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Abstract: We perform a comprehensive analysis of state-of-the-art waveform models, fo-
cusing on their predictions concerning kick velocity and inferred gravitational wave memory.
Recent advancements in gravitational wave instrumentation have established new bench-
marks for the precision of future measurements. To fully exploit the potential of upcoming
gravitational wave surveys, it is crucial to concurrently enhance both semi-analytical and
numerical waveform models used for analyzing interferometer data. In this work, we establish
a pathway towards achieving this goal by developing and implementing a pipeline to assess the
accuracy of waveform models using energy-momentum balance laws derived in full, non-linear
General Relativity. The numerical accuracy assessment is performed for precessing as well
as non-precessing simulations for models belonging to the EOB, Phenom, and Surrogate
families. Our analysis reveals statistically significant deviations, which we trace back to
inaccuracies in modeling subdominant modes and inherent systematic errors in the chosen
models. We corroborate our findings through analytical considerations regarding the mixing
of harmonic modes in the computed kick velocities and inferred memories. The methodology
developed and validated in this article provides a foundational approach for future waveform
assessments and a selection guide for waveform models in practical applications.
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1 Introduction

The first direct detection of gravitational waves (GWs) from the merger of two black holes
in 2015 [1] marked a milestone in the field of astrophysics, confirming a key prediction of
Einstein’s General Theory of Relativity (GR) and ushering in a new era of observational
astronomy. The waveforms matched against the GW signal encode a wealth of information,
including the masses and spins of the binaries, the distances to the sources, and the geometry
of their motion. By analyzing these waveforms, astrophysicists can uncover the underlying
physical processes, discern the properties of exotic objects, and validate theoretical models
with unprecedented precision.

To date, the process of parameter estimation and the testing of GR necessitate numerical
modeling of gravitational waveforms across a wide range of source parameters, including
masses, spins, and other relevant factors pertaining to the merging objects. These modeled
waveforms are used as fitting templates with respect to actual data. The effectiveness of this
template-to-signal match hinges on the precision of the estimated waveforms. Therefore, in
order to extract meaningful information from signals, it is crucial to construct comprehensive
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and accurate waveform templates that faithfully capture the physics of GR. This requirement
is further substantiated by the expected increase in signal-to-noise-ratio of future GW
observatories such as LISA [2], the Einstein Telescope [3], and the Cosmic Explorer [4]. Their
increased resolution and sensitivity opens them up to more subtle effects like the gravitational
memory [5–11], and they may even reveal physics beyond GR [12].

Deviations between templates and the actual waveforms contained in the observational
data introduce systematic biases, compromising the reliability of the information extracted
from the signal. To counteract such biases, a diverse set of template waveforms is employed
when analyzing data from GW instruments. Among these template waveforms, the ones
obtained from Numerical Relativity (NR) simulations are the most reliable. The computation
of NR templates, however, consumes vast amounts of computational resources per waveform
generation. This poses a significant challenge, particularly as the volume of data to be
processed is expected to increase drastically in the upcoming years with the advent of multiple
ground- and space-based instruments like LISA [13] and LIGO/Virgo [14, 15]. Furthermore,
as the measuring precision advances, deviations from GR [12] may reveal themselves in
the observed data. Detecting such deviations necessitates an expanded parameter space to
account for alternative descriptions of gravity, which consequently amplifies the number of
waveforms against which the data must be tested.

The efficiency challenges associated with NR waveform generation are not the sole moti-
vation for the development of alternative waveform models. Semi-analytical waveform models
offer a more transparent understanding of the fundamental physics underlying gravitational
wave sources. These models allow for the incorporation of essential physical effects and
approximations directly into the simulations of inspiral, merger, and ringdown phases of
binary black hole coalescences. Their design ensures flexibility and applicability across a broad
spectrum of astrophysical scenarios, including binary black holes, neutron star mergers, and
mixed systems, by adjusting specific parameters within the models. In practical applications,
gravitational wave observatories such as LIGO and Virgo depend on data analysis pipelines
that necessitate the rapid generation and comparison of waveform templates. Semi-analytical
models are well-suited for integration into these pipelines, facilitating real-time or near-real-
time analysis of incoming data. Additionally, due to the commonly employed analytical
Post-Newtonian (PN) ansatz in computing the inspiral waveform, semi-analytical models can
be extended to earlier stages in the evolution of a binary system, where the system exhibits
nearly constant frequency oscillations long before the merger. This capability is typically
limited in NR templates due to computational constraints, highlighting the complementary
strengths of semi-analytical modeling approaches.

Prominent representatives of alternative waveform models are the Surrogate models [16–
18], phenomenological models [19–22] and effective-one-body simulations [23–31], where the
latter two rely on semi-analytical techniques. To obtain reliable results within reasonable
timescales, the models adopt distinct strategies to compute the gravitational strain for
inspiral, merger and ringdown phase. Each model focuses on different physical aspects of
compact binary coalescence and is capable of producing a waveform within certain parameter
ranges in an efficient manner.
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In the light of the increasing demands on waveform models in future data analysis runs,
it is crucial to continuously test and improve the GW waveform templates. This includes
adapting them corresponding to the relevant challenges in current data analysis pipelines
(e.g., adding memory where missing) and establishing efficient performance assessments. All
of the above are currently under active investigation by the waveform communities and
constitute fundamental challenges of GW physics.

In this work, we address these issues by providing an extensive and quantitative com-
parison of state-of-the-art waveform models based on their prediction of physical quantities
such as the remnant’s kick velocity and the inferred gravitational wave memory. We compare
the models to templates generated from NR simulations, as well as between themselves for
simulated mergers beyond the scope of the available NR catalog where no NR-benchmarking
is possible. Our analysis prioritizes non-precessing merger simulations for the evaluation of
kick velocities but extends the evaluation of the memory by including precessing as well as
non-precessing binary mergers. The primary tools for effecting these comparisons are the
so-called energy-momentum balance laws [32]. These exact mathematical results were derived
within full, non-linear GR and provide an infinite tower of constraints for waveform models.
After performing a decomposition of the balance laws into spherical harmonics, we obtain
a simple constraint equation as well as equations for directly computing kick velocity and
inferred memory for any given waveform model. A proof of concept that the balance laws can
be used as diagnostic tools for assessing waveform accuracy was provided in [33, 34]. Here,
our objective is to fully leverage the strength of these tools for a comparative analysis between
different waveform models. Our study builds upon prior research, which concentrated exclu-
sively on analytical models [34], the kick velocity [35, 36], or gravitational memory [33, 37].
We extend these earlier investigations, including a thorough investigation of the parameter
space and the applied analytical tools, and reveal systematic trends in waveform templates.

Our paper is structured as follows: in section 2, we provide an overview of the families
of waveform generators that are central to our analysis, along with a detailed discussion
of the specific features involved in their numerical implementation. Section 3 outlines our
methodology for preparing simulated waveforms prior to comparison, covering key aspects
such as alignment procedures, residual artifacts, and the equalization of time grids in the
waveform time series. In section 4, we list the binary black hole (BBH) merger simulations that
enter our comparative analysis, categorizing them into two groups: those generated from NR
(referred to as “cataloged”) and those falling outside the NR parameter space (referred to as
“non-cataloged”). Section 5 revisits the framework and formulation of the energy-momentum
balance laws, with a focus on a qualitative understanding and an emphasis on their power for
assessing the accuracy of waveform models. The core of our investigations is found in section 6,
where we analyze kick velocity, memory, and the relative differences between the selected
models, based on the equations derived in section 5. Special attention is given to the impact
of mode content and selection, as well as parameter space-dependent performance differences
of waveform models. Finally, in section 7, we discuss the outcomes of the model comparison,
considering aspects such as alignment strategies, mode selection, and overall performance.
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2 Overview of waveform models

We begin by introducing the alternative models under investigation in this study, which have
played a significant role in GW research. We highlight the key features of these models and
discuss aspects of their numerical implementation. For more details on the inner workings
of each model, we have provided relevant references below. A comprehensive overview of
these models can be found in [38].

To remain as closely as possible to the data analysis pipelines used in GW reserach,
in this investigation, we focus on an ensemble of different waveform families available
through the LIGO-issued LALSuite software collaboration [39]. The latter does not access
the models directly but builds on a framework developed by the LIGO collaboration for
optimal streamlining of analysis involving waveform models. The list of models contains four
main families, which we label NR, Surrogate, Phenom, EOB according to their generation
mechanisms. Further, we include an EOB-related TEOB model into our consideration. The
motivation for this particular choice will be elaborated in detail below.

Among these five models, we focus more extensively on individual representatives. Specif-
ically, we analyze the following implementations: NR/SXS and its LALSuite interface [40]
(based on the catalog produced by the SXS collaboration [41] which relays on simulations
using the Spectral Einstein Code (SpEC) [42]), the Surrogate model NRSur7dq4 [18], EOB
being represented by SEOBNRv4PHM [27], Phenom by IMRPhenomTPHM [22] as the
phenomenological model, and TEOB implemented as TEOBResumS [29]. For simplicity,
in the remainder of this work, we shall often identify the specific model (e.g. NRSur7dq4 )
with its family name (e.g. Surrogate).

The chosen families represent distinct approaches to waveform simulations. The NR family
represents full numerical relativity simulations, offering the most comprehensive and reliable
waveforms against which the other models are competing. The alternative “approximant”
models are based on the phenomenology of binary mergers (Phenom [19–22, 43]), effective-one-
body simulations (EOB [23–31, 44, 45]/TEOB [29–31]), and interpolation of NR simulations
(Surrogate [16–18]). In table 1, we present an overview of the selected models, specifying
for each the included (spin-weighted) harmonic modes, the applicable domains concerning
mass-ratio q = M1/M2 ≥ 1, the maximum time before merger, and spin magnitude |χi|.
Note that these features, except for the mode content, are inherent to the models’ LALSuite
implementation.

For SXS , the duration of the waveform—and consequently the maximum time before
merger—varies significantly across different simulations. The median number of BBH cycles
before merger in SXS waveforms is 39, with the shortest cataloged simulation comprising
7 cycles and the longest reaching 351.3 cycles [41].1

The features of the LALSuite implementation of Surrogate, as listed in table 1, are
directly derived from the specific model NRSur7dq4, which is trained on NR waveforms with
corresponding characteristics, namely q ≤ 4 and |χi| ≤ 0.8. The initial time for the relevant
NR simulations ranges from 4693 to 5234 M , resulting in an LALSuite-implemented time
before merger that does not exceed 4500 M for this alternative waveform model [18].

1The number of cycles is measured with respect to the dominant ℓ = m = 2 mode.

