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Abstract

In the quest of searching for physics beyond the Standard Model, increasing the control and precision on
the theoretical predictions is of utmost importance to understand the origin of the discrepancies found
when comparing to experimental data. In this sense, QCD is the sector in which more effort has to
be invested due to the slow convergence of the associated perturbative series and its non-perturbative
aspects, which are always present no matter how large the energy is.

The differential cross section distributions in terms of observables called event shapes, which contain
information about the geometric properties of the particles’ momenta in the final state, are very sensitive
to QCD dynamics and therefore have been studied for many years to determine the parameters involved
in these interactions.

In high-energy experiments, most of the time it is sufficient to use the approximation that all par-
ticles in the final state are massless, but for high-precision calculations or if one is interested in cases
where the quark mass is a dominant effect, this approximation is no longer valid. While the theoretical
computation for massless quarks at eTe™ colliders has been pushed to unprecedented precision in recent
years, computations for massive quarks remain at a lower precision and therefore the goal of this thesis
is to fill in that gap.

Considering non-vanishing masses opens the possibility to varying the scheme in the definition of an
event shape, so we first study each of the possible schemes in the collinear limit and obtain the corre-
sponding distribution for different observables. Next, we analyze the production of heavy quarks when
measuring also the orientation of the final state with respect to the beam axis. Then the computation of
the effects of this parameter on virtual quantum corrections is presented through the standard method,
and finally the development of a simpler procedure based on series expansions is discussed.



Resumen

En la bisqueda de fisica més alla del Modelo Estandar, incrementar el control y la precisién de las
predicciones tedricas es fundamental para entender el origen de las discrepancias encontradas en la
comparaciéon con respecto a los datos experimentales. En este sentido, QCD es el sector en el que
mayor esfuerzo se ha de invertir debido a la lenta convergencia de las series pertubativas asociadas y de
sus aspectos no perturbativos, los cuales estan siempre presentes sin importar como de alta sea la energia.

Las distribuciones de probabilidad en término de los observables llamados formas de evento, que con-
tienen informacién acerca de las propiedades geométricas de los momentos de las particulas en el estado
final, son muy sensibles a la dindmica de QCD y por tanto se han estudiado durante muchos anos para
determinar los pardametros involucrados en estas interacciones.

En los experimentos de alta energia, la mayor parte de las veces es suficiente con usar la aproximacién
de que todas las particulas en el estado final no tienen masa, pero para calculos de gran precisién o si
uno estda interesado en casos donde la masa del quark es un efecto dominante, esta aproximacion ya no
es valida. Mientras que su célculo tedrico para quarks sin masa en colisionadores ete™ se ha impulsado
a una precisién sin precedentes en los tltimos anos, los cédlculos para quarks masivos permanecen con
una precision inferior, por tanto en este trabajo se persigue disminuir dicha separacién.

La consideracién de masas no nulas abre la posibilidad a la variacién de esquema en la definicién de
una forma de evento, por lo que inicialmente estudiamos cada uno de los posibles esquemas en el limite
colinear y obtenemos la distribucion correspondiente para distintos observables. Después, analizamos la
produccién de quarks pesados cuando se mide también la orientacién del estado final con respecto al eje
del haz. A continuacién el calculo de los efectos de este pardmetro en las correcciones cudnticas virtuales
es presentado a través del método estandar y finalmente se discute el desarrollo de un procedimiento
mas simple basado en series de expansiones.
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Chapter 1

Introduction

1.1 Motivation

The establishment of the Standard Model (SM for short) was one of the biggest achievements in the
20th century particle physics community, worth a Nobel prize [62]. A comprehensive review can be
found in Ref. [55]. It was not only able to explain the outcome of all the experiments carried out at
that time (and most of the ones running nowadays) but it served to unify three of the four fundamental
interactions in nature under the desirable mathematical property of symmetry [26, 64].

After its formulation, the development of a new generation of colliders brought a huge amount of
very accurate data, signaling the beginning of the current search for new physics (NP for short) aim-
ing to explain the tensions that appeared between the analysis of these experimental results and the
SM predictions. A number of conceptual and phenomenological problems also triggered the efforts of
scientists to find a more fundamental theory: neutrino masses, dark matter and energy, the hierarchy
problem, the large number of free parameters in the SM, the existence of three and only three flavor
replicas, matter-antimatter asymmetry, quantization of gravity, etc [57, 16].

Reducing theoretical uncertainties would help clarifying the discrepancies between theory and ex-
periment and will in addition constrain NP models. In order to achieve this goal, the strategy with the
largest impact would be increasing the precision of Quantum Chromo-Dynamics (QCD) predictions,
given the slow convergence of perturbative series in powers of ay; — caused by the large value of the
strong coupling— and the presence of non-perturbative effects within this sector.

