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Abstract

We numerically study the diffusion and scattering of cosmic rays (CRs) together with their acceleration processes
in the framework of the modern understanding of magnetohydrodynamic (MHD) turbulence. Based on the
properties of compressible MHD turbulence obtained from observations and numerical experiments, we investigate
the interaction of CRs with plasma modes. We find that (1) the gyroradius of particles exponentially increases with
the acceleration timescale; (2) the momentum diffusion presents the power-law relationship with the gyroradius in
the strong turbulence regime, and shows a plateau in the weak turbulence regime implying a stochastic acceleration
process; (3) the spatial diffusion is dominated by the parallel diffusion in the sub-Alfvénic regime, while it is
dominated by the perpendicular diffusion in the super-Alfvénic one; (4) as for the interaction of CRs with plasma
modes, the particle acceleration is dominated by the fast mode in the high β case, while in the low β case, it is
dominated by the fast and slow modes; and (5) in the presence of acceleration, magnetosonic modes still play a
critical role in the diffusion and scattering processes of CRs, which is in good agreement with earlier theoretical
predictions.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Interplanetary turbulence (830);
Interplanetary particle acceleration (826); Interstellar medium (847); Cosmic rays (329)

1. Introduction

The propagation of cosmic rays (CRs), including CR
scattering, diffusion, and acceleration/reacceleration processes,
plays a crucial role in understanding high-energy phenomena
from astrophysical sources. It has been pointed out that
magnetohydrodynamic (MHD) turbulence directly or indirectly
affects the propagation of CRs. We can safely say that MHD
turbulence is an essential agent for pitch-angle scattering (Yan
& Lazarian 2002), spatial diffusion (Casse et al. 2001; Yan &
Lazarian 2008; Xu & Yan 2013; Lazarian & Xu 2021; Maiti
et al. 2022), stochastic acceleration (Fermi 1949; Zhang &
Xiang 2021), and reconnection acceleration (Lazarian &
Vishniac 1999, hereafter LV99). Studying the particle accel-
eration mechanisms and understanding the diffusion of CRs in
general MHD turbulence can help us to comprehend the roles
that CRs play in many key and complex astrophysical
environments, such as solar physics (Petrosian & Bykov 2008;
Yan & Lazarian 2008; Bian et al. 2012), active galactic nucleus
(AGN; De Gouveia Dal Pino et al. 2013; Mbarek et al. 2022),
gamma-ray bursts (GRBs; Bykov & Meszaros 1996; Summer-
lin & Baring 2012; Xu & Zhang 2017), feedback heating in
clusters of galaxies (Guo & Oh 2008; Brunetti & Jones 2014;
Zweibel et al. 2018), driving Galactic winds (Wiener et al.
2017; Krumholz et al. 2020), and the confinement and
reacceleration of CRs in the Galaxy (Chandran 2000; Yan &
Lazarian 2002).

In general, the most classical acceleration mechanisms are
considered as second- and first-order Fermi processes
(Fermi 1949; Bell 1978; Blandford & Ostriker 1978), and
(turbulent) magnetic reconnection (Parker 1957; Sweet 1958;

Petschek 1964; LV99). Note that the second-order Fermi is also
called the stochastic acceleration process. This model,
originally proposed by Fermi (1949), suggests that particles
can statistically gain energy through collisions with interstellar
clouds, which is similar to the reflection of particles due to
magnetic mirror effects. Since the MHD waves in the
turbulence provide the motion of scattering centers, particles
can be continuously scattered to advance (Melrose 1980).
As is well known, scattering is considered an essential

process for CR acceleration. For instance, the scattering of CRs
back into the shock is a necessary component of first-order
Fermi acceleration (see Longair 2011). At the same time,
stochastic acceleration by turbulence is entirely based on the
scattering process. Extensive numerical and analytical studies
have been performed to understand the interactions of CRs
with MHD turbulence, such as the scattering and diffusion
processes (e.g., Yan & Lazarian 2002, 2004; Xu & Yan 2013;
Lazarian & Xu 2021). When the pitch angle4 approaches 90°,
the scattering will vanish, and the mean free path becomes
infinite (Fisk et al. 1974) since the particles are resonated by a
very large wavenumber k. This 90° problem is one of the most
well-known concerns in quasilinear theory (QLT) predictions
(Jokipii 1966). The root cause of the 90° problem is the
assumption of unperturbed trajectories in QLT. In order to
avoid this problem, Yan & Lazarian (2008) extended the QLT
to nonlinear theory (NLT) by introducing finite resonance
widths.
At present, there are many simulation works focused on

exploring the diffusion and scattering of particles in MHD
turbulence. One part is associated with acceleration (e.g.,
Michalek et al. 1999; Beresnyak et al. 2011; Cohet &
Marcowith 2016), while another with pure scattering and
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4 Defining θ to be the pitch angle between the particle velocity and the mean
magnetic field, we have m q= =  =cos cos 90 0.
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diffusion without acceleration (e.g., Xu & Yan 2013; Hu et al.
2022; Maiti et al. 2022). The works involving acceleration are
not comprehensive and have limitations in their application to a
complex turbulent environment. Specifically, Michalek et al.
(1999) only focused on a single turbulence regime, i.e., the cold
plasma limit, where fast and slow (magnetosonic) waves
degenerate to fast mode waves. The work in Beresnyak et al.
(2011) was based on the case of incompressible turbulence
using MHD plus test particle simulations. In addition, Cohet &
Marcowith (2016) focused on the sub-Alfvénic turbulence and
explored the influence of the ways of driving on particle
acceleration, where they found solenoidal forcing results do not
match with QLT. Recently, Mertsch (2020) provided a more
comprehensive overview of test particle simulations of CRs,
which is based on QLT, its extensions, and the state of the art in
the test particle simulations mainly from the perspective of
synthetic data simulation.

In the earlier studies, it was claimed that the Alfvén mode is
inefficient for scattering and acceleration of CRs (Chan-
dran 2000; Yan & Lazarian 2002), due to its anisotropic
properties (Cho & Lazarian 2002, 2003, hereafter CL02
and CL03), while the fast mode is a major source of CR
scattering in the interstellar and intracluster media (Yan &
Lazarian 2004; Brunetti & Lazarian 2007; see also Michalek
et al. 1999 for the case of fast mode domination), due to its
isotropic properties (CL02 and CL03). However, Zhang &
Xiang (2021) demonstrated from the perspective of particle
spectral distribution that the contribution of the Alfvén mode to
particle acceleration cannot be ignored, which even plays a
dominant role in particle acceleration at the late stage of
acceleration. In the case of incompressible turbulence, it has
been claimed that the role of the pseudo-Alfvén mode, i.e., the
slow mode, is crucial for the scattering of particles (Beresnyak
et al. 2011; Xu & Lazarian 2020).

Furthermore, Demidem et al. (2020) claimed that the
contributions of three modes to acceleration are comparable
to within an order of magnitude in the relativistic MHD
turbulence with a Monte Carlo simulation of the test particle
and synthetic data. It has been claimed that in the relativistic
case, the properties of the three modes are similar to that of the
nonrelativistic one, except for the fast mode significantly
coupling the Alfvén mode (Takamoto & Lazarian 2016, 2017).
Recently, Yuen et al. (2023) found that the pure Alfvén mode
can be decomposed into an anomalous compressible comp-
onent, which implies that the Alfvén mode may affect the
particle transport. From the perspective of analytical research,
in the framework of the modern understanding of MHD
turbulence theory, Cho & Lazarian (2006) studied particle
acceleration arising from fast and slow modes in both the
gaseous pressure-dominated (high β) and magnetic pressure-
dominated (low β) cases. They predicted that the fast mode can
accelerate particles more efficiently than the slow mode, and
whether slow and fast modes dominate the acceleration of
particles depends on the rate of spatial diffusion of particles.
These interesting analytical predictions need to be tested and
confirmed numerically. This motivated us to perform the
current work by exploring various turbulence regimes.

One of the purposes of the current work is to study the
diffusion and scattering behavior of particles being accelerated,
and a second aim is to explore which plasma mode dominates
the accelerated particleʼs transport in various turbulence
regimes. We investigate how energetic particles are accelerated

in MHD turbulence, and test which of the analytical predictions
in Cho & Lazarian (2006) are consistent with our numerical
results in a wide range of turbulence regimes that correspond to
different astrophysical environments. Specifically, we want to
know whether the fast mode dominates the acceleration,
diffusion, and scattering processes of particles exactly as in
the theoretical prediction, and whether the effect of the Alfvén
mode is so weak as to be negligible.
This paper is organized as follows. In Section 2, we briefly

introduce the theoretical description of MHD turbulence and
diffusive properties of CRs. We perform a test particle
simulation and describe our initial simulation setup in
Section 3. We present the numerical results, which contain
the Mach number (Alfvénic Mach number MA, and sonic Mach
number Ms) effect in four different turbulence regimes and the
contributions of the three modes (wave-like isotropic fast
mode, Alfvén, and slow Goldreich–Sridhar-type modes) to
particle acceleration and diffusion in Sections 4 and 5,
respectively. A discussion and summary are provided in
Sections 6 and 7, respectively.