– 4 –



J
C
A
P
0
2
(
2
0
2
5
)
0
6
0

The EOB representative in this study, SEOBNRv4PHM, inherently has no restrictions on
the starting time of the waveform or, equivalently, on the minimum GW frequency (reference
frequency) fref of a simulation. This flexibility stems from the PN ansatz employed in the
waveform building during the early inspiral phase. However, despite the model’s seemingly
extensive parameter space coverage, SEOBNRv4PHM has been predominantly validated
against NR simulations within the range of q ≤ 4 and |χi| ≤ 0.8, with a reference frequency
fref ≈ 20 Hz at a total mass of 50 M⊙ (corresponding to 15 − 30 cycles before merger) [27].
Therefore, the accuracy of this EOB model should be considered reliable only within this
region of the waveform parameter space.2 Despite these caveats, in table 1, we list the vastly
larger parameter space values numerically accessibly in EOB’s LALSuite implementation.

Similar constraints regarding the faithfulness of simulated waveforms apply to the phe-
nomenological model Phenom. The selected representative, IMRPhenomTPHM, is derived
from its non-precessing counterpart, IMRPhenomTHM [46], through the so called “twisting-
up” procedure. For further details, we refer to [22]. The underlying model, IMRPhenomTHM,
is calibrated against NR solutions up to q = 18, covering nearly the entire spin spectrum
(|χi| ∈ [0, 0.99]). Similar to EOB, the gravitational wave reference frequency fref of IMR-
PhenomTPHM can technically be extended to arbitrarily low frequencies. Again, the values
listed for IMRPhenomTPHM in table 1 represent the maximum accepted input parameter
range for Phenom when loaded via the LALSuite environment.

For the second representative of the EOB family, TEOBResumS, the parameter space
restrictions arise from model stability considerations and previous evaluations that revealed
physically inconsistent results beyond the specified bounds. It is important to note that the
calibration of TEOBResumS was performed using NR simulations with mass ratios up to
q = 20. The TEOB model is limited to the non-precessing regime and exclusively outputs
the ℓ = m = 2 mode. In our analysis, TEOBResumS serves as a benchmark to assess how
the inclusion of additional mode content impacts waveform precision, as quantified by the
balance flux laws. Similar to the EOB and Phenom models, the LALSuite function for TEOB
allows for arbitrarily low initial frequencies. On the other hand, it is important to note that
the LALSuite environment generally imposes a maximal initial frequency, which depends on
input parameters such as mass ratio, individual masses, and spins. This constraint ensures
the minimal inclusion of the inspiral phase in the simulated waveform.

At this point, we emphasize that, for the trained eye, there may be disagreements between
the intrinsic properties of waveform models, such as mode content, and their corresponding
features within the LALSuite framework listed in table 1. For example, while it is possible to
load the ℓ = 3, m = 2 mode for both Phenom and EOB within LALSuite, these harmonics,
when provided by LALSuite, do not contain any practical information and can be disregarded
as artifacts. Generally, LALSuite does not map the simulated waveform modes directly from
the original models in a one-to-one correspondence. Instead, it applies time-interpolation and
frame-correction methods [39], which may slightly modify the strain harmonics compared to
their “original” form. Verification procedures have been conducted for specific versions of the
waveform models, and only negligible differences have been observed. For details regarding

2It should be noted that higher spins and mass ratios significantly increase the computational cost required
to maintain a given level of simulation accuracy, due to the disparate length scales within the binary system [27].
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Family Implementation Branch Mode Content q-range |χi|-range tinit

Numerical Relativity SXS (NRhdf5) precessing {(ℓ, m)|ℓ ≤ 8} ≲ 10 ≲ 0.998 -
Surrogate NRSur7dq4 precessing {(ℓ, m)|ℓ ≤ 4} ≤ 4 ≤ 0.8 ≤ 4500M

Effective One Body SEOBNRv4PHM precessing {(2, ±2), (2, ±1)
, (3, ±3), (4, ±4),

(5, ±5)}

≤ 100 ≤ 1 -

Phenomenological IMRPhenomTPHM precessing {(2, ±2), (2, ±1)
, (3, ±3), (4, ±4),

(5, ±5)}

≤ 200 ≤ 1 -

“Tidal” Effective One
Body

TEOBResumS non-precessing {(2, 2)} ≤ 30 ≤ 0.99 -

Table 1. Summary of the model families, specific implementations, mode content and parameter
space coverage of the waveform models considered in this work. Note that the maximal time before
merger, tref, is given in units of total mass M , where 0 marks the merger time. In practice, tref implies
a parameter-dependent lower bound for the minimum GW (reference) frequency fref of the waveform.
The blank spaces for tref indicate that the corresponding model does not admit a uniform boundary
regarding the minimal frequency valid for all simulations. All quantities, except for the mode contend,
are displayed as listed in the LALSuite documentation [39].

the verified versions of the individual models, we refer to the LALSuite documentation [39].
Therefore, we can confidently assume that the framework, which standardizes the waveform
models with respect to coordinate and time reference frames—the LALSuite environment—
provides a highly accurate representation of the actual models listed in table 1.

Finally, it is important to note that none of the waveform models tested here includes
the GW memory effect in any form. However, tools to incorporate memory, either manually
or as an integrated feature of the waveform model, are already available. For SXS waveforms,
memory can be extracted (and added) using Cauchy-characteristic extraction (CCE) [47, 48]
which, so far, has only been implemented in a few publicly available simulations but can in
principle be applied to any cataloged merger using the software package Scri [49]. For other
models, similar techniques, involving the flux balance laws, can be applied [37]. Moreover,
recent updates to some alternative waveform models have begun to include memory in their
simulations (see references for the corresponding model families). In this study, we use memory-
free waveforms, as the computation of memory is employed as a quality metric for evaluating
the individual strain modes. This aspect will be thoroughly demonstrated in section 6.

3 Waveform preparation

For each point in the waveform parameter space considered in this investigation, the cor-
responding waveforms from each model are loaded via LALSuite. Our primary motivation
for using this framework lies in the waveform model-dependent choice of reference frames in
each GW simulation. Since different waveform models employ various numerical techniques
to generate the strain and its harmonics, the resulting outputs may be scaled to different
reference frames. To avoid frame-related mismatches, we utilize the LALSuite environment,
which applies appropriate frame transformations to ensure that the output waveforms (and
their harmonics) are aligned within the same reference frame, except for a possible global
phase shift. Addressing, among others, these reference frame alignment residuals, in what
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follows, we present the preparation procedure for GW waveforms employed in this work, which
constitutes the first step towards a comprehensive comparison of different waveform models.

3.1 Alignment and residual ambiguities

As mentioned above, the waveforms generated through LALSuite are already aligned in a
common frame, up to a rotation in the orbital plane, or equivalently, up to a phase factor
denoted hereafter as ϕref. Provided the waveforms of the approximants are of equal length
(i.e., start with a common reference frequency fref

3), the orbital phase remains the only
obstacle in the alignment of non-precessing waveforms.

Complications occur when waveform models are compared to NR data from the SXS
waveform catalog: for a simulation associated with a specific set of spins and initial masses,
it is possible that the maximal waveform domain of each approximant varies due to different
restrictions on the reference frequency fref (in particular, fref varies between SXS simulations,
see the discussion around table 1 in the previous section). In this case, we re-generate the
corresponding waveform for each approximant using a new minimal common fref, dictated by
the most stringent constraint throughout the considered models for the given BBH system.
While the LALSuite approximants can produce waveforms with different initial or reference
frequencies fref for a given simulation (within intrinsic constraints, see table 1), the SXS
waveforms come with a fixed reference frequency that cannot be altered. As a result, the
necessity of adjusting NR waveforms “by hand” (shortening the waveform’s inspiral part)
may arise, which in turn requires an additional alignment step with respect to the phase
factor ϕref. Both the LALSuite residual phase shift and the latter correction to ϕref due to
waveform cutting can be handled through a single optimization procedure.

For precessing mergers, analogous arguments apply. Here, the ambiguity to be resolved by
the alignment extends to the initial directions of the individual spin vectors of the coalescing
black holes, introducing four more independent parameters (the angles subtended by the spin
vectors) to the alignment process, in addition to ϕref. Potential challenges associated with
the additional parameters are discussed in greater detail below.

Regarding the optimization procedure, both the adjustments of ϕref and the initial
spin vectors are achieved through minimizing a mismatch function M(ϕref, Ω1, Ω2), where
Ωi = (ϕχi , θχi) are the pairs of angles for each spin vector. Once minimization is accomplished,
we posit that any discrepancies identified when comparing physical quantities on the aligned
waveforms can be attributed to inherently distinct evaluations of the binary configuration
for each individual model.4

Before addressing the removal of phase ambiguities in detail, it is important to note that
the time axis of the strain and its corresponding harmonics must also be synchronized, meaning
the waveform time series need to be placed on a common time grid. This synchronization
is largely managed by the LALSuite environment, which allows for loading waveforms from

3Here, we refer to the reference frequency as the frequency of the waveform at the initial time step from
which on the generated waveform is non-trivial. This frequency can be translated to the number of orbits
included before the merger, which generally differs between waveform models.

4Naturally, this is a crude assumption. However, discarding it would require an in-depth analysis of
potential shortcomings in the alignment procedure beyond what is discussed in this section. The latter lays
out of the scope of this work.
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different models with consistent time- or frequency-binning.5 The fixed point (origin) of the
time grid is automatically set to the merger time, defined as the moment when

max
√∑

ℓ,m

|hℓ,m(t)|2 , (3.1)

reaches its maximum. With equal binning and a uniform origin for all waveforms, the
remaining task in terms of time optimization is to trim the time grids for each waveform so
that they align on the initial time ti and final time tf. This step is carried out prior to any
alignment procedure and after loading the LALSuite waveforms for a given merger simulation.

