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Abstract

Ionization cooling is the most hopeful method to reduce
the emittance of muon beams, which plays an important
role in neutrino factory and muon collider. Within the
moment-equation approach, we present a way to derive the
formulae of emittance in transverse under linear channel.
All heating and coupling terms are reserved in the deriv-
ing process. From our formulae, it is a way to achieve a
small emittance by designing the cooling channel compact
to make the beta function changing sharply.

INTRODUCTION

The physics potentials of neutrino factories and muon
colliders have stimulated worldwide studies of the feasibil-
ity of high-energy muon accelerators. Ionization cooling
of particles proposed a long time ago in [1]. Ionization
cooling theory is being studied for a very long time. And
this cooling channel is developed to reduce the emittance
of muon beam for envisioned neutrino factory and muon
collider. Basic concept of this proposal is that the friction
force acting to the particle moving through the absorber,
directed against instant velocity of particle. As the longi-
tudinal component of momentum lost in absorber could be
restored by the longitudinal electric field in a RF cavity,
the loss of transverse component is not, so this process re-
sulting emittance reduction. This process is similar to the
one with radiation losses; in some sense excitation of beta-
tron oscillation while emitting the quanta in a channel with
nonzero dispersion is similar to the (multiple) scattering in
absorber.

Ionization cooling in a quadrupole channel has been dis-
cussed extensively by many authors, especially Neuffer’s
cooling formulae in [2]. Neuffer’s formulae of transverse
cooling theory is
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where 3 stands for the betatron function, E,, is the parti-
cle energy, L4 is radiation length.

And, Wang and Kim have developed coupled cooling
equations including dispersion, wedges, solenoids, and
symmetric focussing [3][4][5][6].

SINGLE PARTICLE DYNAMICS

We consider an idealized uncoupled quadrupole channel
with quadrupole strength K (s); horizontal bending radius
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p. Using the standard Frenet-Serret coordinates {z, y, s},
the Hamiltonian can be written as
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where {z, P,}, {y, P,} are the horizontal and vertical
canonical variables, and {z, §} are the longitudinal canoni-
cal variables. And 7y is the Lorentz factor of the reference
particle, K (s) is the quadrupole strength, p(s) is the hor-
izontal bending radius, V'(s) is the RF focusing strength,
0 is momentum deviation from the nominal momentum, 7
is a positive quantity characterizing the cooling force from
energy loss, x is the projected mean-square angular devi-
ation per unit length due to multiple scattering, § ) is
uncorrelated unit stochastic quantities describing the fluc-
tuation forces due to multiple scattering and energy strag-
gling.

From eq.(2), one could get the equations of motion di-
rectly. Because the forces are linear, we use the Fokker-
Plank equations to study the phase-space distribution.

FORMULAE OF TRANSVERSE
IONIZATION COOLING IN A LINEAR
CHANNEL

According to eq.(2), horizontal and vertical motions in
the two transverse planes are uncoupled. It is sufficient to
treat only the x phase space dynamics, so the Hamiltonian
simplifies into the form:

H= %[Pf + Ky (s)2?] +nzPy — Xz (3)

where K, (s) = K(s) + p%.
Then the single-particle equations of motion according
to eq.(3) are:
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After some algebra within eq.(4) and eq.(5), we obtained
the second-order beam moments in x plane:

(%) = 2((xPy) + (nz)) (6)
(@Py) = (P}) — (Kau(s)2?) + (Vxa&s) (7
(P}) = =2((K.(s)zPy) + (nP2) = (VXP:&s))  (8)
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Obviously, there is a term correlated with 7 in eq.(4),
which is coming from energy loss in absorber; and there
are two more parts in eq.(5), the one correlated with 7 is
from energy loss in absorber, and the other one correlated
with /x&, is due to fluctuating force from multiple scat-
tering and energy straggling. All these extra terms make
the second-order beam moments more complicated.