2. Theoretical Descriptions

2.1. MHD Turbulence Theory

The propagation of CRs is determined by their interactions
with environmental turbulence. MHD turbulence theory has
gone through a long period of development from pioneering
works by Kolmogorov (1941; henceforth K41) and Iroshnikov
(1963) and Kraichnan (1965) to the modern MHD turbulence
theory by Goldreich & Sridhar (1995; hereafter GS95) (see also
Schekochihin 2020 for a recent review). By dimensional
analysis, assuming that the energy is injected at a constant
velocity v at large scales, K41 obtained the energy spectrum of
E(k)∝ k−5/3 for the pure fluid turbulence, called the famous
Kolmogorov spectrum. A few decades later, the Iroshnikov
(1963) and Kraichnan (1965) spectrum, i.e., E(k)∝ k−3/2, was
proposed for magnetized fluid turbulence. Its shortcoming is
that it incompletely predicted an isotropic cascade of MHD
turbulence. Later, GS95 suggested a scale-dependent aniso-
tropy, i.e.,  » ^

-k k L2 3 1 3 for incompressible MHD turbulence,
where L is the outer scale of the turbulence, and k∥ and k⊥ are
the parallel and perpendicular components with regard to the
local magnetic field of the wavevector k, respectively.
The modern theoretical understanding of MHD turbulence is

based on the GS95 model. In the framework of eddy
motions, LV99 and Lazarian (2006) generalized incompres-
sible MHD turbulence to a compressible one in MA> 1 and
MA< 1, respectively. In the case of MA< 1, with a sub-
Alfvénic velocity driving turbulence at the injection scale Linj,
the weak turbulence cascade spans the range from Linj to ltr,
where =l L Mtr inj A

2 is the transition scale at which there is a
turbulence velocity vl equal to the Alfvén speed VA, while the
strong turbulence cascade is in the range of l l,dis tr[ ], where ldis
is the dissipation scale. And in this range, we have the relation

 » ^
-l L l M 1inj

1 3 2 3
A

4 3 ( )

associated with the parallel scale l∥ and the transversal one l⊥,
which suggests that eddies are stretched along the local
magnetic field. Note that the original GS95 relation of  µ ^l l2 3

can be recovered by setting MA= 1 in Equation (1).
As forMA> 1, i.e., the super-Alfvénic turbulence, the cascade

starting from the injection scale Linj has a hydrodynamic
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Kolmogorov property because of the marginal influence of a
weak magnetic field on the cascade process. When the cascade is
decreased to = -l L Mtr inj A

3 (Lazarian 2006), it enters a regime of
strong turbulence, from which to the dissipation scale it again
exhibits the GS95 anisotropy characteristics, with the scale
relation of  » ^

-l L l Minj
1 3 2 3

A
1 and the velocity-scale relation of

= ^v V l Ll L inj
1 3( ) , where VL is the turbulence injection velocity

at the scale of Linj.
Furthermore, the analytical solution of the MHD dispersion

equations can give three solutions (e.g., Beresnyak 2019) that
correspond to Alfvén, fast, and slow modes as numerically
confirmed by CL02. Among the three modes, the Alfvén mode
is incompressible, while the slow and fast modes are
compressible and are called magnetoacoustic waves/modes.
The latter two have scale-dependent anisotropic properties of
 µ ^l l2 3 in the local frame of the magnetic field (LV99; Cho &
Vishniac 2000; Maron & Goldreich 2001). The slow
mode, passively mixed with the Alfvén mode (Lithwick &
Goldreich 2001), has the same anisotropic scaling as the Alfvén
mode. Therefore, the Alfvén and slow modes present the K41
spectrum of µ^ ^

-E k k 5 3( ) . Differently, the fast mode has
isotropic properties of l∥∝ l⊥, reappearing as the Iroshnikov
(1963) and Kraichnan (1965) spectrum of E(k)∝ k−3/2.

2.2. Physical Quantities That Characterize CR Propagation

In general, the propagation and acceleration of CRs can be
described by the Fokker–Planck equation coefficients (see the
book by Schlickeiser 2002). Here, we mainly focus on the
coefficients relevant to our following simulations, such as the
pitch angle, spatial, and momentum diffusion coefficients.
From a theoretical point of view, the diffusion of CRs results
from the resonant (gyroresonance) and nonresonant (transit
time damping, i.e., TTD) interaction of CRs with MHD
turbulence. However, from the perspective of numerical
simulation, it is currently difficult to distinguish the contrib-
ution of individual components.

As for the pitch-angle scattering, the pitch-angle diffusion
coefficient is defined by

m m
=

á - ñ
mmD

t2
, 20

2( )
( )

where the angle brackets indicate an average over the ensemble
of particles at the integration time t. The pitch angle θ is the
angle between the particle velocity vector and the local magnetic
field direction, whose cosine value is m q= cos at the time t,
while μ0 is at the initial moment t0. Here, the pitch angle θ range
is from 0–90◦, which corresponds to both μ and μ0 from 1–0. In
the QLT, the mirror resonance has a sharp peak at 90◦ due to the
discrete Landau resonant condition, resulting in the disappear-
ance of the diffusion coefficient (Goldstein 1976; Felice &
Kulsrud 2001). This is the infamous 90° problem. To avoid the
90◦ problem, QLT was extended to NLT by taking the magnetic
mirroring effect into account on large scales (Yan &
Lazarian 2008). In addition, when introducing the bouncing of
CRs, this problem of quasilinear gyroresonant can be alleviated
(see Lazarian & Xu 2021 for the details).

Using the pitch-angle diffusion coefficient, we can determine
the parallel mean free path of the particles by substituting Dμμ

into (Earl 1974)


ò

l
m

m
=

-

mmL
d

u

D L

3

4

1
, 3

inj 0

1 2 2

inj

( ) ( )

where u is the velocity of particles. Alternatively, the mean free
path λ∥ of the particles can be calculated by


l =

D

u

3
. 4( )

Here, D∥ is a parallel diffusion coefficient (Giacalone &
Jokipii 1999)

 =
á - ñ

D
x x

t2
, 50

2( ˜ ˜ ) ( )

where -x x0( ˜ ˜ ) is the spatial separation in the local magnetic
field directions. Numerically, it is not difficult to test the fact
that Equations (3) and (4) give similar results (see also Maiti
et al. 2022 for their testing). Similarly, we can also obtain the
perpendicular diffusion coefficient

=
á - ñ

D̂
y y

t2
, 60

2( ˜ ˜ )
( )

where -y y0( ˜ ˜ ) represents the spatial separation perpendicular
to the local magnetic fields.
Assuming that the particles move in terms of a random walk

in momentum space, we can determine the momentum
diffusion coefficient

=
á D ñ

D
D

p

t2
7pp

2( ) ( )

averaged over the ensemble of particles, where Δp is the
amount of change in particle momentum in the time interval
Δt. In this work, we use Equation (7) to characterize the
particle diffusion behavior in the acceleration processes.

3. Numerical Simulation

3.1. Simulation of MHD Turbulence

The third-order accurate hybrid, essentially non-oscillatory
code is adopted to solve the ideal MHD equations describing
MHD turbulence as follows:

r r¶ ¶ +  =vt 0, 8· ( ) ( )
r p¶ ¶ +  +  - ´ =v v v J B ft p 4 , 9g[ ( · ) ] ( )

¶ ¶ -  ´ ´ =B v Bt 0, 10( ) ( )
 =B 0, 11· ( )

where r=p cg s
2 is the gas pressure, cs and ρ represent the sonic

speed and density, respectively, t is the time of fluid evolution,
J=∇× B is the current density, and f is a random solenoidal
driving force on a large scale (small wavenumber k; 2.5 in
wavenumber space) in our simulation. The other parameters
have their usual meaning. Our simulation is performed in a
periodic box at the length of L= 2π, setting a nonzero mean
magnetic field strength along the x-axis direction. When a
statistical steady state is reached, we output primitive physical
quantities such as the magnetic field, velocity, and density. To
characterize each simulation, we calculate the Alfvénic number
by = á ñM v

vA
A

∣ ∣ , and the sonic Mach number by = á ñM v
cs

s

∣ ∣ ,

3
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where =
p r

v B
A 4

0 is the Alfvén speed. The resulting values are

listed in Table 1, where each model corresponds to different
turbulence regimes.

