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Abstract

Following the decommissioning of the Main Injector Neu-
trino Oscillation Search (MINOS) experiment, muon and
hadron monitors have emerged as essential diagnostic tools
for the NuMI Off-axis v, Appearance (NOVA) experiment at
Fermilab. This study uses a combination of muon monitor
simulation and measurement data to study the monitor re-
sponses to variations in proton beam and lattice parameters.
We also apply pattern-recognition algorithms to develop
machine-learning-based models to establish correlations be-
tween muon monitor signals, primary beam parameters, and
neutrino spectra at the detectors.

INTRODUCTION

The NOvA (NuMI Off-axis v. Appearance) experi-
ment [1] aims to study neutrino oscillations using a long-
baseline setup. It comprises two tracking calorimeters: the
Near Detector and the Far Detector. These detectors are
strategically positioned at baselines of 1 km and 810 km to
maximize the probability of oscillations with respect to the
Fermi National Accelerator Laboratory’s NuMI (Neutrinos
at the Main Injector) beam [2]. The NuMI beam can be con-
figured to generate a primary v,, or ¥, neutrino/anti-neutrino
beam.

By analyzing the disappearance of v, neutrinos and the ap-
pearance of ¥, antineutrinos in the beam, NOvA investigates
and quantifies neutrino oscillations. These measurements
provide crucial insights into the fundamental properties of
neutrinos and their interactions.

NuMI BEAMLINE

NOVA uses Fermilab’s NuMI neutrino beam [2]. The
beam is created by 120-GeV protons from the Main Injector
striking a 1.2-m-long graphite target. Two magnetic horns
focus charged pions and kaons produced in the target. The
focused mesons decay in a 675-m-long decay pipe to produce
muons and muon neutrinos. The muon neutrino beam is
delivered to neutrino experiments such as NOvA. Muons are
monitored by the muon monitors (MM) located at the end
section of the beamline and absorbed by the rock between
and downstream of the monitors. The horns can be operated
with “forward horn current” (FHC), focusing n* and K*,
which decay to muon neutrinos, or “reverse horn current”
(RHC), producing muon antineutrinos. The beamline layout
is shown schematically in Fig. 1.
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Figure 1: NuMI beamline: target, magnetic horns, decay
pipe hadron monitors, hadron absorber, and muon monitors.

MUON MONITORS

The muon monitors are designed to detect muons of vari-
ous energy ranges. The three muon monitors (MM1, MM2,
MM3) [2] are located downstream of the hadron absorber
and separated by 12 and 18 m of rock, hence sensitive to
muons of different momentum. Each MM consists of a 9 x 9
array of ionization chambers. Each ionization chamber con-
sists of two parallel-plate electrodes separated by a 3-mm
gap. The chambers are filled with He gas. The ion chambers
are designed to measure the fluence of charged particles. The
charged particles ionize the helium gas within the chambers;
the liberated ions and electrons are collected on electrodes.
The perfect ion chamber gives a current reading that matches
the charge produced when a high-energy particle deposits its
energy. With high-energy particles, the amount of ionization
per distance is almost the same regardless of the type or en-
ergy of the particle. So, by counting up the charge deposited,
one can figure out how many particles passed through. A
typical muon signal on MM is shown in Fig. 2.
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Figure 2: 81 pixels of signal readout at MM 1. The number
shown in each pixel is the voltage signal in that pixel. The
two pixels with abnormally low signals are unreliable and
were excluded from the analysis.
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With the MINOS [2] Near Detector shut down since Febru-
ary 2019, MM now provide essential information to monitor
the beam and target, maintain the beam quality, and identify
issues with the beamline alignment early. The MINOS Near
Detector was previously used to monitor the quality of the
neutrino beam. The off-axis NOvA Near Detector cannot be
used for the same purpose because its spectrum has insuffi-
cient sensitivity to beam configuration changes to provide
useful monitoring [3]. MM have certain advantages over
neutrino detectors. With the MINOS detector, gathering
enough statistics to isolate an issue with the beamline could
take weeks. In contrast, MM gather sufficient statistics in a
single pulse, so any issues that occur can be identified and
mitigated much more efficiently.

Muon Monitor Data and Beam Scans

Data for the MM analysis are obtained through a series
of dedicated beam scans conducted after each significant
change in the beamline configuration or a long shutdown.
The raw data [4] include proton beam position and size, horn
current, and MM signals. Each parameter has an associated
timestamp [5] so that the correlation among the beam param-
eters can be studied spill by spill. A sample of raw data is
shown in Fig. 3. Beam scans involve controlled variations in
the beam position on the target, beam spot size, and focusing
horn currents. This process that changes the proton beam
position on the target horizontally and vertically is called a
“target scan.”

