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The chiral constituent quark model (𝜒CQM) with general parameterization method (GPM) has been formulated to calculate the
charge radii of the spin (1/2)

+ octet and (3/2)
+ decuplet baryons and quadrupole moments of the spin (3/2)

+ decuplet baryons and
spin (3/2)

+

→ (1/2)
+ transitions. The implications of such a model have been investigated in detail for the effects of symmetry

breaking and GPM parameters pertaining to the one-, two-, and three-quark contributions. Our results are not only comparable
with the latest experimental studies but also agree with other phenomenological models. It is found that the 𝜒CQM is successful in
giving a quantitative and qualitative description of the charge radii and quadrupole moments.

1. Introduction

The internal structure of baryons is determined in terms
of electromagnetic Dirac and Pauli form factors 𝐹

1
(𝑄

2
)

and 𝐹
2
(𝑄

2
) or equivalently in terms of the electric and

magnetic Sachs form factors 𝐺
𝐸
(𝑄

2
) and 𝐺

𝑀
(𝑄

2
) [1]. The

electromagnetic form factors are the fundamental quantities
of theoretical and experimental interest which are further
related to the static low energy observables of charge radii
and magnetic moments. One of the main challenges in the
theoretical and experimental hadronic physics is to under-
stand the structure of hadrons within the quantum chromo-
dynamics (QCD) in terms of these moments. AlthoughQCD
is accepted as the fundamental theory of strong interactions,
the direct prediction of these kinds of observables from the
first principle of QCD still remains a theoretical challenge as
they lie in the nonperturbative regime of QCD.

Following the discoveries that the quarks and antiquarks
carry only 30% of the total proton spin [2, 3], the orbital
angular momentum of quarks and gluons is expected to
make a significant contribution. In addition to this, there is
a significant contribution coming from the strange quarks
in the nucleon which are otherwise not present in the
valence structure. It therefore becomes interesting to discuss

the interplay between the spin of nonvalence quark and
the orbital angular momentum in understanding the spin
structure of baryons. Further, the experimental developments
[4–6], providing information on the radial variation of the
charge, and magnetization densities of the proton give the
evidence for the deviation of the charge distribution from
spherical symmetry. On the other hand, it is well known
that the quadrupole moment of the nucleon should vanish
on account of its spin-1/2 nature. This observation has
naturally turned to be the subject of intense theoretical and
experimental activity.

The mean square charge radius (𝑟2B), giving the possible
“size” of baryon, has been investigated experimentally with
the advent of new facilities at JLAB, SELEX Collaborations
[7–13]. Several measurements have been made for the charge
radii of 𝑝, 𝑛, and Σ

− in electron-baryon scattering experi-
ments [13, 14] giving 𝑟

𝑝
= 0.877 ± 0.007 fm (𝑟2

𝑝
= 0.779 ±

0.025 fm2 [15]) and 𝑟
2

𝑛
= −0.1161±0.0022 fm2 [12].The recent

measurement of 𝑟
2

Σ
−

[13, 14] is particularly interesting as it
gives the first estimate for the charge form factor of a strange
baryon at low momentum transfer.

The Δ(1232) resonance is the lowest-lying excited state
of the nucleon in which the search for quadrupole strength
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has been carried out [16–19]. The spin and parity selection
rules in the 𝛾 + 𝑝 → Δ

+ transition allow three contributing
photon absorption amplitudes, the magnetic dipole 𝐺

𝑀1
, the

electric quadrupole moment𝐺
𝐸2
, and the charge quadrupole

moment 𝐺
𝐶2
. The 𝐺

𝑀1
amplitude gives us information on

magnetic moment, whereas the information on the intrinsic
quadrupolemoment can be obtained from themeasurements
of 𝐺

𝐸2
and 𝐺

𝐶2
amplitudes [12]. If the charge distribution

of the initial and final three-quark states was spherically
symmetric, the 𝐺

𝐸2
and 𝐺

𝐶2
amplitudes of the multipole

expansion would be zero [20]. However, the recent experi-
ments at Mainz, Bates, Bonn, and JLab Collaborations [7–
11, 21, 22] reveal that these quadrupole amplitudes are clearly
nonzero [12]. The ratio of electric quadrupole amplitude to
the magnetic dipole amplitude is at least 𝐸2/𝑀1 ≡ −0.025 ±

0.005, and a comparable value of same sign and magnitude
has been measured for the 𝐶2/𝑀1 ratio [12]. Further, the
quadrupole transition moment (𝑄Δ

+

𝑁) measured by LEGS
and Mainz collaborations (−0.108 ± 0.009 ± 0.034 fm2 [16–
18] and −0.0846 ± 0.0033 fm2 [19], resp.) also leads to the
conclusion that the nucleon and the Δ

+ are intrinsically
deformed.

The naive quark model (NQM) [23–27] is one of the
simplest model to describe the hadron properties and inter-
actions in the low energy regime. This model is able to
provide a simple intuitive picture of the hadron structure in
terms of three valence quarks (𝑞𝑞𝑞) for baryons and quark
antiquark (𝑞𝑞) for mesons. It allows the direct calculations
of the low energy hadronic matrix elements including their
spectra and successfully accounts for many of the low energy
properties of the hadrons in terms of the valence quarks
[28–32]. Interestingly, with the inclusion of the spin-spin
interactions generated configurationmixing [28] between the
valence quarks, the NQM has not only given an accurate
description of the hadron spectroscopy data but also has been
able to describe some subtle features of the data including the
𝑁−Δmass difference, photohelicity amplitudes, and baryon
magnetic moments [29–36]. However, some major findings
on the experimental front discussed below have brought into
prominence the inadequacies of the NQM.

The measurements in the deep inelastic scattering (DIS)
experiments [2, 3] indicate that the valence quarks of the
proton carry only about 30% of its spin and also establishe
the asymmetry of the quark distribution functions [37–41].
This is referred to as the “proton spin problem” in NQM.
Several effective and phenomenological models have been
developed to explain the “proton spin problem” by including
spontaneous breaking of chiral symmetry and have been
further applied to study the electromagnetic properties of
baryons.

For the calculations pertaining to the baryon charge
radii, NQM leads to vanishing charge radii for the neutral
baryons like 𝑛, Σ0, Ξ0, and Λ. This is in contradiction to
the experimental data. The inclusion of quark spin-spin
interactions in NQM modify the baryon wavefunction to
some extent leading to the breaking of the SU(3) symmetry
and a nonvanishing neutron charge mean square radius
[29–32]. A likely cause of these dynamical shortcomings

is that the NQM does not respect chiral symmetry whose
spontaneous breaking leads to the emission of Goldstone
bosons (GBs). In this context, it becomes important to
incorporate the effect of chiral symmetry breaking (𝜒SB)
in the phenomenological models to obtain a reasonable
agreement with the data. On the other hand, a wide variety
of accurately measured data have been accumulated for
the static low energy properties of baryons, for example,
masses, electromagnetic moments, charge radii, and low
energy dynamical properties such as scattering lengths and
decay rates, which has renewed considerable interest in the
low energy baryon spectroscopy. The direct calculations of
these quantities from the first principle of QCD are extremely
difficult as they require the nonperturbativemethods. Several
effective and phenomenological models such as Lattice QCD,
effective field theories, QCD sum rules, and variants of
quark models have been developed to explain the failures
of the NQM and further applied to study the properties of
baryons.

Some of the important models measuring the charge
radii of octet baryon are the Skyrme model with bound state
approach [42–44], slow-rotor approach [45], semibosonized
SU(3) NJL model [46], cloudy bag model [47], variants of
constituent quark models [48–54], 1/𝑁

𝑐
expansion approach

[55–58], perturbative chiral quark model (P𝜒QM) [59],
heavy-baryon chiral perturbation theory (HB𝜒PT) [60],
chiral perturbation theory (𝜒PT) [61, 62], Lattice QCD [63],
and so forth. The charge radii of decuplet baryons have
been studied within the framework of Lattice QCD [64–66],
quark model [67], 1/𝑁

𝑐
expansion [55, 56], chiral pertur-

bation theory [68], and so forth. The results for different
theoretical models are however not consistent with each
other.

There have been a lot of theoretical investigations in
understanding the implications of the 𝐶2/𝑀1 and 𝐸2/𝑀1

ratios in finding out the exact sign of deformation in the
spin (1/2)

+ octet baryons. However, there is a little consensus
between the results even with respect to the sign of the
nucleon deformation. Some of the models predict the defor-
mation in nucleon as oblate [69, 70], some predict a prolate
nucleon deformation [71–80] whereas others speak about
“deformation” without specifying the sign. The quadrupole
moment of the (3/2)+ decuplet baryons has also been studied
using the variants of the constituent quark model (CQM)
[81–84], chiral quark soliton model (𝜒QSM) [85], spectator
quark model [86–88], slow-rotator approach (SRA) [89, 90],
skyrme model [91, 92], general parametrization method
[93, 94], light cone QCD sum rules (QCDSR) [95, 96],
large 𝑁

𝑐
[97, 98], chiral perturbation theory (𝜒PT) [99–

103], Lattice QCD (LQCD) [104–108], and so forth. In this
case also, the results for different theoretical models are
not consistent in terms of sign and magnitude with each
other.

As the hadron structure is sensitive to the pion cloud
in the low energy regime, a coherent understanding is
necessary as it will provide a test for the QCD-inspired
effective field theories. One of the important nonperturbative
approaches which finds its application in the low energy
regime is the chiral constituent quark model (𝜒CQM) [109,



Advances in High Energy Physics 3

110]. It is one of the most convenient languages for the
treatment of light hadrons at low energies using the effective
interaction Lagrangian approach of the strong interactions.
The 𝜒CQM coupled with the “quark sea” generation through
the chiral fluctuation of a constituent quark GBs [111–
119] successfully explains the “proton spin problem” [117–
119], hyperon 𝛽 decay parameters [120, 121], strangeness
content in the nucleon [122–124], magnetic moments of octet
and decuplet baryons including their transitions [125–127],
magnetic moments of (1/2)− octet baryon resonances [128],
magnetic moments of (1/2)− and (3/2)

−

Λ resonances [129],
charge radii [130], quadrupole moment [131], and so forth.
The model is successfully extended to predict the important
role played by the small intrinsic charm (IC) content in the
nucleon spin in the SU(4) 𝜒CQM [132] and to the calculate
the magnetic moment of spin (1/2)

+ and spin (3/2)
+ charm

baryons including their radiative decays [133]. In view of the
above developments in the 𝜒CQM, it become desirable to
extend themodel to calculate the charge radii and quadrupole
moment of the spin (1/2)

+ octet and spin (3/2)
+ decuplet

baryons.
The purpose of the present communication is to cal-

culate the charge radii of the spin (1/2)
+ octet and spin

(3/2)
+ decuplet baryons and quadrupole moment of the

spin (3/2)
+ decuplet baryons including the spin (3/2)

+

→

(1/2)
+ transitions within the framework of 𝜒CQM using a

general parametrization method (GPM) [134–138]. In order
to understand the role of pseudoscalar mesons in the baryon
charge radii and quadrupole moment, we will compare our
results with NQMas well as other phenomenological models.
The detailed analysis of SU(3) symmetry breaking would also
be carried out in the 𝜒CQM. Further, we aim to discuss the
implications of GPM parameters by calculating the extent to
which the three-quark term contributes.