Additionally, since many of the Beyond Standard Model (BSM for short) theories modify the
Higgs [33, 21] sector of the SM and the coupling to this boson is proportional to the particle’s mass,
the top quark is a prominent gate being used to explore such extensions [19]. The top quark is only
colored particle not subject to confinement, since it decays before hadronization can take place, and
therefore is quasi-free. Measuring its properties (notable its very large mass) is then carried out at
collider experiments, studding high-energy observables which most of the time involve jets. Jets are
very colimated sprays of energetic particles that travel nearly in the same direction. They have their
origin in the peculiar perturbative radiation pattern exhibit by the strong interactions, which favors the
emission of additional hard colored partons in the same direction as the parent quark or gluon, or soft
partons in any direction.

Let us discuss in more detail the formation and evolution of jets: when a final-state quark is prop-
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Figure 1.1: Gluon radiation from a quark

agating, the configuration for gluon emission is similar to the one shown in Fig. 1.1 and the probability
is given in perturbative QCD by a power series in the coupling constant. In the case of massless quarks,
and under the simplifying assumption of all gluons having the same momentum ¢ (which does not affect
the argumentation), we have:

PrObNZO[(erntJ) )"}N;O[(Qna;.q)"}, (L)

where p is the momentum of the final-state quark and n is the number of radiated gluons. Therefore,
the result will be significantly enhanced when p - ¢ < 1 and there are two different cases for which this
happens:

o gMissoft: (¢h ~ A A< )= p-qg~ A2
e ¢" is collinear to p: (7] )= p-q~ A2

Under the assumption a, ~ A2, these enhancements make all terms in the expansion equally important,
breaking down the convergence of the perturbative series and signaling the necessity of accounting for
all collinear and soft gluon radiations at once, which gives rise to the aforementioned jet.

For a massive quark the situation is similar and the probability behaves in the following way:

P~ 30| () |~ 20| (5) | (1.2

being m the quark mass. Soft emission enhancement remains as for massless quarks:

o gsoft: (" ~ AN A< 1) =p-g< 1.

whereas collinear gluons now satisfy:
e ¢ collinear: (|| p) =p-q~O (\%22)

Provided m/|p| ~ A, collinear radiation in the propagation of heavy quarks with high momentum is
still favored leading again to a jet which now will be sensitive to the quark mass. In real-life compu-
tations, these enhancements manifest themselves as large logarithms that slow down or even invalidate
fixed-order perturbation expansions. Since the nature of these logarithms is related to the incomplete
cancellation of real- and virtual-radiation singularities, one gets two powers of log per each power of .
Such pathological logarithms go under the name of “Sudakov logs”.

Led by the discussion above, heavy quarks and jets initiated by those will be the main focus of
this thesis. We confine our study to the case of massive event shapes in eTe™ collisions, using fixed-
order perturbation theory to include higher order effects, and effective field theories (EFTs for short)
to sum up to all orders in perturbation theory (such summation is normally dubbed “resummation”)

10



the large (double) logarithms that appear in the dijet kinematic regime. EFTs provide a nice frame-
work for resummation: solving the renormalization group evolution of Wilson coefficients will do the job.

These advanced Quantum Field Theory (QFT for short) concepts are introduced in the remaining
of this Chapter. In Chapter 2, we will explore the sensitivity of generic event-shape distributions to the
mass of the (primary) quark (that is, the quark from which the jet emerges) through different choices
in their definition, called massive schemes (which should not be confused with QFT mass schemes such
as pole, MS, MSR....), and compute the NLO jet function, the missing piece to achieve N2LL + O(ay)
precision. In Chapter 3 we consider the orientation of the event with respect to the beam axis, carrying
out the NLO fixed-order computation of oriented event-shape distributions for massive quarks, as well as
the total oriented cross section. In Chapter 4 we analyze secondary massive quark corrections affecting jet
cross sections with highly boosted heavy quarks, computing the two-loop contributions for the hard and
jet function, and developing a full-fledged variable-flavor number scheme (VFNS) for final state boosted
tops. Finally, in Chapter 5, the development of a new technique designed to effortlessly compute the
corrections due to massive quark bubbles and massive gauge bosons shall be presented. These will be
applied to a variety of matrix elements, recovering known results (including those first time obtained in
Chapter 4) and obtaining optimal expansions for various hierarchies of the masses with respect to the
relevant kinematic variables.

