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Abstract We study thermalization in closed non-integrable
quantum systems using the Krylov basis. We demonstrate
that for thermalization to occur, the matrix representation of
typical local operators in the Krylov basis should exhibit a
specific tridiagonal form with all other elements in the matrix
being exponentially small, reminiscent of the eigenstate ther-
malization hypothesis. Within this framework, we propose
that the nature of thermalization, whether weak or strong,
can be examined by the infinite time average of the Krylov
complexity. Moreover, we analyze the variance of Lanczos
coefficients as another probe for the nature of thermalization.
One observes that although the variance of Lanczos coeffi-
cients may capture certain features of thermalization, it is not
as effective as the infinite time average of complexity.

1 Introduction

Based on our everyday experience, the thermalization of
macroscopic systems is one of the most natural phenomena
in nature. Although to see a macroscopic system is approach-
ing thermal equilibrium one does not need to produce several
copies of the system, the statistical mechanics in which we
are dealing with “ensembles” is provided a powerful tool to
study thermalization. This has to do with the ergodic prop-
erty of classical chaotic systems that validates the statistical
mechanics. In fact in these systems the ensemble averages
used in statistical mechanics calculations agree with the time
averages involving in our experiments.

Even though for closed quantum systems one may
also observe emerging of the thermal equilibrium in non-
equilibrated systems (caused by e.g. global quench), unlike
the classical systems, the thermalization may be seen without
performing any time averages [1,2]. Indeed, out of equilib-
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rium states approach to their thermal expectations shortly
after relaxation. It is, however, important to note that in
closed quantum systems dynamics is unitary and time rever-
sal invariant, and therefore, a priori, it is not obvious how
and in what sense the thermal equilibrium can be reached
dynamically.

The notion of thermalization in quantum mechanics may
be described by the eigenstate thermalization hypothesis
(ETH) [1,2] which gives an understanding of how an observ-
able thermalizes to its thermal equilibrium value. According
to ETH for sufficiently complex quantum systems the energy
eigenstates are indistinguishable from thermal states with the
same average energy.

Although, it is believed that a non-integrable model will
generally thermalize, the nature of thermalization might dif-
fer in different situations. Actually, besides Hamiltonian
which gives dynamics of the system, the nature of the ther-
malization may also depend on the initial state, such that,
within a fixed model different initial states may exhibit dif-
ferent behaviors [3].

To explore this point better let us consider spin− 1
2 Ising

model given by the following Hamiltonian

H = −J
N−1∑

i=1

σ z
i σ z

i+1 −
N∑

i=1

(gσ x
i + hσ z

i ) . (1)

Here and in what follows σ z,y,z are Pauli matrices and J, g
and h are constants which define the model. By rescaling
one may set J = 1, and the nature of the model, being
chaotic or integrable, is controlled by constants g and h. In
particular, for gh �= 0 the model is non-integrable. In what
follows to perform our numerical computations we will set
h = 0.5, g = −1.05 [3]. It has been shown in [3] that three
different initial states in which all spins are aligned on x, y
or z directions denoting by |X+〉, |Y+〉, |Z+〉 respectively,
results in three distinct thermalization behaviors.
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In general, we would like to study time evolution of expec-
tation value of a local operator (observable) O

〈ψ(t)|O|ψ(t)〉 = Tr
(
e−i Htρ0e

iHtO
)

, (2)

whose behavior could explore the nature of thermalization
whether it is strong or weak. In the strong thermalization,
the expectation value relaxes to the thermal value very fast,
while for weak thermalization it strongly oscillates around
the thermal value, though its time average attains the thermal
value. Here ρ0 is density state associated with the initial state
|ψ0〉.

For the Ising model (1) it has been shown that although
the initial state |Y+〉 exhibits strong thermalization, for ini-
tial state |Z+〉 one observes weak thermalization and for
initial state |X+〉 there is an apparent departure of the ther-
mal expectation value form its thermal value suggesting that
there might be no thermalization for this state1 [3].

It was proposed in [3] that whether we are going to observe
strong or weak thermalization is closely related to the effec-
tive inverse temperature, β, of the initial state which can be
read from the following equation

Tr (H(ρ0 − ρth)) = 0, (3)

where ρth = e−βH

Tr(e−βH )
is thermal density state with inverse

temperature β. The strong thermalization occurs when the
effective inverse temperature of initial states is close to zero.
On the other hand, for initial states whose effective inverse
temperature are sufficiently far away from zero, one observes
weak thermalization. In particular, for the model given in (1)
the initial state |Y+〉 has zero effective inverse temperature
and for initial states |Z+〉 and |X+〉 one has β = 0.7275 and
β = −0.7180, respectively.

For a given initial state |ψ0〉 the Eq. (3) may be rewritten
as follows

Tr (ρth H)) = 〈ψ0|H |ψ0〉 = E , (4)

which suggests that the information of the effective inverse
temperature could be read from the expectation value of the
energy. Indeed, the regime on which the strong or weak ther-
malization may occur could also be identified by the normal-
ized energy of the initial state [5]

E = 〈ψ0|H |ψ0〉 − Emin

Emax − Emin
(5)

where Emax , Emin are maximum and minimum energy
eigenvalues of the Hamiltonian. Actually, the quasiparticle

1 Actually it seems that the apparent departure of thermalization in this
case is due to the finite N effects and indeed, even in this case we still
have a weak thermalization [4].

explanation of weak thermalization suggests that initial states
with weak thermalization are in the regime of near the edge
of energy spectrum [6].

Although in the literature, mainly, the normalized energy
(5) has been considered to study weak and strong thermaliza-
tion, it is found useful to work with the expectation value of
energy itself which contains the same amount of information
as that of the normalized energy.

To further explore the nature of thermalization in the Ising
model (1), let us consider an arbitrary initial state in the Bloch
sphere which may be parameterized by two angles θ and φ

as follows2

|θ, φ〉 =
N∏

i=1

(
cos

θ

2
|Z+〉i + eiφ sin

θ

2
|Z−〉i

)
, (6)

where |Z±〉 are eigenvectors of σ z with eigenvalues ±.
Indeed, at each site, the corresponding state is the eigen-
vector of the operator Oi = n · σi , with n is the unit vector
on the Bloch sphere. More explicitly, one has

Oi (θ, φ) = n ·σi = cos θ σ z
i + sin θ (cos φ σ x

i + sin φ σ
y
i ),

(7)

for i = 1, . . . , N .
For this general initial state and for the model (1) one

can compute the expectation value of energy which has the
following simple form

E = − cos θ (Nh + (N − 1)J cos θ)− Ng cos φ sin θ . (8)

An interesting feature of the expectation value of energy is
that for large N (N � 1), the number of spins appears as an
overall factor and thus the density of energy defined by E/N
(energy per site) is independent of the size of the system

E

N
≈ −

(
h cos θ + J cos2 θ

)
− g cos φ sin θ, N � 1. (9)

Using this analytic expression for the expectation value
of energy we have drawn the density of energy in Fig. 1 for
N = 100 and J = 1, h = 0.5, g = −1.05. Actually, to
highlight the regions where the density of energy vanishes
we have depicted its absolute value.

