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Abstract

Plane waves of spin angular momentum density in an ideal elastic solid are ana-
lyzed using vector and bispinor descriptions. In both classical and quantum physics,
spin density is the axial vector field whose curl is equal to twice the incompress-
ible intrinsic momentum density. The second-order vector wave equation assumes
that temporal changes of spin density in an ideal elastic solid are attributable to
convection, rotation, and torque density. The corresponding first-order wave equa-
tion for Dirac bispinors incorporates terms describing wave propagation, convec-
tion, rotations of the medium and rotations of wave velocity relative to the medium.
The two rotation terms are also operators for rotational kinetic energy and conven-
tional potential energy, respectively. The potential energy corresponds to half the
mass term of the free electron Dirac equation. Bispinor plane wave solutions are
constructed consistent with the usual dynamical operators of relativistic quantum
mechanics. Lagrangian and Hamiltonian densities are also constructed with each
term having a clear classical physics interpretation. The intrinsic momentum associ-
ated with the Belinfante—Rosenfeld stress tensor is explained. Application to ele-
mentary particles is discussed, including classical physics analogues of the Pauli
exclusion principle, interaction potentials, fermions, bosons, and antimatter.

Keywords Angular momentum - Dirac equation - Elastic solid - Intrinsic
momentum - Quantum mechanics - Spin

1 Introduction

Recent experimental and theoretical work has demonstrated that many phenomena pre-

viously thought to be in the exclusive realm of quantum mechanics can actually be real-
ized via classical physics.
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Most notably, quantum-like phenomena such as single-particle diffraction and inter-
ference, wave-like probability distributions, tunneling, quantized orbits, and orbital
level splitting have been experimentally observed using silicone oil droplets bouncing
on a vibrating tank of fluid [1-7]. These experiments resemble Louis de Broglie’s pilot-
wave theory (and to some extent Bohmian mechanics), which was an early attempt to
reconcile the deterministic nature of quantum mechanical equations with the probabil-
istic nature of measurements [8—12].

The discovery of a classical interpretation of spin angular momentum evolving
according to a Dirac-type equation further lessens the distinction between classical and
quantum physics [13—15]. The Dirac formalism has been used in a variety of contexts
to describe classical wave dynamics [16-23]. Despite the probabilistic nature of meas-
urements, the quantum mechanical Dirac equation is fundamentally a deterministic
equation describing the evolution of physical quantities such as spin density, momen-
tum density, and energy density. These quantities are independent of any interpretation
of the wave function as representing a “particle”.

While it is clear that the Dirac equation has application to classical physics, it is
unclear to what extent classical physics can describe elementary particles and their
interactions. To make progress in this area requires a thorough understanding of the
equations describing spin angular momentum. Given that angular momentum is natu-
rally interpreted as rotational motion of a substance with inertia, a thorough analysis of
the Dirac equation with this interpretation of spin angular momentum is long overdue.

A fundamental principle of analysis is that one should strive to understand simple
systems before attempting to analyze more complex systems. Rather than attempt-
ing to describe elementary particles and their interactions, we instead use simple
examples of plane waves to demonstrate how terms in the Dirac equation relate to a
specific classical physical model.

We start by modeling an ideal elastic solid, and assume a simple vector wave
equation for the evolution of spin density. We then factor the vector wave equation to
obtain a first-order Dirac equation for bispinor fields, and construct plane wave solu-
tions. Calculations of physical quantities utilize operators that are compared with
those of relativistic quantum mechanics. We construct an appropriate Lagrangian
and Hamiltonian, including operators for potential and kinetic energy. Finally, we
discuss possibilities for applying these results to the study of elementary particles
and their interactions.

2 An Equation for Spin Density
2.1 Ideal Elastic Solid
We consider the case of an isotropic, homogeneous solid. Displacements from equi-

librium are denoted &(r, 7), and we assume a linear relationship between the stress
tensor (o) and the symmetric strain tensor (e; = (9;¢; + 9;5,)/2):

0, = 2,ueij + A&iiekk s 1)
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where y and 4 are the Lamé parameters. A solid whose stresses depend only on the
strain tensor is called “Cauchy-elastic”.
The usual expression for potential energy is (e.g. Ref. [24]):

/Ud3r=/(%/I(V-f)2+yeijeij>d3r. 2

Equation 2 has the drawback that it does not cleanly separate compressible and rota-
tional motion. We can remedy this as follows:
Expanding the square of the symmetrical strain tensor yields:

€€ = [(axgx)z + (ayéy)2 + (azgz)2]

3
+ % (0.6, + 0,607 + (0,6, + 0.6 + (0.6, + 0,6 ©)

Add 2(0,£,0,&, + 0,£,0.8. + 0.£,0,&,) to the first term in square brackets and subtract
it from the second term to obtain:

€€ = V- 5)2
+ % [(0.&, + 0,6)% + (0,&, + 0.£,)* + (0., + 0,&.)°] “)
—2(0,£,0,&, + 0,£,0.E, + 0.£.0,E) .

Since this term occurs as an integrand for the potential energy, we can integrate the
extra terms by parts on each of the two derivatives (neglecting contributions from
total derivatives, which are assumed to integrate to zero) to obtain:

e;e; = (V §)2
+3 (0.8, +0,60° + (0,6, +0.6)° + (0., +0.6)°) ()
- z(axéjayéx + ayézazéy + azéxaxgz)'

This is equivalent to:
eje; = (V- + (Vx§)2 (6)
The potential energy density may therefore be expressed as:
1 2 1 2
U=37@+2u)(V - 8"+ Zu(VXE)" (N

This form of the potential energy density separates infinitesimal irrotational
and incompressible motion. It is a quadratic function of the first derivatives of
displacement.

In this paper we consider only incompressible motion (V-u=0 and
p = constant for velocity u and inertial density p, respectively). This does not
necessarily mean that the solid itself is incompressible (i.e. A — o), but it does
require that rotational energy is not lost to compressional waves.
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The Lagrangian for infinitesimal incompressible motion is the difference
between kinetic and potential energies:

1 1
2= [ (30087 = Jucv xe7 ) ®
The Euler-Lagrange equation is the usual equation for infinitesimal shear waves:

03§=—§VXVX§ 9)

for which the wave speed is ¢ = 4/u/p. The incompressible potential energy in
Eq. (8) was used by MacCullagh in 1837 to derive Eq. (9) as a description of light
waves [25]. MacCullagh modeled the vacuum as a “rotationally elastic” solid aether
whose potential energy is independent of compression. This avoided the problem of
coupling between shear waves and compression waves that would result from aether
density variations thought at the time to arise in the presence of matter.
The wave momentum is:
0L

P, =-2Z,
0,5

& =—p0&0¢; . (10)
We are interested in incompressible plane wave solutions. Multiplying by the wave
velocity component v; = ce; (where ¢, is the direction cosine), and applying the con-
tinuity equation 0,§; = —v;;¢; yields:

viP; = p(ce;0,8;)(ce;0,8;) = p(9,,6)(9,,8)) (1)

where 0,, is the spatial derivative in the direction of wave propagation. Since shear
waves propagate perpendicular to &, this is equivalent to:

P, = u(V x &) (12)

which is twice the potential energy density. This result will later be compared with
its Dirac equivalent.

