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Abstract

This thesis is concerned first with a non-compact variation of Connes’ trace theorem,
which demonstrated that the Dixmier trace extends the notion of Lebesgue integration on
a compact manifold. To obtain the variation, we develop a new (-residue formula, which
is proved by an innovative approach using double operator integrals. Using this formula,
Connes’ trace theorem is shown for operators of the form M (1 — A)fg on Ly(R%), where
M is multiplication by a function belonging to the Sobolev space Wld(]Rd)—the space of all
integrable functions on R% whose weak derivatives up to order d are all also integrable—
and A is the Laplacian on Ly(RY). An analogous formula for the Moyal plane is also
shown.

The (-residue formula we derive also enables a second result. We consider the smoothed
Riesz map g of the massless Dirac operator D on R, for d > 2, and study its properties
in terms of weak Schatten classes. Our sharp estimates, which are optimal in the scale of
weak Schatten classes, show that the decay of singular values of g(D + V') — g(D) differs
dramatically for the case when the perturbation V' is a purely electric potential and the
case when V is a magnetic one. The application of double operator integrals also yields a
similar result for the operator f(D + V) — f(D) for an arbitrary monotone function f on

R whose derivative is Schwartz.
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Introduction

This thesis studies the spectral asymptotic properties of certain classical compact operators
on La(R?) associated to commutative and noncommutative Euclidean space. Namely, we
study the spectral asymptotics of operators of the form M (1 —A)_%, for Sobolev functions
f € WR?) (and its noncommutative analogue), where A denotes the Laplacian on R?,
and g(D+ V) —g(D), where g is a smoothed Riesz map, D is the massless Dirac operator

on R? and V is a bounded electromagnetic potential.

1.1 Main results

A singular trace on a complete symmetric ideal Z of B(H), where H is a separable Hilbert
space, is a unitarily invariant linear functional which vanishes on the subspace of finite-
rank operators in Z [57]. In 1966, J. Dixmier [3I] constructed an explicit example of a
singular trace, now named the Dixmier trace, on the dual of the Macaev ideal, M1 o,
which is defined by
n
Mi o = {A eK(H) : Z,u(j, A) =0O(log(2+n)) asn T oo},
j=0
where { w(n, A)}ZOZO is the singular value sequence of the compact operator A € K(H).
The Dixmier trace is given by the expression
1 J
Tr,, (A) = “’<{10g(2+j) ;Ou(k,A)}jzo), 0< A€M,
where w is an extended limit on ¢ (N) (see Section below for the details). In [31]
(see also [24, §IV.2.53]), it is required that w be invariant for the dilation semigroup on

l(N) for Tr,, to be additive on M o. On the sub-ideal £ o C M o, where

Lpoo = {AG/C(’H) : ,u(n,A)zO( asnToo}, 1 <p< oo,

1
)

1



2 1. INTRODUCTION

denote the weak Schatten classes, this dilation-invariance is, in fact, unnecessary [57, §9.7].
An operator A € M  is said to be Dixmier measurable if its Dixmier trace is inde-
pendent of the choice of dilation-invariant extended limit w. It is known that there exist
Dixmier non-measurable operators in £ o [48, Theorem 1.4].
We now state the first main result of this thesis, which I showed with co-authors in

63).
Theorem 1.1. Let 0 < A, B € B(H) such that [A%,B] € L1. Let Cyp € R.
(a) If AB € M o, then the following are equivalent:

(i) AB is Dizmier measurable, and Tr,(AB) = Cap for all dilation-invariant ex-

tended limits w.

(i) limy,yq(p — 1) Tr(BPAP) = Cyp.
(b) If AB € L1 o, then part (a) also holds for any extended limit w.

Using this result, we study sharp Lipschitz-type estimates for the free (massless) Dirac
operator on R%, which leads us to our second main result. Suppose d > 2 and let Ny = 9ls],
Consider the Hilbert space CM* ® Lo(R?), and denote by v, for j = 1,...,d, the d-
dimensional (Ng x Ny) gamma matrices (see Section below). Let

d 0

D= Q) ——
Z% “ i Ot
Jj=1

denote the free Dirac operator on CV¢ @ Lo(R?). We fix functions ¢ € Loo(R% R) (the
electric or scalar potential function) and A = (a1, ..., aq) € Loo(R% R)? (the magnetic or
vector potential function), and consider the bounded, self-adjoint operator

d
V=1®M;— ) 7 &M, € B(CY @ Ly(R%), (1.1)
j=1

where I denotes the Ny x Ny identity matrix, and M denotes the multiplication operator
on Ly(R%) by the function f.

I showed the second main result of this thesis with co-authors in [52]. This result
gives the smallest ideal on the scale of weak Schatten ideals containing the operator
f(D+V)— f(D) on CV ® Ly(R?), where f is a real-valued function on R with finite
distinct limits at +co and derivative belonging to Schwartz space. We observe that when
the vector potential A = 0, the difference f(D + V) — f(D) exhibits radically different
behaviour to the case when A # 0. This is a consequence of the fact that the perturbation

V' does not have bounded commutator with D when A # 0.
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In the following, for n € N and 1 < p < oo, the symbol W;(Rd) denotes the Sobolev
space of functions in L,(R?) whose weak derivatives up to order n are also L,, and S(R?)
denotes Schwartz space. If Z is a complete symmetric ideal of B(H), let Zy denote the

separable part of Z; that is, the closure of the subspace of finite-rank operators in Z.

Theorem 1.2. Suppose ¢ € (W5 NWE)(R?) and A € (W2NW2)(RY)? are real-valued.
2 2
Suppose f : R — R is a function such that f" € S(R) and f(—o0) # f(+00).

(1) If A=0and ¢ #0, then f(D+V)— f(D) € E%,oo \ (Eg,oo)o‘
(i) If A #0, then f(D+V) = f(D) € Laoo \ (Ld,0)o-

These differences and their asymptotics are relevant for perturbation theory [91], §8.3].

1.2 Background and significance

1.2.1 The Dixmier trace and zeta residues

In 1988, in work which recovered the Yang—Mills action functional within the machinery
of noncommutative geometry, A. Connes [23] demonstrated that the Dixmier trace is a
linear extension of the Wodzicki residue. The residue Resyy is a trace defined on classical
pseudo-differential operators of order —d acting on sections of a complex vector bundle of
a compact Riemannian manifold (see also [40], [24, §IV.2.5], [43, §7.3]).

We state below the more recent version of Connes’ trace theorem given in [48, Corol-

lary 7.22].

Theorem 1.3 (Connes trace theorem). Suppose M is a compact d-dimensional Rieman-
nian manifold, and B : C*(M) — C*>°(M) is a classical pseudo-differential operator of
order —d with Wodzicki residue Resy (B), then (the bounded extension of) B acting on
Ly(M) belongs to L1, and, for any extended limit w, we have the equality

Tr,(B) = d(217r)d Resw (B).

This surprising result bespeaks a deep relationship between the asymptotic behaviour
of the singular value sequence and the principal symbol of a pseudo-differential operator.
It follows that the Dixmier trace is an extension of the notion of Lebesgue integration of

Lo-functions on compact manifolds (see, e.g., [55, Theorem 2.5], [48, Theorem 1.5]):

Theorem 1.4 (Connes integration formula). Suppose M is a d-dimensional compact ori-

ented Riemannian manifold without boundary. If f € La(M), then My(1 + A)fg belongs
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to L1,00, and there exists a constant C > 0 such that, for every extended limit w on l+(N),

MY

m(0-38) = [ s

where My denotes the multiplication operator on Lo(M) for f, and A denotes the Hodge
Laplacian on M.

M. Wodzicki [90] showed that if B is a positive classical pseudo-differential operator
of order —d, then the zeta function (p(z) = Tr(B?*), for Re(z) > 1, has a meromorphic
extension with simple poles, and Resy (B) is proportional to the residue of the pole at
z = 1. Connes [24] later highlighted that this residue property (at least when the residue
is considered only as a right-hand limit on the real line) is also a general feature of the
Dixmier trace, in that there is a connection between Dixmier measurability and the residue
of the (-function at its leading singularity using the Karamata theorem [47]. We state a
more recent refinement of this result given in [56, Corollary 6.8] (see also [57, Theorem

9.3.1]).
Theorem 1.5. Suppose 0 < B € M1 and 0 < C € R. The following are equivalent:

(1) B is Dizmier measurable, and Tr,(B) = C for all dilation-invariant extended limits

w.
(41) limeyoe Tr(BY¢) = C, where Tr denotes the standard trace.

Following a succession of results [20, Theorem 3.8], [22, Theorem 4.11], [56, Theo-
rem 6.6], [85, Corollary 16], in 2017, the above theorem was generalised in [84], where it

was shown that a variant of Theorem continues to hold for non-positive operators in

L1o0.

Theorem 1.6. [84, Theorem 1.2] Suppose A € B(H), 0 < B € L1 and C € C. The

following are equivalent:

(1) AB is Dizmier measurable, and Tr,(AB) = C for all dilation-invariant extended

limits w.
(i1) limeyoe Tr(AB™¢) = C.

This emulates the noncommutative residue formula for R%:; that is, when M is a com-
pact d-dimensional Riemannian manifold, if B € B (LQ(M )) is a classical order —d pseudo-
differential operator, one has [38, Theorem 1.7.7]

d(1+e)

Resw (B) = d(27)* lime Tr (Bo(1 + A)™ 2 ),
el0



1.2. BACKGROUND AND SIGNIFICANCE )

d
2

where A denotes the Hodge Laplacian on M and where By = B(1 + A)2 is an order 0
pseudo-differential operator.

The previous results require that B € K(H). However, it can occur that both A and
B are non-compact operators, but their product AB belongs to L1 . For example, if
f € S(RY) is a nonzero Schwartz function and A = Z;.lzl %22 denotes the Laplacian on
Ly(R%), then neither the multiplication operator of f on Lg(Rjd), denoted My, nor the re-
solvent (1—A)_g acting on Lo (R?) are compact operators, but their product M;(1 — A)™2
resides in £ o [7, 48]. There are analogous results to Theorems and in this case.

In 2012, A. Carey, V. Gayral, A. Rennie and F. Sukochev [I6] established necessary
conditions which we state below for the special case where the underlying semifinite von

Neumann algebra is B(H). Note that an extended limit on /o (N) is called exponentiation-

invariant if it is invariant for the exponentiation semigroup on £ (N).

Theorem 1.7. [16, Theorem 4.13] Suppose 0 < A, B € B(H). If there exists some € > 0
such that [A%_E,B] € (Mi,00)o and

sup (p—1) Tr(A%_eBpA%_E) < 00, (1.2)
1<p<2

then AB € M o and, if limp;(p — 1)Tr(A%BpA%) exists, then for any dilation- and

exponentiation-invariant extended limit w,
Tro(AB) = lim(p — 1) Tr(A2BPA?). (1.3)
P

Theorem [I.1]is an improvement of this result. Indeed, in Theorem [I.1] the requirement
of exponentiation-invariant extended limits w is dropped, thus yielding Dixmier measur-
ability. Moreover, the conditions in Theorem [I.1] are easier to check in applications, as
shown in Sections[3.3]and [3.4] below. We demonstrate this by applying Theorem [T.1]to two
concrete examples of non-compact manifolds; one commutative and one noncommutative.

In Section [3.3] we confirm the assumption required in Theorem that is,

(M3, (1= A)72] € £y,

holds when 0 < f € S(RY). We may then apply Theorem to the pseudo-differential

d
2

operators My(1 — A)fg on RY, with A = My and B = (1—A)~ 2, and recover the classical

formula
Vol(S4-1)
d(2m)d

for Sobolev functions f € W(R?), where Vol(S¢~!) denotes the volume of the unit sphere

Tr,, (Mp(1—A)~%) = [ Fedx

S (see, e.g., [73, Corollary 14]).
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We also use Theorem to recover the analogous result for the noncommutative
Euclidean (or Moyal) plane recently shown in [86, Theorem 1.1], where a different method
was used.

Suppose the convolution of functions on R? is ‘twisted’ by a real skew-symmetric matrix

O. That is, for f,g € S(R?), define og by
(f oo g)( / f(t etOsdt, teR? (1.4)

2 g), 0 > 0. This operation is the Fourier dual of the so-called Moyal

product as studied in [74} [4T], 42} [35].

where © = (

Let Opg(f) correspond to left og-multiplication by a Schwartz function f € S(R?);
this provides an action of S(R?) onto itself which may be extended to a bounded linear
operator on Lo(R?) |53, Lemma 6.9]. In Section we verify the condition required for
Theorem for those f € S(R?) admitting Opg(f) > 0; that is, the commutator

1
[Ope(f)2, (1~ Ae)™'] € L1,
where the Laplace-type operator Ag is defined as in [53] by
Nef(x) = [xI*f(x), feL3R?), xR,

where L3(R?) denotes a Bessel-weighted Lo-space (see Section below).
For those Schwartz functions f € S(R?) such that the operator Opg(f) is positive,
we may appeal to Theorem with A = Opg(f) and B = (1 — Ag)™! to obtain the

expression
Tr, (Ope(f)(1 — Ae)™") = 7f(0),

which agrees with [86, Proposition 4.5] (see Proposition below). The Moyal algebra
has an analogous construction of Sobolev elements, and we extend the result to these

elements (as in [86]) by using noncommutative Cwikel estimates [53].

1.2.2 The smoothed signum and Lipschitz-type estimates

Let g € C*°(R) denote the algebraic sigmoid function defined by the expression

t

We call g the smoothed signum on R. The continuity properties of g of the form

|e(D+V) —g(D)]|, < const- ||Vl
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have important applications in the study of spectral flow, which was initiated by M. Atiyah
and I. Singer in [4] and then connected to index theory in [2]3]. Recently, the continuity of
g for the case studied by Atiyah—Singer (the Dirac operator for perturbation of complete
metrics on a smooth manifold) appears in [5].

It was conjectured by I. Singer [80] that, in the case of certain differential operators,
spectral flow can be expressed as an integral of one forms. This idea received proper
attention in [19], where spectral flow formulae using integrals of one forms were obtained.
To work with analytic formulae for spectral flow for unbounded operators, one is forced

to consider Schatten class estimates of the form
|e(D+V) - g(D)Hp < const - [|[V/(1 + D2)_% Hp, (1.5)

where | - ||, denotes the norm on the Schatten ideal £,, p > 1. These types of operator
estimates were studied extensively (see, e.g., [81] and references therein). Using the tech-
nique of double operator integrals, D. Potapov and F. Sukochev [66] obtained estimates
in their full generality, and then, together with A. Carey in [21I] proved general inte-
gral formulae for spectral flow. Motivated by the study of the spectral shift function and
the Fredholm/Witten index [30, 18], trace-class Lipschitz estimates of the form were
obtained for d = 1.

Theorem 1.8. [I7, Lemma 3.1] If f € (W} N CY)(R), then
d d
(7 + M) —2(7g) € 61 (a®)

This trace-class result is not preserved in higher dimensions. We use Theorem
to obtain the higher-dimensional analogue for the free Dirac operator D on the Hilbert
space CVe @ Ly(RY). As above, let (£, )0 be the closure of the subspace of all finite-rank

operators in the quasi-norm
1
| A]lp,o0 = Sg}g(l +3) rud,4), A€ Ly
J>

Theorem 1.9. Let d > 2, and suppose ¢ € (W5 NWZ)(R?) and A € (W2 NW2)(RY)4
2 2
take values in R and R?, respectively. Let V' be the self-adjoint operator in (L.1]) above.

(i) IfA=0and ¢ #0, theng(D+V)—g(D) € Egpo \ (ﬁg,oo)O-
(i) I A #0, then (D +V) — g(D) € Ly \ (Lano)o.

By an argument relying on the double operator integral techniques initiated by M. Bir-

man and M. Solomyak (see, e.g., [I3]) and improved by D. Potapov and F. Sukochev (see
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[65, [66]), we observe that the behaviour of singular values of f(D + V) — f(D), with
" € S(R) and distinct limits at infinity, is the same as that of g(D + V') — g(D). Hence,
Theorem [L.2] follows from the above.

We sketch the idea for the proof of Theorem One can represent the operator
g(D+ V) —g(D) as the K(H)-valued Bochner integral

1 % d\ 1 1
g(DJrV)_g(D):W%e(/o /\%(D+V+i(1+)\)% D414 N )>

which facilitates its decomposition into the form

N

gD+ V)—g(D) €Y Mp,(I®ga(V)) + Lp,

where F, is some bounded (hermitian) matrix-valued function on R?, g4 is a bounded real-
valued on R?, V denotes the gradient operator, and where either p = % if the magnetic
part of V is zero, or p = d otherwise. The inclusion Mp,, (I ® go(V)) € Ly in each case
is shown using Cwikel estimates [27] [7].

To prove sharpness, recall that if an operator A belongs to (£, «)o, then it follows
from the Holder inequality [79] that if B € £, o, where }D + % =1, then AB € (£1,x)0. It

is shown using Theorem [I.1] that there exist B € Lg o such that
Tr, (g(D +V)B — g(D)B) # 0,

so that g(D+ V) — g(D) ¢ (Lp,0)o by contradiction, since Tr,, vanishes on (L1 )o.

1.3 Structure of the thesis

Chapter [2] recalls preliminary material and the notational conventions employed in this
thesis. In Section[2.2] we recall some of the fundamental properties of unbounded operators
on Hilbert space, including weak derivatives on Lo(R?), the classic Laplacian and the free
Dirac operator on R%.

In Section we recall two-sided ideals of compact operators, the Calkin correspon-
dence, as well as the definitions and properties of (weak) Schatten classes and the Dixmier—
Macaev ideal. We also recall the definition of a (symmetric) quasi-Banach ideal and the
notion of a trace on such an ideal in Section In particular, we recall the properties of
the classical trace Tr on L7 in Section and the Dixmier traces on M o and Li o
in Section with examples of classical operators which belong to these ideals in Sec-

tion[2.5] We introduce Cwikel estimates [10, [77, 27, [7] (Section[2.5.2)) and double operator
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integration (Section , the latter of which is defined using the weak operator integral
approach seen in [25] (see also Section [2.6.1]).

Chapter [3| presents the contents of the paper [68], in which Theorem is proven. In
Section a trace-class variant of [24, Lemma 11 (§IV.3.«)] (Proposition is proven
using the double operator integral techniques in [25, [87]. Some technical but elementary
arguments in the proof of this result may be found in Appendix Theorem then
follows quickly from this result, as seen in Section below. A special case of Connes’
trace theorem (Theorem on R? is shown in Section by demonstrating that
the simple hypotheses of Theorem hold for operators of the form My(1 — A)_g, for
0 < f e S(R?) (we use the regularity properties of f > seen in Section ; the result
for general f € W{(R?) is shown by a density argument. Similarly, it is shown in Sec-
tion that the trace theorem for the Moyal plane seen in [86] may be recovered using
Theorem To this end, the underlying matricial structure of noncommutative Schwartz
space is essential, and is discussed in Section

The contents of [52] are then given in Chapter including the proofs of Theo-
rems [I.2] and above. A key Bochner integral decomposition and convenient versions

of Cwikel estimates are written in Section The electric and magnetic cases are split

into two separate arguments (Sections [4.1.2] and [4.1.3] respectively), since the magnetic

decomposition is significantly different from the electric case. Some Bochner integrals are
computed explicitly in Appendix[A.2] In Section[4.1.4] the sharp estimates of Theorem [I.9]
are proven using the Cwikel estimates from Section [2.5.2] and a special case of Connes’
trace theorem found in Section m (specifically, Lemma therein). Double operator
integral techniques are then employed in Section to obtain Theorem
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Preliminaries

2.1 Notations

In this section, we compile the notations used throughout the thesis.

The symbols N, Z, R and C denote the sets of all natural numbers, integers, real
numbers and complex numbers, respectively. We adopt the convention 0 € N, and we let
Zy =N\ {0}. We also let Ny, :== N U {00} denote the extended natural numbers.

The symbol d € Z is usually used to refer to the dimension of a manifold, especially
Euclidean space. The symbol m denotes the standard Lebesgue measure on R?, and the
symbol # denotes the counting measure on N? or Z%. S~! denotes the unit sphere in R,

and .
Vol(s4-1) = r(ih::d)
2
denotes its geometric volume, where I' denotes the Gamma function. If Q € R? is an open
region of the plane, then 92 denotes its boundary.
If V is a topological vector space, we let V* denote its topological dual space. Recall

that a quasi-norm p on a (complex) vector space V' is a non-negative real-valued function

that is subadditive, (absolutely) homogeneous, and satisfies the following:
there exists C' > 0 such that, for all v,w € V, p(v+w) < C(p(v) + p(w)).

Recall also that, since every quasi-normed space is metrizable [6, Lemma 3.10.1], if V'
is a quasi-normed space which is complete with respect to its metric, then V is called a
quasi-Banach space. If X is a generic Banach (or quasi-Banach) space, then we denote its
corresponding norm (or quasi-norm) by || - ||x. Moreover, we denote the inner product of
a generic Hilbert space H by (-, -); the underlying Hilbert space corresponding to an inner

product shall be clear from the context.