Numerically, the compressible MHD turbulence was first
decomposed into Alfvén, slow and fast modes by a Fourier
transformation (CL02; CL03). The limitation of this method is
that it only applies to the global reference frame and can only
deal with the problems of MA< 1. Later, Kowal & Lazarian
(2010) improved this separation technique by introducing a
discrete wavelet transformation before the Fourier separation,
extending it to the MA> 1 case. The displacement vectors of
the slow, fast, and Alfvén modes are defined by their unit
vectors

 z a aµ - + - + + - ^ ^k kD k D k1 1 , 12s
ˆ ( )( ˆ ) ( )( ˆ ) ( )

 z a aµ - + + + + + ^ ^k kD k D k1 1 , 13f
ˆ ( )( ˆ ) ( )( ˆ ) ( )

z µ ´k̂ k , 14A
ˆ ˆ ˆ ( )

with a a f= + -D 1 4 cos2 2( ) and a = c Vs
2

A
2, where f is

an angle between k and B0. After numerically determining the
zs
ˆ , zf

ˆ , and zA
ˆ , we can project the total magnetic field and

velocity into these three unit vector directions and obtain
information about the magnetic and velocity fields of each
mode. To maintain consistency in the operation of all data, we
use wavelet decomposition in this work.

3.2. Method of Test Particle

In the electromagnetic field, the kinetic equation that the
motion of a charged particle satisfies is

g = + ´u E u B
d

dt
m q , 15( ) ( ) ( )

where g º - u c1 1 2 2 is the Lorentz factor of the particle,
and m and q are the mass and charge of the particle. In this
work, we take into consideration the acceleration process
resulting from magnetic field B and its inductive field
E=− v× B, without considering the resistivity of the electric
field. Therefore, Equation (15) can be rewritten as

g = - ´u u v B
d

dt
m q . 16( ) [( ) ] ( )

By integrating this equation, we can trace particle’s trajectories
using the classic fourth-order explicit Runge–Kutta (RK4)
method with an adaptive time step.5 We can recover the local

values of the plasma velocity v and magnetic field B at each
step of the integration by using linear interpolation with the
discontinuity detector.
When analyzing the numerical output, we calculate the

direction of the local magnetic fields by Cho & Vishniac (2000)
as

=
+

B
B r B r

2
. 17l

1 2( ) ( ) ( )

And then we can define D∥ as the parallel direction of
=x B Bl lˆ ∣ ∣ and D⊥ as its perpendicular direction.

4. Numerical Results: The Influence of Turbulence
Properties on Particle Energization

In this section, we provide numerical results of the particles’
energization processes related to different turbulence regimes,
based on data cubes from simulations of MHD turbulence
listed in Table 1. Specifically, our results include the trajectory
and gyroradius of particles, their momentum, spatial, and pitch-
angle diffusion in four turbulence regimes such as sub-Alfvénic
and subsonic, sub-Alfvénic and supersonic, super-Alfvénic and
subsonic, and super-Alfvénic and supersonic.

4.1. Trajectory of Particles

At the beginning of the simulation, we instantly injected 104

test particles with a Maxwell-type spectrum randomly distributed
into the whole box space of the simulation. Throughout this paper,
we set the temperature of test particles to 106 K, the plasma
velocity (i.e., the fluid velocity) to 5× 107m s−1= 0.1667c, and
the magnetic field strength to 5μGs.
Figure 1 plots the trajectories of the 1000th, 5000th, and

7000th test particles. As shown, the particles experience
diffusive motion in the simulation space. We see that the
particles cross a large spatial scale in the x-axis direction, which
is because, in our simulation of MHD turbulence, the mean
magnetic field is set along this direction. Compared with panels
(a) and (b), we can also see that the particles in panels (c) and
(d) span a larger space in three coordinate axis directions.
Given that the setting of the magnetic field strength of 5.0 μGs,
we have the dimensionalized mean magnetic field strength of
B0= 5.0 μGs for sub-Alfvénic turbulence (panels (a) and (b))
and of B0= 0.5 μGs for super-Alfvénic turbulence (panels (c)
and (d)). According to the formula of the gyromotion of a
charged particle,

g
= =^ ^R

p

q B

mv

q B
, 18g ∣ ∣ ∣ ∣

( )

where p⊥= γmv⊥ is the perpendicular momentum of a particle
at the perpendicular velocity v⊥ with respect to the local

Table 1
Data Cubes with a Numerical Resolution of 5123 for Different Turbulence Regimes

Models B0 MA Ms β á ñ á ñ á ñB B B: :A
2

F
2

S
2 á ñ á ñ á ñV V V: :A

2
F
2

S
2 á ñ á ñB V:A

2
A
2 á ñ á ñB V:F

2
F
2 á ñ á ñB V:S

2
S
2

A1 1.0 0.65 0.48 3.67 0.95 : 1.11 : 7.94 4.15 : 2.28 : 3.57 1.37 : 8.63 2.53 : 7.47 6.08 : 3.92
A2 1.0 0.55 4.46 0.03 1.73 : 7.89 : 0.38 5.42 : 2.75 : 1.83 1.31 : 8.69 5.75 : 4.25 0.89 : 9.11
A3 0.1 1.72 0.45 29.21 2.30 : 0.01 : 7.69 4.09 : 1.87 : 4.04 9.59 : 0.41 1.91 : 8.09 9.88 : 0.12
A4 0.1 1.69 3.11 0.59 2.16 : 0.52 : 7.32 3.86 : 1.82 : 4.32 9.72 : 0.28 9.47 : 0.53 9.91 : 0.09
A5 0.1 0.50 9.92 0.01 1.71 : 8.21 : 0.08 5.42 : 2.65 : 1.93 1.27 : 8.73 5.88 : 4.12 0.19 : 9.81

Note. MA and Ms are the Alfvénic and sonic Mach numbers, respectively, and b = =p p M M2gas mag A
2

s
2 is the plasma parameter. á ñBi

2 and á ñVi
2 denote the magnetic

and kinetic energies corresponding to the Alfvén (i = A), fast (i = F), and slow (i = S) modes, respectively.

5 Compared to the results from different integrators, we obtained consistent
results with that of the RK4 method. See footnote 4 in Zhang et al. (2023) for
more details.

4

The Astrophysical Journal, 961:80 (15pp), 2024 January 20 Gao & Zhang



magnetic field, B, it is not difficult to understand the behavior
of the particles’ motion. For a fixed p⊥, the larger the B value
is, the smaller the Rg. As a result, particles have a smaller
gyroradius, resulting in a smaller spatial extension (upper
panels). Another interesting point is that in the case of super-
Alfvénic and subsonic turbulence (lower-left panel), particles
have the largest gyroradii at the final acceleration time (see also
the lower-left panel of Figure 2), gaining the maximum kinetic
energy of =E m715.73 cmax p

2. This implies that a strong
mean magnetic field does not necessarily result in the
maximum possible energy.

Except for tracking the trajectory of a single particle, we also
checked the particle’s drift motion by observing the evolution
of particle velocities and displacement over time (not shown
here). We find that the perpendicular velocity with respect to
the local mean magnetic field is always greater than the parallel
one. As for the time evolution of the displacement, we find that
the perpendicular displacement is much larger than the parallel
one in the early stage of the evolution, which indicates that
magnetic field gradient drift may dominate the acceleration.
However, in the late stage, the larger parallel displacement

indicates the domination of turbulence-cascade interaction,
which is consistent with the results from the diffusion analysis
(see Section 4.3).

4.2. Momentum Diffusion

Figure 2 plots the evolution of the gyroradius over time for
four turbulence regimes, where the red solid lines represent the
averaged gyroradius of all particles and the cyan dashed lines
represent the gyroradius distribution of a single particle. As can
be seen, the evolution of the gyroradius over time presents an
overall consistency in the different turbulence regimes. Based
on the length scales, we divide each evolution of Rg into three
main stages. In the first stage (Rg< L/512), the gyroradius Rg

of the particles slowly increases with the time after a plateau.
This indicates that at the start of the simulation, the acceleration
of the particles is inefficient, which implies that the particles
cannot interact with turbulence waves (scattering centers)
efficiently. The acceleration phenomenon of Rg less than one
grid size (L/512) may arise from the nonresonant interaction
between the particles and fluid, the gradient, and curvature
drifts of magnetic fields.

Figure 1. The 3D trajectories of three test particles selected, arising from the sub-Alfvénic and subsonic (panel (a)), sub-Alfvénic and supersonic (panel (b)), super-
Alfvénic and subsonic (panel (c)), and super-Alfvénic and supersonic (panel (d)) turbulence regimes. The star and circle markers refer to their initial and final locations
in the 3D space, respectively. Lbox = 512 is the box scale.

