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Abstract. Bohmian mechanics also known as de Broglie-Bohm theory is the most popular
alternative approach to quantum mechanics. Whereas the standard interpretation of quantum
mechanics is based on the complementarity principle Bohmian mechanics assumes that both
particle and wave are concrete physical objects. In 1993 Peter Holland has written an ardent
account on the plausibility of the de Broglie-Bohm theory. He proved that it fully reproduces
quantum mechanics if the initial particle distribution is consistent with a solution of the
Schrédinger equation. Which may be the reasons that Bohmian mechanics has not yet found
global acceptance? In this article it will be shown that predicted properties of atoms and
molecules are in conflict with experimental findings. Moreover it will be demonstrated that
repeatedly published ensembles of trajectories illustrating double slit diffraction processes do
not agree with quantum mechanics. The credibility of a theory is undermined when recognizably
wrong data presented frequently over years are finally not declared obsolete.

1. Introduction

Ever since Einstein, Podolski and Rosen [1] asked whether quantum mechanics is complete,
physicists have tried to find hidden parameters which are revealed by measurement processes.
In 1964 John Bell [2] made it feasible to discriminate local hidden-parameter theories from
quantum mechanics. Sophisticated experiments on spin correlations [3] proved that local hidden
variables cannot exist. John Bell himself emphasized that Bohmian mechanics [4] is exempted
from this verdict because this theory uses non-local hidden parameters. In fact, for a given
quantum state Bohmian trajectories are derived from the associated Schrodinger wave function,
which depends not only on the local potential but on its overall shape. Bohmian mechanics
belongs to the coexistence models. Particles are localized and incorporate nearly all energy of
the particle-wave system. If there is any charge it is almost completely concentrated in the
particle. The Schrodinger wave functions are the primary physical entities. They guide the
associated particles. More precisely, the momentum p of a particle is given by p(x) = VS(x)
when the corresponding Schrédinger wave function () is written in the form

Y(x) = R(z)e™ @M, (1)

with the real amplitude function R(x) > 0 and the real phase function S(x).

As shown by Holland [5] the local flux distribution of the Schrédinger wave function agrees
with the flux of the associated ensemble of Bohmian trajectories. The consistency of the fluxes
has been taken as proof that the results of quantum mechanics are fully reproduced by Bohmian
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mechanics. Therefore Bohmian mechanics has often been viewed as a causal interpretation of
quantum mechanics providing detailed information about particle trajectories.

Despite these considerable successes there are conspicuous drawbacks. In fact, in the
literature one finds extensive discussions arguing against the uniqueness and validity of Bohmian
mechanics [6-10]. Besides these intricate considerations there are less elusive objections against
the de Broglie-Bohm theory. Especially if the Schrodinger wave function contains standing waves
Bohmian mechanics predicts properties of atoms or molecules which are not observed in nature.
These results suggest that Bohmian trajectories describe streamlines of the local flow but not the
movement of real particles. In their book on trajectory based approaches to quantum mechanics
Sanz and Miret-Artés [11] also emphasize the hydrodynamical aspects of Bohmian mechanics.
They consider Bohmian trajectories as the paths of tracer particles indicating the flux of the
Schrodinger wave function.

2. Failure of Bohmian mechanics in case of purely real wave functions

In case of scattering problems continuous density distributions of the Schrodinger wave function
can be reproduced by an ensemble of trajectories representing subsequent scattering events.
However, Bohmian mechanics has a conceptual problem if only single particles are involved as
in the case of a hydrogen atom. If the atomic electron is associated with a purely real wave
function Bohmian mechanics postulates that the electron is at rest. This is the case for all
s-states and for all magnetic sublevels with zero magnetic quantum number.

Holland [5] shows that a resting electron is prevented from falling down by a quantum
potential which balances the Coulomb potential. It is also clear that such a resting electron
will not radiate and does not cause a magnetic moment. But Holland does not consider the fact
that an electron resting outside the nucleus would cause a strong electric dipole moment. This
contradicts to parity considerations. Because the absolute square of an atomic wave function is
even the odd dipole operator will lead to a zero expectation value of the electric dipole moment.