11
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Let 0 < p < co. If @ C R? is a Lebesgue-measurable set, then we let L,(Q2) denote the
usual Ly-space on the measure space (2, m). For 1 < p < oo, we denote the Banach norm
on Ly(Q) by || - ||,. Moreover, we let Lo(2) denote the space of all Lebesgue-measurable
functions on Q, and Lo (€2) denote the space of all essentially bounded functions on 2
(the Banach norm on the latter shall be denoted by || - [|«). Additionally, for 1 < p < oo,

we let Ly o (€2) denote weak Ly-space on the measure space (2, m) equipped quasi-norm

0o

We also let £,(N%), £, o(NY) (or £,(Z%), £, (Z%)) denote the corresponding L,- and
weak L,-spaces on the measure space (N, #) (resp. (Z% #)). We denote their corre-
sponding norms/quasi-norms by || - ||y, || - ||p,c0, respectively. Note that, while the notation
| - ||, denotes both the norm on L,(Q), for @ C R, and the norms on ¢,(N9) and ¢,(Z%),

the distinction between them shall be clear from context (the same applies to the notation

poo)-

We let ¢o(N), and cpp(N), denote the spaces of sequences converging to zero, and
eventually zero, respectively.

Suppose a = (a1, ..., aq) € N? is a multi-index. Let
laf = a1+ + ayg,

and let V< be the mixed partial (distributional) differentiation operator given by

o] 0 0%

Suppose 0 < s < oo and 1 < p < oco. Let W) (RY) denote Bessel potential space. In
particular, if s € N, this is equivalent to Sobolev space [44], §6.2], in which case we denote
the Sobolev norm by

Ifllwg = > IVl for £ € Wy(RY).
lox|<s
We let L27100(Rd) denote the space of all locally square-integrable functions on R,

Suppose n € Ny. If @ € R we let C"(Q) denote the space of all C"-functions

on {2; that is, continuous functions on 2 whose first n derivatives are also continuous.

Additionally, we let C}*(2) and C7

com

(©) denote the subspaces of C"(2) consisting of all
bounded and compactly supported functions on €, respectively. We let S(RY) denote
Schwartz space (the space of all rapidly decreasing smooth functions on Rd), and let F
denote the Fourier transform (both on S(R?) and its linear extension to La(R?)). To avoid

ambiguity, we specify that F is considered in its unitary radial form:
1
(2m)

(Ff(x) = : /Rd f(t)e™™>tdt, feSRY), x e R
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For further details on weak L,-spaces, Sobolev spaces, Schwartz space and the Fourier
transform, the reader is referred to [44] [45].

If A is an operator on a Hilbert space H, we let dom(A) denote its domain of definition,
ran(A) denote its range, and o(A) denote its spectrum. If A is injective, then we denote
its inverse operator by A=l We let B(H), K(H) and Coo(H) denote the spaces of all
bounded, compact and finite-rank operators on H, respectively. We let || - | denote the
uniform norm on B(H).

Throughout this thesis, every Hilbert space H is assumed to be separable and infinite-
dimensional.

We also define the special function (-) : C¢ — [1,00) by
1
(z) = (1+ \z|2)5, for z € C<.

As a function on R?, it follows from the definition of weak L,-space and the unboundedness

of the harmonic series that
()77 € Lpoo(RY) \ Ly(RY).
Finally, if Z(H) C B(H) is an ideal of B(H) and A € B(#), then we denote the coset
of A with respect to the ideal Z(H) by
A+I(H)={A+BeB(H): BeEI(H)}.

That is, if B € B(H) and there exists some By € Z(H) such that B = A + By, then one
may write that B € A+ Z(#H). In our notations, we may suppress dependence upon the

underlying Hilbert space H, and simply write Z = Z(H).

2.2 Unbounded operators

Suppose H is a Hilbert space, and let A : dom(A) — H be a densely-defined (linear)

operator on H. Let
dom(A*) :={geH : 3¢ € Hst. (Af,g) = (f.¢), Vf € dom(4)}.

By the Riesz representation theorem, for every g € H, the vector ¢’ satisfying the equation

(Af,g) = (f,¢') is unique, and so we can define the adjoint operator of A, denoted A*, by
A*g:=¢', for g€ dom(A"),

If dom(A) = dom(A*), we denote the real and imaginary parts of A by

.

Re(A) = %(A +AT), Sm(A) = (A - A7),
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If dom(A) C dom(A*) and Af = A*f for all f € dom(A), then A is called a symmetric
operator. If A is symmetric and dom(A) = dom(A*), then A is called a self-adjoint
operator. If A is self-adjoint, then we let E 4 denotes its projection-valued spectral measure
(see, e.g., [69, §VIIL.3]).

An operator A : dom(A) — H is said to be positive if

(Af, fy5 >0, forall f € dom(A).
A is said to be closed if the graph of A,
DA ={f®Af e H®H : fcdom(A)},

is a closed subspace of H @ H. If A is closed, then we let U(A) denote its phase and |A]|
denote its absolute value—U(A) is a partial isometry, | A| is a positive self-adjoint operator,
and their existence is guaranteed by the polar decomposition [69, Theorem VIII.32].

Suppose A, B are operators on the Hilbert space H. We call B an extension of A if
I'(A) CT'(B) and Af = Bf, for all f € dom(A).

An operator A is said to be closable if there exists a closed extension of A. If A is
closable, then the closed extension of A with the smallest graph in H @& H is called the
closure of A. If A is closable with self-adjoint closure, then A is called essentially self-
adjoint. If A is closed, a subset X C dom(A) is called a core for A if the closure of the
restriction A|x is equal to A. In the sequel, we shall identify a closed operator A with any

restrictions of A to its cores.

2.2.1 Commutators of operators

If A, B are operators on H with domains dom(A), dom(B), respectively, then we may

define the operator AB on the domain
dom(AB) := {f € dom(B) : Bf € dom(4)}

by the expression

ABf = A(Bf), f € dom(AB).

Definition 2.1. Suppose A is an operator on H with domain dom(A), and suppose
B € B(H) such that B(dom(A)) C dom(A). The commutator of A and B is the operator
[A, B] with domain dom(A) defined by the expression

[A,B] == AB — BA.
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The commutator satisfies the following algebraic properties, which we shall use in

Chapter [4

Lemma 2.2. Suppose A is an operator on H with domain dom(A), and suppose B is a

bounded operator on H such that B(dom(A)) C dom(A).

(i) If A:dom(A) — H has bounded inverse, then the operator [A=', B] : H — H can be
written as

A, B = —AY A, B]A™", (2.1)
where

A7V H — dom(A), AT'A, B]:dom(A) — H.

(ii) If n > 1, then the operator [A, B"] : dom(A) — H can be decomposed as

n—1
[A,B"] = B"A,B|B"*! (2.2)
k=0

on the domain dom(A).
Proof. (i): Since B(dom(A)) C dom(A), we have that
ABA™Y: H A dom(A) B dom(4) A H
is well-defined on H. Hence,
AYA BJAT' = AT ABA™ — AT'BAAT = BAT' — A7'B = —[A7} B].

(i7). Since B(dom(A)) C dom(A), we also have that B¥(dom(A)) C dom(A), for
all k € N, so the operators BFAB" % are well-defined on the domain dom(A), for all

k=0,...,n. Hence,

n—1 n—1
[A,B"| = AB" - B"A =Y (B*AB" % - BM'AB" ") =) "B*[A,BIB" "' O
k=0 k=0

2.2.2 Partial differentiation operators over R

Recall that, for n € N and 1 < p < oo, Sobolev space is denoted by W;}(Rd), and the

Sobolev norm by || - [lwn.

Definition 2.3. For each k = 1,...,d, we denote by 0y the kth partial differentiation

operator, defined as

Ouf)(x) = 2L (%), for f € (R, x € RY
oxy,
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For each k = 1,...,d, O is a essentially self-adjoint operator on Ly(R%) whose closure

is defined on the domain [76, Proposition 8.2]

dom(dy,) = {f € Ly(RY) : gf € Ly (Rd)}.

Hence, any subset of dom(dy) containing C22, (R?) is a core for 9, (this includes Schwartz
space S(R?) and Sobolev space W, (R?)). Additionally, on W3(R%), we have that the
commutator

0;,00] =0, jk=1,....d. (2.3)

The reader is advised that the symbol 0 may also be used to refer to the distributional

partial derivative of a vector from Sobolev spaces other than W;(Rd); that is,

Of = —zsfeL (R, for f e Wy(RY),1<p< cc.
Tk

Definition 2.4. We denote by A the Laplace operator on Ly(RY) with domain W3 (R9)

defined by the expression

d
>0, dom(A) = WF(RY).
The operator —A is positive and self-adjoint [76, Proposition 8.2].
The following definition of the Dirac operator over R? is standard (see, e.g., [88, §8.5],
[37, Chapter 4], [51, Chapter II]). Let Ny := 2L2), and we denote by I := I, the Ny x Ny

identity matrix.

Definition 2.5. If {%} _, is a family of Ny x [Ny matrices satisfying
(@) v =5, »y]? =1, forall j=1,...,d; and,
(1) i = —j, whenever j # k,

we call {’Yj}?:1 a family of d-dimensional symmetric gamma matrices.

Definition 2.6. The (free) Dirac operator on CN¢ @ Lo(R?) is an unbounded operator
defined by

D=> %®0d,  dom(D)=CNaW,;RY. (2.4)
k=1
It is known that D is self-adjoint (essential self-adjointness follows from [69, Theorem

VIIIL.33]; one can check closure by showing that the graph norm of D is equivalent to

I| - ”CNd®W21(Rd)). Moreover, on the domain CN¢ @ W2(R?),

Z’YJ’Y}c@)B ak—zﬂ®8k+27]’7k 8],8k]! ( A)'

Ji,k=1 i>k
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Definition 2.7. Suppose f € LgJOC(Rd). We let M denote the (pointwise) multiplication
operator of f, which is the operator on the Hilbert space Lo(R?) defined by

(Myg)(x) = f(x)g(x), g € dom(My), x € R,
where
dom(My) = {g € Ly(R?) : f-g € Ly(RH}.
Note that if f is real-valued, then M; is densely defined and self-adjoint [76, Example

3.8], and if f € Loo(R?), then M, € B(Lg(Rd)). We observe the following identities:

Lemma 2.8. Suppose f € WL(R?), and let k = 1,...,d. Then the commutator [0y, My]

extends to a bounded operator on Ly(RY), and
(O, M¢] = Mp, ¢ (2.5)

Proof. By the Leibniz rule [44, Proposition 2.3.22], Mg € W1 (R?) for all g € C,,(RY).

com

Since O, (R?) is dense in W (R?), it follows from a standard density argument that

My (W3 (RT)) € Wy (RY).
Hence, it suffices to show that [Ok, M¢lg = My, rg, for all g € S(RY). If g € S(RY),
then by the Leibniz rule [44, Proposition 2.3.22], we have that

o9 Of

8a:k 8xk

) 0
O(Myg) = 0(f - g) = 9= if 5= Moo+ Mybig.

Rearranging this, one obtains the expression
[0k, Mflg = My, rg, for all g € S(RY). O

Corollary 2.9. For every f € WL (R?), the commutator [D,1® M) extends to a bounded
operator on CNt @ Ly(RY), and

d

k=1

Proof. By Proposition we have that

d
[D, 1@ M) = [ @ 0, T@ Mg = (% @ 0) A @ My) — (1@ My) (7 ® O))
k=1

ol
S]] S8
—

:
W ® [0, My] =) "1 ® M,y
1 k=1

k

over the domain Wy (R%)Na, O
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We state one more corollary that we shall use in Chapter [4] below. It immediately

follows from the previous corollary and Lemma (1)

Corollary 2.10. Suppose A € R\ {0}. For every f € WL (R?), we have

d
(D +iX) " T@ My = =Y (D +iX) " (9 ® Ma,g) (D +iA) ! (2.7)
k=1

2.3 Ideals of compact operators
For further details on two-sided ideals of B(#), the reader is referred to [40, [79]

Definition 2.11. A two-sided ideal Z of B(H) is called a Banach (or a quasi-Banach) ideal

if there exists a norm (resp. quasi-norm) || - ||z on Z satisfying the symmetric property,
IABC||z < || Al ||Bllz|IC |0, for all B € Z(H), and A,C € B(H),

such that (Z, | - ||z) is a Banach (resp. quasi-Banach) space.

In general, it is not necessarily true that a sum belonging to Z is a sum of operators each
belonging to Z. However, one may exploit the properties of the gamma matrices (recall
Definition above) to obtain the following technical result, which we shall depend upon
in Section [£.1.4] below.

Lemma 2.12. Let H be a (separable) Hilbert space, and suppose I is an ideal of B(H).

(i) If Aj € B(H), forj=1,...,d, and

d
D i@ A e I(CN @ H),
j=1

then A; € Z(H), for every j =1,...,d.
(i1) If Bjy € B(H), for j,k=1,...,d with j <k, and

Z Y ® Bk € Z(CY @ H),

i<k
then Bj € Z(H), for every j,k=1,...,d with j < k.
Proof. (i). Fix any k = 1,...,d. For brevity, let A € B(CN¢ ® H) be the operator given
by

d
.AZ: ZWJ@AJ

=1
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By assumption, we have that A € Z(C™? ® H). Therefore, since 7, ® 1 € B(CN? @ H)
and T is an ideal, it follows that A(y, ® 1) + (v ® 1).A € Z(CN4 @ H). Moreover, since v;
anticommutes with 7, for all j # k, have the identity

d

Ay ®1) + (i ®1)A = Z('Yj'Yk +7%75) ® Aj = 2l ® Ay,
=1

sol® Ay, € Z(CNe @ H).
Let e; = (1,0,...,0) € CN¢, and let Py = diag(e;) € My, (C) be the projection of
CNe onto span{e; }. Then P;; ® 1 is the projection of CV¢ @ H onto span{e;} ® H ~ H

and the restriction of the operator
(Pl,l @1)(I® Ak)(Pl,l ®1)= P1® Ay,

to span{e; } ® H belongs to Z(span{e;} ® H). Hence, Ay € Z(H).
(ii). Fix any k = 1,...,d. For brevity, let

B:= Z’Yﬂk ® Bijy-

j<t
By assumption, we have that B € Z(CN¢ @ H). Therefore,
By ®1) — (7, ® 1)B € Z(CN @ H).

Moreover, by the anticommutativity of the gamma matrices, we have that

By ®1) = (@ )B =Y (v9em — w%) © B

<t
d ~
=Y 29 @Bjx—» 2% Bri= Y Ya® A4y,
J<k 0>k j=1
where
2Bj,k7 lfj < k,
Aj =10, ifj =k,

—2By;, ifj> k.

Hence, applying (i) to Z;l:l v ® Zj, we have that /Tj € Z(H), for every j =1,...,d. In
particular, we have that B;; € Z(H), for all j =1,...,d with j < k. O

Unlike the case for the algebra of n x n matrices (for n € N), the C*-algebra B(#) has
infinitely many non-trivial two-sided ideals, all of which are subspaces of K(H) (see, e.g.,

[75, p. 25], [79, Proposition 2.1]). Motivated by this fact, J. Calkin [I5] demonstrated an
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intrinsic connection between such ideals of operators and certain subspaces of ¢o(N). The
reader is referred to [79, Chapter 2| for further details.
In the following, for a sequence ¢ = {¢,}nen € co(N), we define the decreasing rear-

rangement {u(j, C)}jeN € ¢o(N) of ¢ by the expression

w(j, ) == min {)\ €[0,00) : #{neN: |cy| > A} Sj}.

Definition 2.13. A linear subspace ¢(N) of ¢o(N) is called a Calkin space if for any
c € co(N), d € «(N),

w(g,e) < p(j,d), forall je N = ce(N).

Suppose A € K(H). The singular value sequence p(A) = {u(j, A)}jeN of A is the
unique sequence of non-zero eigenvalues of |A|, counting multiplicity, arranged in decreas-

ing order (unless A is finite rank, in which case u(j, A) = 0 for all j > rank(A)).

Theorem 2.14 (Calkin correspondence). [15, Theorem 1.6] Suppose t(N) C ¢o(N), and
let

I(H) ={A e KH) : up(A) € (N)}.
Z(H) is a two-sided ideal of B(H) if and only if «(N) is a Calkin space, and the correspon-
dence t(N) <> Z(H) is a lattice isomorphism (with respect to inclusion) between the Calkin

spaces and the two-sided ideals of B(H).

It is not immediate whether completeness is preserved under the Calkin correspon-
dence. However, it has been shown that a symmetric (quasi-)Banach sequence space

corresponds to a (quasi-)Banach ideal of B(#H) (Theorem below, see also [57, Chapter
3]).

Definition 2.15. Suppose ¢(N) is a Calkin space. If ((N) is (quasi-)Banach with respect

to the (quasi-)norm || - ||, such that
llell, < ||d]|., for all ¢ € ¢p(N), d € «(N) = p(c) < p(d),
then (¢(N), | -|,) is called a symmetric (quasi-)Banach sequence space.

Theorem 2.16. Suppose +(N) is a Calkin space equipped with a (quasi-)norm ||-||,, and let
Z(H) be its corresponding two-sided ideal of B(H). Then the function |||z : Z(H) — [0, 00)
defined by the expression

[Allz = ||n(A)

for A e I(H). (2.8)

L’

is a quasi-norm on Z(H). We have the following:
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(i) [E9] If («(N), |- |l.) is a symmetric Banach sequence space, then |- ||z is a norm, and

(Z(H), || - lIz) is a Banach ideal of B(H).

(i4) [83, Theorem 4] If («(N), ||-||.) is a symmetric quasi-Banach space, then (Z(H), ||-||z)

is a quasi-Banach ideal of B(H).

Ezample 2.17. The space ¢o(N) of sequences converging to zero is a Calkin space whose
corresponding two-sided ideal of B(H) is (). Additionally, the space coo(N) of sequences
that are eventually zero is also a Calkin space whose corresponding two-sided ideal of B(H)
is Coo(H).

For 1 < p < oo, the sequence spaces £,(N) and £}, . (N) are also Calkin spaces. Since
coo(N) C 41(N) C l1,00(N) C £y(N) C £y o(N) C £4(N) C £y0(N) C co(N),

for 1 < p < ¢ < oo, there exist corresponding two-sided ideals of B(H), denoted L£,(H)

and L, ~(H) respectively, satisfying
Coo(H) C L1 C L1 CLYyCLpoo CL;C Lgoo CK(H).

We shall explore these ideals in further detail in the following few sections.

2.3.1 Schatten ideals

The Schatten ideals are a central example of Banach ideals of B(H) whose important
properties as used in this thesis are gathered below. It is well-known that (Ep(N)7 [ - ”p)’
for 1 < p < oo, is a symmetric Banach sequence space. Therefore, Theoremm (¢) allows

us to introduce the corresponding Banach ideals £,(H).

Definition 2.18. Suppose 0 < p < co. The pth Schatten ideal of B(H), denoted by L, (H)

(and sometimes abbreviated as simply L)), is defined by
L,(H) = {A € K(H) : p(A) € 4,N)}.
For p > 1, L, is equipped with the norm defined by
Al = ()], A€ Ly(H). (2.9)

In particular, (£,(H),|| - |lp), for 1 < p < oo, is a Banach ideal of B(#). Furthermore,
since the sequence space coo(N) is dense in £,(N), we have that Coo(H) is dense in L, (H)

[79, Theorem 2.7].

We also have the following estimates:
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Theorem 2.19 (Holder inequality). [79, Theorem 2.8] Suppose 1 < p,q,r < oo such that

Lyl=1 IfAc Ly(H) and B € Ly(H), then AB € L, (M) and
[AB]l» < |A[lp |1 Bllq- (2.10)

We now state a special case of the three line theorem (see, e.g., [40, p. 136], [79,
Theorem 2.9], [82 Corollary 13]), which will be used in Section [3.2| below.

Theorem 2.20. Suppose 0 < a <1 and1 <p < oo. If A, B € B(H) are self-adjoint such
that B >0 and AB € L,(H), then BYAB™ € L,(H) and

1B*AB'=|, < | AB|lp. (2.11)

2.3.2 Weak Schatten ideals and the Dixmier—Macaev ideal

In the following, we consider the Sargent space [64],
n
m1oo(N) = { (0)en € Loo(M) = D Jas| = Olog(2 + ) }.
j=1
Note that mj o(N) is a Calkin space such that

01 0o(N) C my oo(N) C £,(N), forallp>1.

Moreover, we have that (£p,c(N), || - [lp0c) is & symmetric quasi-Banach sequence space,
and (m1,00(N), || - [lmy.o ) is a symmetric Banach sequence space, where
Z?:o Cj
lellns . = sup (m) for ¢ = (¢;)jen € M1 00(N).

We may construct the following two-sided ideals of B(#) via the Calkin correspondence.
Definition 2.21. Let 1 < p < .

e The pth weak Schatten class of B(#H) is defined by

Lpoo(H) = {A € K(H) : u(A) € b(N)}.

e The Dizmier—Macaev class of B(H) (also referred to as the dual of the Macaev ideal)
is defined by
Mioo(H) = {A € K(H) : p(A) € mioo(N)}.