5

The Astrophysical Journal, 961:80 (15pp), 2024 January 20 Gao & Zhang



In the second stage ( < <L R L512 g tr), we see that Rg

shows a power-law relationship of t4/3 for the subsonic
turbulence, while for the supersonic turbulence, Rg shows the
power laws of t5/3 and t1.0 in the sub-Alfvénic and super-
Alfvénic regimes, respectively. In this strong turbulence regime
we are mostly interested in, the efficiency of particle
acceleration has been significantly improved, with a distribu-
tion ranging from Rg∝ t1.0 to Rg∝ t5/3. It arises from quasi-
resonant interactions of particles with different scale eddies,
that is, the interaction between fluid and magnetic fields causes
the induced electric field to accelerate particles. In the third
stage ( >R Lg tr), the time evolution of Rg for all four regimes
shows a power law of Rg∝ t2/3 in this weak turbulence regime.
This demonstrates that the efficiency of particle interaction with
turbulence is decreased.

Figure 3 shows the evolution of the momentum diffusion
coefficient over time (left column) and gyroradius (right
column), including the total momentum diffusion Dpp (upper
row), its perpendicular component Dpp,⊥ with respect to the
local magnetic field (middle row), and the ratio of parallel to
perpendicular components Dpp,∥/Dpp,⊥ (lower row).6 As shown
in panel (a), before 1/Ω0, corresponding to the first stage of
Rg< L/512 mentioned above, the total Dpp over time presents
a power-law relationship of Dpp∝ t4/5. At t; 1/Ω0, the
evolution of Dpp over time presents a trough (seen also in
Demidem et al. 2020) except for the super-Alfvénic and

supersonic one (orange-dotted line), which indicates that the
turbulence interaction tends to suppress the particle diffusion in
the dissipation region. When entering the strong turbulence
regime, the increasing rate of Dpp for sub-Alfvénic turbulence
becomes higher with a steeper distribution. In these two stages,
the particle undergoes superdiffusion in the momentum space.7

When the gyroradius reaches the transition scale, i.e., enters the
weak turbulence regime, the evolution of Dpp follows a plateau
phase, which is a significant feature of the second-order Fermi
process (Pezzi et al. 2022; Liang et al. 2023) and means that the
particle experiences normal diffusion.
To explore the relationship between Dpp and the gyroradius

Rg, we divide Rg from 10−3/L to 102/L into 50 bins in the
logarithmic bin, and then pick out the particles in each bin to
calculate their diffusion coefficients.8 In the box length range
from Rg= L/512 to L that we are interested in, in panel (d) we
plot the momentum diffusion coefficient as a function of Rg. As
shown, it approximates to µD Rpp g

3 4 in the strong turbulence
regime for sub-Alfvénic turbulence, while µD Rpp g

2 5 for
super-Alfvénic turbulence. This demonstrates that momentum
diffusion in sub-Alfvénic turbulence is faster than that in
super-Alfvénic turbulence. This should be due to the fact that in
the momentum space, the strong magnetic fields improve
particle diffusion. For both cases of sub- and super-Alfvénic

Figure 2. The time evolution of the gyroradius of a single particle is compared with the behavior of an ensemble of 104 test particles interacting with four different
turbulence scenarios. The horizontal dashed, dotted, and dashed–dotted lines show the grid, transition, and box scales, respectively. L and Ω0 are the box length and
initial gyrofrequency, respectively.

6 Note that Dpp is considered as a function of time t instead of Δt. In fact, we
find that the slope relationship from 〈(Δp)2〉 versus Δt is consistent with that
from Dpp versus t.

7 µ -D tpp
a 1p , when ap < 1, it is called subdiffusion; when ap = 1, it is

called normal diffusion; when ap > 1, it is called superdiffusion (Ostrowski &
Siemieniec-Oziȩbło 1997; Sioulas et al. 2020).
8 After dividing Rg into 30, 50, 100, and 500 bins, we find that the results are
mostly stable at 30 bins, so we show the results for 50 bins in this paper.
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turbulence, Dpp shows a plateau after >R Lg tr, i.e., after
10/Ω0; see also panel (a). Furthermore, we also explore the
evolution of Dpp with momentum p, which shows a similar
power-law relationship with that of the gyroradius, i.e.,
Dpp∝ p3/4 for sub-Alfvénic turbulence, and Dpp∝ p2/5 for
the super-Alfvénic one. Note that Cho & Lazarian (2006)
predicted ~ D D ~  DvD p t p tlpp

2 2 2( ) ( · ) , from which we
can reasonably speculate ∇ · vl∝ p5/8/Δt and ∝p4/5/Δt.

In the middle panels of Figure 3, we plot the perpendicular
component Dpp,⊥ over the integrated time and gyroradius (by
binning the particles into different values of gyroradius). Its
overall behavior is similar to that of Dpp, except for some small
differences. In particular, we see a good power-law relationship
of Dpp,⊥∝ t4/5 before 1/Ω0 and µ^D Rpp, g

6 5 in the strong

turbulence regimes for four turbulence scenarios. Moreover, the
ratio of Dpp,∥ and Dpp,⊥ is shown in the lower panels, from
which we can see that at the early stage of evolution Dpp,⊥ is
even one order of magnitude larger than Dpp,∥ for the sub-
Alfvénic and super-Alfvénic turbulence regimes. This implies
that at small Rg the perpendicular gradient drift of the magnetic
field dominates particle diffusion processes by =vgrad

g ´ ^ B Bmv q B22 2 2( ) . For the evolution of the time of Dpp

(panel (c)), after t∼ 1/Ω0, the diffusion is dominated by the
parallel momentum. For its gyroradius evolution (panel (f)), in
the case of super-Alfvénic turbulence, when Rg> L/512,
Dpp,∥/Dpp,⊥ grows slowly and enters the stage dominated by
parallel momentum, and in the sub-Alfvénic case, when

>R Lg tr the parallel momentum dominates the momentum

Figure 3. The momentum diffusion coefficient as a function of the evolution time (left column) and the gyroradius of particles accelerated (right column). The total
momentum diffusion coefficient, its perpendicular component, and the ratio of parallel to perpendicular component are plotted in the upper, middle, and lower rows,
respectively. The vertical dashed and dashed–dotted lines plotted in the right column present the grid and box sizes, respectively, while the horizontal dashed–dotted
line shows Dpp,∥/Dpp,⊥ = 1. L, Ω0, and P0 are the box length, initial gyrofrequency, and momentum, respectively.
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diffusion. This means that the diffusion is dominated by the
parallel momentum at large Rg.

4.3. Spatial Diffusion and Pitch-angle Scattering

We bin particles into different values of gyroradius, then
present the spatial diffusion coefficient as a function of the
gyroradius in Figure 4, including the parallel diffusion D∥
(panel (a)) and the ratio of parallel and perpendicular
components (panel (b)) for four turbulence regimes. In panel
(a), D∥ for sub-Alfvénic turbulence shows a power-law
relationship of µRg

1 4 and a plateau before and after
Rg∼ 1/L, respectively. This indicates that the spatial diffusion
of particles first increases in the strong turbulence regime, i.e.,
scales smaller than L tr, and then enters a plateau stage in the
weak turbulence regime, i.e., scales greater than L tr. In the case
of super-Alfvénic turbulence, D∥ shows a slower slope at scales
smaller than L tr, which implies that strong magnetic fields
enhance the parallel spatial diffusion.

To gain insight into the detailed information of the spatial
diffusion of the accelerated particles, we further show the ratio
of parallel and perpendicular diffusion coefficients D∥/D⊥ in
panel (b). In the case of MA< 1, the ratio is larger than 1 all the

time, which means that D∥ dominates the spatial diffusion in
this case. As for the case of MA> 1, the distribution of the ratio
can be divided into two stages: first, it is larger than 1 and
slowly decreases, which means that the spatial diffusion of CRs
is dominated by D∥; second, after Rg∼ 0.3/L, the ratio is less
than 1 and enters into the stage dominated by D⊥. This
indicates that in the strongly turbulent cascade process, super-
Alfvénic turbulence tends to inhibit the parallel diffusion of the
accelerated particles. Similarly, by analyzing the mean free
path of the particles (see Equation (4)), we also come to similar
results.
Next, with the aim of studying the pitch-angle scattering

behavior of the accelerated particles, we bin particles into
different values of Rg and show the evolution of Dμμ over Rg in
Figure 5. With increasing Rg, Dμμ can be roughly divided into
two stages. First, differences between these four turbulence
regimes begin to emerge during the plateau stage of Rg versus t
(see Figure 2). Dμμ of these four turbulence regimes presents an
evolution similar to that of Rg, which decays with a power-law
relationship of µmm

-D Rg
1 5, except for a slightly slower

decay of the sub-Alfvénic and supersonic cases (green triangle-
down line). Second, when the Rg of particles reaches the
transition scale L tr, where the momentum and spatial diffusion

Figure 4. The evolution of the parallel diffusion coefficient (panel (a)), D∥, and the ratio of D∥ to the perpendicular diffusion coefficient D⊥ (panel (b)) with the
gyroradius. The other descriptions are the same as those in Figure 3.
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reach a plateau, the decay rate of Dμμ slows down and
gradually enters a plateau for these four regimes. Note that
there are opposite evolutionary trends between Dμμ and Dpp

over Rg. This suggests that when a particle is being accelerated,
its pitch-angle scattering is suppressed.

