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Abstract
We study first BGG operators and their solutions on homogeneous conformal
geometries. We focus on conformal Killing tensors, conformal Killing–Yano
forms and twistor spinors in particular. We develop an invariant calculus that
allows us to find solutions explicitly using only algebraic computations. We
also discuss applications to holonomy reductions and conserved quantities of
conformal circles. We demonstrate our result on examples of homogeneous
conformal geometries coming mostly from general relativity.
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1. Introduction

Conformal Killing tensors, conformal Killing–Yano forms, or twistor spinors, i.e. conformal
Killing spinors, play an important role in general relativity, [21, 34, 35, 37, 40]. Recently, it
is shown that all of these can be viewed as solutions of so–called first BGG operators on con-
formal geometries, [8, 29, 31]. Moreover, there is a distinguished class of normal solutions of
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the first BGG operators having additional geometric interpretations, [11]. First BGG operat-
ors form an important class of conformally invariant differential operators defined on specific
bundles X →M over conformal manifolds, [5, 7, 8, 29].

In this article, we develop an invariant calculus for first BGG operators on homogeneous
conformal structures (M, [g]) and demonstrate its use in several important examples coming
from relativity. We consider homogeneous conformal structure [g] of signature (p, q) on a con-
nected smooth manifoldM of dimension n= p+ q. This is an equivalence class [g] of pseudo–
Riemannian metrics of signature (p, q) spanning a line subbundle E [−2]⊂

⊙2T∗M such that
the group of conformal symmetries of [g] acts transitively onM. Due to the homogeneity, one
can expect all the computations to be pulled back to a single point and then encoded as algeb-
raic objects. The main result of the invariant calculus we present here can be summarized as
follows.

Theorem 1.1. Let (M, [g]) be a conformal geometry with signature (p, q) and consider a first
BGG operator on a bundle X →M. Suppose K is a Lie group of conformal symmetries of [g]
acting transitively on M and let H be the stabilizer of a point x ∈M. Then there are represent-
ations φ : K→ Gl(G) and µ : H→ Gl(X) and an H–equivariant projection π :G→ X such
that

(X →M)∼= (K×µ(H) X→ K/H),

and for each v ∈G, the section of X induced by the function

K→ X, k 7→ π(φ(k)−1(v))

is a solution of the first BGG operator on the bundle X →M.

We prove in theorem 3.1 a local version of this theorem that provides representations Φ : k→
gl(S) and dµ : h→ gl(X) and an h–equivariant projection π : S→ X describing the set S of
local solutions of the first BGG operators, where k,h are the Lie algebras of K,H, respectively.
The maximal subrepresentation G⊂ S of k that can be integrated to a representation φ of K
then provides the global solutions. We summarize in section 3.3 an algorithm for computing
the solutions of the first BGG operators using theorems 1.1 and 3.1. Let us emphasize that the
algorithm can be straightforwardly implemented using a computer algebra system and in fact,
we use Maple for our computations.

Let us present here several key facts: As we recall in section 3, the projection π comes from
the tractorial approach to BGG operators, [2, 24, 29]; each first BGG operator is encoded by
an (irreducible) representation

ρ : so(p+ 1,q+ 1)→ gl(V).

Then X can be identified with the co(p,q)–module of the lowest weight in V, which is usually
called the projective slot. Since the sets of solutions are identified with subsets G⊂ S⊂ V, it
follows that π is induced by the natural projection V→ X.

The representations Φ and dµ can be algebraically computed, as we show in the proof of
theorem 3.1. The data we use in the computation consists of the representation ρ and a linear
map

α : k→ so(p+ 1,q+ 1),

called conformal extension, that can be associatedwith each homogeneous conformal structure
with a signature (p, q). In particular, the map α restricted to h is a Lie algebra homomorphism
dι : h→ p, where p is the Poincaré Lie subalgebra p of so(p+ 1,q+ 1). Since the repres-
entation ρ|p can be restricted to X, we obtain dµ= ρ|p ◦ dι. Let us remark that the tractorial
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approach to BGG operators in the global setting involves topological obstructions requiring
the existence of a Lie group P with the Lie algebra p for which the Lie algebra homomorph-
isms ρ|p and dι can be integrated. In our approach, the integrability of dµ follows from the
existence of the bundle X and we only need to discuss the relation of the sets G and S.

In section 2, we introduce conformal extensions in detail. We describe how to find the
conformal extension associated with a homogeneous conformal structure in proposition 2.1.
We show in sections 2.3 and 2.5 that conformal extensions provide a complete local description
of both the conformal geometry and the associated Cartan geometry, [13]. In particular, there
is a distinguished complement c of h in k that determines suitable exponential coordinates

c : c→M

and a coframe e∗ : Tc→ Rn that provides this local description explicitly. We illustrate this
concept on the example of the conformal class given by the famous Gödel metrics, [26], in
sections 2.2 and 2.6.

We prove our main results in section 3. In section 3.4, we discuss in detail how to use the
exponential coordinates c and the coframe e∗ to describe the bundle isomorphism (X →M)∼=
(K×µ(H) X→ K/H) and the solutions of the first BGG operators in the local coordinates. We
illustrate this in proposition 3.2 by computing the solutions of several first BGG operators for
the conformal class of the Gödel metrics including e.g. Einstein scales or conformal Killing
2–tensors.

In sections 4 and 5, we compute solutions and normal solutions of the first BGG operators
on further examples and also discuss several of their applications. In section 4, we discuss
holonomy reductions provided by normal solutions of first BGG operators, [12]. We provide
three particular examples which are conformal classes of submaximally symmetric pp–wave of
signature (1,3), [18, 20], a non–reductive version of Gödel metric, and an invariant metric on
the Lie groupGl(2,R). In the pp–wave case, we describe all normal solutions for all first BGG
operators and determine the holonomy reductions induced by Einstein scales, twistor spinors,
and normal conformal Killing fields. In the case of non–reductive Gödel, we also describe all
normal solutions for all first BGG operators and determine the holonomy reductions induced
by twistor spinors and normal conformal Killing fields. In the remaining case, we discuss the
holonomy reduction provided by a normal conformal Killing field that relates this example to
CR geometry, [10].

In section 5, we discuss the application of conformal Killing–Yano 2–forms for finding
conserved quantities on conformal circles, [1, 19, 25]. We consider two examples which are a
conformal structure on the 3–dimensional Heisenberg group, called Nil in [39], and a symmet-
ric space with the split version of the Fubini–Study metric. We compute conformal Killing–
Yano 2–forms, determine the conserved quantities, and discuss how to use them to obtain an
explicit description of the conformal circles.

Since the formulas for first BGG operators in local coordinates are not available in the
literature in many cases, we describe in appendix A how to find such a formula in the expo-
nential coordinates c. We also provide in appendix B an explicit example of computation of
the prolongation connection that is part of the algorithm from section 3.3.

1.1. Notation

Let us fix some conventions that we use throughout the article. We fix the scalar product g on
T := Rn+2, n= p+ q, p⩽ q, given by the (1,p,q− p,p,1)–block matrix
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g=


0 0 0 0 1
0 0 0 Ip 0
0 0 Iq−p 0 0
0 Ip 0 0 0
1 0 0 0 0

 ,
where Ir denotes the identity matrix of order r. We fix the Lie algebra so(p+ 1,q+ 1) as the
Lie subalgebra of gl(T) preserving g, i.e. so(p+ 1,q+ 1) consists of elements

a b c d 0
u A E F −dt
v C B −Et −ct
w D −Ct −At −bt
0 −wt −vt −ut −a

 , (SO)

where a ∈ R, A ∈ gl(p,R), B ∈ so(q− p), C,Et ∈ Rp∗ ⊗Rq−p, D,F ∈ so(p), u,w,bt,dt ∈ Rp

and v,ct ∈ Rq−p. We have several reasons for this convention and summarize them as follows.

• The subalgebra Rn ⊂ so(p+ 1,q+ 1) consisting of (u,v,w)–parts of (SO) together with the
scalar product

νp,q =

0 0 Ip
0 Iq−p 0
Ip 0 0


provides a linear model of conformal geometries, i.e. conformal coframes are (local) maps
TM→ Rn mapping the conformal class [g] to functional multiples of νp,q.

• The subalgebra co(p,q)⊂ so(p+ 1,q+ 1) consisting of (a,A,B,C,D,E,F)–parts of (SO)
is the Lie algebra of the conformal group CO(p,q) preserving the scalar product νp,q up to
multiples.

• The remaining subalgebra Rn∗ ⊂ so(p+ 1,q+ 1) consisting of (b,c,d)–parts of (SO) cor-
responds to the first prolongation of co(p,q). Note that the duality between Rn and Rn∗ is
provided by the Killing form of so(p+ 1,q+ 1).

• The diagonal of so(p+ 1,q+ 1) forms a Cartan subalgebra and the corresponding root
spaces are compatible with (SO). In particular, all negative real root spaces are below the
diagonal and positive ones are above the diagonal and p := co(p,q)⊕Rn∗ is the Poincaré
(parabolic) algebra.

Since there will be formulas involving simultaneously Lie brackets from so(p+ 1,q+ 1)
and other Lie algebras, we use the notation { , } for the Lie bracket on so(p+ 1,q+ 1) and the
notation [ , ] for the Lie bracket on other Lie algebras in question.

Further, we denote by
⊙k

0T the highest weight component of the symmetrized product of
k copies of T, and by ∧kT the skew–symmetrized product of k copies of T. We denote by D or
D± the spin or half–spin representations of so(p+ 1,q+ 1), respectively. For a general tensor
productV of such representations, we denote by⊠(V) the highest weight (Cartan) component
in this tensor product.

The restriction of ρ : so(p+ 1,q+ 1)→ gl(V) to p induces a filtration Vi of V, where i are
the half–integers determined by the action of the grading element which is given by (1,n,1)–
block matrix

E :=

1 0 0
0 0 0
0 0 −1

 .
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Precisely, the eigenspaces Vj = {X ∈ V : ρ(E)(X) = jX} define an associated grading Vj to
the filtration Vj =

⊕
k⩾jVk. Each Vj is a co(p,q)–representation and, if ρ is irreducible, then

X is irreducible co(p,q)–representation Vj with minimal j. Such X is a tensor product of an
irreducible representation of so(p,q) and one–dimensional (−w)–eigen representation R[w]
of E.

Finally, the line bundle E [w] of conformal densities of weight w is (if it exists) the (−w
n )–th

power of ∧nT∗M.

2. Homogeneous conformal structures

2.1. Description of homogeneous conformal structures

Classically, a K–invariant conformal structure [g] of signature (p, q) on M= K/H is encoded
in a non–degenerate element

go ∈
2⊙

k/h∗

of signature (p, q) that is preserved by the isotropy action of the stabilizer H of o ∈M up to a
positive multiple. Then a linear isomorphism

α−1 : ToM= k/h→ Rn

such that go = α∗
−1νp,q induces a Lie group homomorphism

ι0 : H→ CO(p,q)

and identifies the bundle of conformal frames (i.e. theCO(p,q)-structure onM) with the bundle
K×ι0(H) CO(p,q). Thus the map α−1 contains all the information about the conformal geo-
metry, but to encode all the information we need, we extend α−1 in the following way.

Proposition 2.1. Let (M, [g]) be a K–homogeneous conformal geometry and H⊂ K a sta-
bilizer of a point o ∈M. Let α−1 : ToM= k/h→ Rn be a linear isomorphisms such that
α∗
−1νp,q ∈ [g]o. Then there is linear map α : k→ so(p+ 1,q+ 1) such that

(1) {α(Y1),α(Yh)}−α([Y1,Yh]) = 0 for all Y1 ∈ k,Yh ∈ h,
(2) α(k/h) = so(p+ 1,q+ 1)/p and moreover, the restriction of α to a map k/h→ Rn along

p coincides with α−1,
(3) the curvature

κ(α(Y1)+ p,α(Y2)+ p) := {α(Y1),α(Y2)}−α([Y1,Y2])

in ∧2Rn∗ ⊗ so(p+ 1,q+ 1) satisfies the normalization condition∑
i

{Zi,κ(α(Y)+ p,α(Xi)+ p)}= 0 (Nor)

for all Y ∈ k, where the elements Xi ∈ k are representatives of a basis α−1(Xi) of Rn and
the elements Zi ∈ Rn∗ form the corresponding dual basis.

Proof. The existence of such α follows from [13, theorem 1.5.15] and [13, theorem 1.6.7].
We provide here an explicit construction of such α we will use later. Let us emphasize that all
the conditions listed below lead to linear equations that can be always solved.
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We pick a complement c of h in k and get a map α−1 : c→ Rn ⊂ so(p+ 1,q+ 1). Without
loss of generality, we can assume dι0 : h→ co(p,q)⊂ so(p+ 1,q+ 1) is injective because
otherwise, there is a conformal Killing field with higher–order fixed point which makes the
conformal geometry flat. Then k is a Lie subalgebra of so(p+ 1,q+ 1) and α is just the inclu-
sion. This altogether provides an associated graded map

α−1 + dι0 : k= c⊕ h→ so(p+ 1,q+ 1).

Next, we extend dι0 to a map dι : h→ p by a linear map h→ Rn∗ such that the component of

{α−1(Y1),dι(Yh)}− (α−1 + dι)([Y1,Yh])

in co(p,q) vanishes. This provides an injective Lie algebra homomorphism dι : h→ p that
satisfies {α−1(Y1),dι(Yh)}− (α−1 + dι)([Y1,Yh]) = 0 modulo Rn∗ for all Y1 ∈ k,Yh ∈ h.

Further, there is a linear map α0 : c→ co(p,q) such that

{(α−1 +α0)(Y1),dι(Yh)}− (α−1 +α0 + dι)([Y1,Yh]) = 0

for all Y1 ∈ k,Yh ∈ h and such that the component of the normalization condition (Nor) in
co(p,q) computed for α−1 +α0 + dι instead of α vanishes. Note that α0 is not unique and one
can usually observe some freedom depending on the a–part in the block description (SO) of
α0 which we can fix arbitrarily without loss of generality.

Finally, we add a linear map α1 : c→ Rn∗ such that the component in Rn∗ of normalization
condition (Nor) vanishes for α := α−1 +α0 +α1 + dι. Such α then satisfies all the conditions
(1)–(3) of the statement.

Based on the above proposition, we adopt the following terminology.

Definition 2.1. We call a linear map α : k→ so(p+ 1,q+ 1) a conformal extension (of (k,h))
if it satisfies the conditions (1), (2) of the proposition 2.1. We call the tensor κ from point (3)
of the proposition the curvature of the conformal extension α and we say that the conformal
extension is normal if the normalization condition (Nor) is satisfied.

For a conformal extension α of (k,h), the restriction of α to a map α−1 : k/h→ Rn along p

provides go := α∗
−1νp,q ∈

⊗2
k/h∗. If K,H are Lie groups with Lie algebras k,h and H is a

closed subgroup of K, then the component of identity in H preserves go up to a multiple. Thus
if also the other connected components in H preserve go up to a multiple, then K/H carries a
homogeneous conformal structure associated with the conformal extension α.

2.2. Conformal extension for Gödel metric

Let us consider conformal class given by the famous Gödel metrics, [26], on a manifold M
with coordinates (t,x,y,z) that is eitherR4 or S1 ×R3 with t mod 4

√
2π. We pick the following

representative Gödel metric

g=−(dt+ exdy)2 + dx2 +
1
2
e2xdy2 + dz2.

The Lie algebra of conformal Killing fields of [g] is generated by the time translation ∂t, two
space translations ∂y,∂z and further two vector fields ∂x− y∂y and (2− 2e−x)∂t+ y∂x− (1+
y2

2 − e−2x)∂y. The flows of the first four vector fields act transitively on both R4 and S1 ×R3.
The last vector field vanishes at the origin o= (0,0,0,0) and is complete only on S1 ×R3.
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Let us fix the following Killing fields

k1 := ∂z+ ∂t, k2 := ∂x− y∂y, k3 :=
√
2(∂y− ∂t), k4 :=−1

2
∂t+

1
2
∂z,

because these induce a linear isomorphism α−1 : ToM= k/h→ R4 such that

go = α∗
−1ν1,3 = α∗

−1


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 .
Further, we choose h1 := (2− 2e−x)∂t+ y∂x− (1+ y2

2 − e−2x)∂y in the stabilizer which
allows us to parametrize k as k= x1k1 + x2k2 + x3k3 + x4k4 + x5h1, where the Lie bracket in
k is minus the Lie bracket of the corresponding vector fields, i.e.

[k2,k3] =
1√
2
k1 + k3 −

√
2k4, [k2,h1] =−h1 −

√
2k3, [k3,h1] =

√
2k2.

