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Abstract. Ground-state properties of three- and four-nucleon systems are studied with
the angular momentum and parity projected antisymmetrized molecular dynamics. The
Hamiltonian is constructed with realistic nucleon-nucleon interactions. The calculated ground-
state energies, root-mean-square radii, and magnetic dipole moments are compared with the
experimental results. In overall, the ground-state properties of the light nuclei considered are
satisfactorily described.

1. Introduction

The structure of few-nucleon systems has been the subject of numerous theoretical and
experimental investigations and reviews on a variety of their aspects can be found in the literature
(see, for example, Refs. [1, 2]). The simplicity of these systems allows for an exact description
and rigorous solutions of the corresponding dynamical equations can be obtained and thus
accurate wave functions for bound states can now be constructed using realistic Hamiltonians.
An illustration of the level of accuracy in describing ground state properties of the four-nucleon
system by seven different state-of-the-art methods is given in Ref. [3]. However, the practical
application of these methods become quite complicated as the number of particles involved
increases and thus going beyond the A = 4 systems using exact methods still is a challenge.

In recent years, a very promising method, namely, the Antisymmetrized Molecular Dynamics
(AMD), has been used to study the properties of A-particle systems. The AMD approach [4]
is developed from the Time-Dependent Cluster Model [5] describing fermionic systems. This
approach combines Fermi-Dirac statistics with quantum mechanics to treat the motion of the
A particles [6]. Although the model is not fully quantum mechanical and does not assume a
shell structure for the system, improved AMD wave functions are, nowadays, shown to give good
predictions of the properties of few-body systems [7, 8]. In the present work the parity projected
and angular momentum projected version of the AMD [9] is employed.

In Sect. 2 the general formalism of the AMD approach is summarized and the construction
of the wave function, the equations of motion of the variable parameters, and the variational
technique used are briefly outlined. Theoretical predictions of the ground state properties of
three-nucleon and four-nucleon systems are presented in Sect. 3 while the conclusions drawn are
given in Sect. 4.
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2. The AMD formalism

The AMD wave function describing a system of A nucleons is constructed as a Slater determinant

ΨAMD(�S) =
1

√
A!

det[φj(α,�si), χj(�σi), ξj(�τi) ] (1)

where φ, χ and ξ are, respectively, the spatial, spin and isospin components of the single-particle
wave functions. The �si are complex variational parameters, �S ≡ {�s1, �s2, �s3, . . . , �sA}, while α is a
real constant width parameter. The single nucleon wave functions are given by [10]

ψi(�rj) =

(
2α

π

)2/4

exp

[
−α

(
�rj −

�si(t)
√

α

)2

+
1

2
�s2

i (t)

]
⊗ χi ⊗ ξi (2)

where χi ⊗ ξi ≡ {N⊗ ↑ orN⊗ ↓} are the fixed spin-isospin states of the i-th nucleon, which
represent nucleon with spin-up or spin-down. The width parameter is a free parameter and is
common for all Gaussians terms.

A wave function with a definite parity π, a total angular momentum J , and angular
momentum projection M , is constructed from the AMD wave function as

ΨJπ
MK(�S) =

1

2
P J

MK(Ω) [ 1 ± P π ] ΨAMD(�S) (3)

where P J
MK(Ω) is the angular momentum projection operator, P π the parity projection operator.

The angular momentum projection operator is defined by [11]

P J
MK(Ω) =

2J + 1

8π2

∫
dΩ DJ∗

MK(Ω) R̂(Ω) (4)

where DJ
MK(Ω) is the Wigner D-function, R̂(Ω) the rotation operator and Ω ≡ {α, β, γ}

represents the Euler rotation angles.
The time-dependent variational principle [10]

δ

∫ t2

t1

�Ψ(�S) | ih̄ ∂
∂ t − H |Ψ(�S) �

�Ψ(�S) |Ψ(�S) �
dt = 0 (5)

with the constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0. (6)

is used to determine the dynamical equations for the variational parameters. The resulting
equations can be transformed into the form [12]

d�si

dt
= −b

∂EJ±
0 (�S, �S∗)

∂�s∗i
,

d�s∗i
dt

= −b
∂EJ±

0 (�S, �S∗)

∂�si
(7)

where b is an arbitrary positive real constant and EJ±
0 (�S, �S∗),

EJ±
0 (�S, �S∗) =

�ΨJ±
MK(�S)|H |ΨJ±

MK(�S) �

�ΨJ±
MK(�S)|ΨJ±

MK(�S) �
. (8)

is the variational energy determined from the Hamiltonian H of the nucleus given by

H = −
∑

i

h̄2

2mi
∇2

i +
1

2

∑

i�=j

[
VNN (�rij) + VC(�rij)

]
(9)

where mi is the mass of nucleon i, VNN (�r) the two-body nuclear potential, VC(�r) the Coulomb
potential and �r the relative position vector of the interacting nucleons. In this work the AV4′

NN potential with the VC1(�r) Coulomb component is used [13]. The evaluation of the energy
expectation values is explained in Ref. [14].
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Table 1. AMD results for the ground-state energies E0, rms radii
〈
r2

〉1/2
, and magnetic

moments µ of the three- and four-nucleon systems. The experimental values are taken from
reference [15].