By Theorem the space £, ~(H), for 1 < p < oo, forms a quasi-Banach ideal of
K(H) when equipped with the associated quasi-norm

[ Allp,co = HN(A)HP’(X,? A€ Lyoo(H),
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while M o(H) forms a Banach ideal when equipped with the associated norm
[Allaty o = [, o A€ Mi(H).
By Theorem these ideals admit the following nesting:
Lic0(H) C Mioo(H) C Ly(H), forallp>1.

Definition 2.22. Suppose Z is a quasi-Banach ideal of B(H). The separable part of Z,
denoted Zy, is the || - ||z-closure of Coo(#H) in Z.

The weak Schatten classes (as well as their separable parts) admit their own versions

of the Holder inequality.
Theorem 2.23. [79, Theorem 2.8] Let 1 < p,q,r < oo such that % + % = %
(1) If A€ Ly oo(H) and B € Ly oo(H), then AB € Ly oo(H).

(it) If A€ (Lpoo(H)), and B € Lqoo(H), then AB € (Lyoo(H)),-

2.4 Traces on ideals

In this section we introduce the notion of traces on ideals of B(#), and recall the definitions

of the classical trace on £; and the Dixmier traces on £ o and M .

Definition 2.24. Let H be a separable Hilbert space, and suppose Z is a two-sided ideal

of B(H). A linear functional ¢ : Z — C is called a trace if ¢ is unitarily invariant; that is,
o(ULAU) = ¢(A), for all A € Z, and any unitary U € B(H).
Note that these traces may be equivalently characterised using the cyclic property:

Proposition 2.25 (Tracial cyclicity). [57, Lemma 1.2.11] A linear functional ¢ on the

two-sided ideal T is a trace if and only if
¢([4,B]) =0, forallAcZ, BeB(H).

This result generalises the cyclic property of traces; that is, for complex-valued n x n

matrices A, B € M,(C), for n € N, we have tr(AB) = tr(BA).

Definition 2.26. Suppose Z is a quasi-Banach ideal of B(#), and suppose ¢ is a trace

on 7.

o If o € 7%, then ¢ is called a continuous trace.



24 2. PRELIMINARIES

o If p(sup, An) = sup, p(As) for every bounded increasing directed family of positive

operators {Aq }a, then ¢ is called a normal trace.
e If © vanishes on Coo(H), then ¢ is called a singular trace.

Remark 2.27. [57, Lemma 2.6.12] Suppose Z is a quasi-Banach ideal of B(#), and suppose

© is a continuous trace on Z. Then ¢ is a singular trace if and only if ¢ vanishes on Zy.

2.4.1 The classical trace

The following form of the classical operator trace is derived from the work of J. von Neu-

mann [58].

Definition 2.28. Suppose A € L£1(H). The classical trace of A, denoted Tr(A), is given

by the expression

Tr(A) = Z<A€k, ek)H>

keN

where {eg }ren is some orthonormal basis for .
Heuristically, the classical trace generalises the procedure of taking the sum of diagonal
entries of a finite-dimensional matrix.

Remark 2.29. It follows from the Schur decomposition [79, Theorem 1.4] that Tr is well-
defined on £1(#), and does not depend upon the choice of orthonormal basis for H (that

is, Tr is unitary invariant). We describe A € £ as being trace-class.

Analogous to the finite-dimensional trace, the classical trace of a trace-class operator

is given by the sum of its eigenvalues.

Theorem 2.30 (Lidskii theorem). [54] If A € L1(H), then
Tr(A) = 3 A, A),
J

where {)\(j, A)}j s a sequence listing all non-zero eigenvalues of A, counting multiplicity,

arranged in an order of decreasing magnitude.

Remark 2.31. Suppose 1 < p < oo. The £,-norm may be expressed in terms of the

classical trace by

=

Al =Tr (JAP)>, A€ Ly(H). (2.12)

It is obvious that the classical trace is not a singular trace. In fact, there are no

non-trivial continuous singular traces on L1, since (£1)p = £;1. There are, however, many
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such singular traces on L .. We describe a certain class of singular non-normal traces on
L1, the Dixmier traces, in the next section.
We shall need the following formula for the trace of a trace-class integral operator in

Section B3.4.3] below.

Proposition 2.32. [33] Theorem V.3.1.1], [14, Theorem 3.1] Suppose the trace-class oper-
ator A € L1(L2(R?)) has integral kernel K € Loy(R xR?). If K is continuous on R x R?,
then

K(x,x)dx < o0
R4

and

2.4.2 Dixmier traces

In this section, we shall follow the approach of J. Dixmier [31], who constructed an im-
portant example of a normalised singular trace on M o that is non-normal (where this
latter notion of ‘normal’ is meant in the sense of Definition above). Recall that, by
definition, the partial sums for the singular value sequence of an operator A € My o (H)
satisfy the property

1 J
(log(2 +7) l;)u(k’A)>jeN € loo(N).

Though this sequence may not converge, we may assign a number to this sequence using

the notion of an extended limit.

Definition 2.33. A linear functional w € o (N)* is an extended limit if;
(1) w is positive;
(7i) w(l) =1, where 1 = (1,1,1,...) € £o(N), and;

(7i1) w(x) =0, for every x € cy(N).

Remark 2.34. Extended limits are Hahn-Banach extensions of the notion of a limit (in
fact, the Hahn—-Banach theorem implies there are uncountably many of such extended
limits).

Note that the expression

J

(s ) ) A= M

k=0

is not guaranteed to define an additive linear functional on M . This may be resolved

if we place the following additional restriction on our choice of w:
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Definition 2.35. For k > 1, let o : £oo(N) — £ (N) be the mapping defined by

O‘k(l’o,l‘l,. . ) = (.7,‘0,... s Ly Llyeees Ly - )

~
k times k times

The semigroup generated by these maps is called the dilation semigroup. We therefore
call an extended limit w € (o (N)* a dilation-invariant extended limit if it is invariant with

respect to the dilation semigroup; that is, if
w(z) = (woog)(zr), forall x e lx(N)andallk>1.
The existence of dilation-invariant extended limits is known [57, Corollary 6.2.6].

Definition 2.36. Let w be an extended limit. Let Tr,, : (M1,0)4+ — C be defined by

setting

Tr,,(A) = w<(wl+j) éu(k,A)>j€N>, 0<Ae M

Theorem 2.37. Suppose w is an extended limit on loo(N). We have the following:

(¢) [57, Theorem 1.3.1] The restriction of Tr,, to the positive cone (L£1,o0)+ is both positive

and additive, and extends to a linear trace on L .

(i) [24, §IV.2.6], [32, Example 2.5], [57, Theorem 6.3.6] If w is dilation-invariant, then

Tr,, is positive and additive on (M o)+, and extends to a linear trace on My .

Given an extended limit w, the functional Tr, on L1 is called a Dizmier trace on
L1, Likewise, given a dilation-invariant extended limit, the functional Tr,, on M « is

called a Dizmier trace on M .

Remark 2.38. Suppose w is an extended limit on /o (N). Observe that, for A € £;, we

have that
! - A
0< lim ——— Z w(k < lim & =
j—00 log (2+7) — j—oo log(2 + 7)
Hence, Tr,, is a singular trace on £ «, since it vanishes on £; and, by density, on (L1, )o-

Likewise, if w is dilation-invariant, then Tr,, is a singular trace on M .

In fact, every Dixmier trace on £  is just the restriction of a Dixmier trace on M o,

as the following theorem shows.

Theorem 2.39. [57, Lemma 9.7.4] For every extended limit w, there exists a dilation-

mwvariant extended limit wg such that

Tr,(A) = Tryy(A), forall A€ Ly .



2.5. EXAMPLES OF OPERATORS IN (WEAK) SCHATTEN CLASSES 27

Definition 2.40. An operator A € M o (resp. A € L1 ) is said to be Dizmier mea-
surable if Tr,, (A) = Try,(A), for all dilation-invariant extended limits (resp. extended

limitS) w1, wa.

2.5 Examples of operators in (weak) Schatten classes

2.5.1 The Dirichlet Laplacian and its eigenvalues

Definition 2.41. Suppose © C R? is an open set. Consider the densely-defined positive
operator —Alcee (@) @ Coom(2) = Cg5, () on the Hilbert space L2(€2) defined by the

com com

expression

com

d an
(Q))f = _Zﬁa f € Caom(€2).

k=1 "k
The self-adjoint extension of —A|gee (o) obtained via the Friedrichs extension (see, e.g.,

[70, Theorem X.23]) is called the Dirichlet Laplacian for 2, and is denoted by —A$.

Let n € N, and suppose Q C R? is an open connected bounded set. We shall say that
has smooth boundary if there exists a C™ function f : S¥~! — RY such that f(S%!) = 99,
where S%~! denotes the unit hypersphere in R%. Note that every open connected bounded
set with smooth boundary is Jordan-contented (in the sense of [7T1, p. 271], see also [26),

pp. 370, 518]).

Remark 2.42. [71], p. 255] Suppose Q C R? is an open connected bounded set with smooth

boundary. Then —A% has discrete spectrum, and
(1- A% € K(La(®).

For open connected bounded subsets Q C R? with smooth boundary, we define the

function Ng : [0,00) — NU {oo} via the Borel functional calculus by
Na(A) = rank (X[O,)\)(_A%))v A >0,

where X([o 5 is the characteristic function of the interval [0,A) (see Definition be-
low). Nq counts how many eigenvalues of —A%, with multiplicity, are less than A. The
asymptotic behaviour of N is described by the celebrated Weyl law, of which we write
the following special case for Dirichlet Laplacians over open connected bounded sets with

smooth boundary.

Theorem 2.43 (Weyl law). [71, Theorem XIIL.78] Suppose Q C R is an open connected

bounded set with smooth boundary. Then

lim Na(A) _ Vol(Sd_l)m(Q)7
A—00 )\% (27T)d

(2.13)
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where Vol(S¥™1) denotes the geometric volume of ST1.

Proposition 2.44. Suppose Q C R is an open connected bounded set with smooth bound-
d
ary. Then, for every p > 1, we have that (1 — A%)_ﬂ €Ly (L2(Q)) Furthermore,

d ol(STHm(Q
T, (1 - AR)#) = 28 Jm ((277))‘1 SV

where w is any extended limit on {x(N).

Proof. Rearranging Theorem above and taking the power of 113 yields

1

lim No(A)7(1+X) "% = CJ, (2.14)

A—00
where Cyq = (27) =4 Vol(ST"1)m(9).
Since (1 — A%)_% is positive, the singular values of (1 — A%)_% coincide with its
eigenvalues. Moreover, since —A% has discrete spectrum, the Borel functional calculus
[69, Theorem VIIL.5] implies that all eigenvalues of —A%, counting multiplicity, may be

ordered by
. O\ % Q '
Aj= =1+ u(j, (1= Ap) ) @ €o(-Ap) C [0,00), jEN.

d
Since ,u((l — A%)_2P) is nonnegative, decreasing and converging to zero by construction,

we have that {);} ey is nonnegative, increasing and unbounded. Hence,
Na(Aj) ~1+j4, asj— oco.
Substituting A = A; in (2.14]) above then yields

LR 1
lim (14 )7 p(f,(1— AB) %) = CF,

J—00

d
2

Hence, by the definition of ¢, (N), we have that (1 — A%f% € Lpoo(L2(9)).

Next, setting p = 1, observe that for all € > 0, there exists N. > 0 such that

Cd,Q ‘ e

. _d ‘
‘M(J:(l—A%) 2)—1+]. 115 for all j > N..

Summing up over j = Ng,..., N, for any N > N, dividing through by log(2 + N) and
taking the limit as N — 0o, we observe that

. _d
lim Z;'V:NEN(%(l*A%) 2)
N—s00 log(2 + N)

— Cd@ < €.

Therefore

. _d
o Lt (1= AR)7E)
N—00 log(2+ N)

. _d
lim Zj'v:NEN(J?(l_A%) 2) B
N—o00 lOg(2—|—N) ’

| Tr, (1= A8)7%) - Cug| <

+
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Finally, since ¢ is arbitrary, we conclude that

2.5.2 Cwikel estimates

In the previous section, we saw that for open connected bounded sets Q C RY with
smooth boundary, the Bessel potential (1 — A%)_% belongs to the weak Schatten class
Lp.0o (LQ(Q)), where —A% denotes the Dirichlet Laplacian for 2. However, for unbounded
Q, the operator (1 — A%)_% is not necessarily compact. For example, the Laplacian A
over R? has purely absolutely continuous spectrum o(—A) = [0, 00), so (1 — A)_% cannot
be compact.

However, there exist sufficient conditions on functions f,g € Lajoc(R?) such that the
operator

Mg(V) = MyF 1 M,F
defined on the domain
dom (Myg(V)) = {h € SR?) : | f- F (g B[], + llg - hll> < oo}
extends to a compact operator on Lo(RY) belonging to a (weak) Schatten ideal.

Theorem 2.45. [(7, Theorem 2.1], [72, Theorem XI.20], [79, Theorem 4.1] Suppose 2 <
p<oo. If f,g € L,(R?), then M;g(V) € L, and

[M7g(V)]|,, < consty - [| fllllgllp-

The following estimate for weak Schatten classes was first conjectured by B. Simon in

[78, Conjecture 1] and proved by M. Cwikel in 1977.

Theorem 2.46. [27], |72, Theorem XI.22], [79, Theorem 4.2] Suppose 2 < p < co. If
f € Ly(RY) and g € Ly (RY), then Myg(V) € Ly o and

[M7g(V)||, o0 < consty - [[fllpllgllp.co-

p?m_

For 1 < p < 2, the estimates are quite different. We define the following function

spaces in the style of M. Birman and M. Solomyak [10} [12]:

Definition 2.47. Let 2, denote the unit cube centered at n € Z%. For a region Q C R,
denote by xq : R? = {0,1} the characteristic function of Q; that is, for x € R?,
1, ifxeq,

Xa(x) =
0, otherwise.
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Then, for 1 <p<2,1<qg< o0, let

L)@ = {1 € La®) + T Il < oo

nezd

denote Birman—Solomyak space with the corresponding norm

1l = ( 3 r\fXQn\5>p, f € by(Lo) (B, (2.15)

ncZzd
Remark 2.48. 1f f € £,(Ly)(R?) and 0 < r < 1, then |f|" € £»(L4)(R?), since

1
p

N1 20 = 1 ey (2.16)

Remark 2.49. If 1 < p < 2, then for all a > %,
()7 € p(L2)(RY).
Theorem 2.50. [10], [T9, Theorem 4.5] Suppose 1 < p < 2. If f,g € €,(L2)(RY), then
Mg(V) € Ly and
[Mg(V)]|,, < consty - | Flle, () 19le, (2.)-

Next, for 1 <p <2 and 1 < ¢q < 00, define a weak variant of Birman—Solomyak space

as in [79, p. 9] by

lpoo(Lg)(RY) := {f € Lo(R%) : H{fognuq}nezd e < oo}.

with associated quasi-norm

1 ey etz = || {1 X2} ez

p?oo

Remark 2.51. If 1 < p <2, then for all a > %,
()7 € Lp,oo(L2) (RY).
Theorem 2.52. [7, 5.7 (p. 103)] Suppose 1 < p < 2. If f € £,(L2)(RY) and g €
lp oo (La)(RY), then Myg(V) € Ly oo and
1M ()], 00 < consty - 1 flle, ) 19116y ()

Unlike the case for the Schatten classes, the case L2  is a boundary case, and special
care must be taken to construct Cwikel estimates therein (see, e.g., [53, Theorem 5.6]).

In order to simplify the assumptions in Chapter |4l we seek Sobolev spaces strictly con-
tained in Birman—Solomyak spaces (see Proposition below). For brevity, if f € CO(R?)

and k=1,...,d, we adopt the convention

f(tk7xd—k) = f(th cee 7tk,$k+1, o ,.’Ed),

where t; = (t1,...,1;) € Rk, Xg—f = (Thy1,.-.,2q) € R,
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Lemma 2.53. Let 99 = [—%, %]d C R?, and suppose f € CU2y). For everyk =1,...,d,

- .
)< Y] / i |V (tr; Xa—1)| iy, (2.17)
ac{o13k V7203l
for allx = (x1,...,x2q) € Lo, and where Xg— = (i1, ..., Tq)-
Proof. Firstly, for —0o < a < b < oo, recall that if g is a C' function on the interval
[a,b] C R, then the mean value theorem and the fundamental theorem of calculus imply

that

b b
9(x)| S/a ’di(tt)‘dt—l—/a ‘g(t){dt, for all = € [a, b]. (2.18)

We now prove the lemma inductively. The estimate for k& = 1 follows from ([2.18]); for
every —% <Tg,...,xq < %, the expression f( - ;x4_1) defines a C'! function on the interval

[—3, 3], so we observe that

|f(x)| < /2 ‘51f(t1;Xd—1)’dt1+/2 | f(t1;xq-1)| dty.

1 1
2 2

Suppose now that (2.17) holds for some 1 < k < d. For each a € {0,1}* and every
—% S XYy s Tl Tty e v o, Td < %, the expression

vaf(xk; : ;Xd—k‘—l) — vaf(ﬂf]_, ey Tyt Th42, - - 'a:pd)

defines a C! function on [—3,

> /.

ac{o,} /17202

Z /11]k</[_

_11 11
ac{0,1}k 717202 272

+/[_

|V f (brg1; Xa—k) | dbrgr,
Jh+1

]. Hence, we may apply 1’ to obtain the estimate

N[

" |V f (ks Tpg1; Xa—p—1) | dbi,
] ‘vaf(tk;tk+1;xd—k71)‘dtk+1

] VO f (b ts1s Xa—p—1))| dtk+1> dty

o=
o=

- > [,

ac{o,1}k+1 7732

as required. ]

Lemma 2.54. Suppose f € CE(R?) and 1 < p < 2. Then, for alln € 79,

1 xoalloo < const- (30 [[(V)xa,l)" (2.19)

aec{0,1}4
Proof. Without loss of generality, we prove the result for n = 0. Observe that, for all
x € 2, appealing to Theorem for k = d yields
< @ — « .
sl X[ Iverwla= X [0 el

acf0,1}4” 723 ac{0,1}d
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Therefore, since x € 2 is arbitrary, if 2 < r < oo such that 1 = % + %, then the Holder

inequality gives the estimate

Ifxello < >0 | < 3 Ixel (Vv f)xell,

ae{0, 1}d ae{o,l}d

Appealing once more to the Holder inequality then gives

et <( 3 k) ((Z I al)’ =2 S el o

ae{0,1}¢ ae{0,1}¢ aec{0,1}4

3

Proposition 2.55. If 1 <p <2 and1 < q < oo, then Wg(Rd) C £y(Ly)(RY) and
1 lley(g) < comst - [[fllwg,  for all f € Wi(R?).

Proof. Let f € WH(R?) N CE(R?). By Lemma and the definition of the ¢,(Lg)-norm,

we have
1 @19) 1
1y < 1 lepzay = (D2 I x2alB) " comst- (2 D2 (Y fxanllh)”
nezd ae{0,1}4 nezd
1
= const - ( Z \\Vaf\\§>p.
ac{0,1}¢

Additionally, since ¢; is nested within ¢, we observe that

SOV < Y VS

ae{0,1}¢ ae{0,1}4

Hence, for all f € Wg(Rd) N CA(R?), we have the estimate

1fley(zy) < const- > V[, < const - || f[lyyg-
ac{0,1}4

Therefore, since W (R?) N CE(RY) is dense in W (R?), we conclude that
IFlleyza) < comst - [ llwg, for all £ € WoRD. s

We state the following special case of the Cwikel estimates for weak Schatten ideals,

which we shall make use of in both Chapters [3] and [4] below.
Proposition 2.56. Let 1 < p < oo, and suppose that § > %

(i) Suppose 2 < p < oo. If f € Ly(RY), then M(V) ™0 € L) oo
(it) Suppose 1 <p < 2. If f € WH(R?), then M(V)™° € Ly .

(i17) Suppose p=2. If f € W(RY), then M (V)™ € L.
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Proof. (i). Let p > 2, and suppose f € Lp(Rd). By Theorem we have that
My (V)™ € Lp oo for all § > 4, since ()70 € Ly o0(R?) for all § > £,

(73). Let 1 < p < 2, and suppose f € Wd(Rd). By Remark we have that (-)7% €
lpso(L2)(RY), for all § > d Hence, by Theorem we have that M (V)™ € L, , for
all > 4.

P

(iii). Let p = 2, and suppose f € W (R?). By (ii), we have that M|f|2(V)*25 € L1 oo,

since |f|? € W{(R?) by the Leibniz rule. Therefore, by [78, Theorem 3.1], we have that

M), = [[(V)° M () < My (9) )12 < o0,

5H2,oo Hli,oo

SO Mf<V>_5 S E27oo. OJ

2.6 Operator integration

In this section, we introduce one of the main technical tools of the thesis: double operator

integrals.

2.6.1 Weak operator integration

The foundation of double operator integrals in this text is based upon the following notion
of the weak operator integral. The exposition in this section closely follows Section 2.7 of

[25]. We assume throughout that (£2,v) is a o-finite measure space.