2.2 Spin Angular Momentum

It is well known that elastic waves in solids have two types of momentum: that of the
medium (pd,&) and that of the wave: p(V¢;)0,¢; (see e.g. Ref. [26]). Clearly there must
also be two types of angular momentum in an elastic solid: “spin” associated with rota-
tion of the medium, and “orbital” associated with rotation of the wave. However, spin
angular momentum has not been considered to be a classical physics concept until
recently. A brief review is presented here.

Considering only incompressible motion, the Helmholtz decomposition of momen-
tum density p yields the curl of a vector field, e.g. p = %V X s. The vector field s has
been shown to represent angular momentum density corresponding to spin in relativis-
tic quantum mechanics [13—15]. Hence we refer to s as “spin density”.
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This relationship between spin and intrinsic momentum densities is quite general.
Belinfante and Rosenfeld showed that it must be true quantum mechanically [27, 28]. It
is also applicable to water gravity waves, elastic waves, and electromagnetic waves [13,
15, 29-35].

Assuming sufficiently rapid fall-off at large distances, the volume integral of spin
density is equal to the volume integral of the first moment of momentum r X p. The
two representations of angular momentum density are related by integration by parts
[15]:

/rx%(sz)d%:%/(V(r-s)—r-Vs—s-Vr)d%

=%/(V(r-s)—ai(ris)+s(V~r)—s-Vr)d3r (13)

= /Sd3r.

The total derivatives do not contribute to the last line because they can be converted
into surface integrals that are assumed to vanish.

Unlike the “moment of momentum” definition of angular momentum, spin density
is an intrinsic property defined at each point in space. Coordinate-independent descrip-
tions of rotational dynamics can actually be traced back to the nineteenth century [36].
In 1891 Oliver Heaviside recognized MacCullagh’s force density in Eq. (9) as being the
curl of a torque density that is proportional to an infinitesimal rotation angle [37]. How-
ever, this idea seems to have been largely forgotten.

The rotational kinetic energy is [14]:

1 s 5 1 1 2,
KR:Z pdr:i [EVXS:Idr

=8%)/[s-[VX(VXS)]+V-(sx(VXS))]d3r (14)

:l/w-sd3r,
2

where w = V X u/2 is the instantaneous angular velocity (sometimes confusingly
referred to as “spin” in the literature). In this case the divergence term does not con-
tribute to the volume integral because it can be converted into a surface integral at
infinity (and assumed to vanish).

For a Lagrangian density dependent on motion only through kinetic energy, the
spin density (s) is the momentum conjugate to angular velocity:

5 1 s 1 [ oW os; o1 1
S, ijsjdr=E/(a_wisj-i_wjé_wi)dr=§si+zsi=si’ (15)

where integration by parts was used twice to evaluate the second term in the integral.
Spin density can be used to describe rigid rotations as well. See Ref. [15] for an
example.
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A popular introductory text on quantum mechanics states that “these phenomena
involve a quantum degree of freedom called spin, which has no classical counter-
part” [38]. This common claim that spin angular momentum has no classical physics
analogue is incorrect. Spin angular momentum is simply the coordinate-independent
form of classical angular momentum.

2.3 Equation of Evolution

Assuming incompressible motion with velocity u = (1/(2p))V xs =0,&, Eq. (9)
becomes:

%a,(sz)+;N><(Vx§)=0. (16)

This is the curl of the equation:
0s+2uVxE=0. (17)

This equation states that the rate of change of spin density is equal to torque density,
which is proportional to rotation angle (1/2)V x & for infinitesimal displacements.

The next step is to relate the displacement & to the spin density s. Define a vector
potential Q such that 9,Q = s. Since the curl of s is proportional to velocity, the curl
of Q must be proportional to displacement:

1

szXQ=§- (18)

Therefore the linear equation for s is equivalent to:
0’Q+*VxVxQ=0, (19)

where ¢? = y/p. The curl of this equation yields Eq. (9). The torque density is
T=-2VxXVXQ.

Thus far we have assumed infinitesimal motion. We could instead start from the
nonlinear equation for momentum density:

op+u-Vp=f, (20)

where f is the force density. This equation implies that changes to momentum den-
sity can only result from translation or force. It is the consequence of translational
symmetry of the physical system. Newton’s third law implies that the force may be
regarded as an equal and opposite change of momentum of its source. In an elastic
solid, this means that the change in canonical momentum is equal and opposite to
the change in dynamical momentum. One drawback of Eq. (20) is that it combines
both incompressible and irrotational contributions to momentum density.

In addition to translational symmetry, the physical system also has rotational sym-
metry, implying conservation of angular momentum. This constraint is expressed by
the equation:
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ds+u-Vs—wxs=—-c’VxVxQ. (21)

The logic of this equation is that changes of spin density can only result from trans-
lation (u - Vs), rotation (w X s), or torque density (—c?V X V X Q). We assume that
velocity is derived from spin density (u = (1/2)V X s), neglecting any contribution
from compressible motion. Since total angular momentum is conserved, torque den-
sity is equivalent to minus the rate of change of orbital angular momentum density.

Since spin density is a fundamental physical quantity, it is reasonable to assume
that it satisfies a single equation of evolution everywhere in space and time. Equa-
tion 21 is a sensible starting point in the search for such an “equation of everything.”

Equation 21 can be put in Lorentz-covariant form using the four-position
x* = (ct,x,y,z) and metric & = g" =diag(l,-1,—-1,—1). We assume that
0"=(0,0,,0,,0,) and V - Q = 0 in the “rest” or “lab” frame of reference. Define
the Lorentz four-velocity as U* = (¢, 0,0,0) in the “rest” frame. The four-displace-
ment is &% = /49,0 U;. This can be combined with the four-vector Q* to form
an antisymmetric tensor Q*" = (1/c)(U*Q" — Q“U"). Then the four-spin density
is s* = 0,0", the four-momentum density is p* = pu® = (1/2)e*/*%0s,U;, and
the four-angular velocity is w* = (1/4p)e*’* 56ﬂp ,Us. The rotation rate matrix is
we, = e*15g, U ws. The Lorentz-covariant equation is then:

c2a”a”Q“ +u"0,s" — w"ﬂs" =0. (22)

The velocity of the medium u* should not be confused with the Lorentz four-velocity
(U*), which only depends on the relative motion of reference frames, or with wave
velocity v* = (¢, v,, vy, v,), which quantifies wave propagation rather than motion of
the medium.