Strong dipole moments would have been found in many experiments when atoms traverse
inhomogenous electric fields. Atom-atom scattering experiments would exhibit a strong dipole-
dipole interaction which decreases much slower with increasing distance between the atoms as the
usual van-der-Waals interaction. The long range forces between atoms also strongly influence the
recombination rates used to simulate the ratio of atoms and molecules in the high atmosphere.
It is impossible that such electric dipole moments would not have been observed. The postulate
of resting electrons must be wrong.

Actually Bohmian mechanics predicts electric dipole moments not only for all s-states and
magnetic sublevels with vanishing magnetic quantum number but for all other states of atomic
hydrogen because if the magnetic quantum number is not zero Bohmian mechanics postulates
that the associated electrons move on circles with constant latitude (constant polar angle 6). In
general the centers of these orbits will not coincide with the location of the nucleus.

Discrepancies between Bohmian predictions and experimental results are also found for
vibrating diatomic molecules. The wave functions describing molecular vibrations are purely
real. That means the distance between the two nuclei is assumed to be constant. Individual
molecules would generally not be in the equilibrium distance. On the other hand the energies
of the vibrational levels depend strongly on the distance of the two nuclei. Vibrational spectra
prove that all molecules have the same moment of inertia. Only for large vibrational states the
anharmonicity of the innermolecular potential leads to a small but clearly observable increase
of the internuclear distance. That means the nuclei cannot be at rest for diatomic molecules in
vibrationally excited states.
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3. Quantum and Bohmian results of double slit diffraction

Bohmian mechanics got a new impetus in 1979 when Philippidis, Dewdney and Hiley [12]
published an ensemble of trajectories simulating the diffraction on double slits. Inspired by
Jonsson’s electron diffraction experiment [13] Philippidis, Dewdney and Hiley have chosen the
distance of the slits d to be ten times larger than the slit width 6. They claimed that the
predicted intensity distribution of the diffraction pattern agrees with the experimental findings.
Strange enough that this statement has never been rigorously checked especially because the
intensity ratio of the three inner peaks seems to contradict experimental results.

Actually in the scientific literature one can find several ensembles of Bohmian trajectories
which all can be traced back to the same original data set. In Holland’s book [5] two ensembles of
trajectories with different intensity distributions in the slits are shown. In one figure the density
of trajectories in the slits is uniform, in the other figure it is Gaussian. Holland explicitely refers
to the original publication of Philippidis et al [12] and emphasizes that in both cases the wave
function is taken from the Gaussian intensity distribution case. In the following the Bohmian
results will be compared with quantum mechanics for both alternatives.

If a particle passes through a slit its position is restricted to the slit width. The Fourier
transformation of the associated wave packet reveals the momentum distribution of the particle,
which is finally transformed into the angular width of the diffraction pattern. For uniform
particle flux in front of a double slit aperture and small diffraction angles ¥ (< 1) quantum
mechanics asymptotically predicts the angular dependence

I(9) = Iocos®(zd/b) sin?(2)/2* = Iy cos®(zd/b)sinc?(z) (2)

with z = w9b/A. Thereby Iy and A\ denote the maximum intensity reached at ¥ = 0 and the
wave length of the particle, respectively. For light this intensity distribution is already known
from classical wave optics.

The periodic cos?(zd/b) term describes the rapidly oscillating double slit interference. The
envelope function sinc?(z) = sin?(z)/22, which is the Fourier transform of a rectangular intensity
profile, denotes the diffraction pattern of a single slit. The zeroings limiting the central peak
in the single slit diffraction pattern are located at ¥,¢r, = £\/b. The period of the double slit
oscillations is AY = \/d. That means the central peak of the single slit distribution incorporates
2d/b peaks of the double slit oscillations.

Formula (2) has been confirmed for photons, electrons, atoms, neutrons, and even for large
molecules like fullerenes [14-17]. All experiments with large d/b-ratio exhibit several central
peaks with almost equal intensity.

Figure 1 shows the quantum mechanically result (full line) and the intensity of the Bohmian
calculation (black bars) determined from the trajectory ensemble of Philippidis, Dewdney and
Hiley [12] with uniform density of the trajectories in the slits. Because the trajectories have
apparently not fully reached the Fraunhofer limit it makes no sense to plot a continuous
probability distribution. The Bohmian intensities are determined by counting the trajectories
ending in the corresponding peaks. Therefore they are shown as block diagram in the figure.