On top of that, another set of scans is performed where
the horn current is varied during the target scan. These are
referred to as “horn current scans.” Beam scans provide
insight into how MM signal changes with the primary beam
and optics parameters change. However, beam simulation
studies are required to address the changes in the optics con-
figuration that cannot be measured directly (e.g., magnetic
horn and target alignment).
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Figure 3: Raw data visualization: HPTGT (primary proton
beam horizontal position on target), MM1XAV (horizon-
tal muon beam centroid at muon monitor 1), MM2XAV
(horizontal muon beam centroid at muon monitor 2), and
MM3XAV (horizontal muon beam centroid at muon moni-
tor 3) parameters.
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Muon Monitor Simulation Improvements

NuMI beam simulations for neutrino studies are per-
formed using a Geant4-based Monte Carlo (MC) simula-
tion package called g4numi [6, 7]. Geant4 [§] is a software
toolkit for the simulation of the passage of particles through
electromagnetic fields and matter. It is widely used in high
energy physics, nuclear physics, space science, and medical
physics. g4numi provides information about the location
and kinematics of each decay into a neutrino. The output of
the g4numi simulation is stored in the ROOT [9] files con-
taining ntuples with neutrino production and MM informa-
tion for specific beam and horn current settings. Generating
high-statistics samples for individual MM pixels is compu-
tationally demanding and time-consuming. To simulate a
large number of protons on target (typically 1000 grid jobs
with 500k protons on target each), OpenScienceGrid [10]
was used.

Two new approaches were developed to improve the effi-
ciency of muon simulations:

» multiple decay (where muon parent particles were
forced to decay multiple times, producing up to 50
muons) and

¢ uniform beam simulation (starting with a single large
uniform proton beam distribution and selecting the sub-
sample in postprocessing by applying Gaussian weights
covering a range of proton beam positions in a single
simulation).

The two approaches were combined and demonstrated to be
consistent with the original simulation. Large MC samples
were produced for variations in the proton beam position and
size, magnetic horn beam current, position and orientation
of target and horns. These samples were then used to train
machine learning models and establish connections between
MM signals, primary beam parameters, lattice parameters,
and neutrino spectra at Near and Far Detectors.

MACHINE LEARNING FOR BEAM
MONITORING

Machine Learning (ML) algorithms offer the ability to
analyze vast datasets and identify intricate patterns and cor-
relations that might be challenging for conventional analysis
methods. By training ML models on experimental data and
simulation results, we can develop predictive models capable
of associating specific changes in the muon monitor pixels
with particular variations in primary beam parameters. This
provides a more comprehensive way to detect parameter
changes using muon monitor signal patterns and check how
the neutrino flux changes due to these parameter changes.

The advantage of using machine learning based on muon
monitor simulation is that it helps study situations that are
not easily accessible in measurement. For example, one can
explore scenarios with very low horn current or target and
horns being offset or tilted. However, one of the challenges
is the need to produce a sufficient number of high-statistics
data samples. Thanks to the modified simulation approach
(uniform beam + multiple decays), there are enough Monte
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Carlo (MC) data points for algorithm training and validation.
Table 1 shows the structure of the MC samples. Each point
corresponds to a spill in the measurement data. The simu-
lation took 133 seconds to generate 100 training samples,
showcasing the efficiency of the process. By leveraging the
existing large-scale uniform beam simulation results, one
can generate various MC samples to investigate a wide range
of primary beam parameters and their impact on the MM
responses.

Table 1: Structure of the Monte Carlo (MC) Data Samples,
Including Various Parameters: horn current (Hornl), spot
size, proton x and y positions (denoted “hptgt” and “vptgt”),
number of muons at each of the 81 pixels (e.g., mm1pixell),
and neutrino spectra split into bins (e.g., nuray!1 for the flux
in the first bin, 0-0.2 GeV)

Parameter Meaning

ID Index of data point
Hornl (kA) Horn current (kA)
spot_size (cm) Proton beam spot size (cm)
hptgt (cm) Proton x position (cm)
vptgt (cm) Proton y position (cm)

mm1pixel1-81
mm?2pixel1-81
mm3pixel1-81
nuray 1-50

# muons, pixell—pixel81 at MM1
# muons, pixel1-pixel81 at MM2
# muons, pixell—pixel81 at MM3
# v, or v,, NOvVA ND location
bins from [0-0.2] to [9.8—10] GeV

A relatively simple neural network structure was used
consisting of 243 input nodes (muon counts recorded at
the 3 x 81 pixels of MM 1, MM2, and MM3; these counts
provide information about the spatial distribution of muons
detected by the monitors), 100 nodes in the middle layer, and
54 in the output layer (horn current, horizontal and vertical
proton beam position, spot size and neutrino spectrum at
the NOvA Near Detector location split into 50 bins over the
energy range from 0 to 10 GeV). Ten thousand samples from
the multiple decay/uniform beam simulation were used for
training and validating the ML model.

Examples illustrating the ML model performance are
shown in Figs. 4 and 5. The two lines in both figures are
virtually indistinguishable. The ratio of the two neutrino
spectra is practically flat in the region of interest between 1
and 3 GeV.

CONCLUSION

We analyzed the results of the muon monitor beam scan
measurements, improved the performance of the existing
g4numi simulation by implementing a more efficient sim-
ulation technique (multiple decay) and employing another
technique developed within the group (uniform beam), used
the resulting MC simulations to train the ML model, and
compared the outcomes of the ML algorithm and MC simu-
lation. The next step is to combine measurement data and
MC simulation to improve ML training predictive power and
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Figure 4: MC and ML output comparison. Top plot: neu-
trino spectra at the location of the Near Detector, bottom
plot: ratio of ML prediction to MC.
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Figure 5: MC and ML output comparison. The top plot
is a magnetic horn current within the 170 to 200 kA range
(multiple samples for the same horn current include different
proton beam positions and sizes), and the bottom plot is the
difference between ML prediction and MC (kA).

reduce beam-focusing-related uncertainty on the neutrino
flux in the detectors.
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