Lemma 2.1. The normal conformal extension α : k→ so(2,4) corresponding to the Gödel
metric according to proposition 2.1 is α(x1,x2,x3,x4,x5) =

0 − 1
2 x1 +

1
6 x4 − 1

12 x2 − 1
12 x3

1
6 x1 −

1
8 x4 0

x1 0
√

2
4 x3 −

√
2

4 x2 0 − 1
6 x1+

1
8 x4

x2
√

2
2 x3 0

√
2

2 x1 − x3 −
√

2
4 x4 +

√
2x5 −

√
2

4 x3
1
12 x2

x3 −
√

2
2 x2 −

√
2

2 x1 + x3+
√

2
4 x4 −

√
2x5 0

√
2

4 x2
1
12 x3

x4 0 − 1
2

√
2x3

√
2

2 x2 0 1
2 x1 −

1
6 x4

0 −x4 −x2 −x3 −x1 0


with the curvature κ(α(x1,x2,x3,x4,x5),α(y1,y2,y3,y4,y5)) =

0 −
√
2
2 z23 −

√
2
4 z13 −

√
2
8 z34

√
2
4 z12 +

√
2
8 z24

√
2
4 z23 0

0 1
3 z14 − 1

6 z12 − 1
6 z13 0 −

√
2
4 z23

0 − 1
6 z24 0 1

3 z23
1
6 z12

√
2
8 z34 +

√
2
4 z13

0 − 1
6 z34

1
3 z23 0 1

6 z13 −
√
2
8 z24 −

√
2
4 z12

0 0 1
6 z24

1
6 z34 − 1

3 z14
√
2
2 z23

0 0 0 0 0 0


,

where we write zij = xiyj− xjyi.

Proof. Elements k1,k2,k3,k4 span a complement c of h in k and α−1(
∑4

i=1 xiki) is element of
R4 with coordinates (x1,x2,x3,x4). This induces the given dι0(x5h1). Then, as in the proof of
proposition 2.1, we compute that dι= dι0 (because the decomposition c⊕ h is reductive) and
compute the given α0,α1, where we choose a= 0 for the a–part in (SO) of α0. The curvature
is computed directly by definition.

2.3. Homogeneous conformal structures in local coordinates

We would like to employ suitable exponential coordinates for our computations and therefore,
we shall consider a decomposition of the Lie algebra k to subalgebras where the exponential
map can be easily computed. In general, one can always consider the Levi decomposition of k
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and the Iwasawa decomposition of a maximal semisimple subalgebra of k, [13, section 2.3.5].
We group these decompositions into a decomposition k= l⊕ a⊕ n, where

(1) l is a maximal compact subalgebra of a maximal semisimple subalgebra of k,
(2) a is a maximal diagonalizable subalgebra (over real numbers) of k,
(3) n is the sum of the remaining nilpotent part of the Iwasawa decomposition of a maximal

semisimple subalgebra of k and the remaining part of the radical of k that is not diagonal-
izable subalgebra (over real numbers).

Then, we can find (using simple linear algebra and root space decomposition of themaximal
semisimple subalgebra of k) a complement c of h in k with the following properties

C1 c= (c∩ l)⊕ (c∩ a)⊕ (c∩ n) with dimension c∩ l minimal possible in the case we are
interested in local properties or with dimension c∩ l maximal possible in the case we are
interested in global properties,

C2 each element c∩ l can be written as a sum L1 + · · ·+Lj for some basis Li of l such that
exp(Li) can be easily computed.

Definition 2.2. We say that c : c→M are exponential coordinates compatible with the decom-
position k= l⊕ a⊕ n if c is a complement of h in k satisfying conditions C1 and C2, and c is
defined by

c(X) := exp(L1) . . .exp(Lj)exp(Xa)exp(Xn)o

for X= L1 + · · ·+Lj+Xa +Xn ∈ (c∩ l)⊕ (c∩ a)⊕ (c∩ n). We denote by c̃ : c→ K the cor-
responding natural lift

c̃(X) = exp(L1) . . .exp(Lj)exp(Xa)exp(Xn).

As the first application, these exponential coordinates allow us to (locally) construct the con-
formal class with prescribed associated conformal extension.

Proposition 2.2. Let α : k→ so(p+ 1,q+ 1) be a conformal extension of (k,h) and let c be a
complement of h in k satisfying conditions C1, C2. If e∗ := (e1, . . . ,en) : Tc→ Rn is a coframe
given by α−1 ◦ c̃∗ωK for the Maurer–Cartan form ωK of some Lie group K with the Lie algebra
k, then the conformal class [e∗νp,q(e∗)t] on c is locally homogeneous conformal geometry with
associated conformal extension α.

Proof. Under the assumptions of the proposition, we have the lift c̃ : c→ K and thus we
can pullback the Maurer–Cartan form ωK : TK→ k on K to c̃∗ωK : Tc→ k. So after compos-
ition with α we get a map Tc→ so(p+ 1,q+ 1) and thus α−1 ◦ c̃∗ωK is a coframe e∗ :=
(e1, . . . ,en) : Tc→ Rn. This defines the conformal class [e∗νp,q(e∗)t] on c, which by construc-
tion is locally homogeneous with associated conformal extension α. Indeed, if we assume
that c : c→ K/H are exponential coordinates compatible with the decomposition k= l⊕ a⊕ n
for suitable closed subgroup H of K with Lie algebra h, then [e∗νp,q(e∗)t] is the description
of the invariant conformal class induced by the element α∗

−1νp,q ∈
⊙2

k/h∗ in these local
coordinates.

It will be useful later to adopt the following definition.

Definition 2.3. We call the coframe e∗ from proposition 2.2 a c–coframe and we say that its
dual frame is a c–frame.

8
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2.4. Exponential coordinates for Gödel metrics

Let us illustrate ideas of section 2.3 on the example from section 2.2.

Lemma 2.2. Let us consider the complement c= 〈k1,k2,k3,k4〉 for the conformal class of the
Gödel metrics from section 2.2. Then there exists a decomposition k= l⊕ a⊕ n such that

e1 = ∂a1 + ∂a2 , e2 =
1
2
(∂a3 + 2a4∂a4), e3 =

√
2(−∂a2 + ∂a4),e4 =

1
2
(∂a1 − ∂a2)

e1 =
1
2
(da1 + da2 − 2a4da3 + da4), e

2 = 2da3, e
3 =

1√
2
(−2a4da3 + da4),

e4 = da1 − da2 + 2a4da3 − da4

form the corresponding c–(co)frames in the exponential coordinates

c= (a1,a2,a3,a4)→M

compatible with the decomposition l⊕ a⊕ n. In particular,

g= da21 − da22 + 2a4(da2da3 + da3da2)− (da2da4 + da4da2)

+ (4− 2a24)da
2
3 + a4(da3da4 + da4da3)−

1
2
da24.

Proof. Let us start with the observation that the parametrization

a1

(
1
2
k1 + k4

)
+ a2

(
1
2
k1 − k4

)
+ 2a3k2 + a4

(
1
2
k1 +

1√
2
k3 − k4

)
+ a5h1

identifies k with the following matrix Lie algebraa1 0 0
0 a2 + a3 + 2a5 1

2a5
0 a4 − a5 a2 − a3 + 2a5

∼= R⊕ gl(2,R),

where l= so(2), a is the diagonal part and n is the strictly lower diagonal part of this matrix Lie
algebra. Thus we find a complement c parametrized by (a1,a2,a3,a4) satisfying the conditions
C1, C2, because c∩ l= 0, c∩ a= 〈a1,a2,a3〉 and c∩ n= 〈a4〉. Then from the parametrization
we obtain

α−1 : c→ R4, (a1,a2,a3,a4) 7→ T(a1,a2,a3,a4)
t,

where

T=


1
2

1
2 0 1

2
0 0 2 0
0 0 0 1√

2
1 −1 0 −1

 .
Thus

c(a1,a2,a3,a4) = exp

a1 0 0
0 a2 + a3 0
0 0 a2 − a3

exp
0 0 0
0 0 0
0 a4 0

o
9
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are the corresponding exponential coordinates compatible with the decomposition k= l⊕ a⊕
n. Consequently,

c̃∗ωK =

da1 0 0
0 da2 + da3 0
0 −2a4da3 + da4 da2 − da3


can be restricted to the coframe (da1,da2,da3,−2a4da3 + da4) valued in c. Thus we obtain
c–coframe e∗ = (da1,da2,da3,−2a4da3 + da4)T t, i.e.

g= (da1,da2,da3,−2a4da3 + da4)T
tν1,3T(da1,da2,da3,−2a4da3 + da4)

t

according to proposition 2.2.

2.5. Homogeneous conformal Cartan geometries

The key objects for the tractorial approach to first order BGG operators are Cartan geomet-
ries of type (G,P) for Lie groups G with the Lie algebra so(p+ 1,q+ 1) and their parabolic
subgroups P with the Lie algebra p. Let us recall that a Cartan geometry of type (G,P) con-
sists of a principal P–bundle G over M together with a Cartan connection ω : TG → g, i.e. a
P–equivariant absolute parallelism ω that reproduces fundamental vector fields of the right
P–action on G, [13, sections 1.5 and 1.6].

Let PO(p+ 1,q+ 1) be the projectivization of O(p+ 1,q+ 1), the orthogonal Lie group
preserving g on T, and P the stabilizer of a line generated by the first vector of standard
basis of T. There always is a Cartan geometry of type (PO(p+ 1,q+ 1),P) that solves the
equivalence problem of conformal geometries, [13, theorem 1.6.7]. However, the represent-
ation ρ of so(p+ 1,q+ 1) does not have to integrate to a representation of PO(p+ 1,q+ 1)
and thus a global tractorial approach requires different choices of G, namely O(p+ 1,q+ 1),
SO(p+ 1,q+ 1), SOo(p+ 1,q+ 1) or Spin(p+ 1,q+ 1) to where ρ integrates. However, the
existence of Cartan geometries of type (G,P) requires the conformal geometries to satisfy cer-
tain topological obstructions. For example, forG= Spin(p+ 1,q+ 1) the conformal geometry
has to be spin.

In the case of K–homogeneous conformal geometries on M= K/H, [13, theorem 1.5.15]
relates topological obstructions to the integrability of the restriction dι of a conformal exten-
sion α : k→ so(p+ 1,q+ 1) to h onto a Lie group homomorphism ι : H→ P such that
Ad(ι(h)) ◦α= α ◦Ad(h) for all h ∈ H. The theorems [13, theorems 1.5.15 and 3.1.12] then
imply the following statement.

Proposition 2.3. The pair (α,ι) provides the Cartan geometry (G,ω) of type (G, P) as follows

(a) G := K×ι(H) P, and
(b) ω := ωα, where ωα is the unique Cartan connection with the property j∗ωα = α ◦ωK for

the natural inclusion j : K→ K×ι(H) P and the Maurer–Cartan form ωK on K.
(c) The Cartan geometry is normal if and only if the conformal extension is normal.

Let us describe the normal Cartan geometry in local coordinates c : c→M= K/H. Let us
emphasize that locally, this construction can be done under the assumptions of proposition 2.2
with the c–coframe e∗ = (e1, . . . ,en) : Tc→ Rn as the key ingredient.

Firstly, the Cartan bundle G = K×ι(H) P is locally trivialized to c×P via the identification

(X,p) 7→ c̃(X)up

10
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for u in the fiber over o= eH and we denote the corresponding natural section by

ςu : c 7→ c×P.

Then the pullback (ςu)∗ω of the Cartan connection ω = ωα to c is the matrix of one–forms on
c as follows 

akek bkek ckek dkek 0
ei Akek Ekek Fkek ∗
ej+p Ckek Bkek ∗ ∗
ei+q Dkek ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

 , (Con)

where i= 1, . . . ,p and j= 1, . . . ,q− p and k= 1, . . . ,p+ q. Here blocks are one–forms valued
in parts of (SO).

• Components (ak,Ak,Bk,Ck,Dk,Ek,Fk)ek of (Con) are one–forms valued in co(p,q) and
provide a connection form of a Weyl connection on c. Thus they are determined up to a
choice of the Weyl connection by vanishing of the torsion. If ak = 0, then it is a Levi-Civita
connection for some metric in the conformal class.

• Components (bk,ck,dk)ek of (Con) are one–forms valued inRn∗ and provide the Rho–tensor
P of the corresponding Weyl connection on c. In particular, they are uniquely determined by
the one–forms from the above point.

Finally, the pullback (ςu)∗κ of the curvature of the Cartan geometry to c is a matrix of
2–forms on c as follows0 Yklek ∧ el 0

0 Wklek ∧ el ∗
0 0 0

 , (Cur)

where l= 1, . . .p+ q. The component W taking values in ∧2Rn∗ ⊗ so(p,q) corresponds to
the Weyl curvature of the Weyl connections. The component Y taking values in ∧2Rn∗ ⊗Rn∗

corresponds to the Cotton–York tensor Y of the Weyl connection from above.
Let us relate the components of (Con) with the map α.

Proposition 2.4. Let (e1, . . . ,en) be a c–coframe and u= (0, id) ∈ c×P. There exists normal
conformal extension α : k→ so(p+ 1,q+ 1) of (k,h) such that the pullback (ςu)∗ω to Tc of
the Cartan connection (Con) satisfies

(ςu)∗ω = α ◦

(
(α−1)

−1 ◦ (e1, . . . ,en)+
∑
i

Hie
i

)
for certain functions H1, . . . ,Hn : Rn → h such that

ωK|Tc = (α−1)
−1 ◦ (e1, . . . ,en)+

∑
i

Hie
i ∈ c⊕ h.

Proof. The claim on the existence of α and the pullback is clear from the formula (Con),
because both the Cartan connection ω and ωK are left–invariant. In particular, this recovers
the construction of α from α−1 from the proof of proposition 2.2. So it remains to compare
(e1, . . . ,en) with ωK , which provides the claimed functions.

Corollary 2.1. If c is a complementary Lie subalgebra, then functions H1, . . . ,Hn vanish and
the parts of (Con) coincide with the restriction of α to c in the c–coframe.

11
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Thus if c is a subalgebra of k, thenα|c can be directly observed from (ςu)∗ω andα|h is uniquely
determined by the conditions α ◦Ad(h) = Ad(ι(h)) ◦α and α|h = dι. In general, one needs
to compute the maps Hi : c→ h to observe α from (ςu)∗ω.

2.6. Cartan connection for Gödel metrics

In the case M= R4, we have a solvable Lie group C with the Lie algebra c acting simply
transitively on M. In the case M= S1 ×R3, we have a Lie group K= R× SO(2)× Sl(2,R)
acting transitively on M with stabilizer H=∆(SO(2)), that is the diagonal in product of
SO(2) = R/4

√
2πZ and the maximal compact subgroup of Sl(2,R). In both cases, we can

use the conformal extension α from lemma 2.1 to describe the Cartan geometry using propos-
ition 2.4 and corollary 2.1.

Lemma 2.3. On bothM= R4 andM= S1 ×R3 with the conformal class of the Gödel metrics,
we have c–frame and c–coframe as follows

e1 := ∂t+ ∂z, e2 := ∂x, e3 :=
√
2(e−x∂y− ∂t), e4 :=−1

2
∂t+

1
2
∂z,

e1 :=
1
2
(dt+ exdy+ dz), e2 := dx, e3 :=

ex√
2
dy, e4 :=−dt− exdy+ dz,

and the pullback (ςu)∗ω of the corresponding Cartan connection ω from proposition 2.4 takes
form

0 − 1
2e

1 + 1
6e

4 − 1
12e

2 − 1
12e

3 1
6e

1 − 1
8e

4 0

e1 0
√
2
4 e

3 −
√
2
4 e

2 0 − 1
6e

1 + 1
8e

4

e2
√
2
2 e

3 0
√
2
2 e

1 − e3 −
√
2
4 e

4 −
√
2
4 e

3 1
12e

2

e3 −
√
2
2 e

2 −
√
2
2 e

1 + e3 +
√
2
4 e

4 0
√
2
4 e

2 1
12e

3

e4 0 −
√
2
2 e

3
√
2
2 e

2 0 1
2e

1 − 1
6e

4

0 −e4 −e2 −e3 −e1 0


.

In particular, the component of (ςu)∗ω in co(p,q) corresponds to the Levi–Civita connection
of the Gödel metric g with Christoffel symbols

Γttx = Γtxt = 1, Γtxy = Γtyx = Γxty = Γxyt =
ex

2
, Γxyy =

e2x

2
,Γytx = Γyxt =

−1
ex

and the component of (ςu)∗ω in Rn∗ corresponds to the P–tensor

− 1
24

(10dt2 + 10ex(dtdy+ dydt)+ 2dx2 + 11e2xdy2 + 2dz2).

Moreover, the curvature of the Cartan connection ω is given by κ from lemma 2.1 viewed as a
constant function M→∧2Rn∗ ⊗ so(2,4).

Proof. The conformal Killing fields corresponding to the complement c are parametrized by
(a1,a2,a3,a4) in the following way

(c∩ a)⊕ (c∩ n) = {a1∂z+ a2∂t+ a3(2∂x− 2y∂y)}⊕{a4∂y}.