Now, turning to the residual phase shift determined through the mismatch, the numerically
implemented mismatch function M requires an input that is related to the gravitational
strain or its harmonics. Our primary strategy is to align with respect to the dominant h2,±2
mode such that the mismatch function is computed as

M(ϕref, Ω1, Ω2) := 1 −
⟨h̃ref

2,2, h̃align
2,2 ⟩

∥h̃ref
2,2∥ ∥h̃align

2,2 ∥
. (3.2)

Here, h̃2,2 corresponds to the Fourier transformed (ℓ = m = 2)-mode of the strain in the
orthogonal decomposition

h =
∑
ℓ,m

hℓ,m(u)−2Yℓ,m(θ, ϕ) , (3.3)

where −2Yℓ,m are the spin-weighted spherical harmonics of weight −2. The inner product
⟨·, ·⟩ is defined in the frequency domain as

⟨h̃1, h̃2⟩ := 4 Re
∫ fmax

fmin
df h̃1(f) h̃∗

2(f) , (3.4)

where h̃∗ is the complex conjugate of h̃. Naturally, this inner product induces a norm, which
we denote as ∥·∥. The integration domain results from the Fourier transform of the common
time grid waveforms. Specifically, we integrate over the entire frequency spectrum computed
by fast Fourier transforming the h2,2 time series. The modes h̃ref

2,2 and h̃align
2,2 are extracted from

the reference model and the model to be aligned, respectively. Throughout the analysis, we
adopt SXS waveforms as reference. For regions in parameter space where no SXS waveforms
are available, we take Surrogate as reference instead. We emphasize that, for calculating the
mismatch (3.2) and its norm as defined by (3.4), it is not strictly necessary to transform the
modes into the frequency domain. A time domain mismatch computation is equally feasible.
However, to facilitate better comparability with the mismatch functions used by the models
themselves (see model reference but, for instance, [18]) and with other studies on waveform
comparison (e.g., [35, 36]), we compute the mismatch in Fourier space.

An inherent limitation of the alignment strategy outlined by equation (3.2) is that phase
corrections are confined to the h2,2, meaning that the procedure adjusts the phase of only the

5We have evaluated the effects of varying time (frequency) sampling on a small test ensemble of BBH
simulations. Our assessment revealed no significant impact on the calculations presented in section 6, provided
that all waveform features and oscillations are adequately resolved within the specified time (frequency) interval.
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dominant mode. It is important to note that subdominant harmonic modes with uneven-m
values can still experience a π-phase shift after h2,2 has been aligned according to (3.2). To
address this well-known effect, we incorporate an additional step in the waveform preparation
process following the alignment of the dominant h2,2 mode on a common time grid: for
each uneven-m mode, we calculate the mismatch with respect to its corresponding reference,
as described in (3.2), twice: once for the original mode and once for the mode shifted by
exp (iπ). If the π-shift results in a lower mismatch, it is adopted for the corresponding mode
throughout the rest of the analysis. This ensures that all alternative waveform models are
accurately aligned across all relevant harmonic modes with respect to the reference waveforms
provided by NR or Surrogate.

3.2 Comments on alignment and precessing mergers

Due to its dominance in the decomposition (3.3), it is established common practice to align
waveforms with respect to the harmonic mode h2,2 in frequency domain. This way, one
automatically ensures a sufficient alignment of the full strain that can be computed in similar
fashion provided an orientation/line-of-sight for the simulation is chosen. A potential caveat
to this approach arises when considering the integration boundaries of equation (3.4): when
minimizing M for the h2,2 mode across the entire Fourier-space waveform, i.e., over the
frequency range f ∈ [fmin, fmax] (including the merger and ringdown phase), the resulting
alignment can potentially obscure systematic differences between the models. While most of
the alternative waveform models use PN techniques for the inspiral, the merger and ringdown
phases are modeled quite differently, and systematic differences between the models become
more pronounced during these phases. These differences naturally contribute to the mismatch
calculated by equation (3.4). To avoid obscuring these fundamentally distinct features by
matching waveforms over the full frequency domain, a more appropriate mismatch calculation
could involve integrating only up to fend of PN-phase instead of fmax. The latter would ensure
that potential systematic differences fully remain in the aligned waveforms and only the
PN inspiral phase is precisely phase-synchronized. For the analysis of this work, the only
alignment-dependent quantity tested (for non-precessing binary mergers) is the direction
of the remnant velocity. Since this is only one of many assessment metrics, the alignment
issues discussed here are only of secondary interest in this work. Therefore, we adopt the
commonly used integration bounds as in equation (3.2) and leave the thorough testing of
alternative alignment strategy to future work.

Finally, a few comments on precessing systems are in order: aligning waveforms for
precessing systems remains challenging, and there is currently no universally optimal strategy.
In fact, optimizing alignment procedures for these systems is an active area of research. The
primary difficulty for precessing systems lies in the fact that the spin vectors of both merging
black holes have time-dependent orientations. A proper alignment would require finding the
right instant of time where these spins χ1, χ2 each align across waveform models, which can
be extremely resource demanding, especially since, depending on the model, this instance
of time may lay beyond the minimal initial time step of a given BBH simulation. Even if
all waveform models provided a time evolution of the individual black holes’ spins, finding a
match is not guaranteed due to differing internal evolution procedures. In literature, it has
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thus established common practice to minimize the mismatch (as above) with respect to ϕref
and the four spin angles of the binary system prior to the merger simultaneously. The latter
is implemented as follows: across the considered approximants, for a given BBH merger, the
waveforms are loaded with the corresponding simulation parameters, such as initial spins
(magnitude and direction), reference frequency, and initial masses. Once the waveforms are
set on a common time grid, the spin amplitudes of the targeted simulation are used as input
parameters for the mismatch function. The numerical implementation of the alignment then
employs an optimization scheme designed to minimize the mismatch function (3.2). In each
iteration of the optimization scheme, the alternative models’ waveforms are re-simulated
for a different set of spin angles at the common initial time step yielding a slightly smaller
mismatch. This process is repeated until the mismatch is sufficiently low, i.e., comparable in
order of magnitude to mismatch values of non-precessing simulations, for more details see
section 6. As a result, this scheme yields multiple waveforms on a common time grid with
equal spin magnitudes but potentially different initial spin orientations. These variations in
spin orientation reflect the differences in how each waveform model handles the precession
dynamics, even though the spin magnitudes are consistent across the models.

Since the spin orientation significantly affects the direction and magnitude of the remnant
velocity, calculating the kick for aligned precessing simulations becomes meaningless. Thus,
in section 6, we focus exclusively on the (non-linear) memory contribution from precessing
mergers. Unlike the kick, the memory effect is unaffected by phase shifts but can still respond
to changes in the initial spin configuration, albeit in a much less sensitive manner. In fact, for
the merger simulations analyzed in this work (detailed further in section 4), we found that
the alignment procedure for precessing systems, as described above, significantly enhances
the accuracy of the memory component in the corresponding waveforms.

The kick’s and memory’s dependence on the initial spin configurations stems from the
asymmetry between ℓ, m and ℓ, −m strain modes for precessing mergers. The fact that the
two quantities demonstrate differing sensitivities with respect to these mode asymmetry can
be analytically elucidated and will be addressed thoroughly in section 5. At this point, note
that the ℓ, m and ℓ, −m discrepancy is explicitly modeled only in Surrogate and SXS . The
versions of EOB and Phenom considered in this study do not account for this effect. For recent
phenomenological models including the mentioned asymmetry, see for instance [50, 51].

The effectiveness of adapted alignment strategy is illustrated in figures 1–4. For better
readability, we only display the Surrogate and NR, where NR serves as a reference model.
Figures 1, 2 show the alignment of the dominant harmonic strain mode for precessing
and non-precessing mergers, respectively, generally indicating slightly worse alignment for
precessing binaries. Moreover, figures 3, 4 demonstrate the necessity of the residual π-
shifts for subdominant uneven-m modes. Note again that subdominant modes do not
experience any alignment-related optimization scheme but solely a π-shift if necessary. The
waveforms depicted in these figures are selected to highlight this effect in specifically selected
subdominant modes.
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Figure 1. Aligned (top) and non-aligned (bottom) h2,2 waveform mode for a precessing binary
merger (SXS:BBH:1011).

Figure 2. Aligned (top) and non-aligned (bottom) h2,2 waveform mode for a non-precessing binary
merger (SXS:BBH:0191).

4 Waveform simulations under consideration

Given the substantial number of binary merger simulations considered in this study, it is
instructive to discuss the covered regions in parameter space. This allows us to establish
meaningful connections between our findings and phenomenological insights, especially in cases
where one or more approximants exhibit large deviations with respect to the reference model.
Additionally, by carefully spreading the considered mergers over a large parameter space, we
avoid introducing selection biases. A connection between errors in physical quantities for a
given merger and its position in parameter space is drawn in section 6.

For each case, that is precessing and non-precessing BBH mergers, we discuss the
considered waveforms for which NR counterparts are available and simulate additional ones
to diversify the parameter space under investigation.
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Figure 3. Aligned (top) and non-aligned (bottom) h2,1 waveform mode for a precessing binary
merger (SXS:BBH:1011). The aligned waveform is displayed.

Figure 4. Aligned (top) and non-aligned (bottom) h3,3 waveform mode for a non-precessing binary
merger (SXS:BBH:0191).

4.1 Non-precessing binary mergers

The majority of our analysis resides in examining non-precessing BBH simulations within the
SXS catalog. In figure 5 we illustrate the distribution across parameter space, distinguishing
between aligned and anti-aligned spin configurations and employing color-coding based on the
mass ratio η := q

(1+q)2 with q := M1/M2 ≥ 1, corresponding to the ratio of final and initial
mass. While a total of 175 mergers with non-negligible kick, i.e., v > 20km/s, is selected for
the non-precessing case, the parameter space displayed in figure 5 seems to be only sparsely
covered. This is due to many simulations depicted in figure 5 overlapping in the sense that
either only their mass ratio or the alignment of spins changes.

From figure 5 it is evident that regions characterized by lower spins χ1 and χ2 are
insufficiently represented within this excerpt of cataloged data. To address sparsely populated
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Figure 5. Parameter space for the non-precessing SXS data.

Figure 6. Parameter space for the non-precessing merger simulations without NR counterpart.

areas within the parameter space, we introduce additional simulated BBH mergers without
a SXS counterpart. These mergers feature aligned as well as anti-aligned spins and span
across an extensive range of mass ratios η, as depicted in figure 6. This augmented set adds
an additional 220 instances to our set of non-precessing waveforms.

Together, cataloged and non-cataloged non-precessing simulations form a well-distributed
set, which is suitable for an unbiased systematic investigation. Despite all efforts of
accurately modeling GW waveforms, for some instances of non-precessing mergers, certain
models may deviate strongly from the reference model and the other approximants in terms
of remnant velocity or gravitational memory (again anticipating results of section 6). A closer
investigation of such instances reveals that in these cases one of the modes of the deviating
model (e.g. the h2,1 mode) significantly differs from the corresponding mode of the remaining
approximants and the reference model. This behavior predominantly occurs when one of
the normalized spin components χ1,2 is extremal, i.e., either close to 0 or 1. Examples of
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Figure 7. Parameter space for the precessing SXS data.

these types include for instance SXS:BBH:0222, SXS:BBH:0223, and SXS:BBH:0251, for
which EOB results in a kick velocity much larger or smaller than for the remaining waveform
models. In order to not affect our statistical considerations, such simulated waveforms are
excluded from our investigation.