Definition 2.57. Let f : Q@ — B(H) be a function. Such a function is weak operator

v-measurable if, for all £, € H, the map

w <f(w)§,77>, w € Q,

is v-measurable.

Definition 2.58. Suppose f : Q — B(H) is weak operator v-measurable. We say that f

is weak operator v-integrable if

/ [[f(w)]] o dv(w) < oo (2.20)
Q

Now, define a sesquilinear form

&)y :=/Q<f(w)§,n>dV(w), for &, e H,

from which we see that

< ([ Il awte)lellal. - tor €. e 7.
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Hence, fixing & € H, the map n +— (&, 71)s defines a bounded, anti-linear functional on
H. Hence, by the Riesz representation theorem, there exists an element, which we shall

denote by [, f(w){dv(w) € H, such that

([ fe)gav).n) = (& = [ (fe)gm)avw), forally e i

Definition 2.59. Suppose f : Q — B(H) is weak operator v-integrable. The weak operator

integral of f is the operator defined by the expression

(/Qf(w) dV(w))f = /Qf(w)fdu(w), for £ € H.

Remark 2.60. By construction, we have that

| [ < [l 221

The following result is well-known for Bochner integrals. For the case of weak operator

integrals, we refer the reader to, e.g., [87, Lemma 2.3.2].

Lemma 2.61. Suppose Q C R is a measurable subset of the plane, for some d € Z.., and
suppose f : Q — B(H) is continuous in the weak operator topology. If f(x) € L1(H), for
all x € Q, and if

o] de < o,
Q

then f is v-integrable in the weak operator topology, [ f(t)dt € L1(H) and
H/ £(0) dtH < / £ )], dt. (2.22)
Q 1 Q

2.6.2 Double operator integration

Double operator integrals are used to obtain Lipschitz-type estimates and commutator
estimates that shall be used in both Chapters [3|and [4| below. First appearing in the work
of Yu. Daleckii and S. Krein [28, 29], double operator integrals were thoroughly treated in
the setting of () by M. Birman and M. Solomyak [8,[9,11] (see the survey [13] for further
details) and have been extensively developed in recent years [611 [59] 63, [60] [65] 66, [67].
Suppose X, Y are self-adjoint operators on a separable Hilbert space H, and h is a
bounded, Borel-measurable function on o(X) x o(Y) C R2?. Heuristically, the double
operator integral j};X Y is then defined as an operator on Lo expressed in terms of the

product of the spectral measures of X,Y by

XY
Ty = /g(y) /U(X) h(X, 1) d(Ex ® Ey)(X, ). (2.23)
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To ensure that this construction defines a bounded operator on the other Schatten—von
Neumann classes, we require that the function h belong to the integral projective tensor

product (see, e.g., [63]).

Definition 2.62. Suppose X,Y be self-adjoint operators on H. Let h be a bounded,
Borel-measurable function on o(X) x o(Y"). If there exists a o-finite measure space (€2, v)
and Borel (m X v)-measurable functions hq, hy on o(X) x Q, o(Y) x £, respectively (where

m denotes the Lebesgue measure on o(X),o(Y) C R), satisfying the conditions

/Q (Aes:flg() ‘hl()\,w)D (ugzlg/) ’hg(,u,w)D drv(w) < oo, (2.24)
and
B\ 1) = /Q By (0 @)ha (i, £) dv(w),  for A € o(X), 4 € o(Y), (2.25)

then h is said to belong to the integral projective tensor product of X and Y, denoted

Axy.

This function space forms a Banach algebra under the norm
[Allayy = inf / ( sup !hl()\,w)D( sup ‘hg(u,w)‘) dv(w), for heAxy,
hiha Jo N\ xeo(X) peo(Y)

where the above infimum runs over all possible choices of hy, he satisfying (2.24)), (2.25))
(see [59] for details).

Suppose A € B(H). By construction, if h € Axy and hi, hy are Borel functions

satisfying (2.24) and ([2.25]) for h, then the function

W <h1(Xaw)Ah2(Y7w)§a 77>a w e Qa

is v-measurable, for all £,7 € H. Combining this with (2.24]), we see that the map

w i hi1(X,w)Ahy(Y,w) is weak operator v-integrable.

Definition 2.63. Suppose X,Y are self-adjoint operators on H, and suppose h € 2Ax y.
The double operator integral (DOI) th Y is the operator on B (H) defined by the expression

TEY(4) = /ﬂ I (X, w) Ahs (Y, w) du(w), for A € B(H), (2.26)

where hj,hy are any Borel functions satisfying (2.24) and (2.25) for h, the operators

hi(X,w) and heo(Y,w) are understood via the Borel functional calculus for each w € Q,
and the integral over Q) is understood as a weak operator integral (as in Definition m

above).
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Proposition 2.64. [59, Proposition 4.7], [66, Corollary 2] If X, Y are self-adjoint opera-

tors on H, h € Ax )y, and 1 < p < oo, then th’Y is bounded on L,(H), and

XY
1Tn " lp—p < llaxy (2.27)
where || - ||p—p denotes the uniform norm for operators on L,.

The properties of double operator integrals have been used to prove Lipschitz estimates
for £, (for functions belonging to the Besov space Bclx%l(R) when p = 1 [62, Theorem 4],
and for Lipschitz functions when 1 < p < oo [67, Theorem 1]). Theorems and
below shall suffice for our purposes.

Suppose h € C*(R). We define the divided difference of h by the expression

——=, itz #y,
Wl(z,y) = vy z,y €R,

h/(x)7 if z =y,

where h’' denotes the derivative of h. We seek sufficient conditions on h for the divided
difference hl'! to belong to the integral projective tensor product 2 x,y for any self-adjoint

X,Y.

Theorem 2.65. [66, Theorem 4] Suppose X,Y are self-adjoint operators on H. If h €
CZ(R), then hYl € Axy and

1A oy < comst - ([I7flo + 11 lloo + 12" loo)-

The following result was originally stated in the more general setting of semifinite von
Neumann algebras, and for a more general family of functions belonging to the integral

projective tensor product.

Theorem 2.66. [65, Theorem 3.1] Suppose X,Y are self-adjoint operators on H with a
common core C C H, and A € B(H), such that A(C) C C and XA — AY, defined initially
on C, has bounded extension. If h € CE(R), then h(X)A — Ah(Y) € B(H) and

h(X)A— Ah(Y) = J (XA - AY). (2.28)

Additionally, if XA — AY € L,(H), then h(X)A — Ah(Y) € L,(H) and

1h(X) A~ ARY)||) < 17,5 sl XA = A, 229
< const - (|hfloc + 1 [loc + 11"|c) - 1 X A — AY |l
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Note that the second line of (2.29) follows from (2.27) and Theorem [2.65
In Section [3.3.2] below, we shall want a Lipschitz estimate similar to the above theorem,
but for possibly unbounded h € 2Ax y. To this end, we shall use estimate for the L;-norm

of a Fourier transform of a continuous square-integrable function.

Lemma 2.67. [66, Lemma 7] Suppose f € Lo(R) N CHR). If f' = % € Ly(R), then
F(f) € L1(R) and
IFHIL < V2(1F 2+ 1£112). (2.30)

We provide the proof of the following lemma below for the convenience of the reader.

Lemma 2.68. [89, Lemma 2.8] Suppose B is a self-adjoint operator on H. If h € C?*(R)
such that ' € Wi (R), then hl) € Ap 5 and

1 g < V2(IH 12+ 12"]2).

Proof. By Fourier inversion [69, Theorem IX.1] on #’, the divided difference hl* of h may

be expressed as

1 1 1 _ )
Rl (z,y :/ B (sx+ (1—5s)y)ds= / / B (1) et sz (1=9)y) q ds.
@)= [ W+ =s)as=—= [ [ G
Observe that we may construct functions hi, ke : R x ([0,1] x R) — C defined by

hi(z, (s,t)) = €Ty (y,(s,t)) = et1=s)y

p—

and a measure v on [0, 1] X R given by dv(s,t) :== (h')(t) dt ds such that the decomposition

(2, y) = hi (2, (5,1))ha(y, (s,1)) dv(s, ). (2.31)

7
21 J{0,1]xR
However, appealing to Lemma above, since b’ € CY(R) and W, 1" € La(R) by as-

—

sumption, we have that (h’') € L1(R) and
1], < V2(IR 1|2 + [17]|2)-

Hence, the decomposition (2.31)) satisfies (2.24) and (2.25), and hl! € 2Ap B, with

p—

HhmHQlB,B S H(hl)Hl O

Theorem 2.69. [65, Theorem 5.3] Let p > 1. Suppose A € B(H) and B is a self-adjoint
operator on H such that A(dom(B)) C dom(B) and [A, B] € L,(H). If h € C*(R) such
that h' € W3 (R), then

|[4.n(m)] Hp < const - (||I[|2 + [1h"l2) - [|[4, B

P’



38

2. PRELIMINARIES



Zeta residues

The contents of this chapter are the product of my work with co-authors in [68]. We prove
the zeta residue formula stated in Theorem We then proceed to use this result to
provide alternative proofs for Connes’ integral formula for R? [48] and the Moyal plane

[86].
3.1 Concerning a lemma of Connes

In [24] Lemma 11 (§IV.3.a)], A. Connes stated

Conjecture 3.1. Let p > 1, and let H = La(SY). If 0 < f € Loo(SY), and 0 < B €
Lpoo(La(SY)) such that My, B] € (cp,oo (LQ(Sl)))O, then
P 1 1 )
M?BPM} — (MFBMZ) € (LLOO(LQ(S ))) .

0

1 1
Combining with Theorem Conjecture states that M ]? BM ]? € M o and

[MIS]
(M|

1
BM?) =lim(p — 1) Te(M2B*M

f pll

ol

Tr, ( )

~
~

whenever the limit on the right-hand side exists. This later limit is often easier to find,
which is the utility of this conjecture.

A variant of Conjecture Was recently proved in [25] by A. Connes, F. Sukochev and
D. Zanin.

Proposition 3.2. [25, Lemma 5.3] Suppose 0 < A € B(H) and 0 < B € L}, «, for some
1<p<oo. If[A2, B] € (Lpoo)o, then

BPAP — (A2BA2)P € (L1 00)o-

39



40 3. ZETA RESIDUES

The main result of this section is a trace-class version of Proposition A significant

difference is that the requirement that B € £, , is removed.
Proposition 3.3. If0 < A, B € B(H) such that [A2, B] € Ly, then

1%gp—q)Twu#A?—(A%BAév):o. (3.1)
D

The proof of Proposition in [25] used double operator integrals to obtain a weak
integral representation of the difference BP AP — (A%BA%)I’. We shall use the same key
approach to prove Proposition

For 1 < p < 2, we define a function g, on R by setting

;(1 — coth (%) tanh ((p _2 1)t>>, ift#0,

1f§ ift=0.

gp(t) ==

)

Lemma 3.4. [87, Remark 5.2.2] For all 1 < p < oo, the function g, € S(R).

Proof. Observe that, for each 1 < p < oo, the function g, is even. Moreover, g, and all of
its derivatives are bounded and smooth within a neighbourhood of zero (see Lemma
and its proof in the appendix). Therefore, since coth and tanh are also smooth and
bounded away from zero, we have that g, € C;°(R). Hence, since g, is even, it suffices to
show that g, is rapidly decreasing as t — oo.
By the definitions of the hyperbolic functions, we have the expression
1 (et 4+ 1)(elP~Dt — 1)
9p(t) = 5(1 - (et — 1)(el—D1 + 1))

(e —1)(et + &) ’

as t — oo.

In a similar fashion, all derivatives of g, have exponential decay at ¢ — oco. However,

polynomial growth is dominated by exponential decay; that is,

(-p)
t"g,(t) ~ t"el™P = o(e = t), as t — 00.

Hence, we conclude that g, is a Schwartz function. O

Proposition is proved in [25] using the following decomposition lemma. For brevity,
if 0 < A, B € B(H), then we let

Y =Y(A,B) == A2BA? (3.2)
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Additionally, for 1 < p < oo, define the family of operators

Ty = BP~\[B, AP] + BP"1AP"3[A2, B] + [B, A]Y?"! + A3[A3, B]YP, (3:3)
T, = Bp-1tis|g Aptis)y—is pp—1+is gp—5+is [AéjB]Yfis

+ BiS[B,Al—H'S]Yp—l—is + BisA%—HS[A%,B]Yp_l_iS, s € R\{O} (34)
Lemma 3.5. [87, Theorem 5.2.1] Let 0 < A,B € B(H). If 1 < p < oo, then
1 1 1
BpApA2BA2p:T/A s)Tsds, 3.5
(ipaty =1o- —— [ 4,00 5)
where the integral may be understood in the weak sense of Definition [2.58,

These complicated formulas for Ts, s > 0, are the product of technical computations
using double operator integral representations of differences of operators. The key obser-

vation is that if X,Y are positive operators, then one can show that

T (XX -Y)HX Y)Y = T (1) = XPTH (X -Y) (X -Y)YP - (XP-YP),

where

A
I =)}, if A#0and p#0,
¢1(>\7M) — gp( og(u)) and

0, otherwise,

dohpt) == (W 4 P YA =) = (W — ), for A > 0,

The reader is referred to |25, §5] and [87, §5.2] for the full details.
We shall use this integral decomposition to show that the trace of the difference

(p—1)(BPAP — (A%BA%)I’) is o(1) as p | 1, whenever [A%, B is trace-class.

Proof of Proposition [3.3,
Firstly, we define the following operators for brevity:
Xy = /]R Gp(s) BB, APTE]Y T ds, Xy = /]R Gp(s) B AP=3 5[ A3, B]Y ~% ds,
X = /lR Gp(5)BH[B, ATE)Y inds, Xy = /R Gp(s) B A2 T[4z B]Y 7% ds.
Then, appealing to Lemma |3.5 we have the decomposition
BPAP —YP To — \/12? /Rg}p(s)Ts ds

(3.6)
=Ty — (27) "2 BPH(X1 + Xo) — (27) 72 (X3 + X4)YP L.
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We treat only the term BP~'X7; the other terms may be considered using similar argu-

ments. Consider the function g, s defined by the expression

2ptis)y 4 (), if x € R\ {0},

0, if x =0.

dp,s(x) =

where 14 is any function belonging to C2  (R) such that |[1/4|cc, ¥4 |lscs |¥4]lce < 1 and
Ya(z) =1, for all z € [0, ||Afloo]. Then, since p > 1, we also have that g, € CZ (R).
By Theorem [2.66], we have that

|
H[BaAp—HS]Hl § const - (qu,SHOO + ||Q;;,s||00 + Hq//,s

) |(B. 42]]),
o) - ||[B,Az]||,, if|s| <1
O(s?) - ||[B, A2]

Hl, if |s| > 1.

However, this gives us the estimate

J a5, 477y~ as < [ Jap(o] i3, 477 as

()|[[1B. 42]]], as

— const - (|gpll1 + ||ggu1>H[B,A%1H1

E30)
< const - ([lgpll2 + llgpl2 + llgp 12 + gy 12) 1B, A2,

§const‘/ 1+s

) (3'7)

where the second last line follows from the duality of differentiation and multiplication
by a polynomial under the Fourier transform, and the last line follows from Lemma [2.67

since gp, g, € S(R). Therefore, appealing to Lemma we obtain

(2:22)

X1l < s)||| BB, APTE]Y 7| ds

() "
< const - ([lgpllz + llghll2 + llgsllz + gy I12) || (B, A2]]),.-

Hence, by Lemma (see Appendix below), we have the estimate
_ _ 1
[(p = D) Te(BP ' X1)| < (0= DB Yol Xalh < O((p —1)2), pi1.

Repeating this argument for the remaining terms on the right-hand side of (3.6)), we obtain

the estimate

|(p— 1) Tr(BPAP = YP)| < O((p—1)

[N
~—
UJ
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3.2 A locally compact residue formula

In this section, we prove one of the main results of this thesis, Theorem [I.I} Appealing to

Proposition we obtain the following result for M1 .

Theorem 3.6. Suppose 0 < A, B € B(H) are such that AB € M . Suppose that

[A%, Bl € L. Let C >0 be some real number. The following are equivalent:

(1) AB is Dizmier measurable, and Tr,(AB) = C for all dilation-invariant extended

limits w.
(ii) lim.joe Tr(B*eATe) = C.

Proof. Firstly, since [A%,B} € L1(H) and AB € M o(H) by assumption, we have that
A2BA2 = BA + [A2, B]A2 € My oo(H) and

[SIE

Tr,(AB) = Tr, (A2 BA?) + Tr, ([A2, B]A2) = Tr, (A2 BA2).

First, we show that (i4) = (i). Assume that the limit lim.joe Tr(B**¢A"¢) exists.
Then, we have by Propositionthat the limit lim. g e Tr ((A%BA% yite ) exists and agrees
with the former. Hence, appealing to Theorem [1.5] above,

Tr,(A2 BA?) = liz & Ty ((A2BAz)'He) = lim e Tr(B'teAlte),
E. €.

Next, we show that (i) = (ii). Assume that AB is Dixmier measurable. Then, again
appealing to Theorem we have that the limit lim.ge Tr ((A%BA%)H‘E) exists and
agrees with Tr,(A2BAz). Hence, by Proposition the limit lim.joe Tr(B1TeAlTe)

exists and

lime Tr(B'""*A'"*) = lime Tr (A2 BA?)'*) = Tr, (A2 BA?). O
el0 el0

From this result and Theorem m (see Section above, which implies that, for
every extended limit w, there exists a dilation-invariant extended limit wg such that, if

A € L s, then Try,(A) = Try,(A)), the result for £ o follows easily:

Theorem 3.7. Suppose 0 < A, B € B(H) are such that AB € L1 . Suppose that

[A%,B] € L1. Let C > 0 be some real number. The following are equivalent:
(1) AB is Dizmier measurable, and Tr,(AB) = C for all extended limits w.
(41) limeyoe Tr(BTeAlTe) = C.

Combining Theorem [3.6] with Theorem [3.7] gives Theorem
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3.3 Connes integration formula for R?
In this section, we calculate the Dixmier trace of the operator

([® M)(D) 4 =T& Mp(1—A)2

on the Hilbert space CN¢ ® Lo(R?) (where Ny = 2@) for f € W{(R?) using Theorem
By using Cwikel estimates (see Section above), we shall see that it suffices by a
density argument to apply Theorem [3.7] with

A=1@M; and B= (D)™

for 0 < f € S(RY).
We need to check that []I ® Mf 1 (D)‘d} € L1. The pseudodifferential calculus tells us
that
(M7, (V)] = [My, (1 - &)%) € £y,

for any S(R?). However, we note that S(R?) is not closed under taking positive square
roots. For example, if f(z) = 22", z € R, then 0 < f € S(R) and

22

)'(z) =sgn(z)(1-2%)e” 7, zeR\{0},

N

(f

which is clearly discontinuous at x = 0. Nonetheless, the assumption V( f %) € £1(Lo)(R%)4
is sufficient to check that [A%,B] € L; in this case, and we shall show this assumption is

redundant if we already have 0 < f € S(RY).

3.3.1 Square roots of Schwartz functions

We investigate the smoothness and decay of the nonnegative function f 3= ‘\/f }, for
0 < f e S(RY. Since f > may not be differentiable at the zeros of f, we make the
following observations, starting with the Malgrange lemma for strictly positive f, whose

proof supplied in [39, Lemma 1] is given below for the convenience of the reader.

Lemma 3.8 (Malgrange lemma). If f is a strictly positive Cg—function on R, then

1
_ A

\/5 )

Proof. Firstly, fix some x € R and choose some ¢ > 0. By Taylor’s theorem, there exists

(£2) ()]

for every x € R.

a constant ¢ € (z,x + ¢) such that

2 2
0< f(w+e) = f(2) +=f (@) + 5 £"(e) < f(2) + e (2) + S |
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Observe that the expression on the right-hand side is a strictly positive quadratic in e.

Particularly, it has no real solutions, so it has negative discriminant—that is,

fl@)? <2f@)f"le, z€R.

Taking the absolute value followed by the square root of both sides of this inequality, and
dividing through both sides by 2f > (x), yields the result. O

The Malgrange lemma offers us the following Lipschitz condition on the derivative of

f%, for a monnegative C2-function f.
Corollary 3.9. If f is a nonnegative Cg-function on R, then f% 1s Lipschitz and
% / <" %
1C72) o < 117715

Proof. For every n > 1, define the function f,(t) = f(t) + %, t € R. Since f, is strictly
positive, we may immediately apply the Malgrange lemma above to bound the Lipschitz

1
constant of f,? by
1 1 1
1) S Ml = 11715

In particular, we have the expression

Sl

1 1
2 (@) = f2 )| < 115 - |z —yl, forallz,y € R.