Since the product of exponential maps corresponds to the composition of flows of the con-
formal Killing fields, we can compute that the transition from (a1,a2,a3,a4)–coordinates to
(t,x,y,z)–coordinates on M takes the form

(a1,a2,a3,a4) 7→ (a2,2a3,a4e
−2a3 ,a1).

12
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Thus the c–(co)frame is obtained from lemma 2.1 using the transition. Since c is a subal-
gebra of k, the rest is then obtained according to proposition 2.4 and corollary 2.1 using α and
the c–(co)frame. Let us note that these are non–holonomic frames and thus there is a contri-
bution of derivatives of vectors in the c–frame to the Christoffel symbols of the corresponding
Weyl connection, that is the Levi–Civita for g in this case.

3. First BGG operators on homogeneous conformal geometries

3.1. On tractorial approach to first BGG operators

Let us summarize some details from [29] that we will need to prove the theorem 1.1. The
basic idea is to prolong the first BGG operator from a bundle X →M with the standard fiber
X to a linear (prolongation) connection on the tractor bundle V →M with standard fiber V,
where X can be identified with the co(p,q)–module of the lowest weight in the representation
ρ : so(p+ 1,q+ 1)→ gl(V).

The result of [32] states that the prolongation connection can be constructed from the repres-
entation ρ using the conformal Cartan connection and that solutions of the first BGG operator
are in bijective correspondence with parallel sections of the prolongation connection. Since on
homogeneous conformal geometries, the prolongation connection is an invariant connection
and the conformal Cartan connection is completely described as in proposition 2.3 by the con-
formal extension α, the tractorial approach provides the correct setting for the computation of
solutions of the first BGG operators. Before we start proving the theorem 1.1, let us recall the
representations ρ corresponding to the most studied first BGG operators.

(1) The conformal class [g] can be viewed as a section of a trivial line subbundle of
⊙2T∗M[2]

representing the inclusion E [−2] ↪→
⊙2T∗M provided by the conformal class. The stand-

ard fiber of this line bundle isX= R. The corresponding tractor bundle has the fiberV= R
for trivial representation of ρ and the section [g] defines a conformal metric g on the stand-
ard tractor bundle with the standard fiber T. These allow to rise and lower indices at the
price of adding the conformal density.

(2) (Almost) Einstein scales are sections σ of bundle E [1] such that σ−2g are Einstein metrics
in [g] (on open dense subsets on M where sections σ are non–vanishing), [6, 22, 23]. The
standard fiber isX= R[1] in this case and the corresponding tractor bundle has fiberV= T.
We show later on examples that the zero locus of σ inherits a distinguished geometric
structure.

(3) Twistor spinors are sections of bundles where standard fibers X are tensor products of the
spinor representations of so(p,q) with E [ 12 ] satisfying the twistor equation ∇Xψ+ 1

nX ·
Dψ = 0, [3, 4, 35], where ∇ is the connection induced on spinors and D is the Dirac
operator. The standard fibers V of the corresponding tractor bundles are the spinor repres-
entations D,D±.

(4) Conformal Killing vectors are sections of TMwhose Lie derivative preserves the conformal
class and thusX= Rn. The corresponding tractor bundle has the standard fiberV= so(p+
1,q+ 1)∼= ∧2T, where the isomorphism is provided by the scalar product g.

(5) Conformal Killing k–tensors are solutions of first BGG operators on
⊙k

0TM
∼=⊙k

0T
∗M[2k], [21] and references therein, and X=

⊙k
0Rn. The corresponding tractor

bundle has the standard fiber V=⊠(
⊙k

so(p+ 1,q+ 1)).

13
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(6) Conformal Killing–Yano (k− 1)–forms are solutions of first BGG operators on
∧k−1T∗M[k], [21, 34, 40], and X= ∧k−1Rn[2− k]. The corresponding tractor bundle has
the standard fiber V= ∧kT.

Remark 3.1. In the case of Lorenz metrics in dimension 4, the conformal Killing k–tensors can
be also viewed asKilling spinors of valence (k, k), [36]. This corresponds to the isomorphism of
the representations⊠(

⊙k
so(2,4)) and⊠(⊗kD+ ⊗⊗kD−) of so(2,4), i.e. the Killing spinors

of valence (k, k) are solutions of the first BGGoperator for the tractor bundle with standard fiber
V=⊠(⊗kD+ ⊗⊗kD−). In general, one can deduce that the solutions of first BGG operators
for tractor bundle with standard fiberV=⊠(⊗rD+ ⊗⊗sD−) are the Killing spinors of valence
(r, s) with the conformal weight for which they are solution of conformally invariant operators
(see [36, section 6.7]). In particular, twistor spinors are Killing spinors of valence (1,0) with
conformal weight 1

2 .

3.2. Local solutions of first BGG operators on homogeneous conformal geometries

In this section, we work with the Cartan connections of type (G,P) for a Lie group G with Lie
algebra so(p+ 1,q+ 1) such that ρ integrates to a representation λ of G. We assume K,H and
ι are such that we can use the description of the Cartan connections of type (G,P) associated
with the conformal extension α : k→ so(p+ 1,q+ 1) of (k,h) from section 2.5. In general,
this cannot be done globally. Nevertheless, the local description of this Cartan geometry is
always available using the c–(co)frame. Thus for the claim of the following local version of
theorem 1.1, we can consider this assumption without loss of generality. The theorem 1.1 then
directly follows from this theorem.

Theorem 3.1. Let (M, [g]) be a homogeneous conformal geometry with associated conformal
extension α : k→ so(p+ 1,q+ 1) of (k,h). Let ρ : g→ gl(V) be representation encoding first
BGG operator on bundle X →M. Then there are representations Φ : k→ gl(S) and dµ : h→
gl(X) and an h–equivariant projection π : S→ X describing the (local) solutions of the first
BGG operator.
In particular, there is an inclusion S⊂ V such that the function

exp(X) 7→ exp(−Φ(X))(s) ∈ V

for s ∈ S and X in some neighborhood of 0 in k induces a natural prolongation of the (local)
solution of the first BGG operator to a section of a tractor bundle V over M with standard fiber
V that is parallel for prolongation connection on V .

Proof. Firstly, let us consider the tractor bundle

V := K×λ◦ι(H) V→ K/H

and interpret its sections as H–equivariant functions s : K→ V for the right multiplication on
K and the action λ ◦ ι on V. Let us use the notation s ∈ Γ(V)ℓ for H–equivariant function s :
K→ Vℓ. This allows us to define fundamental derivative Dk

t s := ω−1
K (t) · s for H–equivariant

function t : K→ k and s ∈ Γ(V), where · is the directional derivative in the direction of the
vector field ω−1

K (t) on K. Fundamental derivative Dk provides a uniform description of K–
invariant linear connections Ω0(V)→ Ω1(V), [13], where we use notation

Ωk(V) := Γ(K×(Adk⊗λ)◦ι(H) ∧kRn∗ ⊗V)

14
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for the spaces of V–valued k–forms on K/H. Precisely, each K–invariant linear connection is
given as

∇Φ := Dk +Φ,

where Φ : k→ gl(V) is an H–equivariant map satisfying Φ(Y) = dλ ◦α(Y) for all Y ∈ h. Its
curvature RΦ : K→∧2Rn∗ ⊗ gl(V) is given for X0,X1 ∈ k as

RΦ(α(X0)+ p,α(X1)+ p) = [Φ(X0),Φ(X1)]−Φ([X0,X1]).

In particular, since the representation ρ satisfies ρ ◦α(Y) = dλ ◦α(Y) for all Y ∈ h, there is a
K–invariant linear connection

∇ρ◦α = Dk + ρ ◦α

on V that is the usual tractor connection with curvature Rρ◦α = ρ ◦κ.
Moreover, there is the Kostant’s codifferential ∂∗ : Ωk+1(V)→ Ωk(V) defined pointwise

via ∂∗ : ∧k+1Rn∗ ⊗V→∧kRn∗ ⊗V as

∂∗(Z0 ∧ ·· · ∧ Zk⊗ v) =
∑
j

(−1)j+1Z0 ∧ ·· · ∧ Ẑj ∧ ·· · ∧ Zk⊗ ρ(Zj)(v),

and we denote by πi projections onto the cohomology spaces

Hi(V) = Ker(∂∗)/Im(∂∗).

In particular, X =H0(V), i.e. it holds X= Ker(∂∗)/Im(∂∗) = V/Im(∂∗) pointwise and this
induces the representation dµ.

The next ingredient is the splitting operator L0 :H0(V)→ Ker(∂∗) = Ω0(V) defined as
L0 = id−Q∂∗∇ρ◦α for a particular operator Q : Ker(∂∗)→ Ker(∂∗) that is polynomial in
∂∗∇ρ◦α with coefficients determined by the representation theory, [14, 15]. Let us note that in
the applications, these coefficients can be determined by the property that both Q∂∗∇ρ◦α and
∂∗∇ρ◦αQ act as identity on Im(∂∗). Then the operator

D := π1∇ρ◦αL0

for the tractor connection ∇ρ◦α is the (standard) first BGG operator.
A difference of two K–invariant linear connections is given by an H–equivariant map

ψ : k→ gl(V) satisfying ψ(Y) = 0 for all Y ∈ h. If ψ ∈ (k∗ ⊗ gl(V))1, ψ(s) ∈ Im(∂∗) for all
H–equivariant functions s : K→ V, then D = π1∇ρ◦α+ψL0. Moreover, by result of [15, 32],
there is a unique Ψ ∈ (k∗ ⊗ gl(V))2 vanishing on h such that ∂∗Rρ◦α+Ψ(s) = 0 for all s ∈ V.
This way we obtain Φ := ρ ◦α+Ψ and the corresponding connection∇Φ is the prolongation
connection.

The solutions of D are in bijective correspondence with parallel sections of the invariant
connection ∇Φ and thus can be algebraically computed, [33]. In particular, one iteratively
computes the sets

S0 := {v ∈ V : RΦ(α(X0)+ p,α(X1)+ p)(v) = 0, X0,X1 ∈ k} (S0)

and

Sk := {v ∈ Sk−1 : Φ(X)(v) ∈ Sk−1, X ∈ k}. (Sk)

Since V is finite–dimensional, we get Sk = Sk+1 = · · ·=: S for k large enough as the set of
local solutions. By the definition of S0, the map Φ : k→ gl(V) restricts to the claimed repres-
entation Φ : k→ gl(S). Then the claimed formula extends it locally to a section of V parallel
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for the connection ∇Φ. The h–equivariant projection π : S→ X is induced by the inclusion
S⊂ V and the projection π0 : V= Ker(∂∗)→ X.

Let us emphasize that the sets (S0), (Sk) provide the infinitesimal holonomy of the connection
∇Φ, [33].

3.3. Normal solutions and algorithm for computing all solutions

There is a special class of solutions of first BGG operators characterized in the homogeneous
setting by the following property.

Definition 3.1. We call s ∈ S a normal solution if s belongs to a subrepresentation N of S,
where Φ|N = ρ ◦α|N.

Let us verify that this coincides with the usual definition of normal solutions as parallel sections
for the tractor connection.

Proposition 3.1. Sections s of the tractor bundle corresponding to normal solutions of first
BGG operators are parallel sections for the tractor connection. In particular, they are anni-
hilated by the action of the curvature of the Cartan connection.

Proof. Since the tractor connection is an invariant connection ∇ρ◦α with the curvature ρ ◦κ,
each parallel section is annihilated by the infinitesimal holonomy and in particular, by the
action of the curvature of the Cartan connection. By construction of the prolongation connec-
tion, this implies that each parallel section for the tractor connection is a normal solution in S.
Conversely, if s corresponds to a normal solution, then the conditionΦ|N = ρ ◦α|N implies that
actions of infinitesimal holonomies of both the prolongation and tractor connection coincide
on N. Thus s is a parallel section for the tractor connection.

Normal solutions have the following remarkable property. If Φ1|N1 : k→ gl(N1) and Φ2|N2 :
k→ gl(N2) describe the normal solutions of first BGG operators corresponding to represent-
ations ρ1 : so(p+ 1,q+ 1)→ gl(V1) and ρ2 : so(p+ 1,q+ 1)→ gl(V2), then Φ1|N1 ⊗Φ2|N2 :
k→ gl(N1 ⊗N2) describes the normal solutions of the first BGG operators corresponding to
representation ρ1 ⊗ ρ2 : so(p+ 1,q+ 1)→ gl(V1 ⊗V2). This is usually referred to as BGG
coupling, [31], and can be generalized to all the operations available from the theory of
so(p+ 1,q+ 1)–representations.

Let us now summarize how we compute the representation Φ and the normal solutions in
the practice.

(1) The starting point is the normal conformal extension α : k→ so(p+ 1,q+ 1) of (k,h) and
a representation ρ : so(p+ 1,q+ 1)→ gl(V).

(2) We use the action of ρ(E) to determine the grading of V, the projective slot X and the
projection π0 : V→ X.

(3) Then we consider Φ= α and use the formulas used in definition of sets (S0) and (Sk) to
compute the infinitesimal holonomy hol(α)⊂ so(p+ 1,q+ 1).

(4) The normal solutions are elements of V annihilated by ρ(hol(α)).
(5) We compute the prolongation connection∇Φ :=∇ρ◦α+Ψ by induction with respect to the

irreducible grading components of the map Ψ.
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• We start with ψ0 = 0.
• In the induction step, we compute

ψk := ψk−1 −
1
ck
qi
(
(∂∗ ⊗ idV∗)Rρ◦α+ψk−1

)
for certain integers ck, where qi denotes the projection to the lowest non–zero homo-
geneity i that either can be determined by the representation theory, [15], or can be
chosen directly so that it kills some component of (∂∗ ⊗ idV∗)Rρ◦α+ψk in the given
homogeneity.

• Since the image of ∂∗ ⊗ idV∗ does not lower the homogeneity and there is only a finite
number of irreducible grading components in Rn∗ ⊗ gl(V), we get Ψ := ψk in finitely
many steps.

(6) We iteratively compute the sets (S0) and (Sk) and obtain the set S of all solutions. Then we
restrict Φ and π0 to S to obtain the description of the solutions of the first BGG operator
from theorem 3.1.

3.4. Solutions of first BGG operators in local coordinates

Let us show how to use the exponential coordinates and the c–(co)frame from section 2.3 to
describe the solutions of the first BGG operators in local coordinates.

Theorem 3.2. Let (M, [g]) be a homogeneous conformal geometry and π : S→ X and Φ :
k→ gl(S) be maps describing (local) solutions of the BGG operator on the bundle X →M
according to theorem 3.1. If

c : c→M, c(X) := exp(L1) . . .exp(Lj)exp(Xa)exp(Xn)o

are exponential coordinates compatible with some decomposition k= l⊕ a⊕ n, then for each
v ∈ S

π(exp(−Φ(Xn))exp(−Φ(Xa))exp(−Φ(Lj)) . . .exp(−Φ(L1))v) (Sol)

is a (local) solution of the first BGG operator written in the local trivialization c×X provided
by a c–(co)frame from proposition 2.2.

Proof. Clearly, c–(co)frame from proposition 2.2 induces local trivialization c×X of the
bundle X . The formula for the solution as a function valued in X follows for our choice of
local coordinates and from theorem 3.1.

Let us describe in more detail how the c–(co)frame provides the (local) trivialization c×X of
the bundle X →M with standard fiber X.

• For X with trivial action of the grading element E, the trivialization provided by a c–
(co)frame has the usual interpretation, i.e. a c–frame is a trivialization of the tangent bundle,
a c–coframe is a trivialization of the cotangent bundle and so on for their tensor products.

• In this article, we use the trivializations involving spin representations of co(p,q) as a
description of the spin bundles and do not discuss how these relate with other descriptions
of spin bundles.

• For X= R[w], the function f : c→ R[w] corresponds to the section f · ε−w
n of E [w] in the

trivialization provided by the c–(co)frame e∗ = (e1, . . . ,en), where ε := e1 ∧ ·· · ∧ en.
• In general, the trivialization c×X can be interpreted as a tensor product of these.
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Our exponential coordinates can provide a global covering c→M. This leads to an altern-
ative way to determine the set G of the global solutions. One just needs to check whether the
formula (Sol) assigns the same value to points in c covering the same points of M.

3.5. Solutions of first BGG operators for Gödel metrics

Consider the manifolds M with the conformal classes of the Gödel metrics as described in
sections 2.2 and 2.4.

Proposition 3.2. (1) There are no normal solutions for any first BGG operator. In particular,
there are no Einstein scales nor Killing spinors of valence (1,0) with conformal weight 1

2
(twistor spinors).

(2) The Lie algebra k contains all of the conformal Killing fields.
(3) There is a 1–parameter family

9v1ε
−1
2 = 9v12

1
4 e

−x
2 (dt∧ dx∧ dy∧ dt)

−1
2

of solutions of the first BGG operator on E [2].
(4) There is a 14–parameter family of conformal Killing 2–tensors that decomposes into the

following K–invariant families.