To compare this result with the behavior of the effective
inverse temperature and in particular the sensitivity of the
result with the size of the system, in Fig. 2 we have presented
the numerical result of the absolute value of the effective
inverse temperature for N = 7. Since the Hamiltonian of the

2 In general the initial state could be identified by 2N angles (θi , φi )

for i = 1, . . . N . In our case we have assumed that angles in all sites
are equal.
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Fig. 1 Absolute value of the density of energy evaluated using the
analytic expression (8) for N = 100 and J = 1, h = 0.5, g = −1.05

Fig. 2 Absolute value of the effective inverse temperature for arbitrary
θ, φ for the general initial state (6). Here we have set N = 7 and
g = 0.5, h = −1.05

model (1) is traceless, the locus of β = 0 are given by the
regions over which E = 0 that are shown by two dark semi
circles (ring of zero β3) in Figs. 1 and 2. This is, particularly,
illustrative since the main significant information contained
in β is its distance (absolute value) from zero. Generally, it
is believed that strong thermalization occurs near the ring of
zero β.

3 By a phase shift one may draw the density of energy for −π ≤ φ ≤ π

for which β = 0 region is a ring.

One observes that the behavior of the effective inverse
temperature matches exactly that of the density of energy
event though the size of the two systems by which these
quantities are evaluated are different by about a factor of 15.
This shows the robustness of the results against the size of the
system. In particular, this has to be compared with the results
in the literature where the numerical computations have been
performed for N = 14. Even though our β is evaluated for
N = 7 in comparison with that of N = 14 the error we
acquire is about O(1) percent.

This article aims to study quantum thermalization using
the Krylov basis which seems to be a more appropriate basis
when the dynamics of the system is our interest. Although
the Krylov method has been used to study numerical compu-
tations [7], in recent years there have been several activities
to use the Krylov method in the context of quantum chaos
(see [8] and its citations).

In this paper, we would like to explore a potential applica-
tion of Krylov space within the context of quantum thermal-
ization. The key advantage of studying thermalization in this
framework lies in the fact that, under a unitary time evolu-
tion the trajectory of a given initial state does not necessarily
expose into the entire Hilbert space. Instead, it remains con-
fined within a subset known as the Krylov space, which typ-
ically has a smaller dimension compared to the full Hilbert
space of the system. Thus, focusing on the Krylov space suf-
fices for studying the time evolution of the system. In particu-
lar, if the system has conserved charges, working in this basis
we are automatically confined in a subsystem that preserves
the symmetry of the initial state.

The paper is organized as follows. In the next section, we
will study the late time behavior of the expectation value
of typical operators within the Krylov basis. Following the
Eigenstate Thermalization Hypothesis (ETH), we will pro-
pose an ansatz for the matrix elements of the operator within
the Krylov basis, called the Krylov Thermalization Hypothe-
sis (KTH). We will present several numerical computations in
support of our ansatz. In section three we will study the nature
of thermalization in this framework. Specifically, we will
introduce two metrics to probe the nature of thermalization-
namely, the variance of Lanczos coefficients and the infinite
time average of Krylov complexity. While the former may
not provide a definitive conclusion, the latter offers a pat-
tern that agrees perfectly with other proposed probes in the
existing literature. Additionally, we will calculate the inverse
participation ratio to contrast it with the results from the infi-
nite time average of complexity. The late section is devoted
to discussions.
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2 Krylov basis and thermalization

Let us consider a closed quantum system with time indepen-
dent local Hamiltonian H whose eigenstates and eigenvalues
are denoted by |En〉, and En , respectively. Starting with an
initial state, |ψ0〉, in the Schrödinger picture at any time one
has

|ψ(t)〉 = eiHt |ψ0〉 . (10)

In the context of quantum thermalization the main purpose is
to start with an initial state and then quickly alter the system,
e.g. by a global quench, and then let the system evolve under
the local Hamiltonian H . As we have already mentioned,
generally, we are interested in the late time behavior of the
expectation value of local operators (observables)

〈ψ(t)|O|ψ(t)〉 = 〈ψ0|e−i HtOeiHt |ψ0〉 = 〈O(t)〉 . (11)

The main question is to what extent and for what times the
system can be described by a suitable thermal equilibrium
system in which the above expectation value can be approx-
imated by Tr (ρthO).

To study different features of chaotic systems and thermal-
ization one usually utilizes the energy spectrum and energy
eigenstates which amounts to diagonalize the Hamiltonian.
For example, the nature of quantum chaos may be given in
terms of the energy level statistics [9].

In the energy eigenstates, assuming |ψ0〉 = ∑
α cα|Eα〉,

the expectation value (11) reads

〈O(t)〉 = Tr(ρDEO) +
D∑

α �=β

ei(Eα−Eβ)t cαc
∗
β〈Eα|O|Eβ〉 ,

(12)

where ρDE is diagonal density matrix

ρDE =
D∑

α=1

|cα|2|Eα〉〈Eα| . (13)

Here D is the dimension of Hilbert space. Then, one can pro-
ceed to explore equilibrium and thermalization in this context
which happens due to the possible phase cancellation at long
times [10] when the expectation value of the operator may
be given by the canonical ensemble Tr(ρDEO) ≈ Tr(ρthO).

We note, however, that a Hamiltonian may be also put
into a tridiagonal form in which we could work in the Krylov
basis. See e.g [11–13]. In this basis, we usually deal with
Lanczos coefficients and thus we would expect that the prop-
erties of the quantum system can be also described in terms
of the spectrum of Lanczos coefficients. Indeed, the Lanczos
spectrum has been used to study operator growth in many

body systems [8] (see also [14]). Recently, it was also sug-
gested in [13] that the chaotic nature of a system may be
described in terms of the Lanczos coefficients. More pre-
cisely, it was proposed that “Quantum chaotic systems dis-
play a Lanczos spectrum well described by random matrix
model.”