Taking the pointwise limit of the above as n — oo yields the result. O

Remark 3.10. Suppose f > 0 is a C’g—function on RY. For each j = 1,...,d, by fixing
all variables xy, for k # j, taking the partial derivative 0;(f %) is the same as taking the
derivative of a univariate function. Hence, by Corollary we have that

l0;(rH)|l., < 13 F1%. (3.8)

An immediate consequence of this remark is that f 1€ WL (R?) and, by the Leibniz rule
and the Holder inequality, defines a multiplication operator invariant on Bessel potential
space; that is,

M

A (W5 (RY) C W5 (RY), forall 0<s<1.

Lemma 3.11. If0 < f € S(RY), then

é}(f%) € 01(Lo)(RY), for everyj =1,...,d.
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Proof. Define a function g by the expression

g(t) = {t)"f(t), teR™

Observe that g is also Schwartz, since f is rapidly decreasing. Then, for each j =1,...,d,

the Leibniz rule yields
O5(13)(6) = (3(95)(6) = 20 1;(6) 2+ (g%)(®)) - (6) 2.

However, it follows from Remark that the first factor on the right-hand side of the
above defines a bounded function, while the function (-)72? belongs to ¢;(L2)(R%) by
Remark This concludes the proof. O

We may now obtain the following Cwikel estimate for (weak) trace class in a form

convenient for the Section [3.3.2 below.

Lemma 3.12. Ife >0 and 0 < f € S(R?), then

M —d o M —d—¢
5,(3 (V)" % e Ly, and aj(f%)<V) € Ly,

for every j=1,...,d.

Proof. By Lemma the function a](f%) € (1(Lo)(RY), for all j = 1,...,d. Combining
this with Remark [2.51|and Theorem [2.52( (with p = 1), we get that ]\4a 1 (V)74 € L] .
j

(f2)

Likewise, by Remark [2.49(and Theorem [2.50| (with p = 1), we have that Ma_(f%)<v> —d—e ¢
J

L1, whenever € > 0. O

3.3.2 Application of residue formula to the Euclidean plane

In this section, we use Theorem to recover Connes’ trace theorem for operators of the
form Mf<V)7% on CVe ® Ly(R?), where f € WI(R?) (see Theorem below). First, we

consider the case when f € S(R?) is nonnegative.

Lemma 3.13. Suppose 0 < f € S(R?). We have the following:
(4) (T Mf)z, (D)~ € L,

(ii) For every j,k=1,...,d,

[(11 ® M)z, (1 0;0(—A) ") <D>—d] €L
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Proof. (i). We begin by decomposing the commutator into treatable terms. Firstly, by
the identity (2.2) (see Section above), we obtain the expression

3d—1
[(@Mp)?, (D)™ = (D) 5 [I@ My, (D) 5|(D)'F
k=0

1
Then, appealing to Remark [3.10, we have that since f2 € WL (RY) c WE(RY), the multi-

1
plication operator Mf 3 is bounded on both Hilbert spaces Ly (R9) and W2 (R9). Therefore,
1
since (D)é =I® <V>% is well-defined in the domain C¢ ® W.? (R?) by construction, and
1
since (D)_é =1I® <V>_% maps CVe¢ @ Ly(R?) into CNe @ W3 (R?), the expression

[T M,y (D)75] = (D)5 [[@ M, (D)3](D) 5

is well-defined on all of CV¢ @ Ly(R?). Therefore,

[T M,y (D)) = Y (D)5 [Io M,y (D)s](D)s~*
k 3(;_1 k+1 1
== (D)5 Qe M )(D)s~ (D)3]
k=0
Now, let h(t) = (t)3 = (1 +t2)5. We have that
B (t) = %t(l LR R = %(3 o) (14 £2) %, (3.9)

so W', € Ly(R). Hence, by Theorem it suffices to check that
(D)~ (1@ M,y)(D)s . D] € L1,

for each k = 0,...,3d—1 (that is, the above commutator has bounded extension belonging

to L1). Appealing to Corollary above, we obtain the expression

(D)~ (L& M3 )(D)s ™, D] = (D)~"5" [[® M, D(D)

—d

ol

d
(2.6) _kt1 k_
= —Z<D> 5 (fyj®Maj 1 )(D)s 4
Jj=1

on the dense domain C¢ @ W, (R?). Since the expression on the right-hand side defines a
bounded operator on CN¢ @ Loy (]Rd), the operator on the left-hand side may be extended

to a bounded operator. Furthermore, by Lemma [3.12] we have for every j = 1,...,d that

]\4a (73 )<V>7d7% is trace-class. Therefore, by Theorem [2.20] we have
j
_kp T, 551 kg
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(7i). Suppose j,k=1,...,d. Observe that

(1 Mp)3, (L8 9;00(~A) ) (D)~
=I® [Mf%,ajak(—A)*l] (V)™ + (I® 8;01(-A) ) [I® My, (D).

Hence, by (i), it suffices to show that
[Mf%,ajak(—A)—l] (V)4 e L.
By Remark the operator
My Wi (R?) = Ly(RY)
is well-defined. Hence, we may write that

[Mf%ﬁjak(—A)_l] (V) =M

1
f2’

)0k (=0)"HV) ™+ 0 [M ., (—A) 7] Op(V)

+05(=0) T My, O (V) (3.10)

Since [Mf%,aj] = Maj(f%) € B(H) by Lemma and since 0y(—A)~! commutes with
(V)~4, we observe that

(M

4 01O(=A)THY) T = M (V)T (V)0(=A) 7

0;(f2)

However, by Lemma [3.12) we have that Ma (o )<V>*d*1 is trace-class. Hence, the first
i

term on the right-hand side of (3.10)) belongs to trace-class. Similarly, the third term of
(3.10) is given by

Oj(=A) MMy, RUV) ™ = 05(V)(-A) - <V>_1M8k(f%)

which also belongs to trace-class due to Theorem [2.20

It remains to show that the second term on the right-hand side of (3.10) is trace-class.
By Lemma (7) and the definition of the Laplacian, we have that

+0,0,(A) N (M

),

and, by appealing to Lemma [3.12| and Theorem [2.20| as above, we observe that each term

in the summation on the right-hand side also belongs to trace-class. O
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Finally, to explicitly calculate the Dixmier trace of (I® My)(D)~? using Theorem

we need to establish existence of the relevant limit.
Proposition 3.14. If0 < f € S(RY), then the limit

li = Tr (T @ My) (DY~ exists.
&

In particular, (1& M;)(D)~% is a Dizmier measurable operator on CN¢ @ Ly(RY) and, for
any extended limit w,

2Lz vol(st-1)

Tr, (T Mf)<D>_d) = d(2r)d

f(x) dx,
R4
where Vol(S¥™1) denotes the volume of the unit hypersphere S¥1.

Proof. We wish to apply Theorem for A=1® My and B = (D)1,
STEP 1: We verify that, for every 0 < € < 1, the operator B'T¢ A is trace class.

Since (D)~41+e) = [ @ (V)~41+2) we observe that
B1+6A1+€ =I® (<v>_d(1+6)M}+€). (311)

However, the classical trace on £1(CN¢ @ Ly(RY)) ~ My, (C) ® £1(L2(RY)) is given by
tr ® Tr, where tr is the matrix trace on My, (C) and Tr is the classical trace on £1(L2(R?)).

That is, if either of the relevant norms exist, then we have the identity

HBlJrsAlJrs”l _ NdH<v>7d(1+s)M;+eH1.

Since 0 < I—Jlre < 1, it follows from ([2.16]) that

14 Lt
17 vy = 1l Loy <

and therefore that f'*¢ € ¢1(Lo)(R?), for every 0 < ¢ < 1. Hence, by Remark and
Theorem the operator M}%(V)*d(l*s) is trace class for all 0 < € < 1, and so is its
adjoint <V>_d(1+5)M}+E by symmetry.

STEP 2: We now calculate Tr (<V>*d(1+5)M}+E) for ¢ > 0. We do so by considering

<V)_d(1+5)M}+5 as an integral operator. Observe that

1
(2m)

(V)19 ) (x) = FH ™9 (x - y)o(y)dy, ¢ € La(R?), x € R™

a
2 JRA

Hence, (V)~d1+e) M}Jre has an integral kernel given by the expression

1
(2m)

K(ij) — f(y)l—i-a . ]:—1 [<_>—d(1+a)] (X - y)7 X,y € Rd,

[S1ISW
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which is continuous [70, Theorem IX.7] and, by the Fubini-Tonelli theorem, belongs to
Ly (R? x RY), so we may appeal to Proposition to get that

Tr(Bl-i-aAl—I—a)NdTr (<V>_d(1+€)M}+E) =Ny K(x,x)dx

Rd
_ Na x)1te . Fo1[gy—d(1+e) x
= o iR F

- (QN&( /R (710 ds) /R f(0 ax)
_ N Vol(s*Hr(§)r (%)

2(2m)r (445=))

(3.12)

F(x)He ax,
]Rd

where in the last line we appealed to [I, §6.2]. Since f!*¢ — f pointwise as ¢ | 0, the

dominated convergence theorem yields

lim (X)H"E dx = f(x)dx. (3.13)
el0 R4 Rd
Since
de 2 de 2
li I'f—=)=-lmI'|—+1) =-= .14
il (5) = aipr(5+1) =g 314

the limit in Proposition [3.7] exists and is given by the expression

. Cd(ite o\ E Na Vol II(§) . eT(%F) .
e T (P70 M) ') EE et (L, 700" 0%)
N Vol(s™Y) i
 d(2m)d /Rd S () dx.

Finally, appealing to Lemma (i), the conditions of Proposition are satisfied.
Therefore, (I ® M;)(D)~¢ is Dixmier measurable, and we have that the Dixmier trace

Tr, (I® My)(D)~?) agrees with the above, for any extended limit w. O

By a similar argument, we may also obtain the following special case of Connes’ trace

theorem, which we require as a technical lemma for Section below.

Lemma 3.15. Let d > 2. If0 < f € S(RY), then the limit

lime Tr ((]I ® M) (1@ 0;0,(—A) ) 1+€<D)7d(1+€)> exists,

€l0

for all j,k=1,...,d. In particular, (I® M;)(L® 0;0,(—A)~1) (D)~ is a Dizmier mea-
surable operator on CN¢ @ Lo(R?) and there exists a constant Cyq > 0 depending only on d

such that, for any extended limit w,

Tr,, ((m Mf)(majak(—m—l)wrd) = 5j,k0d/ f(x)dx,
R4

where 6, denotes the Kronecker delta for j,k=1,...,d.
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Proof. We wish to apply Theorem for the bounded operators
A=T@M; and Bi=(I&h7(V))(D)™¢

where h;.tk € (L1,00 N Lo ) (RY) are the nonnegative-valued functions defined by the expres-

sions
|tjtk] _ |tite] — titk

;rk( ) = £[2(t)d” ng( ) = W, t e R4

Since I ® hfk(V) are bounded operators via the Borel functional calculus, and since
(I® My)*e(D)=40+9) € £; by Lemma we have that Bit®A'*¢ is trace-class, for
every 0 <e < 1.

We now calculate the classical trace of B;frEAHE for € > 0, which may be done by
considering them as integral operators. Observe that (hjjfk)l“'a € Li(RY), for all € > 0, so

F1 [(hfk)“rs] is continuous [70, Theorem IX.7]. Moreover, we have that

(h53) 5 (V)9) (x) = (f_lM;%:fcb)(X)

) (zi)s L0 ] = o0t 6 € La(R, x R

Hence, the integral kernel of (hjjfk)l’La(V)M #(1+4¢) is given by the expression

K(x,t) = (21)df1+6(t) CF [(hjfk)prs] (x—t), forx,tecRY

which is continuous and, by the Fubini-Tonelli theorem, belongs to Lo(R? x R?). Hence,

we may appeal to Proposition to obtain the expression

TI'(let+€A1+€) = Ny Tr (M}—’—E(h;%k)lJrE(V)) — N, K(x7 X) "
R4
. Ng b Tt e
- (277)% /Rd FrE)-F [(hj,k) ](0) dx

= (QJV&I/W(hjfk)lﬁ(t)dt-/ e (x) dx.

R4
First, we calculate limgwaTr(BJlfeAHs). We may pass to polar coordinates and

appeal to [I,, §6.2] to obtain the integral

/Rd(h;k)l%(t) dt = (/Ooo (1_:7:_);1;”(10 (/Qu(%’k(sjg) ds)

LI (%)

_MH‘E))/QWM(S’E) ds,

2

(3.15)

where I is the usual Gamma function,  denotes the compact set [0, 7]%2 x [0, 27] € R4,

and ug,u; are the continuous, uniformly bounded functions on © x [0,00) given by the
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expressions
d—2
uo(s, €) == |cos(s1) sin(s1) cos(sz)‘prE H sin?f71(s;),
(=1
uy(s, ) = |cos(s1) ‘Ha H sin?™ " 1(s;), fors=(s1,...,54.1) €N, e>0.

By the dominated convergence theorem, we observe that

lm [ up(t,e)dt = / U (t,0) dt =: a,, < 00, for each m =0, 1.
&0 Jo Q

Therefore, by (3.13) and (3.14)), we obtain the limit

) as. . Ng
lsliglaTr(B}fsAHa) = d(J27T) f / f(x (3.16)
where a, == g(’gfr\;i‘i > 0, for each m =0, 1.

Next, we calculate lim, wsTr(BlﬁAHE). By a similar argument to (3.15)), one has

the integral e
- FEI(S)
1+ _ 2\2)\%
/Rd(hm) “(t)dt = o (1+E)) /Qv(;j,k(t,s) dt,

where vg, v1 are the continuous, uniformly bounded functions on € x [0, 00) given by the

expressions
1+5 det— 1
vo(s,e) = (‘cos s1) sin(sy) cos(sz)| — cos(sy) sin(s1) cos(s2) ) H sin (se),
1+£ det— 1
vi(s,€) = (‘cos (s1) } — cos(s1) ) Hsm (s¢), forse, e>0.

Note that the values of vg,v; at € = 0 are given by

d—2
vo(s,0) = up(s,0) — cos(s1) sin(s1) cos(s2) H sin?*"1(s),
=1
d—2
v1(s,0) = uy(s,0) — cos?(s1) H sin?~~1(sy), foralls € Q.
(=1

Hence, the dominated convergence theorem implies that

ap—CJ, ifm=0,
liIBl Um(t,e)dt = / U (t,0) dt =
=0 Jo Q a —C, ifm =1,

= am —mCY, for each m =0, 1,

where
d—2

Cl = / cos®(s1) H sin?=*"1(sy) ds > 0,
Q

(=1
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and since
d—2

Cl = / cos(s1) sin(sy) cos(sa) H sin? =1 (s;) ds = 0.
@ =1

Hence, by a similar argument to (3.16|) above, we have that

lime Tr(BIeATe) = (agj L (5j,k0d)/ f(x)dx
10 : Rd

where Cj := Ny(27)?C’, > 0 depends only on d.
Appealing to Lemma (77), we observe that the conditions of Proposition are
satisfied. Therefore, (I® M;)(I® (hjik)(V)) (D)~ is Dixmier measurable and

Tr, (I® My)(I® 0;04(—A) ") (D)%) = Tr,(AB;) — Tr,(AB_)

= lime Tr(B;™A'"®) — lime Tr(B T AM) = 4, de/ f(x
el0 €l0 ’

for any extended limit w. O

Theorem 3.16. If f € W{(RY), then (I® M;)(D)~? is a Dizmier measurable operator
on CNe @ Lo(RY) and, for any extended limit w,

2Lz vol(si-1)

Tr, (I® Mf)<D>_d) - d(2m)d

f(x) dx
R4
where Vol(S4~1) denotes the volume of the unit hypersphere S¢1.

Proof. Without loss of generality, assume f is nonnegative. Since S(R?) is dense in the
Sobolev space W{(R?), one may construct a sequence {f}nen of nonnegative Schwartz
functions on R? such that f, — f in W{(R?). Then, by Proposition m (with p = 1,
0 = d), we have

[M(V) = = My, (V) 77| o < const - |[f = fallyg = O

Hence, the sequence of operators { My, <V>7d}neN converges to M¢(V)~%in £ o. There-

fore, since Tr,, is continuous on L1 o,

NdVOl(Sd 1)
d(2m)d n—>oo

Ny Vol(S¢1)

BT R

T, (T® My)(D)™?) = Ng lim Tr, (M}, (V)™9) = | I dx

where in the second equality we appealed to Proposition [3.14] O
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3.4 Connes integration formula for the Moyal plane

In this section, we obtain an analogue of Theorem [3.16] for the noncommutative plane.
The reader is advised that any unexplained notations are properly defined in Section [3.4.1
below.

We consider the Fréchet x-algebra S (]RQG), which is a representation of the algebra of
Schwartz functions (S (R2), <>@) in the type I von Neumann algebra Lo (R%). Here, the
binary operation g on S(R?) is a noncommutative analogue of the convolution product
parametrised by a real-valued nonzero anti-symmetric matrix © € My(R). This space has
been studied previously in [41], which established an isomorphism between S(R%) and the
algebra S of “infinite matrices with rapidly decreasing entries”.

Using this isomorphism, we deduce that S(R%) has a nontrivial positive cone and
that, if f € S(R?) is represented in S (R%) by a positive operator, then there exists some
g € S(R?) such that gog g = f (see Corollary below). The invariance of the space of
Schwartz elements under the square root operation is a feature of the noncommutivity of

©g. We shall observe that the estimate

[Ope(f)2,(1—Ae)™'] € £1, 0< Opg(f) € S(RS)

(where Opg(f) and Ag are defined in Section below) follows from the fact that
S(R2) is naturally embedded in the noncommutative analogue of Sobolev space W (RZ)
defined in [53] (see, e.g., [86, Lemma 3.3]). Then Theorem can be used to show (see
Proposition below) that

Tr, (Ope(f)(1 — Ae)™") = 7f(0).

This trace formula was previously shown in [86] for X (1 — Ag)™!, for any X € WZ(R)
[86, Theorem 1.1], but the argument and approach here are new. By a density argument,
we recover the result in [86] in Corollary below.

The definitions in this section are derived from [41], 42} 35, [53].

3.4.1 Definition of the Moyal plane

Noncommutative Fuclidean space may be defined for arbitrary dimension d € Z, and
arbitrary anti-symmetric © € My(R), and is denoted Loo(RE). However, since [53, Corol-

lary 6.4] gives a von Neumann algebra isomorphism

LOO(R%) = LOO(R%‘)@) e ®LOO(R%) ® LOO(R)® e ®LOO(R)7

%rank(@) times null(©) times




3.4. CONNES INTEGRATION FORMULA FOR THE MOYAL PLANE 55

where S = ( 0 (1) ), we shall only consider the 2-dimensional noncommutative Euclidean

space, also known as Moyal plane.

Definition 3.17. Let 6 € R, and let © = ( 2

(9) ) Define a bilinear form on R? by

<Xay>@ ::X'@yze(xly2_$2yl)7 X,y ER2'

Remark 3.18. Observe that the skew-symmetry of © implies the skew-symmetry of (-, -)e;
that is,

(x,y)o = —(y,x)e, for all x,y € R% (3.17)

For each t € R?, define an operator U on Ly(R?) by
(UL f)(x) == e " tX0o f(x —t), fe Ly(R?), x € R
Remark 3.19. For every s,t € R?, we have that
USUS = e 0908 [ st € R (3.18)
In particular, (U2)~! = U®,, for all t € R2.
Proof. Observe that, for all f € Ly(R?) and all x € R?, we have

(UEUS 1)) = e (U2 f) (x — ) = e oo 0o f(x —  — )

=BV Uf f)(x), xeR%. O
Remark 3.20. For every t € R?, Ut@ is unitary.

Proof. By the previous remark, it suffices to show that (U2)* = U®,, for any t € R2.
Indeed, for all f,g € R?, we have that

(UL f.g) = / emXe f(x —t)g(x)dx = | f(x)etxtteg(x +t)dx = (f,USyg).0
R2 R2

Definition 3.21. The von Neumann algebra on Lz (R?) generated by the family {US }¢cp2
is called the Moyal plane, and is denoted by Loo(RZ).

Remark 3.22. Loo(RE) is x-isomorphic to B(La(R?)) (see, e.g., [53, Theorem 6.5]). There-
fore, it is equipped with a canonical trace 7 (for the definition of a trace on a von Neumann
algebra and the various definitions of its properties, the reader is referred to [57]). The
faithful, normal, semifinite trace 7 is the classical trace on B(LQ(Rd)) composed with the

*-isomorphism.
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In LOO(R%), we may define an algebra of “multiplication operators” corresponding
to the Schwartz functions. Unlike the Euclidean case, this algebra is designed to be

noncommutative in nature.

Definition 3.23. For a Schwartz function f € S(R?), define the operator Opg(f) €
o (RE) by

Opo(f) = [ FOU (319

where the integral on the right-hand side may be understood as a Bochner integral. The

family of such operators,
S(RE) = {Ope(f) : f € SR},
is called noncommutative Schwartz space.