2. Charge Radii and Quadrupole Moments

Themean square charge radii (𝑟2B) and quadrupole moments
(𝑄B) are the lowest order moments of the charge density
𝜌 in a low-momentum expansion. The charge radii contain
fundamental information about the possible “size” of the
baryons whereas the “shape” of a spatially extended particle
is determined by its quadrupole moment [139–142].

The mean square charge radius 𝑟
2

B of a given baryon is a
scalar under spatial rotation and is defined as

⟨𝑟
2

⟩ = ∫𝑑
3

𝑟𝜌 (r) 𝑟2, (1)

where 𝜌(r) is the charge density. The intrinsic quadrupole
moment with respect to the body frame of axis is defined as

𝑄
0
= ∫𝑑

3r𝜌 (r) (3𝑧2 − 𝑟
2

) . (2)

For the charge density concentrated along the 𝑧-direction, the
term proportional to 3𝑧

2 dominates, 𝑄
0
is positive, and the

particle is prolate shaped. If the charge density is concentrated
in the equatorial plane perpendicular to 𝑧 axis, the term

proportional to 𝑟
2 dominates,𝑄

0
is negative, and the particle

is oblate shaped.
The most general form of the multipole expansion of

the nucleon charge density 𝜌 in the spin-flavor space can be
expressed as

𝜌 = A󸀠

3

∑

𝑖=1

𝑒
𝑖
1 − B󸀠

3

∑

𝑖 ̸= 𝑗

𝑒
𝑖
[2𝜎

𝑖
⋅ 𝜎

𝑗
− (3𝜎

𝑖𝑧
𝜎
𝑗𝑧

− 𝜎
𝑖
⋅ 𝜎

𝑗
)]

− C󸀠

3

∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
[2𝜎

𝑗
⋅ 𝜎

𝑘
− (3𝜎

𝑗𝑧
𝜎
𝑘𝑧

− 𝜎
𝑗
⋅ 𝜎

𝑘
)] .

(3)

The charge radii operator composed of the sum of one-, two-,
and three-quark terms is expressed as

𝑟2 = A
3

∑

𝑖=1

𝑒
𝑖
1 + B

3

∑

𝑖 ̸= 𝑗

𝑒
𝑖
𝜎
𝑖
⋅ 𝜎

𝑗
+ C

3

∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
𝜎
𝑗
⋅ 𝜎

𝑘
, (4)

whereas the quadrupole moment operator composed of a
two- and three-quark term can be expressed as

𝑄 = B󸀠

3

∑

𝑖 ̸= 𝑗

𝑒
𝑖
(3𝜎

𝑖𝑧
𝜎
𝑗𝑧

− 𝜎
𝑖
⋅ 𝜎

𝑗
)

+ C󸀠

3

∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
(3𝜎

𝑗𝑧
𝜎
𝑘𝑧

− 𝜎
𝑗
⋅ 𝜎

𝑘
) .

(5)

The coefficients called GPM parameters of the charge radii
and quadrupole moments are related to each other as A =

A󸀠, B = −2B󸀠, and C = −2C󸀠. These GPM parameters are to
be determined from the experimental observations on charge
radii and quadrupole moment.

Before calculating the matrix elements corresponding to
the charge radii and quadrupole moment, it is essential to
simplify various operator terms involved in (4). It can be
easily shown that

∑

𝑖 ̸= 𝑗

𝑒
𝑖
(𝜎i ⋅ 𝜎j) = 2J ⋅ ∑

𝑖

𝑒
𝑖
𝜎i − 3∑

𝑖

𝑒
𝑖
,

∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
(𝜎j ⋅ 𝜎k) = ±3∑

𝑖

𝑒
𝑖
− ∑

𝑖 ̸= 𝑗

𝑒
𝑖
(𝜎i ⋅ 𝜎j) ,

(6)

where +ve sign holds for 𝐽 = 3/2 and −ve sign for 𝐽 = 1/2

states leading to different operators for spin (1/2)
+ and spin

(3/2)
+ baryons:

Operator ∑
𝑖 ̸= 𝑗

𝑒
𝑖
(𝜎i ⋅ 𝜎j) ∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
(𝜎j ⋅ 𝜎k)

𝐽 =
1

2
3∑

𝑖

𝑒
𝑖
𝜎iz − 3∑

𝑖

𝑒
𝑖

−3∑
𝑖

𝑒
𝑖
𝜎iz

𝐽 =
3

2
5∑

𝑖

𝑒
𝑖
𝜎iz − 3∑

𝑖

𝑒
𝑖

6∑
𝑖

𝑒
𝑖
− 5∑

𝑖

𝑒
𝑖
𝜎iz

(7)
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The charge radii operators for the spin (1/2)
+ octet and

spin (3/2)
+ decuplet baryons can now be expressed as

𝑟2B = (A − 3B)∑
𝑖

𝑒
𝑖
+ 3 (B − C)∑

𝑖

𝑒
𝑖
𝜎
𝑖𝑧
, (8)

𝑟2B∗ = (A − 3B + 6C)∑

𝑖

𝑒
𝑖
+ 5 (B − C)∑

𝑖

𝑒
𝑖
𝜎iz. (9)

It is clear from the above equations that the determination
of charge radii basically reduces to the evaluation of the
flavor (∑

𝑖
𝑒
𝑖
) and spin (∑

𝑖
𝑒
𝑖
𝜎
𝑖𝑧
) structure of a given baryon.

The charge radii squared 𝑟
2

B(B∗) for the octet (decuplet)
baryons can now be calculated by evaluatingmatrix elements
corresponding to the operators in (8) and (9) and are given as

𝑟
2

B = ⟨B
󵄨󵄨󵄨󵄨󵄨󵄨
𝑟2B

󵄨󵄨󵄨󵄨󵄨󵄨
B⟩ , 𝑟

2

𝐵
∗

= ⟨B∗
󵄨󵄨󵄨󵄨󵄨󵄨
𝑟2B∗

󵄨󵄨󵄨󵄨󵄨󵄨
B∗

⟩ . (10)

Here |B⟩ and |B∗
⟩, respectively, denote the spin-flavor wave-

functions for the spin (1/2)
+ octet and the spin (3/2)

+

decuplet baryons.
The quadrupole moment operators for the spin (1/2)

+,
spin (3/2)

+ baryons, and spin (3/2)
+

→ (1/2)
+ transitions

can be calculated from the operator in (5) and are expressed
as

𝑄B = B󸀠

(3∑

𝑖 ̸= 𝑗

𝑒
𝑖
𝜎iz𝜎jz − 3∑

𝑖

𝑒
𝑖
𝜎iz + 3∑

𝑖

𝑒
𝑖
)

+ C󸀠

(3 ∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
𝜎jz𝜎kz + 3∑

𝑖

𝑒
𝑖
𝜎iz) ,

𝑄B∗ = B󸀠

(3∑

𝑖 ̸= 𝑗

𝑒
𝑖
𝜎iz𝜎jz − 5∑

𝑖

𝑒
𝑖
𝜎iz + 3∑

𝑖

𝑒
𝑖
)

+ C󸀠

(3 ∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
𝜎jz𝜎kz + 5∑

𝑖

𝑒
𝑖
𝜎iz − 6∑

𝑖

𝑒
𝑖
) ,

𝑄B∗B = 3B󸀠

∑

𝑖 ̸= 𝑗

𝑒
𝑖
𝜎iz𝜎jz + 3C󸀠

∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝑒
𝑖
𝜎jz𝜎kz.

(11)

It is clear from the above equations that the determination of
quadrupolemoment basically reduces to the evaluation of the
flavor (∑

𝑖
𝑒
𝑖
), spin (∑

𝑖
𝑒
𝑖
𝜎iz), and tensor terms (∑

𝑖
𝑒
𝑖
𝜎iz𝜎jz)

and (∑
𝑖
𝑒
𝑖
𝜎jz𝜎kz) for a given baryon.

Using the three-quark spin-flavor wavefunctions for the
spin (1/2)

+ octet and spin (3/2)
+ decuplet baryons, the

quadrupole moment can now be calculated by evaluating the
matrix elements of operators in (11). We now have

𝑄B = ⟨B 󵄨󵄨󵄨󵄨󵄨
𝑄B

󵄨󵄨󵄨󵄨󵄨
B⟩ , 𝑄B∗ = ⟨B∗ 󵄨󵄨󵄨󵄨󵄨

𝑄B∗
󵄨󵄨󵄨󵄨󵄨
B∗

⟩ ,

𝑄B→B∗ = ⟨B∗ 󵄨󵄨󵄨󵄨󵄨
𝑄B∗B

󵄨󵄨󵄨󵄨󵄨
B⟩ .

(12)

3. Naive Quark Model (NQM)

The appropriate operators for the spin and flavor structure of
baryons in NQM are defined as

∑

𝑖

𝑒
𝑖
= ∑

𝑞=𝑢,𝑑,𝑠

𝑛
B
𝑞
𝑞 + ∑

𝑞=𝑢,𝑑,𝑠

𝑛
B
𝑞
𝑞

= 𝑛
B
𝑢
𝑢 + 𝑛

B
𝑑
𝑑 + 𝑛

B
𝑠
𝑠 + 𝑛

B
𝑢
𝑢 + 𝑛

B
𝑑
𝑑 + 𝑛

B
𝑠
𝑠,

∑

𝑖

𝑒
𝑖
𝜎
𝑖𝑧

= ∑

𝑞=𝑢,𝑑,𝑠

(𝑛
B
𝑞
+

𝑞
+
+ 𝑛

B
𝑞
−

𝑞
−
)

= 𝑛
B
𝑢
+

𝑢
+
+ 𝑛

B
𝑢
−

𝑢
−
+ 𝑛

B
𝑑
+

𝑑
+
+ 𝑛

B
𝑑
−

𝑑
−
+ 𝑛

B
𝑠
+

𝑠
+
+ 𝑛

B
𝑠
−

𝑠
−
,

(13)

where 𝑛
B
𝑞
(𝑛

B
𝑞
) is the number of quarks with charge 𝑞 (𝑞) and

𝑛
B
𝑞
+

(𝑛B
𝑞
−

) is the number of polarized quarks 𝑞
+
(𝑞

−
). For a

given baryon 𝑢 = −𝑢 and 𝑢
+
= −𝑢

−
, with similar relations for

the 𝑑 and 𝑠 quarks.The general expression for the charge radii
of any of the spin (1/2)

+ octet baryon in (4) can be expressed
as

𝑟2B = (A − 3B)(∑

𝑢,𝑑,𝑠

𝑛
𝑞
− ∑

𝑢,𝑑,𝑠

𝑛
𝑞
)𝑞

+ 3 (B − C) (∑

𝑢,𝑑,𝑠

𝑛
𝑞
+

− ∑

𝑢,𝑑,𝑠

𝑛
𝑞
−

)𝑞
+
.