Here we would like to study quantum thermalization in
the Krylov basis. In particular, we would like to understand
to what extent the nature of thermalization may be explored
in this context (see also [15]). To proceed, let us first briefly
review the recursive procedure producing the Krylov space
for a given state in a quantum system (see [7] for review).

Starting with an initial state |ψ0〉 in a quantum system
with a time independent Hamiltonian H , the Krylov basis,
{|n〉, n = 0, 1, 2, . . . ,Dψ−1}, can be constructed as follows.
The first element of the basis is identified with the initial state
|0〉 = |ψ0〉 (which we assume to be normalized) and then the
other elements are constructed, recursively, as follows

| ̂n + 1〉 = (H − an)|n〉 − bn|n − 1〉 , (14)

where |n〉 = b−1
n |n̂〉, and

an = 〈n|H |n〉, bn =
√

〈n̂|n̂〉 . (15)

This recursive procedure stops whenever bn vanishes which
occurs for n = Dψ ≤ D that is the dimension of Krylov
space. Note that this procedure produces an orthonormal and
ordered basis together with coefficients an and bn known as
Lanczos coefficients [16].

Having constructed the Krylov basis, at any time the
evolved state may be expanded in this basis

|ψ(t)〉 =
Dψ−1∑

n=0

φn(t) |n〉 , with

Dψ−1∑

n=0

|φn(t)|2 = 1 ,

(16)

where the wave function φn(t) satisfies the following
Schrödinger equation

−i∂tφn(t) = anφn(t) + bnφn−1(t) + bn+1φn+1(t) , (17)

which should be solved with the initial condition φn(0) =
δn0.

Using the completeness of the energy eigenstates one may
expand any element of the Krylov basis in terms of energy
basis

|n〉 =
D∑

α=1

fnα|Eα〉 . (18)
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Note that since Dψ ≤ D, the expansion coefficient, fnα ,
is not necessary inevitable and therefore, in general, energy
eigenstates cannot be expanded in terms of Krylov basis.
Using the orthogonality condition of the Krylov basis one
gets

D∑

α=1

f ∗
nα fmα = δnm . (19)

On the other hand from the Eq. (14) one finds

fnαEα = an fnα + bn+1 fn+1α + bn fn−1α , (20)

that can be used to find fnα in terms of f0α = cα .
In this formalism the expectation value of a local operator

(11) reads

〈O(t)〉 =
Dψ−1∑

n,m=0

φ∗
n (t)φm(t) Onm (21)

where Onm = 〈n|O|m〉 are matrix elements of the operatorO
in the Krylov basis which, in general, are complex numbers.
Of course, the diagonal elements are real.

To find the infinite time average of the corresponding oper-
ator one needs to compute Cnm given by

Cnm = lim
T→∞

1

T

∫ T

0
dt φ∗

n (t)φm(t) , (22)

that is essentially matrix elements of the diagonal density
matrix in the Krylov basis Cnm = 〈m|ρDE |n〉, that is

Cnm =
D∑

α=1

|cα|2 fmα f ∗
nα . (23)

In this framework, inspired by ETH, we propose an ansatz
for the matrix elements of typical operators in the Krylov
basis to ensure that thermalization occurs within the system.
To illustrate how the corresponding ansatz might be formu-
lated, let us consider the ETH ansatz for the matrix elements
of the operator O in energy eigenstates [1,10],4

〈Eα|O|Eβ〉 = f (Eα)δαβ + e− S(Ē)
2 fO(Ē, ω)Rαβ , (24)

where Ē = (Eα + Eβ)/2, ω = Eα − Eβ . This expression
can be utilized to propose an ansatz for the matrix elements

4 In this expression S(Ē) is thermal entropy at energy Ē which is
an extensive quantity and proportional to the size of the system. It is
important to note that f and fO are smooth functions of their arguments.
Rαβ is a random real or complex variable with zero mean Rαβ = 0 and

unit variance: R2
αβ = 1, |Rαβ |2 = 1.

of the operator O in the Krylov basis through the following
relation

〈n|O|m〉 =
D∑

α,β=1

f ∗
nα fmβ 〈Eα|O|Eβ〉. (25)

To proceed, one can promote the function f to an operator
by replacing the energy with the Hamiltonian

f (Eα) → f̂ (H) . (26)

This allows to express the ETH ansatz as follows

〈Eα|O|Eβ〉 = 〈Eα| f̂ (H)|Eβ〉 + O(e−S/2) . (27)

Here we have utilized the fact that f̂ (H)|Eβ〉 = f (Eβ)|Eβ〉.
Plugging this expression into Eq. (25) one gets

〈n|O|m〉 = 〈n| f̂ (H)|m〉 + suppressed terms . (28)

In this equation, the suppressed terms correspond to the expo-
nentially suppressed terms in the original ETH ansatz. Using
the fact that 〈n|m〉 = δnm and

〈n|H |m〉 = anδn m + bm+1δn m+1 + bmδn m−1, (29)

it becomes clear that the matrix representation of the operator
O in the Krylov basis is not diagonal. However, we note that
while off-diagonal elements also appear in leading order in
this expression, we generally would not expect significant
contributions from all off-diagonal matrix elements.

To understand this, we recognize that for thermalization to
occur beside the ETH ansatz, one must further assume that f
is a smooth and slowly varying function of Eα . Additionally,
the initial state must be sufficiently localized within a narrow
energy window-specifically, the variance of energy should be
much smaller than the energy expectation value of the initial
state. This justifies the neglecting of higher-order terms in
the following Taylor expansion [10]5

f (Eα) ≈ f (E) + (Eα − E) f ′(E), (30)

where E = 〈ψ0|H |ψ0〉 and, f (E) is the expectation value
predicted by the (micro)canonical ensemble Tr(ρthO) ≈
f (E). Here “prime” denotes derivative with respect to Eα .
In this approximation, the ETH ansatz (24) reads

Oαβ ≈ f (E)δαβ + f ′(E) 〈Eα|H − E |Eβ〉+O(e− S
2 ) , (31)

5 More precisely, one assumes that (
E)2 f ′′(E)/ f (E) � 1 with 
E
being the variance of energy [10].
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resulting in the following expression for the matrix elements
in the Krylov basis

Onm ≈ f (a0)δnm + f ′(a0) 〈n|H − a0|m〉
+suppressed terms, (32)

which shows that the matrix representation of a typical
observable in the Krylov basis is essentially tridiagonal in
which the off-diagonal elements adjacent to the diagonal,
denoted as Onn+1, are proportional to the Lanczos coeffi-
cientsbn (see Eq. (29)). Note that the suppressed terms, which
contain bn-dependent factors, are of order O(
E2).

