations. Let us present some important results. In figure 2,
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Figure 9. Dispersion relations surface in the 3−dimension space k,w, α. The red arrow line
which crosses the surface, represent (w/wp) = 1

some characteristic plasmas are described showing that all of then satisfy the required condition
ne2τo � 1.

Some dispersion relations for different α’s are shown from figure 3 to figure 7. A comparison
is made between the dispersion relations obtained by making some approximations, equation
(116) and the numerical method for different values of α. Notice that the relation described in
equation (118) is much accurate for decreasing α. The red lines in the figures just corresponds
to equation (116) which does not describe the shift in the plasma frequency.

In figure (8), it is numerically showed that there exists a limit for the value of w when k → 0
for ultra-relativistic temperatures. However, the most interesting fact consists on noticing that
when α is decreasing the dispersion relation has a cut-off for the wave number k (see figure
9); that is: for each α there is a maximum wave number kα such that above it the wave no
longer exists. Moreover, below a certain value of α, it can be said that there is not anymore a
dispersion relation but unique values of w and k; that is

α < αp → w = w(α) and k = k(α). (132)
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7. Conclusion
We follow Hakim [3] in the deduction of the density of particles just by considering the positions
and the velocities of the particles as independent variables without taking into account the
hyper-acceleration as an independent variable. This is due to the fact that Landau-Lifshitz
equation of motion for charged particles is used to describe the motion of the charges. The
final result coincides with Hakim generalization of the Vlasov equation in Special Relativity [3].
Moreover, a more general equation is deduced by including a constant external electric field.
The wave dispersion relations are obtained and the effect of the coupling between the constant
external electric field and the interaction of the particle does not play an important role since
the dispersion relations are not affected.

We recover well-known dispersion relations for different range of values and approximations
comparing their with numerical solutions. The original results are threefold:

A- There exist a cut-off wave number kα for each temperature for which above this wave
number there is no wave.

B- For temperatures above Tα=1 (for α < 1), the value of w at k → 0 decreases below 0.5wp
C- For temperatures above Tp (α < αp), the dispersion relation does not exist and we have

a unique pair, w = w(α) and k = k(α).
It remains to do a similar study using the Hammond model. Indeed, although Hammond

model does not give an expression for the radiation reaction force, we will make an attempt
in order to deduce an effective Hammond radiation reaction force for the case of an external
constant electric field in a plasma. The radiation reaction force must not vanish as it happens
for the other equations and consequently different dispersion relations will be obtained to test
the viability of Hammond model. It has to be noted that Hammond proposed an experiment
to check the difference between the different equations by measuring the gain of kinetic energy
under a high laser intensities (1022Wcm−2) [19], [22]. We think that dispersion relations are
easier to be measured.
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