(14)

Before we discuss the details of the charge radii cal-
culations, it is essential to define the octet and decuplet
wavefunctions. The “mixed” state octet baryon wavefunction
generated by the spin-spin forces [33, 34] which improves the
predictions of the various spin-related properties [117–119] is
expressed as

|B⟩ ≡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
8,

1

2

+

⟩ = cos 𝜃󵄨󵄨󵄨󵄨56, 0
+

⟩
𝑁=0

+ sin 𝜃
󵄨󵄨󵄨󵄨70, 0

+

⟩
𝑁=2

, (15)

with

󵄨󵄨󵄨󵄨56, 0
+

⟩
𝑁=0

=
1

√2
(𝜑

󸀠

𝜒
󸀠

+ 𝜑
󸀠󸀠

𝜒
󸀠󸀠

) 𝜓
𝑠

(0
+

) ,

󵄨󵄨󵄨󵄨70, 0
+

⟩
𝑁=2

=
1

2
[(𝜑

󸀠

𝜒
󸀠󸀠

+ 𝜑
󸀠󸀠

𝜒
󸀠

) 𝜓
󸀠

(0
+

)

+ (𝜑
󸀠

𝜒
󸀠

− 𝜑
󸀠󸀠

𝜒
󸀠󸀠

) 𝜓
󸀠󸀠

(0
+

)] .

(16)

Here 𝜃 is the mixing angle and 𝜒, 𝜑, and 𝜓 are the spin,
isospin, and spatial wavefunctions. For the details of the
wavefunction, we refer the readers to [33, 34]. Using the
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Table 1: Charge radii of octet baryons in NQMconfig in terms of the GPM parameters. The results in NQM without configuration can easily
be calculated by substituting 𝜃 = 0.

Charge radii NQMconfig

𝑟
2

𝑝
(A − 3B)[2𝑢 + 𝑑] + (B − C) [cos2𝜃(4𝑢

+
− 𝑑

+
) + sin2

𝜃 (2𝑢
+
+ 𝑑

+
)]

𝑟
2

𝑛
(A − 3B)[𝑢 + 2𝑑] + (B − C) [cos2𝜃(−𝑢

+
+ 4𝑑

+
) + sin2

𝜃 (𝑢
+
+ 2𝑑

+
)]

𝑟
2

Σ
+

(A − 3B)[2𝑢 + 𝑠] + (B − C) [cos2𝜃(4𝑢
+
− 𝑠

+
) + sin2

𝜃 (2𝑢
+
+ 𝑠

+
)]

𝑟
2

Σ
−

−(A − 3B)[2𝑑 + 𝑠] − (B − C) [cos2𝜃(4𝑑
+
− 𝑠

+
) + sin2

𝜃 (2𝑑
+
+ 𝑠

+
)]

𝑟
2

Σ
0

(A − 3B)[𝑢 + 𝑑 + 𝑠] + (B − C) [cos2𝜃(2𝑢
+
+ 2𝑑

+
− 𝑠

+
) + sin2

𝜃 (𝑢
+
+ 𝑑

+
+ 𝑠

+
)]

𝑟
2

Ξ
0

(A − 3B)[𝑢 + 2𝑠] + (B − C) [cos2𝜃(−𝑢
+
+ 4𝑠

+
) + sin2

𝜃 (𝑢
+
+ 2𝑠

+
)]

𝑟
2

Ξ
−

−(A − 3B)[𝑑 + 2𝑠] + (B − C) [cos2𝜃(−𝑑
+
+ 4𝑠

+
) + sin2

𝜃 (𝑑
+
+ 2𝑠

+
)]

𝑟
2

Λ
(A − 3B)[𝑢 + 𝑑 + 𝑠] + (B − C) [cos2𝜃(3𝑠

+
) + sin2

𝜃 (𝑢
+
+ 𝑑

+
+ 𝑠

+
)]

𝑟
2

ΣΛ
(A − 3B)[𝑢 + 𝑑 + 𝑠] + √3(B − C) [𝑢

+
− 𝑑

+
]

Table 2: Charge radii of decuplet baryons in NQM in terms of GPM
parameters.

Charge
radii NQM

𝑟
2

Δ
++

1

2
[(A − 3B + 6C)(3𝑢) + 5(B − C)(3𝑢

+
)]

𝑟
2

Δ
+ (A − 3B + 6C)(2𝑢 + 𝑑) + 5(B − C)(2𝑢

+
+ 𝑑

+
)

𝑟
2

Δ
0 (A − 3B + 6C)(𝑢 + 2𝑑) + 5(B − C)(𝑢

+
+ 2𝑑

+
)

𝑟
2

Δ
− −(A − 3B + 6C)(3𝑑) − 5(B − C)(3𝑑

+
)

𝑟
2

Σ
∗+ (A − 3B + 6C)(2𝑢 + 𝑠) + 5(B − C)(2𝑢

+
+ 𝑠

+
)

𝑟
2

Σ
∗− −(A − 3B + 6C)(2𝑑 + 𝑠) − 5(B − C)(2𝑑

+
+ 𝑠

+
)

𝑟
2

Σ
∗0 (A − 3B + 6C)(𝑢 + 𝑑 + 𝑠) + 5(B − C)(𝑢

+
+ 𝑑

+
+ 𝑠

+
)

𝑟
2

Ξ
∗0 (A − 3B + 6C)(𝑢 + 2𝑠) + 5(B − C)(𝑢

+
+ 2𝑠

+
)

𝑟
2

Ξ
∗− −(A − 3B + 6C)(𝑑 + 2𝑠) − 5(B − C)(𝑑

+
+ 2𝑠

+
)

𝑟
2

Ω
−

−(A − 3B + 6C)(3𝑠) − 5(B − C)(3𝑠
+
)

“mixed” wavefunction (15), the charge radii for the 𝑝 and Σ
+

from (14) can now be expressed as

𝑟
2

𝑝
= (A − 3B) (2𝑢 + 𝑑) + 3 (B − C)

× [cos2𝜃 (
4

3
𝑢
+
−

1

3
𝑑
+
) + sin2

𝜃 (
2

3
𝑢
+
+

1

3
𝑑
+
)] ,

𝑟
2

Σ
+

= (A − 3B) (2𝑢 + 𝑠) + 3 (B − C)

× [cos2𝜃 (
4

3
𝑢
+
−

1

3
𝑠
+
) + sin2

𝜃 (
2

3
𝑢
+
+

1

3
𝑠
+
)] .

(17)

The expressions for the charge radii of other octet baryons in
NQM with configuration mixing (NQMconfig) are presented
in Table 1.The results without configurationmixing can easily
be obtained by taking the mixing angle 𝜃 = 0.

Configuration mixing generated by the spin-spin forces
does not affect the spin (3/2)

+ decuplet baryons. The wave-
function in this case is given as

󵄨󵄨󵄨󵄨B
∗

⟩ ≡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
10,

3

2

+

⟩ =
󵄨󵄨󵄨󵄨56, 0

+

⟩
𝑁=0

= 𝜒
𝑠

𝜑
𝑠

𝜓
𝑠

(0
+

) , (18)

Using the baryon wavefunction from the above equation and
the charge radii operator from (9), the general expression for
the charge radii of spin (3/2)

+ baryons can be expressed as

𝑟2B∗ = (A − 3B + 6C)(∑

𝑢,𝑑,𝑠

𝑛
𝑞
− ∑

𝑢,𝑑,𝑠

𝑛
𝑞
)𝑞

+ 5 (B − C) (∑

𝑢,𝑑,𝑠

𝑛
𝑞
+

− ∑

𝑢,𝑑,𝑠

𝑛
𝑞
−

)𝑞
+
.

(19)

As an example, the charge radii for Δ
+ baryon can be

expressed as

𝑟
2

Δ
+

= (A − 3B + 6C) (2𝑢 + 𝑑) + 5 (B − C) (2𝑢
+
+ 𝑑

+
) . (20)

The expressions for the charge radii of other decuplet baryons
in NQM are presented in Table 2.

For the spin (1/2)
+ octet baryons, the quadrupole

moment of 𝑝 and Σ
+ in NQM can be expressed as

𝑄
𝑝
= 3B󸀠

(2𝑢 + 𝑑 − 2𝑢
+
− 𝑑

+
)

+ C󸀠

(−4𝑢 + 𝑑 + 4𝑢
+
− 𝑑

+
) ,

𝑄
Σ
+ = 3B󸀠

(2𝑢 + 𝑠 − 2𝑢
+
− 𝑠

+
)

+ C󸀠

(−4𝑢 + 𝑠 + 4𝑢
+
− 𝑠

+
) .

(21)
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For the spin (3/2)
+ decuplet baryons, the quadrupole

moment of Δ+ and Ξ
∗− can be expressed as

𝑄
Δ
+ = B󸀠

(6𝑢 + 3𝑑 + 2𝑢
+
+ 𝑑

+
)

+ C󸀠

(−6𝑢 − 3𝑑 + 10𝑢
+
+ 5𝑑

+
) ,

𝑄
Ξ
∗− = B󸀠

(3𝑑 + 6𝑠 + 𝑑
+
+ 2𝑠

+
)

+ C󸀠

(−3𝑑 − 6𝑠 + 5𝑑
+
+ 10𝑠

+
) .

(22)

Similarly, for the spin (3/2)
+

→ (1/2)
+ transitions, the

quadrupole moment of the Δ
+
𝑝 and Σ

∗−
Σ
− transitions can

be expressed as

𝑄
Δ
+

𝑝
= 2√2B󸀠

(𝑢
+
− 𝑑

+
) + 2√2C󸀠

(−𝑢 + 𝑑) ,

𝑄
Σ
∗−

Σ
− = 2√2B󸀠

(𝑑
+
− 𝑠

+
) + 2√2C󸀠

(−𝑑 + 𝑠) .

