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Abstract

Ionization cooling is the most hopeful method to reduce

the emittance of muon beams, which plays an important

role in neutrino factory and muon collider. Within the

moment-equation approach, we present a way to derive the

formulae of emittance in transverse under linear channel.

All heating and coupling terms are reserved in the deriv-

ing process. From our formulae, it is a way to achieve a

small emittance by designing the cooling channel compact

to make the beta function changing sharply.

INTRODUCTION

The physics potentials of neutrino factories and muon

colliders have stimulated worldwide studies of the feasibil-

ity of high-energy muon accelerators. Ionization cooling

of particles proposed a long time ago in [1]. Ionization

cooling theory is being studied for a very long time. And

this cooling channel is developed to reduce the emittance

of muon beam for envisioned neutrino factory and muon

collider. Basic concept of this proposal is that the friction

force acting to the particle moving through the absorber,

directed against instant velocity of particle. As the longi-

tudinal component of momentum lost in absorber could be

restored by the longitudinal electric field in a RF cavity,

the loss of transverse component is not, so this process re-

sulting emittance reduction. This process is similar to the

one with radiation losses; in some sense excitation of beta-

tron oscillation while emitting the quanta in a channel with

nonzero dispersion is similar to the (multiple) scattering in

absorber.

Ionization cooling in a quadrupole channel has been dis-

cussed extensively by many authors, especially Neuffer’s

cooling formulae in [2]. Neuffer’s formulae of transverse

cooling theory is

ǫxn =
β⊥E

2
s

2βEµLrad|dE/ds|
(1)

where β⊥ stands for the betatron function, Eµ is the parti-

cle energy, Lrad is radiation length.

And, Wang and Kim have developed coupled cooling

equations including dispersion, wedges, solenoids, and

symmetric focussing [3][4][5][6].

SINGLE PARTICLE DYNAMICS

We consider an idealized uncoupled quadrupole channel

with quadrupole strength K(s); horizontal bending radius
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ρ. Using the standard Frenet-Serret coordinates {x, y, s},

the Hamiltonian can be written as

H =
1

2
{P 2

x + [K(s) +
1

ρ2
]x2}+ 1

2
[P 2

y −K(s)y2]− δx

ρ

+
1

2
[
1

γ2
0

δ2 + V (s)z2] + η[xPx + yPy] + ηxxz

−√
χ(ξxx+ ξyy)−

√
χδξzz (2)

where {x, Px}, {y, Py} are the horizontal and vertical

canonical variables, and {z, δ} are the longitudinal canoni-

cal variables. And γ0 is the Lorentz factor of the reference

particle, K(s) is the quadrupole strength, ρ(s) is the hor-

izontal bending radius, V (s) is the RF focusing strength,

δ is momentum deviation from the nominal momentum, η
is a positive quantity characterizing the cooling force from

energy loss, χ is the projected mean-square angular devi-

ation per unit length due to multiple scattering, ξ(x,y,z) is

uncorrelated unit stochastic quantities describing the fluc-

tuation forces due to multiple scattering and energy strag-

gling.

From eq.(2), one could get the equations of motion di-

rectly. Because the forces are linear, we use the Fokker-

Plank equations to study the phase-space distribution.

FORMULAE OF TRANSVERSE

IONIZATION COOLING IN A LINEAR

CHANNEL

According to eq.(2), horizontal and vertical motions in

the two transverse planes are uncoupled. It is sufficient to

treat only the x phase space dynamics, so the Hamiltonian

simplifies into the form:

H =
1

2
[P 2

x +Kx(s)x
2] + ηxPx −√

χξxx (3)

where Kx(s) = K(s) + 1
ρ2 .

Then the single-particle equations of motion according

to eq.(3) are:

dx

ds
=

∂H

∂Px
= Px + ηx (4)

dPx

ds
= −∂H

∂x
= −Kx(s)x− ηPx +

√
χξx (5)

After some algebra within eq.(4) and eq.(5), we obtained

the second-order beam moments in x plane:

〈x2〉′ = 2(〈xPx〉+ 〈ηx〉) (6)

〈xPx〉′ = 〈P 2
x 〉 − 〈Kx(s)x

2〉+ 〈√χxξx〉 (7)

〈P 2
x 〉′ = −2(〈Kx(s)xPx〉+ 〈ηP 2

x 〉 − 〈√χPxξx〉) (8)
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Obviously, there is a term correlated with η in eq.(4),

which is coming from energy loss in absorber; and there

are two more parts in eq.(5), the one correlated with η is

from energy loss in absorber, and the other one correlated

with
√
χξx is due to fluctuating force from multiple scat-

tering and energy straggling. All these extra terms make

the second-order beam moments more complicated.

Here we choose rms emittance to derive the formulae of

ionization cooling in transverse plane. The rms emittance

is define as:

ǫrms,x =
√

〈x2〉〈P 2
x 〉 − 〈xPx〉2 (9)

In the following derivation, we drop the subscript rms to

simplify the notation to make the expression clear.

