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In recent years, the MAGIC telescopes have been equipped with a setup that allows its Imag-
ing Atmospheric Cherenkov Telescopes (IACTs) to function as an Intensity Interferometer. The
deadtime-free setup includes a 4-channel GPU-based real-time correlator together with optical
filters in the 350-450 nm wavelength range and specialized Active Mirror Control (AMC) config-
urations. This implementation allows MAGIC to perform measurements of the spatial coherence
(visibility) of the intensity fluctuations of an object’s starlight over several separations (baselines)
and construct a model of said object. The accessible baseline range for MAGIC is 40-90 m which
translates into an angular resolution of 0.5-1 mas. Additionally, thanks to the AMC it can access
even smaller baselines, of less than 17 m (which is the diameter of each of both dishes) to measure
objects of greater angular size (>1 mas) and even measure the zero-baseline correlation, which is
key to calibrate the system. We present the latest measurements that allow us to understand the
performance and systematics of our setup and validate our analysis.
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1. Introduction

Between 1964 and 1972, R. Handbury Brown et al. measured the diameter of 32 stars using
the intensity interferometry technique [6] with two telescopes very similar to current IACTs. The
technique was abandoned due to the lack of fast photo-sensors and telescopes with the large
collection area needed to overcome the ∼1 kHz atmospheric turbulence. The technique resurfaced
in 2019, when major IACT observatories like VERITAS [1], MAGIC [2] and later HESS started
to exploit their IACT arrays as optical intensity interferometers, showing a significant boost in
sensitivity.

The intensity interferometry technique is based on the concept that an extended object of
angular size 𝜃 formed by many incoherent emitting sources produces a speckled wavefront at the
position of the observer with a typical size 𝜆/𝜃, where 𝜆 is the wavelength [5]. For a pair of
observers separated by a distance much smaller than that typical size (𝜆/𝜃) it is very likely that
they are within the same speckle and therefore observe the same intensity fluctuations, i.e. they see
correlated fluctuations. Additionally, the Van Cittert-Zernike theorem states that when observing a
thermal light source through a narrow spectral band (𝛿𝜆/𝜆0 « 1), the coherence of light between two
points is proportional to the Fourier transform of the intensity profile of the source at said distance.
For non-polarized light it can be shown that:

𝑔
(2)
1,2 =

⟨𝐼1(𝑡) · 𝐼2(𝑡 + 𝜏)⟩𝑡
⟨𝐼1(𝑡)⟩ · ⟨𝐼2(𝑡 + 𝜏)⟩𝑡

= 1 + Δ 𝑓

Δ𝜈
· |𝑉1,2(𝜏) |2 (1)

where 𝑔 (2)1,2 is the second-order intensity correlation function, 𝐼𝑖 (𝑡) is the intensity of light at the
detector 𝑖 (1 or 2) at time 𝑡, 𝜏 is the time delay due to the difference in optical path, ⟨𝑥⟩𝑡 represents
the time average of 𝑥, Δ 𝑓 where Δ 𝑓 << Δ𝜈 is the electronic bandwidth, Δ𝜈 is the optical bandwidth
and 𝑉1,2(𝜏) is the normalized degree of first-order mutual coherence of the light at the delay 𝜏,
also called visibility. Measuring the visibility over a set of different delays or baselines provides
morphological information about the thermal emission of the source, which is a valuable tool in a
broad range of stellar science cases. Nevertheless, it is useful to note that between two detectors
only the modulus of the complex visibility is measured and therefore the phase information is lost,
making it impossible to perform imaging of the source.

The modulus of the complex visibility function |𝑉1,2(𝜏) | can take different shapes depending
on the light profile of the source. For example, in the case of an uniformly illuminated disk the
expression would be:

|𝑉1,2 | = 2 ·
𝐽1(𝜋 · 𝑑1,2 · 𝜃/𝜆)
𝜋 · 𝑑1,2 · 𝜃/𝜆

(2)

where 𝐽1 is the Bessel function of the first kind, 𝑑1,2 is the baseline between the detectors, 𝜃 is the
angular size of the equivalent uniform disc and 𝜆 is the effective wavelength. But there are other
cases in which there is no radial symmetry, and the expression is more complex, like for fast-rotators
(stars that spin so rapidly they become elongated in the perpendicular direction of the rotation axis)
and multiple systems (like spectroscopic binaries, if they are close enough and have the right size,
their intensity patterns intertwine).
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2. The MAGIC Stellar Intensity Interferometer

The MAGIC telescopes are a system of two IACTs of 17 m mirror dish diameter, located at
an elevation of 2200 m above sea level, at the Roque de los Muchachos Observatory in La Palma,
Canary Islands (Spain). MAGIC provides an integral sensitivity of 0.66 ± 0.03 % of the Crab
Nebula flux above 220 GeV in 50 h of observation, and allows the measurement of photons in the
energy range from 50 GeV to above 50 TeV [4].