(23)

The expressions for quadrupole moment of the other (1/2)+
octet and (3/2)

+ decuplet baryons and for spin (3/2)
+

→

(1/2)
+ transitions in NQM can similarly be calculated. The

results are presented in Tables 7, 8, and 9.

4. Chiral Constituent Quark Model (𝜒CQM)

In light of the recent developments and successes of the
𝜒CQM in explaining the low energy phenomenology [117–
127], we formulate the quadrupole moments for the (3/2)

+

decuplet baryons and spin (3/2)
+

→ (1/2)
+ transitions.

The basic process in the 𝜒CQM is the Goldstone boson (GB)

emission by a constituent quark which further splits into a 𝑞𝑞
pair as

𝑞
±
󳨀→ GB0

+ 𝑞
󸀠

∓
󳨀→ (𝑞𝑞

󸀠

) + 𝑞
󸀠

∓
, (24)

where 𝑞𝑞
󸀠

+ 𝑞
󸀠 constitute the “quark sea” [111–116]. The effec-

tive Lagrangian describing the interaction between quarks
and a nonet of GBs is

L = 𝑔
8
𝑞Φ

󸀠

𝑞, (25)

with

𝑞 = (

𝑢

𝑑

𝑠

) ,

Φ
󸀠

= (

𝜋
0

√2

+𝛽

𝜂

√6

+ 𝜁

𝜂
󸀠

√3

𝜋
+

𝛼𝐾
+

𝜋
−

−

𝜋
0

√2

+ 𝛽

𝜂

√6

+ 𝜁

𝜂
󸀠

√3

𝛼𝐾
0

𝛼𝐾
−

𝛼𝐾

0

−𝛽

2𝜂

√6

+ 𝜁

𝜂
󸀠

√3

),

(26)

where 𝜁 = 𝑔
1
/𝑔

8
, 𝑔

1
and 𝑔

8
are the coupling constants for

the singlet and octet GBs, respectively. If the parameter 𝑎 (=

|𝑔
8
|
2
) denotes the transition probability of chiral fluctuation

of the splitting 𝑢(𝑑) → 𝑑(𝑢) + 𝜋
+(−), then 𝛼

2
𝑎, 𝛽2

𝑎 and 𝜁
2
𝑎,

respectively, denote the probabilities of transitions of 𝑢(𝑑) →

𝑠 + 𝐾
−(0), 𝑢(𝑑, 𝑠) → 𝑢(𝑑, 𝑠) + 𝜂, and 𝑢(𝑑, 𝑠) → 𝑢(𝑑, 𝑠) +

𝜂
󸀠. SU(3) symmetry breaking is introduced by considering

𝑀
𝑠
> 𝑀

𝑢,𝑑
as well as by considering the masses of GBs to

be nondegenerate (𝑀
𝐾,𝜂

> 𝑀
𝜋
and𝑀

𝜂
󸀠 > 𝑀

𝐾,𝜂
) [111–119].

In terms of the quark contents, the GB field can be
expressed as

Φ
󸀠

= (

𝜙
𝑢𝑢

𝑢𝑢 + 𝜙
𝑢𝑑

𝑑𝑑 + 𝜙
𝑢𝑠
𝑠𝑠 𝜑

𝑢𝑑
𝑢𝑑 𝜑

𝑢𝑠
𝑢𝑠

𝜑
𝑑𝑢

𝑑𝑢 𝜙
𝑑𝑢

𝑢𝑢 + 𝜙
𝑑𝑑

𝑑𝑑 + 𝜙
𝑑𝑠
𝑠𝑠 𝜑

𝑑𝑠
𝑑𝑠

𝜑
𝑠𝑢
𝑠𝑢 𝜑

𝑠𝑑
𝑠𝑑 𝜙

𝑠𝑢
𝑢𝑢 + 𝜙

𝑠𝑑
𝑑𝑑 + 𝜙

𝑠𝑠
𝑠𝑠
) , (27)

where

𝜙
𝑢𝑢

= 𝜙
𝑑𝑑

=
1

2
+

𝛽

6
+

𝜁

3
, 𝜙

𝑠𝑠
=

2𝛽

3
+

𝜁

3
,

𝜙
𝑢𝑠

= 𝜙
𝑑𝑠

= 𝜙
𝑠𝑢

= 𝜙
𝑠𝑑

= −
𝛽

3
+

𝜁

3
,

𝜙
𝑑𝑢

= 𝜙
𝑢𝑑

= −
1

2
+

𝛽

6
+

𝜁

3
, 𝜑

𝑢𝑑
= 𝜑

𝑑𝑢
= 1,

𝜑
𝑢𝑠

= 𝜑
𝑑𝑠

= 𝜑
𝑠𝑢

= 𝜑
𝑠𝑑

= 𝛼.

(28)

A redistribution of flavor and spin structure takes place in
the interior of baryon due to the chiral symmetry breaking,

and the modified flavor and spin content of the baryon can
be calculated by substituting for every constituent quark:

𝑞 󳨀→ 𝑃
𝑞
𝑞 +

󵄨󵄨󵄨󵄨𝜓 (𝑞)
󵄨󵄨󵄨󵄨
2

,

𝑞
±
󳨀→ 𝑃

𝑞
𝑞
±
+
󵄨󵄨󵄨󵄨𝜓 (𝑞

±
)
󵄨󵄨󵄨󵄨
2

.

(29)

Here𝑃
𝑞
= 1−∑𝑃

𝑞
is the transition probability of no emission

of GB from any of the 𝑞 quark with

∑𝑃
𝑢
= 𝑎 (𝜙

2

𝑢𝑢
+ 𝜙

2

𝑢𝑑
+ 𝜙

2

𝑢𝑠
+ 𝜑

2

𝑢𝑑
+ 𝜑

2

𝑢𝑠
) ,

∑𝑃
𝑑
= 𝑎 (𝜙

2

𝑑𝑢
+ 𝜙

2

𝑑𝑑
+ 𝜙

2

𝑑𝑠
+ 𝜑

2

𝑑𝑢
+ 𝜑

2

𝑑𝑠
) ,
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∑𝑃
𝑠
= 𝑎 (𝜙

2

𝑠𝑢
+ 𝜙

2

𝑠𝑑
+ 𝜙

2

𝑠𝑠
+ 𝜑

2

𝑠𝑢
+ 𝜑

2

𝑠𝑑
) ,

(30)

and |𝜓(𝑞)|
2 (|𝜓(𝑞

±
)|
2) are the transition probabilities of the

emission of 𝑞 (𝑞
±
) quark:

󵄨󵄨󵄨󵄨𝜓 (𝑢)
󵄨󵄨󵄨󵄨
2

= 𝑎 [(2𝜙
2

𝑢𝑢
+ 𝜙

2

𝑢𝑑
+ 𝜙

2

𝑢𝑠
+ 𝜑

2

𝑢𝑑
+ 𝜑

2

𝑢𝑠
) 𝑢 + 𝜙

2

𝑢𝑢
𝑢

+ (𝜙
2

𝑢𝑑
+ 𝜑

2

𝑢𝑑
) (𝑑 + 𝑑) + (𝜙

2

𝑢𝑠
+ 𝜑

2

𝑢𝑠
) (𝑠 + 𝑠)] ,

󵄨󵄨󵄨󵄨𝜓 (𝑑)
󵄨󵄨󵄨󵄨
2

= 𝑎 [(𝜙
2

𝑑𝑢
+ 2𝜙

2

𝑑𝑑
+ 𝜙

2

𝑑𝑠
+ 𝜑

2

𝑑𝑢
+ 𝜑

2

𝑑𝑠
) 𝑑 + 𝜙

2

𝑑𝑑
𝑑

+ (𝜙
2

𝑑𝑢
+ 𝜑

2

𝑑𝑢
) (𝑢 + 𝑢) + (𝜙

2

𝑢𝑠
+ 𝜑

2

𝑢𝑠
) (𝑠 + 𝑠)] ,

󵄨󵄨󵄨󵄨𝜓 (𝑠)
󵄨󵄨󵄨󵄨
2

= 𝑎 [(𝜙
2

𝑠𝑢
+ 𝜙

2

𝑠𝑑
+ 2𝜙

2

𝑠𝑠
+ 𝜑

2

𝑠𝑢
+ 𝜑

2

𝑠𝑑
) 𝑠 + 𝜙

2

𝑠𝑠
𝑠

+ (𝜙
2

𝑠𝑢
+ 𝜑

2

𝑠𝑢
) (𝑢 + 𝑢) + (𝜙

2

𝑠𝑑
+ 𝜑

2

𝑠𝑑
) (𝑑 + 𝑑)] ,

󵄨󵄨󵄨󵄨𝜓 (𝑢
±
)
󵄨󵄨󵄨󵄨
2

= 𝑎 [(𝜙
2

𝑢𝑢
+ 𝜙

2

𝑢𝑑
+ 𝜙

2

𝑢𝑠
) 𝑢

∓
+ 𝜑

2

𝑢𝑑
𝑑
∓
+ 𝜑

2

𝑢𝑠
𝑠
∓
] ,

󵄨󵄨󵄨󵄨𝜓 (𝑑
±
)
󵄨󵄨󵄨󵄨
2

= 𝑎 [𝜑
2

𝑑𝑢
𝑢
∓
+ (𝜙

2

𝑑𝑢
+ 𝜙

2

𝑑𝑑
+ 𝜙

2

𝑑𝑠
) 𝑑

∓
+ 𝜑

2

𝑑𝑠
𝑠
∓
] ,

󵄨󵄨󵄨󵄨𝜓 (𝑠
±
)
󵄨󵄨󵄨󵄨
2

= 𝑎 [𝜑
2

𝑠𝑢
𝑢
∓
+ 𝜑

2

𝑠𝑑
𝑑
∓
+ (𝜙

2

𝑠𝑢
+ 𝜙

2

𝑠𝑑
+ 𝜙

2

𝑠𝑠
) 𝑠

∓
] .