• The family of K–invariant Killing 2–tensors of the Gödel metrics

( 14v3 − 3v2 + v1)∂
2
t +(2e−xv2)(∂t∂y+ ∂y∂t)− ( 14v3 − v1)(∂t∂z+ ∂z∂t)

−v2∂2x − 2v2e
−2x∂2y +( 14v3 + v2 + v1)∂

2
z .

• The family of Killing 2–tensors of the Gödel metrics

−8
√
2e−xv11(∂t∂z+ ∂z∂t)+ 2

√
2(2yv11 + v10)(∂x∂z+ ∂z∂x)

−2
√
2e−x(exy2v11 + yexv10 + exv9 − 2e−xv11)(∂y∂z+ ∂z∂y).

• The family that does not contain any Killing 2–tensors of the Gödel metrics

−(18e−xv14 + ex(v14y
2 + v13y+ v12))∂

2
t + 2(2v14y+ v13)(∂t∂x+ ∂x∂t)

+8e−2xv14(∂t∂y+ ∂y∂t)− 8e−xv14(∂t∂z+ ∂z∂t)− (2e−xv14 + ex(v14y
2 + v13y+ v12))∂

2
x

−2(2v14y+ v13)(∂x∂z+ ∂z∂x)− 2((v14y
2 + v13y+ v12)e

−x+ 2e−3xv14)∂
2
y

+2(y2v14 + yv13 + v12 − 2e−2xv14)(∂y∂z+ ∂z∂y)− (2e−xv14 + ex(v14y
2 + v13y+ v12)∂

2
z

• The family that does not contain any Killing 2–tensors of the Gödel metrics

(3(v8y
4 + v7y

3 + v6y
2 + v5y+ v4)e

2x+ 2(6y2v8 + 3yv7 + v6)+ 396v8e
−2x)∂2t

− 48(4v8y+ v7)e
−x(∂t∂x+ ∂x∂t)+ (12(6v8y

2 + 3v7y+ v6)e
−x− 216e−3xv8

− 6ex(v8y
4 + v7y

3 + v6y
2 + v5y+ v4))(∂t∂y+ ∂y∂t)+ (18(6y2v8 + 3yv7 + v6)

+ 12v8e
−2x+ 3(v8y

4 + v7y
3 + v6y

2 + v5y+ v4)e
2x)∂2x +(24(4v8y+ v7)e

−2x

− 12(4v8y
3 + 3y2v7 + 2yv6 + v5))(∂x∂y+ ∂y∂x)+ (30(y4v8 + v7y

3 + v6y
2 + yv5 + v4)

− 12(6v8y
2 + 3v7y+ v6)e

−2x+ 120e−4xv8)∂
2
y +(3(v8y

4 + v7y
3 + v6y

2 + v5y+ v4)e
2x

+ 2(6y2v8 + 3yv7 + v6)+ 12v8e
−2x)∂2z .
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(5) There is a 2–parametric family(
(cos(

√
2
2 z)v1 − sin(

√
2
2 z)v2)(dtdz− dzdt)+

√
2
2 exp(x)(cos(

√
2
2 z)v2 + sin(

√
2
2 z)v1)) ·

(dxdy− dydx)− ex(sin(
√
2
2 z)v2 − cos(

√
2
2 z)v1)(dydz− dzdy)

)
·

2
3
8 e

−3x
4 (dt∧ dx∧ dy∧ dt)

−3
4

of conformal Killing–Yano 2–forms. None of them is normal nor Killing–Yano 2–form of
the Gödel metric.

Remark 3.2. Some of the results of this proposition were also obtained by Cook, [16]. In
particular, (2) corresponds to Killing spinors of valence (1,1) and (4) corresponds to Killing
spinors of valence (2,2) in [16].

Proof. Let us recall that we computed in lemma 2.1 the normal conformal extension α : k→
so(2,4) corresponding to the conformal class of Gödel metrics as α(x1,x2,x3,x4,x5) =

0 − 1
2 x1 +

1
6 x4 − 1

12 x2 − 1
12 x3

1
6 x1 −

1
8 x4 0

x1 0
√

2
4 x3 −

√
2

4 x2 0 − 1
6 x1 +

1
8 x4

x2
√

2
2 x3 0

√
2

2 x1 − x3 −
√

2
4 x4 +

√
2x5 −

√
2

4 x3
1
12 x2

x3 −
√

2
2 x2 −

√
2

2 x1 + x3 +
√

2
4 x4 −

√
2x5 0

√
2

4 x2
1
12 x3

x4 0 − 1
2

√
2x3

√
2

2 x2 0 1
2 x1 −

1
6 x4

0 −x4 −x2 −x3 −x1 0


with the curvature κ(α(x1,x2,x3,x4,x5),α(y1,y2,y3,y4,y5)) =

0 −
√
2
2 z23 −

√
2
4 z13 −

√
2
8 z34

√
2
4 z12 +

√
2
8 z24

√
2
4 z23 0

0 1
3 z14 − 1

6 z12 − 1
6 z13 0 −

√
2
4 z23

0 − 1
6 z24 0 1

3 z23
1
6 z12

√
2
8 z34 +

√
2
4 z13

0 − 1
6 z34

1
3 z23 0 1

6 z13 −
√
2
8 z24 −

√
2
4 z12

0 0 1
6 z24

1
6 z34 − 1

3 z14
√
2
2 z23

0 0 0 0 0 0


,

where we write zij = xiyj− xjyi.
The formulas for α and κ allow us to compute directly the infinitesimal holonomy

hol(α) = so(2,4)

and therefore, there are no normal solutions and claim (1) follows.
To show the claim (2), let us start with the conformal Killing vectors, i.e. V= so(2,4),

X= R4. It is well known that the tensorΨ determining the prolongation connection is the inser-
tion X 7→ −κ(α(X), .) into curvature, [9]. Thus,Φ(X)(α(Y)+W) = {α(X),W}+α([X,Y]) for
X,Y ∈ k,W ∈ p and the curvature of the prolongation connection simplifies as

RΦ(α(X),α(Y))(α(Z)+W) = {κ(α(X),α(Y)),W}
−κ(α(X),{α(Y),W})+κ(α(Y),{α(X),W})
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using the Jacobi identity. In particular, this ensures that all elements of the image of α corres-
pond to conformal Killing fields and it is easy to compute that there is no nonzeroW annihilated
by RΦ and the claim (2) follows.

We compute the remaining claims (3), (4) and (5) in the following steps. Firstly, we realize
in Maple the algorithm from section 3.3 and describe the solutions of the first BGG operators
according to theorem 3.1. Next, in order to present the result obtained according to theorem
3.2 in the exponential coordinates c→M from lemma 2.2 in the original coordinates, we used
the transition t= a2,x= 2a3,y= a4e−2a3 ,z= a1 between these two coordinates from lemma
2.3. This translates the functions c→ X to functions M→ X and provides the solutions using
the following c–(co)frame we computed in lemma 2.3

e1 := ∂t+ ∂z, e2 := ∂x, e3 :=
√
2(e−x∂y− ∂t), e4 :=−1

2
∂t+

1
2
∂z,

e1 :=
1
2
(dt+ exdy+ dz), e2 := dx, e3 :=

ex√
2
dy, e4 :=−dt− exdy+ dz.

Let us emphasize that for the global existence of the solutions in the case M= S1 ×R3, we
checked whether the solutions are periodic in t with the period 4

√
2π and indeed, this is the

case for the solutions we computed.
For the claim (3), we consider V=

⊙2
0T which does not correspond to a well–known

BGG operator. Therefore in appendices A and B, we provide some more details about this
BGG operator and the prolongation connection. We do not give such details for the remaining
cases, because it would be even more complicated.

Altogether, we compute that S is trivial representation Φ of k and consist of the following
elements of V 

7
16v1 0 0 0 0 1

4v1
0 9

8v1 0 0 − 5
4v1 0

0 0 v1 0 0 0
0 0 0 v1 0 0
0 − 5

4v1 0 0 9
2v1 0

1
4v1 0 0 0 0 9v1

⊂

V2 ∗ ∗
V1 V0 ∗
∗ V−1 X= V−2

 .

Therefore, the solutions are constant functions c→ R[2], which have the claimed form as a
section of E [2].

For the claim (4), we consider V=⊠(
⊙2

so(2,4)) and fix the parametrization (s1, . . . ,s9)
of the projective slot given by the c–frame as⊙

2
0TM= {s1e21 + s2e1e2 + s2e2e1 + s3e1e3 + s3e3e1 + s4e1e4 + s4e4e1

+ s5e
2
2 + s6e2e3 + s6e3e2 + s7e2e4 + s7e4e2

− (2s4 + s5)e
2
3 + s8e3e4 + s8e4e3 + s9e

2
4}.

We compute that the radical acts trivially in the representation Φ on the solutions and they
exist globally in both cases M= R4 and M= S1 ×R3. Therefore, we can express the results
of our computations as representations Φ of sl(2,R), which we analyze using the standard
procedures from the representation theory. Altogether, dim(S) = 14 and

(1) there is a 3–dimensional trivial sl(2,R)–representationR3 = 〈v1,v2,v3〉with the projection

(v1,0,0,v2,−v2,0,0,0,v3)

that correspond to the first family of solutions,
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(2) there is a 5–dimensional sl(2,R)–representation
⊙4R2∗ parametrized as v4y41 + v5y31y2 +

v6y21y
2
2 + v7y1y32 + v8y42 with the projection

(24v8 + 4v6 + 6v4,−12v7 − 6v5,−24
√
2v8 + 6

√
2v4,−36v8 − 6v6 − 9v4,12v8

+ 18v6 + 3v4,12
√
2v7 − 6

√
2v5,24v7 + 12v5,48

√
2v8 − 12

√
2v4,96v8 + 16v6 + 24v4)

that corresponds to the last family of solutions, and
(3) there is a 6–dimensional sl(2,R)–representation consisting of two copies of

⊙2R2∗ that
we parametrize as v9y21 + v10y1y2 + v11y22 and v12y

2
1 + v13y1y2 + v14y22 with the projection(

−
√
2(2v11 + v9),

√
2v10,2v11 − v9,2v14 + v12,−(2v14 + v12),0,2

√
2v10 − 4v13,

4v11 − 2v9 + 2
√
2(2v12 − 4v14),4

√
2(2v14 + v9)− 8(v12 + 2v14)

)
that corresponds to the second and third family of solutions.

For the claim (5), the situation with our computations is analogous to the proof of claim
(4). We fix the parametrization (s1, . . . ,s6) of the projective slot using the c–coframe as

∧2T∗M[3] =
{
ε

−3
4 (s1(e

1e2 − e2e1)+ s2(e
1e3 − e3e1)+ s3(e

1e4 − e4e1)

+ s4(e
2e3 − e3e2)+ s5(e

2e4 − e4e2)+ s6(e
3e4 − e4e3))

}
.

The coordinate a1 in the radical is the only part with nontrivial actionΦ on S and thus solutions
exist globally in both cases M= R4 and M= S1 ×R3. Altogether, dim(S) = 2 and there is a
2–dimensional representation with projection

(0,0,v1,v2,0,0),

where

exp(−Φ(a1,a2,a3,a4,a5))(0,0,v1,v2,0,0)

=

(
0,0,cos

(√
2
2
a1

)
v1 − sin

(√
2
2
a1

)
v2,sin

(√
2
2
a1

)
v1 + cos

(√
2
2
a1

)
v2,0,0

)
and the claim follows.

To provide somemore insight into the algorithm from section 3.3, let us describe how the claim
‘There are no Einstein scales nor Killing spinors of valence (1,0) with conformal weight 1

2 on
M with the conformal class of the Gödel metrics’ can be proved using steps (1), (2), (5), (6) of
the algorithm. Of course, the prolongation connection coincides with the tractor connection in
these two cases and thus step (5) is trivial and Ψ= 0.

Let us first consider the standard representationT= R6, where ρ is just multiplication by the
given matrix in so(2,4). Thus the eigenspaces of the action ρ(E) have (1,4,1)–block structure T1

T0

T−1


with X= T−1 being the projective slot. Then we immediately see that the curvature ρ ◦κ
annihilates only T1 and thus S0 = T1. Since the image of α does not preserve T1, we conclude
that S1 = 0 and there are no normal solutions.
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Further, let us consider the spin representation so(2,4)→ su(2,2)⊂ gl(4,C) (acting on
D= C4) as
a b c1 c2 d 0
u a11 e11 e12 0 −d
v1 c11 0 b12 −e11 −c1
v2 c21 −b12 0 −e12 −c2
w 0 −c11 −c21 −a11 −b
0 −w −v1 −v2 −u −a



7→


1
2 (a+ a11 − ib12) −2

√
2(e11 + ie12) −

√
2
2 (c1 + ic2) 4d

−
√
2
8 (c11 − ic21) 1

2 (a− a11 + ib12) − 1
4b −

√
2
2 (c1 − ic2)

−
√
2
2 (v1 − iv2) −4u −( 12a− a11 − ib12) 2

√
2(e11 − ie12)

1
4w −

√
2
2 (v1 + iv2)

√
2
8 (c11 + ic21) − 1

2 (a+ a11 + ib12)

 ,

where su(2,2) corresponds to the pseudo–Hermitian form

((z0,z1,z2,z3),(w0,w1,w2,w3)) = z0w̄3 + z3w̄0 + z1w̄2 + z2w̄1.

Thus ρ ◦α(x1,x2,x3,x4,x5) equals to
−iz −x3 + ix2

√
2

24 (x2 + ix3) 2
3x1 −

1
2x4

− 1
8 (x3 + ix2) iz 1

8x1 −
1
24x4

√
2

24 (x2 − ix3)

−
√
2
2 (x2 − ix3) −4x1 iz x3 + ix2

1
4x4 −

√
2
2 (x2 + ix3) 1

8 (x3 − ix2) −iz

 ,

where z=
√
2
4 x1 −

1
2x3 −

√
2
8 x4 +

√
2
2 x5, and writing zij = xiyj− xjyi, ρ ◦κ equals to

1
6 (z14 − iz23)

√
2
3 (z12 + iz13) 1

4 (−z13 + iz12)+ 1
8 (−z34 + iz24) −

√
2z23

√
2

48 (z24 − iz34) 1
6 (−z14 + iz23) −

√
2
8 z23 − 1

4 (z13 + iz12)− 1
8 (z34 + iz24)

0 0 1
6 (z14 + iz23)

√
2
3 (−z12 + iz13)

0 0 −
√
2

48 (z24 + iz34) − 1
6 z14

 .

We again see that there are no normal solutions.

4. Applications of normal solutions and holonomy reductions

4.1. Holonomy reductions

Let G be a Lie group with the Lie algebra so(p+ 1,q+ 1) such that the representation ρ :
so(p+ 1,q+ 1)→ gl(V) integrates to a representation λ : G→ Gl(V). Consider a homogen-
eous conformal geometry (K/H, [g]) with an associated conformal extension α of (k,h) such
that α restricted to h integrates to a Lie group homomorphism ι : H→ P. Then connections on
the tractor bundle V := K×λ◦ι(H) V are in one–to–one correspondence with Gl(V)–principal
connections on the bundleK×λ◦ι(H)Gl(V). The tractor connection∇ρ◦α provides a reduction
K×λ◦ι(H) λ(G)⊂ K×λ◦ι(H)Gl(V). For this reduction, the tractor bundle admits a non–linear
decomposition intoG–orbitsK×λ◦ι(H) O[v] ⊂ V of typeO[v] = G/Gv = λ(G)v⊂ V, whereGv

is the stabilizer of v.
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Definition 4.1. We say that an H–equivariant function s : K→O[v] ⊂ V parallel with respect
to the induced (non–linear) connection on K×ρ◦ι(H) O[v] is a holonomy reduction of G–type
O[v].

If we consider the Cartan geometry (G = K×ι(H) P,ωα) of type (G,P) on M= K/H as
described in section 2.5 by the maps α, ι and element u ∈ G, then the holonomy reduction
of G–typeO[v] can be naturally extended to P–equivariant function s : G →O[v]. Then for any
coset β in P\G/Gv with the representative w ∈ V, there is

• an initial submanifoldMβ ofM consisting of kH such that λ(p)−1(s(k)) = w for some p ∈ P,
and

• a Pw := P∩Gw–bundle Gw overMβ consisting of all kup ∈ G such that λ(p)−1(s(k)) = w.

This defines a curved orbit decomposition M=
∪
β∈P\G/Gv

Mβ to P–types β. The basic
results on the holonomy reductions [12, section 2.3] and [12, theorem 2.6] can be reformulated
in the homogeneous setting as follows.

