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Abstract :  The aim of the second contribution is to present further universal softwaxe pwekages for 
space groups. The second set of packages is called COEFF consisting of four packages: SUB, CG, SYMCG, 
and SYMPW. All packages Mlow one not only to treat every'space group in arbitrary settings (shift of origin 
a~ud/or re-orientation) but also to use space group irreps in arbitrarily modified forms (new representation 
domains a~nd/or new little co-group irreps and/or new coset representatives). Each COEF-package yields 
the matrix elements of the corresponding unitary similarity matrices in analytic form. 

A .  I n t r o d u c t o r y  R e m a r k s :  For more details concerning the definition of space groups 
in standard or in non-s~andard settings, or the computer generation of space group irreps in 
standard or in non-s~andard forms, the reader is referred to Ref.[1]. By definition, we call a 
space grou p G{q', 7); (WIw)} = (WIw) * G{ ~r, 7); (El0)} * (WIw) -1 a non-standard setting of 
g{7", 7>; (El0)) if the element (WIw) e ~(3) does not belong to the Euclidean normalizer of g .  
Induced space group irreps are expressible in the form 

+ t)  = A k ( 2 i ,  e 

and define standard Miller-Love space group irreps if (1) the space groups G are in standard 
settings, (2) the sign A is plus one, (3) the representation domains R B Z ( T ,  7)) are identical to 
those that are tabulated in Kef.[2], (4) the little co-group irreps/I t  k,e;+ are ML-irreps, and (5) the 
coset representatives {1~} are optimized ones. 

To transform G-irreps in s~andard form where G is in standard setting, into non-standard 
forms and/or G into non.standard settings, the reader is again referred to l~ef.[1]. To recall, all 
software packages, not only IP~REP, create by default single and double-valued standard Miller: 
Love space group irreps but likewise allow one to carry out any re-setting of space groups and/or 
any modification of space group irreps as long as they are compatible. 

B .  P a c k a g e  - -  S U B :  One part of our software package called SUB deals with the algebraic 
check of group-subgroup relations and the second part with the actual computation of tables of 
multiplicities and corresponding subduction matrices. On some features and computational results 
of package SUB we have already reported in Ref.[3]. 

B.1 Group-Subgroup Relations g C 7"& A complete set of certain types of group-subgroup 
relations is tabulated in Ref.[4] but where all groups are assumed to be in standard settings. 
To cover all possible types of group-subgroup relations we extend the scheme by admitting that 
groups, sub-groups, and super-groups may be simultaneously in non-standard settings. Let g be 
a subgroup of 7/. To be more strict we assume in general 

~{~ 'a ,  7)G; (Vlv)) C ~ { ~ ' ~ ,  ~'H; (El0)) (2) 

where (VIv) e ~(3) that ? t  is in standard but g in non-siandard setting. Note iu'paxticular, 
translational group-subgroup relations TG (V) C TIt  ( E) where TG (V) = (VJv)* TG (E) * (VIv)-  a 
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involve the possibility of considering Bravais lattices 7"a(V) and ff 'H(E) that  refer to different 
lattice constants. The option of entering arbitrary ratios of lattice constants of the corresponding 
Bravais lattices in conjunction with arbitrary settings of space groups opens up a wide field of 
applications. 

B.2 S u b d u e t i o n s  - -  C o m p l e x  C o n j u g a t i o n :  The second part  of package SUB deals with 
the actual decomposition ofsubduced 7~-irreps into direct sums of[7-irreps. To distinguish between 
7£-irreps and g-irreps we employ the notations IDq,n;x for 7-~-irreps and /D k,~;x for [7-irreps 
where h ~ 7£ and g ~ [7 respectively. Moreover 7£-irrep labels are denoted by (q, 7/) where q 
RBZ(~/'H, 'PH)  and r} e A(q); and g-irrep labels are denoted by (k, ~) where k e RBZ(qr'a, 7)a) 
and ~ ~ A(k) respectively. Finally A, A ~ = :t:l can be chosen independently. 

Without going into details let us summarize the possibilities offered by the package SUB. In 
all the cases described here, we start  from a fixed triplet (q, 7}; A) and compute for the fixed q, not 
only complete tables of multiplicities for all ~ ~ A(q), but also for the given r / the corresponding 
similarity transformation. Again we stress the fact that  A and M can be chosen independently. 
The results of package SUB are (1) arbitrary subduetions for [7 C 7£, (2) compatibility relations 
for G = 7-l, (3) generalized compatibility relations for [7 C 7£ by considering limit-representations, 
and (4) complex conjugation for [7 = 7~ respectively. 

w . , .  t ~D.,.;~(g) w~'~, A,A' 

w q . , ~  1" A,A' ~'sq*'rl;A(g) wq°'rl" A,A' 

,v 

= ~k ,e  • re(q, 7; AI k, ~; A') ~D k,e;x' (g) 

= ~k.,~o @ m(ko, ~; A[ko, ~o; A') I19 k°,e*;x'(g) 

= ~k.,~o @ m(qo, r]; Alko, ~o; A') ID k*,~*;x' (g) 

= E k * e .  @ re(k, ~; +]k*, ¢*; - )  ]Dk"e ' ; -  (9) 

The last facility especially can be used not only to verify, for arbitrary single and double-valued 
space group irreps, their reality and degeneracy due to Kramer 's  degeneracy, but also to construct 
explicitly co-irreps, in full generality, for all Shubnikov space groups of type II. 