(31)

After the inclusion of “quark sea,” the charge radii for
the spin (1/2)

+ octet baryons, in 𝜒CQM with configuration
mixing (𝜒CQMconfig), can be obtained by substituting (29) for
each quark in (17). The charge radii for the case of 𝑝 and Σ

+

are now expressed as

𝑟
2

𝑝
= (A − 3B) (2𝑃

𝑢
𝑢 + 2

󵄨󵄨󵄨󵄨𝜓 (𝑢)
󵄨󵄨󵄨󵄨
2

+ 𝑃
𝑑
𝑑 +

󵄨󵄨󵄨󵄨𝜓 (𝑑)
󵄨󵄨󵄨󵄨
2

)

+ 3 (B − C) [cos2𝜃 (
4

3
𝑃
𝑢
𝑢
+
+

4

3

󵄨󵄨󵄨󵄨𝜓 (𝑢
+
)
󵄨󵄨󵄨󵄨
2

−
1

3
𝑃
𝑑
𝑑
+
−

1

3

󵄨󵄨󵄨󵄨𝜓 (𝑑
+
)
󵄨󵄨󵄨󵄨
2

)

+ sin2

𝜃 (
2

3
𝑃
𝑢
𝑢
+
+

2

3

󵄨󵄨󵄨󵄨𝜓 (𝑢
+
)
󵄨󵄨󵄨󵄨
2

+
1

3
𝑃
𝑑
𝑑
+
+

1

3

󵄨󵄨󵄨󵄨𝜓 (𝑑
+
)
󵄨󵄨󵄨󵄨
2

)] ,

𝑟
2

Σ
+

= (A − 3B) (2𝑃
𝑢
𝑢 + 2

󵄨󵄨󵄨󵄨𝜓 (𝑢)
󵄨󵄨󵄨󵄨
2

+ 𝑃
𝑠
𝑠 +

󵄨󵄨󵄨󵄨𝜓 (𝑠)
󵄨󵄨󵄨󵄨
2

)

+ 3 (B − C) [cos2𝜃 (
4

3
𝑃
𝑢
𝑢
+
+

4

3

󵄨󵄨󵄨󵄨𝜓 (𝑢)
󵄨󵄨󵄨󵄨
2

−
1

3
𝑃
𝑠
𝑠
+
−

1

3

󵄨󵄨󵄨󵄨𝜓 (𝑠)
󵄨󵄨󵄨󵄨
2

)

+ sin2

𝜃 (
2

3
𝑃
𝑢
𝑢
+
+

2

3

󵄨󵄨󵄨󵄨𝜓 (𝑢
+
)
󵄨󵄨󵄨󵄨
2

+
1

3
𝑃
𝑠
𝑠
+
+

1

3

󵄨󵄨󵄨󵄨𝜓 (𝑠
+
)
󵄨󵄨󵄨󵄨
2

)] .

(32)

The charge radii in the 𝜒CQMconfig for other spin (1/2)
+

octet baryons are presented in Table 3. The results without

configuration mixing can easily be obtained by taking the
mixing angle 𝜃 = 0.

Similarly, for the spin (3/2)
+ decuplet baryons, the charge

radii are modified on substituting for each quark from (29).
For example, the charge radii for Δ

+ in 𝜒CQM can be
expressed as

𝑟
2

Δ
+

= (A − 3B + 6C) (2𝑃
𝑢
𝑢 + 2

󵄨󵄨󵄨󵄨𝜓 (𝑢)
󵄨󵄨󵄨󵄨
2

+ 𝑃
𝑑
𝑑 +

󵄨󵄨󵄨󵄨𝜓 (𝑑)
󵄨󵄨󵄨󵄨
2

)

+ 5 (B − C) (2𝑃
𝑢
𝑢
+
+ 2

󵄨󵄨󵄨󵄨𝜓 (𝑢
+
)
󵄨󵄨󵄨󵄨
2

+ 𝑃
𝑑
𝑑
+
+
󵄨󵄨󵄨󵄨𝜓 (𝑑

+
)
󵄨󵄨󵄨󵄨
2

) .

(33)

The charge radii of the other decuplet baryons can be
calculated similarly and are detailed in Table 4.

After the inclusion of “quark sea,” the quadrupole
moment for the spin (1/2)

+ octet baryons vanishes on
account of the effective cancelation of contribution coming
from the “quark sea” and the orbital angular momentum
as observed spectroscopically. For the spin (3/2)

+ decuplet
baryons, the quadrupole moment in 𝜒CQM can be obtained
by substituting (29) for each quark in (21). The quadrupole
moment of Δ+ and Ξ

∗− in 𝜒CQM can be expressed as

𝑄
Δ
+

= 4B󸀠

+ 2C󸀠

− (B󸀠

+ 5C󸀠

) 𝑎(2 +
𝛽
2

3
+

2𝜁
2

3
) ,

𝑄
Ξ
∗−

= −4B󸀠

− 2C󸀠

+ (B󸀠

+ 5C󸀠

) 𝑎(
4𝛼

2

3
+ 𝛽

2

+
2𝜁

2

3
) .

(34)

Similarly, the quadrupole moment of Δ
+
𝑝 and Σ

∗−
Σ
−

transitions in 𝜒CQM can be expressed as

𝑄
Δ
+

𝑝

= 2√2[B󸀠

(1 − 𝑎(1 + 𝛼
2

+
𝛽
2

3
+

2𝜁
2

3
)) − C󸀠

] ,

𝑄
Σ
∗−

Σ
−

= 2√2B󸀠

𝑎(
𝛼
2

3
−

𝛽
2

3
) .

(35)

The expressions for the quadrupole moment of other (3/2)+
decuplet baryons and spin (3/2)

+

→ (1/2)
+ transitions in

𝜒CQM can similarly be calculated. The results are presented
in Tables 8 and 9.

5. Results and Discussion

The calculations of charge radii and quadrupole moment of
octet and decuplet baryons involve two set of parameters
the SU(3) symmetry breaking parameters of 𝜒CQM and the
GPM parameters. The 𝜒CQM parameters 𝑎, 𝑎𝛼2, 𝑎𝛽2, and
𝑎𝜁

2 represent, respectively, the probabilities of fluctuations to
pions 𝐾, 𝜂, and 𝜂

󸀠. A best fit of 𝜒CQM parameters can be
obtained by carrying out a fine grained analysis of the spin
and flavor distribution functions [117–119] leading to

𝑎 = 0.12, 𝛼 = 0.7, 𝛽 = 0.4, 𝜁 = −0.15. (36)
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Table 3: Charge radii of octet baryons in 𝜒CQMconfig in terms of SU(3) symmetry breaking parameters and GPM parameters. These results
are obtained by substituting 𝑞 → 𝑃

𝑞
𝑞 + |𝜓(𝑞)|

2 and 𝑞
±

→ 𝑃
𝑞
𝑞
±
+ |𝜓(𝑞

±
)|
2 for every constituent quark in NQM. Results in 𝜒CQM without

configuration mixing can easily be obtained by substituting the mixing angle 𝜃 = 0.

Charge radii 𝜒CQMconfig

𝑟
2

𝑝 A − 3B + (B − C) [cos2𝜃 (3 − 𝑎 (4 + 2𝛼
2

+ 𝛽
2

+ 2𝜁
2

)) + sin2

𝜃 (1 −
𝑎

3
(6 + 𝛽

2

+ 2𝜁
2

))]

𝑟
2

𝑛 (B − C) [cos2𝜃 (−2 +
𝑎

3
(3 + 9𝛼

2

+ 2𝛽
2

+ 4𝜁
2

)) + sin2

𝜃 (𝑎 (−1 + 𝛼
2

))]

𝑟
2

Σ
+ A − 3B + (B − C) [cos2𝜃 (3 −

𝑎

3
(12 + 5𝛼

2

+ 4𝛽
2

+ 6𝜁
2

)) + sin2

𝜃 (1 −
𝑎

3
(6 + 𝛼

2

+ 2𝜁
2

))]

𝑟
2

Σ
− A − 3B + (B − C) [cos2𝜃 (−1 +

𝑎

3
(7𝛼

2

+ 2𝜁
2

)) + sin2

𝜃 (−1 +
𝑎

3
(5𝛼

2

+ 2𝛽
2

+ 2𝜁
2

))]

𝑟
2

Σ
0 (B − C) [cos2𝜃 (1 −

𝑎

3
(6 − 𝛼

2

+ 2𝛽
2

+ 2𝜁
2

)) + sin2

𝜃 (
𝑎

3
(−3 + 2𝛼

2

+ 𝛽
2

))]

𝑟
2

Ξ
0 (B − C) [cos2𝜃 (−2 +

𝑎

3
(3 + 5𝛼

2

+ 6𝛽
2

+ 4𝜁
2

)) + sin2

𝜃 (
𝑎

3
(−3 + 𝛼

2

+ 2𝛽
2

))]

𝑟
2

Ξ
− A − 3B + (B − C) [cos2𝜃 (−1 +

𝑎

3
(2𝛼

2

+ 5𝛽
2

+ 2𝜁
2

)) + sin2

𝜃 (−1 +
𝑎

3
(4𝛼

2

+ 3𝛽
2

+ 2𝜁
2

))]

𝑟
2

Λ (B − C) [cos2𝜃 (−1 +
𝑎

3
(3𝛼

2

+ 4𝛽
2

+ 2𝜁
2

)) + sin2

𝜃 (
𝑎

9
(−9 + 6𝛼

2

+ 7𝛽
2

+ 2𝜁
2

))]

𝑟
2

ΣΛ (B − C) [√3 −
𝑎

√3
(3 + 3𝛼

2

+ 𝛽
2

+ 2𝜁
2

)]

Table 4: Charge radii of decuplet baryons in 𝜒CQM in terms of
SU(3) symmetry breaking parameters and GPM parameters. These
results are obtained by substituting 𝑞 → 𝑃

𝑞
𝑞 + |𝜓(𝑞)|

2 and 𝑞
±

→

𝑃
𝑞
𝑞
±
+ |𝜓(𝑞

±
)|
2 for every constituent quark in NQM.

Charge radii 𝜒CQM

𝑟
2

Δ
++

A + 2B + C −
5𝑎

6
(B − C)(9 + 3𝛼

2

+ 2𝛽
2

+ 4𝜁
2

)

𝑟
2

Δ
+

A + 2B + C −
5𝑎

3
(B − C)(6 + 𝛽

2

+ 2𝜁
2

)

𝑟
2

Δ
0 5𝑎(B − C)(−1 + 𝛼

2

)

𝑟
2

Δ
−

A + 2B + C −
5𝑎

3
(B − C)(6𝛼

2

+ 𝛽
2

+ 2𝜁
2

)

𝑟
2

Σ
∗+

A + 2B + C −
5𝑎

3
(B − C)(6 + 𝛼

2

+ 2𝜁
2

)

𝑟
2

Σ
∗−

A + 2B + C −
5𝑎

3
(B − C)(5𝛼

2

+ 2𝛽
2

+ 2𝜁
2

)

𝑟
2

Σ
∗0

5𝑎

3
(B − C)(−3 + 2𝛼

2

+ 𝛽
2

)

𝑟
2

Ξ
∗0

5𝑎

3
(B − C)(−3 + 𝛼

2

+ 2𝛽
2

)

𝑟
2

Ξ
∗− A + 2B + C −

5𝑎

3
(B − C)(4𝛼

2

+ 3𝛽
2

+ 2𝜁
2

)

𝑟
2

Ω
−

A + 2B + C −
5𝑎

3
(B − C)(3𝛼

2

+ 4𝛽
2

+ 2𝜁
2

)

Themixing angle 𝜃 is fixed from the consideration of neutron
charge radius [28]. This set of parameters has already been
tested for a wide variety of low energy matrix elements
and has been able to give a simultaneous fit to the quan-
tities describing proton spin and flavor structure [117–119],
weak vector-axial vector form factors [120, 121], strangeness

content in the nucleon [122–124], octet and decuplet baryons
magnetic moments [125–127], and so forth.