The Lorentz transformations relate measurements in different reference frames,
and are applicable whenever measurements are made exclusively with waves hav-
ing a single characteristic speed [39]. Since absolute motion cannot be measured
in this way, each inertial observer naturally treats their own reference frame as
the“rest” frame. Although the waves propagate in Galilean space-time, the meas-
urements made with these waves form a Minkowski space. Lorentz transforma-
tions are applicable to light and matter because both are described by Lorentz-
covariant wave equations with the same characteristic speed (c), even though
matter waves have group velocities with magnitudes less than c. MacCullagh [25]
and Maxwell [40] similarly assumed a Galilean physical space-time in deriving
relativistic equations for light and electromagnetism, respectively.

Although Eq. (21) may be sensible, an alternative would be:

a§+%Vx®xm:—&VxVxQ. (23)
This equation differs from Eq. (21) only by factors proportional to V - u, V - s, and
V(u - s). Incompressibility requires V - u = 0. We can choose to make V - s = 0 eve-

rywhere since only the curl of spin density has physical significance. The equation
of evolution (23) then guarantees that V - s does not change over time.
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For simple plane waves, there is no difference between Eqs. (21) and (23). The
rest of this paper only deals with Eq. (21).

2.4 Dirac Equation

To understand the Dirac equation, consider Eq. (19), which is a second-order dif-
ferential equation for the vector field Q(r,t). There are often benefits in convert-
ing a second-order equation to a set of first-order equations. We will do this by
following Refs. [13] and [15], starting with one-dimensional waves (one polari-
zation component and one propagation axis) and then generalizing to three
dimensions.

2.4.1 One-Dimensional Waves

Consider a one-component wave propagating along the z-axis (x =0 and y = 0)
with amplitude of Q(z, £). We will interpret the amplitude as one component of a
vector, but it could also represent a scalar quantity. If the wave equation is

970~ 020 =0, (24)
the derivative operators can be factored to yield:
(0, + ¢0,)(d, — c0,)0 = 0. (25)
The general solution consists of backward (B) and forward (F) propagating waves:
0 =0plct+2)+ Oplct—2). (26)

The two directions of wave propagation are clearly independent states, and they are
separated in space by a 180° rotation. This property is the fundamental characteristic
of spin one-half states. Generalization to vector polarization and arbitrary propaga-
tion axis therefore involves spinor or bispinor wave functions.

The forward and backward waves satisfy the equations:

0,0p = 0.0p,
27
0,Qr = —0.0r .
Defining Q = 9,0, we can write the wave equation as a first-order matrix equation:
Os| _ 10 [0s] _

The matrix simply transforms temporal derivatives to spatial derivatives as in
Eq. (27). Applying this transformation and summing the equations for Q5 and Qp
then recovers the original wave equation.
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We have thus achieved the goal of converting a one-dimensional second-order
wave equation into a first-order matrix equation. Although generalization to three
dimensional vector waves involves some mathematical complexity, it does not
involve any fundamentally new concepts. A clue can be found in the fact that the
above matrix for spatial derivatives is the Pauli matrix o,.

First, note that the procedure above specifies independent components with posi-
tive and negative wave velocity, and uses a diagonal matrix to relate spatial and tem-
poral derivatives. We can apply a similar technique to separate positive and negative
values of the wave time derivatives. Letting Q and O, represent the z-components
of vectors, separate each component of the wave into positive and negative contribu-
tions (QB = Q3+ QB_ and QF = QF+ QF ) so that each of the four wave compo-
nents (Qp,, Qp_» Or.» QF ) is positive-definite. With these definitions, we can use a
matrix expression for Q:

T
o (10 0 0)|Q
72 0-1 0 0 72 1
0=00=3 Q‘/2 0 01 o|[plE=3v 29)
Ffz 00 0-1 Fﬁ

where o, is the 4 X 4 Dirac matrix for the z-component of spin density, and the
four-component column vector is called a (one-dimensional) Dirac bispinor. In one
dimension, the significance of simultaneous positive and negative components is
unclear. We will see that in three dimensions, simultaneous positive and negative
components for one direction can (but doesn’t necessarily) describe polarization in a
different direction.

The spatial derivative is now given by:

21277 21/2
Qllg/2 100 0 QB/2
10, 010 0O |1 7
cd.Q ) Q;/z 00=1 0 Q,lv/z —ZWﬁlI/- (30)
120 L oo o150
B— QB

The matrix —f# is the Dirac matrix for chirality (equal to the matrix y° in the stand-
ard chiral representation). If the amplitude (Q) represents rotation angle, then posi-
tive and negative chirality (—d,a) are analogous to right- and left-handed threads on
a screw (denoted by R and L, respectively). The chirality projection operators are:

1
5(1 + Py = 43

co (31)
SU=Pw =wy.
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2.4.2 Wave Velocity and Lorentz Boosts

A wave velocity operator (v,,) is obtained by combining the two matrices used
above:

Q1/2
QB7 ’
o In|=—chow. (32)

Ffz

0
0
1
(U

._.OOO

10
vw=d 01
op 0 0

0 0

We can define wave velocity (v) as the difference between forward and backward
amplitudes divided by the sum of forward and backward amplitudes:

. Q| +10p_| = 105, = 05| _ yichoy o)
10p: | + 10, | + 105, +105 1 wiw

The magnitude |Q| and rapidity a can be suitably chosen to satisfy:
|Op. | +10r_| = |0l exp(a);
|Qp, | + 19| = 10| exp(-a),

so that the wave velocity becomes:

10l exp(@ = 10l exp=a)
= tanh(a) . 35
" 0lep@ + 10lexpca) %3)

(34)

A Lorentz boost y’ = exp (—ﬁ%‘zal)w changes the wave velocity (v — V') by alter-
ing the relative strength of forward and backward waves:

S (exp(=po.a1/2)y) (=F’c )(exp(=Fc.a, /2)y)
(exp(—=Fo.a; /2)w) " (exp(—f o ay /2)w)
IQI exp(a +a;) = Q] exp(-a — a,)

= = c tanh(a + a;).
IQI exp(a + ;) + |0 exp(—a — a;)

(36)

Thus, the concept of rapidity emerges naturally from the separation of forward and
backward waves propagating in Galilean space-time.

2.4.3 Three-Dimensional Vector Waves

Combining Egs. (29) and (30), the one-dimensional linear wave equation may be writ-
ten in the form:

olw"o.wl —co.lw' PPwl=20;Q - c*’0Q)=0. 37)

Expanding the derivatives yields:
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w' o, 0w —w'ch?oy + transpose = 0. (38)
Factoring y’ o, then yields:
l[/TO'Z(()tl// - cﬁ36zozt//) + transpose = 0. (39)

This one-dimensional Dirac equation is itself useful for teaching purposes [41, 42].
However, its equivalence with the one-dimensional second-order wave equation has
not been widely recognized. Next we will show how to generalize the first-order
equation to arbitrary polarization and wave velocity in three spatial dimensions.