The main objective for IACTs, such as the MAGIC telescopes, is to observe the gamma-ray
night-sky. Gamma-rays do not pass through our atmosphere but they interact with it, producing
Extensive Atmospheric Showers (EAS) that emit faint fast blue flashes of Cherenkov light. By
characterizing the intensity and the spatial and temporal pattern of this light, one can study different
properties of the primary: its nature (gamma photons or otherwise), its direction (the astronomical
source) and its energy (to reconstruct their spectrum). In order to perform this kind of observations,
IACTs make use of several technical features that make them incidentally well suited for intensity
interferometry observations: they come in groups (each combination of telescopes is a different
baseline), they have time resolution of nanoseconds (needed to resolve the correlation peak), they
are sensitive to single photo-electrons (and therefore coherence of individual photons) and they
have large reflective mirrors (more photons means more statistics and better S/N).

In recent years, the MAGIC telescopes have undergone several technical modifications ([2, 7, 8])
like the implementation of a digitizer and GPU-based real-time correlator, special configuration of
its AMC (to focus the light to the infinite instead of the typical altitude of EAS of 10 km and to con-
centrate it into just one or two photo-multipliers or PMTs) and the automatic deployment of optical
filters using the target holder, that allow the system to transform into an intensity interferometer
in less than a minute and then back to Very High Energy (VHE, E>100 GeV) observations just as
quickly (useful for transients). This makes MAGIC Intensity Interferometer an extremely high duty
cycle instrument, having taken more than 500 hours of observations since 2021. Said observations
were mainly performed during Moon breaks, which are periods with bright Moon-light conditions
in which IACTs cannot perform sensitive VHE observations, but the intensity interferometer can,
thanks to the optical filters that greatly reduce the amount of blue Moon-light that gets into the
PMT.

3. Methodology

Each telescope’s target holder has installed three Semrock 425-26 nm optical filters as can be
seen in Figure 1 (left) of [8]. When the target holder is deployed, each filter falls in front of one
of the three PMTs (pixels): two are used for measuring correlations and one is for keeping track of
background light.

Measuring our signals using the same kind of PMTs that we use for VHE observations means
that the signal we are measuring is not DC coupled, so we are not measuring the signal intensities
directly 𝐼𝑖 but the anode currents of the PMTs which are proportional to them ⟨𝐼𝑖⟩ ∝ 𝐷𝐶𝑖 . Since the
intensity fluctuations follow a Poisson distribution, it can be shown as well that

√︁
⟨(𝐼𝑖 (𝑡) − ⟨𝐼𝑖⟩)2⟩ ∝√

𝐷𝐶𝑖 .
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Figure 1: Picture of one of MAGIC cameras during an intensity interferometry observation. The light from
the target star, which can be seen within the yellow hexagons on the right, is focused by the AMC into
one of the holes with filters in the target holder (left hole), while the other holes are illuminated by diffuse
background light (right holes).

Camera reports are produced every second, keeping track of the DCs and other parameters,
while the signal from the pixels is digitized at 500·106 Samples/s. The digitized signal is later
processed by the GPU-correlator which computes the Pearson’s correlation:

𝜌(𝜏) = ⟨(𝐼1(𝑡) − ⟨𝐼1⟩) · (𝐼2(𝑡 + 𝜏) − ⟨𝐼2)⟩√︁
⟨(𝐼1(𝑡) − ⟨𝐼1⟩)2⟩

√︁
⟨(𝐼2(𝑡 + 𝜏) − ⟨𝐼2⟩)2⟩

(3)

We correct for the time delay coming from the hardware setup, which is different for each pixel due
to different lengths of the optical fibers, and the additional delay coming from the different optical
paths between the telescopes when tracking the source at different zenith/azimuth positions. We
apply a 12 MHz frequency high-pass filter to remove slow residual noise, and then we extract the
amplitude of the cross-correlation signal at 0 ns delay as the value of the Pearson’s correlation.
Finally, we take said value and correct it by the DCs to calculate the contrast, which is proportional
to the modulus of the complex visibility:

𝑐(𝜏) = ⟨(𝐼1(𝑡) − ⟨𝐼1⟩) · (𝐼2(𝑡 + 𝜏) − ⟨𝐼2)⟩
⟨𝐼1(𝑡)⟩ · ⟨𝐼2(𝑡 + 𝜏)⟩𝑡

= 𝐾 · 𝜌𝛽
√
𝐺1𝐺2√︁

𝐷𝐶1,𝑆𝑡𝑎𝑟𝐷𝐶2,𝑆𝑡𝑎𝑟
(4)

where 𝐾 is a setup constant, 𝐺𝑖 are the gains of the PMTs, 𝐷𝐶𝑖,𝑆𝑡𝑎𝑟 are the DCs of the pixels
for which the starlight has been focused into and 𝛽 is the ratio between the light coming from the
night-sky background (NSB) and the star:

𝛽 =

√︄
(𝐷𝐶1,𝑆𝑡𝑎𝑟 + 𝐷𝐶1,𝑁𝑆𝐵) (𝐷𝐶2,𝑆𝑡𝑎𝑟 + 𝐷𝐶2,𝑁𝑆𝐵)

𝐷𝐶1,𝑆𝑡𝑎𝑟𝐷𝐶2,𝑆𝑡𝑎𝑟
(5)

The contrast can be normalized in order to calculate the visibility:

𝑐(𝑑) = 𝑔 (2)1,2 − 1 =
Δ 𝑓

Δ𝜈
· |𝑉1,2(𝑑) |2 → 𝑐(𝑑)

𝑐(0) = |𝑉1,2(𝑑) |2 (6)
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where 𝑐(0) is a correlation normalization factor, also called zero-baseline correlation (ZBC),
and it is the value that the correlation takes at baseline 0 or in other words, the correlation that would
be measured for a point-like source. There are several ways to estimate or directly measure its value
that can be found in [8]. This value together with measurements of the correlations at different time
delays or baselines (and different u-v plane coordinates for cases without radial symmetry) can be
used to reconstruct the brightness distribution of the thermal emission of the source.

The value of the ZBC is expected to be constant for each pixel pair, but several scenarios are
described in the next section that can affect its value over short and long periods of time.

4. Systematics evaluation

The MAGIC Collaboration carefully evaluated the main systematics affecting their VHE
gamma-ray analysis [3, 4]. Given the very different nature of the measurement, these system-
atics actually do not affect interferometry observations the same way. For instance, the uncertainty
in the amount of light detected by IACTs mainly affects S/N (see [5]), but does not add as a
systematic.

But there are factors that can change not only the S/N of the correlation signal, but also the ZBC
(which could lead to a wrong calibration of the setup and a wrong calculation of the visibility). We
have performed an extensive study of the effects that can and can not add systematic uncertainties
to our intensity interferometry analysis.

Some effects that do not add systematic uncertainty are: the amount of light that hits the PMTs
(provided that the stored DC values properly account for the average photon flux that reaches the
PMTs) and the gain evolution of components after DC/ADC branch (Pearson’s correlation needs to
be unit-less and so does the visibility, so changes in gain coming from the vertical cavity surface
emitting lasers (VCSels) or any component after the DC/ADC branch cancel out when we calibrate
our measured correlation with the average photon fluxes (see Eq. 4)).

4.1 Electronic bandwidth

While the single photo-electron response of the PMTs is fairly stable, the VCSels’ signal
transmission could change in short timescales, producing a time-dependent variation of the elec-
tronic bandwidth. Thanks to the versatility of the GPU correlator, we are able to compute the
auto-correlation simultaneously to the cross-correlation. This means that we can keep track of the
electronic bandwidth of each channel (pixel) over time. Our measurements represented in Figure 4
show that for values of photon flux (which is proportional to the measured DC counts) higher than
a certain threshold, the width of the auto-correlation signal, and therefore the electronic bandwidth,
remains constant (less than 1% deviation for all pixels). This is because for lower photon fluxes the
signal is dominated by electronic noise, but for higher fluxes it follows a poissonian.

4.2 Optical bandwidth

The distribution of photons that pass through the narrow-band filters has a certain QE (𝛼(𝜆0))
but this factor is affected by the angle of incidence (AOI) of the photons that reach them. Simulations
of AOIs up to 26 deg (which is the cut-off angle of the Winston cones in front of every PMT) show
how this affects the shape of the optical band-pass in Figure 3.

5
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Figure 2: Width of the auto-correlation peak versus different values of photon flux for pixel 251 of the
telescope MAGIC 1. A preliminary asymptotic fit is added on top of the 2D density distribution to better
visualize the behaviour. For lower photon fluxes the correlation signal is dominated by electronic noise, but
for higher fluxes it follows a poissonian.