Remark 3.24. Observe that, for every f € S(R?), we have
(Ove(f)g) () = /R T e g(x— t) s
f( t)e!tXeg(t)dt, g Ly(RY), x € R%.
Hence, Opg(f) is an integral operator whose integral kernel K is given by
K(x,t) = f(x —t)e'®™e, x t € R%
Remark 3.25. When f and g are Schwartz functions, we have

Ope(f) +Ope(g9) = Ope(f +9); Ope(f)°Opg(g) = Ope(f 2o 9),

where ¢g denotes the “twisted” convolution

(f ¢0 9)( / f(t Je HtXe dt,  x € R2
The Schwartz functions equipped with the associative product ¢g forms a Fréchet algebra
[41]. Therefore, Opg is a *-isomorphism between the algebras (S(R?),0e) and S(R3).

The operation ¢g is a noncommutative analogue of the classical convolution product,
and not the pointwise product. However, one may consider elements of S (R%) as operators
from the Fourier dual picture treated in [35], where the product of functions was specified

as the Moyal x-product. That is, we have the following:
Proposition 3.26. [41] If f,g € S(R?), then

F(fxe g) = (Ff) e (F9), (3.20)
where the product f xo g € S(R?) is defined by

(f xo 9)(x) = f(x+s)g(x+t)e o1 dsdt, xeR> (3.21)

ﬁRQ R2
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In the following, we let foo € S(R?) denote the Gaussian function defined by the

expression

0]x|?

0
foo(x) = —e 2, forxeR%
7r

Rema,rk 3.27. We have that fo’o (e f070 = fo,o.

Furthermore, since we are in the Fourier dual picture, the “differentiation” operators
we must consider are instead the coordinate operators.

In the following, for s > 0, we define the Bessel-weighted Lo-space by
L3(R?) = {f € Lo(B?) : ()°f € Lo(B?)}.
Definition 3.28. We denote by @1, Q2 the coordinate operators, defined by the expression
(Qrf)(x) == a2 f(x), for f€CZ,(R?), x € R? k=1,2.

Both Q1, Q2 are essentially self-adjoint operators on Lo(R?) whose closures are defined

on the domain [76, pp. 53-54]

dom(Qu) == {f € La(®) s [ |nf(®)Pat <ocf, k=12

Hence, for each k = 1,2, any subset of dom(Q}) containing C°_(R?) is a core for Q}, (this

com

includes Schwartz space S(R?) and Bessel-weighted Lo-space Li(R?)).

Furthermore, on L2(RY), we have that the commutator
Q;,Qrl =0, j,k=1,2.
Additionally, for every t = (t1,t2) € R?, we have the commutators
(@1, US] =00, [Q2,U¢] = 12U, (3.22)
which each extend to a bounded operator on La(R?).

Definition 3.29. Define the Laplace multiplication operator Ag on Ly(R?) by the ex-
pression

Ao = Qi +Q3, dom(Ae) = L5(R?).
Moreover, we define the Dirac multiplication operator on C? ® Ls(R?) by
Q=mM®Qi+72®Q,  dom(Q)=C*® Ly(R?),

where 71,72 are 2-dimensional gamma matrices (see Definition [2.5in Section above).
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Remark 3.30. Note that Ag does not actually depend on the choice of ©; this convention is
only chosen to distinguish the Laplace multiplication operator from the classical Laplacian.
Since Ag = F(—A)F~1, the operator Ag is positive and self-adjoint, and since Q =
(I® F)D(I® F~1), the operator Q is self-adjoint and, on the domain C? @ L2(R?), we
have that Q2 =1 ® Ae.

Definition 3.31. Let Li(R%) denote the trace class of Loo(RZ) with respect to 7, which
is equipped with the corresponding norm
X[l = 7(1X]), X € Li(RY).

For X € L1(R%), if C C Ly(R?) is a core of Q; and X (C) C C, denote by 9;X = [Q, X]
the (possibly unbounded) commutator of Q) with X defined on C, for each k = 1,2. If
0, X extends to a bounded operator, then 9;X € Loo(RE) [53, Proposition 6.12]. For

m € N, we define the noncommutative Sobolev space Wi™(R%) by
W(RZ) = {X e Li(R3) : 01052 X € Li(RE), Vo, as € Ns.t. a; +ag < m},
and equip this space with the norm

IXNwp = Y 91052 X ]y, for X € W(RR).

a1+o2<m

Remark 3.32. By [86, Lemma 3.3], the subspace S(R%) is dense in WZ(R%).

We have the following noncommutative analogue of a Cwikel estimate, whose proof

may be found in [53]. We let Vg = (Q1,Q2), so that

[N

(Vo) = (1+QF +@3)2 = (1+Ae)*.
Note that Vg, like Ag, does not depend upon the choice of ©.
Theorem 3.33. [53, Theorems 7.6 and 7.7] If ¢ > 0 and X € WZ(R%), then
X(Vo) 2 € L1, X(Ve) 2 €Ly,
and
HX<V®>_2H1,OO < const - HXHWIZ.
3.4.2 The algebra of rapidly decreasing double-sequences

In this section, we shall investigate the noncommutative algebraic structure of the Fréchet
algebra (8 (Rz),o(g) to demonstrate that it is closed under taking positive real powers.
This is done by recalling the algebra of rapidly decreasing double-sequences of J. Gracia-

Bondia and J. Varilly [41].
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Definition 3.34. We say that a square-summable double sequence ¢ = {¢mn}mnen €
05(N?) is rapidly decreasing if, for every k € N,
ri(c) = < Z (m 4+ 1)%*(n + 1)2’€\cm7n\2>é < 0.
m,neN
The space of rapidly decreasing double sequences, denoted by S C £2(N?), equipped with
the family of seminorms {7y }ren forms a Fréchet space [41]. In addition, we equip this
space with the matriz product, which we define by the expression
c-d:= {%Cm’jdj’n}m,nel\l’ c,deS.
Remark 3.35. We have
ri(c-d) < r(e)ri(d).

In particular, S equipped with the matrix product is a Fréchet algebra.

Proof. Suppose ¢,d € S, and let £ € N. By the triangle inequality and the Holder

inequality, we observe that

‘ E Cm,jdin

N

< (Z ICm,j|2> : (Z |dfv"|2) ’

jEN jEN JEN
so that
rile-d? < (30 (mA 1)Plen?) (30 0+ D*|djal?).
m,jEN j,neN
Hence, (¢ - d) < ri(c)ri(d), -

We identify the algebra S with the corresponding space of bounded operators on the
Hilbert space f2(N) defined via the action
X = { Zcm,jx]} , c={cmntmnen €8, x ={xz;}jen € l2(N).
: meN
jEN
The matrix product therefore corresponds to the composition product of operators. More-
over, the theory of bounded operators on /3(N) provides a natural means of defining pos-

itivity of elements of S, as well as the continuous functional calculus.

Lemma 3.36. If0 <ce€ S, thenc? €8S for all p > 0.

Proof. Firstly, we prove the assertion for p = % Let d = c2. Since d is self-adjoint, we

observe that

N

1
‘dm,n|2 = }(dem,en>”<em,den>’ < [|den||2||den |2 = }<d2em»em>‘2 }<d2en7en>‘

1 1
= [emm|>lennl?,
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where the vectors {e;}32 are the standard basis vectors for {5(N). Consequently, for

k € N, we have that

e}

rr(d)? =Y (m+ 1) (0 + 1) |dy o

m,n=0

[e'e) [ere] 2
1 1
< 3 (104 1) el et = <Z 2k|cmm|2> .

m,n=0 m=0
By applying the Holder inequality, we obtain
00 ) 00 3 0o l
S (m 4+ 1) |epm|? < <Z 8) (Z (m+1) 8’f+8|cmm|2>
m=0 (m + 1 3 m=0

Therefore, we have

rk(cl)2 < const - rogio(c).

In particular, r;(d) is finite for every k € N. This proves the assertion for p = %
By induction, the assertion holds for p =27", n € N.

Let p > % Since ¢, cP are self-adjoint, we have that

2 — 1 1 — 1 1
[(@)man|” < lIPemlllicPen]] < [lcllZ2™" - llczemllllczenll < el - lemm|?|cnnl?-

Therefore,
1 1
() < el Z70 D (m A 1+ 1) |emm|? - |enn?
m,neN
o) L 2
— el (om0 emnlt)
m=0
That is,

ri(c?) < const - HcHgg_lrng(c)%.
This proves the assertion for p > % By considering ¢? = (¢?"")?"P, where 2"p > 1, we

conclude the argument for p > 0. O

Remark 3.37. If ¢ € S, then ¢? € S and, by Lemma le| = (02)% € S. However,
¢ =|c| = (|¢] = ¢). Hence, S is spanned by S,

By Proposition the work done for the Fréchet algebra (S(R?),*g) in [41] applies
equivalently to (S(R?),0g) (see also [35]). Define a family of functions fmn € S(R?), for

m,n € N, as follows: for x = (21, 72) € R?, let

|
T (iV0(y — iw2)) "L (0% ) foo(x), if m >,

m!
fn(x) = (3.23)
!
ﬁ‘(zx/é(xl + iasg))n_mL,(ﬁ_m) (0x?) foo(x), otherwise,
n!

()

where Ly’ denotes the nth Laguerre polynomial with parameter .
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Remark 3.38. For every m,n, k,f € N,

fm,n ) fk,f = 5n,kfm,fv

where 0, , denotes the Kronecker delta, since the family { fy, 5, }m n consists of the Fourier
transforms (up to constant factors) of the oscillator basis functions of S(R?) found in [35]

§8.1].

Proposition 3.39. [41, Theorem 6], [35, Proposition 2.5] For every g € S(R?) and every

m,n € N, there exists some cmn(g) € C such that

(frmm ©0 §00 fan)(X) = cmn(9) fmn(x), forallx e RQ, (3.24)

where the double sequence {cmn(g)} belongs to S. Moreover, the map = : S(R) — S

defined by

m,neN

E[0pe(9)] = {cmn(9)}pens 9 € SR?),

is a Fréchet algebra x-isomorphism between S(R%) and S.

Remark 3.40. Recall 7 denotes the normal trace on Lo (RZ). By Remarks and

we have that
Op@(fm,n)2 = 0mn Opg(fm,n), forall m,n e N.

Hence, Opg (fm,n) is nilpotent whenever m # n, in which case 7(Opg(fmn)) = 0; other-
wise, Opg(fm,m) is a projection. In fact, by (3.24]) above, we have that

Opg (fm,m) Ope(9) Opg (fm,m) = ¢mm(9) Ope(fmm), forall g€ S(R2)7

s0 Opg (fm,m) is an atom, and so 7(Opg(fmm)) = 1 by normality of 7. Therefore, since

Fmn(0) = £6,, ., for all m,n € N, we have that

T(Op@(fmm)) = Omn = gfmm(O), for all m,n € N,

where we denoted 0 = (0,0) € R2. Therefore, by continuity and linearity of 7, and since
{fm.n}mnen is an orthogonal basis for S(R?), we observe that
T T
T(OPG(Q)) = Z cm,n(g)T(OPG(fm,n)) = 5 Z Cm,n(g)fm,n(o) = 59(0), (3‘25)
m,neN m,neN

for all g € S(R?).

Remark 3.41. Let Z: S(R3) — S be the Fréchet algebra #-isomorphism from Proposition
above. Then, for every X € S (R%), there exists a double-sequence cx € S such that
E[X] =cx. If n € N, then
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since 27! is an algebra isomorphism. Therefore, since every continuous function is approxi-
mated by polynomials, and since = is continuous, the continuous functional calculus on S is
preserved by Z. In particular, if f € S(R?), then the double sequence {cm,n( f )}m nen € S

defines a positive operator on ¢3(N) if and only if Opg(f) € S(R3) is a positive operator
on Ly(R?).

Corollary 3.42. If f is a Schwartz function on R? such that Opg(f) is a positive operator,
then (Op@(f))p € S(R%), for every p > 0. In particular, for every p > 0, there exists
some f, € S(R?) such that

(Ope (/)" = Ope(fy)-

Proof. By Remark the isomorphism = : S(RE) — S preserves the continuous func-

tional calculus. Hence, for p > 0, Lemma |3.36] implies that
XP = (27 ex))’ =27 [c%] € S(RE), whenever 0 < X € S(RY).

By construction of S(R%), since X € S(RJ), there exists some Schwartz function
f € S(R?) such that X = Opg(f). Likewise, for every p > 0, since X? € S(R3), there
exists some f, € S(R?) such that X? = Opg(f,)- O

3.4.3 Application of residue formula to the Moyal plane

In this section, we verify that the conditions of Theorem are satisfied by the operators

on Ly(R?) given by
A=0pg(f) and B:=(Ve) ?=(14Ae)",

for f € S(R?) such that Opg(f) > 0, and calculate the value of the trace Tr(B*¢Al+e)
for ¢ > 0.

Firstly, we verify that the commutator [A%,B] € L.
Lemma 3.43. If f € S(R?), then
[Ope(f): (Ve)?] € L1.

Proof. For simplicity, it suffices to work over the domain S(R?), which is a core of Ag

and invariant under action of Opg(f). By Lemma (), we have that

[Ope(f), (Vo) 2] & —(Ve) 2 [0pe (/). (Veo)2] (Vo) 2= (Vo) ~2[Ae, Ope (f)] (Vo) 2,
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where in the last line we used the fact that the identity operator on Lo(R?) commutes

with Opg(f). By (3.22)), we have for each k = 1,2 that
Q. 0po(N] 2 [ fofQuUP)at wIOUSdt = [ (Qup(OUP dt
R2 R2 R2
= Opg(Qk.f)

Moreover, since Ag = Q% + Q3 by definition, we have that
[Ae,Ope(f)] = [@F + @3, Opel(f)]
= Q1[Q1,0pe(f)]+Q2[Q2, Ope (f)] +[Q1,0pe (f)] Q1+ [Q2, Ope (/)] Q2
= Q1 0pg(Q1f) +Q20pg(Q2f) +Ope(Q1f)Q1 + Opg(Q2f)Q2,

on the dense domain S(R?). Therefore, we have that

[Ope(f), (Vo)
=Q1(Ve) ' (Vo) ' Ope(Q1f)(Ve) >+ Q2(Ve) ' - (Vo) ! Ope(Q2f)(Ve) >
+ (Vo) 2 Ope(Q1£){(Ve) - Q1(Ve) " + (Vo) > Ope(Q2f)(Ve) " - Q2(Ve) !,

which extends to a bounded operator on Ly(R?) by the spectral theorem. Hence,

| [Ope(1). (Vo) 2| <[[(Ve) ™ Ope(@1f)(Ve) 2|, +[|{Ve) ™ Ope(Q2f)(Ve) |,
+[[(Ve) ™ Ope(Q1)(Ve) ||, +[[(Ve) ™ Ope(Q2f)(Ve) ||,

2 20pe (1) (Vo) ||, +2/|Ope(@2f) (Vo).

where in the last line we used Theorem 2.201 The assertion now follows from Theorem [3.33]
(with e = 3). O

Furthermore, we obtain the following expression for the classical trace of AB!T<.

Lemma 3.44. If f € S(R?) and if ¢ > 0, then

. 7r
Tr (Vo) (<) Opg (1)) = gf(o)-
Proof. Appealing to Remark (Vo) ~2(4) Opg (f) is an integral operator on Lo(R?)
whose integral kernel is defined by the expression

K(x,t) = (x) 72079 f(x — t)e!®¥e x t e R2.

By Theorem this operator belongs to £1. Moreover, since the integral kernel K is
continuous and belongs to Lz(R? x R?), Proposition implies that

Tr ((Ve) 29 Opg(f)) = /R (B f(0)e! e dt = £(0) - /R (20 at,

The integral on the right-hand side is precisely Z, and we are done. O
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Using these results, we arrive at the main result of this section.

Proposition 3.45. If f € S(R?), then Opg(f)(Ve)~2 is a Dirmier measurable operator

and, for any extended limit w,

Tr, (Ope(f)(Ve)2) = m(0).

Proof. Firstly, denote A := Opg(f). Recalling Remark we may assume without loss
of generality that A > 0. Then, by Corollary there exists some g € S(R?) such that
Az = Ope(g). Setting B := (Vg)~2, we infer from Lemma that [A%,B] € L.

Moreover, by Corollary there exists some Schwartz function fi,. € S(R?) such
that A€ = Opg(fi+e). By Remark and Lemma we have

ETe(BIEAY) = 7f14.(0) = 07(Opo (fi2)) = Or(A1).
Hence, by [34, Theorem 3.6], we have the limit
lime Tr(B™ A'™) = 0lim 7(A'™") = 67(A) = n£(0).
el0 el0

Therefore, since [A%,B] € Ly, and since AB € Lj by Theorem it follows from
Theorem that

Tr,(AB) = hﬁ?e Tr(B'™Ae) = 7 £(0). O
€.

Note that if we let f = Fh in Proposition for h € S(R?), then
/ B(t) dt = 27(Fh)(0) = 2Tr, (Ope(Fh) (Vo) ~?).
R2

Using the noncommutative Cwikel estimate (see Theorem above), Proposition

may be easily extended to noncommutative Sobolev space.

Corollary 3.46. If X € W(R2), then (I® X)(Q)™2 is a Dizmier measurable operator
on C? ® Ly(R?) and, for any extended limit w,

Tr, (I® X)(Q)?) = 207(X).
Proof. Since (I® X)(Q)™2 =1® X(Vg)~2, it suffices to check that
Tr, (X(Ve) ?) = 07(X).

By Remark there exists a sequence {f,}nen € S(R?) such that Opg(f,) — X in

the norm-induced topology of WZ(R%) as n — oo. In particular, since Opg(fn) — X
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as n — oo in the Lj-norm, we also have that 7(Opg(fn)) — 7(X) as n — oo. By

Theorem [3.33] we have

| X(V6)7 = Opo(£2)(Ve) *| | < const-||X = Ope(fu)||yyz — 0.

Hence, the sequence of operators {Op@(fn)(ve)”} C L1400 converges to X (Vg)~2 in

neN

the topology induced by the £1 o-quasi-norm. Therefore, since Tr,, is continuous in £ o,

T, (X{Ve) ™) = lm Tr, (Ope(fu)(Ve) ) = lim £,(0)*220 tim r(Ope(fu)

=07(X)

where in the second equality we appealed to Proposition [3.45 ]
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Lipschitz-type estimates for the

electromagnetic Dirac operator on

Rd

In the present chapter, we prove Theorems and As was already explained in
Section above, Theorem [1.2] follows from Theorem [1.9] using the techniques of double

operator integration. Namely, we can show (see Section below for details) that for
f € C®(R) with 0 < f' € S(R), and the sufficiently well-behaved bounded potential

d
V=10My—> v &M,
j=1

we have
gD+V)—g(D)+ La, if A=0and ¢ #0,
f(D+V)—-f(D)e ’
g(D+V)—-gD)+ Ly, ifAFO.

Thus, the asymptotic behaviour of the singular values of the operator f(D + V) — f(D)
is determined by that of the operator g(D + V) — g(D). This makes investigating the
behaviour of g(D + V) — g(D) our primary objective in this chapter.

Using the integral representation

1  dA _ _
g(D+V) —g(D) = — Re (/ A1((z>+v+z'(1+A)%) (D i1+ N)32) 1))
0 2

the second resolvent identity and Cwikel estimates, we can distinguish operators which
can be neglected (modulo appropriate Schatten ideals) and write g(D 4+ V') — g(D) as an
operator of the form Y, Mp, (I ® ga(V)), where the operator My, (I ® go(V)) belongs

67
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to the required weak Schatten ideal for every a (L4 for the electric case, and L4 for the
2

magnetic case).

The contents of this chapter are the product of my work with co-authors in [52].

4.1 Lipschitz-type estimates for the smoothed signum of the

Dirac operator

4.1.1 Auxiliary integral representation and Cwikel estimates
In the sequel, we shall make use of the notations
-1

Rop = (D+i(1+X3)?2)7", Rini=(D+V+i1+12)"", A>0.

We make several immediate observations. Note that

NG

Roal=(1+A+D?) 2 =T®(1+\—A)2.
By the spectral theorem, we have that
IRoalloos [Riallos < (1+X)72.
Furthermore, by the second resolvent identity, we have that
Rix=TRoxr—Ri VR
Hence, using this equality repeatedly, we obtain the following expressions:

Rix—Rox=—RiaVRoxr = RiA(VRoA)? — RoaVRo

= -RiA(VRoA)> + Roa(VRox)? — RoaAVRox

Proposition 4.1. For any self-adjoint V € B((CNd ® Lg(Rd)), we have

5D+ V) ~5(0) = 2 ([T RiA = Ra).

where the integral on the right-hand side converges as a Bochner integral.