1.2 eTe — hadrons

In this section we lay out the theoretical foundations for the process we are mostly interested: high-
energy hadron production in eTe™ collisions, whose cross section can be written as:

o= Z/d@x (2m) 5@ (q— Zpi> (M(ete™ — X)|2 , (1.3)

Q2 Me, Me) by
H dd_lpi 1
oy (@myd=t2opl”

with A the Kéllén function, Q@ = \/(pe+ + pe-)? the center of mass (COM for short) energy, m, the
electron mass, ¢ the total momentum of the final state particles and d the number of dimensions.! In
the high-energy regime we are interested in, the mass of the electron can be neglected (Q > m,) leading
to the following flux factor:

d®x

207 (Q2, me, me) ~ 202 (Q%,0,0) = 2Q2. (1.4)

Since the couplings satisfy the hierarchy ae,, < ag, we can limit ourselves to leading order in e,
—that is, to the tree level— (even though we will capture the main electroweak corrections to the
Z-boson propagator through a Breit-Wigner, accounting for the fact that it is unstable) but consider
many QCD quantum corrections in powers of «g, leading to the splitting of this kind of matrix elements
into both parts (see Fig. 1.2):2

IM(ete™ = X)) Z LC HEY . (1.5)
C=V,A

1We will use d = 4 — 2¢ in dimensional regularization, which will serve the purpose of regularizing both infrared and
collinear (denoted globally as IR), as well as ultraviolet (UV) divergences.
2The average in the initial and sum over the final degrees of freedom is implicit.
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QCD

X

Figure 1.2: Sketch of the EW-QCD matrix element splitting: orange shows the EW part while blue
stands for the colored (QCD) sector.

The leptonic tensor Lfy is given by:

LS, =L, (1.6)

Q2
Lo =i pl + 0¥ ply — -9

)

Ly = QemUm)? | s 2Q°Quuevy(@—my) QU+ et

v Q* ¢ 2 22 Q%I'y 2 2 2\2 Q3%I'z 2
(@ —mz)+<mz> (Q —mz)+(mz>

ok, el

A:

(@ - myye + (LLz)"

where myz and 'z are the mass and the decay width of the Z-boson, respectively, C' labels the vector
V' and axial-vector A currents, @), is the electric charge of the quark being produced, and v, . and a4,
are the vector and axial charges for the corresponding fermion:

o T? — 2Qy sin® Oy ‘ T}
= af

(1.7)

2sin Oy cos Oy = 2sin by cosby

Here T}” is the third component of weak isospin and Oy is the weak mixing angle. On the other hand,
the hadronic part has the following form:

H = (017471 X)(X|7¢]0). (1.8)
being j“;, 4 the vector and axial-vector quark currents, defined as follows:?

Iy =*

L (1.9)
I ="y

B _ —aph
Jo =aLcdy 5 7
In the previous formula, the flavor f (which is not used as a label in the current itself) is fixed and a
sum over colors a is understood.

3These two QCD quark currents are ultraviolet finite and do not need multiplicative renormalization. All currents are
defined in terms of bare fields, which is the way they appear in the theoretical expressions for the relevant matrix elements.
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Finally, if one is not interested in the orientation of the final-state with respect to the beam (an exception
to this case is Chapter 3), an angular average with respect to the incoming leptons can be taken:

d4=2Q 1—¢ -
/ Qd_2 l,uu = Q23 — 2611“/, (110)
tot
I(l—¢)

Q= (477)1—57“2 o)

7 _ 49ud
l,uz/ — gg; — Guv -

Since ¢* = p’; L+ pg _ is the momentum of the mediating (virtual) boson (see Fig. 1.2), we obtain in this
way an expression for the cross section that will simplify the computations due to the Ward identity
satisfied by vector current, as well as the axial-vector current in the chiral limit (that is, for zero quark
mass):

1 & . -~
0= Sgr2x / dz et C;ALCZW (OTE ()| X)(X|TE(0)]0) , (1.11)

where we also combined the Fourier representation of the momentum conservation delta with the space-
time evolution of the current operator, and defined:

ix = Z/d(I)X, (1.12)
X

~ 1—¢
Le=LCQ*——.
= @35

1.3 Event shapes

hemisphere A" hemisphere B
\

1 P
\ .: 1 .// S
| [
. / /. /
Y I[ /-?L

| N /

n-collinear jet J /

. n-collinear jet

soft radiation

Figure 1.3: Dijet-type event in the COM frame. These events are characterized by the COM energy @,
the collinear p2 ~ p2 ~ Q%)% and soft p? ~ Q?\* scales, with A < 1. In the case of jets initiated by
massive quarks, the parameter A is assumed to be of the order of its reduced mass A ~ 1 =m/Q.