Quantum mechanics predicts a central peak surmounting the neighboured peaks by only 3 %.
On the contrary the central peak in Bohmian mechanics is 3.25 times larger than the neighboured
peaks. The intensity ratios of quantum and Bohmian distribution for second and third peak
apparently also disagree by a factor 1.44. Whereas Bohmian mechanics predicts that 53 % of
the total intensity is concentrated in the three central peaks the corresponding percentage of
quantum mechanics is less than 35 %. Obviously the ensemble of trajectories of Philippidis,
Dewdney and Hiley [12] does not provide the theoretically expected diffraction pattern.

If the intensity distribution in the slits is assumed to be proportional to the Gaussian function
f(z) = exp(—x2/202)/v/2m0 with the standard variation o, the sinc?(z)-function has to be
replaced by the Fourier transform of the Gaussian function f(x). The full width a = 20 of
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Figure 1. Quantum mechanically calculated intensity profile of a double slit diffraction for
uniform intensity distribution inside the slits. The corresponding Bohmian intensities, which
are indicated by vertical bars, are derived from the trajectories of Philippidis, Dewdney and
Hiley [12]. Both data sets are independently normalized. Details on the experimental parameters
and on the data analysis are given in the text.

the Gaussian distribution can be associated with the slit width b because the majority namely
68.3 % of the total intensity is concentrated in the interval —o = —a/2 < x < a/2 = 0. On this
condition the double slit intensity pattern has the form

I(9) = Iy cos®(zd/a)e "/ (3)

with z = mda/\.

It is rather difficult to reliably extract the interference pattern from the figures showing
ensembles of Bohmian trajectories with Gaussian density distribution in the slits. The normal
deviation of the Gaussian distribution is not explicitly given in the publications and can only
be roughly determined from the figures. In addition the intensity contained in the outer wings
of the normal distribution is not represented by trajectories.

Therefore the diffraction pattern for Gaussian density distribution in the slits is derived from
the ensemble of trajectories with uniform intensity in the slits. For this purpose all trajectories
in the two slit regions —d/2 —a/2 < z < —d/2+ a/2 and d/2 — a/2 < x < d/2 + a/2 have to
be weighted by the local probability in the entrance slits. The intensities contained in the right
wing of the left slit (—d/2+a/2 < z < 0) and the left wing of the right slit (0 < z < d/2 —a/2)
contribute to the central peak. The intensities contained in the opposite wings (z < —d/2 —a/2
and d/2 + a/2 < x) merely have to be taken into account in the normalization procedure.

Figure 2 shows the probability densities of Bohmian and quantum mechanics for Gaussian
intensity distributions in the entrance slits. Similar as in figure 1 the Bohmian intensity of the
central peak is much too large in comparison with the quantum results. The intensity ratios of
the second and third peak also disagree by a factor 1.38. Moreover, 51.8 % of the total Bohmian
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Figure 2. Quantum mechanically calculated intensity profile of a double slit diffraction for
Gaussian intensity distribution inside the slits. The corresponding Bohmian intensities, which
are indicated by vertical bars, are derived from the trajectories of Philippidis, Dewdney and
Hiley [12]. Both data sets are independently normalized. Details on the experimental parameters
and on the data analysis are given in the text.

intensity is concentrated in the three inner peaks, whereas for quantum mechanics only 36.2 % of
the total intensity is found in this region. All tests indicate that the often reproduced diagrams
with Bohmian trajectories significantly deviate from quantum mechanics. Thus the statement
of Philippidis, Dewdney and Hiley [12] 'If we assume a Gaussian distribution at the slits, then
the intensity distribution in the Fraunhofer limit agrees with that expected from the usual
considerations’ must be wrong.

The peak intensities of the double slit diffraction pattern for quantum and Bohmian mechanics
are summarized in table I. For both intensity distributions inside the slits the central peak is
much too large whereas the flux contributing to the side peaks is too small.

One could argue that in the figures showing ensembles of trajectories the Fraunhofer limit
is not yet reached because still some trajectories change from one bundle to neighboured ones.
But actually the trajectories only change from outer bundles to inner bundles. That means the
intensity in the central region of the diffraction pattern is increased on the cost of the intensity
in the outer regions. Thus the discrepancy stated above will even become more pronounced if
the trajectories would be traced to the Fraunhofer limit.