Proof. By [B0, p. 282], we have

1 [ dA
u+ﬁr%=/ —S(1+A+ A%
T™Jo Az

(4.2)

for any self-adjoint operator A on H. Hence, for all £ € CN¢ @ W} (R?) = dom(D) =

dom(D + V'), we have

(8D +V) —g(D))¢ = 1/00 Q((zu V)1 +A+(D+V)?) ™ =D+ A +D2)‘1)£.
0

T A2
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Indeed, the integrand above defines a weak operator Lebesgue-integrable function on

(0, 00); this follows from the fact that, for every &, € CN¢ ® Ly(R?), the map

A il<(1>+ V)14 A+ (D+V)) gn) - i1<D(1 +A+DY) ), for A>0,
A2 bV

defines a Lebesgue-measurable function on (0, 00) and, by [19, Appendix A-Lemma 6 (2)],

we have the estimate

[
0 )\%

Therefore, we may

= Viedh _
1
AB(1+A)

D+ V)1 +r+D+V)?)"! —D(1+)\+D2)’1H g/
o0 0

g(D+V)—g(D) = 1/Oof\i\((D+V)(1+)\+(D+V)2)_1—D(1+>\+D2)‘1>
m™Jo 3

as a weak operator integral. In fact, one can get that this integral converges in the Bochner

sense from continuity [36, Lemma 3.1]. Furthermore, since
Re(Rop) = D1+ A+ D)L, Re(Rip) = (D+V)(L+A+(D+V)?) 7,

we have that

A2

6D+ V) —e(D) = 2% ([ S2Rus~Ro)). (1.6

as required. O

Remark 4.2. Combining the integral representation (4.5) with the equalities and
, one can represent the operator g(D+V)—g(D) as a sum of several Bochner integrals.
The idea of the proof conducted in this section is that one can prove some of these integrals
fall into the Schatten ideal £ d in the electric case and L4 in the magnetic case. We argue

that if one can estimate the L£,-valued function f(-), for 1 < p < oo, by

IFO], = o((1 4+ 1)),

then the Bochner integral

defines an operator belonging to L,,.

In both the electric and magnetic cases, one of the integrals will admit (modulo the
relevant Schatten ideal) a leading term, which we shall later prove (in Section below)
does not belong to the separable part of L 4 oo in the electric case, or the separable part

of L4 in the magnetic case.
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Next, we present the Cwikel estimates (see Section above) in a form convenient

for the proofs below. In the following, we let F = ( fj,k)jy,‘:zl € Mn,(Loo(R?)) denote an

Ngx Ng matrix of essentially bounded functions, and let Mg be the multiplication operator
corresponding to F; that is, we let Mg be the bounded operator on CN¢ ® Lo(R%) ~
Ly (RY)Ne given by the expression

d
Mg =Y Pjr®Mjy,,
Jk=1

where, for j,k = 1,..., Ny, the matrix P;j = (5m,j5n,k)%‘fn:1 € My,(C), and where §;

denotes the Kronecker delta. Additionally, for brevity, we let
1
)= (1+A+x[*)2, xeR,A>0.

Proposition 4.3. Let 1 < p < oo and A > 0. Suppose a € N such that o > g. We have

the following estimates:
(i) If2<p< o0 and F € M, ((Ly N Loo)(R?)), then
MpRG \, Mp(I® (V))) € L,
and

IMeRE Allp < || (12 (V)5°)

d a
’ < const - (1 +\)2p ™ 2 - max | £k llp-
p ‘77

(ii) If 1<p <2 and F € My, (W8N Ls)(RY)), then
MeR§ s Mi (19 (V)3°) € £y,

and

d

MRl < HMF(]I @ (V);)| < const- (1 + N1 i £l

’p

Proof. Firstly, for every A > 0, we note that since

N[
Il
&
—
<
~
>
—_

Roal B 10 (11— a)

it follows from the polar decomposition that if Mp (I ® (V)3®) € L, then MpR,$ € L),

for all 1 < p < oo, and that

104RG3 < || Me (10 (V)5°)

Ng
‘p < Z HE,k & ij,k<v>)_\aHp
J,k=1

< N7 max M, (V)3
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Part (7) then immediately follows from Theorem since

d

H<>;°‘Hp = const - (1 4+ \)2r

_a
2-

Part (i7) follows similarly from Theorem and the fact that Wg (RY) C £,(L2)(R?) (see
Proposition above), since

ap+td(1—p)

103l gy < comst |65 (0532, < const - (14 X7,

e

where the second line follows from an argument similar to [79, p. 39]. O

Remark 4.4. We note that, since the operator [® (V),%, for a > 0, commutes with A®1,

for any matrix A € My, (C), it follows that, for any o, 8 > 0, we can write
EAA® DR, = ([0(V),*7) - Io (VF)REA(A D (I (V)R .
In particular, via the functional calculus, the operator
I® (V)$)RG : CV ® Ly(RT) — CN1 @ Ly(RY)

is bounded on CV¢ ® Lo(RY), for any a > 0. Hence, it follows that if Z is a Banach ideal
of B(CN¢ @ Ly(RY)), then

VRENA® DR, €I &  V(Ie(V)," ") eL

and both operators share equivalent estimates in the norm || - ||z.

4.1.2 The decomposition for the electric case

In this section, we assume that the vector potential function A = 0, so that the perturba-

tion of the Dirac operator is purely electric,
V =1® My, for real-valued ¢ € Loo(R?), (4.7)
and we seek a suitable decomposition. Recalling (4.4]) and (4.6), we have the expression

g(D+1® My) —g(D)
@)

@4 1 © dA > dA
9?8(—/ 1R1,A((H®M¢)R0,A)3+/ —Roa (T2 My)Rop)”  (48)
™ 0 A2 0 A2
© dA
_/ 1R07,\(H®M¢)R07A>.
0 A2

Lemma 4.5. If ¢ € (Lsa N Lo )(R?) is real-valued, then
2

o dA
/ “FRA(([[® My)Ro)* € La.
0 A2 2
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Proof. By the definition of R; ) (see 1' above), we have that |Rix|ec = (1 + )\)7%.
Moreover, by Proposition (witha=1,p= 3—2d), we have

(@ My)Rolau < const - [6lsa (1 +X)7.
Hence, by the Holder inequality (see Theorem above), we infer that

% 4\
H/ DRI ® Mg)Rop)°
0 A2

> dA
5/ R (I My)Ro)’ |4
d 0 )\2 2

© dX 3
< / DR loo| T ® M) Ro |
0 A2 2
o0 dX
< const - |4 - / -
2 Jo Az2(14 )

and so the result is proven. O

Before we obtain an £ g4-estimate for the second term on the right-hand side of (4.8]),
2

we state the following technical lemma, whose proof can be found in Appendix below.

Lemma 4.6. We have

> dA 3 _
/ 1 ?Re(Rg)\) = —?D<D> 5.
0 A2

Lemma 4.7. If ¢ € (W3 NWL)(R?) is real-valued, then
2

o dA 2
Re (/0 ERO,)\((H & Md))R(]’)\) ) € ,C%
Proof. By Corollary we have

RO’)\(H & M¢)R07)\<H ® M¢)R07)\

= RoA(1® My)RG (I ® My) — Ror(I ® My)RoA[Rox, T ® My
d

(2.7)
Roal® Mg)RE AT @ My) + > Roa(I® Mg)RE A (v ® Mo, 4)Rox-
k=1

Repeating this argument for the first term on the right-hand side of the above, we obtain

that

Ro’)\(ﬂ & M¢)R0’)\(H X M¢>R07/\
d

27
BD (10 My)RE (10 My) — 3 Roa(m © Ma,o) R M)

£ (4.9)

d
+ Z Roa(I® qu)Rg,,\(% ® My, ¢)Rox-
k=1

By Remark it suffices to show that each individual term on the right-hand side of
(4.9) belongs to L4 and has £a-norm that is o((1 + )\)_%).
2 2
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Firstly, we treat the summands in the third term of (4.9)). Fix £k =1,...,d. Using the
equality ¢ = \¢|% - (sgno¢) - ]¢|% together with the Holder inequality (see Theorem
above), we write

[RoA(T® Mg)RE 5 (3 © Mo )Ro|a
2
<|T® M )RO,AH%d IRoAloo || (3 ® Makqﬁ)RO,)\H%d-

By Proposition (witha=1,p= %d), we have

IT®M 1 )Ro] e < const - 6|2 sa (1 + N)7F < comst - |]|Z, (1 4+ 3) .

||
and
|0 @ Mog)Roalag < const - [0kllgg (14 2)7% < const - gl (1+1)7%.  (410)
Hence, we have the estimate
IRoA(T& My)RG 5 (v @ Mays)Roa[| 4 < const - HRO,/\HOOHQbH%H‘pHW%d (1+ )77,
< comsty - (1+A)71,

as required.
We may consider the £4-norm of the summand of the first series in (4.9)) above in a
2
similar fashion. The Hélder inequality (Theorem above) gives the estimate

[Roa(1e ® My, g) R A(I® M¢)Hg < |(m® Mam)Ro,AH% [T Mtb)R%,)\H%'

If d > 3, then we may appeal to Proposition (i) (with a = 3, p = 37?) to obtain the
L sq-estimate
4

[T M@R&AH% < const - ||<]5H%(1 + )\)*%.

In contrast, if d = 2, then Proposition (73) (with a =3, p= %) gives
5
[(T® Mqﬁ)Rg,)\Hg < const - [|¢f[yyz (1 4+ A) 712
2
Hence, combining the above estimate with (4.10]), we obtain

const - [|6[lyz [|9]] 22 (1 + ML ifd >3,
| Rox (ke @ Mam)Rg,AHg < El

const - [[¢ [y [ @llws (1+N) 712, if d=2.
2
Thus, it remains to show that
> dA
Re (/ e MRS (1 M¢)) € L4(CV @ Ly(RY). (4.11)
0 2
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By Hille’s theorem (see, e.g., [30, §I1.2 Theorem 6]) and Lemma we have that

Re ( / LI MyRYAI @ My)) = (1@ My) Re ( / SRS L) (L@ My)
0 )\2 0 )\2
3

:—~§H®A@ﬂXDV5@®A@)
By Proposition (with a =4, p= %l, A = 0), we observe that
olly, ifd>4
[(Te M)(D) |4 < comst - { [[¢llws, ifd=3,
2

pllwe, ifd=2.

Therefore, we conclude that

IN

H Re (/Ooo g My)RE (1 M¢)> 37””(]1 @ My)D(D) (1 ® My)||4

A2

d
2

IN

3 _
TN ae M)l A @ M|, < 0.0
We arrive at the following intermediate lemma.

Lemma 4.8. If $ € (W3 NWL)(RY) is real-valued, then
2

1 oo
g(D+H®M¢) —g(D) S —; e (/ RO’)\(H®M¢)RO7)\> +£%. (4.12)
0

Proof. We infer the result by combining Lemmas and with the decomposition
(4.-8). O

Next, we treat the third term of (4.8]). Since this is the last remaining term in the de-

composition, we claim that this term is not in L4 (under stronger assumptions on ¢). First,
2

we shall need the following auxiliary lemma, whose proof can be found in Appendix

below.

Lemma 4.9. (i) Suppose k € {1,...,d}. Then

*dA . .
| S (Roaton DR 4R 50 0 D(RG 0 )
0 A2 ] (4.13)
e _ s _
=3[P @ (D) = SA{D e @ 1HD) ™,

where {-,-} denotes the anticommutator.

(ii) We have
0 dA _
A NG %Q(Ra/\) = —27T<D> 3.

A2
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We define the following operator for brevity. For ¢ € WL (R%), let
D1 = (My,p0x — Ma,s0;)(V) ™ € B(La(RY)), jk=1,...
Lemma 4.10. If ¢ € (W§ N W2)(RY) is real-valued, then

o0
s
§Re</ R07>\(H®M¢)R0)\> € 5 E yj7k®<l>j7k+[,¢.
0 - 2
>k
Proof. The general strategy we employ is to shift the Ry terms towards the right using

Corollary and then follow up with Cwikel estimates on the leftover terms. That is,

we consider

7
Roal® My)Rox B (1e My)RZ, — S (Roa(Il® Ma,y)) (1 © 1)RE,,

Eonl
|l u
=

(4.15)

(X
= (I Mg)Ri, — Y (I® Mpy,g)Rox(v ® 1R
k=1
d
+ ) Roaly ® Ma,0,0)Roa(k © DR 5.
4. k=1

We briefly focus on the summand of the third term of this decomposition, and fix

j,k=1,...,d. By Remark and the Holder inequality (see Theorem above), we

have

[Rox(v; ® Ma,0,6)Rox(ve @ 1)7?'(2))\”% < |[Rop(I® Majak¢)<D>§3Hg (4.16)
oo || T ® Majak¢)<D>§3Hg-

< IRo,x
If d > 4, then we may appeal to Proposition (i) (with a =3, p= g) to obtain

_ _1 _1
(T ® Ma,a,0)(D)5* |4 < const - 9;0klla (1+X3) 7% < const - ]z (1+X)72.
2

If d = 2,3, then Proposition (79) (with a =3, p= g) yields

const - ||| yas2(1 + A)71.

2

1
| @& Moy,6) (D)7 < const - 0,0k g (1+2)7F <
2

Therefore, since ||Rox|lec = (1 + )\)7%, the left-hand side of (4.16) above may be

estimated by

p

const - ||¢||W§ (1+ X)L ifd >4,
2

IRoA(v; ® Mo,o,0)Rox (v ® DRGAll 2 = { const - [|ollyps (1+N)7F, ifd=3, (417)
2

const - |pllya(1+A) 71, ifd=2
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Hence, by Remark @ the Bochner integral of the third term in (4.15)) belongs to La.
2
We treat the operator (Rox(I ® My)Ro,)* similarly. Since ¢ is real-valued, we have
that Mj , = —My, 4 and ngam = Mpy,5,4- We may appeal to Corollary to shift
I ® My to the right instead of the left before taking the adjoint. Hence, we observe that

(I® Ma,g)Ri (v @ 1)(Dj 1)

M=

(Rop(I® My)Rox)" = (1@ Mg)(R5\)* —

i

] ! (4.18)

+ ) R ® Ma,0,0)R5 (3 @ (RS 5)?,
jk=1

and, by a similar argument to that of (4.17)), we arrive at

const - Hngwz 1+ X)L ifd >4,

u;

[REA (%5 ® Ma,0,0)R6 A (3 © 1) (Rg0)?[| 2 = { const |\¢\|W5(1+)\) 1, iftd=3, (4.19)

const - [pllya(1+A) 71, ifd=2

Hence, combining Lemma (1) with (4.15), (4.17), (4.18) and (4.19), one obtains the

expression

0 dA dA
el [ BRor@e o) = [ 8 (Rast® 2 R + (Rostho 1 R0 )
0 A 0 )\2

€ 2/0 ii((H®M¢)Ro,\+(H®M¢)(R0A) )

d

1 dA * x

— 5 2. (1@ Mp,y) / 11 (Roaln ® DR, + R\ (0 ® D(R50)’) + Ly
k=1 2

d
EBIe M, [*d), . )
25 )= 731 Moy D, e o 1(D)
0 >\2 1
3 d
— 4 2 L® Mo s){D, 3 @ 1HD)™° + La. (4.20)
k=1

Firstly, by Proposition (with A=0, p= %, a = 4), we observe that

< 2||(T® Mo,g)(D) |4

2

|@® Mo o) (D3 @ 131(D)

vl

,

const - HngWcll, if d > 4,
2

IN

const - [|@[yg, if d =3,
2

const - [|@[ys, if d =2,

so the third term of 1} lies in Lg.
2
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Next, consider the first term of (4.20). By Lemma [4.9] (4i), we have that

o M, [ dA )
: /0)\8%(72) _r(1@ M;)(D)3,

Hence, by Proposition (with A=0,p= g, a = 3), we observe that

[0 e [ B g,

= 7||(T® My)(D >*3Hg

const - ||p||la, ifd>4,
2

IN

const - Hqﬁﬂwg, if d =3,

2

const - [z, ifd=2,

so we additionally have that the first term of 1' isin £ a.
Thus, only the second term of (4.20) remains to be treated; indeed, we have that

d
/ Ro (I ® My)Ro, ) ZH@’MGW [ ®1, D]<D> +£%
k:l
T d d
=1 D> (s — % m) © Ma,0;) (D) + Ly
k=1 j=1
7r J—
=3 D (v ® (Mp, 0k — Mp,9;)) (D) > + La.
i>k
Referring to the definition of ®;; (see (4.14))), we conclude the proof. ]

Proposition 4.11. If ¢ € (W5 N W2)(RY) is real-valued, then
2

1
g(D+1®My) —g(D) € —5 > 7% @ Bj + L.
2
>k
Proof. One obtains the claim by combining Lemmas [1.8] and above. O
Remark 4.12. Suppose we have real-valued ¢ € (W3NW2)(R?Y), as above. Proposition
2
(with p = d, o = 2) implies that Maqu(V)*Q € L forevery j =1,...,d. Hence, ®; € Ly,
for every j,k=1,...,d, and therefore,

% A
&ee(/o )\—ROA(H®M¢)RO,\> €52 W ®Bix+La C La.
>k

4.1.3 The decomposition for the magnetic case

In this section, we obtain a similar decomposition as that of Proposition [£.11]in the general

electromagnetic setting—with the perturbation

d
V=10 My~ v @M,
j=1

under the assumption that A = (ay,...,aq) # 0.
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Lemma 4.13. If ¢,a1,...,aq € (Lag N Lso)(R?), then
1 o dA
gD +V) - g(D) € ——Re ( T R0AVRo A) ¥ L. (4.21)
0
Proof. By a similar argument to (4.8)), we have by (4.3) and (4.6|) that
1 dA dA
g(D+V)—g(D)=—Re (/ TRiAVRoN)? — / —<RoAVRy /\)
™ 0 Az 0 A2
By the definition of R (see ), we have that ||Rix|[ec = (1 + )\)*%. Moreover,
by Proposition (with p = 2d, o = 1), we obtain the estimate

d

1

[VRoAll2a < const+ (gl + D llasllaa) (1+ )7,
j=1

Hence, by Holder’s inequality (see Theorem above), we obtain

”/ —RM (VRo)?

2 dA
< [ IR Ra,
d

/ d)\
<
0 Az

o0 d\
— const - (| ¢llaa + ||a<||2d/ g
( | ; ’ >0 Az(14A)

We claim that the remaining term on the right-hand side of (4.21)),

dA
—/0 )\7 Re (R[) )\VRO )\) ¢ Ed

7r
Before we treat this term, we need the following auxiliary lemma, whose proof can be
found in Appendix For brevity, we let D; denote (unbounded) operator with domain
CNe @ W3 (R?) defined by

D; ::'D—Q’Yj®8j, jed{l,...,d}. (4.22)
By construction, for every j = 1,...,d, the anticommutativity of the gamma matrices
yields the identity
d d
©4) E22)
Do) B S e =200~ ymea (e, (423
k=1 k=1

Lemma 4.14. If j=1,...,d, then
dA s _ _
s S Re (Raa(1; @ DRoa) = =5 0y © (D + DD)(D) ™ = m(3; & 1)(D) . (424)

Since 9;0(V)~2, for j,k = 1,...d, are bounded operators on Ls(R%), for aj € Loo(RY),

j=1,...,d, one may define a bounded operator on CV¢ @ Ly(R?) by

d
= (Mo, 0508 — Mg, 05)(V) 72, forj=1,....d, (4.25)
k=1
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Proposition 4.15. If ¢ € (W3 NW2)(R?) and A € (W}nWL) (R, then
2

d
gD+ V)—gD) €= 7V, + Ly
j=1

Proof. By Lemma we have that
1 *dA
g(D+V)—g(D) € —= Re (/ )\IRMVRO,A) + L,
0 2

™

However, by Remark we already have that
dA
Re ( TRoalle My)Ro,) € La.
0 2

Hence, without loss of generality, we may assume that

d
- Z " ® Ma,.
j=1
By Corollary we have that

d
RoaVRox == Roal® Mg,)(v; ® 1)Ro»

j=1
1' d d
— Y (1@ My)Roa(3; @ DRox — Y Roa(ik @ Ma,a;)Roa(7; © DR
Jj=1 Ji.k=1
(4.26)
Similarly, for (RoAVRo,)*, we obtain the identity
d d
(RoaVRoa)" = =) (I® Mo )R\ (1 @ DRE =D R A(k ® Maa, )R A (1 © DRG
Jj=1 Jik=1
(4.27)

Consider the second term of (4.26)). Fixing j,k = 1,...,d, one may appeal to the
Holder inequality (see Theorem above) and Remark to get

[Rox(k ® Maa,)Rox(v; @ DRox; < [Roa(I® My,a,) (D)3,

S HRO,/\HOOH]I ® Makaj <V>X2Hd'

By Proposition (with p = d, a = 2), we have that

1 1

H]I@Mak% N Hd < const - [|Ogajla(l + A)"2 < const - Ha]HW1(1+)\) 2.
Therefore, since R x[lcc < (1 + )\)7%, we observe that

[ Ro(vk ® Maya, ) Rox(v; @ 1)Ro||; = constq, - (1+ )7
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Hence, by Remark the Bochner integral of the second term of (4.26) belongs to Lg.

By a similar argument, we also observe that the Bochner integral of the second term of

(4.27)) belongs to L.