Regarding “suppressed terms,” one can follow a similar
approach as with the ETH ansatz to estimate their order of
magnitude [17]. To proceed, following [18], we note that
using the completeness of the Krylov basis, the inequality the
fact 〈n|O2|n〉 ≤ |O|2 maybe written as

∑
m |Onm |2 ≤ |O|2.

Moreover, since |Onn|2 is always positive one may write

Dψ−1∑

m( �=n)=0

|Onm |2 ≤ |O|2 . (33)

where |O| denotes the operator norm,6 and Dψ is the dimen-
sion of the Krylov space associated with the initial state ψ0.
Moreover, if we assume that the off-diagonal matrix elements
Onm are smooth and vary slowly, they can be considered to
be almost constant so that one finds

Dψ−1∑

m( �=n)=0

|Onm |2 ≈ |Onm |2
Dψ−1∑

m( �=n)=0

= |Onm |2Dψ . (34)

By making use of this approximation one can derive an
expression that captures the behavior of off-diagonal ele-
ments to the leading order. Indeed from Eq. (33), we one
gets

|Onm | ≤ |O|√Dψ

. (35)

It is essential to highlight that the aforementioned condi-
tion pertains to the contributions of “suppressed terms” to
off-diagonal matrix elements. Additionally, there is a con-
tribution to these off-diagonal matrix elements from leading
terms, as indicated in Eq. (32).

Inspired by the above observations one can propose an
ansatz for the matrix elements of typical operators in the
Krylov basis as follows

〈n|O|m〉 = 〈n| f̂ (H)|m〉 + 1√Dψ

fO(anm)Rnm , (36)

6 The norm is defined by |O| = supψ

√〈ψ |O†O|ψ〉 [18].

where anm = 〈n|H |m〉. Here Rnm is a random real or com-
plex variable with zero mean Rnm = 0 and unit variance:
R2
nm = 1, |Rnm |2 = 1.
The Eq. (36) imposes a condition on the matrix elements

of the operator O in the Krylov basis, which can be seen as
an ansatz for these matrix elements to ensure thermalization.
This is referred to as the KTH ansatz. It is worth noting
that, in practice, for typical chaotic systems, the leading-
order terms of the KTH ansatz are actually represented by
those in Eq. (32). In fact by substituting this expression into
Eq. (21) one finds

〈O(t)〉 =
Dψ−1∑

n,m=0

φ∗
n (t)φm(t) 〈n| f̂ (H)|m〉 (37)

+ 1√Dψ

Dψ−1∑

n,m=0

φ∗
n (t)φm(t) fO(anm)Rnm .

Note that this equation indicates that the off-diagonal terms,
which contain bn-dependent terms, remain exponentially
suppressed, scaling as O(e−S/2).

One can use (32) to simplify the first line of the above
equation. It is clear that the contribution of off-diagonal term
in (32) vanishes,7 whereas from the first term and taking into
account that

∑
n |φ(t)|2 = 1 one arrives at

〈O(t)〉 ≈ f (a0) + 1√Dψ

Dψ−1∑

n,m=0

φ∗
n (t)φm(t) fO(anm)Rnm,

(38)

which results in

〈O(t)〉 ≈ Tr(ρthO) + small fluctuations, (39)

as expected. Here we have used that the system thermal-
izes so that the expectation value of the operator is equal
to thermal expectation value f (a0) = Tr(ρthO). Therefore,
even though the matrix is tridiagonal, the main contribution
is primarily determined by the diagonal elements, which rep-
resent the expectation value of the corresponding operator as
derived from the (micro)canonical ensemble. It is also worth
noting that in our context, all physical results are fundamen-
tally determined by two parameters: a0 and b1, both of which
carry physical significance. Specifically, a0 = E represents
the energy of the initial state, while b1 = 
E denotes its
variance..

To examine the KTH behavior of local operators (observ-
ables) we will compute matrix elements of the operator
Sx = ∑N

i=1 σ x
i , which is magnetization in the x direction,

7 Note that
∑Dψ −1

n,m=0 φ∗
n (t)φm(t) 〈n|H |m〉 = E and by definition

a0 = E .
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Fig. 3 Matrix elements of the operator Sx = ∑
i σ

x
i in Krylov basis

for cases where the initial state is |Y+〉 (left) and |Z+〉 (right). Darker
points represent the matrix elements that are closed to zero. Although,
due to its resolution, it might not be clear for these plots, these matrices
are not diagonal and, indeed, they are tridiagonal (see Fig. 4)

Fig. 4 Actual (absolute) values of matrix elements of the operator
Sx = ∑

i σ
x
i in Krylov basis for cases where the initial state is |Y+〉 (up)

and |Z+〉 (down). Blue points in left panels denote (Sx )n,n+1 elements

for the Ising model (1) with h = 0.5, g = −1.05 where the
model is non-integrable.

The corresponding matrix elements for two different ini-
tial states |Y+〉 and |Z+〉 are presented in Fig. 3 for N = 10.
From this figure, one observes that the matrix elements Onm

exhibit the desired behavior as suggested by KTH. To high-
light the behavior of matrix elements we have presented the
absolute value of them, so that in Fig. 3 the dark points cor-
respond to vanishing elements.

To further explore KTH we have also presented the actual
values of matrix elements of Sx in the Krylov basis for dif-
ferent initial states in Fig. 4 where one can observe that
(Sx )n,n+1 is significantly greater than other elements. Note
also that, diagonal elements Onn are not entirely given by
f (a0) and, in fact, they appear in a certain combination of
f (a0)+ (an −a0) f ′(a0) which might be small, even though
the expectation value, itself, could be relatively large.

We have also computed matrix elements of the magneti-
zation in the z direction, Sz = ∑N

i=1 σ z
i , for several initial

states specified by different θ and φ and we have found the

Fig. 5 Actual (absolute) values of matrix elements of the operator Sz =∑
i σ

z
i in Krylov basis for cases where the initial state is |Y+〉 (up) and

|Z+〉 (down). Blue points in the left panels denote (Sz)n,n+1 elements

Fig. 6 Time evolution of the expectation value of Sx and Sz for two
different initial states |Y+〉 (up) and |Z+〉 (down). The straight lines
represent the value predicted by the canonical ensemble

same pattern as that in Figs. 3 and 4. In particular, numerical
results for initial states |Y+〉 and |Z+〉 are depicted in Fig. 5.