Generalization to three dimensional waves is based on geometric algebra. This alge-
bra derives from the fact that there are two independent ways to construct a product of
3-vectors: scalar product and cross product. These two products measure the degree to
which two vectors are parallel (scalar product) or perpendicular (cross product). The
cross product additionally defines the plane of the two vectors, and is therefore some-
times called the “directed area product”. These two products can be combined into a
single product by making the cross product imaginary [43]:

ab=a-b+ i(axb). (40)
The unit imaginary defines an oriented volume:
(ixxX¥y)-2=1;
¢=(i2x§)-% . (41)

1ZXy)-X=—-1.

Generalization of the Dirac equation to three dimensions consists of finding spin and
velocity matrices with the same algebra as unit vectors:
)?ifcj = 5l~j + ieijkfck. (42)

The Pauli spin matrices 6” = (6”,0”,0") have this property. Arbitrary vector
components a; can be computed from a 2-component complex wave function 7 as
follows:

01
ax=f1*afn=nf< 1 0)11;
0 -1
a_‘,zn*afn=117< L0 >ﬂ§ 43)

1 0
aZ:n"-anznT< 0 _1)’1

The Pauli matrices may in general represent axial or polar vectors, but they are most
commonly associated with spin density, which is an axial vector. The fourth inde-
pendent matrix in this algebra is the identity matrix (/). At each point, the direction
of the vector 76’y can be rotated by an arbitrary angle ¢ about an axis €, using
operations of the form (with ¢ = @€ ):
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Ry’ =n'exp(ic’ - @/2) 6" exp(—ic” @/Dn. (44)

For example, exp(—ic’z/4)cl exp(icln/4)= 0'5. So to find #' such that
;1""05 n' =n'c’n, the rotated wave function must be 7’ = exp (- i 6’z /4)y. This
transformation rotates the wave polarization direction from X to §.

Rotations of the field (as opposed to a single point) would also require r — Rq‘,lr.
Thus

R,(n(r,n) = exp(—ic” - @/2)n(R,'r,1). 45)

The Dirac wave functions specify not a single vector, but spatial and temporal deriv-
atives of a vector field. Forward and backward waves along an arbitrary axis can be
described by replacing the Pauli matrices with the corresponding 4 X 4 Dirac spin
matrices and replacing the two-component spinor # with a 4-component bispinor .
In terms of the Pauli matrices, the Dirac spin matrices o = (o, oy o) are:

P
o = o’ 0 R 0 . = o’ 0 46)
x 00 ) y 0 0';) ’ z 0 0'5 ’

where 0 is the 2 X 2 null matrix.

Just as there are three Pauli matrices indicating different directions of wave polar-
ization, there are also three orthogonal matrices associated with spatial derivatives
(and also related to wave velocity). We will denote these as:

01 0 —il I0
ﬂ1=<10>’ ﬂ2=<il 0 ) ﬂ3=<0—1>’ 47)

where I is the 2 X 2 identity matrix. Compared with the chiral notation of relativistic
quantum mechanics, f° = —y> and ' = y°. Equation (32) implies that the matrix
— 3o tabulates wave velocity. Since ! % = if°, rotations in f-space are performed
similarly to rotations in o-space. Although the f matrices are clearly associated with
spatial derivatives, they are not explicitly associated with the directional unit vectors
that define the spin direction.

The one-dimensional wave Eq. (37) has the bispinor form:

{y/TO'Z(),y/ - cu/Tﬂ3()Zu/} + transpose = 0. (48)
We can separate a common factor of y’ o
WTaz{a,y/ - cﬁ3az()zt//} + transpose = 0. (49)

For arbitrary vector components and derivatives, the matrices and spatial derivatives
are generalized to arbitrary directions by allowing for three indices (i = (x,y,z) and
Jj = (x,y,2)), and the bispinor wave functions are allowed to be complex:

w0, {0y — cpo0y} +adjoint = 0. (50)
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This is the first-order wave equation for vector waves in three dimensions. The wave
function of a free electron satisfies the same equation. Start with the Dirac equation
for a free electron:

oy — cﬁ3aj6jw +iQply =0 (51)

with Q = m,c?/h. Multiplication by ¢, and addition of the adjoint yields Eq. (50).
Expanding the spatial derivative term in Eq. (50) yields the 3-D generalization of
the wave Eq. (37):

0, [u/%au/] —-cV [u/%ﬁﬂy] + i c{ [Vq/"'] x oy +yipo x Vu/} =0. (52)
The terms correspond, in order, to twice those in the vector wave equation:
0’Q - *V(V- Q)+ *V X (VxQ)=0. (53)

Thus Eq. (52) is the result we have been seeking. We have rewritten the second-
order vector wave equation as a first order equation involving Dirac bispinors. The
validity of this correspondence, which we will confirm with examples, demonstrates
that the Dirac equation of relativistic quantum mechanics may be regarded as a first-
order representation of an ordinary second-order vector wave equation.

Furthermore, the evolution of the spin density vector field of a free electron is
identical to the linear evolution of spin density in an elastic solid. This simple fact
justifies the study of an elastic solid as a model of the vacuum.

Equation (53) yields the following physical correspondences [13]:

s=0,Q E% lwiowl; (54a)

cv-Q E%[vﬁﬂ3 7k (54b)

HVXVxQ} E%{[W*] X Foy +y o x Vy (54¢)
0=%V AV x Pow +y Fox vy} . (54d)

The complex Dirac bispinor has eight free parameters which are subject to seven
independent constraints by the above equations: three for the first, one for the sec-
ond, two for the third (since the curl has only two independent components) and one
for the fourth (which simply states that the divergence of a curl is zero). There can
also be an arbitrary overall phase factor.

Velocity and angular velocity are:
1 1

1
=—Vxs=—Vx3Q=—Vx[yoyl:
u=p Vxs=o Q > [w'ow] (55a)
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w=%qu=$Vxan,Q=$vaX[y/*aw]. (55b)

The classical and quantum mechanical expressions for spin angular momentum
differ by a factor of 7. This is of course a mere convention. There is no question that
the quantum mechanical single-particle Dirac equation describes the deterministic
evolution of spin density.

According to the above analysis, the first-order Dirac equation is a kind of factor-
ization (or square root) of a second-order vector wave equation. Others have made
different factorizations of wave equations using multivariate 4-vectors, quaternions,
or octonions [44—47].

The first-order wave Eq. (50) can be reduced to:

dw —cflo-Vy+iyy=0, (56)
where y is any operator with the property
Re{y'o;i yy} =0. (57)

The equation for a free electron is obtained by the choosing y = Qp' = Qy° with
Q = m,c*/h. This term represents rotation of wave velocity [19], and has also been
interpreted as describing circular particle motion [48].

Multiplying Eq. (56) by " and adding the adjoint yields a conservation law with
density w Ty and current —y ' cfoy:

0,(w'w) =V -(wichoy)=0. (58)

In quantum mechanics this equation is regarded as a conservation law for probability
density, but in both classical and quantum mechanics it is part of the description of
the evolution of spin density.