Another often expressed objection is that in the diagrams the intensity inside the slits might
not be uniform. But in this case one has to admit even higher Fourier components in the
momentum distribution which would lead to a broader envelope of the diffraction pattern thus
again increasing the discrepancy.

Indeed the Gaussian distribution inside the slits provides the sharpest peak of the envelope
function. If the distance of the slits d is ten times larger than the full width a = 20 of the
Gaussian distribution the intensity ratio of the central peak to the sides peaks is 1.05. That
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Theoretical approach | Quantum mechanics Bohmian mechanics
Iptensfcy dlStrlbUt.l %" | Uniform | Gaussian | Uniform | Gaussian
in the entrance slits
Central peak 0.100 0.124 0.324 0.362
First side peak 0.097 0.119 0.100 0.078
Second side peak 0.088 0.103 0.063 0.049
Further side peaks 0.265 0.216 0.175 0.192

Table 1. Quantum and Bohmian intensities of the double slit diffraction pattern for uniform
and Gaussian intensity distributions in the entrance slits. The distance of the slits is assessed
to be ten times larger than the slit width. In case of Gaussian distribution the slit width is
associated with twice the standard deviation of the normal distribution function. Bohmian
intensities are taken from the trajectories of Philippidis, Dewdney and Hiley [12]. All four data
sets are independently normalized. That means, the intensity of the central peak plus twice the
intensities of the side peaks add up to unity.

means even for the flattest possible distribution inside the slits the intensities of the three inner
peaks of the diffraction pattern are practically equal. One can never reach an intensity ratio
of three by modifying the intensity profile in the slits. Therefore the extreme accumulation of
Bohmian trajectories in the central peak is far from being realistic.

Actually in case of Gaussian distribution the product of the uncertainties of position x and
momentum p,, in ths slits just reaches the minimum possible value compatible with Heisenberg’s
uncertainty relation. Thus the much narrower envelope function predicted by Philippidis,
Dewdney and Hiley clearly contradicts to the uncertainty relation.

There is another question closely related with the possible violation of the uncertainty
relation. In quantum mechanics it is uncontroversial that the question which slit has been
traversed by a single particle cannot be answered without destroying the diffraction pattern.
In contrast Bohmian mechanics allows to answer this question. Because of symmetry reasons
particles cannot cross the middle plane. All particles found on the right side of the diffraction
pattern must have gone through the right slit and vice versa.

4. The escort wave concept — a more realistic coexistence model

From the failure of Bohmian mechanics one cannot conclude that all theories assuming
trajectories must be wrong. The recently presented escort wave concept [18,19] removes the
deficiencies of Bohmian mechanics discussed above. Whereas Bohmian mechanics is based on
the pilot wave theory [20] proposed by de Broglie in 1927, the escort wave concept goes back
to the phase wave model [21] introduced by de Broglie in 1924. Both theories assume that
particle and wave are concrete physical objects coupled to each other. However, cause and effect
are interchanged. Bohmian mechanics derives deterministic trajectories of particles from the
presumed Schrodinger wave function. That means the Schrodinger equation is assumed to be
the basic equation of physics. Classical physics is only a special case of quantum mechanics. The
escort wave concept derives the Schrodinger wave function from classical trajectories. Quantum
phenomena arise from the interplay of particles with the waves accompanying them.

Bohmian mechanics especially the constituting guiding equation (1) has already been
presented in the introduction. The escort wave concept adopts the main aspects of the phase
wave theory, namely that each particle is accompanied by a wave and that angular frequency w
and wave vector k of the wave are linked to energy F and momentum p of the particle via the
well known relations F = hw and p= hk.

In addition the escort wave concept assumes that particles are not only subjected to external
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Bohmian mechanics Escort wave concept
. . deterministic indeterministic
Trajectories . .
far from classical almost classical
Derivation of trajectories o o
from wave function y
Derivation of wave function
no yes

from trajectories

sum of two counterpropagating waves

Meaning of standing wave particle at rest periodic movement of the particle

Born’s rule generally valid only asymptotically valid

Table 2. Comparison of properties of Bohmian mechanics and escort wave concept

potentials but also to vacuum fluctuations. A particle thus can never be regarded as being
isolated from the rest of the universe. That means a stochastic motion is superimposed to the
classical kinematics. Even a free particle is not moving with constant velocity. Therefore the
coherence length of the accompanying wave is finite. The interaction of particles with vacuum
fluctuations is the deeper reason for the emergence of Heisenberg’s uncertainty relation.