Proposition 4.1. Let s : K→ V be an H–equivariant section corresponding to a normal solu-
tion v ∈ N. Then s restricts to a holonomy reduction of typeO[v]. Moreover, for any represent-
ative w ∈ V of P–type β, there is Cartan geometry (Gw,ωw) of type (Gw,Pw) uniquely determ-
ined by the property ωw := ωα ◦Tj for the natural inclusion j : Gw → K×ι(H) P. For kup ∈ Gw,
Ad−1

p (α(k))∩ gw is the Lie algebra of the Lie subgroup of K preserving the Cartan geometry
(Gw,ωw).
Conversely, the inclusion K×λ◦ι(H) O[v] ⊂ V induced by a holonomy reduction s of type

O[v] provides a section of the tractor bundle parallel for the tractor connection and thus a
normal solution v= s(e) ∈ N of the corresponding first BGG operator.

Proof. We conclude from [12, section 2.3] that normal solutions of first BGG operators are in
one–to–one correspondence with holonomy reductions and the description G = K×ι(H) P then
implies using [12, theorem 2.6] the claimed construction of Cartan geometries (Gw →Mβ ,ωw)
of type (Gw,Pw). Thus the remaining claims follow from homogeneity and construction of the
bundles Gw.

Let us summarize how we find and interpret the holonomy reductions in practice.

(1) We start with the normal solution v ∈ N⊂ V and extend it to the holonomy reduction
s : c→O[v] using the exponential coordinates c : c→M.

(2) We determine P–types of points X of c and for the fixed representative w ∈ V of P–type,
we find a representative pX,w ∈ P such that λ(pX,w)−1(s(X)) = w.

(3) LetG0 be the maximal subgroup of Pwith the Lie algebra co(p,q) and letG+,w andG0,w be
the kernel and the image of Pw for the projection Pw → P/exp(Rn∗)∼= G0. The coframe
of TM obtained by the adjoint action of p−1

X,w on the c–coframe provides an underlying
G0,w–structure on the curved orbit.

(4) Moreover, the set of smooth functions c→ G+,w ⊂ exp(Rn∗) corresponds to a distin-
guished set of Weyl connections that are connections on the G0,w–structure. To compute
this set explicitly, one starts with the Weyl connection provided by the description (Con)
of the corresponding Cartan connection from proposition 2.4 and interprets the smooth
function c→ Rn∗ as the change of the Weyl connection in the usual way, [13, section 1.6].
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(5) Let us emphasize that the normality of the original conformal geometry has a consequence
that from the viewpoint of G0,w–structures, the connections have special curvature.

In particular, there are the following interesting cases [10, 12, 30].

• Einstein scales with v ∈ N such that g(v,v) 6= 0 provide decompositions to points of three
P–types determined by positivity, negativity or vanishing of the scalar product g(v,s) for the
value of the corresponding function s : K→O[v]. If we denote M+ ∪M− ∪M0 the corres-
ponding curved orbits, then on the open orbitsM+ ∪M−, there is the Einstein metric having
Einstein constant with opposite sign than g(v,v). The closed orbitM0 is a hypersurface sep-
arating M+ and M− carrying a conformal structure.

• Einstein scales with v ∈ N such that g(v,v) = 0 provide decompositions to points of five P–
types such that the value of s is positive or negative multiple of v, or the value of s belongs
to the orthocomplement of v or g(v,s) is positive or negative for the value of s. If we denote
M0,+ ∪M0,− ∪M0,⊥ ∪M+ ∪M− the corresponding curved orbits, then on the open orbits
M+ ∪M−, there is a Ricci flat metric. The closed orbits M0,+ ∪M0,− ∪M0,⊥ consist (if
p 6= 0) of smooth embedded hypersurfaceM0,⊥ with (point) edgesM0,+ ∪M0,− or (if p= 0)
isolated points.

• In signatures (2,3) and (3,3), generic twistor spinors provide a curved orbit decomposition
such that the open orbits carry a generic rank two, or three null–distribution on 5– or 6–
manifold, respectively.

• Normal conformal Killing fields v ∈ N such that v is a non–degenerate tractor 2–form (i.e. n
is even) provide a curved orbit decomposition such that the open orbits are locally Fefferman
spaces of almost CR manifolds.

Since the conformal class of the Gödel metrics does not admit any normal solutions, we
need to consider different conformal geometries to provide non–trivial examples of holonomy
reductions.

4.2. Holonomy reductions for submaximal pp–wave

Let us consider the conformal class of the submaximally symmetric pp–wave of signature
(1,3), [18, 20],

g= x2dt2 + 2dtdz+ dx2 + dy2

on M= (t,x,y,z) = R4. Among the seven conformal Killing fields, we pick the following 4–
dimensional solvable Lie algebra k generated by

k1 := ∂t, k2 := e−t(∂x+ x∂z), k3 := ∂y, k4 := ∂z.

Since this is an orthonormal frame of g at the origin o= (0,0,0,0), we can directly compute
the associated conformal extension.
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Lemma 4.1. Suppose (x1,x2,x3,x4) is the parametrization of k via the frame k1,k2,k3,k4. Then

α(x1,x2,x3,x4) =


0 1

2x1 0 0 0 0
x1 0 0 0 0 0
x2 −x2 0 0 0 0
x3 0 0 0 0 0
x4 0 x2 0 0 − 1

2x1
0 −x4 −x2 −x3 −x1 0


is the normal conformal extension associated with the conformal class of the pp–wave g with
curvature κ(α(x1,x2,x3,x4),α(y1,y2,y3,y4)) of the form

0 0 0 0 0 0
0 0 0 0 0 0
0 1

2 (x1y2 − x2y1) 0 0 0 0
0 1

2 (x3y1 − x1y3) 0 0 0 0
0 0 1

2 (x2y1 − x1y2) 1
2 (x1y3 − x3y1) 0 0

0 0 0 0 0 0

 .

Proof. Since k= c, the construction from proposition 2.1 simplifies to finding the mapsα0,α1,
that are uniquely determined in the given form by the normalization conditions (Nor) and
vanishing of the a–part in (SO) of α0.

Let us show that this conformal geometry admits normal solutions that we can use for finding
holonomy reductions.

Proposition 4.2. Suppose ρ= w1λ1 +w2λ2 +w3λ3 for the fundamental weights λi of the
complexification of so(2,4).

• If w2 = w3, then Φ|N is obtained by branching the representation w1λ1 of sl(2,R) to[
0 − 1

2x1
−x1 0

]
.

• If w2 6= w3, then Φ|N is obtained by branching the complexification of the representation

w1λ1 of sl(2,R) to
[

0 − 1
2x1

−x1 0

]
.

• In both cases, the projection π : N→ X is induced by the identification of N with sl(2,R)⊕
so(2)–orbit of the lowest weight vector, where sl(2,R)⊕ so(2)⊂ so(2,4) corresponds to
the diagonal in the decomposition of so(2,4) into 2× 2–blocks.

In particular, there is

(Es) a 2–parameter family of Einstein scales with

Φ(x1,x2,x3,x4) =

[
0 − 1

2x1
−x1 0

]
⊂ gl(2,R)

and π((v1,v2)t) = v2,
(ts) a 2–parameter family of twistor spinors corresponding to constant function (0,v1 +

iv2)t, and
(cKf) a 1–parameter family of normal conformal Killing fields corresponding to constant

functions valued in so(2,4) decomposed as (SO) with w= v1 and remaining elements
vanish.
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Proof. It is a simple observation that the image of κ is 2–dimensional and the bracket of the
image of α with it is 3–dimensional subspace of R4. Doing further bracketing, we get nothing
new and

hol(α) =


0 0 0 0 0 0
0 0 0 0 0 0
h3 h1 0 0 0 0
h4 h2 0 0 0 0
h5 0 −h1 −h2 0 0
0 −h5 −h3 −h4 0 0

 .

Thus hol(α) is a Heisenberg Lie algebra corresponding to the negative part of the contact
grading of so(2,4). If we denote byE2 the corresponding grading element, the normal solutions
belong to the eigenspace of E2 of the lowest weight vector that is an irreducible sl(2,R)⊕
so(2)–module. For w2 = w3, it is sl(2,R)–module with the highest weight w1λ1 and trivial
so(2)–module. For w2 6= w3, it is the complexification of sl(2,R)–module with the highest
weightw1λ1 and so(2) acts as the imaginary part ofC. The branching is then just the restriction
to the last block in the diagonal in the decomposition of the image of α into 2× 2–blocks. For
the particular weights λ1 of the standard representation, λ2 of the spinor representation and
λ2 +λ3 of the adjoint representation, we obtain the claimed normal solutions.

As in the case of the Gödel metric, we present all the results in the original coordinates rather
than the exponential coordinates c : c→M. So let us compute the c–coframe in the original
coordinates.

Lemma 4.2. There is the following c–(co)frame on M

e1 = dt, e2 = xdt+ dx, e3 = dy, e4 =−xdx+ dz,

e1 = ∂t− x∂x− x2∂z, e2 = ∂x+ x∂z, e3 = ∂y, e4 = ∂z.

In particular, the Einstein scales take form(
sinh

(√
2
2
t

)
√
2v1 + cosh(

√
2
2
t)v2

)
e

t
4 (dt∧ dx∧ dy∧ dz)

−1
4

and the normal conformal Killing vectors take form v1∂z.

Proof. Since the composition of exponential maps corresponds to composition of flows of the
conformal Killing fields, we compute c : c→M, (a1,a2,a3,a4) 7→ (a1,a2,a3, 12a

2
2 + a4). If we

consider the matrix representation
1
2a1 a2 0 0
0 − 1

2a1 0 0
0 0 a3 0
0 0 0 a4


of k, then the Maurer–Cartan form in the exponential coordinates takes form

1
2da1 a2da1 + da2 0 0
0 − 1

2da1 0 0
0 0 da3 0
0 0 0 da4

 .
Then we can push-pull the corresponding c–(co)frame toM and obtain the claim of the lemma.
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Using the explicit formula for the coordinates, we can translate the results computed accord-
ing to theorem 3.2 in the exponential coordinates to the original coordinates and obtain the
claimed form for the normal solutions.

Let us discuss the holonomy reductions induced by Einstein scales, twistor spinors, and normal
conformal Killing fields from proposition 4.2. Let us start with the Einstein scales.

Proposition 4.3. All the Einstein scales have the G–type corresponding to a null–vector.

• If
√
2v1−v2√
2v1+v2

> 0, then there are curved orbits M0,⊥ ∪M+ ∪M− determined by t=
1√
2
ln(

√
2v1−v2√
2v1+v2

), t> 1√
2
ln(

√
2v1−v2√
2v1+v2

) and t< 1√
2
ln(

√
2v1−v2√
2v1+v2

), respectively.

• If
√
2v1−v2√
2v1+v2

⩽ 0 then all of the points of M have the P–type corresponding to open orbit.

The open orbits carry a Ricci flat metric(√
2
2

(
e−

√
2

2 t− e
√

2
2 t
)
v1 +

1
2

(
e−

√
2

2 t+ e
√

2
2 t
)
v2

)−2

g

in the conformal class and the closed orbit carries a Cartan geometry of type (SO(1,3)⋊
R4,P1 ⋊R3), where R4 decomposes as the standard tractor bundle for G= SO(1,3) into a
null–line preserved by P1 and its orthocomplementR3. The underlying geometric structure on
the closed orbit consists of

(1) a 1–dimensional distribution v1∂z with projection(
1√
2
ln

(√
2v1 − v2√
2v1 + v2

)
,x,y,z

)
7→ (x,y)

on the leaf space, and
(2) the flat conformal class [dx2 + dy2] on the leaf space.

Proof. We can deduce from the data in proposition 4.2 that the holonomy reduction corres-
ponding to the Einstein scale (v1,v2)t ∈ N is

(t,x,y,z) 7→

(
0,0,0,0,cosh

(√
2
2
t

)
v1 +

√
2
2

sinh

(√
2
2
t

)
v2,

√
2sinh

(√
2
2
t

)
v1 + cosh

(√
2
2
t

)
v2

)t

which are all null–vectors. The projective slot vanishes for the claimed t and along the
zero locus, we get constant function with value (0,0,0,0,

√
2
2

√
2v21 − v22,0)

t and thus the
closed orbit is of type M0,⊥. On the open orbits, we get the claimed Ricci flat metrics.
On the closed orbit, it is easy to observe that the annihilator of (0,0,0,0,

√
2
2

√
2v21 − v22,0)

t

is isomorphic to SO(1,3)⋊R4 and that SO(1,3)⋊R4 ∩P= P1 ⋊R3. We consider w=

(0,0,0,0,
√
2
2

√
2v21 − v22,0)

t for the geometric interpretation and thus we can use the c–
(co)frame to deduce the underlying geometric structure, where the distribution is given by
e4 and the conformal class by the conformal basis e2,e3.

Since the normal conformal Killing field can be obtained as a tensor product of two twistor
spinors in our case, we discuss them together. For the twistor spinors v ∈ N, we know that
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G–types correspond to the length of v w.r.t. the Hermitian metric on the spin tractor bundle
preserved by SU(2,2). In the case of normal conformal Killing fields, the G–types coincide
with the classification of adjoint orbits in so(p+ 1,q+ 1), [17, table III, 13–16].

Proposition 4.4. The normal conformal Killing field u from proposition 4.2 has the G–type
corresponding to translations and the Lie algebra gu of Gu consisting of elements

h8 h6 0 0 0 0
h7 −h8 0 0 0 0
h3 h1 0 h9 0 0
h4 h2 −h9 0 0 0
h5 0 −h1 −h2 h8 −h6
0 −h5 −h3 −h4 −h7 −h8

 .

The twistor spinor v from proposition 4.2 has the null G–type and the Lie algebra gv of Gv is
subalgebra of gu for h9 = 0.
All points of M have the same P–types and there are homogeneous Cartan geometries of

type (Gv,Pv) and (Gu,Pu) on M, where Pv has the Lie algebra generated by h1,h2,h6,h8–parts
of gv and Pu has the Lie algebra generated by h1,h2,h6,h8,h9–parts of gu. In particular, the
c–(co)frame and the restriction of the map α to gv and gu provides the underlying geometric
structure consisting of

(1) a distinguished vector field e4 = ∂z, that is a reduction of CO(1,3) to Pu ∩CO(1,3) =
(Pv ∩CO(1,3))⋊ SO(2),

(2) an orthogonal decomposition of e⊥4 /〈e4〉= 〈e2〉⊕ 〈e3〉 into two distributions of rank 1,
that is a reduction of (Pv ∩CO(1,3))⋊ SO(2) to (Pv ∩CO(1,3)), and

(3) a subclass of the class of Weyl connections that preserve e4 and the two distributions of
rank 1 induced by the Levi–Civita connection of g, and one–forms proportional to e1 via
the usual formula for the change of Weyl connection, [13, section 1.6].

Proof. It follows from proposition 4.2 that the twistor spinor v ∈ N has the null G–type and
the normal conformal Killing field can be obtained as tensor product of two twistor spinors.
There are two possible P–types corresponding to null vectors in the maximal null–plane given
by the first two vectors of the standard (complex) basis of C4 and to null vectors outside such
a maximal null–plane. Since they are constant, we can compute gw = gv and gw = gu for the
representative w= v and w= u, respectively, i.e. all the points have the same P–type. Since
α(k) = α(kv)∩ gv = α(ku)∩ gu, the geometry is homogeneous and we can use the c–(co)frame
to describe it in the claimed way. Indeed, h5 corresponds to e4 and defines a distinguished vec-
tor field on TM, h3,h4 correspond to e2,e3 (modulo pv) and provide the orthogonal decompos-
ition of the quotient. Finally, h6 corresponds to e1 and describes the change of the Levi–Civita
connections of g to the distinguished subclass of the class of Weyl connections.

Let us finally remark that we also computed that there is a 27–dimensional family of conformal
Killing 2–tensors and a 2–parameter family of conformal Killing–Yano 2–forms. Therefore,
all of the conformal Killing–Yano 2–forms are normal.

In the next, we discuss holonomy reductions on an example that carries no Einstein scales.
In order to have at least one non–reductive example, we consider a non–reductive analog of
Gödel metric.
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4.3. Holonomy reductions on non–reductive analog of Gödel metrics

We pick an example such that its group of conformal symmetries that has a similar structure as
for the Gödel metrics, however, we replace SO(2) with a non–trivial 1–dimensional represent-
ation L ofR isomorphic to the action of diagonal Sl(2,R)–matrices on strictly upper triangular
Sl(2,R)matrices, i.e. K= (R⋊ L)× Sl(2,R). So this time we fixH=∆(L) to be the diagonal
in the product of L and strictly upper triangular matrices in Sl(2,R). Thus we can parametrize
the Lie algebra k as

x3 x5 0 0
0 −x3 0 0
0 0 −x2 + x3 2x4 + x5 − x1
0 0 x1 x2 − x3


with x5 parameterizing h. Let us show that if we consider the complement c parametrized by
(x1,x2,x3,x4), then α−1 : c→ R4 given by this parametrization describes a K–invariant con-
formal geometry on the non–reductive homogeneous space K/H.