The four-vector for spin density is (—y ' f3y, wioly). Since the time component
represents a divergence in Eq. (54b), its volume integral can be converted to a sur-
face integral at infinity. Assuming that the wave amplitude falls to zero sufficiently
rapidly, this surface integral is zero. Thus, the time component of the total spin of
elementary particles can be taken as zero in the rest frame. The stronger assumption
that V - Q = 0 everywhere in the rest frame may also be valid (as assumed earlier
when constructing a Lorentz-covariant equation).

3 Spin Density Plane Waves

We present bispinor descriptions of plane wave solutions to the vector wave equa-
tion. These represent physical plane waves with oscillating spin density, unlike quan-
tum mechanical so-called “plane waves” that merely have an oscillating phase fac-
tor. The nonlinear vector terms are zero for plane waves. However, we can use these
solutions to determine appropriate nonlinear terms in the bispinor wave equation.
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3.1 Linear Plane Wave Solutions

We start with a description of a longitudinal wave:

0
;[ ®Qy | =1+ cos (wt — kz)
Vn = 2 1 +cos(wt —kz) |’ (59)
0

for  which  the only nonzero spin density component s
s, =(1/2w'o,w = wQ, cos (wt — kz). The wave velocity operator is —cf°c.2 as
in Eq. (33). The divergence is given by (1/2c)y ' f*w = —kQ, cos (wt — kz), where
k = w/c. This wave function cannot describe spin density because it has zero curl.
Also, the Dirac representation is not unique. This wave function has both positive
and negative contributions to the scalar wave amplitude at each point, but it does not
have discontinuities that would result from strict separation of positive and nega-
tive values. This wave function also has all real-valued Dirac components, and these
remain real-valued under velocity rotation in the x-z plane.

We can rotate wave velocity by using the f matrices, with g' initially aligned
with % and #? initially aligned with §. Since, according to Eq. (30), the matrix 3 is
aligned with the z-axis, the § matrices form a right-handed coordinate system. Thus,
spin-independent wave velocity rotation of —z /2 about the x-axis is accomplished
by:

i (1 + cos (wt — ky))
®Qy [ —1 + cos (wt — ky)
2 1+ cos (wt — ky)

i(—=1+ cos (wt — ky))

!

W, = exp (i ﬂ1”/4)W::,vZ(Z - y,1) =

. (60)

where the argument z — y indicates the effect of rotating the coordinates about the
negative x-axis. The spin density for this wave function is s, = @Q, cos (wt — ky).
Interestingly, the quantity —cy ' ﬁ30'yy/ = —cwQ, sin (wt — ky)2 is not equal to
clw|? as expected for a velocity operator (it even has the wrong sign). As we will
see more clearly below, this behavior arises from the fact that some of the terms in
the wave function have zero gradient. An alternative wave velocity (or wave flow)
calculation, —cy " %o y§, does have magnitude of c|y|*. This is expected since
the — /2 rotation about B! moves #° to %. The spatial derivative of Q, is given by
0,0, = (1/2c)y* f*y = —kQ, cos (wt — ky). This is proportional to the displace-
ment: & = (1/2)0,0.%.

Similarly, spin-independent rotation of wave velocity by z/2 about the y-axis is
given by:

—1 — cos (wt — kx)

VoQq | -1 + cos (wt — kx)
2 1+ cos(wt —kx) |’

—1 4+ cos (wt — kx)

/

Vv, = €XP (=i ﬂ27[/4)ll(c/.,v,(z - x,1) =

(61)
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which yields spin density of s, = wQ, cos (wt — kx). The wave velocity operator
—cf3o X again does not evaluate to c|y|?, but the alternative wave velocity opera-
tor —cp' 6% does (the rotation about #> moves f° to B'). The spatial derivative of Q.
is given by 0,0, = (1/2c)y" By = —kQ, cos (wt — kx). This is proportional to the
displacement: & = —(1/2p)0,0.§.

Each of the above wave functions satisfies the linear Dirac equation:

ow —cfo0y =0. (62)

To obtain a spin density aligned with the x-axis and propagating in the z-direction,
we start with the longitudinal wave y! , rotate the velocity by —z/2 around the

y-axis (from 2 to —%) using £, then rotate the entire wave function by /2 around
the y-axis using o,

1
;L . .9 , _ [@00Qy | cos (wt — kz)
W, =exp(—iom/Hexp(ifa/y, , @0 =\ ——| (@ — k2)
1

(63)
which yields spin density of s, = wQ, cos (wt — kz). With velocity aligned with
the z-axis so that the wave velocity matrix is diagonal, we now see why the wave
velocity operator —0,63(7Z does not evaluate to c|y|?: the first and fourth wave func-
tion components contribute to —cy "o,y but not to the wave propagation term
—y'f6,0.w. Thus, —cf3c is a valid velocity operator when operating on the gradi-
ent of the wave function, but not when operating independent of the gradient opera-
tor. The alternative wave velocity operator cf'c 2 does evaluate to c|y|?2. The ¢
matrix associated with the alternative wave velocity operator is the matrix of the
spin direction (in this case o, for spin density polarization along the x-axis).

This wave function (y = WS/X’V_) yields the following terms in the second-order wave

equation:
s=0Q= % [1//*0'1//] = (wQ, cos (wt — kz),0,0); (64a)
V- Q= 3[uFy] =0; (64b)

(VxVxQ) = %C{[Vuﬁ] x BPoy —y'ipo x Vl//}
= (k*Q, sin (ot — kz),0,0).

(64c)

Since the wave velocity was rotated about 2, the displacement & is now computed
from the spatial derivative operator using the matrix —f4' instead of >

& =(1/2p)0.0, = ~(1/4cp)y 'y = —(kQy/2p) cos (w1 —k2) . (65)
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Given the transverse wave function w: ,.» WE can rotate the transverse wave velocity
Pxvz

direction using the #' matrix. Keeping spin density along the x-axis, wave velocity
in the y-direction is obtained by:

1 +icos (wt — ky)

VoQq | i+ cos (wt — ky)
2 i+ cos (wt — ky)

1 +icos (wt — ky)

v, 0.0 =expfla/Ay, , (e = y.1) = . (66)

for which the spin density is s, = @Q, cos (wt — ky). Thus, the f matrix associated
with displacements is also used for velocity rotations about the spin axis. Positive
values of —(1/4cp)w’ ply = —(kqy/2p) cos (wt — ky) now represents displacement
along the —z-axis since the rotation z — y moved the §! direction from § to —Z. Thus
& = —(1/20)3,0, = (kqy/2p) cos (et — ky).

As shown in the sample wave functions above, we can always choose a representa-
tion in which B! is the operator for the transverse spatial derivative of Q - §, and the
same matrix is used for rotations of wave velocity about the spin axis. Just as rotation
about the spin axis preserves spin but rotates the perpendicular axes, rotation about f!
preserves the value of w' 'y, while w' %y and w3y both remain zero. Rotation of
B> about ' changes the direction of wave velocity, as represented by —cf>o.