The order of GPM parameters corresponding to the one-,
two-, and three-quark terms decreases with the increasing
complexity of terms and obeys the hierarchy A > B > C
[143, 144].These are fitted by using the available experimental
values for the charge radii and quadrupole moment of
nucleon as input. In the present case, we have used 𝑟

𝑝
=

0.877 ± 0.007 fm [12], 𝑟
2

𝑛
= −0.1161 ± 0.0022 fm2 [12],

and 𝑄
Δ
+

𝑁
= −0.0846 ± 0.0033 fm2 [19]. The set of GPM

parameters obtained after 𝜒2 minimization are as follows:

A = 0.879, B = 0.094, C = 0.016. (37)

For the quadrupole moment calculations, best fit set of
parameters obtained after 𝜒2 minimization are as follows:

B󸀠

= −0.047, C󸀠

= −0.008, (38)

obeying the hierarchy B󸀠
> C󸀠 [143, 144] corresponding

to the two- and three-quark contribution. Since we also
intend to investigate the extent to which the three-quark term
contributes, we calculate the charge radii corresponding to
the one- and two-quark terms only by taking C = 0. Similarly,
if we intend to calculate the charge radii corresponding to just
the one-quark term, we can take B = C = 0.

Using the set of parameters discussed above, we have
calculated the numerical values for the charge radii of octet
and decuplet baryons in𝜒CQMconfig and presented the results
in Tables 5 and 6, respectively. To understand the implications
of chiral symmetry breaking and “quark sea,” we have also
presented the results ofNQMaswell as comparing our results
with the predictions of other available phenomenological
models. Since the calculations in 𝜒CQM have been carried
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Table 5: Charge radii of octet baryons calculated in 𝜒CQM in comparison with other phenomenological models (in units of fm2).

Charge radii NQM RCQM
[51]

HB𝜒PT
[60]

𝜒PT [61, 62] CCQM
[52]

P𝜒QM [59] 1/𝑁
𝑐

[57, 58]
Lattice
[63]

𝜒CQMconfig

With SU(3)

symmetry
With SU(3) symmetry breaking

A = 0.879

B = 0.094

C = 0.0

A = 0.879

B = 0.094

C = 0.016

𝑟
2

𝑝
0.813 — 0.735 0.717 0.82 0.72 ± 0.09 0.779 0.685 0.732 0.801 0.766

𝑟
𝑝
=

0.877 ± 0.007

𝑟
2

𝑛
−0.138 — −0.113 −0.113 −0.13 −0.111± 0.014 −0.116 −0.158 −0.087 −0.140 −0.116

−0.1161± 0.0022
𝑟
2

Σ
+

0.813 0.79 1.366 0.60 ± 0.02 1.13 0.81 ± 0.10 0.928 0.749 0.732 0.802 0.767
𝑟
2

Σ
−

0.675 0.49 0.798 0.67 ± 0.03 0.72 0.71 ± 0.07 0.672 0.657 0.646 0.678 0.664
0.61 ± 0.21 [13]
𝑟
2

Σ
0

0.069 0.15 — −0.03± 0.01 0.20 0.05 ± 0.01 0.128 — 0.043 0.062 0.052
𝑟
2

Ξ
0

−0.138 0.14 −0.122 0.13 ± 0.03 −0.19 0.14 ± 0.02 0.132 −0.082 −0.087 −0.145 −0.120
𝑟
2

Ξ
−

0.675 0.47 0.997 0.49 ± 0.05 0.54 0.62 ± 0.07 0.520 0.502 0.646 0.683 0.669
𝑟
2

Λ
−0.069 0.038 −0.284 0.11 ± 0.02 0.03 0.05 ± 0.01 0.050 0.010 −0.042 −0.076 −0.063

𝑟
2

ΣΛ
0.135 −0.12 0.074 0.03 ± 0.01 — 0.0 −0.066 — 0.085 0.132 0.109

Table 6: Charge radii of decuplet baryons calculated in 𝜒CQM in comparison with other phenomenological models (in units of fm2).

Charge radii NQM FTQM [67] CCQM [52] 1/𝑁
𝑐
[57, 58] Lattice [64–66]

𝜒CQM
With SU(3)

symmetry
With SU(3) symmetry breaking
A = 0.879

B = 0.094

C = 0.0

A = 0.879

B = 0.094

C = 0.016

𝑟
2

Δ
++

1.084 1.18 0.43 1.011 — 0.938 0.961 0.996
𝑟
2

Δ
+

1.084 0.82 0.43 1.011 0.410 (57) 0.938 0.946 0.983
𝑟
2

Δ
0

0.0 0.16 0.00 0.0 — 0.0 −0.030 −0.025
𝑟
2

Δ
−

1.084 0.84 0.43 1.011 −0.410 (57) 0.938 1.006 1.033
𝑟
2

Σ
∗+

1.084 0.97 0.42 1.086 0.399 (45) 0.938 0.940 0.978
𝑟
2

Σ
∗−

1.084 0.84 0.37 0.845 −0.360 (32) 0.938 1.013 1.038
𝑟
2

Σ
∗0

0.0 0.34 0.03 0.127 0.020 (7) 0.0 −0.036 −0.030
𝑟
2

Ξ
∗0

0.0 0.49 0.06 0.244 0.043 (10) 0.0 −0.043 −0.035
𝑟
2

Ξ
∗−

1.084 0.82 0.33 0.692 −0.330 (20) 0.938 1.019 1.043
𝑟
2

Ω
−

0.390 0.78 0.29 0.553 — 0.245 0.429 0.355

out using theGPM, theNQMresults have also beenpresented
by including the one-, two-, and three-quark contributions
of the GPM parameters. It is clear from Tables 1 and 2
that if we consider the contribution coming from one-
quark term only, the charge radii of the charged baryons
are equal whereas all neutral baryons have zero charge radii.
These predictions are modified on the inclusion of two- and
three-quark terms of GPM and are further modified on the
inclusion of “quark sea” and SU(3) symmetry breaking effects.
Thus, it seems that the GPM parameters alone are able to
explain the experimentally observed nonzero charge radii of
the neutral baryons. However, NQM is unable to account for
the “proton spin problem” and other related quantities; the
results have been presented for 𝜒CQM. The importance of

strange quark mass has been investigated by comparing the
𝜒CQM results with and without SU(3) symmetry breaking.
The SU(3) symmetry results can be easily derived fromTables
3 and 4 by considering 𝛼 = 𝛽 = 1 and 𝜁 = −1. The SU(3)

breaking results are in general higher in magnitude than the
SU(3) symmetric results, and the values obtained are also in
agreement with the other models.

For the case of octet baryons, it can be easily shown from
Table 5 that in the SU(3) symmetric limit, octet baryon charge
radii can be expressed in terms of the nucleon charge radii
leading to the following relations:

𝑟
2

Σ
+

= 𝑟
2

𝑝
, 𝑟

2

Ξ
−

= 𝑟
2

Σ
−

= 𝑟
2

𝑝
+ 𝑟

2

𝑛
, (39)
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Table 7: Quadrupole moments of the octet baryons in NQM using
the GPM.

Baryons NQM
𝑝 3B󸀠

(2𝑢 + 𝑑 − 2𝑢
+
− 𝑑

+
) + C󸀠

(−4𝑢 + 𝑑 + 4𝑢
+
− 𝑑

+
)

𝑛 3B󸀠

(𝑢 + 2𝑑 − 𝑢
+
− 2𝑑

+
) + C󸀠

(𝑢 − 4𝑑 − 𝑢
+
+ 4𝑑

+
)

Σ
+

3B󸀠

(2𝑢 + 𝑠 − 2𝑢
+
− 𝑠

+
) + C󸀠

(−4𝑢 + 𝑠 + 4𝑢
+
− 𝑠

+
)

Σ
−

3B󸀠

(2𝑑 + 𝑠 − 2𝑑
+
− 𝑠

+
) + C󸀠

(−4𝑑 + 𝑠 + 4𝑑
+
− 𝑠

+
)

Σ
0

3B󸀠

(𝑢 + 𝑑 + 𝑠 − 𝑢
+
− 𝑑

+
− 𝑠

+
)

+C󸀠

(−2𝑢 − 2𝑑 + 𝑠 + 2𝑢
+
+ 2𝑑

+
− 𝑠

+
)

Ξ
0

3B󸀠

(𝑢 + 2𝑠 − 𝑢
+
− 2𝑠

+
) + C󸀠

(𝑢 − 4𝑠 − 𝑢
+
+ 4𝑠

+
)

Ξ
−

3B󸀠

(𝑑 + 2𝑠 − 𝑑
+
− 2𝑠

+
) + C󸀠

(𝑑 − 4𝑠 − 𝑑
+
+ 4𝑠

+
)

Λ
0

3B󸀠

(𝑢 + 𝑑 + 𝑠 − 𝑢
+
− 𝑑

+
− 𝑠

+
) + 3C󸀠

(−𝑠 + 𝑠
+
)

The inclusion of SU(3) symmetry breaking changes this
pattern considerably, and we get

𝑟
2

Σ
+

> 𝑟
2

𝑝
, 𝑟

2

Ξ
−

> 𝑟
2

Σ
−

> 𝑟
2

𝑝
+ 𝑟

2

𝑛
. (40)

Also we have

2𝑟
2

Λ
= −2𝑟

2

Σ
0

= 𝑟
2

Ξ
0

= 𝑟
2

𝑛
, (41)

which has its importance in the isospin limit where the three-
quark core in neutral baryons does not contribute to the
charge radii. In the limit of SU(3) symmetry breaking, a
nonvanishing value for the neutral baryons charge radii is
generated by the “quark sea” through the chiral fluctuations
of constituent quarks leading to

𝑟
2

Λ
> −𝑟

2

Σ
0

, 𝑟
2

Ξ
0

> 𝑟
2

𝑛
. (42)

The exact order of SU(3) symmetry breaking effects can be
easily found from Table 3. Since experimental information is
not available for some of these octet charge radii, the accuracy
of these relations can be tested by the future experiments. It
is interesting to note that the relation for the Σ baryon charge
radii,

𝑟
2

Σ
+

− 2𝑟
2

Σ
0

− 𝑟
2

Σ
−

= 0, (43)

holds good even after incorporating SU(3) symmetry break-
ing. Since this relation is independent of SU(3) symmetry
breaking parameters, any refinement in the Σ baryon charge
radii data would have important implications for SU(3)

symmetry breaking. Further, our predicted value 𝑟
2

Σ
−

=

0.664 is clearly of the order of proton charge radius and
is also in agreement with the recent SELEX collaboration
experimental results [12]. It would be important to mention
here that the 𝜒CQM parameters play an important role in
the SU(3) symmetry breaking effects whereas the assumed
parametrization plays a dominant role in the valence quark
distributions.