Lemma 4.3. There is a decomposition k= l⊕ a⊕ n such that

e1 := e2x2−2x3∂x1 − 2x4∂x2 − 1
2 (4x

2
4 + 1− e4x2−4x3)∂x4 , e2 := ∂x2 + 2x4∂x4 ,

e3 := ∂x3 − 2x4∂x4 , e4 := ∂x4
e1 := e−2x2+2x3dx1, e

2 := 2x4e
−2x2+2x3dx1 + dx2, e

3 := dx3,

e4 := ( 1
2e

−2x2+2x3 − 2x24e
−2x2+2x3 − 1

2e
2x2−2x3)dx1 − 2x4dx2 + 2x4dx3 + dx4,

are c–(co)frames in the exponential coordinates c= (x1,x2,x3,x4)→ K/H compatible with the
decomposition l⊕ a⊕ n, i.e.

g= (e−4x2+4x3 − 1)dx21 + e−2x2+2x3(dx1dx4 + dx4dx1)+ dx22 + dx23
+ 2x4e

−2x2+2x3(dx3dx1 + dx1dx3)

is a metric in the K–invariant conformal class on K/H. Moreover,

α(x1,x2,x3,x4,x5) =



−x2 4x1 + 2x4 + x5 0 0 0 0
x1 x2 − 2x3 0 0 0 0
x2 2x1 − 2x4 − x5 0 −x3 0 0
x3 −2x1 x3 0 0 0
x4 0 −2x1 + 2x4 + x5 2x1 −x2 + 2x3 −4x1 − 2x4 − x5
0 −x4 −x2 −x3 −x1 x2


is the associated normal conformal extension of (k,h) with curvature

κ(α(xi),α(yi)) =


0 20(x1(y2 − y3)− y1(x2 − x3)) 0 0 0 0
0 0 0 0 0 0
0 −2(x1(y2 + 3y3)− y1(x2 + 3x3)) 0 0 0 0
0 −2(x1(3y2 − y3)− y1(3x2 − x3)) 0 0 0 0
0 0 ∗ ∗ 0 ∗
0 0 0 0 0 0

 ,

where the ∗–entries are determined by (SO).

Proof. It is not hard to check that go = α∗
−1ν1,3 is an H–invariant element of

⊙2
k/h∗ and

thus defines a K–invariant conformal geometry on K/H. Further, we can observe that there
is decomposition k= l⊕ a⊕ n, where l is given by x1, a is given by x2,x3 and n is given by
x4,x5. Since c∩ l is given by x1, c∩ a is given by x2,x3 and c∩ n is given by x4, we have the
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claimed exponential coordinates. The pullback of the Maurer–Cartan form of K to Tc takes
the following form in these coordinates
dx3 0 0 0

0 −dx3 0 0

0 0 −2x4e−2x2+2x3dx1 − dx2 + dx3 −(4x24e
−2x2+2x3 + e2x2−2x3)dx1 − 4x4dx2 + 4x4dx3 + 2dx4

0 0 exp−2x2+2x3dx1 2x4e−2x2+2x3dx1 + dx2 − dx3.

 .

This induces the claimed c–(co)frame and the metric g in the conformal class according to
proposition 2.2. With this information, we can directly compute the normal conformal exten-
sion α : k→ so(2,4) in the following steps.

(1) We start with the above α−1.
(2) We find the image dι0(x5) in co(1,3)with the same graded action on (x1,x2,x3,x4) in c and

then we compute the full dι(x5) using the conditions from the proof of proposition 2.1.
(3) We compute α0(x1,x2,x3,x4) and α1(x1,x2,x3,x4) using the normalization condition (Nor)

and we find the least possible a–part in (SO) of α0 (it is not generally possible to get a= 0
on non–reductive homogeneous space).

The formula for the curvature follows the definition.

Further, let us show that this conformal geometry admits normal solutions that we can use for
the holonomy reductions.

Proposition 4.5. Suppose ρ= w1λ1 +w2λ2 +w3λ3 for fundamental weights λi of complexi-
fication of so(2,4).

• If w1 6= 0, then the corresponding first BGG operator does not have any normal solutions.
• If w1 = 0 and w2 6= w3, then there is a 2–parameter family of normal solutions with

Φ(x1,x2,x3,x4)(v1 + iv2) =
(
(w2 +w3)x3 +

1
2
(w2 −w3)ix3

)
(v1 + iv2)

and π : N→ X identifying v1 + iv2 with (v1 + iv2)–multiple of the lowest weight vector in
X.

• If w1 = 0 and w2 = w3, there is a 1–parameter family of normal solutions with
Φ(x1,x2,x3,x4)v1 = 2w2x3v1 and π : N→ X identifying v1 with v1–multiple of the lowest
weight vector in X.

In particular, there is a 2–parameter family of twistor spinors given by function

s : c→ X= C2[ 12 ], s(x1,x2,x3,x4) := (0,e−x3(1+ 1
2 i)(v1 + iv2))

t

and there is a 1–parameter family of normal conformal Killing vectors v1e−2x3∂x4 .

Proof. We start by computation of the infinitesimal holonomy hol(α). Firstly, the image of
curvature is the 2–dimensional space of elements

0 2h1 − 4h2 0 0 0 0
0 0 0 0 0 0
0 h1 0 0 0 0
0 h2 0 0 0 0
0 0 −h1 −h2 0 −2h1 + 4h2
0 0 0 0 0 0

 .
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Then the bracket of the image of the curvature with the image of α provides 6–dimensional
space of elements

2h3 − 4h4 h6 0 0 0 0
0 −2h3 + 4h4 0 0 0 0
h3 h1 0 0 0 0
h4 h2 0 0 0 0
h5 0 −h1 −h2 2h3 − 4h4 −h6
0 −h5 −h3 −h4 0 −2h3 + 4h4

 .

The next bracket of the above 6–dimensional space with the image of α provides 8–
dimensional space of elements

h8 h6 0 0 0 0
h7 −h8 0 0 0 0
h3 h1 0 0 0 0
h4 h2 0 0 0 0
h5 0 −h1 −h2 h8 −h6
0 −h5 −h3 −h4 −h7 −h8

 .

The next bracket does not provide anything new and thus we have got 8–dimensional hol(α).
Let us emphasize that h1,h2,h3,h4,h5 form the Heisenberg Lie algebra corresponding to a
contact grading of so(2,4) and h6,h7,h8 form sl(2,R).

Now, we can use the representation theory to deduce all the normal solutions. Since
hol(α) contains all negative root spaces, the normal solutions are precisely the so(2)–modules
of the lowest weight on which h8 acts trivially, which provides the projection π. If the
highest weight is w1λ1 +w2λ2 +w3λ3, then the lowest weight is −w1λ1 −w3λ2 −w2λ3 and
(−w1λ1 −w3λ2 −w2λ3)(h8) = h8(−w1). Thus the existence claims on the normal solutions
follow, because the so(2)–module of the lowest weight is complex for w2 6= w3 and is real for
w2 = w3. We can then use the conformal extension α to obtain the representation Φ.

The claims on the twistor spinors and normal conformal Killing vector fields can also be
observed from the image

0 0 0 0

−
√
2
8 (h1 + ih2) h8 − 1

4h6 0

−
√
2
2 (h3 − ih4) −4h7 −h8 0

1
4h5 −

√
2
2 (h3 + ih4)

√
2
8 (h1 − ih2) 0


of hol(α) under the spin representation of so(2,4) and from the fact that the normal conformal
Killing field can be also seen as a tensor product of two twistor spinors.

Let us discuss the holonomy reductions induced by the twistor spinors and normal conformal
Killing fields from proposition 4.5.

Proposition 4.6. The twistor spinor v from proposition 4.5 has the null G–type, and the normal
conformal Killing field u from proposition 4.5 has the G–type corresponding to translations.
In particular, gv,gu,Pv,Pu are as in proposition 4.4.
All the points of K/Hhave the same P–type and there are Cartan geometries of type (Gv,Pv)

and (Gu,Pu) on K/H. The Cartan geometry of type (Gv,Pv) is not homogeneous and its sym-
metry group has orbits of codimesion 1. The Cartan geometry of type (Gu,Pu) is homogeneous.
The underlying geometric structure consists of
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(1) a choice of null–vector U := e−2x3∂x4 that is a reduction of CO(1,3) to (Pu ∩CO(1,3) =
(Pv ∩CO(1,3))⋊ SO(2),

(2) an orthogonal decomposition of

U⊥/〈U〉= 〈cos(x3)(∂x2 + 2x4∂x4)− sin(x3)(∂x3 − 2x4∂x4)〉
⊕ 〈sin(x3)(∂x2 + 2x4∂x4)+ cos(x3)(∂x3 − 2x4∂x4)〉

into two distributions of rank 1 that is reduction of (Pv ∩CO(1,3))⋊ SO(2) to (Pv ∩
CO(1,3)), and

(3) a subclass of the class of Weyl connections that preserve U and the two distributions of
rank 1 formed by Levi–Civita connections of the metrics e2x2+f(x1)g in the conformal class
for arbitrary function f. Their Ricci tensor vanishes on insertion of vectors in U⊥ as a
consequence of normality of the solutions.

Proof. It follows from proposition 4.5 that the situation is similar to the situation in proposition
4.4. The difference is that the section (0,0,0,e−x3(1+ 1

2 i)v)t of the spin tractor bundle is not
constant. We compute that the element px3,w given by exponential of the element of co(1,3)
with a11 = a=−x3, b12 =−x3 in (SO) and remaining parts vanishing normalizes the sections
to w= v or w= u from proposition 4.4, respectively, i.e. all the points of M have the same P–
type. Thus by proposition 4.1, there is a Cartan geometry of type (Gv,Pv) and Ad

−1
px3,w

(α(k))∩
gv is a subalgebra of k with x3 = 0 and thus has the action of codimension 1 on M. Similarly,
there is a Cartan geometry of type (Gu,Pu) and Ad

−1
px3,w

(α(k))∩ gv ∼= k and the Cartan geometry
is homogeneous. For the interpretation of the underlying geometric structure, it is not hard to
deduce that the objects (1), (2), and (3) are equivalent to the claimed reductions. Indeed, the
coframe corresponding to the reduction is obtained from our coframe ei by the adjoint action
of p−1

x3,w and has the claimed form.

To highlight the similarity with the conformal class of Gödelmetrics, we describe all conformal
Killing 2–tensors and conformal Killing–Yano 2–forms using the data computed according to
theorem 3.1. The explicit formulas for the conformal Killing 2–tensors and conformal Killing–
Yano 2–forms can be obtained using the formula (Sol) and the c–(co)frame from lemma 4.3.

Proposition 4.7. There is a 15–dimensional space of conformal Killing 2–tensors that decom-
poses into the following K–invariant families. We use the parametrization (s1, . . . ,s9) of the
projective slot given by the c–frame⊙

2
0TM= {s1e21 + s2e1e2 + s2e2e1 + s3e1e3 + s3e3e1 + s4e1e4 + s4e4e1

+ s5e
2
2 + s6e2e3 + s6e3e2 + s7e2e4 + s7e4e2

− (2s4 + s5)e
2
3 + s8e3e4 + s8e4e3 + s9e

2
4}

for the particular components of the projection π : S→
⊙ 2

0TM.

(1) There is a 1–dimensional trivial k–representation R= 〈v1〉 with projection
(0,0,0,v1,v1,0,0,0,4v1).

(2) There is a 3–dimensional representation R3 = 〈v2,v3,v4〉 that is trivial as the represent-

ation of sl(2,R), while the radical acts by the matrix

4x3 x5 0
0 2x3 x5
0 0 0

 with projection

(0,0,0,−2v4,−v4,v4,v3,v3,−6v4 + 2v2),
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where v2 corresponds to the normal solutions that are symmetrized products of normal
conformal Killing vectors with themselves.

(3) There is a 5–dimensional sl(2,R)–representation
4⊙

R2∗ = {v5y41 + v6y
3
1y2 + v7y

2
1y

2
2 + v8y1y

3
2 + v9y

4
2}

with trivial action of the radical and with projection

(24v5,6v6,0,−2v7 + 6v5,4v7 − 6v5,0,−3v8 + 3v6,0,6v9 − 2v7 + 6v5).

(4) There is a 6–dimensional sl(2,R)–representation consisting of two copies of
⊙2R2∗

that we parametrize as v10y21 + v11y1y2 + v12y22 and v13y
2
1 + v14y1y2 + v15y22 with the action[

2x3 x5
0 0

]
of radical intertwining these two copies and with projection

(0,−4v13,−4v13,v14 − 2v10,−3v14 + 2v10,−2v14,

2v15 − 2v13 − 2v11,2v15 − 2v13,4v12 − 4v10).

There is a 2–dimensional space of conformal Killing–Yano 2–forms that are all normal and
can be obtained as symmetrized products of twistor spinors with themselves.

Proof. We present here only the minimal set of data from theorem 3.1 that were computed
using Maple. We know that in the case of conformal Killing 2–tensors, w1 = 0 and w2 = w3 =
2 and thus there is a 1–parameter family of normal conformal Killing 2–tensors according to
proposition 4.5. Similarly in the case of conformal Killing–Yano 2–forms,w1 = 0 andw2 6= w3

and thus, there is a 2–parameter family of normal conformal Killing–Yano 2–forms.

4.4. Example related to CR geometry

Let us consider the manifold M to be the Lie group K= Gl(2,R). Consider the K–invariant
metric defined by

α−1

([
1
12x4 + 2x1

√
3
6 (3x2 − x3)√

3
6 (3x2 + x3) 7

12x4 + 2x1

])
= (x1,x2,x3,x4)

t.

We use proposition 2.1 to compute the corresponding conformal extension α and the infinites-
imal holonomy hol(α).

Lemma 4.4. The normal conformal extension α : gl(2,R)→ so(2,4) for the above α−1 and
the infinitesimal holonomy are as follows

α−1

([
1
12x4 + 2x1

√
3
6 (3x2 − x3)

√
3
6 (3x2 + x3) 7

12x4 + 2x1

])
=



0 −x1 x2 − 2
3x3

2
3x4 0

x1 0 2
3x3 x2 0 − 2

3x4
x2 −x3 0 −x1 − 1

2x4 − 2
3x3 −x2

x3 x2 x1 + 1
2x4 0 −x2 2

3x3
x4 0 x3 −x2 0 x1
0 −x4 −x2 −x3 −x1 0


,

hol(α) =



h5 −h6 h2 −h1 h8 0
h6 h5 h1 h2 0 −h8
h3 −h4 0 2h6 −h1 −h2
h4 h3 −2h6 0 −h2 h1
h7 0 h4 −h3 −h5 h6
0 −h7 −h3 −h4 −h6 −h5


∼= su(2,1).
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Proof. Since k= c, the construction from proposition 2.1 simplifies to finding the maps α0,α1

that are uniquely determined in the given form by the normalization conditions (Nor) and
vanishing of the a–part in (SO) of α0. Thus the curvature κ takes form



0 0 −( 56x3y4 −
5
6x4y3) −( 56x2y4 − x4y2) 0 0

0 0 5
6 (x2y4 − x4y2) − 5

6 (x3y4 − x4y3) 0 0

0 0 0 0 − 5
6 (x2y4 − x4y2) 5

6 (x3y4 − x4y3)

0 0 0 0 5
6 (x3y4 − x4y3) 5

6 (x2y4 − x4y2)

0 0 0 0 0 0

0 0 0 0 0 0


and its image corresponds to h1,h2–entries of hol(α). In two steps, the bracket of the image
of κ with the image of α generates the given hol(α). Simple analysis of this subalgebra of
so(2,4) shows that it is a simple Lie algebra su(2,1).

Consequently, normal solutions correspond to trivial su(2,1)-submodules in the branching of
the representation ρ : so(2,4)→ gl(V) to su(2,1). In particular, we have the following normal
conformal Killing field inducing a holonomy reduction to a CR geometry.

Proposition 4.8. The center of gl(2,R) is generated by a normal conformal Killing field and
Gl(2,R)/R carries an Sl(2,R)–invariant CR geometry with CR–distribution generated by
x2,x3–entries of gl(2,R) and complex structure identifying it with x2 + ix3.

Proof. The adjoint representation of so(2,4) contains a single trivial su(2,1)–submodule cor-
responding to the x1–entry of the image of α and thus, the center of gl(2,R) is generated by a
normal conformal Killing field. The entries h3,h4,h7 clearly determine a negative part of the
grading of su(2,1) corresponding to the CR geometry, and comparison with the image of α
determines the claimed description of the CR geometry.

Note that this is (up to covering) an example of a CR geometry contained in a 1–parameter class
of symmetric CR geometries on SO0(2,1) (for the value of the parameter t=

√
3) constructed

in [27].