We refer to event shapes as a type of observables containing information about the geometric distri-

bution of the final-state particle energy and momenta. Cross sections differential in the value of a
given event-shapes are very sensitive to QCD dynamics, and therefore have been extensively used by
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the scientific community to study QCD properties and determine its parameters (specially «;) for many
years, mostly in Deep Inelastic Scattering (DIS) and eTe™ collisions (which will be our case), although in
recent years they have been adapted to the scenario of pp and pp colliders. For a review see Refs. [17, 45]

We will focus on events whose final state, in the center of mass frame, consists of two back-to-back
narrow jets (see Fig. 1.3). These are dubbed dijet-type event shapes, which attain their minimum value
in this kinematic regime, and are the most suitable to describe it. Moreover, their value in this region can
be decomposed into the sum of collinear (in two back-to-back directions) and soft contributions [4, 52],
that is:

e =¢e,t+ex+eg, (1.13)

where € is the measurement function for the event-shape e at leading power in A. This is a key feature for
the factorization of the event-shape distribution within the corresponding effective field theory (EFT for
short). Additionally, even for cases in which the event-shape definition involves non-linear correlations
among final-state momenta, in the dijet limit each sector e,, es and es; can be written as a sum over
single-particle contributions. We will study the previous decomposition for several event-shapes in
Chapter 2.

—— Peak
— Tail
—— Far Tail

1do
oo dr

Figure 1.4: Different regions for an example thrust distribution

For a given dijet-type event-shape differential cross-section one may distinct the following regions (see
Fig. 1.4):

e Peak: pure dijet configuration. Hadronization due to soft effects is O(1).

e Tail: transition between 2- and 3-jet events. Soft hadronization is a correction tractable with an
OPE.

e Far-tail: multi-jet (isotropic) events. Hadronization involves multiple scales.
Some of the most common event-shapes are:
- Thrust [22]:
= gy 0~ 7). (1.14)

where  is the thrust axis, a unitary vector chosen to minimize the sum, and the normalization is
given by Qp =3, |9 |-

14



- C-parameter [20, 54):

HPJ (1.15)

O:,
;Ipz

where

- Hemisphere Jet Mass [9, 13, 14]:

5 — <Zpi> 7 (1.16)

i€h

where h is one of the hemispheres delimited by the plane normal to the thrust axis ¢.

1.4 Effective Field Theories

EFTs are useful to tackle problems with a strong hierarchy between the involved scales. They describe
the dynamics of the light degrees of freedom of a system, that is, the physics at a scale much lower than
some ultraviolet scale related to the problem under study, and exploit symmetries that emerge only in
certain kinematic regimes. There are two different ways to build an EFT:

e Top-down: The EFT is obtained from another theory, called full (or UV) theory, describing a
wider range of degrees of freedom. In a first step, one identifies the kinematic region of interest and
characterizes it by a small and dimensionless parameter, usually referred as A, that sets the power
counting. Integrating out the hard modes of the fields in the full theory action and expanding
the resulting operators in the small parameter A yields the EFT Lagrangian, which is by itself an
expansion in terms of increasing-dimension operators.

e Bottom-up: In this case the full theory is unknown (or it is known but the system undergoes a
phase transition such that the degrees of freedom in both theories do not coincide) and therefore all
operators consistent with the physical assumptions must be taken into account. The unspecified
coefficients (couplings) can be determined comparing theoretical predictions to experimental data
(or in some cases, to numerical data obtained from lattice simulations). The set of operators is
constrained by considering the relevant degrees of freedom, symmetries, equations of motion and
integration by parts relating the different terms. They can be ordered according to the power
counting parameter, so not all of them are equally important, and there is a finite set at each
order.

Therefore, results from a top-down EFT truncated to some power correspond to an approximation
up to a certain power of A of the full-theory prediction. At first sight, it seems there is no reason
for considering EFTs other than making computations easier (obviously in a bottom-up EFT there
is no other possibility). Nevertheless, matching and running within the EFTs framework pulls apart
the different scales and sums up large logarithms appearing in the full theory that can invalidate the
perturbative expansion. The procedure consists in the following steps:

1) Pick a physical process (in general, the simplest possible) that only has light degrees of freedom
as external states.

2) Compute this process in both theories (full & EFT) and, within the order one is working, set to
zero the difference at some (high) scale (in this context, setting means imposing).

3) From the previous condition, extract the connection (matching) between the coefficients of both
theories at this scale.

15



4) Using renormalization group equations evolve (running) the EFT Wilson coefficients (low energy
constants) down to the low scale.

5) Compute the renormalization-group (RG) improved observable using the EFT.

The virtue of this procedure is that the matching coefficient does not depend on the particular process
one is studying, but it is a property of the operator itself. Therefore, once the coefficient has been
determined (with the simplest possible process, and with the simplest regularization procedure), the
operator can be used to compute a plethora of observables.