It remains to consider the first terms of both (4.26) and (4.27). By Lemma we

obtain

dx
Re (/ A RoaVRoA
0 A2

~—
m

d
© )
- Z/ (@ M) Re (Roa(v; ® Ro) + La
=iJo Az

d d
T _ _
52 ¥ ® My, )(D* + D;D) D) P + 7 (75 ® My, ) (D)% + Ly,
However, for each j = 1,...,d, Proposition (with A = 0, p = d, @ = 3) implies that
(7 ® Mg, )(D)™ € Ly, so we have that

d
A
Re (/O TR0AVR, A) ;TZ(% @ M,,)(D? + D;D)(D) > + L.

j=1
By the definition of D; (see (4.22)) above), we observe that
D? + D;D = 2D% - 2(y; ® 8;)D

Hence, taking the sum and appealing to the definition of D, we have that

d d
1
52 (7 © My,)(D* +D;D) = > (7 ® M) (D? - (3; ® 9;)D)
j:l j=1
- :
],kzl J:kzl
d
i ® Majalz - Makajak)a
Jk=1

on the domain dom(D?) = CN¢ ® WZ(R?). Therefore, by Lemma we have

1 d\
g(D + V) — g(D) c — Re (/ )\7’]30 AV R )\> + Ly
0

s

d
= Y % ® (Mo, 0f — Mo, 0;0,)(D) > + La,
Jk=1

which, by construction of ¥; (see (4.25)) above), concludes the proof. ]

4.1.4 Optimal estimates for g(D + V) — g(D)

In the first result of this section we use Propositions and to show that the
operator g(D + V) — g(D) belongs to the weak Schatten ideal, which proves one of the
assertions of Theorem
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Theorem 4.16. Suppose ¢ € (Wg NW2)(RY) and A € (Wg NW2) (R

(1) If A=0, theng(D+V)—g(D) € Eg,oo

(i7) If A #£0, then g(D + V) — g(D) € Lo

Proof. Observe that the conditions on ¢ and aq,...,aq below guarantee that assump-
tions of both Propositions [4.11] and are satisfied. Therefore, the representations of

Proposition [£.11] and [£.15] are both valid.
(7). Suppose A = 0. By Proposition we have that

1
g(D+V)—-g(D) e 3 Z’;Vﬂk ®Pjp + La,
71>

so it suffices to show that

1 _3
s = 5 (Mp;e0k — Mopd;)(1 = A)72 € La .,

for all j,k = 1,...,d. Since 8;(V)~1, 0,(V)~! € B(L2(R?)), it suffices to show that

Maj¢<V)_2 belongs to L4  for every j =1,...,d. To show this, there are three distinct
27

cases to consider.

CASE 1. Suppose d > 5. Since 0j¢ € L4 (R?) by assumption, for every j = 1,...,d,
2

Proposition [2.56] (i) (with p = 4, § = 2) implies that My, (V)2 € La , as required.
27

CASE 2. Suppose d = 2,3. Since 9;¢ € W4(R?) by assumption, for every j = 1,...,d,
2

Proposition [2.56| (1) (with p = %, 0 = 2) implies that M3j¢<V)_2 € L4, as required.
27

CASE 3. Suppose d = 4. Since 9;¢ € WZ(R?) by assumption, for every j = 1,...,4.
Proposition m (#1i) (with 0 = 1) implies that My,4(V)™? € L2, and we are done.
(7i). Suppose A # 0. By Proposition we have that

d
g(D+V)—g(D) e Z’}/_j ®@ W+ Ly.
j=1

so it suffices to show that

d
=Y (M, 050k — Mo, 07)(V) > € Li oo,
k=1

for every j = 1,...,d. Since 02(V)™2, 9;0,(V) ™2 € B(L2(R?)), it suffices to show that
M., (V)71 € Lyoo for all j = 1,...,d. To show this, there are two distinct cases to
consider.

CAse 1. Suppose d > 3. The assumption that a; € Lq(RY), for every j = 1,...,d
together with Proposition m (i) (with p = d, § = 1) implies that M, (V)™ € L4, as

required.
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CASE 2. Suppose d = 2. Since a; € WZ(R?) by assumption, for each j = 1,2,
Proposition m (iii) (with 0 = }) implies that M,, (V)™ € L0, which completes the

proof. O
Theorem 4.17. Suppose ¢ € (Wg NW2)(RY) and A € (Wg NW2) (R4

(i) fA=0and ¢ #0, then g(D+V) —g(D) ¢ (La o

(i) If A #0, then g(D+ V) — g(D) & (Lase)o-

Proof. (i). Suppose A = 0, but ¢ # 0. Assume to the contrary of the claim that
g(D+1® My)—g(D) € (Eg,oo)o' By this assumption, and by Proposition we have
that

> v ® 0y € (L4 5o
>k

Hence, by Lemma [2.12] (i4), we have that

(I)j,k = (Maquak — M3k¢6j)<V)_3 S (ﬁd )0, (4.28)

5,00

forall k=1,...,d—1,and j=k+1,...,d.

Fixk=1,....,d—1,and j = k+1,...,d and let f € C (R?) satisfying either
fOkp # 0 or fO;¢ # 0 on supp(f). By Proposition (77) (with p =1, 6 = d), we have
that

(V)" My2 € L1 . (4.29)

For brevity, define the operator 7}, on the domain W (RY) by
Tik = (V) 0k My29,4 — 0jM 29, 4).
If d > 2, then Proposition M (with p = %) implies that

<v>2ide2 S [zi

-2

Therefore,

L a (L2RY)), ifd>2

7 _d_

)

d—2"
B(Ly(R%)), if d =2

By the Holder inequality for weak Schatten classes (see (2.23) above), the latter inclusion
together with the assumption (4.28]) implies that

@,k Tik € (L1,00)0, foralld>2,
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and therefore that the Dixmier trace
Try,(®;xTj%) =0, (4.30)

for any extended limit w on £ (N). However, we claim that Tr,,(®; 7} x) is not necessarily
Z€ero.
By the definitions of ®;; and T} we have
Trw((I)j,kT}k)
= Tr, (Maj¢6£<v>id72Mf2aj¢> — Try, <M3j¢8k8j<V)*d*2Mfgak¢> (4.31)
= Ty, (Mo g02(9) ™2 Mg, ) + Tros (Mo 02(9) 2 Mg, )
Consider the first term on the right-hand side of the above. Since (V) 9M;2 and

My (V)~? both belong to L1 by Proposition the cyclicity of the trace Tr,, (see
Proposition above) gives the identity

T, (Maj¢a,3<v>—d—2Mf2aj¢) = Ty, (M(faj¢)za,3<v>—d—2>. (4.32)

Using the fact that

we have

e 03 _ 02 d—
TI'w M(f@]¢)28]%<v> =2 :TI'UJ M(f3]¢)2_7k<v> d — T M(f8j¢)2 _k <V> d=2 .
(=4) (=4)

Note that, by Proposition (7i) (with A =0, p =1 and o = d + 2), we have that

2
M (V)42 € £;. Hence, Mso,4)2 (_a’“A) (V)~972 is also trace-class, so the singular trace

Tr,, vanishes on this operator, and

Tr, (M 92(V)~2) =T, (M, O V)~ 4.33
ro | M(s9,4)201(V) = Tr,, (f3j¢)2(_A)< )"%)- (4.33)

Hence, by Lemma we infer that ®; T} is Dixmier measurable, and that

T (@50750) = Cal [ (F050P @) e+ [ (f.07(0) ),

where Cy > 0.
However, the choice of f guarantees that either [p.(f0;¢)*(t)dt or [pa(fOre)?(t)dt

is nonzero (or they are both nonzero, but have the same sign). Therefore, we see that

Try (1T k) # 0,
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which contradicts the equality (4.30) obtained above. Thus, we conclude that the operator
g(D+1® Myg) — g(D) must not belong to (’C%,oo)o’

(74). Suppose A # 0. Again arguing by contradiction, we assume to the contrary that
g(D+V)—g(D) € (L40)0- By Proposition this would imply that

d
Z’Yj @V, € (Ldoo)o-

j=1
Hence, by Lemma [2.12] (i), we must have that

Wy = (Mg, 0;0k — Ma,07)(V) ™ € (Laso)o,
=y
forallj=1,...,d.

Since A # 0, it follows that there exists some j = 1,...,d such that a; # 0; in the
following, we fix such j. Additionally, let f € C5 (R?) such that fa; # 0 on supp(f),

and define the bounded operator
Sj = <v>1_de2aj

on Ly(R%). Arguing in an analogous manner to the proof of (i) above, one can show that
U;S; € (L1,00)0, and therefore,

e, (T;S;) =0
for any extended limit w on £ (N).

On the other hand, continuing to argue similarly to the proof of (i) above, we have

that
Tr, (U,55) = Y Tryy (My2q,0,000;(V =) Ty (Mgq,)200(V)472)
k#j k#j
=> T, (MfQGkajakaj(—A)ﬂN)—d) =3 T, (M(faj)28]%(—A)*1<V>*d>
k] k]

Hence, Lemma implies that ¥;S; is Dixmier measurable, and that

Tr,(¥;S;) = —(d — 1)Cy /Rd(faj)?(t) dt,

where Cy > 0. However, the choice of f guarantees that [p.(fa;)?(t) dt > 0, and therefore
that Tr,,(¥;S;) # 0, which is a contradiction. O]

4.2 Lipschitz-type estimates for Schwartz antiderivatives of

the Dirac operator

In this section, we prove the main result of this chapter, Theorem below. We begin

with some auxiliary lemmas.
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Lemma 4.18. If ¢,a1,...,a4 € (W3 NW2)(R?), then
2

g (D+V)—g*D) € La.

[NIISW

Proof. First, observe that g?(t) = t2(t)=2 = 1 — (t)=2, for all t € R, so appealing to the

second resolvent identity yields the equation

Z2(D+V)—g* (D)= (D)2 —(D+ V)~ D) 2(D+ V) —D*)(D+V)?
-2

= (D)~ (DV+VD+V2)< V2. (DD + V)2

Since V is bounded, we have by [19, Appendix B-Lemma 6] that (D)2(D + V)~2 is a

bounded operator on Lo (Rd)Nd, and therefore it suffices to show that the operators
(D)*DV(D)%, (D) VD(D)2, (D) 2V(D)"

are in £ 4. We show this only for the first operator, since the others can be treated similarly.
2

By Theorem above, we have
(o) VD)2, < VD)l

Furthermore, since
d

V=1)M;— ) v ®M,,
j=1

we have by Proposition (with A=0, p= %, a = 3) that

( d
const - (Iloly + D llaslls).  ifd>4,
j:l
[VD)*]s < { const - (I1dllwy oy lailwy ). ifd =3
2 1
]d
const - (|I8llwz + D laglhwz ), ifd=2,
j=1
< 00,
which concludes the proof. O

Lemma 4.19. Suppose ¢,a1,...,aq € (WINW2)(RY). If fo € CE(R) is an even function,
2
then

fo(D+V) = fo(D) € La

NR.

Proof. Since g? is an even function, and since g2 : [0, 00) — [0, 1) is injective, we may write

fo = hog? where h = fyog=2:[0,1) = R is also a C?-function. Hence, by Theorem
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above, we have

fo(D+V) = fo(D) = h(g*(D +V)) — h(g*(D))

2 2
= 5 TTE P 2D 4 V) - (D)) € Ly,

since g?(D + V) — g%(D) € L4 by Lemma [1.18 O

Lemma 4.20. Suppose ¢ € (W5 NW2)(RY) and A € (W2 NW2)(RY).
2 2
(i) If A=0, then (g(D+ V) —g(D))(D)2 € La.
2
(i) If A #0, then (g(D+ V) —g(D))(D)~2 € L,.
Proof. (i). Suppose A = 0. By Proposition it suffices to show that
®; (V)72 = (Mp, 0 — Ma,0;)(V)° € Ly, forallj>k.
Hence, it suffices to show that M3j¢<V>_4 € La,forall j=1,...,d.
2
Suppose d > 4. Since ;¢ € La4(R?) by assumption, Proposition (1) (with A = 0,
2
p= g, o = 4) implies that My 4(V)™* € La.
2
Next, suppose d = 2, 3. Since 9;¢ € W(R?) by assumption, Proposition (i) (with
2
A=0,p=14%, a=4) implies that My,(V)~* € Lg, as required.
(74). Suppose A # 0. By Proposition and similar reasoning to the proof of part

(1), it suffices to show that Maj<V)*3 € Ly, for all j = 1,...,d. However, this follows
immediately from Proposition (7) (with A=0, p=d, a = 3). O

Now, in the following, let f be a real-valued function on R such that f’ € S(R). For
brevity, we denote the limits of f at infinity by
f(to0) := lim f(t),  f(=o0):= lim f(t),

and assume that f(4o00) # f(—00). Moreover, we define the functions fy, f1, fo,m, fi,m on

R by

o) = L0250 i 0=
0N TR
fom(®) := folt) = fo(+00),  fum(t) = § BON(FE0)
-1, ift =0.
One can check that fom, fi,m € S(R). By construction,
fit
F(#) = fo(t) + f1(t) = fo(+00) + (fo(t) — fo(4+00)) + g(t)<m)f1(+00)

= fo(+00) + fom(t) + g(t) (L + frm(t)) fi(+00), teR\{0}.
(4.34)
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Theorem 4.21. Suppose ¢ € (W3 N WE)(RY) and A € (W2 N W2)(RYL.  Suppose
2 2
[ :R = R is a function such that f' € S(R) and f(—o0) # f(+00).

(i) If A=0and ¢ #0, then f(D+ V)~ f(D) € La ,\ (La o
(i5) If A#0, then f(D+V) — f(D) € Laoo \ (Ld.oo)o-
Proof. Since fom € CZ(R) is even, Lemma implies that
fom(P+V) = fom(D) € Ly.
Furthermore,

gD+ V)(1+ fim(D+V)) —g(D)(1+ fim(D))

=g+ V) (fim(D+V) = fim(D)) + (gD +V) - gD)) (1 + fim(D)),
and, since fim € CZ(R) and is even, again using Lemma we have that
g(D =+ V) (fl,m(D + V) - fl,m(D)) € ‘C%

Hence,
@34
f(D+V)=f(D) € fi(+0)(g(D+V) = g(D)) (1 + frm(D)) + L.
Additionally, observe that the function given by 0¢(t) = f1.m(t)(t)?, for t € R, is bounded.
Hence, by Lemma [4.20, we observe that
La, if A=0,
2

(8(D+V)—g(D)) frm(D) = (g(D + V) —g(D))(D) 04(D) €
Lq, if A0,

and thus,

(D vy iy d DTV TED) Ly A =Dand g0
g(D+V)—g(D)+ La, if AFO.

Finally, by Theorems and we have that

Li \(La o, f A=0and¢#0,
27 27

gD+V)-¢g(D) e
Lioo\ (Laso)o, if A#0,

SO
La, \ (ﬁg’oo)o, if A=0and ¢ #0,

Lico\ (Laco)o, if A#£0.

fD+V)—-[f(D) e
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Appendix A

Miscellaneous integrals and

estimates

A.1 Asymptotics of the Sobolev norm of g,

In this appendix, we calculate the behaviour of the Sobolev norm ||g,|lwy as p | 1, for

n € N, where g, is the Schwartz function on R defined in Section above by the

;(1 — coth (%) tanh <(p_21)t)>, if t #0,

1—%, if t = 0.

Let n € N and p > 1. In the following, for —oco < a < b < oo, we recall that the

expression

gp(t) =

Sobolev space of p-integrable functions on the interval (a,b) is defined by
W (a,b) = {f € Ly(a,b) : f9) € Ly(a,b), forall j=1,... n}

. d/
where f00) = d—{ is interpreted as a weak derivative, with corresponding norm given by
T

1w (a,p) = i 1N,y | € Wi(a,b).
j=0
Lemma A.1. Forn € N, we have
gpllwn 0,1y = O(1), pll
Proof. For u > 0, let §,, be the dilation operator on C*°(0, c0) defined by
(64 f)(t) == f(ut), for fe C>(0,00), t > 0.

For p > 1, we write
gp="h-(f =P =1)(0-11).
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where

h(t) = %coth (%) £(t) = %tanh (%) teR.

By the Leibniz rule, we have

laplwz o < [ (7 = 0= D610, 0
< lweonllf = = 1DG1N)llwe 0.1
For 0 < k£ < n, we have

(f = (=10 /)™ = 1B — (p— 1)FH15, 1 (fP).

Hence,

| == DE)®|| < 1+ 0= D) 1) =
Lemma A.2. Forn € N, we have
l9pllwg 100y = O((0 = 1)72), p L1,
Proof. Let (8,f)(t) = f(ut). We write
9p="h-(f = dp-1f),
where

h(t) = %coth <§), f(t) = tanh (%), teR.

By Leibniz rule, we have
lgpllwg 1,000 < 1Pllwz (00 1 = Fp—1.f lw1,00)
For 0 < k < n, we have
(F =0p 1 )W = FO = (0 = )", (F9).

Hence,

1 = 81 Ly 100y < 1PN a1.00) + = DF[16p-1(F )] 1 100

1
<1+ =D2) 1P a0 O
Lemma A.3. For g, defined as above, | gp|lwy = O((p — 1)_%) aspl 1.

Proof. Since g, is even, we have

lgpllwy < 2(”gp||w2"(0,1) + ||ngW2"(l,oo)) <2(lgpllw 0,1y + ngHWZ"(l,oo))'

The assertion follows from the preceding lemmas. O
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A.2 Calculation of Bochner integrals
Observe that, when o > —1, § > a + 1, and A is a positive operator, we have

/OOO A1+ A+A)PdA=Ba+1;8—a—1)(1+ A (A1)
where B(-;-) denotes the Beta function [I], 6.2.1].

Proof of Lemma[{.6, Appealing to the definition of Ry (see (4.1))), and since

1 3 31+ A 14+ A2 —3t2(1 + \)2
— = 3( +23)+i( + ) -3 (2;_ )2, for all t € R,
(t+i1+23)°  T+HA+6) 1+ +12)

we obtain the expression
Re(RY,) = (P> —3D(1+N\))(1+ A+D?*)?

Hence, by (A.1]), we obtain the identity

(f samems)

:(D3—3D)/ A‘5(1+A+D2)‘3dA—3D/ A2(1+X+D?%) 72 dA
0 0

13 3 3
S0 3D 1+ D) - EDA4 DY) =~ DA+ D) E O

Proof of Lemma[{.9 By calculating the real and imaginary parts of the complex numbers

(t+i(1+ )\)%)71, (t+i(1+ )\)%)72, t € R, we acquire the expressions

_ i i 2\—1
Roxr= (D —i(1+N) )1(1+>\+D) A2)

Ror= (D*—=2i(1+X)2D — (14+N))(1+A+D?*)~?

(1) Fixing k € {1,...,d}, by expanding and cancelling similar terms, we get

Rox(1k ® DR 5 + Ri A (e @ 1)(R55)?
ED (D i1+ VD) (A + A+ D) (e @ 1)(D? = 201+ 1)2D — (1+ X)) (1 + A+ D)2
+ (D +i(1+X)2)(1+ A+ D) (1 ® 1)(D? + 2i(1+ X)2D — (1 + A)) (1 + A+ D?) 2
=2D(1+ A+ D*) My @ 1)(D* = (1 +N)) (1 + A+ D?) 2
4+ NA+A+D) M@ DDA+ A+ DH 2

=2(D(y ®1)(D* — 1) = D(1 @ DA — 2(3 @ YD(L + X)) (1L + A+ D?) 3

where in the last line we used the fact that D? commutes with v, ® 1. Hence, for each
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ke{l,....d}, by (A1), we get that

1 [ dA * *
2 /o A (Roa(me © DRE 5 + Ro (v ® 1)(Rg)?)

= ((1+D? —2)(/000 A*%(1+)\+D2)*3d>\)D(%®1)
— (/OO A%(1+A+DQ)—3dA)D(w®1)
0
- Tl 2)-3
2(%@1)1)(/0 (A\"2 £ A3)(1 + A+ D?) d/\)
T((1+D) -2+ D) Do 1) - S0+ D) DG )
TR ® DD+ DY) = f D+ DY)

1
= T (POn 0 1)~ (w® D) (1+ D7) F = T (Dl 0 1) + (3.9 D) (1+ D)3,

3
2

(77). Note that, by (A.2), we obtain
1 [ dA o0
/ 1%(7339:/ x%(ﬁ—(1+A))(1+A+02)*2dx
2Jo Xz ’ 0
:(D2—1)/ A%(1+A+D2)2cu—/ AZ(14A+D?)%dA
0 0

(0P = 1)(1+D%)F = 21+ D) E = —a(14+ D)2, 0

]

Proof of Lemmal[{.14 Using (A.2), and by expanding and cancelling similar terms, we

obtain

Re (Ro(7; © 1)Ro,x)
LD i1+ 0B A+ A+ D)y @ 1)(D — (1 + NF)(1+ A+ D)

2
(D+i(1+N)2)(1+A+D>) (3 @ 1)(D+i(1+A)2)(1+A+D?)!

N |

+
= (D(y; ©@ 1)D — (1 + ) (1L + A+ D?)~2
B2 (1, 0 1)D;D+ (14 X)) (1 + A+ D)2,
Hence, by , we have that
> dA
/ — Re (Roa(vj ©@ 1)Ro,n)
0 A2
> dA
=—(1® 1)Dj77/ — (
0 A2

= —Z(y @ DD DI+ DY) 2 = (14 D)3 = Z(14+D?) .

Some elementary algebraic manipulation yields the result.
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