It is also illustrative to explicitly compute time evolution
of the operator we considered above to see how they actu-
ally follow the general behavior given by the Eq. (39). The
results are depicted in Fig. 6. The straight brown lines in
these plots represent the long time expectation value pre-
dicted by the canonical ensemble which is equal to the infi-
nite time average of the corresponding expectation value:
Tr(ρDE Sx,z) ≈ Tr(ρth Sx,z), that is necessary for thermal-
ization to occur.

Although thermalization occurs for both initial states,
from this figure one observes that the nature of thermaliza-
tion should be different for these states. While |Y+〉 exhibit
string thermalization, for |Z+〉 it is weak.
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Fig. 7 Time evolution of the expectation value of Sx for initial state
|Y+〉 for an integrable case where h = 0. The brown dashed line repre-
sents a value predicted by the canonical ensemble whose energy is the
same as that of the initial state |Y+〉

To further explore the KTH behavior we have also done
the same computations for the cases where gh = 0 in which
the model (1) is integrable. An immediate observation we
have made is that in integrable cases the dimension of Krylov
space reduces significantly8 which may also depend on the
initial state. For example, for N = 10, where the dimen-
sion of the full Hilbert space is 210, in the chaotic case, the
dimension of the Krylov space is 529.9 In the integrable case
with parameters h = 0 and g = −1.05, the corresponding
dimensions are 463 for the initial states |Y+〉 and |Z+〉, and
253 for |X+〉.

In order to have a better statistic we have considered the
case where h = 0, g = −1.05. For this case, we have com-
puted matrix elements of different operators in the Krylov
basis for different initial states. We have found that, although
for some special cases, the corresponding matrix elements
have almost similar patterns as that in Fig. 3, it is not a generic
behavior and typically they exhibit non-universal behavior.
More importantly, in this case the long time average cannot
be approximated by a canonical ensemble (see, for example,
Fig. 7).

8 Similar observation has been already made in the context of operator
Krylov complexity in [19] (see also [20]).
9 It is known that the Hamiltonian (1) has a parity symmetry which
is essentially reflection symmetry about the center of the chain. It is
straightforward to see that the initial state (6) has positive parity which
in turn indicates that the obtained Krylov subspace should be a sub-
space with positive parity. Actually, the positive parity subspace has
528 dimensions, as expected, which is equal to the dimension of Krylov
space.

Fig. 8 Lanczos coefficients an, bn of three initial states
|Y+〉, |Z+〉, |X+〉. bn and an are shown with blue and brown
circles, respectively. The numerical results are presented for N = 10 in
which the dimension of Krylov space for a generic initial state is about
528

3 Krylov space and nature of thermalization

As we have already maintained although both initial states
|Y+〉 and |Z+〉 exhibit almost the same pattern for the oper-
ator matrix elements (see Figs. 4, 5) indicating that thermal-
ization occurs in both states, it is evident for Fig. 6 that the
nature of thermalization for these two states must be differ-
ent, as we discussed in the previous section. In this section,
we would like to study how the nature of thermalization,
being weak or strong, can be probed in the context of Krylov
space.

From Eq. (39) one finds that the nature of thermalization
should be controlled by the second term which is essentially
given by a summation over φn(t)’s. On the other hand, φn(t)
can be evaluated, recursively, from φ0(t) using Lanczos coef-
ficients. Therefore, the nature of thermalization should be
reflected in these quantities. Based on this insight, we will
propose various quantities within the framework of Krylov
space that could serve as indicators for the nature of thermal-
ization.

3.1 Variance of Lanczos coefficients

From the Krylov basis construction, it is evident that the
Lanczos coefficients should encapsulate information about
both the model’s dynamics and initial state, making them a
suitable candidate for probing the nature of thermalization.

To explore this idea, let us begin by calculating the Lanc-
zos coefficients for three different initial states that we have
discussed in the previous section.10 The results for N = 10
are shown in Fig. 8

10 Lanczos coefficients for the model under consideration have also
been computed in [21,24? ? –26].
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Fig. 9 Variance of Lanczos coefficients an (left) and bn (right). The
numerical results are done for N = 10 spins

Although one could recognize some differences among
these three plots, the differences are not substantial. Essen-
tially, the Lanczos coefficients exhibit qualitatively similar
patterns across all three cases. As a result, one might conclude
that the straightforward behavior of Lanczos coefficients may
not offer a distinct metric to differentiate between these three
cases.

We note, however, that a better quantity which might be
more sensitive to the initial state is the variance of Lanczos
coefficients. Indeed, the variance of Lanczos coefficients has
been considered in [26] as a measure to probe whether a
system is chaotic or integrable.

Let us recall that for a collection of M numbers, si , the
variance may be defined as follows

Var(si ) = 1

M

M∑

i=1

(si − s̄)2 (40)

where s̄ is the mean value. In what follows we would like
to compute the variance of Lanczos coefficients an and bn .
Actually, if one computes the variance of Lanczos coeffi-
cients for three initial states considered before, one observes
that they differ significantly.

More generally, one could compute the variance of Lanc-
zos coefficients associated with the general initial state given
by (6). In Fig. 9 we have presented the numerical results for
the variance of an and bn as a function of θ and φ for N = 10.

Clearly, there is an obvious correlation between behaviors
of the effective inverse temperature, the absolute value of
the density of energy (or normalized energy) and variance of
Lanczos coefficients (see Fig. 1). Generally, one observes that
for regions where the effective inverse temperature is small
the variance of an (bn) is also small (large). The variance
of an (bn) becomes larger (smaller) as we move away from
β = 0 regions. Another observation we have made is that
being positive, the variance is not sensitive to the sign of β

and only the absolute value of it matters.
We note, however, that the behavior of variances is not

exactly the same as that of effective inverse temperature.
Indeed, even though one can recognize the lower part of the

Fig. 10 Density of energy (left) and its derivative (right) for φ = π

slice for different N = 10, 100. Indeed, they show nontrivial behavior
around θ = 5π

6 , though it is not as pronounced as that in the variance
of an

ring of zero β, the upper part is not apparent in the plots
of variances, though there is a trace of the ring. More pre-
cisely, although from the behavior of β or density of energy
one would expect to see states with strong thermalization are
localized near the ring of zero β, the behavior of the variance
suggests that strong thermalization for states with θ � 2π

3
does not necessarily located near the ring of zero β and rather
they almost uniformly distribute around θ ≈ π .