Bound particles in periodic motion are associated with counterpropagating waves. The
two travelling waves interfere with each other thus forming standing waves. That means the
occurence of knots in the wave function is a pure wave effect. There is no counterpart in the
probability density of the associated particles. A particle is only coupled to the travelling wave
moving in the same direction as itself. The knots of the standing wave have no influence on
the motion of the particles. Thus in case of standing waves Born’s rule is not valid. Only
the probability of finding a particle at a given scattering angle is asymptotically given by the
appropriately normalized intensity of the outgoing spherical wave. In fact, originally Born [22]
has only postulated his rule in this restricted sense in order to allow the interpretation of
scattering and diffraction experiments in terms of the Schrodinger wave function.

Actually, Bohmian mechanics and escort wave concept are quite different. In order to allow
a sound comparison the main differences of the two coexistence models are compiled in table 2.

In section 2 of this publication several problems have been discussed, where the strict
application of Bohmian mechanics leads to conflicts with experimental observations. For example
Bohmian mechanics erraneously predicts that all states of atomic hydrogen generally have
strong permanent dipole moments. The escort wave concept assumes that an atomic electron is
continuously moving on quasi-periodic orbits. In combination with the deviation from periodicity
the fast movement of the electron leads on average to the formation of an extended charge cloud.

For the ground state of atomic hydrogen the electron motion is purely stochastic thus leading
to a spherically symmetric charge cloud. With increasing principle quantum number the regular
motion becomes more and more important. For highly excited s-states the elliptical trajectories
almost degenerate to straight lines in radial direction. The stochastic motion prevents that the
electrons hit the nucleus and causes a random orientation of the orbits. Because the centroid
of the resulting spherically symmetric charge cloud just coincides with the nucleus the electric
dipole moment is zero.

If one applies a homogenous external magnetic field magnetic sublevels are no longer
degenerate. The wave functions of excited states with zero magnetic quantum number are
purely real. The momentary magnetic moment produced by the movement of the electron on its
elliptical orbit is always perpendicular to the external field. On the influence of the fluctuating
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waves the orientation of the momentary magnetic moment with respect to the azimuthal angle
is at random. Thus the resulting magnetic moment is zero. On average the charge cloud is
rotationally symmetric with respect to the direction of the magnetic field. As for s-states the
centroid of the charge cloud coincides with the nucleus.

Obviously the Bohmian postulate that particles associated with purely real wave function
are permanently at rest leads to consequences which are in contradiction to experimental
observations. The escort wave concept avoids this problem because it superimposes stochastic
motions to the regular movement and associates standing waves with moving particles.

The same arguments remove the problems with vibrating molecules. In the escort wave
concept the particles perform harmonic oscillations. Therefore in time average the molecule is
in the equilibrium distance. The problem with the nuclei at rest disappears.

If one assumes that Bohmian mechanics fully agrees with quantum mechanics the wrong
prediction of Philippidis, Dewdney and Hiley [12] about the interference pattern for the double
slit diffraction must be caused by some error in the calculation. It seems to be quite difficult
to reproduce the correct envelope function. Because the trajectories cannot cross the symmetry
plane the ensemble of trajectories passing through one of the two slits must be totally different
from the ensemble of trajectories describing the diffraction on a single slit.

The escort wave concept does not have to face such difficulties because particle trajectories
can easily cross the symmetry axis. Particles going through one of the two slits will reach both
sides of the diffraction pattern. Thus the envelope of the diffraction pattern for two slits is
given by the interference structure of a single slit. The double slit interference only causes a
redistribution of the local intensity.

There are good reasons to assume that quantum phenomena are based on the interplay of
particles and waves accompanying them. The escort wave concept is a realistic alternative to
Bohmian mechanics. Both models agree with respect to the local flux distribution. In view of
numerous inconsistencies of Bohmian mechanics the escort wave concept looks more promising
to find a logical explanation for the emergence of quantum phenomena.
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