5. Applications of all solutions, conserved quantities and conformal circles

5.1. Conformal circles via conserved quantities

There is a distinguished family of curves defined on each conformal geometry called conformal
circles generalizing geodesics of Riemannian geometry, [1]. Let γ : R→ c be a curve on (M=
K/H, [g]) in some exponential coordinates c : c→M. In this section, we consider more general
exponential coordinates than those compatible with decomposition l⊕ a⊕ n, because it will
simplify some computations. According to [25, 38], we assign to nowhere null curve γ, where
we always omit writing the argument t for γ and its components in the local coordinates, a
conformally invariant curve Σγ : R→∧3T as follows. For a chosen g in the conformal class,
we denote

u := ‖γ′‖=
√
g(γ′,γ′)
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and we can define three curves Xγ ,Uγ ,Aγ : R→ T as

Xγ :=

 1
u
0
0

 ,
Uγ := (Xγ)′ + ρ

(
α
(
(α−1)

−1
(
e1(γ′), . . . ,en(γ′)

)
+
∑
i

Hie
i(γ′)

))
(Xγ),

Aγ := (Uγ)′ + ρ
(
α
(
(α−1)

−1
(
e1(γ′), . . . ,en(γ′)

)
+
∑
i

Hie
i(γ′)

))
(Uγ),

where ρ(α ◦ ((α−1)
−1 ◦ (e1, . . . ,en)+

∑
iHiei)) is the algebraic part of the tractor derivative

along the curve γ expressed according to proposition 2.4 using the c–coframe (e1, . . . ,en).
Then

Σγ := Xγ ∧Uγ ∧Aγ .
Conformal circles are characterized by the property, [38],

Σγ ∧
(
(Aγ)′ + ρ

(
α
(
(α−1)

−1
(
e1(γ′), . . . ,en(γ′)

)
+
∑
i

Hie
i(γ′)

))
(Aγ)

)
= 0.

The basic result from [25] on conserved quantities along the conformal circles we consider
in this article is the following.

Proposition 5.1. Let s : c→∧3T be the function corresponding to a Killing–Yano 2–form.
Then g(s,Σγ) is constant along conformal circle γ, where g is the induced tractor metric on
∧3T.

Thus if we have enough Killing–Yano 2–forms, then we can use the corresponding conserved
quantities to describe the conformal circles. Note that the representation of K on the functions
corresponding to Killing–Yano 2–forms induces a representation on the conserved quantities.
One can then use this action to set the conserved quantities into a particular form and obtain
some representatives of the K–orbits of conformal circles. Let us illustrate this with examples.
We start with the conformal structure on 3–dimensional Heisenberg group which is studied in
[39] under the name Nil.

5.2. Conformal circles on 3–dimensional Heisenberg group

We consider the group K of lower triangular 3× 3–matrices with ones on the diagonal

K=

 1 0 0
x2 1 0
x3 x1 1

 .
We define a conformal class on M=K by choosing the following c–coframe

e1 :=
1√
2
(dx1 − dx2), e

2 := dx3 − x1dx2, e
3 :=

1√
2
(dx1 + dx2),

i.e. g= dx21 − dx22 +(dx3 − x1dx2)2 determines a conformal class of signature (1,2) and e2 is
the usual contact form on the Heisenberg group.

Note that in comparison with [39], we have different conventions and thus the conserved
quantities from [39, section 4.2] become

E= 2a1a3 + a22 + u22, J=−a3u1 + a1u3 −
1
2
u2,
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where

γ(t) =

 0 0 0
γ2(t) 0 0
γ3(t) γ1(t) 0

 ∈ c' k

is a curve parametrized by arc–length w.r.t. the metric g and

Xγ :=


1

0

0

0

0

 ,U
γ :=


0

u1 := 1√
2
(γ′1 − γ′2)

u2 := γ′3 − γ1γ
′
2

u3 := 1√
2
(γ′1 + γ′2)

0

 ,A
γ :=


u22 − 3

8

a1 :=−u1u2 + u′1
a2 := u′2

a3 := u3u2 + u′3
−1

 .

In such a non–holonomic coordinates, we have the following equations for the conformal
circles

a′1 =−u1(2a1a3 + a22)+ u1u
2
2 +

1
2
u1a2 +

1
2
u2a1,

a′2 =−u2(2a1a3 + a22)+ u32 − u2 +
1
2
u3a1 −

1
2
u1a3,

a′3 =−u3(2a1a3 + a22)+ u3u
2
2 −

1
2
u3a2 −

1
2
u2a3,

u1a3 + u2a2 + u3a1 = 0,

where the last equations is a consequence of the assumption 2u1u3 + u22 = 1.
Let us compute the conserved quantities provided by the conformal Killing–Yano 2–forms.

Proposition 5.2. The following quantities are constant along the conformal circles on (M, [g])

C1 :=
2
√
2

3
(2u3a1 − 2u1a3 − u2)(γ1 + γ2)+

4
3
(u3 − 2u3a2 + 2u2a3),

C2 :=
1
5
(u3a1 − u1a3 − u2)(γ

2
1 − γ22)+

√
2
5

(
2u2(a1 + a3)− 2a2(u1 + u3)− u1 + u3

)
γ1

+

√
2
5

(
2u2(a1 − a3)+ 2a2(u3 − u1)− u1 − u3

)
γ2 +

8
5
(u3a1 − u1a3),

C3 :=
1
4
(2u3a1 − u2 − 2u1a3)(γ

2
1 + γ22)−

√
2
4

(
2(u1 + u3)a2 − 2(a1 + a3)u2 + u1 − u3

)
γ1

−
√
2
4

(
2(u1 − u3)a2 + 2(a3 − a1)u2 + u1 + u3

)
γ2 + u2,

C4 :=
2
√
2

3
(2u1a3 − 2u3a1 + u2)(γ1 − γ2)+

4
3
(2u1a2 + u1 − 2u2a1)

Proof. Let us firstly collect the data necessary for computation of the Killing–Yano 2–forms.
The first ingredient is the conformal extension

α :

 0 0 0
1√
2
(−y1 + y3) 0 0

y2 1√
2
(y1 + y3) 0

 7→


0 − 3

8y3
5
8y2 − 3

8y1 0
y1 − 1

2y2 − 1
2y1 0 3

8y1
y2 − 1

2y3 0 1
2y1 − 5

8y2
y3 0 1

2y3
1
2y2

3
8y3

0 −y3 −y2 −y1 0

 ,
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where the parametrization of k is given by evaluation of the dual conformal frame to e1,e2,e3

at the origin o= (0,0,0) and then the map α is computed according to proposition 2.1. The
coordinates (x1,x2,x3) are not the exponential coordinates corresponding to this parametriza-
tion and comparing them we obtain the transition

y1 =

√
2
2

(x1 − x2), y2 =−1
2
x1x2 + x3, y3 =

√
2
2

(x1 + x2).

This allows us to present the conserved quantities in (x1,x2,x3)–coordinates.
Now we can compute the characterization of conformal Killing–Yano 2–forms from the-

orem 3.1. In particular, we compute that S⊂ ∧3T has coordinates(
v1,v2,

4
3
v1,v4,v3,

4
3
v4,0,−

8
3
v1,

8
5
v2,−

8
3
v4

)
in the standard basis t[ijk],1⩽ i< j< k⩽ 5 of ∧3T (ordered lexicographically, i.e. v3 corres-
ponds to multiples of t[135],) and

Φ(y1,y2,y3)

(
v1,v2,

4
3
v1,v4,v3,

4
3
v4,0,−

8
3
v1,

8
5
v2,−

8
3
v4

)
=

(
− 3
10
v2y1 −

3
8
v3y1,−

5
3
v1y3 +

5
3
v4y1,−

1
2
v3y1 −

2
5
v2y1,

3
10
v2y3 +

3
8
v3y3,

4
3
v1y3

−4
3
v4y1,

2
5
v2y3 +

1
2
v3y3,0,v3y1 +

4
5
v2y1,−

8
3
v1y3 +

8
3
v4y1,−v3y3 −

4
5
v2y3

)
.

Then we can extend the elements of S to sections of the tractor bundle in (x1,x2,x3)–
coordinates. Finally, we obtain the claimed conserved quantities by contracting them with
Σγ using the tractor metric induced by g.

We can now analyze all the equations together and find out that we obtain only two new con-
served quantities. However, they are enough to simplify the equations for the conformal circles
to the following form

γ1 =

√
2(6u3(u22 − 1)(C1 −C4)− (2u23 + u22 − 1)(u2(5C2 − 4C3)+ 8u22 − 4− S))

4u3(5C2 − 4C3)(u22 − 1)
,

γ2 =

√
2(6u3(u22 − 1)(C1 +C4)− (2u23 − u22 + 1)(u2(5C2 − 4C3)+ 8u22 − 4− S))

4u3(5C2 − 4C3)(u22 − 1)
,

γ′3 =
1

8u23(5C2 − 4C3)(u22 − 1)

(
6u3(u

2
2 − 1)(2u23 + u22 − 1)(C1 −C4)− 4(2u22 − 1)

· (2u23 + u22 − 1)2 − u2(2u
2
3 − u22 + 1)2(5C2 − 4C3)+ S(2u23 − u22 + 1)(2u23 + u22 − 1)

)
,

u′3 =
(−8u32 − Su2 + 12u2 + 5C2 − 4C3)u3

8(u22 − 1)
, u′2 =−S

8
,

S2 = 64u42 +(18C1C4 +(5C2 + 12C3)(5C2 − 4C3)− 64)u22 + 8(5C2 − 4C3)u2

− 18C1C4 − 16C3(5C2 − 4C3)+ 16.
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The particular solution from [39] corresponds to the special case with

J=
5
8
C2 −

1
2
C3 = 0, E=

1
4
− 9

32
C1C4 −

1
64

(5C2 + 12C3)(5C2 − 4C3) = 0

and some other special choices can also simplify the equations so they can be solved explicitly.

5.3. Conformal circles on split version of Fubini–Study metric

The Fubini–Study metrics are the unique (up to a constant multiple) invariant metrics on the
symmetric space SU(1+ n)/U(n) and conformal circles on this space are studied in [19]. We
consider the split version of this space that takes the split real form as the isometry group,
so we consider the unique (up to a constant multiple) invariant split signature metrics on the
symmetric space Sl(1+ n,R)/Gl(n,R). We assume here n> 1.

Lemma 5.1. The normal conformal extension α : sl(n+ 1)→ so(n+ 1,n+ 1) corresponding
to the split version of the Fubini–Study metric is

α

([
−tr(A) Xt2
X1 A

])
=


0 n+1

2(2n−1)X
t
2

n+1
2(2n−1)X

t
1 0

X1 A+ tr(A)id 0 − n+1
2(2n−1)X

t
1

X2 0 −At− tr(A)id − n+1
2(2n−1)X

t
2

0 −Xt2 −Xt1 0


with curvature

κ

(
α

[
−tr(A) Xt2
X1 A

]
,α

[
−tr(B) Yt2
Y1 B

])

=


0 0 0 0
0 n−2

2n−1 (X2Yt1 −Y2Xt1)+ (Xt2Y1 −Yt2X1)id n+1
2n−1 (X1Yt1 −Y1Xt1) 0

0 n+1
2n−1 (X2Yt2 −Y2Xt2) ∗ 0

0 0 0 0

 .
Proof. Since we have an invariant conformal structure on a symmetric space, we can use the
general result from [28] on the structure of the map α, and the only missing component we
need to compute is the part α1. It is not hard to verify that the claimed α1 provides the given
curvature and that it satisfies the normalization conditions (Nor).

Let us start with the case n= 2 and consider the exponential coordinates

c :

 0 x3 x4
x1 0 0

x2 0 0

 7→

 1 0 0

x1 1 0

x2 0 1


1 x3 x4
0 1 0

0 0 1

o.
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Firstly, we find the metric, the c–coframe, and the pullback of the Cartan connection from
proposition 2.4 in our exponential coordinates.

Lemma 5.2. In the above exponential coordinates, we have c–coframe

e1 = dx1, e
2 = dx2, e

3 = dx3 − x3x4dx2 − x23dx1, e
4 = dx4 − x3x4dx1 − x24dx2

and thus

g= dx1dx3 + dx3dx1 + dx2dx4 + dx4dx2 − 2(x3dx1 + x4dx2)
2.

The component α(
∑

iHe
i) is as follows, where ∗–entries depend on the others


0 0 0 0 0 0
0 2x3dx1 + x4dx2 x4dx1 0 0 0
0 x3dx2 x3dx1 + 2x4dx2 0 0 0
0 0 0 ∗ ∗ 0
0 0 0 ∗ ∗ 0
0 0 0 0 0 0

 .

Proof. Since we are dealing with a matrix Lie algebra, we can use the standard formula for
the Maurer–Cartan form, which provides a c–coframe and the component α(

∑
iHe

i). We can
then use the c–coframe to write the metric g.

In the above exponential coordinates, let us consider a curve

γ(t) =

 0 γ3 γ4
γ1 0 0
γ2 0 0

 ∈ c.

We conclude from lemma 5.2 that

Xγ =



1
u
0
0
0
0
0

 , U
γ =


− u′

u2

u1
u2
u3
u4
0

 , A
γ =



u5−2u(u′′)+4(u′)2

2u3

a1
a2
a3
a4
−u2


Let us compute the conformal Killing–Yano 2–forms and determine the corresponding con-

served quantities.
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Proposition 5.3. In the case n= 2, the following quantities are constant along the conformal
circles of (M, [g]), where we write aiuj− ajui = rij

C1 =
1
u

(
− γ2

3u1u
2 +(−γ4u2u

2 − r31 + r42)γ3 + u3u
2 + 2γ4r23

)
,

C2 =
1
u

(
− γ2

4u2u
2 +(−γ3u1u

2 + r31 − r42)γ4 + u4u
2 + 2γ3r14

)
,

C3 =
1
u

((
(γ2

3u1 + γ3γ4u2 − u3)u
2 − 2γ4r23 + γ3(r31 − r42)

)
γ2
1 +
(
((γ3γ4u1 + γ2

4u2 − u4)γ2

+ 2γ3u1 + γ4u2)u
2 +((r42 − r31)γ4 − 2γ3r14)γ2 + r31 − r42

)
γ1 + u1(γ2γ4 + 1)u2 − 2γ2r14

)
,

C4 =
1
u

((
(γ2

4u2 + γ3γ4u1 − u4)u
2 − 2γ3r14 − γ4(r31 − r42)

)
γ2
2 +
(
((γ2

3u1 + γ3γ4u2 − u3)γ1

+ γ3u1 + 2γ4u2)u
2 +((r31 − r42)γ3 − 2γ4r23)γ1 − r31 + r42

)
γ2 + u2(γ1γ3 + 1)u2 − 2γ1r23

)
,

C5 =
1
u

((
− 2γ1γ

2
3u1 +((−2γ1u2 − γ2u1)γ4 − 2u1)γ3 − γ2γ

2
4u2 + u4γ2 + 2u3γ1 − γ4u2

)
u2

+((−2r31 + 2r42)γ1 + 2γ2r14)γ3 +(4γ1r23 + γ2(r31 − r42))γ4 − r31 + r42
)
,

C6 =
1
u

((
− γ2

3u1u
2 +(−γ4u2u

2 − r31 + r42)γ3 + u3u
2 + 2γ4r23

)
γ2 − γ3u2u

2 + 2r23
)

= C1γ2 −
1
u

(
γ3u2u

2 − 2r23
)
,

C7 =
1
u

((
− γ2

4u2u
2 +(−γ3u1u

2 + r31 − r42)γ4 + u4u
2 + 2γ3r14

)
γ1 − γ4u1u

2 + 2r14
)

= C2γ1 −
1
u

(
γ4u1u

2 − 2r14
)
,

C8 =
1
u

((
− γ1γ

2
3u1 +((−γ1u2 − 2γ2u1)γ4 − u1)γ3 − 2γ2γ

2
4u2 + 2u4γ2 + u3γ1 − 2γ4u2

)
u2

+((−r31 + r42)γ1 + 4γ2r14)γ3 +(2γ1r23 + 2γ2(r31 − r42))γ4 + r31 − r42
)
,

C9 =−1
u
(r31 + r42).