5. Numerical Results: Interaction of CR Particles with
Plasma Modes

5.1. Trajectory of Particles

Based on data cubes A1 and A5 listed in Table 1 from
simulations of MHD turbulence, we provide the numerical results
of CRs interacting with decomposed plasma modes. Figure 6 plots
the trajectories of the selected three particles from the pre-
decomposed MHD turbulence (panel (a)) and its post-decomposed
three modes: the Alfvén (panel (b)), fast (panel (c)), and slow
(panel (d)) modes. The pre-decomposed MHD turbulence shows a
similar diffusive motion as shown in Figure 1. As for the post-
decomposed plasma modes, the trajectories for the fast mode are
similar to that of pre-decomposed turbulence, and trajectories for
the Alfvén mode are extended along the x-axis direction, which is
consistent with our expectation due to its intrinsically polarized
feature. Although the slow mode has similar trajectories with the
Alfvén one, which should be from their same scale-dependent
anisotropies (CL02), it experiences more extended spatial lengths.
This phenomenon implies that the particle interaction with
turbulence for the fast mode is more effective, and the particle
acceleration rate should be higher in the supersonic regime. In
addition, we see that the spatial scales in the x-axis direction for the
slow and fast modes are slightly larger than that for the Alfvén
mode, which may mean that magnetosonic modes have a slightly
higher diffusion efficiency than the Alfvén mode. These inferences
will be further confirmed below.

5.2. Momentum Diffusion

In Figure 7, we show the gyroradius of particles from the
three modes and their ratios in the high and low β regimes.9 As

shown in the left column for the high β regime, we can see that
the acceleration processes can be divided into three different
stages by the length scales. In the first stage (Rg< L/512), the
gyroradii of these three modes present a plateau, and then
slowly increase over time to exceed L/512. In the second stage
( < <L R L512 g tr), i.e., the strong turbulence regime, the Rg

of the fast and Alfvén modes are very similar to each other
presenting a power-law relationship of t4/5, and larger than Rg,S

at the same simulation time. This may be related to the fraction
of magnetic energies listed in Table 1, that is, the larger the B
value, the smaller the Rg is (see Equation (18)). In the third
stage ( >R Lg tr), i.e., the weak turbulence regime, the fast
mode remains at the same power law as that in the second
stage, while the Alfvén and slow modes show a shallower
power law of Rg∝ t1/2. Interestingly, the behavior of the
acceleration of particles caused by the three plasma modes is
different from that caused by overall MHD turbulence before
being decomposed (see Figure 2).
To explore their ratios, we highlight the timescale zone in

panel (b) in which the gyroradii of the three modes reach the L/
512 and L tr scales, by filling in the area between two adjacent
vertical lines at each scale for convenience. We can more
clearly see their differences: during the plateau stage (i.e., the
left region of the pink vertical bandwidth), Rg,A; Rg,F; Rg,S;
after that (i.e., the region between the pink and cornflower-blue
vertical bandwidth), Rg,S is almost always smaller than Rg,A and
Rg,F; as for the weak turbulence regime (i.e., the right region of
the violet vertical bandwidth), it is opposite in that Rg,F is the
largest one and followed by Rg,A.
In the case of the low β regime (right column), there is a

distinctly different phenomenon for the slow mode before
about 100.5/Ω0 (during the strong turbulence regime). A slow
wave starts to accelerate before the plateau stage of the fast and
Alfvén modes. After 100.5/Ω0, the Rg of the slow mode grows
slowly and presents a power-law relationship of Rg∝ t2/5,
compared with the high β scenario. As can be seen, in the first
two stages (the left region of the cornflower-blue vertical
bandwidth), the interaction caused by the slow mode dominates
the acceleration process, while in the third stage (the right
region of the cornflower-blue vertical bandwidth), the accel-
eration efficiency of the fast mode is higher than that of the
other two. In this comparison study, since Models A1 and A5
listed in Table 1 have very close values of MA= 0.65 and 0.5,
respectively, the difference in β is mainly caused by the
difference in Ms (0.48 for A1 and 9.92 for A5) by the
relationship of b = M M2 A

2
s
2. Therefore, we find that the shock

wave occurring in the supersonic case influences the particle’s
acceleration.
To explore the effect of the plasma modes on the diffusion in

momentum space, in Figure 8 we show the ratio of the
momentum diffusion coefficients between the two modes as a
function of the time, for the total momentum (top row), its
parallel Dpp,∥ (middle row), and perpendicular Dpp,⊥ (bottom
row) components. In the high β regime (left column), for the
total momentum diffusion coefficient (panel (a)), the contrib-
ution of magnetosonic modes (Dpp,S and Dpp,F) is greater than
that of the Alfvén mode (Dpp,A) during the whole evolution. As
for Dpp,∥ (panel (b)) and Dpp,⊥ (panel (c)), it is basically the
same as the total momentum diffusion coefficient, though
Dpp,F/Dpp,S is close to one after about 1/Ω0, corresponding to
the last two stages of the time evolution of gyroradius. This
means that in the high β case, the fast mode is as crucial as the

Figure 5. The pitch-angle diffusion coefficient, Dμμ, as a function of
gyroradius at four turbulence regimes explored. The other descriptions are
the same as those of Figure 3.

9 It should be noted that, when plotting the figures, we used the same
transition scale related to the same MA calculated from the full MHD data. This
is only to approximate the corresponding scale relationship to explain the
simulation results.
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slow mode for the parallel and perpendicular components of
momentum diffusion in the later stages of the particle
acceleration.

In the low β regime (right column), the contribution of the
fast mode is almost always the largest one, followed by the
Alfvén mode, and the slow mode is the smallest, including the
total momentum diffusion coefficient Dpp, as well as its parallel
and perpendicular components (Dpp,∥ and Dpp,⊥). In detail, the
order of magnitude of the ratio of any two modes in the low β

regime is slightly higher than that in the high β regime.
Especially for Dpp,∥, the fast mode is almost several orders of
magnitude higher than the slow mode in the first stage.

In short, our one finding is that the fast mode in the high β

case dominates the particle acceleration, while in the low β

case, the fast and slow modes dominate the acceleration. Here,

the dominance of the fast mode is in agreement with earlier
theoretical predictions (Yan & Lazarian 2002; Chandran 2003;
Cho & Lazarian 2006). Another finding is that our numerical
results confirm the dominance of magnetosonic modes in the
acceleration and momentum diffusion of CRs, which is
consistent with previous studies (Yan & Lazarian 2004; Lynn
et al. 2014; Zhang et al. 2020).

5.3. Spatial Diffusion and Pitch-angle Scattering

To explore the effect of the plasma modes on particle spatial
diffusion, we present the ratio of parallel D∥ (upper row) and
perpendicular diffusion coefficient D⊥ (lower row) between the
two modes shown in Figure 9. As is shown in the left column
(high β), the slow mode dominates the parallel diffusion D∥
(panel (a)) during the whole simulation time, except for the

Figure 6. The 3D trajectories of three test particles selected, arising from data A5 (panel (a)) listed in Table 1 and its decomposed modes including the Alfvén (panel
(b)), fast (panel (c)), and slow (panel (d)) modes. The star and circle markers refer to their initial and final locations in 3D space, respectively. Lbox = 512 is the box
scale.
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time range after ∼10/Ω0 (D∥,A≈D∥,F≈D∥,S). From panel (b),
we can see that the dominance of D⊥ among three modes can
be roughly divided into two stages: (1) the slow mode
dominates the perpendicular diffusion followed by D⊥,F>
D⊥,A before ∼10/Ω0; (2) after 10/Ω0, the magnetosonic modes
dominate the perpendicular diffusion with the relation of
D⊥,F≈D⊥,S≈D⊥,A. It should be noted that the Alfvén mode
plays a subdominant role in almost the whole evolution.

In the case of the low β regime (right column), the ratio of
the parallel and perpendicular diffusion coefficients is almost
similar. Before ∼0.1/Ω0, both parallel D∥ and perpendicular
D⊥ maintain a dominant order, that is, the fast mode is the
largest followed by the Alfvén mode, and the slow mode is the
smallest. From ∼0.1/Ω0 to ∼102/Ω0, the evolution of both D∥
and D⊥ in this situation is similar to the case of D∥ in the high β
regime, where magnetosonic modes dominate the diffusion.
After ∼102/Ω0, their ratios are all close to 1, which means that
the three modes play a comparable role. As a result,
magnetosonic modes play a dominant role in the spatial
diffusion of particles in the strong turbulence regime.