4.2 Precessing binary mergers

For the analysis of precessing BBH, we make use of 130 simulations with SXS counterparts, as
displayed in figure 7. In terms of the two spin vectors, the binary merges are homogeneously
distributed over the available parameter space. Notably, the cataloged simulations do not
extend to lower mass ratios except for the SXS:BBH:0165, which involves two black holes
of masses 51.4 M⊙ and 8.6 M⊙. As this lack of low mass ratio binaries (η < 0.2) potentially
demonstrates a parameter bias, we supplement these precessing SXS simulations with a set
of 75 additional instances. The added BBH merger simulatons are displayed in figure 8.
The difference in the number and randomness of the added instances in the precessing and
non-precessing case is a direct result of the computational complexity of aligning precessing
waveforms. For these, we optimize the mismatch with respect to 5 variables instead of only
ϕref, resulting in a significantly larger data generation time. Due to time constraints, the
added simulations in the precessing case are less numerous and more grid-like distributed.

5 Energy-momentum balance laws

To assess a waveform model’s performance against a chosen reference model, an adequate
measure of comparison has to be selected. We choose the remnant’s kick velocity and the
gravitational wave memory, which are both physical observables that can be calculated
solely from the strain of a GW. In what follows we derive explicit expressions for the kick
velocity and the memory from constraint equations which are known as energy-momentum
balance laws [32]. These laws are exact mathematical results derived from full, non-linear
GR when applied to the coalescence of compact binaries. For an exhaustive review and
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Figure 8. Parameter space for the precessing simulations without NR counterpart. For every bundle
of data points, the spin configuration is identical. For illustrative reasons, the plot shows a slight
misplacement.

derivation of the balance laws, we refer to [32, 52]. For a proof of concept that the balance
laws can be used as diagnostic tools for assessing waveforms, we refer to [34], which uses a
simple analytical waveform model, and to [33]. Here, we will simply state the main result,
explain its physical content, and perform a decomposition into spherical harmonics in order
to derive explicit expressions for kick velocity and memory. These expressions then serve
as the basis of our comparative analysis.

5.1 The balance laws

Waveform models describe GWs emitted from isolated systems composed of two compact
objects that orbit each other and coalesce. The coalescence is caused by a loss of orbital
energy, due to the emission of GWs. When the two compact objects finally merge, the
remnant can be subjected to a “kick”. This is a consequence of the fact that GWs are emitted
anisotropically and because they do not only carry energy but also momentum. Based on
this simple qualitative picture of the physics of compact binary coalescence, one would expect
that there is a mathematical law that describes the energy loss of the system and balances
it against the energy carried away by GWs. One may furthermore expect that this law
establishes a relation between (i) the initial and final mass of the system, (ii) the kick velocity,
and (iii) the strains h+, h× of the GW. Such a mathematical law does indeed exist, and it
can be derived from full, non-linear GR when applied to compact binary coalescence [32]. As
a matter of fact, there is not only one law but infinitely many. Namely, one per point on
the 2-sphere, i.e., one so-called energy-momentum balance law per choice of (θ, ϕ). These
laws can be brought into the form

c2

(
Mremnant

γ3
(
1 − v⃗

c · x̂
)3 − Mbinary

)
= −1

4
D2

L c3

G

∫ ∞

−∞

(
ḣ2

+ + ḣ2
×
)

dt + 1
2

DL c4

G
Re
[
ð2 (h+ − i h×)

] ∣∣∣∣t=+∞

t=−∞
,

(5.1)
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where v⃗ stands for the kick velocity, γ ≡ γ(v) is the usual Lorentz factor from Special
Relativity, x̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ) is the unit radial vector in spherical coordinates,
DL is the luminosity distance between source and observer, and ð is a differential operator
called “eth” whose precise definition can be found in [32, 52].

By recalling our qualitative description of the physics of compact binary coalescence, we
can give a tentative interpretation of the balance laws. Since E = M c2, according to Einstein,
we can interpret the left-hand side of (5.1) as the difference of two energies measured at
two different instants of time. Namely, the energy of the remnant, which corresponds to
the energy of the system after the merger, minus the energy of the binary system, which
is the energy measured well before the merger. The denominator containing the Lorentz
factor and the kick velocity can be understood as a correction due to the fact that the energy
of the binary system is measured in its instantaneous rest frame, while the remnant is, in
general, moving with respect to that frame with a velocity v⃗. As we will see below, when we
decompose (5.1), for the ℓ = 0 mode this factor reduces precisely to the special relativistic
formula for the kinetic energy of a body moving relative to an inertial frame, E = γ(v)Mc2.
For a derivation of this factor and technical details, we refer the reader to [32]. Since the
binary system is losing energy due to the emission of GWs, it is natural to expect that the
difference in energies is negative. Indeed, on the right-hand side of (5.1) we find an integral
over a manifestly positive quantity,

(
ḣ2

+ + ḣ2
×

)
, with a minus sign in front. This integral

computes the energy carried by GWs, and it is a well-known result of linearized GR. However,
we stress again that these balance laws hold well beyond the linear regime, and, in fact, no
linearization is ever used. Finally, the second term on the right-hand side represents the
GW memory. Because the left side of (5.1) depends on x̂, which is a function of (θ, ϕ), and
because the strains h+, h× are not only functions of time but also functions of the angular
variables (θ, ϕ), we find that there is indeed one balance law per choice of (θ, ϕ).

The strength and diagnostic capabilities of the balance laws derive from the fact that
they are a precise mathematical result that is valid in full GR. The quantities which appear
in their formulation, i.e., the initial and final mass of the binary system, kick velocity, and
the GW strains, are all quantities that either enter as parameters or are provided in an
approximate fashion by waveform models. Thus, the exact balance laws can be used to
test the accuracy of waveform models.

The balance laws are based on the pioneering work of Bondi, Metzner, Sachs, and van der
Burg, who laid the foundations for describing GWs beyond the linear approximation [53, 54].
Their work was subsequently extended and formalized by Newman, Penrose, Geroch, Ashtekar,
and others, who introduced precise mathematical definitions for “asymptotically flat” and
“asymptotically Minkowski” spacetimes [55–57], which, qualitatively speaking, capture the
idea of having an isolated system contained within a finite spacetime region. Another key
element in the derivation of the balance laws is the symmetry of asymptotic Minkowski
spacetimes. These are described by the so-called Bondi-Metzner-Sachs (BMS) group [53]. By
definition, this group leaves the asymptotic structure on null infinity I + (read: scri plus)
invariant. A variant of Noether’s theorem can then be applied, which leads to a description
of the (non-)conservation of Noether charges: the energy-momentum balance laws [58, 59].
The balance laws (5.1) shown here are an adaptation to the special case of compact binary
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coalescence. We refer to [52] for a didactic introduction and recent review of the fascinating
mathematical subjects (asymptotic Minkowski spacetimes, the BMS group, balance laws),
which here we only brushed over.

In what follows, we will need the mode-decomposition of equation (5.1) with respect to
spherical harmonics Yℓm(θ, ϕ). In order to compactify the notation, we set6

Mbinary := Mi◦ and Mremnant := Mi+ , (5.2)

and we also introduce the asymptotic shear

h(t, θ, ϕ) := 1
2 (h+ + i h×) (t, θ, ϕ) , (5.3)

where i is the imaginary unit. This last definition in particular allows us to re-write the
memory term compactly as ð2∆h̄, with h̄ denoting the complex conjugate of h and where

∆h̄ :=
∫ +∞

−∞

˙̄h dt . (5.4)

Re-writing the memory term in this fashion is possible thanks to the fact that Im(ð2h̄)
vanishes at t = ±∞ (cf. [32]).

Using these definitions and expanding both sides of equation (5.1) into spherical harmonics,
we obtain a tower of constraints, namely one for each pair of (ℓ, m) with |m| ≤ ℓ. Concretely,
this decomposition readsMi◦ − Mi+

γ3
(
1 − v⃗

c · x̂
)3


ℓ,m

= D2
Lc

G

∫ +∞

−∞

(
|ḣ|2

)
ℓ,m

dt − DLc2

G
Cℓ∆h̄ℓ,m , (5.5)

where the Cℓ coefficients are defined as

Cℓ :=
√

(ℓ − 1)ℓ(ℓ + 1)(ℓ + 2) . (5.6)

To arrive at this expression, we used well-known properties of spherical harmonics and the
explicit expression of ð2h̄, which can for instance be found in [52]. Note that Cℓ tells us that
not each term in the balance laws (5.1) contributes to each mode. In fact, Cℓ vanishes for
ℓ = 0 and ℓ = 1. Thus, the memory term only contributes to ℓ ≥ 2. Treating the ℓ < 2
and ℓ ≥ 2 modes of the balance laws separately allows us to devise a method for computing
the remnant mass, in case it is not provided by the waveform model, the kick velocity, and
the memory solely based on the GW strain.

For carrying out the mode-decomposition of the left-hand side of equation (5.5), it is
convenient to first align the z-axis of the rest frame in which Mi◦ is measured with v⃗ using a

6This is standard notation in the balance law literature and it hints at its origin: the balance laws formally
hold on null infinity, I +. If one takes the limit into the distant past, i.e., well before the binaries merge, one
reaches spacelike infinity, i◦. On the other hand, if one moves along I + into the distant future, well after the
binaries have merged, one reaches timelike infinity, denoted by i+.
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rotation in the plane spanned by v⃗ and ẑ. The first few (ℓ, m) coefficients then read

(ℓ = 0, m = 0) : 2
√

π(γMi+ − Mi◦),
(ℓ = 1, m = 0) : 2

√
3πγMi+v,

(ℓ = 2, m = 0) :

√
5πγMi+

(
5v3 + 3γ−4 tanh−1(v) − 3v

)
v3 .

Observe that the first term is, up to a factor of c2, simply the difference between the rest
energy Mi◦ of the binary and the kinetic energy γ Mi+ of the remnant, while the second
term is the (z-component) of the momentum of the remnant. The third term does not
admit a simple physical interpretation, but we emphasize that the inverse of the hyperbolic
tangent of v caused numerical instabilities in the code we used for our analysis. We therefore
Taylor expanded tanh−1(v) up to sixth order in v/c. To obtain the corresponding modes
in the original frame, we transform the above modes using Wigner D-matrices Dℓ

m,m′ for
the inverse rotation used to align v⃗ and ẑ.

