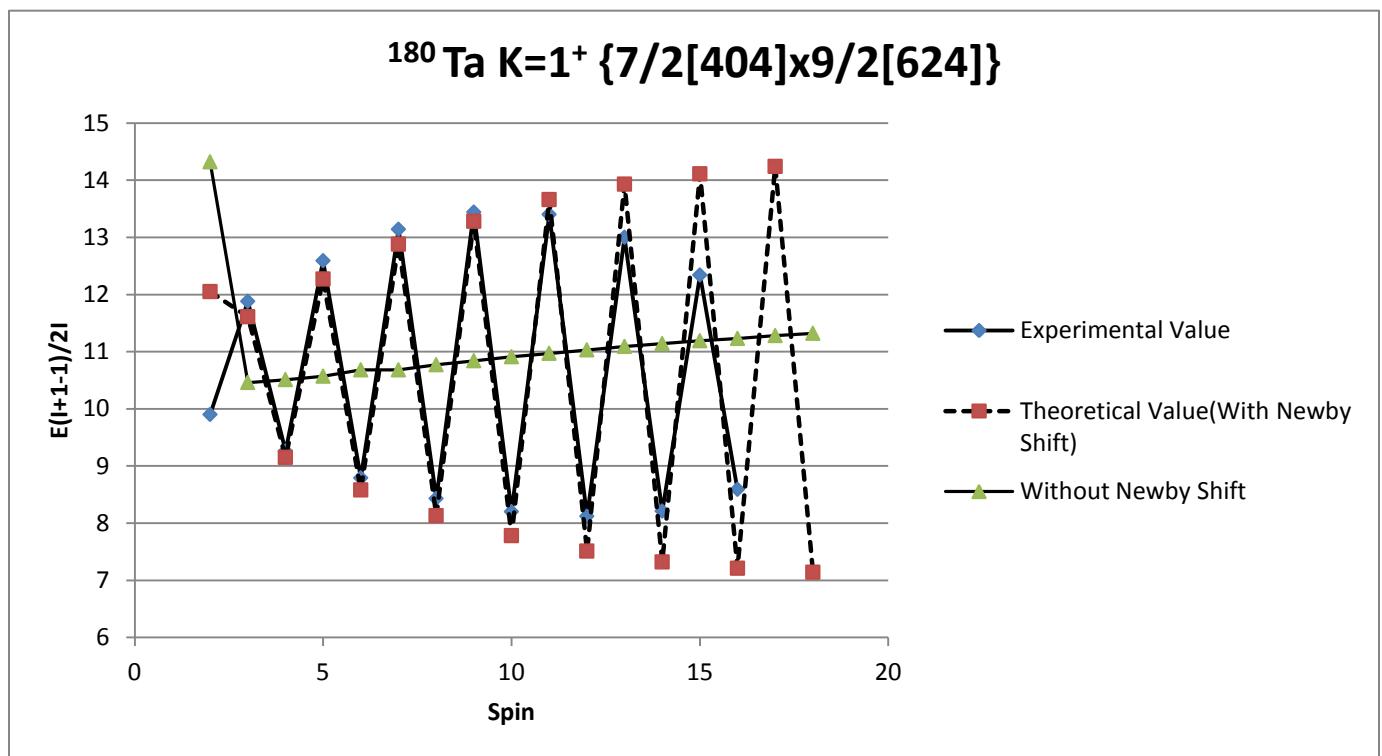


Role of Newby Shift of K=0 in K=1 band of ^{180}Ta

Proceedings of the DAE Symp² on Nucl. Phys.³, M57 (2019) 260


^{1,4}Department of Physics, Amity Institute of Applied Science, Amity University, Noida - 201303, INDIA

^{2,3}Department of Physics, Indian Institute of Technology, Roorkee, INDIA

I. Introduction

The most important effects of n-p interaction in odd-odd nuclei are the Gallaher-Moszkowski (GM) splitting and the Newby-Shift (N). In the past, lot of the work has been done to emphasize the importance of n-p interaction in explaining the odd-even staggering in K \neq 0 bands; the most important mechanism responsible for it being the direct Coriolis mixing with K=0 band. Also, the signature inversion phenomenon and the odd-even staggering can be reasonably explained by the two-quasiparticle plus rotor model (TQPRM). We have done TQPRM calculations to explain the odd-even staggering observed in K $_{-}$ = 1 $^{+}$ {7/2[404]_p x 9/2[624]_n} band of ^{180}Ta . The magnitude of the staggering is well reproduced by our calculation. There is a strong mixing between K $_{-}$ = 1 $^{+}$ {7/2[404]_p x 9/2[624]_n} and K $_{-}$ = 0 $^{+}$ {7/2[404]_p x 7/2[633]_n} band. The wave function of the states of the K=1 band contain

significant components (almost 35%-40%) of the states of the K=0 band. The Newby Shift of K=0 band plays an important role in explaining staggering feature in K=1 band of ^{180}Ta . Although the K=0 band is not an experimentally known band but this K=0 band is a must to obtain the magnitude of odd-even staggering in K=1 band. The comparison with the experimental data of K=1 band with and without Newby Shift of K=0 band is as shown in Fig. 1. The unknown K=0 band is found to be lying at an energy of E_a = 945.4Kev and Newby shift E_N = 97.9Kev. which is obtained after fitting. In the figure The experimental plot is shown by solid line and TQPRM calculations by dashed line. When the Newby shift E_N = 0 for K=0 band ,the odd-even staggering of K=1 band disappeared . Therefore Newby shift is responsible for the behaviour of K=1 band in ^{180}Ta .

- [1] A.Goel and A.K.Jain, Phys.Rev.C45 (1992)221.
- [2]A.K.Jain and A.Goel, Phys.Lett.B 277 (1992) 233.
- [3]A.Covello, A.Gargano, and N.Itaco, Phys.Rev. C 65,044320 (2002).