The Dμμ for the three modes are shown in Figure 10. As is
shown in panel (a), i.e., in the case of the high β regime, the
dominant relation is Dμμ,S>Dμμ,F∼Dμμ,A before 1/Ω0, and
then it turns to the stage that three modes approximately keep
the similar scattering level. Differently, for the low β regime
(panel (b)), the fast mode is the largest, and the Alfvén mode is
secondary before ∼0.25/Ω0, corresponding to Rg reaching the

scale of L/512 for the fast and Alfvén modes (see also
Figure 7). After that, three ratios are approximately equal to 1
(after presenting a trough) consistent with the high β scenario
(see panel (b)). We would like to stress that when plotting, we
constrain a narrow range of vertical coordinates to observe their
differences. Therefore, using pitch-angle diffusion versus the
evolution time, it is difficult to distinguish their differences
from the scattering processes of the accelerated particles in the
range of the box size.

6. Discussion

In this work, we numerically explore the energization
processes of CRs in compressible MHD turbulence regimes.
We first focus on the influence of different turbulence
properties on the energization of CRs and then on the
interaction of CRs with the Alfvén, slow, and fast modes.
Specifically, we elaborate on the acceleration, diffusion, and
scattering behavior of 104 particles injected instantly by
considering their evolution with time and gyroradius.
Our current studies are built on a modern understanding of

MHD turbulence theory, focusing on the properties of
turbulence and the influence of plasma modes on particle
acceleration. The results demonstrate that the diffusion
coefficients of accelerated particles experience a universally
exponential increase with the simulation time and gyroradius,
similar to the phase of exponential for the relativistic MHD

Figure 7. The gyroradius of the accelerated particles as a function of evolution time for the decomposed three plasma modes (upper row) and the ratio of the three
modes (lower row). The left and right columns are based on A1 and A5 listed in Table 1, respectively. The subscript i represents the Alfvén and fast modes, while the
subscript j represents the slow and fast modes. The vertical dashed and dotted lines represent the time that the gyroradius reaches the grid and transition scales,
respectively, where the colors yellow-green, orange, and red present the Alfvén, fast, and slow modes, respectively. L and Ω0 are the box length and initial
gyrofrequency, respectively.
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turbulence growth seen in Demidem et al. (2020). Differently,
Demidem et al. (2020) used a Monte Carlo simulation, one of
the merits of which is that it is not affected by any choice of the
distribution function. However, the limitation of this method is
that its phenomenological description of acceleration processes
cannot trace the microphysical details related to plasma
physics.

When exploring the interplay of CRs and individual plasma
modes, we find that the contribution to acceleration arising
from the fast mode is the highest one in the high β case, while
the fast and slow modes dominate the acceleration in the low β
one, which is in good agreement with Cho & Lazarian (2006)
for the particle acceleration under strong and weak MHD
turbulence. They theoretically derived the momentum diffusion
coefficients of the fast and slow modes and established that the
acceleration efficiency of the fast mode is more efficient than
that of the slow mode similar to the results of Yan & Lazarian
(2002) and Chandran (2003). The earlier studies have claimed
that the scattering of charged particles by Alfvénic turbulence
is negligible (Yan & Lazarian 2002, 2004; Lynn et al. 2014),
and magnetosonic modes are dominant processes for the

transport and acceleration of CRs. However, we found that the
effect of the Alfvén mode cannot be ignored, playing a
subdominant role. We conjecture that the non-negligible impact
of the Alfvén mode on particle acceleration and diffusion may
be from the compressible component of the Alfvén waves. In
this regard, by projecting the local Alfvén component of the
turbulent variables into linear combinations of Alfvén and non-
Alfvén components, Yuen et al. (2023) proposed an Alfvén
leakage effect in the frame of the local magnetic field.
It is generally accepted that the mechanism by which

turbulence causes particle acceleration is a stochastic accelera-
tion process. Our current work does not describe what the
acceleration mechanism is. As mentioned above, this paper
focused on the influence of both turbulence properties and
plasma modes on the transport of CRs. As is well known, the
interaction of MHD turbulence results in the gyroresonance and
TTD of particles. For the former, its criterion is based on a
comparison between the wave frequency and the particle
Larmor frequency. At small scales, a particle can preserve its

adiabatic invariant =^ constmv

B2

2

0
, due to the Larmor radius being

Figure 8. The ratio of momentum diffusion coefficients between two modes as a function of the evolution time arising from total momentum (top row), and its parallel
(middle row) and perpendicular (bottom row) components, based on A1 (left column) and A5 (right column) as listed in Table 1. The light curves with many
fluctuations are original distributions, while the dark curves are a robust local weighted regression fitting. The other descriptions are the same as those in Figure 7.
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smaller than the variation scale of the magnetic field. However,
particle motions would violate the adiabatic invariant con-
servation at large scales (Chandran 2000; Yan & Lazarian 2003;
Lazarian & Xu 2021). For the latter, it is essentially a
Cerenkov-type interaction allowing particles to interact with
large-scale turbulence. In the framework of the modern
understanding of MHD turbulence, separating the contributions
of TTD and gyroresonance will be performed in future work.

When visualizing the time evolution of the gyroradius of
particles (and also including the interaction of CRs with
decomposed plasma modes), we use the weak to strong
transition scale from theoretical predictions in LV99 and
Lazarian (2006) to explain our numerical findings. The
theoretical prediction of weak to strong transition scales has
been confirmed by simulations (Verdini & Grappin 2012;
Meyrand et al. 2016; Makwana & Yan 2020) and observations
(Sioulas et al. 2023; Zhao et al. 2023). As an example, from the
perspective of simulation, Meyrand et al. (2016) presented
direct evidence of such a weak to strong transition, using a
high-resolution three-dimensional direct numerical simulation
of incompressible MHD turbulence. From the perspective of
observation, Zhao et al. (2023) reported the first observational
evidence for the Alfvénic weak to strong transition in MHD
turbulence in Earthʼs magnetosheath using data from the
Cluster spacecraft.

In order to verify the reliability of our results, we also
perform in this paper a comparison study using the numerical
resolutions of 2563 and 7923. Our studies show that the

difference in the numerical resolution does not affect the
simulation results provided in the current work. Therefore, the
resolution of 512 adopted in this paper is sufficient for our
current goal. This work is only a first step toward under-
standing a more complex interplay between particle accelera-
tion and plasma modes.

7. Summary

This paper studied the interaction of CRs with compressible
MHD turbulence together with their acceleration processes
based on the modern understanding of MHD turbulence theory.
With different MHD turbulence regimes that may happen in a
realistic astrophysical environment, we focused on particle
acceleration, diffusion, and scattering processes using a test
particle simulation.

1. We find that the gyroradius of particles exponentially
increases with the simulation time by Rg∝ tj. In the
strong turbulence regime, the index jä [4/3, 5/3] for the
sub-Alfvénic turbulence is steeper than j ä [1, 4/3] for
the super-Alfvénic one, while in the weak turbulence
regime, j is approximately equal to 2/3 for the four
turbulence cases explored.

2. In the strong turbulence range, the particle undergoes
superdiffusion in the momentum space, with the relation-
ships of µD Rpp g

3 4 for sub-Alfvénic turbulence and

µD Rpp g
2 5 for the super-Alfvénic one. The momentum

in the direction parallel to the local magnetic field

Figure 9. The ratio of the parallel (upper row) and perpendicular (lower) diffusion coefficients for the three modes. The other descriptions are the same as those in
Figure 8.
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dominates the diffusion process at large Rg. In the weak
turbulence regime, the momentum diffusion shows a
plateau implying a stochastic acceleration process and
meaning that the particle experiences normal diffusion in
the momentum space.

3. With Rg in the range of the box size, the parallel diffusion
dominates the spatial diffusion of particles in the case of
the sub-Alfvénic turbulence regime, while in the weak
turbulence regime, the perpendicular diffusion is slightly
faster than the parallel one in the case of the super-
Alfvénic one. The pitch-angle diffusion decays along
with the increasing gyroradius, with the diffusion rate in
the weak turbulence slower than that in the strong
turbulence.

4. As for the interaction of CRs with individual plasma
modes, the properties of particle acceleration, diffusion,
and scattering are distinct from those of pre-decomposed
MHD turbulence. The particle acceleration is dominated
by the fast mode in the high β case, while in the low β
case, it is dominated by the fast and slow modes.
Moreover, magnetosonic (fast and slow) modes are also
the main contributors to the momentum diffusion of CRs.

5. The spatial diffusion of particles is dominated by the slow
mode for both the high and low β cases in the strong
turbulence regime, while in the weak turbulence regime,
three plasma modes play a comparable role. In particular,
the spatial diffusion from the Alfvén mode cannot be
ignored.