The decomposition of the GW energy integral in (5.5) can easily be carried out. In
fact, the integrand can be written as

|ḣ|2 =
∑
ℓ,m

αℓmYℓm(θ, ϕ) . (5.7)

A straightforward computation reveals that the αℓm coefficients are given by (see also [33])

αℓm =
∞∑

ℓ1=2

∞∑
ℓ2=2

∑
|m1|≤ℓ1

∑
|m2|≤ℓ2

(−1)m2+mḣℓ1m1
˙̄hℓ2m2

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ + 1)

4π

×

 ℓ1 ℓ2 ℓ

m1 −m2 −m

ℓ1 ℓ2 ℓ

2 −2 0

 . (5.8)

The
(

ℓ1 ℓ2 ℓ
m1 m2 m

)
denotes the Wigner-3j symbol, which effectively determines which strain

modes ḣℓ1,m1
˙̄hℓ2,m2 couple to each other in (5.8).

5.2 Remnant mass and velocity

For astrophysically realistic kick velocities one can assume γ ≈ 1. This approximation reduces
the ℓ = 0 mode of the balance laws to an energy conservation equation of the form

c2(Mi◦ − Mi+) = D2
Lc3

16πG

∫ ∞

−∞
dt

∮
dΩ |ḣ|2 , (5.9)

where
∮

dΩ is an integral over the unit 2-sphere. In agreement with our intuition, the mass
loss of the system is accounted for by the energy radiated away by GWs. For waveform
models that provide the mass of the remnant, this formula can be used as a consistency check.
On the other hand, when a waveform model does not provide Mi+ , the above formula can be
used to determine the remnant’s mass using only the total mass of the binary system, the
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luminosity distance, and the GW strain as input.7 Upon using the expansion coefficient (5.8)
for ℓ = m = 0, the energy conservation equation can also be expressed as

c2(Mi◦ − Mi+) = D2
Lc3

8
√

πG

∫ ∞

−∞
dt α0,0. (5.10)

The ℓ = 1 mode of the balance laws encodes the conservation of linear momentum, as one
might have expected. This allows us to solve the momentum equations for the components
of the kick velocity, which can be expressed as

v⃗kick = D2
Lc2

16πGMi+

∫ ∞

−∞
dt

∮
dΩ x̂i |ḣ|2, (5.11)

in the original reference frame (i.e., the frame where v⃗ and ẑ are not aligned). Here, x̂i

stand for the i-th component of the radial unit vector x̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ). The
kick velocity components can of course also be expressed in terms of the αℓm coefficients
for ℓ = 1 and m = −1, 0, +1. One obtains

v1 = D2
Lc2

16πGMi+

√
2π

3

∫ ∞

−∞
dt (α1,−1 − α1,1) , (5.12)

v2 = −iD2
Lc2

16πGMi+

√
2π

3

∫ ∞

−∞
dt (α1,−1 + α1,1) , (5.13)

v3 = D2
Lc2

8πGMi+

√
π

3

∫ ∞

−∞
dt α1,0 . (5.14)

Equations (5.12)–(5.14) determine the kick velocity using luminosity distance, remnant mass,
and strain as input. If Mi+ is not provided by a waveform model, it can be determined
via the energy conservation equation (5.9).

5.3 Gravitational memory

As we have seen above, modes with ℓ ≥ 2 contain contributions from the GW memory. The
memory term can be decomposed into two contributions,

∆h̄ℓ,m = ∆h̄lin
ℓ,m + ∆h̄non-lin

ℓ,m . (5.15)

Following standard conventions in the literature, we define the first contribution as

∆h̄lin
ℓ,m := G

CℓDLc2

(
Mi+

γ3(1 − v⃗
c · x̂)3

− Mi◦

)
ℓ,m

, (5.16)

and call it the linear memory [5, 60]. The second term, defined as

∆h̄non-lin
ℓ,m := DL

4Cℓc

∫ ∞

−∞
dt αℓm , (5.17)

7It is important to note that the accuracy of analytical predictions is inherently linked to the accuracy
of the strain, which includes the number of cycles prior to the merger captured in the waveform time series.
In numerical simulations, these waveforms are typically truncated at a certain point in time, introducing a
natural margin of error for all kinematic predictions. However, since this truncation affects all waveforms
uniformly, it does not impact the comparative analysis conducted in this work.
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is known as the non-linear memory [6, 7]. Other names for these two terms are ordinary
memory for the former and null memory for the latter [37]. More importantly, we interpret
the ℓ ≥ 2 modes of the balance laws (5.5) as constraints on the memory terms. The same
constraints have been used in previous studies to either add memory to waveform models or
correct waveform models which did not accurately incorporate the memory effect [33, 37]. In
this work, we instead use the linear and non-linear memory inferred from (5.16) and (5.17),
respectively, as a means of comparison between different waveform models.

5.4 Connections to black hole kinematics

The significant utility of the balance flux laws lies not only in their mathematical simplicity
but also in their predictive power concerning the kinematic properties of the BBH merger’s
remnant compact object. As demonstrated in this section, the final mass and velocity of the
remnant can be accurately computed based on the GW strain alone. However, especially for
precessing systems, decomposing physical quantities in terms of the components specified by
equation (5.8) can further elucidate specific subtleties of the merger process.

To provide a brief insight, we consider the selection rules (i.e, the Wigner-3j symbols)
that govern the harmonic strain components entering the relevant αℓm’s. Generally, the α’s
are dominated by terms including at least one dominant strain mode h2,±2. For illustration,
consider α1,0, which determines the out-of-plane kick of the remnant body after the merger,
i.e., the velocity component v3. Evaluating the sums in (5.8) for α1,0, one finds that two
contributions proportional to h2,−2h̄2,−2 and h2,2h̄2,2

8 cancel each other exactly,effectively
nullifying any significant contribution to the out-of-plane kick for non-precessing BBHs.
However, in the presence of an asymmetry between h2,2 and h2,−2, as it is the case for
precessing binaries, these two contributions to α1,0 no longer cancel out, leading to a non-trivial
contribution for the remnant velocity v3. Although the asymmetry is generally expected to be
small, and thus the difference between the h2,−2h̄2,−2 and h2,2h̄2,2 terms is small as well, the
out-of-plane contribution to the kick can become comparable in magnitude to the in-plane kick.

The relatively small asymmetry between the ℓ, m and ℓ, −m modes is indeed crucial when
assessing the impact on various physical quantities, particularly the non-linear memory effect.
This memory effect is especially sensitive to the α2,0 component which plays a dominant
role because it permits the coupling of two dominant modes, such as h2,−2h̄2,−2 and h2,2h̄2,2.
In fact, in contrast to α1,0, these terms appear with equal sign. Thus, independent of any
precession in the merging system, the terms proportional to h2,−2h̄2,−2 and h2,2h̄2,2 reinforce
each other, leaving only minor traces of any potential asymmetry between h2,2 and h2,−2
in their sum. This constructive interference of these two contributions to α2,0 is a key
factor in the build-up of the non-linear memory. While the contribution of the asymmetry
accounts for the entire out-of-plane kick, the (non-linear) memory is modified only by a
fraction of the asymmetry’s magnitude relative to the integral of the dominant mode terms
h2,±2h̄2,±2. Therefore, unlike the kick, the non-linear memory is only mildly affected by
the asymmetries between the ℓ, m and ℓ, −m modes. This mild sensitivity implies that the
memory effect can still be meaningfully estimated even for waveform models that do not
explicitly account for the differences between these modes in precessing merger waveforms.

8Time derivatives are omitted for simplicity.
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The latter include the EOB and Phenom model considered in this work. Naturally, other
mode combinations within the α’s are also affected by the potential asymmetry between
ℓ, m and ℓ, −m modes. However, these contributions are generally subdominant and thus
their effects are only of secondary concern.

The kinematic mode analysis of the α components encompasses a broad range of intricate
aspects that go beyond the brief demonstration provided above. Although it is valuable to
delve deeper into these details, offering a comprehensive discussion without empirical data
is not productive at this point. Instead, we will revisit and expand upon this analysis in
section 6. There, we will illustrate how state-of-the-art waveform models can fully exploit the
analytical bounds provided by the balance flux laws. This will be supported by numerical
data, which will offer concrete evidence to reinforce the theoretical insights presented here.

To summarize this section, we decomposed the balance laws (5.1) into spherical harmonic
modes to obtain analytical equations for the remnant mass, the kick velocity, and the GW
memory. The remnant mass Mi+ is inferred from the ℓ = 0 mode of the balance laws, while
the kick velocity is deduced from the conservation of linear momentum implied by the ℓ = 1
mode. The ℓ ≥ 2 modes are used to infer linear and non-linear GW memory. Connections
to the kinematics of the remnant BH (or remnant compact object) have been pointed out.
Equations (5.9), (5.11), (5.16), and (5.17) are implemented numerically and applied to all
simulations across all waveform models considered in this work. The resulting waveform
assessment is the subject of the following section.

6 Waveform assessment

Computing the remnant velocity, following equations (5.12)–(5.14), and evaluating the
gravitational memory, encoded in equations (5.16) and (5.17), we assess the performance
of the chosen waveform approximants across the parameter space specified in 3. We also
examine the impact of the subdominant strain modes on the kick and inferred GW memory.
The analysis of alignment-sensitive quantities is restricted to non-precessing siumlations
only. Before examining large sets of data, we calibrate our numerical pipeline by testing
the computations of selected physical quantities against the metadata contained in the SXS
database. In particular, we measure deviations of the kick’s magnitude computed across
approximants using (5.11) with respect to the SXS data. The substantial agreement found in
these comparisons validates the applicability of the balance laws as numerically implemented
in the context of this work.

6.1 Mode mismatch

We start by considering the non-precessing mergers detailed in section 4, for which NR
waveforms are accessible. A natural measure of comparability between waveforms (or
individual modes) is the mismatch function (3.2). In the alignment procedure, the mismatch
function M is minimized for the dominant h2,2 mode. The remaining modes are not exposed
to any direct mismatch minimization. Thus, a first intuition about potential shortcomings of
waveform models can be gained based on the residual mismatch of the subdominant modes,
and how the latter compares to the mismatch in the dominant h2,2. In figure 9, we present
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Figure 9. Mode mismatch with respect to NR, averaged over all non-precessing BBH simulations.
We limit the mismatch axis at the highest value for Surrogate within the selected modes. The modes
exceeding the mismatch cut-off are not simulated by EOB and Phenom but accessible in their LALSuite
implementation. Thus, their precise mismatch values are insignificant.

the mismatch calculated via (3.2) for the mode content common to all waveform models,9

averaged over all simulations under consideration. As expected, we observe the lowest
mismatch for the dominant h2,2 mode throughout approximants, with Surrogate performing
best in this metric. For subdominant ℓ modes, the mismatch becomes larger. Particularly for
ℓ = 4 modes but also for h2,0, h3,2, h3,1, h3,0 and their complex conjugates, the mismatch is
multiple orders of magnitude larger than for h2,2. The higher mismatch between Surrogate
and NR in subdominant modes is attributed to Surrogate prioritizing the modeling accuracy
of the dominant h2,2 in its interpolation procedure [16, 17, 61, 62].