Notably, along the symmetric axis at φ = π , while the
effective inverse temperature and the absolute value of the
energy density decrease almost monotonically from θ = π

6
to θ = π , the variance of an exhibits a minimum around
θ ≈ 5π

6 . This suggests that the state | 5π
6 , π〉 is among those

with the weakest thermalization.
To validate our numerical results, we can leverage the

exact analytic expression for the energy. This allows us to
compute the energy density for the φ = π slice for arbitrary
N . In Fig. 10, we present the energy density for N = 10 and
N = 100 to further examine its behavior.

From this figure, we observe that the energy density
exhibits non-trivial behavior around θ = 5π

6 , though this
is less pronounced than the variance of an . Using the explicit
form of the energy density for large N given in Eq. (9), we
can compute its derivative with respect to θ for the φ = π

slice

E ′ = N

2

(
sin θ + 4 cos θ sin θ − 21

10
cos θ

)
, (41)

where the prime indicates differentiation with respect to θ .
The potential minima can be identified by solving the equa-
tion

sin θ + 4 cos θ sin θ − 21

10
cos θ = 0 . (42)

It is straightforward to see that this equation has only one
solution for θ ∈ [0, π ]. Therefore, while the second point
may appear significant, there is no true minimum around θ =
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5π
6 . Remarkably, for large N , the position of the minimum

remains independent of N .
In conclusion, we find a correlation between the behavior

of the effective inverse temperature and the variance of the
Lanczos coefficients. However, notable discrepancies persist
between the two, suggesting that the variance of the Lanczos
coefficients may not be a reliable indicator of the nature of
thermalization, despite its potential to capture certain aspects
of it.

3.2 Infinite time average of Krylov complexity

Working with Krylov basis we note that there is rather a
special operator in Krylov space whose matrix elements are
proportional to Kronecker delta. More precisely, consider the
number operator defined by

N =
Dψ−1∑

n=0

n|n〉〈n|, (43)

that is obviously diagonal in Krylov basis, Nnm = nδnm .
We note that the expectation value of the number operator,
actually, computes Krylov complexity [8]11

C = 〈N (t)〉 =
Dψ−1∑

n=0

n |φn(t)|2 , (44)

that saturates at very late times where the Lanczos coeffi-
cients vanish [34]. The Krylov complexity is an interesting
quantity which relies on both the initial state and the Hamil-
tonian, akin to Lanczos coefficients.

The evolution of maximally entangled states in the Krylov
basis has been studied in [35], revealing that the growth and
subsequent saturation of Krylov complexity are common
features of many-body systems, regardless of their chaotic
or integrable nature. As a general consequence, we would
expect to observe the following behavior at late times

C = C + small fluctuations , (45)

where C is the infinite time average of the Krylov complexity
given by

C = lim
T→∞

1

T

∫ T

0
〈N (t)〉 dt = Tr(ρDEN ) , (46)

It was conjectured that one could probe the system’s
dynamics by examining the infinite time average of Krylov
complexity, with chaotic models exhibiting higher values

11 See also [27–33] for related works.

Fig. 11 Infinite time average of complexity for states associated with
the initial state 6. The numerical computation is done for N = 9

[36]. In fact, in an explicit Ising model, it has been demon-
strated in [36] that the infinite time average of the Krylov
complexity increases as one transitions from an integrable
model to a chaotic one. However, it is important to note that
in addition to the dynamics the infinite time average of Krylov
complexity also depends on the initial states. In fact, the infi-
nite time average of Krylov complexity for chaotic systems
may or may not exceed that of integrable models [22,23,26].

We have leveraged this insight to propose the infinite time
average of Krylov complexity as a measure to probe the
nature of thermalization. It is straightforward to compute the
infinite time average of complexity for states associated with
initial states (6). The numerical result for N = 9 is depicted
in Fig. 11.

Interestingly, the resulting pattern aligns perfectly with
the absolute value of the energy density and the effective
inverse temperature. Specifically, we have observed that
states exhibiting strong thermalization have a higher com-
plexity saturation value than those with weak thermalization.
In conclusion, for the model described in Eq. (1), we find that
as thermalization intensifies, the complexity saturation value
also increases. We hypothesize that similar conclusions may
apply to generic models.

3.3 Inverse participation ratio

It is worth mentioning that by making use of the inverse
participation ratio [37] the nature of weak or strong thermal-
ization of certain XY Ising model has been studied in [38].
Thus it is worth looking at this quantity for our model too.
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Fig. 12 The logarithm of inverse participation ratio for general initial
state given in (6) as a function of θ and φ. The numerical computation
is done for N = 10

Consider a state whose expansion in the energy eigenstates
is |ψ〉 = ∑D

α=1 cα|Eα〉, where cα = 〈Eα|ψ〉. Then, the
inverse participation ratio is defined by

λ = 1
∑D

α=1 |cα|4 = 1

Tr(ρ2
DE )

, (47)

which is essentially a quantity that measures the number of
energy eigenstates that contribute to the state |ψ〉. Note that
1 ≤ λ ≤ D. In fact, when only one energy eigenstate con-
tributes to the state the inverse participation number is one,
while when all energy levels equally contribute to the state it
is equal to D.

It is worth also noting that the inverse participation ratio
may be given in terms of the infinite time average of the wave
function φ0

λ−1 = lim
T→∞

1

T

∫ T

0
|φ0(t)|2dt . (48)

Now, let us compute the inverse participation ratio for the
general initial state (6). The results are depicted in Fig. 12,
which displays the logarithm of the inverse participation
ratio, ln λ. Interestingly enough, there is a strong correlation
with all the quantities we have examined thus far, including
the variance of the Lanczos coefficients.

It is important to highlight that analyses of the effective
inverse temperature and normalized energy suggest weak
thermalization occurs for states near the edge of the energy
spectrum [3–6]. In our investigation, we found a correlation
between whether a state exhibits weak or strong thermaliza-

Fig. 13 The logarithm of inverse participation ratio of φ = π slice for
N = 10, 11. One observes that the second peak (minimum) is removed
as one goes to higher N

tion and its inverse participation ratio, as indicated in [38].
Specifically, the nature of a state’s thermalization is closely
linked to the number of energy eigenstates contributing to it;
states comprised of more energy eigenstates tend to display
stronger thermalization. Our computations of the expectation
values of local operators further confirm this behavior.