Due to the fact that both theories agree in the description of infrared physics, the matching can only
depend on the hard scales whereas the EFT operators lead to matrix elements for which the low scale
is natural (and hence choosing the renormalization scale of the same order as the low scale minimizes
logarithms). Hence, by means of matching, we obtain a result factorized in terms of a (high-energy)
matching coefficient times a (low-energy) matrix element with different natural scales. Then one just
needs to use renormalization group evolution (RGE) on the Wilson coefficient to evaluate all parts of
the factorization at the same (low) scale. In Ref. [15], a very clear explanation with simple examples
about the way scales become separated can be found. For another review on effective field theories,
deepening in their physical meaning, see Ref. [50].

In this work we will deal with two EFTs: Soft Collinear Effective Theory (SCET), used to carry
out the resummation of (double) large logarithms appearing in QCD in the peak and tail regions of
the distributions for massless quarks, or the tail region for massive quarks, and boosted Heavy Quark
Effective Theory (bHQET) necessary to describe the peak region in the case of massive primary quarks.

1.4.1 SCET

Soft-Collinear Effective theory is an EFT built top-down from QCD to describe, as the name suggest,
the soft and collinear degrees of freedom relevant in situations involving jets. This kinematic region is
better characterized expressing the momenta in a light-cone basis, which is defined by two light-like four-
vectors {n} ,nk} satisfying n? = n = 0 and the basis of the (space-like) perpendicular subspace. Here
we will adopt the usual convention nf = n* = (1,0,0,—1) ; ny =7n* = (1,0,0,1) and the perpendicular
standard unit vectors in the x and y directions. With this choice we have:

nt nt . n* _nt
pPr=n-p—+n-p—+p =pT—+p —+p, (1.17)
2 2 2 2
1 _ 1 - L
p~q:§p+q +§q+p — P qLs

and specify the corresponding components with the following short-hand notation p* = (p*,p~, p//).

In a dijet situation the collinear scaling is p,, ~ @ (A%,1, ), and pr ~ Q (1, A2, )), both with virtu-
ality p2 ~ p2 ~ Q?\? where @ is the energy in the COM frame. As for the soft modes, there are two
different versions of the theory: SCET] accounting for soft momenta that satisfy p,s ~ @ ()\2, A2, )\2)
(also called ultrasoft) and SCETy; with ps ~ Q (A, A\, \), with virtualities p2, ~ Q?A* and p? ~ Q?)\?,
respectively.

Hereinafter, we will refer to SCET] just as SCET since it is the relevant one for the observables under
study (see the caption in Fig. 1.3), and will denote the ultrasoft momenta simply by ps. Furthermore
one can get SCETy from SCET] by integrating out also the modes resulting from the sum of collinear
and soft momenta, since these are off the theory shell: p = ps +p, ~ Q (A, 1,\) — p? ~ Q%) > Q*)\?
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(the sum is neither soft, nor collinear), and therefore it can be obtained just from matching the soft
Wilson lines in SCET to the corresponding ones.

Leading Order Lagrangian

As mentioned before, once we established the kinematic region of the theory, the EFT fields are given
by the mode restriction of those in the full theory to the EFT sectors, which can be done in the Fourier
representation. For instance the QCD quark field:

4
P(x) = / (;1;;45(p2)9(p°)[U(p)a(p)6””'“" +v(p)bt (p)e™ ], (1.18)

leads to SCET quark n-collinear field if we just consider the corresponding momentum scaling:

d4pn —1Pn T 1Ppn T
nl) = [ GRS up.Jalp e + ()b ()6, (119)
and the same holds for the soft fields as well as for the gluon Af,(z). The existence of a preferential
direction affects also the spinor components, therefore we have to distinguish the large and small con-
tributions and grade the operators appearing in the SCET Lagrangian in terms of the power counting
parameter. The splitting can be done by introducing the following projectors:

P,="—, Pr=—, 1.2
which satisfy the following properties:
P,+Py=1, P:=p,, P:=rp;, (1.21)
Pﬁu(pn) ~ Pﬁv(pn) ~ A

P, u(pn) P, v(pn)

The first line can be shown using the properties of the Dirac gamma matrices and the second one
applying any of the projectors to the Dirac’s equation for the spinors. Using these projectors, we define
the large and small projections of the QCD quark field:

Pyibn(z) = gn(x) ) Prpn () = ¢n(). (1.22)

Therefore, given a collinear direction n, the SCET Lagrangian is obtained from the QCD action*

. 1 ,
Lqocp = [ih] ¢ — §Tr {GFG.} . (1.23)
D, =0,—194,,
i
G, = —-|D",D"].
) g[ ]
by making the replacements:
Y= En+ P+ s, (1.24)