In Table 3, we have presented the results for the case with
configuration mixing generated by the spin-spin forces. We
have not presented the results without configuration mixing
which can easily be obtained by taking the mixing angle 𝜃 =

0. It has been observed that configuration mixing decreases
the overall magnitudes of the charge radii in 𝜒CQM, but

the change is very small as compared to the other low
energy properties like spin distribution function, magnetic
moments, and so forth [117–127].

On comparing our results with the other phenomenolog-
icalmodels, we find that for the case of charged octet baryons,
our results are in fair agreement in sign and magnitude with
the other model predictions. However, for the neutral octet
baryons 𝑛, Σ0, Ξ0, and Λ, different models show opposite
sign. For example, if we consider the charge radii for the Λ

baryon, our model prediction (−0.063) is opposite in sign
to the predictions of the relativistic constituent quark model
(RCQM) [51], covariant constituent quark model (CCQM)
[52], 1/𝑁

𝑐
expansion [55, 56], and P𝜒QM [59]. On the other

hand, it is in agreement with the sign of HB𝜒PT [60]. A
similar trend has been observed for the charge radii of ΣΛ
transition.The difference in the sign may be due to the chiral
fluctuation of a constituent quark leading to the reversal
of sign in case of neutral octet baryons. This can perhaps
be substantiated by a measurement of charge radii of other
baryons.

The spin (3/2)
+ decuplet baryon charge radii, presented

in Table 6, are in general higher than the octet baryon charge
radii which are in line with the trend followed by the octet
and decuplet baryons for the other low energy hadronic
matrix elements such as magnetic moments. In this case
also, the inclusion of SU(3) symmetry breaking increases the
predictions of charge radii. It can be easily shown that SU(3)

symmetry results in the following relations for the decuplet
baryons:

𝑟
2

Δ
++

= 𝑟
2

Δ
+

= 𝑟
2

Δ
−

= 𝑟
2

Σ
∗+

= 𝑟
2

Σ
∗−

= 𝑟
2

Ξ
∗−

. (44)

These results are affected by the inclusion of SU(3) symmetry
breaking and give

𝑟
2

Ξ
∗−

> 𝑟
2

Σ
∗−

> 𝑟
2

Δ
−

> 𝑟
2

Δ
++

> 𝑟
2

Δ
+

> 𝑟
2

Σ
∗+

. (45)

Some relations, derived in 1/𝑁
𝑐
expansion of QCD [55–58],

are found to be independent of SU(3) symmetry breaking
parameters in 𝜒CQM. Even though the individual charge
radii are affected by SU(3) symmetry breaking, the effects are
canceled exactly for the following relations:

2𝑟
2

Δ
++

− 𝑟
2

Δ
+

− 𝑟
2

Δ
0

− 𝑟
2

Δ
−

= 0,

2𝑟
2

Δ
++

− 3𝑟
2

Δ
+

+ 3𝑟
2

Δ
0

+ 𝑟
2

Δ
−

= 0,

𝑟
2

Σ
∗+

− 2𝑟
2

Σ
∗0

− 𝑟
2

Σ
∗−

= 0.

(46)

In this case also, SU(3) symmetry breaking is expected to
reduce the charge radii with increasing strangeness content.
As a consequence, Δ−, Σ−, and Ξ

− should have successively
decreasing charge radii.However, this suppression disappears
in 𝜒CQM due to the effect of “quark sea,” and the charge
radii of Δ

+, Σ∗−, and Ξ
∗0 are of almost the same order as

that of Σ∗+, Ξ∗−, and Σ
∗0, respectively. Again, the sign and

magnitude of the decuplet baryon charge radii in 𝜒CQM are
in fair agreement with the other phenomenological models
with the exception for neutral baryons. One of the important
predictions in 𝜒CQM is a nonzero Δ

0 charge radii which
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Table 8: Quadrupole moments of the decuplet baryons in NQM and 𝜒CQM using the GPM.

Baryon NQM 𝜒CQM

Δ
++ B󸀠

(9𝑢 + 3𝑢
+
) + C󸀠

(−9𝑢 + 15𝑢
+
) 8B󸀠

+ 4C󸀠

− (B󸀠

+ 5C󸀠

)
𝑎

3
(9 + 3𝛼

2

+ 2𝛽
2

+ 4𝜁
2

)

Δ
+ B󸀠

(3(2𝑢 + 𝑑) + 2𝑢
+
+ 𝑑

+
) + C󸀠

(−3(2𝑢 + 𝑑) + 5(2𝑢
+
+ 𝑑

+
)) 4B󸀠

+ 2C󸀠

− (B󸀠

+ 5C󸀠

)
𝑎

3
(6 + 𝛽

2

+ 2𝜁
2

)

Δ
0 B󸀠

(3(𝑢 + 2𝑑) + 𝑢
+
+ 2𝑑

+
) + C󸀠

(−3(𝑢 + 2𝑑) + 5(𝑢
+
+ 2𝑑

+
)) (B󸀠

+ 5C󸀠

)𝑎 (−1 + 𝛼
2

)

Δ
− B󸀠

(9𝑑 + 3𝑑
+
) + C󸀠

(−9𝑑 + 15𝑑
+
) −4B󸀠

− 2C󸀠

+ (B󸀠

+ 5C󸀠

)
𝑎

3
(6𝛼

2

+ 𝛽
2

+ 2𝜁
2

)

Σ
∗+ B󸀠

(3(2𝑢 + 𝑠) + 2𝑢
+
+ 𝑠

+
) + C󸀠

(−3(2𝑢 + 𝑠) + 5(2𝑢
+
+ 𝑠

+
)) 4B󸀠

+ 2C󸀠

− (B󸀠

+ 5C󸀠

)
𝑎

3
(6 + 𝛼

2

+ 2𝜁
2

)

Σ
∗− B󸀠

(3(2𝑑 + 𝑠) + 2𝑑
+
+ 𝑠

+
) + C󸀠

(−3(2𝑑 + 𝑠) + 5(2𝑑
+
+ 𝑠

+
)) −4B󸀠

− 2C󸀠

+ (B󸀠

+ 5C󸀠

)
𝑎

3
(5𝛼

2

+ 2𝛽
2

+ 2𝜁
2

)

Σ
∗0 B󸀠

(3(𝑢 + 𝑑 + 𝑠) + 𝑢
+
+ 𝑑

+
+ 𝑠

+
) (B󸀠

+ 5C󸀠

)
𝑎

3
(−3 + 2𝛼

2

+ 𝛽
2

)

+C (−3(𝑢 + 𝑑 + 𝑠) + 5(𝑢
+
+ 𝑑

+
+ 𝑠

+
))

Ξ
∗0 B󸀠

(3(𝑢 + 2𝑠) + 𝑢
+
+ 2𝑠

+
) + C󸀠

(−3(𝑢 + 2𝑠) + 5(𝑢
+
+ 2𝑠

+
)) (B󸀠

+ 5C󸀠

)
𝑎

3
(−3 + 𝛼

2

+ 2𝛽
2

)

Ξ
∗− B󸀠

(3(𝑑 + 2𝑠) + 𝑑
+
+ 2𝑠

+
) + C󸀠

(−3(𝑑 + 2𝑠) + 5(𝑑
+
+ 2𝑠

+
)) −4B󸀠

− 2C󸀠

+ (B󸀠

+ 5C󸀠

)
𝑎

3
(4𝛼

2

+ 3𝛽
2

+ 2𝜁
2

)

Ω
− B󸀠

(9𝑠 + 3𝑠
+
) + C󸀠

(−9𝑠 + 15𝑠
+
) −4B󸀠

− 2C󸀠

+ (B󸀠

+ 5C󸀠

)
𝑎

3
(3𝛼

2

+ 4𝛽
2

+ 2𝜁
2

)

Table 9: Quadrupole moments of the spin (3/2)
+

→ (1/2)
+ transitions in NQM and 𝜒CQM using the GPM.

Baryon NQM 𝜒CQM
Δ

+

𝑝 2√2B󸀠

(𝑢
+
− 𝑑

+
) + 2√2C󸀠

(−𝑢 + 𝑑) 2√2B󸀠

(1 −
𝑎

3
(3 + 3𝛼

2

+ 𝛽
2

+ 2𝜁
2

)) − 2√2C󸀠

Σ
∗+

Σ
+

2√2B󸀠

(𝑢
+
− 𝑠

+
) + 2√2C󸀠

(−𝑢 + 𝑠) 2√2B󸀠

(1 −
𝑎

3
(3 + 2𝛼

2

+ 2𝛽
2

+ 2𝜁
2

)) − 2√2C󸀠

Σ
∗−

Σ
−

2√2B󸀠

(𝑑
+
− 𝑠

+
) + 2√2C󸀠

(−𝑑 + 𝑠)
2√2

3
B󸀠

𝑎 (𝛼
2

− 𝛽
2

)

Σ
∗0

Σ
0 √2B󸀠

(𝑢
+
+ 𝑑

+
− 2𝑠

+
) + √2C󸀠

(−𝑢 − 𝑑 + 2𝑠) √2B󸀠

(1 − 𝑎(1 +
𝛼
2

3
+ 𝛽

2

+
2

3
𝜁
2

)) − √2C󸀠

Ξ
∗0

Ξ
0

2√2B󸀠

(𝑢
+
− 𝑠

+
) + 2√2C󸀠

(−𝑢 + 𝑠) 2√2B󸀠

(1 −
𝑎

3
(3 + 2𝛼

2

+ 2𝛽
2

+ 2𝜁
2

)) − 2√2C󸀠

Ξ
∗−

Ξ
−

2√2B󸀠

(𝑑
+
− 𝑠

+
) + 2√2C󸀠

(−𝑑 + 𝑠)
2√2

3
B󸀠

𝑎 (𝛼
2

− 𝛽
2

)

Σ
∗0

Λ √6B󸀠

(𝑢
+
− 𝑑

+
) + √6C󸀠

(−𝑢 + 𝑑) √6B󸀠

(1 −
𝑎

3
(3 + 3𝛼

2

+ 𝛽
2

+ 2𝜁
2

)) − √6C󸀠

vanishes in NQM as well as in some other models. This is
further endorsed by the predictions of the field theoretical
quark model (FTQM) calculations [67]. The contribution of
the three-quark term in the case of decuplet baryons is exactly
opposite to that for the octet baryons. Unlike the octet baryon
case, the inclusion of the three-quark term increases the value
of the baryon charge radii.