B.3 Automorphisms -- Subduetions -- Complex Conjugation: For maximum versa- 
tility of package SUB the user can also invoke the option of considering automorphisms acting 
on ? t  exclusively. The most general automorphisms are elements of the Affine Group .A(3). Let 
a = (Zlz) be an antomorphism of 7£, i.e. a(7£) = (glz) * 7 £ .  (glz) -1 = 7£ which means that  7i 
is mapped onto itself. Now let G C 7£ be a group-subgroup relation, it remains valid on replacing 
7£ by a(q-/). This entails G C a(7£) ¢==~ a - l ( G )  C 7£ which reveals the subtle point that  one has 
to distinguish between the cases a-X(g) = g and a-X(g) ¢ g respectively. Starting from a given 
7£-irrep, say ]Dq,~;x subduction to G-representatious means 

IDq'n;A(a(h)) ~ [7 = ( IDq '" ;A(a(g))  ,¢==~ a - l ( g )  = [7 
iDq,.;~(aCh)) ~ [7 ¢=~ a_1([7) ¢ [7 (3) 

Thus when carrying out (3) one can do it either directly or split the procedure into two steps: (1) 
aDq,.~(a(h)) ~ m°Cq),°<.);~(h) and (2) ID°Cq),°C.);X(h) I [7 where a(a,O) = (a(q),a(V)) are the 
images of the 7£-irreps labels (q, 7) under the antomorphisms a respectively. 

Again without going into details let us summarize the possibilities offered by the package SUB. 
In all the cases described here, we start from a fixed triplet (q, r]; A) determining a 7£-irrep and 
compute for the fixed q not only complete tables of multiplicities for all ~1 E A(q), but also for the 
given r} the corresponding similarity transformation. The results of SUB are (1) au~omorphisra 
mappings for ~ = 7-/, (2) au~omorphism mappings for [7 C 7/, (3) automo~hisms combined with 
compatibility relations for g = 7"/, (4) automorphisms combined with generalized compatibility 
relations for g C 7£, and (5) automorphisms combined with complex conjugalion for [7 = 7£. 

wa(k'e)tA,A' ]Dk'e;A(a(g)) W ~  ~'e) -~ Ek',¢, • m(a(k),  a(~); Zlk', e'; a') mk',¢;z(a) 
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~ r a ( q , ~ )  w "(q'~)~ {]Dq'~;~(a(h)) ~. ~} ..  ~.~, = ~C.',e ~ m(. (q) ,  ~(~);.~lk, ~); .V) ~k,~;Z(g)  X,,V 

W~Ck.d) , , , W "(R*'e)t ILk-,~;X(a(g)) ~,~, = ~ k . , , .  @ m(a(ko),a(~);Alko',~$;A') ]Dk*,e*; ~ (g) 

wa(.q*,~) t n~ w a ( ~  ,~) x,a' {]Lq*'°;X(a(h)) ~ ~'J x,x = Eko,e. @m(a(qo),a(o);alko,~o;a')IDk*'~*"X'(g) 

W~: (~'e)t ]D~'e;+(a(g)) W~: (~'0 = Ek,,¢, • m(a(k'), a(C); +1 k', ~' ; - )  ]I3 k''¢;- (g) 

For instance the last facility allows one to construct for every Shubnikov space group of type III 
and of type IV corresponding co-irreps. To sketch the procedure, let ~ be a subgroup of index two 
of the space group 7-/, and 7/(G) = ~ +ho*~ a asset decomposition. To arrive at a Shubnikov space 
group of type III or of type IV, symbolically written as 2v1{7/(~7)} = g + (c; ho) .  G, one considers 
the extensions h ~ (c; h) for all h ~ 7 / \  g and requires in addition (c; ho) ~ = (e; El0) * (e; h~) 
where /~ denotes the non-trivial element of the centre of SL/(2). Applying package SUB to this 
particular situation one arrives at 

type I: wk'e;'l'(C; ho) {W",e'~(c; h°)} o = + ]D"'e(~10) ]Dk'~(ho ~) 
type II: wk,e;4"(c;h°) {WR,e;+(e;ho)}* = -- IDk,e(J~10 ) IDk,~(h~) 

type III: WR'~;±(e;ho) {wk'~;+(e;ho)}? = + ]Dk'~(EI0) 

which allows one not only to check directly reality and degeneracy of single and of double-valued 
space group irreps but also to construct explicitly co-irreps of Shubnikov space groups of any type 
due to the knowledge of the similarity matrices WR'~;±(e; ho) respectively. 

C .  P a c k a g e  - -  C G :  The software package called CG deals with (i) the analysis of so- 
called Wave Vector Selection Rules, (ii) the computation of multiplicities for Kronecker product 
decompositions, and (iii) with the actual computation of Clebsch-Gordan matrices. The basic ideas 
have already been published elsewhere (for further references consult eg. Ref.[3]). 