AP — AP 4 AP

4We start from the massless case and will discuss later the inclusion of a quark mass. We also omit the gauge-fixing
and ghost terms to make the presentation simple. More details can be found on the SCET review of Ref. [60].
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and carrying out the corresponding expansion as a series in A. This procedure yields some operators
containing different powers in their various components. The label formalism helps performing this last
separation of scales in terms of derivatives acting on the SCET fields. It consists in expressing the
collinear momentum p# as a sum of label and residual contributions:

Ph=p +p, (1.25)
p;L ~ Q(Oa 1; >‘) )
P~ QN AN,

in such a way that any SCET collinear field q@n can be decomposed as the sum of labeled fields with
only residual momenta:

bula) = [ 2 [ e 4 b ) emo7] (1.26)

d4p7’ n —1 -x J— i -z
- Z / (2m)* [ ;{l(pr)e (prtpr) + ¢y, (Pr) e (pee) }
p1#0

- Z [g{);rl (r)e"Pre ‘i;z () eipl~x:| '

p1#0

As can be seen explicitly in the previous equation, all collinear fields are defined with the exclusion of
the zero label momentum region, since that regime is covered by the soft fields. This will lead to the
necessity of using 0-bin subtractions in the collinear loop integrals to get the right result. The procedure
consists in subtracting, at the corresponding order of the power counting parameter we are working, the
contribution of the collinear loop integral but considering the loop momentum scales as if it were soft,
in order to avoid double counting

= / ae f(er, plty = 1070 — / e f(L ) = / Aty ey, (12)
:)\;: ?/\’2/ n=0 oan—2d

[=T- / a%e [fem,pty — 1o, ]

where LO stands for leading order. It is worth mentioning that the contribution of the 0-bin can be scale-
less (and therefore vanishes in dimensional regularization) or start at an order higher than the one one
is working, in such a way that there is no need for subtractions. In this case we will omit their discussion.

From Eq. (1.26), defining the label momentum operator P*¢,, = pfqul with P* = (0, P, P!), we
obtain:®

5@ = P Y [0 467 @)] 2P Y bup(0) =P oua). (129)
p17#0 p1#0

Obviously, soft momenta are pure residual and soft fields are not labeled, even though one can regard
them as carrying a zero label: p; = 0 field:®

¢s(x) = e7 T py(2) = dp—o(2). (1.29)

5P always acts to the right, satisfying for Dirac adjoint fields: ’P“gm = —pfd)pl. Since p, > 0, one can extend the

sum over positive and negative values of p, and use the sign of p, to distinguish between positive and negative frequency
modes.
6Notice that we did not need to use the hat notation for these.
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Now we see that the action of a “full-theory” derivative on a SCET collinear field is:
i0udn(x) = 7P (10, + Pp)n(@), (1.30)
so in terms of label formalism fields (those without the hat notation) the derivative scalings are clear:

P/L¢n ~ Q(Oa 17 )‘)(bn 5 (131)
8u¢s ~ Q)‘Z(bs )

and their scaling in powers of A can be deduced from the kinetic terms in the Lagrangian imposing an
O()\%) leading-order action to properly describe these degrees of freedom in SCET. Furthermore, the
position and momentum commutation relation must hold. All in all:

Siin = / 04 L ~ O (), (1.32)
pal=i—z-p~0(X).
And the previous conditions lead to:

En ~ QN Pn ~ Q/\2 , Ps ~ Q)‘s s (1'33)
AP~ QN 1,0, AP~ QAN N?).

With all these considerations at hand, we can get the leading-order SCET Lagrangian after making the
substitutions given in Eq. (1.24) in the QCD action and grouping together all A° operators:”

£(S)CET = Lpg + Lng + Ls, (1.34)
o 1 %
_ —ixP L . . "
Lne=ce &, <m D—i—llﬁnLin.DnzlﬁnL) 2§n,

1 -
Loy = Q—ngr{([mu,m )’}

. 2
Es :Esilpsws - ;H{(;[ngDZ]> } )

where:

D =090—iP —igA, —igAs, (1.35)
D, = —iP —igA,,

*i(,Pl +gAnL) 5

| 3

E,Zﬁ(P+gAn)g—zn(23+gAn +gA5)
Ds=0—igAs.

To obtain the EFT Lagrangian we have integrated out the power-suppressed field ¢,, using its equation
of motion:
7t

oL _ ! mnl§£n7 (1.36)

— =0 — Pp=——
&Pn 7 ﬁ'Dn

since it is sub-leading with respect to &, [see Eq. (1.33)] and therefore can be considered as pure back-
ground at this order.