Figure 3: Filter transmission curve for AOIs of 0 deg (perfectly collimated beam) and for the full dish (AOIs
from 0 deg to 26 deg), produced with the official tool at https://searchlight.idex-hs.com/ for our
Semrock 425-26 nm filters.

Connection problems with the actuators behind each mirror: sometimes the communication is
lost between the AMC control and the actuators of the mirrors, resulting in mirrors focused at the
position of a previous observation or not focused at all due to other problems with the actuators.
This means that the number of mirrors focusing the light into the pixels is not always constant and
some light might be missing. MAGIC’s AMC allows to keep track of the number of disconnected
mirrors, so we can check when this happens. Simulations in which the number of missing mirrors
was up to 10 in different locations (random, outer ring, center) showed that this systematic effect is
in any case less than 1%.

The weight of the mirror dishes can produce deformations in the overall shape of the dish
when pointing at different zenith/azimuth coordinates, changing the distribution of AOIs. This
deformation is countered by producing Look Up Tables (LUTs) for the AMC each month that

6
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correct for this effect and maintain the focusing performance in nominal conditions, independent of
the zenith/azimuth coordinates.

4.3 Gain of the DC/ADC branch

The gain is the relationship between the number of photo-electrons and the number of electrons
that exit the branch. As seen in Eq.4, this value is necessary to properly account for the amount of
light that goes into each pixel and to properly compare 𝐷𝐶𝑖,𝑆𝑡𝑎𝑟 with 𝐷𝐶𝑖,𝑁𝑆𝐵, and has a direct
effect on the calculation of the contrast and visibility. We have identified several factors that can
have an effect on the evolution of the gains, such as: temperature variations, sudden jumps in
current that need a few minutes to recover, PMT degradation and changes in high voltage (HV).
We perform special HV vs DC calibrations to ensure that changes in 𝑙𝑜𝑔(𝐻𝑉) are proportional to
changes in 𝑙𝑜𝑔(𝐷𝐶) for the observed DCs in our nominal set of HV for the pixels. We estimate an
overall systematic effect of 1% or less.

4.4 NSB DC subtraction

During interferometry observations we keep track of the NSB in order to properly account
for the starlight following Eq.5. We extract 𝐷𝐶𝑖,𝑁𝑆𝐵 from the ’background pixels’ that are not
being focused on (up to two in each camera, reserving the third one to observe the star (see picture
in Figure 1). Most of the time they receive diffuse light from the Moon. It could happen that a
star brighter than the NSB crosses the field of view (FOV) of the background pixels, producing an
increase in 𝐷𝐶𝑖,𝑁𝑆𝐵. This would result in an overestimation of the NSB and a wrong calculation of
the contrast and later the visibility. Fortunately, we have two background pixels in each camera when
performing full-mirror observations, and can see if one of the 𝐷𝐶𝑖,𝑁𝑆𝐵 values gets unexpectedly
higher than the other. This effect, although occurring in a very small percentage of observations,
can be avoided by using the 𝐷𝐶𝑖,𝑁𝑆𝐵 value from the unaffected background pixel. If this distinction
is not made, the effect is in any case less than 3% for stars up to 3.5 B mag.

4.5 Residual electronic noise in the correlation

There is a residual slow noise (one order of magnitude slower than the sampling frequency)
coming from the digitizers and correlators that can affect our correlation measurements. When the
amount of received photons is very low, the correlation is dominated by this noise, which has a
stable shape over time (see Figure 4) and can be easily removed by applying a 12 MHz high-pass
filter to the correlation (as stated in section 3). When the amount of received photons is high (i.e.
for bright stars) the correlation is no longer dominated by this noise and the effect is much smaller,
but we apply the filter in any case.

5. Conclusions

We have carried out an extensive study of our systematics to ensure that we understand the
performance of our interferometer and validate our analysis, which will be presented in detail in an
upcoming publication.

7
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Figure 4: Average of the accumulated cross-correlation data frames in units of 𝜌(𝜏) · 𝜎1 · 𝜎2. The total
integrated time is over 100 h, for pixel pair MAGIC-1 pixel 251 and MAGIC-2 pixel 251, taken over the
course of year 2022. The stable shape of the residual slow electronic noise (left) can be removed by applying
a high-pass 12 MHz filter (right). The greyed out zone between ±300 nm is the range of delays in which we
typically expect a correlation signal from the star. Within this zone, the shape of the slow electronic noise
is intertwined with the stars’ correlation signals. After applying the high-pass filter, only the slow noise is
subtracted.
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