Moreover, the behavior of the (log) inverse participation
ratio aligns perfectly with the infinite time average of com-
plexity. This indicates that the saturation value of complexity
is higher for states composed of a greater number of energy
eigenstates [26,36].

It is intriguing to observe that when examining the φ = π

slice, we see a behavior similar to the variance of the Lanc-
zos coefficients. Specifically, there are two distinct minima
located around π

6 and 5π
6 . However, it is important to note that

the first minimum corresponds to the state with the weakest
thermalization, while the second minimum is an artifact of
the finite N effect. To illustrate this, we present the logarithm
of the inverse participation ratio for N = 10 and N = 11
in Fig. 13, which clearly shows that the second minimum
disappears as we increase N . Interestingly, the corrections
associated with larger N do not significantly alter the other
characteristics of the inverse participation ratio.

To conclude we note that for N = 11, the behavior of the
inverse participation ratio at φ = π closely resembles that of
the energy density, with only one true minimum present; the
second minimum is not genuine (see Fig. 10).

3.4 Time dependent of expectation value

So far, we have investigated several measures to probe the
nature of thermalization. It is important to note that our under-
standing of which states exhibit strong or weak thermaliza-
tion is derived from energy behavior, or equivalently, from
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the infinite time average of complexity and the inverse partic-
ipation ratio, as shown in the Figs. 1, 11 and 12, respectively.

From these figures, we observe that the state associated
with θ = 0 (arbitrary φ), corresponding to |Z+〉, exhibits
weak thermalization. In contrast, the state at θ = π (arbitrary
φ), corresponding to |Z−〉, demonstrates strong thermaliza-
tion. As θ transitions from 0 to π , a non-trivial behavior
emerges, which is evident in the aforementioned figures.

To validate this expectation, we can compute the expec-
tation value of a typical operator across different states to
determine if they exhibit strong or weak thermalization. In
fact, to get a better understanding of what actually happens
in different points in the θ − φ plane (initial states), we will
consider the magnetization in the z direction and compute
the following quantity12

〈Sz(t)〉 = 〈θ, φ|e−i Ht
N∑

i=1

σ z
i e

i Ht |θ, φ〉 , (49)

for different values of θ and φ. In examining the behav-
ior of this expectation value, we note distinct characteris-
tics for strong and weak thermalization. In the strong case,
we observe a swift relaxation characterized by a quick rise
or fall of the expectation value, followed by a saturation
phase around the thermal value, with minor fluctuations.
Conversely, weak thermalization shows oscillatory behavior
from the outset, oscillating around the thermal value.

To quantify these behaviors, we calculate the ratio of the
oscillation size (variance of the oscillation) to the amplitude
of the first peak or trough following relaxation. This ratio
serves as an indicator of thermalization strength: for states
exhibiting weak thermalization, the ratio approaches one,
whereas for states with strong thermalization, it is signifi-
cantly less than one. By assessing this ratio for a specific
initial state, we can determine its tendency toward either
strong or weak thermalization. For instance, for the state
|y+〉, which is expected to exhibit strong thermalization, the
ratio is about 0.01, while for the states |Z+〉 and |Z+〉, it is
about 0.5 and 0.7, respectively.

By exploring various initial states, we have found per-
fect agreement with our expectations based on the behavior
of energy. Actually, we have computed the corresponding
expectation value for 441 initial states13 and only few of
them have been shown in this Fig. 14 which are for par-
ticular slices given by φ = 0, π . The results are relatively
compatible with what suggested by the variance of Lanczos

12 We have also computed the expectation value for the magnetization
in the x direction, Sx , in which we have found that the conclusion is the
same as that of Sz that is explicitly presented in what follows.
13 Since the pattern in the Fig. 9 is symmetric under φ → 2π − φ, we
have only considered initial states located in 0 ≤ φ ≤ π .

Fig. 14 Expectation value of Sz as a function of time for different
initial states. As we see the weakest thermalization mostly occurs for
states whose theta angle is near zero while beside the ring of zero β the
strong thermalization occurs for θ ≈ π

coefficients and in exact agreement with what is suggested
by the infinite time average of complexity.

To further explore this point let us look at φ = 0 slice
where we have presented results for different values of θ in
Fig. 14. By making use of these results we find weak ther-
malization at θ = 0, strong thermalization around θ = π/4,
weak thermalization again at θ = π/2, and finally strong
thermalization as we approach θ = π . Interestingly enough,
we have found that the behavior is consistent with the behav-
ior of the infinite time average of complexity.

Looking at φ = π slice, from the expectation value of Sz
we find that the weakest thermalization occurs at θ ≈ π

6 while
it becomes relatively stronger as we move towards θ = π .
Actually evaluating the energy expectation value, one can see
that the initial state |π

6 , π〉 is very close to an eigenstate of
the Hamiltonian. Thus being localized in energy eigenstates
one observes an oscillatory behavior for typical operators.
This can also be seen from the inverse participation number
in which for this state one has λ ≈ 1.

It is worth also noting that we did not observe any further
special point in this slice in agreement with the behavior of
the infinite time average of complexity and in contrast to the
behavior suggested by the variance in which we would expect
to have a state with relatively weaker thermalization around
θ ≈ 5π

6 .
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4 Discussions

In this paper, we have studied thermalization for a closed
quantum system using the Krylov basis. Actually, our main
motivation to do so is that, by definition, under time evolution
a quantum state propagates over a subspace of Hilbert space
known as Krylov space. An advantage (at least theoretically)
of working in this space is that we will have to deal with a
space whose dimension is usually smaller than the dimension
of the full Hilbert space.

In the traditional approach to quantum thermalization one
usually has to study the expectation value of operators in the
energy eigenstates. It is believed that for a chaotic quantum
system the thermalization occurs in the level of eigenstates
that mathematically reflected in the statement of ETH.

On the other hand, working within the context of Krylov
space, one will have to compute matrix elements of local
operators in the Krylov basis. It is then natural to expect that
a similar concept may also show up in this context. Indeed,
by making use of an explicit example we have shown that the
matrix elements of local operators satisfy a condition analo-
gous to that of ETH. More precisely, We have demonstrated
that for thermalization to occur, the matrix representation of
typical local operators in the Krylov basis should exhibit a
specific tridiagonal form with all other elements in the matrix
being exponentially small.