E0 (MeV)
〈
r2

〉1/2
(fm) µ (µN )

AMD EXP AMD EXP AMD EXP

3H
(

1
2

+
)

-8.95 -8.48 1.33 1.60 2.769 2.979

3He
(

1
2

+
)

-8.61 -7.72 1.33 1.77 -1.847 -2.128

4He
(
0+

)
-23.04 -28.30 1.16 1.47 0.000

3. Ground state properties

The “frictional cooling” equations (7) were solved with the values b ≈ 30/h̄ and α = 0.12.
The α is chosen to reproduce, to reasonable accuracy, the ground state energies of light nuclei
using only the parity-projected wave functions. The variational energy for the three- and four-
nucleon systems was calculated using Eq. (8) and the results obtained are compared with
experimental data in Table 1. The root-mean-square (rms) radii of the nuclei were calculate
using the expression

〈
r2

〉
MK

=
1

A

�ΨJ±
MK |

∑A
i=1 [�ri − �R ]2 |ΨJ±

MK �

�ΨJ±
MK |ΨJ±

MK �
(10)

where A is the number of nucleons in the nucleus and �R the center-of-mass of the nucleus. The
results obtained are also presented in Table 1.

As can be seen, the binding energy found for the 3H system overestimates the experimental
energy by 5% and for the 3He system by 12% while . In contrast, the 4He results are lower than
the experimental value by ∼ 19%, a result which is in line with other calculations in the field
using the same rank in the potential and without the use of three-body forces. The rms radii
obtained for the 3H and 3He systems are lower than the experimental values by ∼ 16 % and
∼ 22 % less, respectively. Similar results are obtained for the 4He system where the calculated
rms radius is underestimated by ∼ 21%.

We turn now our attention to the magnetic moment of a nucleon which is given (in nuclear
magnetons) by [16]

µ = gℓ�
�ℓ � + gs ��s � (11)

where ��ℓ � (��s �) is the expectation value of the orbital (spin) angular momentum and gℓ (gs) the
orbital (spin) g-factor of the nucleon. The nucleon g-factors are constants, the values of which
are [16]

gℓ =

{
1 for proton
0 for neutron

: gs =

{
5.585695 for proton

−3.826085 for neutron
(12)

The magnetic moment of the nuclei �µA is calculated from

�µ±
MK =

�ΨJ±
MK |

∑A
i=1 [ gℓ

�ℓi + gs �si ]|Ψ
J±
MK �

�ΨJ±
MK |ΨJ±

MK �
. (13)
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The values of the magnitude µ±
MK = | �µ±

MK | for the three- and four-nucleon systems are given
in Table 1. In general, the AMD approach reproduces the experimental values for the magnetic
moment of the nuclei quite satisfactorily.

4. Conclusions

To test the suitability of the AMD model in nuclear structure studies, the angular momentum
and parity projected AMD wave function was used to calculate the binding energies, rms radii,
and the magnetic moments for 3H, 3He, and 4He few-nucleon systems. The nuclear Hamiltonian
is constructed from the Argonne AV4′ nucleon-nucleon potential that includes also the Coulomb
interaction.

Comparison with the experimental data revealed that the reproduction of the ground-state
properties of light nuclei is quite satisfactory. The discrepancies observed can be attributed to
reasons not related to the AMD. These include i) the omission of mixed-symmetric states (for
three-body) ii) the use of a limited rank for the Argonne AV18 potential, and iii) the omission
of three-nucleon forces. As far as the magnetic moment is concerned, the inclusion of relativistic
corrections to the magnetic moment operator, are also expected to contribute to the reduction
of the discrepancy between theory and experiment.

It short, we demonstrated that it is possible to construct a variational AMD wave
function using realistic nucleon-nucleon potentials. The inclusion of three-nucleon forces in
the Hamiltonian is also possible and this is expected to reduce the overall discrepancy between
the experimental observation and theoretical AMD predictions of the nuclear properties. It
should be noted that in nuclear systems described with spherical wave functions, like the 4He
nucleus, spatial rotations are not expected to introduce modifications to the results obtained
with the parity-projected wave functions and therefore the use of the AMD method should be
accurate.
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