3.2 Nonlinear Plane Wave Solutions

The preceding analysis is incomplete because the wave functions described above do
not include any effect of the motion of the medium. To see what is missing, rewrite
Eq. (21) in terms of the bispinor wave function:

0 :u/%q-((),y/ - cﬁ30'j0ju/ + w0y + %wjajw> +c.c. (67)
where“c.c.” stands for “complex conjugate.” The third term in parentheses is zero,
but the last term describes the effect of rotation of the solid medium on the wave
function. If we were to describe the wave function evolution independent of the mul-
tiplier w"'aj, we would set the expression in parentheses equal to zero. The simple
wave function in Eq. (63) would not satisfy that equation because it omits the rota-
tion effect. Furthermore, the expression in parentheses is also incomplete because
the wave function does not completely rotate with the medium. Instead, as the
medium rotates, the wave velocity remains constant. In other words, as the medium
rotates about the spin axis, the wave velocity rotates back relative to the medium in
order to remain unchanged. For plane waves, this rotation is about the spin axis and
utilizes the matrix g
i

i, i
wlﬂlw + Swiow (68)

_ 3
0=0,y —cp ajaju/ + ujéju/ + 5 5

where W, represents the rotation rate of wave velocity about the spin axis. The rela-
tive alignment of wave variables is shown in Fig. 1.
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Equation (68) attributes temporal changes in the wave function to propagation, con-
vection, rotation of wave velocity, and rotation of the medium. Additional terms may
be necessary in some circumstances (e.g. interactions with other waves), but Eq. (68) is
sufficient for plane waves.

The conservation law of Eq. (58) is now modified to include convection in addition
to wave propagation:

o(wiy) +u-Vy'y) - V- (y'cfoy) =0. (69)

For plane waves the additional convection term is zero.

Although the two rotation terms in Eq. (68) cancel for plane waves, we modify the
wave function in Eq. (63) so that each term is consistent with its interpretation in the
vector wave equation:

1
. K2Qy -
®Q, |cos(wr —kz) — i L, sin (wt — kz)
VISA,V: = A . kzéo . . (70)
2 |cos(wt—kz)— i S sin (oot — k2)
1

This wave function still yields s, = wQ,, cos (wt — kz) and satisfies the full nonlinear
Dirac equation in Eq. (68).

3.2.1 Energy Operators

Now consider the physical interpretation of the terms in Eq. (68). The nonlinear
terms represent rotations of wave velocity and of the medium as a whole. But they
are also related to energy. Multiplying Eq. (68) by i w'/2 and adding the complex
conjugate yields, with some rearranging:

. . . . 1. 1
Re(y i o,¥) =Re(cy ﬁ30'j 1 djt//) - ujRe(q/T 1 djy/) + Ewlu/fﬂly/ + iju/fajw.

(71)

Fig.1 Wave variables at their maximal positions for a plane wave propagating toward the right with
speed v. When displacement & is upward, the force density fis downward, the angular velocity w of the
medium is up out of the page, and the wave velocity rotation rate w relative to the medium is opposite to
w.
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The last term in this equation is w;S;, which is twice the rotational kinetic energy.
The next to last term is proportional to the displacement & = —(1/4cp)y ' 'y as in

Eq. (65). Using V - € = 0, the corresponding component of force density is equal to:
c
fi=uvie ==V wiply]. (72)

For plane waves, the force density is proportional to displacement, so that as dis-
placement increases from zero, the average force is half of the final force. Therefore,
the conventional potential energy is

1 L o, ial Tl
U=-[t-dt =—Sf.-(=——-V . .
/ ki 32 W'pw)-w'pw (73)
Comparing with Eq. (71), it appears that , is proportional to force and the next-
to-last term in Eq. (71) is proportional to conventional potential energy density. To
keep the wave velocity constant, its spin-independent rotation rate must be the oppo-
site of the medium rotation rate:

k2 Q,

. _ . _ @ TR I P
W, =—-w, = cos(wt —kz) = —V-(y'fyw). (74)
4p 8p

This is similar to the expression for angular velocity in Eq. (55b), with —g! replacing
o matrices. With this value of W, the next-to-last term in Eq. (71) is equal to minus
two times the conventional potential energy density, which cancels the the last term
in Eq. (71) (since the rotational kinetic energy is in quadrature to the conventional
kinetic energy: i.e. sin’> < cos?).

The terms in Eq. (71) correspond to different energies as follows:

. . . 1. 1
Re(yidw) =Re(cy f’0;i0,y) — uRe(y" i o) + Ewluﬁﬁlw + swilow,

2
(752)
E = cv-P + 0 + f-& + wW-S, (75b)
where ¢V - P is shorthand for I[/TVOPPOI,I[/ with wave velocity operator v,,, = —cfo
and wave momentum operator P, =—1iV. The total energy density is

£ = w’k*Q/(8p), which is also the value of ¢¥ - P.

Rotational potential energy density can be defined as Uy = P - ¢v — U. The rota-
tional potential energy density (Uy) and rotational kinetic energy density (Ky) are in
quadrature to their usual expressions. The term cV - P represents the product of wave
momentum density and wave velocity, which was shown in Eq. (12) to be twice
the potential energy for the vector representation. For the bispinor representation
of plane waves, ¢V - P integrates to the total energy, which has the same integrated
value as twice the potential energy.

The different energy expressions are therefore:

1 1/ 1 1
Ky =3W-s= E(g—pVxVti*O‘W) 'EWTO'II/, (76a)
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Ui =c€'~P+%f-§
> (76b)

. 1 1
:Re(y/TcﬁSGj i 0jw) - §V2<§wTﬂll[/> <—EWTﬂIW

Substituting the wave function of Eq. 70 for plane waves, the energies are:

k2
R :% <a)4 % cos(wt — kz)) (@Qy cos(wt — kz))
y)
k202 (772)
= 9 cosX(wt — k),
8p
a)2k2Q2 k2
Up = 0 4 1 < kw0, cos(wt — kz)> <_a)_Q0 cos(wt — kZ))
8p 2 2cp (77b)

W 20>
= 0 sin®(wt — kz) .
8p

For plane waves we also have £ = Re(y" i d,y), but that result is only valid due
to cancelation of the medium rotation and wave rotation terms.

In comparison, the equation of evolution for a free electron corresponding to
Eq. (75) is:

hRe(y" i ) =hRe(cy’ o} i o) +mcPy'ply, (78)

£ = hct - P +  mc. (79)

e

An electron at rest is commonly presumed to have no internal wave structure, result-
ing in ¢V - P = 0. The mass term corresponds in Eq. (75) to +2U. With equipartition
between potential and kinetic energy, the potential energy density integrates to half
of the total energy. Thus, the electron equation approximates the elastic solid equa-
tion by ignoring kinetic energy and internal wave structure, and by substituting mass
for twice the potential energy.