Acknowledgments

We would like to thank the anonymous referee for
constructive comments that have significantly improved our
manuscript. We thank Alex Lazarian for reading the manu-
script, and Siyao Xu for helpful discussions on particle
acceleration and scattering in MHD turbulence. The authors
are grateful for the support from the National Natural Science
Foundation of China (grant No. 11973035). J.F.Z. also thanks
the Hunan Natural Science Foundation for Distinguished
Young Scholars (No. 2023JJ10039), and the China Scholarship
Council for the overseas research fund.

References

Bell, A. R. 1978, MNRAS, 182, 147
Beresnyak, A. 2019, LRCA, 5, 2
Beresnyak, A., Yan, H., & Lazarian, A. 2011, ApJ, 728, 60
Bian, N., Emslie, A. G., & Kontar, E. P. 2012, ApJ, 754, 103
Blandford, R. D., & Ostriker, J. P. 1978, ApJL, 221, L29
Brunetti, G., & Jones, T. W. 2014, IJMPD, 23, 1430007
Brunetti, G., & Lazarian, A. 2007, MNRAS, 378, 245
Bykov, A. M., & Meszaros, P. 1996, ApJL, 461, L37
Casse, F., Lemoine, M., & Pelletier, G. 2001, PhRvD, 65, 023002
Chandran, B. D. G. 2000, PhRvL, 85, 4656
Chandran, B. D. G. 2003, ApJ, 599, 1426
Cho, J., & Lazarian, A. 2002, PhRvL, 88, 245001
Cho, J., & Lazarian, A. 2003, MNRAS, 345, 325
Cho, J., & Lazarian, A. 2006, ApJ, 638, 811
Cho, J., & Vishniac, E. T. 2000, ApJ, 539, 273
Cohet, R., & Marcowith, A. 2016, A&A, 588, A73
De Gouveia Dal Pino, E. M., Kowal, G., & Lazarian, A. 2013, ICRC, 33, 67
Demidem, C., Lemoine, M., & Casse, F. 2020, PhRvD, 102, 023003
Earl, J. A. 1974, ApJ, 193, 231
Felice, G. M., & Kulsrud, R. M. 2001, ApJ, 553, 198
Fermi, E. 1949, PhRv, 75, 1169
Fisk, L. A., Goldstein, M. L., Klimas, A. J., & Sandri, G. 1974, ApJ, 190, 417
Giacalone, J., & Jokipii, J. R. 1999, ApJ, 520, 204
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763
Goldstein, M. L. 1976, ApJ, 204, 900
Guo, F., & Oh, S. P. 2008, MNRAS, 384, 251
Hu, Y., Lazarian, A., & Xu, S. 2022, MNRAS, 512, 2111
Iroshnikov, P. S. 1963, AZh, 40, 742
Jokipii, J. R. 1966, ApJ, 146, 480
Kolmogorov, A. 1941, DoSSR, 30, 301
Kowal, G., & Lazarian, A. 2010, ApJ, 720, 742
Kraichnan, R. H. 1965, PhFl, 8, 1385
Krumholz, M. R., Crocker, R. M., Xu, S., et al. 2020, MNRAS, 493, 2817
Lazarian, A. 2006, ApJL, 645, L25
Lazarian, A., & Vishniac, E. T. 1999, ApJ, 517, 700
Lazarian, A., & Xu, S. 2021, ApJ, 923, 53
Liang, S.-M., Zhang, J.-F., Gao, N.-N., & Xiao, H.-P. 2023, ApJ, 952, 93
Lithwick, Y., & Goldreich, P. 2001, ApJ, 562, 279
Longair, M. S. 2011, High Energy Astrophysics (Cambridge: Cambridge Univ.

Press)
Lynn, J. W., Quataert, E., Chandran, B. D. G., & Parrish, I. J. 2014, ApJ, 791, 71
Maiti, S., Makwana, K., Zhang, H., & Yan, H. 2022, ApJ, 926, 94
Makwana, K. D., & Yan, H. 2020, PhRvX, 10, 031021
Maron, J., & Goldreich, P. 2001, ApJ, 554, 1175
Mbarek, R., Caprioli, D., & Murase, K. 2022, ICRC (Berlin), 37, 481
Melrose, D. B. 1980, Plasma astrophysics. Nonthermal processes in diffuse

magnetized plasmas—Vol.1: The emission, absorption and transfer of waves in
plasmas; Vol.2: Astrophysical applications (New York: Gordon and Breach)

Mertsch, P. 2020, Ap&SS, 365, 135
Meyrand, R., Galtier, S., & Kiyani, K. H. 2016, PhRvL, 116, 105002

Figure 10. The ratio of pitch-angle diffusion coefficients for the three modes. The other descriptions are the same as those in Figure 8.

14

The Astrophysical Journal, 961:80 (15pp), 2024 January 20 Gao & Zhang

https://doi.org/10.1093/mnras/182.2.147
https://ui.adsabs.harvard.edu/abs/1978MNRAS.182..147B/abstract
https://doi.org/10.1007/s41115-019-0005-8
https://ui.adsabs.harvard.edu/abs/2019LRCA....5....2B/abstract
https://doi.org/10.1088/0004-637X/728/1/60
https://ui.adsabs.harvard.edu/abs/2011ApJ...728...60B/abstract
https://doi.org/10.1088/0004-637X/754/2/103
https://ui.adsabs.harvard.edu/abs/2012ApJ...754..103B/abstract
https://doi.org/10.1086/182658
https://ui.adsabs.harvard.edu/abs/1978ApJ...221L..29B/abstract
https://doi.org/10.1142/S0218271814300079
https://ui.adsabs.harvard.edu/abs/2014IJMPD..2330007B/abstract
https://doi.org/10.1111/j.1365-2966.2007.11771.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.378..245B/abstract
https://doi.org/10.1086/309999
https://ui.adsabs.harvard.edu/abs/1996ApJ...461L..37B/abstract
https://doi.org/10.1103/PhysRevD.65.023002
https://ui.adsabs.harvard.edu/abs/2001PhRvD..65b3002C/abstract
https://doi.org/10.1103/PhysRevLett.85.4656
https://ui.adsabs.harvard.edu/abs/2000PhRvL..85.4656C/abstract
https://doi.org/10.1086/379317
https://ui.adsabs.harvard.edu/abs/2003ApJ...599.1426C/abstract
https://doi.org/10.1103/PhysRevLett.88.245001
https://ui.adsabs.harvard.edu/abs/2002PhRvL..88x5001C/abstract
https://doi.org/10.1046/j.1365-8711.2003.06941.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.345..325C/abstract
https://doi.org/10.1086/498967
https://ui.adsabs.harvard.edu/abs/2006ApJ...638..811C/abstract
https://doi.org/10.1086/309213
https://ui.adsabs.harvard.edu/abs/2000ApJ...539..273C/abstract
https://doi.org/10.1051/0004-6361/201527376
https://ui.adsabs.harvard.edu/abs/2016A&A...588A..73C/abstract
https://ui.adsabs.harvard.edu/abs/2013ICRC...33...67D/abstract
https://doi.org/10.1103/PhysRevD.102.023003
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102b3003D/abstract
https://doi.org/10.1086/153152
https://ui.adsabs.harvard.edu/abs/1974ApJ...193..231E/abstract
https://doi.org/10.1086/320651
https://ui.adsabs.harvard.edu/abs/2001ApJ...553..198F/abstract
https://doi.org/10.1103/PhysRev.75.1169
https://ui.adsabs.harvard.edu/abs/1949PhRv...75.1169F/abstract
https://doi.org/10.1086/152893
https://ui.adsabs.harvard.edu/abs/1974ApJ...190..417F/abstract
https://doi.org/10.1086/307452
https://ui.adsabs.harvard.edu/abs/1999ApJ...520..204G/abstract
https://doi.org/10.1086/175121
https://ui.adsabs.harvard.edu/abs/1995ApJ...438..763G/abstract
https://doi.org/10.1086/154239
https://ui.adsabs.harvard.edu/abs/1976ApJ...204..900G/abstract
https://doi.org/10.1111/j.1365-2966.2007.12692.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.384..251G/abstract
https://doi.org/10.1093/mnras/stac319
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.2111H/abstract
https://ui.adsabs.harvard.edu/abs/1963AZh....40..742I/abstract
https://doi.org/10.1086/148912
https://ui.adsabs.harvard.edu/abs/1966ApJ...146..480J/abstract
https://ui.adsabs.harvard.edu/abs/1941DoSSR..30..301K/abstract
https://doi.org/10.1088/0004-637X/720/1/742
https://ui.adsabs.harvard.edu/abs/2010ApJ...720..742K/abstract
https://doi.org/10.1063/1.1761412
https://ui.adsabs.harvard.edu/abs/1965PhFl....8.1385K/abstract
https://doi.org/10.1093/mnras/staa493
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.2817K/abstract
https://doi.org/10.1086/505796
https://ui.adsabs.harvard.edu/abs/2006ApJ...645L..25L/abstract
https://doi.org/10.1086/307233
https://ui.adsabs.harvard.edu/abs/1999ApJ...517..700L/abstract
https://doi.org/10.3847/1538-4357/ac2de9
https://ui.adsabs.harvard.edu/abs/2021ApJ...923...53L/abstract
https://doi.org/10.3847/1538-4357/acdc18
https://ui.adsabs.harvard.edu/abs/2023ApJ...952...93L/abstract
https://doi.org/10.1086/323470
https://ui.adsabs.harvard.edu/abs/2001ApJ...562..279L/abstract
https://doi.org/10.1088/0004-637X/791/1/71
https://ui.adsabs.harvard.edu/abs/2014ApJ...791...71L/abstract
https://doi.org/10.3847/1538-4357/ac46c8
https://ui.adsabs.harvard.edu/abs/2022ApJ...926...94M/abstract
https://doi.org/10.1103/PhysRevX.10.031021
https://ui.adsabs.harvard.edu/abs/2020PhRvX..10c1021M/abstract
https://doi.org/10.1086/321413
https://ui.adsabs.harvard.edu/abs/2001ApJ...554.1175M/abstract
https://doi.org/10.22323/1.395.0481
https://ui.adsabs.harvard.edu/abs/2022icrc.confE.481M/abstract
https://doi.org/10.1007/s10509-020-03832-3
https://ui.adsabs.harvard.edu/abs/2020Ap&SS.365..135M/abstract
https://doi.org/10.1103/PhysRevLett.116.105002
https://ui.adsabs.harvard.edu/abs/2016PhRvL.116j5002M/abstract