"To see these operators make the action O(A°) one must include the corresponding d*x scaling.
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Finally, the modifications one has to account for when considering a non-vanishing quark mass de-
pend on its scaling with respect to the SCET power counting parameter. In the case of a jet initiated by
a massive quark, the collinear quark modes become massive and one has to consider m ~ QA in order
to maintain a homogeneous virtuality. Therefore, the £, Lagrangian becomes:®

Lne = e_”'PEn in-D+ (llﬁnl - m)

D (1D, +m) %gn. (1.37)

Nevertheless, it is possible to establish a framework to include quark masses with a variable scaling with
respect to A. We will discuss this possibility later, within the factorization theorem setup.
Wilson lines and mode separation

Collinear Wilson lines W, account for the full-theory interactions between collinear particles belonging
to different sectors. They arise naturally in SCET when matching to QCD operators, are crucial to
factorize the cross section, and are needed to preserve collinear gauge invariance. For primary quarks,
in position space they can be written as:

W (2) = Pexp (—ig /OOO dsn~An(ns+x)>, (1.38)
Wi(z) = Pexp <ig /OOO dsn - Ap(ns + :c)) ,

being P, P the path and anti-path ordering operators respectively, necessary due to the non-abelian
nature of QCD. Moreover, they also appear in the SCET Lagrangian through the leading order relation:

mn- DWW, =W,n-P, (1.39)

in such a way that £, is manifestly non-local at the high energy scale, but remains local at low energies:
I 1

Lne = e 1w PE (m - D+ iﬁnLWTPWnian> %fn . (1.40)
n .

Next we consider (quark) soft Wilson lines along the two collinear directions [5, 10]:

Y, (x) = Pexp (—ig /000 dsn - As(ns + x)) ) (1.41)

Yi(x) = Pexp (zg/ dsm - As(ms —i—x)) .
0

The emission/absorption of soft gluons from/to collinear particles leads to eikonal propagators that can
be summed up and expressed globally in terms of the previous objects (or analogous ones depending on
whether it is a quark or an anti-quark, and if it is incoming or outgoing). Implementing the so-called
BPS field redefinition:[5]

€n = Y0 A, = Y, ADY (1.42)
we see how collinear and soft sectors decouple in the leading-power Lagrangian when expressed in terms

of the new soft-gauge-invariant fields 57(10) and A%O). Soft interactions will be confined to the soft Wil-
son lines now showing up in the QCD currents giving rise to the jets, factorizing collinear and soft scales.

The Feynman rules obtained from the expansion of the Wilson lines at O(g) (one gluon attachment)
are provided in appendix A.3.

8The respective Feynman rules will be given in appendix A.1.
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Massless Factorization Theorem
The quark current operator represented in terms of SCET fields after BPS field redefinition is given by:
Tl img (@3 p1,p2) = /PP IO (@)Y (@)D Yo, ()X, (2) (1.43)
= eiw PXSLOR( )5111,7” Yrjl (I)FéYnz (I) 5?2,7’)(5102) (1‘) )
where P is the label momentum operator acting to the left and where we have introduced the jet fields:
X)) = WO (2) €l (), (1.44)
AW @) = (WOT@) E0 @) (@) =0 (@),

)

referring the first line to the unhatted (sum of labeled) fields and the second to the labeled part [see
Eq. (1.28)].

In order to compute an event-shape e distribution in SCET we just need to introduce the corre-
sponding measurement delta d(e — e(X)) in Eq. (1.11) and match the QCD current onto the SCET
renormalized operator®

= Z Z Cnlnz(p17p27 )J'g,’nlnz(x;pl,pg) . (146)
7172 P1 P2

This is the most general form of the matching between operators, depending on the two arbitrary
collinear directions 777 and 7i2, but in the center of mass frame they are constrained to be back-to-back
such that we can write:

=SS Conlpns s 1) T @5 s i) - (1.47)
7 PnDPw

After several manipulations described in Ref. [23] one ends up with the following factorized formula for
the event-shape differential cross-section at leading order in SCET:

1 do§,
o —SCET :H(Qw)/de’ J(e—e,pu) S, ), (1.48)
o5 de

being O‘OC =4 the total massless tree-level (Born) cross section which serves as a normalization. The dif-
ferent matrix elements entering the factorization are the hard function H(Q, i), defined as the modulus
square of the matching coefficient (which does not depend on the direction 7):

H(Q, 1) = |Com(Q, —Q; w)|> = 1C(Q; )| ; (1.49)

the jet function J(e, i), resulting from the convolution of the n and 7 hemisphere jet functions!®

J(e,pu) = /de’ Jnle —e' ) Jm(e p), (1.50)

Jn(e, 1)