Even for an electron, the mass term clearly describes rotation of wave veloc-
ity. However, standard theories of the electron offer no insight as to why such
velocity rotation should be associated with energy. Hestenes interpreted the wave
velocity as particle velocity and proposed that the rest energy is kinetic in ori-
gin [48]. The analysis of spin density plane waves instead provides a clear physi-
cal process by which quantum mechanical rest mass is associated with potential
energy. However, a complete description of particle-like waves in an elastic solid
would require an internal wave structure with both kinetic and potential energies.
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3.2.2 Lagrangian and Hamiltonian

Having a first-order equation of evolution enables the use of variational methods.
Interpreting Eq. (68) as an Euler—Lagrange equation requires distinction between
terms containing one factor each of y and y' or their derivatives, and terms con-
taining two such factors. Just as spin density had to be regarded as functionally
dependent on angular velocity in Eq. (15), angular velocity (w or W) should be
regarded as functionally dependent on the wave function.

Just as the real and imaginary parts of a complex number can be constructed
from the number and its complex conjugate, the real and imaginary parts of the
bispinor wave function can be represented by linear combinations of the wave
function and its adjoint:

Re(w) =2 (w+ (v7)") (80a)
imy) = 2 (v - (v)") (80b)

Therefore we can treat y and ' as independent variables. We construct a Lagran-
gian density % = 0 so that terms linear in y and its derivatives have coefficient of
one as in Eq. (68), and the two rotation terms are cut in half:

. . . 1. 1
ZL=Re(y'i oy — cu/T/}30'j 10y + wTujlaju/) - Zwleﬂlu/ - = ju/Taju/.

4
8D
The Euler-Lagrange equation is:
0L 0L 0L
d, + 0, -—=0. (82)
o00y")  o0w") oyt

Application to Eq. (81) yields Eq. (68). The rotation terms are evaluated using inte-
gration by parts. For example:

- / Vi o) yiow)d’r = / 0w )0, (w o) d’r . (83)

The conjugate momentum to the field y is p,,:

9 [atll’] ¥ (84)

Dy
and similarly for Py The real-valued Hamiltonian is

1 . . 1. 1 "
H= E{CWTﬂ3Uj 1 ajW - CIaijﬂ3Uju/} + Zwleﬂlw + ZWJ'W oy. (85)
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This is equal to the total energy as demonstrated in Eq. (76). With the nonlinear rota-
tional terms in the Hamiltonian, we must consider the possibility that i d,y # Hy.
However, the equality holds for plane waves due to cancellation of rotational terms.

3.2.3 Dynamical Quantities

The Hamiltonian is a special case (Tg) of the stress-energy (or energy-momentum) ten-
sor [49]:

0L, o
oo, 9lo,w]

T"f =d,y¥ oy — 35"/4 . (86)

In the Lagrangian, the kinetic energy term is negative. Therefore, the conjugate

momenta computed from the Lagrangian should include a minus sign. The dynami-

cal (or wave) momentum density P; is
0L

Pi=-T'=-————oy' -

i i T 9 [@W*]

0L .
——0y = —Re{x//T 10,y . 87
The wave angular momentum density is likewise
y 0L 0%

ooyt olow

=— Re(iw"'%a.w) = —Re{rxy"iVy}.
27 dp !

L=-0,y ] 0,y = —Re(iy'o,y)

(88)

This expression assumes a particular origin for the axis of rotation of the angle ¢, in
contrast to the coordinate-independent spin angular momentum. One could attempt
to express orbital angular momentum density as the field whose curl is twice the
wave momentum density, but we will not pursue that here.

For densities of total momentum (P;) and angular momentum (J), we must combine
the wave and medium contributions [13]:

. 1
P, =P+P=—R3{WT1VW}+§VXV/T%W2 (89)
J=L+S=—Re{r><1//+in//}+1//T%w . (90)

The expression for total momentum density can also be derived from the sym-
metrized Belinfante-Rosenfeld stress-energy tensor [27, 28, 50]. Rosenfeld com-
mented that, “Of course, this separation of the total moment of momentum into two
terms... has a direct physical meaning only for physical agencies that are endowed
with inertia so that one could attach a system of reference that is at rest with respect
to it” [28].
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3.2.4 Intrinsic Momentum

The total angular momentum operator is well-understood as a generator of rotations,
with L accounting for rotation of the position argument and s accounting for rotation
of the basis states defining the direction of spin density. Since momentum is the gen-
erator of translations, the existence of intrinsic momentum implies that translations
affect not just the arguments of the wave function but also the bispinor basis states.
Applying the intrinsic-momentum transformation y — y + (i/4)ec,0,y to the wave
function in Eq. (70) represents an infinitesimal displacement in the y-direction and
yields the wave function:

1 —(i/d)e (k sin(wt — kz) + i Q” cos (wt — kz))

4Q° sin (cot —kz)

Ko, sin (wt — kz) - O

®Q, cos(wt —kz) — 1
Vs v, = A
o 2 cos (ot — kz) —

1- (1/4)€<k sin(wt —kz) + 1 == Q“ cos (wt — kz))

This wave function yields the same spin density as the original wave function except
for an additional constant term. Thus, it still correctly describes the motion of the
medium. However, the “translated” wave function does not have the same calcu-
lated energies, and does not satisfy the same equation of evolution. The situation is
similar to analysis of a mass on a spring with the origin shifted away from the equi-
librium position. The spurious displacement adds a term to the Hamiltonian pro-
portional to the offset times the force, and the same is true when adding a constant
translation along the displacement axis of a plane wave. The first-order change in the
calculated Hamiltonian is:

2
H=—-(1/2)¢f = —(1/2)6;4035 = —% cos (ot — kz) . (92)

Thus the displacement associated with the conjugate momentum represents a shift
of coordinates away from equilibrium along the displacement axis.

Translation along the wave propagation direction simply shifts the coordinate (z),
otherwise preserving the Hamiltonian.

Regarded as a function of complementary variables g and p, Hamilton’s equa-
tions are:

oH oH

dq = S 0,p=—£- (93)

The velocity associated with the wave momentum is thus:

_ 0H _ Re(=iy'cf’s - Vy)Re(w' (=iV)y)
oP (Re(w(—iV)y))?

The velocity associated with the intrinsic momentum is found by integrating the
rotational Kinetic energy term by parts to convert (1/2)w - s to p>/2p:

=(0,0,c¢). (94)
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2

K
P Ly ey =0, C%’ sin (wf — k2), 0) . (95)
p

u=22_P
op p 4p

This is of course the velocity of the medium caused by the wave.
These two velocities can be used to compute the slope of the displacement from
equilibrium as a function of z:

dé, uy Qok?
o . ==, sin (wt — kz) . (96)

Thus we have seen that analysis of classical spin density of elastic waves offers
many insights into the physical interpretation of the Dirac equation, including an
understanding of the intrinsic momentum required by the Belinfante—Rosenfeld
stress-energy tensor.

4 Discussion

We have analyzed a nonlinear Dirac equation based on the simple model of an ideal
elastic solid. With proper normalization, momentum and angular momentum densi-
ties are computed from the same operators in both classical and quantum physics.
Others have also found similarities between quantum mechanics and waves in an
elastic solid [13-15, 22, 51-55]. Each of the variables in the Dirac equation has a
clear physical interpretation. In particular, spin angular momentum of elementary
particles may be regarded as the angular momentum of the vacuum or, equivalently,
the “aether”.