Michalek, G., Ostrowski, M., & Schlickeiser, R. 1999, SoPh, 184, 339
Ostrowski, M., & Siemieniec-Oziȩbło, G. 1997, APh, 6, 271
Parker, E. N. 1957, JGR, 62, 509
Petrosian, V., & Bykov, A. M. 2008, SSRv, 134, 207
Petschek, H. E. 1964, NASSP, 50, 425
Pezzi, O., Blasi, P., & Matthaeus, W. H. 2022, ApJ, 928, 25
Schekochihin, A. A. 2020, arXiv:2010.00699
Schlickeiser, R. 2002, Cosmic Ray Astrophysics (Berlin: Springer)
Sioulas, N., Isliker, H., Vlahos, L., Koumtzis, A., & Pisokas, T. 2020,

MNRAS, 491, 3860
Sioulas, N., Velli, M., Huang, Z., et al. 2023, ApJ, 951, 141
Summerlin, E. J., & Baring, M. G. 2012, ApJ, 745, 63
Sweet, P. A. 1958, in Electromagnetic Phenomena in Cosmical Physics, ed.

B. Lehnert, Vol. 6 (Dordrecht: Kluwer), 123
Takamoto, M., & Lazarian, A. 2016, ApJL, 831, L11
Takamoto, M., & Lazarian, A. 2017, MNRAS, 472, 4542

Verdini, A., & Grappin, R. 2012, PhRvL, 109, 025004
Wiener, J., Pfrommer, C., & Oh, S. P. 2017, MNRAS, 467, 906
Xu, S., & Lazarian, A. 2020, ApJ, 894, 63
Xu, S., & Yan, H. 2013, ApJ, 779, 140
Xu, S., & Zhang, B. 2017, ApJL, 846, L28
Yan, H., & Lazarian, A. 2002, PhRvL, 89, 281102
Yan, H., & Lazarian, A. 2003, ApJL, 592, L33
Yan, H., & Lazarian, A. 2004, ApJ, 614, 757
Yan, H., & Lazarian, A. 2008, ApJ, 673, 942
Yuen, K. H., Yan, H., & Lazarian, A. 2023, MNRAS, 521, 530
Zhang, H., Chepurnov, A., Yan, H., et al. 2020, NatAs, 4, 1001
Zhang, J.-F., & Xiang, F.-Y. 2021, ApJ, 922, 209
Zhang, J.-F., Xu, S., Lazarian, A., & Kowal, G. 2023, JHEAp, 40, 1
Zhao, S., Yan, H., Liu, T. Z., Yuen, K. H., & Wang, H. 2023, arXiv:2301.

06709
Zweibel, E. G., Mirnov, V. V., Ruszkowski, M., et al. 2018, ApJ, 858, 5

15

The Astrophysical Journal, 961:80 (15pp), 2024 January 20 Gao & Zhang

https://doi.org/10.1023/A:1005028205111
https://ui.adsabs.harvard.edu/abs/1999SoPh..184..339M/abstract
https://doi.org/10.1016/S0927-6505(96)00061-8
https://ui.adsabs.harvard.edu/abs/1997APh.....6..271O/abstract
https://doi.org/10.1029/JZ062i004p00509
https://ui.adsabs.harvard.edu/abs/1957JGR....62..509P/abstract
https://doi.org/10.1007/s11214-008-9315-6
https://ui.adsabs.harvard.edu/abs/2008SSRv..134..207P/abstract
https://ui.adsabs.harvard.edu/abs/1964NASSP..50..425P/abstract
https://doi.org/10.3847/1538-4357/ac5332
https://ui.adsabs.harvard.edu/abs/2022ApJ...928...25P/abstract
http://arxiv.org/abs/2010.00699
https://doi.org/10.1093/mnras/stz3259
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.3860S/abstract
https://doi.org/10.3847/1538-4357/acc658
https://ui.adsabs.harvard.edu/abs/2023ApJ...951..141S/abstract
https://doi.org/10.1088/0004-637X/745/1/63
https://ui.adsabs.harvard.edu/abs/2012ApJ...745...63S/abstract
https://ui.adsabs.harvard.edu/abs/1958IAUS....6..123S/abstract
https://doi.org/10.3847/2041-8205/831/2/L11
https://ui.adsabs.harvard.edu/abs/2016ApJ...831L..11T/abstract
https://doi.org/10.1093/mnras/stx2292
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.4542T/abstract
https://doi.org/10.1103/PhysRevLett.109.025004
https://ui.adsabs.harvard.edu/abs/2012PhRvL.109b5004V/abstract
https://doi.org/10.1093/mnras/stx127
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467..906W/abstract
https://doi.org/10.3847/1538-4357/ab8465
https://ui.adsabs.harvard.edu/abs/2020ApJ...894...63X/abstract
https://doi.org/10.1088/0004-637X/779/2/140
https://ui.adsabs.harvard.edu/abs/2013ApJ...779..140X/abstract
https://doi.org/10.3847/2041-8213/aa88b1
https://ui.adsabs.harvard.edu/abs/2017ApJ...846L..28X/abstract
https://doi.org/10.1103/PhysRevLett.89.281102
https://ui.adsabs.harvard.edu/abs/2002PhRvL..89B1102Y/abstract
https://doi.org/10.1086/377487
https://ui.adsabs.harvard.edu/abs/2003ApJ...592L..33Y/abstract
https://doi.org/10.1086/423733
https://ui.adsabs.harvard.edu/abs/2004ApJ...614..757Y/abstract
https://doi.org/10.1086/524771
https://ui.adsabs.harvard.edu/abs/2008ApJ...673..942Y/abstract
https://doi.org/10.1093/mnras/stad287
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521..530Y/abstract
https://doi.org/10.1038/s41550-020-1093-4
https://ui.adsabs.harvard.edu/abs/2020NatAs...4.1001Z/abstract
https://doi.org/10.3847/1538-4357/ac28ff
https://ui.adsabs.harvard.edu/abs/2021ApJ...922..209Z/abstract
https://doi.org/10.1016/j.jheap.2023.08.001
https://ui.adsabs.harvard.edu/abs/2023JHEAp..40....1Z/abstract
http://arxiv.org/abs/2301.06709
http://arxiv.org/abs/2301.06709
https://doi.org/10.3847/1538-4357/aab9ae
https://ui.adsabs.harvard.edu/abs/2018ApJ...858....5Z/abstract

	1. Introduction
	2. Theoretical Descriptions
	2.1. MHD Turbulence Theory
	2.2. Physical Quantities That Characterize CR Propagation

	3. Numerical Simulation
	3.1. Simulation of MHD Turbulence
	3.2. Method of Test Particle

	4. Numerical Results: The Influence of Turbulence Properties on Particle Energization
	4.1. Trajectory of Particles
	4.2. Momentum Diffusion
	4.3. Spatial Diffusion and Pitch-angle Scattering

	5. Numerical Results: Interaction of CR Particles with Plasma Modes
	5.1. Trajectory of Particles
	5.2. Momentum Diffusion
	5.3. Spatial Diffusion and Pitch-angle Scattering

	6. Discussion
	7. Summary
	References