Proof. As before we use Maple to compute the data from theorem 3.1 for conformal Killing–
Yano 2–forms. We obtain that S⊂ ∧3T has the coordinates

(0, 32 (v5 + v8),0,v1,0, 32 (v5 + v8),v2,0,v3,v4,v2,−v1,
0,v4,v5 − v8 + v9,2v6,−v3,2v7,−v5 + v8 + v9,0)

in the standard basis t[ijk],1⩽ i< j< k⩽ 6 of ∧3T, i.e. v9 corresponds to t[246] + t[356]. The
representation Φ is the adjoint representation of k on

v9 − v5 − v8 v3 v4
v1 v9 + v5 v6
v2 v7 v9 + v8

 ,
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If we replace the exponential coordinates from the formula (Sol) with our exponential coordin-
ates, we get the following sections of the tractor bundle

v1
(
0, 32x3,0,1,0,

3
2x3,0,0,−x

2
3,−x3x4,0,−1,0,−x3x4,x3,2x4,x23,0,−x3,0

)
+ v2

(
0, 32x4,0,0,0,

3
2x4,1,0,−x3x4,−x

2
4,1,0,0,−x24,−x4,0,x3x4,2x3,x4,0

)
+ v3

(
0,− 3

2x1(x1x3 + x2x4 + 1),0,−x12,0,− 3
2x1(x1x3 + x2x4 + 1),−x1x2,0,

x21x
2
3 + x3(x2x4 + 2)x1 + x2x4 + 1,x1x4(x1x3 + x2x4 + 1),−x1x2,x21,0,

x1x4(x1x3 + x2x4 + 1),−x1(x1x3 − x2x4 + 1),−2x21x4,−x1(x1x23 + 2x3 + x2x3x4)

− x2x4 − 1,−2x2(x1x3 + 1),x1(x1x3 − x2x4 + 1),0
)
+ v4

(
0,− 3

2x2(x2x4 + x1x3 + 1),

0,−x1x2,0,− 3
2x2(x2x4 + x1x3 + 1),−x22,0,x2x3(x1x3 + x2x4 + 1),

x2x4(x1x3 + x2x4 + 2)+ x1x3 + 1,−x22,x1x2,0,x2x4(x1x3 + x2x4 + 2)

+ x1x3 + 1,x2(x2x4 − x1x3 + 1),−2x1(x2x4 + 1),−x2x3(x1x3 + x2x4 + 1),

− 2x2
2x3,x2(−x2x4 + x1x3 − 1),0

)
v5
(
0,3x1x3 + 3

2 (x2x4 + 1),0,2x1,0,3x1x3

+ 3
2 (x2x4 + 1),x2,0,−x3(2x1x3 + x2x4 + 2),−x4(2x1x3 + x2x4 + 1),x2,−2x1,0,

x4(2x1x3 + x2x4 + 1),2x1x3 − x2x4 + 1,4x1x4,x3(2x1x3 + x2x4 + 2),

2x2x3,−2x1x3 + x2x4 − 1,0
)
+ v6

(
0, 32x2x3,0,x2,0,

3
2x2x3,0,0,

− x2x
2
3,−x2x3x4 − x3,0,−x2,0,−x2x3x4 − x3,x2x3,2(x2x4 + 1),x2x

2
3,0,−x2x3,0

)
+ v7

(
0, 32x1x4,0,0,0,

3
2x1x4,x1,0,−x4(x1x3 + 1),−x1x24,x1,0,0,

− x1x
2
4,−x1x4,0,x4(x1x3 + 1),2(x1x3 + 1),x1x4,0

)
+ v8

(
0,3x2x4 + 3

2 (x1x3 + 1),0,x1,0,3x2x4 + 3
2 (x1x3 + 1),2x2,0,−x3(x1x3

+ 2x2x4 + 1),−x4(x1x3 + 2x2x4 + 2),2x2,−x1,0,−x4(x1x3 + 2x2x4 + 2),

x1x3 − 2x2x4 − 1,2x1x4,x3(x1x3 + 2x2x4 + 1),4x2x3,−x1x3 + 2x2x4 + 1,0
)

+ v9
(
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0

)
,

After contracting these sections with Σγ using the tractor metric induced by g, we obtain the
claimed conserved quantities.

Now, we can compute a co–homogeneity one K–orbit of conformal circles. Note that the con-
served quantities implicitly describe all the conformal circles, but we need an ansatz on the
conserved quantities to get explicit equations.
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Theorem 5.1. The following curves are conformal circles (up to parametrization) for all c ∈
R, c> 0

γ1 :=
2c2 − t
2c3

γ2 :=− 1
2c3t

γ3 :=
1
t

γ4 := t

and their K–orbit is of co–homogeneity one.

Proof. We investigate the action of Sl(3,R) on the conserved quantities from proposition 5.3.
This leads us to us an ansatz(

0,0,−
√
2
2
c

1
2 ,0,

√
2
2
c

3
2 ,0,0,−

√
2
2
c

3
2 ,0

)
for the value of the conserved quantities, because under this ansatz, we can derive the following
equalities for conformal circles from the conserved quantities

γ′′1 =− γ′′4
2γ4γ3c3

, γ′′2 =
γ′′4 γ4 − 2γ′4

2

2γ34c
3

, γ′′3 =−γ3(γ
′′
4 γ4 − 2γ′4

2
)

γ24
,

γ′1 =− γ′4
2γ3γ4c3

, γ′2 =
γ′4

2γ24c
3
, γ′3 =−γ3γ

′
4

γ4

γ1 =
2γ3c2 − 1
2γ3c3

, γ2 =− 1
2γ4c3

.

Thus we can pick γ4 arbitrarily, compute the remaining functions and act by Sl(3,R) on the
curves to check that the orbit is codimension one K–orbit. One can choose γ4 to get paramet-
rization by arc–length, but for simplicity, we have chosen γ4 = t in our claim.

Let us prove that the theorem 5.1 can be generalized to an arbitrary dimension.

Theorem 5.2. The following curves are conformal circles (up to parametrization) for all c ∈
R, c> 0

γ1 :=
2c2 − t
2c3

γ2 :=− 1
2c3t

γi := 0,n⩾ i> 2

γn+1 :=
1
t

γn+2 := t

γi := 0,2n⩾ i> n+ 2

in the exponential coordinates

c :
[
0 Xt2
X1 0

]
7→
[
1 0
X1 id

][
1 Xt2
0 id

]
o

and their K–orbit is of codimension one.
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Proof. We conclude for the claimed curve that Xγ is just the above Xγ for n= 2 competed by
zeros to the correct size, and therefore, the same holds for Uγ . For Aγ , we need to look at the
component of α(

∑
iHe

i) and verify that it does not induce any non–zero difference from the
above Aγ for n= 2. It is not hard computation to show that apart from the diagonal, we have
xn+jdxi which indeed evaluates to zero on our curve in the difference from the above Aγ . To
check that we have a conformal circle we need to use the tractor connection one more time and
check that the result is still linearly dependent on Xγ ,Uγ ,Aγ . In this case also the difference in
the α1–parts of α appear, but this shifts the result by multiple ofUγ and thus does not influence
the linear independence, i.e. the claimed curves are conformal circles (up to parametrization).

By the structure of Sl(n+ 1,R), it suffices to check the property that the K–orbit is of
codimension one for n= 3, because then it extends for the general n by similar computations.
It is not hard to achieve this using Maple.
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Appendix A. First BGG operators on homogeneous conformal geometries in
exponential coordinates

Not all of the first BGG operators are described explicitly in the literature. Let us provide
some details on how to describe them on homogeneous conformal geometries. Let us start by
summarizing the necessary ingredients from the proof of theorem 3.1 in the local coordinates
c : c→M.

(1) We have the formula

∇ρ◦αs= ds+ ρ ◦α ◦
(
(α−1)

−1 ◦ (e1, . . . ,en)+
∑
i

Hie
i)
)
(s)

for the action of the tractor connection on a section of the tractor bundle V = c×V rep-
resented by a function s : c→ V.

(2) We need the coefficients of the polynomial Q in ∂∗∇ρ◦α, that is either provided by the
representation theory, [15], or by solving

∂∗∇ρ◦α(id−Q∂∗∇ρ◦α)s= 0

for a general polynomial Q in ∂∗∇ρ◦α and all s : c→ X. Let us note that if λ is irreducible
representation ofG, then the degree ofQ is the number of irreducible co(p,q)–submodules
in V minus 2.

(3) We need the projection π1 : Ker(∂∗)⊂ Ω1(V)→H1(V) that is obtained from the
Kostant’s version of Bott–Borel–Weil Theorem, [13, section 3.3].
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Having these we can write the first BGG operator

Ds= π1∇ρ◦α(id−Q∂∗∇ρ◦α)s

for s : c→ X. If si are components of s in a basis of X corresponding to sections σi induced
by a c–(co)frame, then ds gets replaced by d(siσi)− sidσi. For example, if the c–frame has the
form ei = σij∂aj in (a1, . . . ,an)–coordinates on c, then for X= Rn the section s corresponds to
the vector field S= siσij∂aj and ds gets replaced by (d(siσ

i
j)− sidσij)∂aj . Similarly, if ε induced

by c–coframe has the form det(σ)−1da1 ∧ ·· · ∧ dan in (a1, . . . ,an)–coordinates, then for X=

R[w] the section s corresponds to the conformal density τ = s · ε−w
n and ds gets replaced by

dτ − w
nTr(σ

−1dσ)τ . In particular,

∇S = (d(siσ
i
j)− sidσ

i
j)∂aj + [(α0 ◦ (α−1)

−1 ◦ (da1, . . . ,dan)(σt)−1))(s)

+ (dι0 ◦ (da1, . . . ,dan)(σt)−1(H1, . . . ,Hn)
t)(s)]iσ

i
j∂aj

∇τ = dτ − w
n
Tr(σ−1dσ)τ −wake

kτ

are the actions of the corresponding Weyl connections, where ak is from the formula for the
Cartan connection according to decomposition (Con). Note that if ei is an orthonormal frame
for a metric preserved by the Weyl connection, then Tr(σ−1dσ) =−nakek and thus∇τ = dτ .

Example 1. We investigate for n= 4 the tractor bundle that is the trace–free symmetric product
of the standard tractor bundle, i.e. V=

⊙2
0T. The grading on V has the following (1,4,1)–

block structure

V2 ∗ ∗
V1 V0 ∗
∗ V−1 V−2

 ,
where the ∗–entries depend on the other entries andX= V−2 = R[2]. There are six irreducible
components in V and thus Q is a polynomial of degree four. We compute

Q=−35
24

− 7
9
∂∗∇ρ◦α− 3

16
(∂∗∇ρ◦α)2 − 1

48
(∂∗∇ρ◦α)3 − 1

1152
(∂∗∇ρ◦α)4

(one can for simplicity assume that k= R4, α= α−1 is identity on R4 and thus Hi = 0, i=
1,2,3,4, and do the computations explicitly for general polynomial of degree four). The pro-
jection π1 is then a projection R4∗ ⊗V→

⊙3
0R4∗[2] given by the trace–free part of complete

symmetrization ofR4∗ ⊗V0 = R4∗ ⊗
⊙2R4∗[2]. Finally, let us mention that the leading terms

are third order partial derivatives that are trace–free and there are uniquely determined lower
order termsmaking this operator conformally invariant. Thus finding the solutions of this BGG
operator classically involves solving sixteen third–order equations for a function of four vari-
ables. However, the use of the corresponding tractor bundle and prolongation connection as in
section 3 provides a simpler way, how to obtain the solutions of this BGG operator. Indeed,
this way one needs to compute the parallel sections for the prolongation connection and project
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them toX . The construction of prolongation connection is an algorithmic process and the next
section provides more details about it.

Appendix B. Example of construction of prolongation connection

The construction of the prolongation connection is given by the algorithm from section 3.3,
however, the computation can be tedious. Therefore, we provide just one example of this con-
struction, for the case of the Gödel metric and the tractor bundle V=

⊙2
0T and we follow the

notation of section 3.3, i.e.

V2 ∗ ∗
V1 V0 ∗
∗ V−1 V−2

 ,


w ∗ ∗ ∗ ∗ ∗
u1 r1 ∗ ∗ ∗ ∗
u2 r5 r2 ∗ ∗ ∗
u3 r8 r6 r3 ∗ ∗
u4 r9 r10 r7 r4 ∗

−r9 − 1
2 (r2 + r3) v1 v2 v3 v4 s

 .

We start with the tractor connection ∇ρ◦α and according to the algorithm, we compute
ψ1 :=− 1

c1
q2
(
(∂∗ ⊗ idV∗)Rρ◦α

)
, where we observe that the lowest nonzero component lies

in homogeneity 2 and leave c1 as unknown. Then we compute q2
(
(∂∗ ⊗ idV∗)Rρ◦α+ψ1

)
and

choose a value of c1 for which some part of this expression disappears. We repeat this in the
following seven steps to find Ψ and thus the prolongation connection. We indicate in i-th step
the homogeneity a of the lowest nonzero component, value qa

(
(∂∗ ⊗ idV∗)Rρ◦α+ψ1+···+ψi−1

)
and value of ci we have chosen. Let us emphasize that we do not need to check whether the
value of ci we have chosen is correct or not, because∇ρ◦α+ψ1+···+ψi provides (independently
on ci) the same first BGG operator and the final Ψ with (∂∗ ⊗ idV∗)Rρ◦α+Ψ = 0 is unique
among all of these tractor connections.

(1) In the homogeneity 2, we find c1 = 6 and ψ1(x1,x2,x3,x4,0) then equals to a 1
6–multiple

of

−
2

3
·



0 ∗ ∗ ∗ ∗ ∗
((r2 + r3 − 2r9)x1 − x2r5 − x3r8)+ x4r1 2x1v1 ∗ ∗ ∗ ∗
(r9 − r3)x2 − 1

2
(x1r10+x4r5)+x3r6 − 1

2
z12 z14 − 2x3v3 ∗ ∗ ∗

(r9 − r2)x3 − 1
2
(x1r7−x4r8)+ x2r6 − 1

2
z13 z23 z14 − 2x2v2 ∗ ∗

1
2
((r2+r3 − 2r9)x4−x2r10−x3r7)+x1r4 x2v2+x3v3−z14 − 1

2
z24 − 1

2
z34 2x4v4 ∗

0 0 0 0 0 0


,

where we write zij = vixj+ vjxi.
(2) In the homogeneity 3, we find c2 = 6 and (ψ2 −ψ1)(x1,x2,x3,x4,0) then equals to a 1

6–
multiple of

√
2 ·



(2r7 − 4r8)x2 + 4(r5 − 1
2 r10)x3 ∗ ∗ ∗ ∗ ∗

3
4 (x3v2 − x2v3) 0 ∗ ∗ ∗ ∗

1
4 (x4 − 2x1)v3 − 2(v1 − 1

2v4)x3 − 3
4x3s 0 ∗ ∗ ∗

1
4 (2x1 − x4)v2 + 2(v1 − 1

2v4)x2
3
4x2s 0 0 ∗ ∗

3
2 (x2v3 − x3v2) 0 3

2x3s − 3
2x2s 0 ∗

0 0 0 0 0 0


.
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(3) Next, in the homogeneity 3, we find c3 = 12 and (ψ3 −ψ2)(x1,x2,x3,x4,0) then equals to
a 1

12–multiple of

√
2
6

·



(10r8 − 5r7)x2 − 10(r5 − 1
2 r10)x3 ∗ ∗ ∗ ∗ ∗

1
2 (x2v3 − x3v2) 0 ∗ ∗ ∗ ∗

1
2 (10x1 − 5x4)v3 + 6(v1 − 1

2v4)x3 0 0 ∗ ∗ ∗
1
2 (−10x1 + 5x4)v2 − 6(v1 − 1

2v4)x2 0 0 0 ∗ ∗
x3v2 − x2v3 0 0 0 0 ∗

0 0 0 0 0 0


.

(4) Next, in the homogeneity 3, we find c4 = 8 and (ψ4 −ψ3)(x1,x2,x3,x4,0) then equals to a
1
8–multiple of

√
2
9

·



1
4 (14r8 − 7r7)x2 − 7

2 (r5 −
1
2 r10)x3 ∗ ∗ ∗ ∗ ∗

1
2 (x3v2 − x2v3) 0 ∗ ∗ ∗ ∗
1
2v3(2x1 − x4) 0 0 ∗ ∗ ∗

1
2 (−2x1 + x4)v2 0 0 0 ∗ ∗
x2v3 − x3v2 0 0 0 0 ∗

0 0 0 0 0 0


.

(5) Next, in the homogeneity 3, we find c5 = 12 and (ψ5 −ψ4)(x1,x2,x3,x4,0) then equals to
a 1

12–multiple of

√
2
4

·



1
2 (−2r8 + r7)x2 +(r5 − 1

2 r10)x3 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗
0 0 0 0 0 0

 .

(6) In the homogeneity 4, we find c6 = 8 and (ψ6 −ψ5)(x1,x2,x3,x4,0) then equals to a 1
8–

multiple of

1
9
·



(16x1 − 8x4)v1 +(−8x1 + 4x4)v4 + 12(v2x2 + v3x3) ∗ ∗ ∗ ∗ ∗
s(5x1 − 2x4) 0 ∗ ∗ ∗ ∗

−5x2s 0 0 ∗ ∗ ∗
−5x3s 0 0 0 ∗ ∗

(−8x1 + 5x4)s 0 0 0 0 ∗
0 0 0 0 0 0


.

(7) Finally, in the homogeneity 4, we find c7 = 12 and (ψ7 −ψ6)(x1,x2,x3,x4,0) then equals
to a 1

12–multiple of

1
9
·


−v1x4 − v2x2 − v3x3 − v4x1 ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗
0 0 0 0 0 0

 .
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Let us note that there is nothing in homogeneity 5 and the computation is finished.
Altogether, the prolongation connection∇Φ is given byΦ= ρ ◦α+ψ7, where one gets ψ7

by adding appropriate multiples of the above matrices.
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