While it is unclear to what extent classical physics can describe quantum mechan-
ics, it is sensible to suppose that spin density should be described by a single equa-
tion valid throughout all space. According to this hypothesis, the Standard Model is
a decomposition of spin density waves into so-called “particles”. While this hypoth-
esis may be contested, it is incorrect to say that the aether is undetectable. It has
been detected by its intrinsic angular momentum, consistent with Robert Laughlin’s
statement that, “Relativity actually says nothing about the existence or nonexistence
of matter pervading the universe, only that any such matter must have relativistic
symmetry. It turns out that such matter exists” [56].

The proposed equation of evolution of spin density is nonlinear. Nonlinearity is a
possible reason for quantized amplitudes, since multiplying a solution by a constant
factor would not generally yield another solution. Many researchers have attempted
to quantize the Dirac equation by adding nonlinear terms [57-66]. Particle-like non-
linear wave solutions are sometimes called “breathers” or “solitons”. The sine-Gor-
don equation illustrates particle-like behavior in one dimension, and three-dimen-
sional analogues have also been studied [67-70].

It is possible that classical wave interactions might explain the Pauli exclu-
sion principle and interaction potentials. In short, adding wave functions of two
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“independent” particles results in addition of their magnitudes plus unwanted inter-
ference terms:

W+ wp) (Wa +wp) = wiw, +wiwe +wivg +wiw, . 97)

The conservation law expressed by Eq. (58) implies that the combined magnitude
of the two particles should be conserved. Phase shifts can be introduced to cancel
the interference terms without changing the magnitude of each particle. The can-
cellation of interference terms is equivalent to anticommutation of the wave func-
tions, which is a mathematical statement of the exclusion principle. Derivatives of
the phase shifts may be interpreted as interaction potentials [13].

For a phase shift of the form 6 = (m¢ — wr) with integer m, a magnetic vector
potential A = (hc/e)V S would have quantized magnetic flux (yf (A -dt) = m(hc/e))
since the phase can only change by multiples of 2zm when traversing a loop. For
m = 1/2 this is equal to the magnetic flux quantum of superconductivity (although
in that case the electrons are in pairs with m = 1 and charge of 2e). Others have
similarly identified the electromagnetic vector potential A as the gradient of a multi-
valued field[71, 72].

For interacting particle-like waves, the magnitude of phase shifts must decrease
with increasing distance between the particles. Jehle showed that with a 1/r radial
dependence of the phase shift (interpreted as a distribution of rotating magnetic flux
loops) scaled to yield the electron magnetic field |B,| = (uo/277°)pp in the z =0
plane with m = 1 and angular frequency @ = 2m,c? /h, the rotating phase shift gives
rise to the electron Coulomb potential [71]. Here uz = (eh/2m,) is the Bohr magne-
ton in SI units. The same result could be obtained with m = 1/2 and @ = m,c*/h.
Jehle also extended the model of quantized flux “loopforms” to other particles [73].

The elastic solid model might also produce analogues of matter and antimat-
ter. Suppose that elementary particles have spin density vector components that
behave like spherical harmonics with parity (—=1)?. To illustrate the effect of spa-
tial reflection, consider a single vector component s, = R(r)(sin 0)’ sin (£ ¢ — wt)
for some radial function R(r). Reflection along the x-axis changes ¢ to 7 — ¢ to
yield s}’c = R(r)(sin )’ sin (£7 — £ — wt). For odd integer /-values, this yields
s; = R(r)(sin )’ sin (/¢ + wt), which has the same spin density at ¢ = 0 but rotates
in the opposite direction. Rotation by 7 radians about the x-axis completes the par-
ity operation by changing the sign of ¢ to yield P(s,) = —R(r)(sin 0)’ sin (£¢p — wt).
This changes the sign of the spin for the same wave propagation direction, resulting
in a change in sign of electric charge according to Jehle’s model [71].

For even integer values of ¢, reflection along the x-axis yields
s! = —R(r)(sin 0)” sin (¢ + wt), and the complete parity operator yields the origi-
nal function P(s,) = R(r)(sin 8)” sin (£ ¢ — wt).

Thus, it is plausible that particle-like vector waves with odd-integer orbital quan-
tum numbers have distinct mirror images, while particle-like waves with even-inte-
ger orbital quantum numbers are their own mirror images. These mirror image wave
functions could play the role of antiparticles. This correspondence assumes that
electric charge is reversed upon spatial reflection, contrary to the usual assumption
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but consistent with experiments such as beta decay of Cobalt-60, in which the mir-
ror image process can occur with antimatter but not with matter.

Since vector quantities are bilinear combinations of the bispinor wave functions,
the bispinors should transform under rotations with half the phase change of the
vector wave functions. Under our assumptions, elementary particle bispinor fields
transforming with half-integer orbital quantum numbers would have physically dis-
tinct mirror images (antiparticles), whereas elementary particle bispinor fields trans-
forming with whole integer orbital quantum numbers would not have distinct mir-
ror images. These results are consistent with the fact that all elementary fermions
have distinct antiparticles, and nearly all elementary bosons are their own antiparti-
cles (an exception is the pair W+ and W~, so the connection with spherical harmon-
ics cannot apply to these). This analysis classifies particles on the basis of internal
orbital angular momentum rather than spin angular momentum.

The model of the vacuum as an elastic solid also offers a good introduction to
general relativity. Gravity, at least when quasi-static, may be interpreted as ordinary
refraction of waves toward regions whose wave speed is decreased by the presence
of energy [74-76]. Wave speed in an elastic solid may likewise be decreased by
stress-induced compression (increased inertial density and decreased shear modu-
lus). Likewise, twisting a rubber band under constant tension tends to shorten it.
The increased density is associated with a decreased shear modulus according to the
SCG model of a solid under constant pressure [77].

5 Conclusions

Classical spin density waves in an ideal elastic solid are modeled by a nonlinear
vector wave equation in which temporal changes of spin density are entirely attribut-
able to convection, rotation, and torque. A compatible nonlinear Dirac equation is
also derived. Operators for momentum and angular momentum densities are equiv-
alent to those of relativistic quantum mechanics. Vector plane wave solutions are
expressed using Dirac bispinors. The Hamiltonian is equal to the total energy, which
is expressed as a sum of rotational kinetic and potential energies. Rotational kinetic
energy is associated with rotation of the wave function with the medium, whereas
rotational potential energy is associated with wave propagation and rotation of wave
velocity relative to the medium. Intrinsic momentum identical to that derived from
the Belinfante—Rosenfeld stress-energy tensor is the generator of translations cor-
responding to a change of origin of displacements away from the equilibrium posi-
tion. The usual expression for electron rest energy corresponds to twice the conven-
tional potential energy in the elastic solid model. In sum, waves in an ideal elastic
solid provide classical physics analogues for many physical properties of elementary
particles.
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