Here we choose rms emittance to derive the formulae of
ionization cooling in transverse plane. The rms emittance
is define as:

Crms,x = \/<‘T2><Pw2> — (zPy)? )

In the following derivation, we drop the subscript ;s to
simplify the notation to make the expression clear.

Similar to the electron ring theory, the beam size in hor-
izontal plane is 0, = +/Bz€, + D(5)202. As we just study
the transverse plane, the § = 0 and (z2?) = f3,¢€,. So the en-
velope functions determined by the lattice functions could

be expressed:
(%) (zPy) \ Be —au
( wpy () )\ ey ) 10
Next, we will derive the formulae of transverse emit-
tance in a linear ionization cooing channel. The normal-

ized emittance in X plane is €, , = Bye,, so the emittance
evolution along the cooling channel is
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In right of eq.(11), the first term relates with energy loss
and contributes cooling effect. After some algebra, it is
easy to get that:

e 12)

And combined with eq.(6) and eq.(7) and eq.(8), one could
get:

B e = %«Wﬂa@ — (@Pe)(Vxwts) (13)

Taking the envelope functions eq.(10) into eq.(13), we have
the expression:

B = 1R (ButP) + s

(14)
According to Cauchy-Schwarz theory in probability the-
ory, there is a relationship between random variable ¢ and

n:

[(Em? < () n) (15)
If and only if the possibility P{n = t;{} = 1, one has
|(€n)|? = (£2)(n?). Here to should be a constant.

As we have assumed that the stochastic quantities are
dominated by standard Guassian white noise, this gives the

properties (€2) = 1. And for a Guassian beam passing
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through an absorber, the stochastic quantities £ should have
connections with x and P, respectively. It is reasonable to
assume ¢ and P, are dependent and both have zero mean.
From eq.(15), we rewrite eq.(14) into:

o252 = 1R (B VPRIV + o VBV ED

(16)

By using Moliere scattering theory, one has (P2) = .

And y = (%)Qﬁ’ — ldE/ds| oo well defined in [1].

Taking all these expressions into eq.(16), we get

des /
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Taking the eq.(12) and eq.(17) into eq.(11), the evolution of
transverse normalized emittance along the cooling channel

1S:
degn [
:18 = _277€wn + B’Y\/i(ﬂl\/% +al %Qpn)

(18)

From eq.(18), one can get the equilibrium emittance by
solving the equation:

2N€rn — O Ka/€xn — k2 =0 (19)
Here I introduce x?> = [3yB1x to make the expression

clear. Within Viete’s theorem, it is easy to get the root of
the eq.(19):

AR+ od k2 £ aik?/ad + 8y
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When the muons travel to the waist of the lattice, the 3
reaches the minimum and the « is zero, then the eq.(20)
reduces to:
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The eq.(21) is the same with Neuffer’s transverse cooling
formulae eq.(1). We derive this formulae without neglect-
ing any terms, so it is more accurate to figure out the cool-
ing process.

In our study of this linear cooling theory, it is natural
to rewrite the eq.(20) into a new patten, which is clear for
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further analysis:

11_2(1+ ai—al\/ai—&—Sn)
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where Q(81, ) = 81 (1 - %)
1+ 1+ﬁ
Here I introduce a function Q(8, ) ), which reflects
the influence from the lattice design. According to eq.(22),
the minimum of the emittance might not always be the
waist of the lattice.

SUMMARY

In this paper, we have derived a new formulae eq.(22)
in a linear ionization cooling channel. And the result goes
well with Neuffer’s theory in a waist of the lattice. From
our theory, the minimum of the emittance might not always
be the waist of the lattice and it should be affected by the
function (51,8 ). Further, when it is hard to achieve a
very small beta function, it is a way to keep the emittance
by designing the beta function changing sharply. What’s
more, a G4beamline simulation would be carried out to
check the theory and it might be a way to guide the cooling
lattice design. A 6D formulae is under study.
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