We have also studied the nature of thermalization in this
framework by introducing certain metrics to probe whether
a given initial state exhibits weak or strong thermalization.
To do so, We have observed that the nature of thermalization
depends on two crucial factors: the system’s Hamiltonian and
the initial state. The Krylov basis and Lanczos coefficients,
by construction, contain information about these elements,
making them capable for studying the process of thermaliza-
tion.

We have shown that the infinite time average of Krylov
complexity could provide a measure to probe the nature
of thermalization14 which is in perfect agreement with the
behavior of the effective inverse temperature and the den-
sity of energy. In particular, an initial state exhibiting strong
thermalization has relatively larger value for complexity sat-
uration.

We have also suggested that the variance of Lanczos
coefficients could probe the nature of thermalization to see
whether for a given initial state the thermalization is weak or
strong, too. We have seen that a state with relatively smaller
(greater) variance for Lanczos coefficients an (bn) exhibits
strong (weak) thermalization. Of course, there is some mis-
match between the variance of Lanczos coefficients and the
other quantities we have evaluated. We believe that this miss

14 We also note that a certain state dependence of Krylov complexity
has been studied in [39].

match might be due to the finite N effect, though to explicitly
show it we need to go to sufficiently higher N and perform
our numerical computations with extremely high precision
which is out of our computational abilities. We leave explor-
ing this point for further study.

To further explore the thermalization properties of the
model under consideration we have also evaluated the inverse
participation ratio for general initial states. We have observed
that strong thermalization occurs for states with relatively
greater inverse participation ratio. In other words, a state con-
sisting of more energy eigenstates is more likely to exhibit
stronger thermalization. We have seen that there is a corre-
lation between the behaviors of the infinite time average of
complexity and the inverse participation ratio.

To verify our proposal we have also computed time depen-
dence of the expectation value of local operators to explicitly
probe the nature of thermalization for the generic initial state
given by (6). The results, indeed, confirm our observation
based on the behaviors of the infinite time average complex-
ity, the inverse participation ratio and the variance of Lanczos
coefficients.

An interesting question we have been trying to address
rather implicitly in this paper was the robustness of the quan-
tities we have studied in this paper against the size of the
system. In most numerical computations we have done in
this paper we have set N = 10, while in the literature the
computations are done for N = 14. It is then natural to see
how robust the results are.

Actually, among all the quantities we have considered in
this paper, we have presented an exact analytic expression
for expectation value of energy which may be treated as a
gauge to validate other results.

It is clear from the exact analytic expression that for large
N limit the density of energy is independent of N , so that its
behavior is universal which only depends on the parameters
of the model g and h.

We have also computed effective inverse temperature for
N = 7 and, surprisingly, one observes that it perfectly agrees
with the density of energy even for large N , showing that the
behavior of β is robust against the size of the system. Of
course, as we have already mentioned the actual value of β

is changed, though in comparison with the numerical results
available in the litterateur for N = 14 one finds just a few per-
cent errors. It is worth emphasizing that this is also the case
for other quantities we have studied in this paper that include
the infinite time average of complexity, the inverse partici-
pation number and the expectation value of local operators.
We note, however, that for the variance of Lanczos coeffi-
cients, we expect to see significant finite N effect to make it
consistent with other quantities.

To explore our idea about thermalization in the Krylov
basis we have considered an Ising model whose Hamiltonian
is given by (1). We note, however, that there is another model
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which has been extensively studied in the literature whose
Hamiltonian is

H =
N−1∑

i=1

σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + g

N∑

i=1

σ
y
i . (50)

For the general initial state (6) the expectation value of the
energy is

E = sin θ ((N − 1) sin θ + Ng sin φ) . (51)

One may also explore thermalization and its nature for this
model by evaluating different quantities such as effective
inverse temperature and infinite time average of complex-
ity. Doing so, one can see that the results are consistent with
the behavior of the expectation of the energy (51), that also
confirms our expectations. We note that the inverse partici-
pation ratio for this model has been studied in [38].

In this paper, we have studied the infinite time average
of the Krylov complexity and the variance of Lanczos coef-
ficients associated with the spread of an initial state [40].
We note, however, that the same question as studied in this
paper can be also addressed using Lanczos coefficients asso-
ciated with operator growth [8].15 Essentially in our context,
it corresponds to changing the picture from Schrödinger to
Heisenberg.

In the Heisenberg picture of quantum mechanics, we are
dealing with the operators and the time evolution is attributed
to the operator

O(t) = e−i HtOeiHt . (52)

Defining an inner product in the space of operators acting on
the Hilbert space, one can construct the Krylov basis for the
operator starting with an initial operator O. The first element
is identified with the initial operator O0 = O (which we
assume to be normalized with respect to the inner product)
and the other elements may be constructed recursively as
follows

Ôn+1 = LOn − b̂nOn−1, On = b̂−1
n Ôn, (53)

where LOn = [H, On] and b̂2
n = |Ôn · Ôn| is Lanczos

coefficients. The procedure stops for n = DO ≤ D2 −D+1
[19] that is the dimension of Krylov space for the operator.
Here we denote the Lanczos coefficients with a hat to avoid
confusion with those defined in the Krylov basis for state in

15 We note that operator and state growth may be studied within a
universal framework [41].

(15). Using this basis one has

O =
DO−1∑

n=1

in ϕn(t) On . (54)

Note that with this notation ϕn(t) is real and satisfies the
following equation

∂tϕn(t) = b̂nϕn−1 − b̂n+1ϕn+1 . (55)

In this context, we could also look for the variance of Lanczos
coefficients in the operator picture. To study Lanczos coef-
ficients for the Ising model (1) we may consider a generic
initial operator as follows

Oθ,φ =
N∏

i=1

Oi (θ, φ), (56)

where Oi is defined in (7). It is worth noting that since this
initial state (6) is the eigenstate of the above operator, in this
case, we are essentially studying the time evolution of density
matrix associated with the initial state Oθ,φ = ρ(θ, φ) =
|θ, φ〉〈θ, φ|.

One can also study the variance of Lanczos coefficients
b̂n associated with the initial density matrix. Doing so, one
finds the corresponding variance results in the same conclu-
sion as that for the state studied in the previous section. An
interesting observation we have made is that the behavior of
variance b̂n in operator growth is actually identical with that
obtained from an in state growth. It would be interesting to
understand this point better.
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