For the sake of completeness, certain relations between
the octet and decuplet baryon charge radii can also be tested
for the spacing between the levels. In NQM, we have

𝑟
2

Σ
−

− 𝑟
2

Σ
∗−

= 𝑟
2

Ξ
−

− 𝑟
2

Ξ
∗−

= 𝑟
2

Σ
+

− 𝑟
2

Σ
∗+

= 𝑟
2

Ξ
0

− 𝑟
2

Ξ
∗0

= 𝑟
2

𝑛
. (47)

In 𝜒CQM, the inclusion of SU(3) symmetry breaking effects
creates a spacing between the octet and decuplet baryon
charge radii as

𝑟
2

𝑝
− 𝑟

2

Δ
+

= 𝑟
2

Σ
+

− 𝑟
2

Σ
∗+

= −0.31,

𝑟
2

Σ
−

− 𝑟
2

Σ
∗−

= 𝑟
2

Ξ
−

− 𝑟
2

Ξ
∗−

= −0.48,

𝑟
2

𝑛
− 𝑟

2

Δ
0

= 𝑟
2

Ξ
0

− 𝑟
2

Ξ
∗0

= −0.09.

(48)

We have calculated the numerical values for the
quadrupole moment for the (3/2)

+ decuplet baryons in
𝜒CQM and presented the results in Table 10. The results of
the spin (3/2)

+

→ (1/2)
+ transitions have been presented in

Table 11. To understand the implications of chiral symmetry
breaking and “quark sea,” we have also presented the results of
NQM. Since the calculations in 𝜒CQMhave been carried out
using the GPM, the NQM results have also been presented
by including the two- and three- quark term contributions of
the GPM parameters so that the contribution of the “quark
sea” effects can be calculated explicitly. For the case of spin
(1/2)

+ octet baryons, we find that the quadrupole moments
are zero for all the cases in NQM. Even if we consider
the contribution coming from two-quark terms with the
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Table 10: Quadrupole moments of the spin (3/2)
+ decuplet baryons in 𝜒CQM using GPM and SU(3) symmetry breaking.

𝜒CQM with SU(3)

Baryon NQM fm2 CQM [84] 𝜒PT [99–103] SRA
[89, 90]

Skyrme
[91, 92]

GPM
[93, 94] Symmetry Symmetry breaking

10
−2 fm2

10
−1 fm2

10
−1 fm2

10
−2 fm2 fm2 fm2 fm2

Δ
++

−0.409 −9.3 −0.8 ± 0.5 −0.87 −8.8 −0.12 −0.3437 −0.3695
Δ

+

−0.204 −4.6 −0.3 ± 0.2 −0.31 −2.9 −0.06 −0.1719 −0.1820
Δ

0 0.0 0.0 0.12 ± 0.05 0.24 2.9 0.0 0.0 0.0055
Δ

− 0.204 4.6 0.6 ± 0.3 0.80 8.8 0.06 0.1719 0.1930
Σ
∗+

−0.204 −5.4 −0.7 ± 0.3 −0.42 −7.1 −0.069 −0.1719 −0.1808
Σ
∗− 0.204 4.0 4.0 ± 0.2 0.52 7.1 0.039 0.1719 0.1942

Σ
∗0 0.0 −0.7 −0.13 ± 0.07 0.05 0.0 0.014 0.0 0.0067

Ξ
∗0 0.0 −1.3 −0.35 ± 0.2 −0.07 −4.6 −0.1719 0.0 0.0079

Ξ
∗− 0.204 3.4 0.2 ± 0.1 0.35 4.6 0.024 0.1719 0.1954

Ω
− 0.204 2.8 0.09 ± 0.05 0.24 0.0 0.014 0.1719 0.1966

inclusion of “quark sea” and SU(3) symmetry breaking
effects, the quadrupole moments still remain zero. In the
case of (3/2)+ decuplet baryons, the quadrupole moments of
the charged baryons are equal whereas all neutral baryons
have zero quadrupole moment.

For the (3/2)
+ decuplet and radiative decays of baryons,

it can be easily shown that in the SU(3) symmetric limit, the
magnitude of quadrupole moments can be expressed by the
following relations:

𝑄
Δ
++

2
= 𝑄

Δ
+

= 𝑄
Δ
−

= 𝑄
Σ
∗+

= 𝑄
Σ
∗−

= 𝑄
Ξ
∗−

= 𝑄
Ω
−

,

𝑄
Δ
+

𝑝

= 𝑄
Σ
∗+

Σ
+

= 2𝑄
Σ
∗0

Σ
0

= 𝑄
Ξ
∗0

Ξ
0

=
2

√3
𝑄

Σ
∗0

Λ

.

(49)

The inclusion of SU(3) symmetry breaking changes this
pattern considerably, and we obtain

𝑄
Ω
−

> 𝑄
Ξ
∗−

> 𝑄
Σ
∗−

> 𝑄
Δ
−

>
𝑄

Δ
++

2
> 𝑄

Δ
+

> 𝑄
Σ
∗+

,

2𝑄
Σ
∗0

Σ
0

> 𝑄
Ξ
∗0

Ξ
0

= 𝑄
Σ
∗+

Σ
+

> 𝑄
Δ
+

𝑝

=
2

√3
𝑄

Σ
∗0

Λ

.

(50)

Also we have

𝑄
Ξ
∗0

= 𝑄
Σ
∗0

= 𝑄
Δ
0

, (51)

which has its importance in the isospin limit where the
three-quark core in neutral baryons does not contribute to
the quadrupole moment. In the limit of SU(3) symmetry
breaking, a nonvanishing value for the neutral baryons
quadrupole moment is generated by the “quark sea” through
the chiral fluctuations of constituent quarks leading to

𝑄
Ξ
∗0

> 𝑄
Σ
∗0

> 𝑄
Δ
0

. (52)

In the SU(3) limit, the transition moments involving the
negatively charged baryons are zero:

𝑄
Ξ
∗−

Ξ
−

= 𝑄
Σ
∗−

Σ
−

= 0. (53)

This is because if flavor symmetry is exact, U-spin conser-
vation forbids such transitions. The exact order of SU(3)

symmetry breaking effects can be easily found from Tables 10
and 11. Since there is no experimental or phenomenological
information available for any of these quadrupole moments,
the accuracy of these relations can be tested by the future
experiments.

For the spin (3/2)
+ decuplet baryons presented in

Table 10, quadrupole moments results in NQM using the
GPM predict an oblate shape for all positively charged
baryons (Δ++, Δ

+, and Σ
∗+), prolate shape for negatively

charged baryons (Δ−, Σ
∗−, Ξ

∗−, and Ω
−). It is important

to mention here that the NQM is unable to explain the
deformation in neutral baryons (Δ0, Σ∗0, and Ξ

∗0). On incor-
porating the effects of chiral symmetry breaking and “quark
sea” in the 𝜒CQM, a small amount of prolate deformation
in neutral baryons (Δ0, Σ∗0, and Ξ

∗0) is observed. The trend
of deformations is however the same for the positively and
negatively charged baryons in 𝜒CQM and NQM. The other
phenomenological models also observe a similar trend, for
example, light cone QCD sum rules [95, 96], spectator quark
model [86–88], Lattice QCD [104–108], 𝜒PT [99–103], chiral
quark soliton model (𝜒QSM) [85], and so forth.

For the case of spin (3/2)
+

→ (1/2)
+ transitions in

Table 11, it is observed that quadrupole moments of all the
transitions are oblate in shape.This result is further endorsed
by the predictions of Skyrme model [91, 92]. The effects of
chiral symmetry breaking can further be substantiated by a
measurement of the other transition quadrupole moments.

6. Summary and Conclusion

To summarize, 𝜒CQM is able to provide a fairly good
description of the charge radii of spin (1/2)

+ octet and
spin (3/2)

+ decuplet baryons and quadrupole moments of
spin (3/2)

+ decuplet baryons and spin (3/2)
+

→ (1/2)
+

transitions using general parameterization method (GPM).
The most significant prediction of the model for the charge



Advances in High Energy Physics 13

Table 11: Quadrupole moments of the spin (3/2)
+

→ (1/2)
+ decuplet to octet transitions in 𝜒CQM using GPM and SU(3) symmetry

breaking.

Baryon NQM fm2 Skyrme [91, 92] 10−2 fm2 GPM [93, 94] fm2 𝜒CQM with SU(3)

Symmetry fm2 Symmerty breaking fm2

Δ
+

𝑝 −0.110 −5.2 −0.082 −0.0608 −0.0846
−0.0846 ± 0.0033

Σ
∗+

Σ
+

−0.110 −0.93 −0.076 −0.0608 −0.0864
Σ
∗−

Σ
− 0.0 0.93 0.014 −0.0608 −0.0018

Σ
∗0

Σ
0

−0.055 0.0 −0.031 0.0 −0.0441
Ξ
∗0

Ξ
0

−0.110 2.91 −0.031 −0.0608 −0.0864
Ξ
∗−

Ξ
− 0.0 −2.91 0.007 0.0 −0.0018

Σ
∗0

Λ −0.096 −4.83 −0.041 −0.0526 −0.0733

radii is the nonzero value pertaining to the neutral octet
baryons (𝑛, Σ0, Ξ0, and Λ) and decuplet baryons (Δ0, Σ∗0,
Ξ
∗0). For the quadrupole moment, prolate shape is observed

for the spin (3/2)
+ neutral decuplet baryons (Δ0, Σ∗0, and

Ξ
∗0). The effects of SU(3) symmetry breaking have also been

investigated, and the results show considerable improvement
over the SU(3) symmetric case. We have also studied the
implications of GPM parameters, particularly, the contribu-
tion of the three-quark term in the octet and decuplet baryon.
We find that the sign of the three-quark term contribution
is opposite in the case of octet and decuplet baryons charge
radii. New experiments aimed at measuring the charge radii
and quadrupole moment of the other baryons are needed
for a profound understanding of the hadron structure in the
nonperturbative regime of QCD.

In conclusion, we would like to state that at-the-leading-
order constituent quarks and the weakly interacting Gold-
stone bosons constitute the appropriate degrees of freedom
in the nonperturbative regime of QCD.The SU(3) symmetry
breaking parameters pertaining to the strangeness contribu-
tion and the GPM parameters pertaining to the one-, two-,
and three-quark contributions are the key in understanding
the octet and decuplet baryon charge radii and quadrupole
moment.
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