As outlined in table 1, multiple subdominant modes are not modeled by EOB and Phenom
(despite being accessible via the LALSuite) and thus their mismatch is close to one. For
better readability we choose not to extend the y-axis beyond the largest Surrogate mismatch
in figure 9. The absence of non-trivial contributions for said modes roughly translates to
precessing simulations as well, despite internal model procedures shifting some mode power
across subdominant strain modes via, for instance, the twisting-up procedure of Phenom
models [22]. Thus, for precessing mergers, a similar pattern regarding the mode-by-mode
mismatches as in figure 9 is found. Note, however, that for precessing simulations the
mismatch computed for an ℓ, m mode and the ℓ, −m mode can differ due to the asymmetry
for such counterparts present in NR and Surrogate waveforms.

It should be noted that the TEOB model is omitted from figure 9 due to only providing
the h2,2 mode. On average, the mismatch for this mode is only marginally higher for TEOB
compared to EOB, featuring TEOB, as well, an excellent approximant for the dominant
GW strain mode. The mismatch of TEOB with respect to NR improves further if only the

9Note that we display only up to ℓ = 4 due to the restricted mode content of Surrogate.
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inspiral is considered. This directly follows from the intrinsic modeling procedure of the
NR informed TEOB waveform perfecting precision in the inspiral at the cost of marginal
deviations around the merger phase [29, 63].

We conducted a similar analysis for non-cataloged merger simulations, i.e., waveforms
for which no NR waveform is available. In this case, we chose Surrogate as the reference
model and observe an analogous relationship between the mismatch of EOB and Phenom
versus Surrogate. Specifically, for ℓ = 2, the mismatch with respect to Surrogate for both
EOB and Phenom is low. However, for h3,3 and h4,4, EOB waveforms exhibit visibly stronger
dissimilarities with respect to Surrogate than Phenom does.

In addition to intrinsic differences in the waveform modes, the mismatch might be
influenced by a broad class of nonphysical signatures that we term “numerical artifacts”,
an instance of which is displayed in appendix A. These artifacts, particularly prominent in
higher modes, require separate consideration. In literature, some artifacts similar in nature
to what is displayed in figure 16 have been addressed and mitigated, for instance, through
the alignment of BMS charges [64, 65]. Here, we will not delve into a detailed discussion
about their origin or impact but simply point out that even with a well-defined alignment
procedure, the numerical nature of the analysis can potentially affect the mismatch results.

Despite the higher mismatch of certain modes, the full waveforms provide an adequate
approximation to NR due to the dominance of the well-modeled h2,2 mode for the majority
of BBH simulations. At the current level of precision, addressing the individual subdominant
mode mismatch is thus only of secondary interest. However, in the perspective of future
GW probes, the precision benchmark will increase significantly, potentially rendering higher
modes more relevant [66]. Hence, it is imperative for future GW waveform models to confront
the evident challenges depicted in figure 9, such as incomplete mode contents and decreasing
precision of higher-order (subdominant) modes. In the subsequent section, we establish
the groundwork for addressing these issues by examining (alignment-independent) physical
properties of the BBH computed solely based on the asymptotic strain and its harmonic modes.

6.2 Computing physical quantities

In order to investigate the impact of an approximant’s mode content with regard to its
overall waveform quality, we compute the relevant physical (strain-based) quantities of BBH
mergers using two sets of strain modes. The first set includes all available modes for each
individual model, the second set only includes low-mismatch subdominant modes, e.g. we
exclude modes belonging to the set10

Hsub = {h2,0, h3,±2, h3,±1, h3,0, h4,±3, h4,±2, h4,±1, h4,0}.

Excluding Hsub sets all waveform approximants on roughly equal footings and allows for
a quantitative comparison by including only the modes that are meaningfully simulated
throughout the waveform models.

10Note that we do not exclude modes that exceed the mode content of Surrogate model, i.e., ℓ > 4 are not
excluded for the remaining models (including NR).
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Figure 10. Relative error for the kick magnitude (top) and absolute deviation angle (bottom) of the
selected approximants with respect to NR for non-precessing merger simulations. The top stack plot
shows the relative errors for each individual waveform labeled by its resulting kick magnitude. The
bottom plot shows the deviation in kick direction with respect to orientation predicted by NR, averaged
over all simulated waveforms. A 1σ-interval above and below the mean is colorized correspondingly.
Despite displaying the mean absolute deviation, for better readability, the presented value for Phenom
is mirrored by the 0◦ line.
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6.2.1 Remnant velocity

For the mentioned set of modes, we first consider the recoil velocity of the remnant BH of
non-precessing simulations. Our attention thereby is limited to mergers with kick velocities
varying between 20 and 400 km/s. Merger simulations with a negligible kick (i.e., v < 20
km/s) are excluded from the analysis. We compare the magnitude and direction of the
remnant velocities (5.11) by computing each model’s relative error with respect to NR.

Computed using the full mode content, the relative error for the kick magnitude and
the directional deviation of the remnant velocity vectors are displayed in figure 10. In
the top plot, we stack the relative errors and plot them against the corresponding kick
magnitude for all simulations. The bottom plot displays the average across simultations of
the absolute deviation in terms of kick direction with respect to NR. Negative angles for
Phenom are assigned for better visibility in the plot. Around the average deviation, we shade
the 1σ-neighborhood in the corresponding color, where σ represents the standard deviation
of the deviation from the NR kick direction.

From a quantitative point of view, figure 10 shows a good agreement between Surrogate
and NR, as expected. In particular, for larger velocities, the relative errors are small and
the directional deviation is less than 5 degrees on average. EOB and Phenom waveforms
cannot reproduce the reference velocity vector with comparable accuracy. They also display
a similar trend of larger relative errors for lower remnant velocities. The strong fluctuations
indicate a higher dependency on the individual simulation and its corresponding intrinsic
parameters. For both the kick magnitude and direction, EOB exhibits on average the largest
errors averaged over the tested parameter space. In total, these results agree with the findings
of previous assessments based on kick velocities (cf. to figure 4, 5 in [36], but note the different
waveform model instances and paramter space). For TEOB, the computed kicks are trivial
throughout the parameter space tested in this analysis. This is a direct result of providing
only the dominant strain mode and will be clarified below.

Computing similar statistics without the subdominant high-mismatch modes Hsub, we
find that neither the kick magnitude nor its direction exhibits significant differences compared
to the values computed using the full mode content. For NR and Surrogate, the change in
directional deviation and the relative magnitude error, on average, corresponds to only a
few percent of the corresponding full-mode content values. For EOB and Phenom we do
not find statistically significant differences between excluding or including Hsub. The same
applies to non-cataloged non-precessing merger simulations.

The results indicate that quantities related to the remnant velocity of the final BH are
not sensitive to the subdominant mode content of the strain generated by a GW waveform
model. This observation extends as well to the computation of the final mass of the remnant
black hole (cf. equation (5.9)). The insensitivity of the remnant’s mass and kick velocity with
respect to the set of modes Hsub can be readily explained by the analytical expressions (5.8)
for the αℓ,m-coefficients and equations (5.12)–(5.14): The Wigner-3j symbols appearing in
equation (5.8) single out individual terms hℓ1,m1 h̄ℓ2,m2

11 which contribute to each αℓm. These
coefficients, in turn, determine physical quantities such as the kick vector. According to
equations (5.12)–(5.14), the coefficients relevant to the kick are α1,±1 and α1,0, where the

11We suppress time derivative for ease of notation.
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Figure 11. Time-integrated, relative error for αℓm (5.8). The error compares the α computed
including all strain modes against the same coefficient calculated excluding Hsub for NR and Surrogate.
We mark the modes (ℓ, m) relevant for energy, kick, and non-linear memory.

former two αℓ,m’s determine the in-plane kick and the latter dictates the out-of-plane kick. As
mentioned in the section 5.4, this component becomes non-trivial only for precessing mergers.

Among all the strain mode pairs within these kick coefficients, the most relevant terms
involve at least one dominant strain mode, h2,±2. Terms proportional to h2,2h̄2,2 appear
exclusively in α1,0, where it is observed that the term proportional to h2,2h̄2,2 cancels the term
containing h2,−2h̄2,−2. Therefore, the most significant contributions to the kick components
arise from the mixing of h2,±2 modes with subdominant ones, such as h2,±2h̄2,±1in α1,±1.
Contrarily, for α1,0 there is no non-vanishing contribution combining two ℓ = 2 strain modes,
which demonstrates analytically the comparatively small out-of-plane-component of the kick
for non-precessing BBHs. Naturally, the latter statement is not true in the precessing case
as already discussed in section 5.4.

In α1,±1, the strain mode h2,2 also appears in combinations such as h2,±2h3,±1 and
h2,±2h3,±3, which cancel in the sum (5.8). Furthermore, when combining α1,1 and α1,−1
in the vx and vy velocity components, the entries in x- and y-direction are determined by
terms proportional h2,±2h2,±1 due cancellations in the sum α1,1 ± α1,−1 in equation (5.11).
Computing the magnitude of the in-plane kick, we thus observe that an alignment induced
phase correction of the h2,±2 harmonic strain mode enters both components α1,±1 equally
and, hence, the overall phase drops out and the in-plane kick magnitude remains invariant
under phase shifts in h2,±2.

Using the above arguments, it follows that, throughout the simulated BBHs, the dominant
contribution in the α’s relevant to the in-plane kick are proportional to h2,±1 /∈ Hsub and
thus only marginally affected by the exclusion of subdominant modes Hsub; therefore, neither
magnitude nor direction (within the plane) changes significantly when disabling Hsub in the
computation. A similar conclusion applies also to the final mass, which is determined by α0,0.
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The qualitative analysis of the mode contributions to the kick is quantified in figure 11.
It displays the relative error of the α-coefficients for NR and Surrogate for Hsub included
versus excluded.12 The plot clearly illustrates that the alteration in the α’s relevant to
the kick velocity is minimal. The more pronounced error value for NR is explained by its
expanded mode content (ℓ ≤ 8) compared to Surrogate (ℓ ≤ 4), leading to a significantly
larger number of mode mixing terms in the summation of α1±1. Consequently, if Hsub is
disregarded, αNR

ℓm is more severely affected than αSurrogate
ℓm .

In conclusion, the fundamental limit of the kick velocity in assessing the harmonics
modes results from the restricted mixing appearing in α1m. Based on the Wigner-3j symbols
in (5.8), the allowed coupling of modes is restricted to |ℓ1 − ℓ2| ≤ ℓ and, correspondingly,
the dominant h2,2 mode does not combine with any higher modes. This, however, changes
when computing the memory.