Similar to the electron ring theory, the beam size in hor-

izontal plane is σx =
√

βxǫx +D(s)2δ2. As we just study

the transverse plane, the δ = 0 and 〈x2〉 = βxǫx. So the en-

velope functions determined by the lattice functions could

be expressed:

(

〈x2〉 〈xPx〉
〈xPx〉 〈P 2

x 〉

)

= ǫx

(

βx −αx

−αx γx

)

(10)

Next, we will derive the formulae of transverse emit-

tance in a linear ionization cooing channel. The normal-

ized emittance in x plane is ǫn,x = βγǫx, so the emittance

evolution along the cooling channel is

dǫxn
ds

= ǫx
dβγ

ds
+ βγ

dǫx
ds

(11)

In right of eq.(11), the first term relates with energy loss

and contributes cooling effect. After some algebra, it is

easy to get that:

ǫx
dβγ

ds
= − 1

β2

ǫxn
E

|dE
ds

| (12)

And combined with eq.(6) and eq.(7) and eq.(8), one could

get:

βγ
dǫx
ds

=
βγ

ǫx
(〈x2〉〈√χPxξx〉 − 〈xPx〉〈

√
χxξx〉) (13)

Taking the envelope functions eq.(10) into eq.(13), we have

the expression:

βγ
dǫx
ds

= βγ
√
χ

(

β⊥〈Pxξx〉+ α⊥〈xξx〉
)

(14)

According to Cauchy-Schwarz theory in probability the-

ory, there is a relationship between random variable ξ and

η:

|〈ξη〉|2 ≤ 〈ξ2〉〈η2〉 (15)

If and only if the possibility P{η = t0ξ} = 1, one has

|〈ξη〉|2 = 〈ξ2〉〈η2〉. Here t0 should be a constant.

As we have assumed that the stochastic quantities are

dominated by standard Guassian white noise, this gives the

properties 〈ξ2x〉 = 1. And for a Guassian beam passing

through an absorber, the stochastic quantities ξ should have

connections with x and Px respectively. It is reasonable to

assume ξ and Px are dependent and both have zero mean.

From eq.(15), we rewrite eq.(14) into:

βγ
dǫx
ds

= βγ
√
χ

(

β⊥

√

〈P 2
x 〉
√

〈ξ2x〉+ α⊥

√

〈x2〉
√

〈ξ2x〉
)

(16)

By using Moliere scattering theory, one has 〈P 2
x 〉 = χ.

And χ = ( Es

pcβ )
2 1
Lrad

, η = |dE/ds|
pcβ are well defined in [1].

Taking all these expressions into eq.(16), we get

βγ
dǫx
ds

= βγ
√
χ

(

β⊥
√
χ+ α⊥

√

β⊥

βγ
ǫxn

)

(17)

Taking the eq.(12) and eq.(17) into eq.(11), the evolution of

transverse normalized emittance along the cooling channel

is:

dǫxn
ds

= −2ηǫxn + βγ
√
χ

(

β⊥
√
χ+ α⊥

√

β⊥

βγ
ǫxn

)

(18)

From eq.(18), one can get the equilibrium emittance by

solving the equation:

2ηǫxn − α⊥κ
√
ǫxn − κ2 = 0 (19)

Here I introduce κ2 = βγβ⊥χ to make the expression

clear. Within Viete’s theorem, it is easy to get the root of

the eq.(19):

ǫxn =
4κ2η + α2

⊥κ
2 ± α⊥κ

2
√

α2
⊥ + 8η

8η2

=
κ2

2η
+

α2
⊥κ

2 ± α⊥κ
2
√

α2
⊥ + 8η

8η2
(20)

When the muons travel to the waist of the lattice, the β⊥

reaches the minimum and the α⊥ is zero, then the eq.(20)

reduces to:

ǫxn,waist =
κ2

2η
=

βγβ⊥

2
(
Es

pcβ
)2

1

Lrad

pcβ

|dE/ds|

=
β⊥E

2
s

2βEµLrad|dE/ds|
(21)

The eq.(21) is the same with Neuffer’s transverse cooling

formulae eq.(1). We derive this formulae without neglect-

ing any terms, so it is more accurate to figure out the cool-

ing process.

In our study of this linear cooling theory, it is natural

to rewrite the eq.(20) into a new patten, which is clear for
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further analysis:

ǫxn =
κ2

2η

(

1 +
α2
⊥ − α⊥

√

α2
⊥ + 8η

4η

)

=
κ2

2η

(

1− 2

1 +
√

1 + 8η
α2

⊥

)

=
β⊥E

2
s

2βEµLrad|dE/ds|

(

1− 2

1 +
√

1 + 8η
α2

⊥

)

=
E2

s

2βEµLrad|dE/ds|
Ω(β⊥, β

′
⊥) (22)

where Ω(β⊥, β
′
⊥) = β⊥

(

1− 2

1+
√

1+ 8η

α2

⊥

)

.

Here I introduce a function Ω(β⊥, β
′
⊥), which reflects

the influence from the lattice design. According to eq.(22),

the minimum of the emittance might not always be the

waist of the lattice.

SUMMARY

In this paper, we have derived a new formulae eq.(22)

in a linear ionization cooling channel. And the result goes

well with Neuffer’s theory in a waist of the lattice. From

our theory, the minimum of the emittance might not always

be the waist of the lattice and it should be affected by the

function Ω(β⊥, β
′
⊥). Further, when it is hard to achieve a

very small beta function, it is a way to keep the emittance

by designing the beta function changing sharply. What’s

more, a G4beamline simulation would be carried out to

check the theory and it might be a way to guide the cooling

lattice design. A 6D formulae is under study.
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