By definition, Clebsch-Gordan matrices are unitary matrices that reduce Kroneeker products of 
g-irreps ID k'~lk''~'l"~ =/Dk'e;~(g) ® 1Dk"~';X'(g) into direct sums of their irreducible constituents. ~AsX" k : / /  
They are called standard CG-matrices if ~ is in standard setting and if the G-irreps are in standard 
form respectively. 

kt t 
c.k,dk',~ '? ]Dk,~l ,~ t.~ (.k,~lk',~' = ~ k "  e" @ m(k,~; AIk',~'; A'llk" ,~''; A") mk" ,e" ;z ' (g )  (4) 
~ X A '  X" X;X ~ K~/ v A X ~ X "  , 

Note CG-matrices are denoted by ~k'~lk"~' their non-zero entries are located at positions that are 
determined by so-called Wave Vector Selection Rules (WVSRs). By definition, Leading WVSRs 
(LWVSRs) are WVSRs of the type Sk+S~k  t = k ' + g  where it is assumed that k, k ~, k" E RBZ(~)  
respectively. Note that depending on the chosen k-vectors k and k ~, more than one LWVSR may 
exist which implies a natural splitting of the multiplicities. 

m(k,~; AIk',~'; Yllk",~"; A") = ~(s__,s__,) m(Sk,~;  Al~'k',~';  A'llk",~"; A") 

Note that the sum runs over all pairs of admissible coset representatives ( S , ~ )  that define 
LWVSRs. This splitting is extensively used in package CG to compute CG-matriees. 

To achieve the most compact representation of CG-matrices we apply a rearrangement proce- 
dure which consists of rearranging rows and columns of CG-matrices in a specific manner. The 
basic ideas of this rearrangement procedure are described in Ref.[5]. The rearrangement procedure, 

k ~'k' * '  a k,~lk',~' leads to new unitary matrices that decompose into symbolically written as Cx~Ix,, '~ ~ "-';~x,x- , 
a direct sum of unitary sub-matrices (Sub-CG-matrices). To summarize 

ask,~ls_'k ' ,~a tL . .  w.,~ "'xXR'X"A k' l~lk"~' = ~ k "  ~(,5",S')_ _ ~./:t''__ ~ B(.....~') "-%~A',~" I ,  , ~..~../ (5 )  
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k e l S / k  t e l  
where the matrices A ~  '~ (k", E")  are called Leading Sub-CG-matrices. The unitary matrices 
B(R")  are monomial for the vast majority of possible cases. 

Again without going into details let us summarize the possibilities offered by the package CG. 
In all the cases described here, we start from two fixed triplets, say (k, ~; A) and (k', ~'; ,V), and 
compute for the fixed k and k ' ,  not only complete tables of multiplicities, but also for the given 

and ~' the corresponding CG-matrices. The package CG allows one to compute (1) generic 
CG-matriees (given by (4) if none of the resulting k"  coincides with limit-vectors of RBZ(ff)), (2) 
non-generic CG-matrices (at least one k u coincides with a limit-vector), and (3) limit CG-matrices 
(at least one constituent of the Kronecker product is a limit-representation of g) ,  for arbitrary 
settings of g and arbitrary forms of G-irreps. 

C k'~clk''(tt ]D  k'elk''~'(''~ 6?k'(lk"~' m(k, " . . . . . . .  . . . .  ~; mlk', ~'; A ' l lk" ,  ~o ; A") m"o,e= ,~' (g) 

cko'elk: 'e 't  Tl"k*'elk~*'e'("~' oko'elk'*'e' ---- ~"~k",e" 1~ m(ko, ~; Alk'o,~'; A'llk", ~"; A") ]Dk",e";x"(g) 
AA'A" A;k' kS/ ~AAIA- 

R E M A R K S :  Thus the program can be run for Kronecker products of reducible g-representa- 
tions. Corresponding results have been discussed in l%ef.[6]. The package SYMCG offers analogous 
options for decomposing symme$rized Kronecker powers of space group representations. 

D .  P a c k a g e  - -  S Y M P W :  The software package called SYMPW allows one to construct 
systematically so-called Symmetrized Plane Waves (SPWs). These states transform according to 
space group irreps and are linear combinations of plane waves. 

To sketch the procedure, one starts from a given plane wave, say ~k,s where k E RBZ(ff )  and 
g E Tr6¢, and constructs by a two-step procedure SPWs. The first step consists of generating 
such linear combinations of the PW ~k,g that transform according to allowed g(k)-irreps. The 
second step consists of applying the induction procedure to the latter states to generate SPWs. 
The procedure written symbolically 

~(klg;~,t0) (x  ~ ' ~k 'g (x )  '~ lg;~'")(x)  ~ .a,, ~ , 

corresponds precisely to the induction procedure {{D k = "/" - irrep} 1' g(k)}  T g of g-irreps. To 
summarize, for uniqueness of the SPWs, one has not only to restrict the k-vectors to RBZ(G), 
but also to take from each g-star with respect to 7~(k) only one element, as otherwise ambiguities 
would occur. 
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