6.2.2 Memory components

The linear and non-linear GW memory induced by the waveforms is computed and decomposed
in equation (5.15). Figure 12 illustrates the relative errors for both linear and non-linear
contributions to the memory for non-precessing mergers, considering the full mode content.
In the upper plot, the total linear memory is normalized to the NR contribution for each
waveform model. The shaded regions mark the 1σ interval above and below the memory
error of the ensemble of simulations (resulting in a shaded region of total with 2σ). The solid
lines represent the mean values of the memory ratio ∆hmodel/∆hNR. Similar quantities are
presented in the bottom plot for the non-linear memory, depicted as a time series to observe
the error accumulation as the non-linear memory builds up. The time t = 0 corresponds
to the merger time, and the normalization is performed with respect to the time-integrated
non-linear NR memory for each simulation.

In terms of both linear and non-linear memory, EOB and Phenom exhibit notably poorer
performance compared to the Surrogate approximant. These two models consistently produce
smaller memory values. In contrast, Surrogate performs well, particularly in the case of the
dominant non-linear GW memory. For EOB and Phenom, the NR values fall outside the 1σ

range. EOB also shows a similar trend for the linear part, suggesting systematic deficiencies
regarding the memory in these models. In the bottom plot, we replace Phenom with TEOB,
demonstrating its capabilities of accurately modeling the memory despite containing only
the dominant mode. As for the kick velocity, TEOB’s linear memory contribution is trivial
due to the absence of the h2,±1 and other subdominant modes.

In general, the linear memory is highly non-trivial to model, i.e., it requires the knowledge
of additional Newman-Penrose scalars which are not provided by the majority of approx-
imants.13 This, however, can be avoided when extending time integrals from negative to
positive time-like infinity, such as in equation (5.1). Given the finiteness of the simulated
waveforms, this approximation naturally introduces a small systematic error which is irrele-
vant to our comparison as it is introduced for all models equally and only relative numerical

12EOB and Phenom are excluded from the presentation as they do not model modes contained in Hsub in
the first place.

13An exception is given by the SXS Collaboration Caushy-Characteristic-Extraction (CCE) catalog, see [67].
Similar techniques are also adapted by other models, e.g., [68].
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Figure 12. Deviation of waveform models’ linear (top) and non-linear (middle) memory with respect
to NR. Corresponding 1σ-intervals above and below the mean are colorized. The non-linear memory
is plotted as a time series. Both memory contributions are normalized to the NR value and averaged
over all simulated mergers. The bottom plot shows again the non-linear memory, but we replace
Phenom with TEOB. For better readability, we provide two plots for the non-linear memory.
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Figure 13. Non-linear memory as depicted in figure 12, here computed without high-mismatch
modes, i.e., excluding Hsub.

quantities are considered. A more exact formulation of the linear memory is given in [37].
In addition to the considered approximation, the linear part is many orders of magnitude
smaller than the non-linear part, making it more prone to numerical errors in the models.
Consequently, the linear memory exhibits large fluctuations.

As before, the memory can be computed excluding the set of harmonic stain modes
Hsub. We find that, for the linear memory component, the change of mode content, similar
to the kick velocity, results only in a marginal change of the models’ individual contributions.
This is unsurprising, as by equation (5.16) the linear memory is solely determined by the
remnant velocity. This dependency on the kick results from the approximation used in
the derivation of the balance laws as we state them, i.e., (5.1), where the Newman-Penrose
scalars originally appearing in the balance laws can be replaced by functions of the remnant
velocity in certain limits.14 Consequently, as the linear memory is determined by the kick,
the discussion regarding the strain modes entering the computation of the linear memory
follows similar arguments as for the kick in the previous subsection. Notably, the kick velocity,
and thus the linear memory, is an alignment-dependent quantity which suggest that the
displayed dissimilarities visible figure (5.16) throughout approximants may occur (partially)
due to suboptimal alignment.

A completely different picture is drawn by the non-linear memory when disabling the set
of modes Hsub. As depicted in figure 13, the relative errors throughout models are converging
towards NR when the mode content is reduced to a common set. While the absolute values
for NR and Surrogate decrease by O(10) percent, EOB, TEOB, and Phenom, as expected,
do not change. Consequently, after excluding Hsub, the non-linear memory contribution of
all considered approximants is roughly equal, and, by the definition of the balance laws, so is
their energy flux. This statement is independent of the alignment procedure as the non-linear
memory is not sensitive to the chosen reference phase. The variances of the relative errors

14For a detailed discussion on the relevant transformations and the validity of physical assumptions we refer
to [32].
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Figure 14. Relative errors for kick direction, magnitude, and non-linear memory with respect to NR
waveforms averaged over all simulations selected by the specific marker (x-axis). For each marker
and model, we display two error bars corresponding to the categorizations below the x-axis. The
smaller errors are plotted in front of larger ones. To convert to the mass parameter η used in 4, we
use η = q/(1 + q)2, where q = M1/M2 (M1 being the heavier of the BBH system).

for EOB and Phenom visibly reduce due to fewer modes being included in the memory
computation of NR, introducing fewer fluctuations with respect to these models. For TEOB
however, this trend is not displayed since considerable variations are still present within the
set of subdominant strain modes included in NR but not in TEOB or Hsub.

As anticipated by previous literature (e.g. [36], and cf. with findings of [33]), EOB and
Phenom models do not reproduce the full information available within NR-simulations with
their generated strain modes. For the harmonic strain modes generated by these model,
however, the proximity of the non-linear memory estimates suggests a very good agreement
with respect to the reference model(s). Comparing figures 12 and 13, it becomes apparent
that the modes contained in Hsub roughly constitute the discrepancy in (memory) information
content transmitted through the waveforms of EOB and Phenom with respect to NR (and
Surrogate). To explicitly demonstrate this, we once again turn to the analysis of strain
mode mixing in the memory components (5.8): according to equation (5.17), the total
non-linear memory contains all α-coefficients with ℓ > 1, where α2,0 dominates the sum of
coefficients. This, again, is a consequence of the mode mixing present in the αℓm’s. As we
already elaborated, two dominant strain modes h2,2, h2,−2 can only mix for α-coefficients
such as αℓ,0. However, the h2,2h2,2 and h2,−2h2,−2 terms cancel for all ℓ, except for α2,0 and
α4,0 (for non-precessing BBH merger). For αℓ,m with ℓ > 4 such couplings are forbidden
by virtue of the Wigner-3j symbols in (5.8). For α4,0 the prefactor in (5.8) is of order
O(10−2), suppressing its contribution to the full non-linear part. Consequently, on average,
α2,0 accounts for roughly 96% of the non-linear memory.15

15Physically, this results from the fact that the majority of energy flux away from the binary is transported
by isotropic gravitational radiation. The azimuthally symmetric flux is sourced by h2,±2. Its manifestation in
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Naturally, the major contribution to α2,0 is due to the term including two dominant modes.
However, there is a significant part of the α2,0 component as well as the contributions from
all other α-coefficients that are due to subdominant modes coupling to h2,±2. As many more
α’s enter the non-linear memory and for ℓ > 1 more mixing of the strain modes is permitted
by the Wigner-3j symbols, the impact of subdominant modes is non-negligible (in contrast
to what was observed for the kick velocity) and grows with the number of strain modes
included in the computation of the non-linear memory promoting it to a potent waveform
quality metric sensitive to all harmonic modes provided by a model. The difference in the
non-linear memory between figures 12 and 13 is, hence, largely due to the coupling of h2,2 with
subdominant modes in α’s with ℓ > 1, demonstrating their non-negligible effect. Switching
off the (for EOB and Phenom) missing subdominant modes in NR and Surrogate, reduces
the memory mainly to the h2,±2h2,±2 couplings. Due to the well-modeled dominant strain
mode throughout approximants, the resulting non-linear memory contributions are roughly
equal to EOB and Phenom and the mismatch is, thus, minimal, as indicated by figure 13.
The dominance of the h2,±2h2,±2 in the memory computation is again undermined by the
performance of TEOB displayed in figures 13 and 12. Despite TEOB containing only h2,±2 its
non-linear memory contributions reside in close proximity to the other approximants’ values.

Prior to switching to the analysis of precessing simulations, we investigate the sensitivity
of relative errors of physical properties of the merger to the parameters of non-precessing
simulations, specifically the mass ratio η, the spin magnitudes |χ|, and the spin alignments.
The results are summarized in figure 14. Here, we display error bars for each considered
physical quantity, separating simulations by mass ratio, spin-alignment, and spin magnitude.
For each quantity and separation variable, the models display two error bars corresponding to
the sections in which we split the parameter space. The separating value is selected to split
the ensemble of simulations in roughly equal parts. For instance, for the mass ratio, we display
error bars computed using BBH mergers only included in the high or low ratio regime, split
at q = 2.6 (corresponding to η ≈ 0.2). The Surrogate approximant demonstrates the most
distinct trend across all markers, exhibiting significantly higher relative errors for mass ratios
q = M1/M2 ≥ 2.6 (see section 4; the conversion to η is given by η = q/(1 + q)2). A similar
but less pronounced trend is observed for spin alignment and magnitude, where the trend
suggests that Surrogate generally performs better for anti-aligned spins with lower magnitudes,
|χ| < 0.4, with regard to the kick velocity and non-linear memory.16 In contrast, the EOB
approximant shows a consistent trend only with the mass ratio, performing statistically
better for q ≥ 2.6. For other parameters, the trends are less consistent. A similar absence
of tendencies is observed for the Phenom approximant.

6.2.3 Precessing merger simulations

Regarding the simulation of precessing mergers, similar results for the non-linear memory are
obtained, as demonstrated in figure 15. In the top plot, the average relative errors for the
full mode content are displayed as time series. The normalization and shading according to

terms of memory is carried by h2,0.
16Linear memory is excluded from this analysis due to its (redundant) dependence on the remnant velocity,

as discussed in section 5.
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Figure 15. Non-linear memory as depicted in figure 12, here computed with (top) and without
(bottom) high-mismatch modes, i.e., excluding Hsub, for precessing mergers.

the standard deviation are computed as in figure 12. It is observed that EOB and Phenom
exhibit similar deviations from NR as in the non-precessing case. Additionally, Surrogate
demonstrates considerably larger fluctuations compared to non-precessing mergers manifesting
in a large standard deviation. The latter persists when Hsub is excluded, as shown in the
bottom plot of figure 15. Nonetheless, for the non-linear memory, it still performs better
than EOB and Phenom. When the modes in Hsub are disabled, Surrogate, EOB and Phenom
exhibit identical memory contributions. Notably here, Surrogate has the largest σ interval.

Although the non-linear memory contributions of the approximants closely resemble each
other, we do not observe a similar convergence to the reference model as in figure 13. Instead,
all models settle on average on 90% of NR’s total non-linear memory. This indicates that for
the precessing case, Surrogate, EOB and Phenom differ from each other mainly by modes
included in Hsub, even though Surrogate, as opposed to the other models, adequately simulates
asymmetry between ℓ, m and ℓ, −m modes. However, to reproduce NR all approximants
are potentially missing information beyond what is contained in Hsub as indicated by the
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gap between approximants and NR in the bottom plot of figure 15. In concordance with
our previous discussions on alignment of precessing waveforms, it is crucial to point out
that we cannot quantify the amount of deviation in the non-linear memory in figure 15
that is due to the chosen alignment strategy. An argument against alignment issues causing
the larger deviation throughout approximants is given by the fact that all models seem
to be equally “off”. As each model is aligned individually, one would naively expect the
alignment to impact the accuracy non-uniformly. Another explanation for the collective
discrepancy with respect to SXS ’s non-linear memory is given by the models vastly larger
mode content (see table 1). However, we find that cutting SXS ’s harmonic strain series
at ℓ ≤ 4 in the statistics producing figure 15 does not significantly reduce the gap with
respect to the alternative waveform models.

We further test if the results in figure 14 equally hold for precessing mergers. As before,
we restrict this analysis to the non-linear memory and discard the spin alignment marker
as it is meaningless for precessing waveforms. The boundaries of the remaining parameters,
i.e., q = 2.6 (corresponding to η = 0.2) and |χ| = 0.4, are adjusted so that the ensemble
of simulations falling into each category are roughly equal, i.e., q = 1.8 (corresponding
to η = 0.23) and |χ| = 0.45. We find that for all approximants besides Surrogate, larger
η (smaller q) yield higher relative errors in the approximants’ memory contribution with
respect to NR. For Surrogate, the opposite is the case. A similar trend for magnitude spins
is found to be not significant. Comparing these findings with figure 14, it is evident that
the parameter dependence of the models’ performance is consistent across precessing and
non-precessing mergers. Finally, note that the results regarding the parameter-dependent
distribution of relative errors are insensitive to the mode content included in their computation:
removing Hsub reduces the overall relative error amplitudes but does not obscure the trends
exhibited in figure 14.

Leveraging the complete parameter space detailed in 3, we examine whether the con-
clusions concerning the memory are influenced by the choice of NR binary mergers. By
considering the supplementary parameter space beyond the SXS data, we verify that the
results outlined earlier remain consistent for both precessing and non-precessing waveforms.
The relations between the memory contributions of Surrogate, EOB, and Phenom are vali-
dated for these instances, affirming that our observations are not affected by potential biases
in the selection of source parameters.

7 Discussion

We conducted an extensive comparison of gravitational waveform models based on the
calculation of the remnant’s kick velocity and the gravitational memory for BBH mergers. Four
state-of-the-art waveform models were considered (cf. table 1). We reviewed their numerical
implementations’ main features and discussed issues in the commonly used waveform alignment
procedures, pointing out limitations of this analysis in the form of potential difficulties in
the meaningful distinction between alignment residuals and intrinsic waveform dissimilarities.
After applying a well-tested alignment strategy, we utilized the so-called balance laws to
compute the kick velocity and the memory. In order to minimize a potential selection bias, we
extended our analysis beyond the cataloged SXS BBH simulations and additionally considered
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binary mergers randomly picked from parameter space. We compared the computed kick
velocities and memory terms with respect to reference models. In the case of cataloged
simulations, we chose NR waveforms as a reference, while Surrogate was used for BBH
mergers not contained in the SXS database.

Our results provide a novel perspective on the established inconsistencies between the
selected approximants and the reference model regarding both the computed kick velocity
and inferred memory, corroborating earlier findings in the literature [36]. Elucidating the
origin of these discrepancies, it is observed that physical quantities computed via the balance
flux laws are excellent probes of the dominant h2,±2 mode and the distribution of information
across the approximants’ mode content, leading to the source of potential dissimilarities
of the full waveforms. The former is effectively testable via the strain-induced remnant
velocity (or linear memory as computed in this work), whereas the non-linear gravitational
wave memory is sensitive to the latter.

Using the kick velocity as a metric, we showed that throughout approximants there is a
substantial agreement with respect to the reference model, where Surrogate performs best,
followed closely by Phenom and then EOB. This holds true for both the magnitude and the
direction of the kick velocity. The ranking of approximants aligns with the mismatch values of
the dominant strain modes computed post-alignment, stressing an h2,2-dependence of the kick.
Indeed, analytical considerations identified h2,±1 and h2,±2 as the primary kick-determining
strain modes. However, most discrepancies in the kick are attributed to subdominant modes
(i.e. h2,±1 and so on), as evidenced by the remnant velocity error being approximately an order
of magnitude larger than the h2,2 mismatch across all approximants. It was demonstrated
that the kick is highly alignment-dependent and, particularly for non-precessing binary
mergers, sensitive to subtle features of the harmonic strain modes. For instance, a meaningful
out-of-plane kick computation for precessing mergers demands an accurate simulation the
asymmetry between ℓ, m and ℓ, −m modes inherent to precessing BBH waveforms. Dropping
our working assumption of an optimal alignment, the approximants’ relative errors regarding
the remnant velocity may be partially due to alignment artifacts. Although we expect the
residual miss-alignment to be subdominant, improvement in the alignment of GW waveforms,
in particular for precessing merger simulations, should be addressed by future works, especially
in the context of high-precision GW measurements.

The well-known deficiencies in the mode contents of Phenom and EOB were high-
lighted through the computation of the non-linear GW memory: as the non-linear memory
accumulates many individual strain mode combinations (in form of the sum over αℓ,m’s,
equation (5.8)), it reacts sensitively to any alteration of mode contend, demonstrated by NR
and Surrogate approaching Phenom and EOB’s estimations after the removal of strain mode
set Hsub. Interestingly, for the non-linear memory, EOB generally yields a smaller error than
Phenom but both are, on average, outperformed by TEOB. The latter demonstrates nicely
that for non-linear memory estimations, an accurate modeling of solely the dominant harmonic
strain mode is sufficient for practical computations. We further illustrate that the asymmetry
in harmonic modes for precessing system plays only a minor role in the memory computation,
via computing the non-linear memory for precessing waveforms under the exclusion of Hsub.
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Overall, the combination of kick and memory synergize well and provide a wholesome
waveform assessment that can be directly applied to any numerically accessible waveform
model. For the tested models specifically, the analysis of the latter physical properties
indicates that Phenom waveforms on average deliver a more reliable estimation of h2,2 while
the subdominant modes of EOB produce a more accurate non-linear memory estimate.
Nonetheless, both approximants are surpassed by Surrogate waveform models which is,
however, partially due to Surrogate’s larger set of non-trivial strain modes up to ℓ < 5.
Curiously, we observe that only Surrogate waveforms exhibit statistically significant trends
regarding their performance for different regions in parameter space. Most notably, mass
ratios q < 2.6 (η > 0.2) lead to significantly better agreement with NR data, suggesting a
potential parameter bias of the interpolation procedure adapted by Surrogate models.

The findings of this work are supported by analytical considerations based on strain
mode mixing appearing in the spherical harmonic decomposition of the memory and the
kick, as described by the α-coefficients of equation (5.8). The selection rules that govern
the appearance of specific mode mixing in the sum of (5.8) is determined by the fact that
the strain is a spin-weight −2 function. The latter mathematical property leads to the
emergence of the Wigner-3j symbols within the α-coefficients. The physical interpretation
of each α term is implied by equation (5.5), expressing the relation between the physical
quantities of the BBH merger, such as radiated energy or remnant mass, kick velocity, and
gravitational memory. This framework explains how the azimuthal symmetry of the energy
flux away from the binary correlates with the dominant memory contribution residing in
the azimuthally independent h2,0 mode.

Subtracting the dominant memory component (proportional to α2,0), our analytical consid-
erations predict a strong subdominant mode dependence of the remaining non-linear memory.
This prediction can potentially be used to evaluate the quality of individual subdominant
harmonic modes for future GW waveform models. An instance of such practice was presented
in section 6 with the comparision of non-linear memory contributions for different sets of har-
monic modes. Physically, testing individual α-coefficients with ℓ ≥ 2 and m ̸= 0 corresponds
to analyzing the (subdominant) anisotropic non-linear memory, or equivalently, the anisotropic
energy flux radiated to infinity from the binary system. Naturally, the anisotropic energy flux
is highly BBH configuration-dependent and subdominant. Nevertheless, it potentially consti-
tutes a powerful tool in high-precision tests of subdominant waveform contributions, especially
for precessing BBH mergers. We leave a detailed investigation of this claim to future works.

Generally, the advantage of testing a waveform’s quality by systematically accessing the
physical properties rather than relying on a mode-by-mode mismatch analysis as depicted
in figure 9, lies in the physically grounded nature of the former approach as well as the
potential independence from alignment (for the non-linear memory, see the discussion in 3.2
and 5.4). While the mismatch function entails numerous uncertainties regarding the obscurity
of intrinsic waveform differences, thoroughly discussed in 3.1, physical properties such as
kick and memory possess fundamental physical significance and are computed without any
approximations, i.e., in full, non-linear GR. Thus, in particular for precessing simulations for
which a sufficiently accurate alignment strategy is yet to be defined, comparing the latter
provides an appealing phenomenological waveform assessment.
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In conclusion, this analysis provides a guiding framework for future waveform model
assessments, facilitating the development of more precise GW waveforms for systematic
application to measurement data from future instruments. Additionally, by employing
the balance flux laws, we identify distinct strengths and weaknesses of individual models
concerning the computed physical quantities and their regions of applicability in parameter
space. This information can serve as a selection guide for waveform applications, such as
GW memory or metadata estimations. Applying the developed methodology to updated
versions of the models remains a task for future work.
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A Numerical artifacts

Numerical artifacts can significantly influence the outcome of the mismatch function discussed
in section 3. The morphology with which artefacts can appear varies. One of the most
prominent examples is displayed in figure 16. Here, the waveform mode carries a tail, which
shall not be confused with the gravitational memory. The latter is not contained in the
waveforms displayed. Instead, the non-trivial extent of the waveform after the ring down
results from numerical artifacts and is to be disregarded as non-physical. Since the effect
is rather small and effects only subdominant modes, we ignored it in the main analysis. In
future works tackling the precision of higher strain modes, this issue has to be addressed.
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Figure 16. (4, 4) waveform mode for a the non-precessing merger simulation SXS:BBH:0155.
Displayed are the truncated and aligned waveforms (above) for NR and Surrogate as well as the “raw”
full waveform for NR.
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