1 det d. it R _ ren
= N, /—Tr/d xe <0|ﬁxn(x) 5(€—€n) 5@,7?* Xn(0)|0> )

dé— 0z _ " ren
Tolea) = - [ 5 T[40 O 8(e ~ )3 qupe xm(O)0)"”

9Unlike the QCD current, the SCET operator is UV divergent. Therefore, one can consider that either the matching
coefficient (C' = ZcCP?®) or the SCET current (JP2® = Z;J™") need multiplicative renormalization. Either way, the
renormalization factor will remove the divergences from the computation, and one can derive the following relation:

Jocp = ZoCJP¥e = ZoCZyJ™en = CJren (1.45)

with Z¢o = Z;l. This relation leads to consistency conditions for the different running setups.
10From now on we omit the superscript (9) for BPS-redefined fields unless in cases when it can lead to confusion.
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and the soft function:

Ste = [

In the previous two equations, the trace is taken over spin and color indices, IV, is the number of colors,
énm,s pulls out the n,7, s contribution to the event-shape from the final state: é, 7 s|X) = epm,s(X)|X)
[see Eq. (1.13)] and Y7 is the corresponding soft Wilson line involving soft gluon fields in the anti-adjoint
representation:

(;T;d Tr / d4a ™ (0| Vi (2) Y (2)6(e — &4)Yn (0)Y 5 (0) |0)™" . (1.51)

Y(z) = Pexp (zg/ dsm - Ag(ms + J:)) , (1.52)
0
Zs = As,aTa = *As,a (Ta)* = *As,a (Ta)T )
with 7% = (T “)Jr the SU(3) generators in the fundamental representation.
11

All matrix elements are evaluated at the same renormalization scale y in the factorization theorem

Matrix Natural
Elements Scales

H(ﬂH)__ Q

Uy

J(IUJ) - \/p_i
u -‘:EIJ

S(ﬂs)

Figure 1.5: Renormalization group evolution for matrix elements in SCET massless factorization the-
orems. The U; operators are the evolution kernels, u; stand for the renormalization scales, and the
associated natural scales are shown on the right side, with p; the jet momentum.

even though they have different typical scales: the natural scale for the hard function is the COM
energy @, for the jet function is the square root of the jet invariant mass'? and for the soft function is
the fraction of the jet off-shellness over the center of mass energy. Therefore, we need to use RGE in
order to avoid the appearance of large logarithms, reproducing the running setup sketched in Fig. 1.5.
Since the p-dependence cancels in the factorization theorem (this is nothing less than the cancellation of
the various renormalization factors), we can derive the following consistency condition for the running

M Formally, one can also consider all matrix elements unrenormalized (bare). Otherwise, they must be renormalized in
the same scheme, typically MS, such that all renormalization factors cancel out.

12The jet constituents are the massless initialization quark (satisfying pg = 0) and other particles radiated from it such
that, if they were exactly collinear, the jet momentum would become light-like: p2J =0.
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kernels by setting different values for the final scale:

Up (i = pup) Us(pi — pg) = UG (i = py) - (1.53)

This condition can be rephrased in terms of the cusp and non-cusp anomalous dimensions, that must
add up to zero.

Massive quarks

Next we discuss the modifications of the factorization theorem when working with a non-vanishing quark
mass. These depend on the massive quark being primary — that is the quark that produces the jet (in
this case, always collinear) — or secondary, coming from gluon splitting (soft or collinear).

Beginning with the secondary quark mass case, the contribution starts at two loops from massive
quark bubbles in the gluon propagators or real radiation from gluon splitting. This case was studied
in Ref. [56], where a framework was established to include these corrections in the SCET factorization
theorem under the name of Variable Flavor Number Scheme (VFNS for short), with the relevant com-
putations for thrust also carried out.

There are four scenarios that account for the different scaling of the mass with respect to the hard,
jet, and soft scales, represented in Fig. 1.6. Let’s consider M%‘m’ (1), a generic matrix element with

Renormalization  Natural SCENARIOS
Scales Scales —

Mm - - m I
ﬂH — Q
u, ====m I

u, ——\p}

lle - - .. m III
2
p

leS _—J
Q

Mm -- - m IV

Figure 1.6: Scenarios taking into account the different scaling of the mass with respect to the hard, jet,
and soft scales. The renormalization scales p; must be taken of the order of the corresponding natural
scale to avoid the appearance of large logarithms in the fixed-order matrix elements.

contributions from nj; massive (heavy) quarks, and n, massless (light) quarks, expressed as a power
series in o, renormalized in MS with n, + ny, active flavors. We will also simplify the notation writing
the renormalization and matchings as multiplicative in any case [even for jet and soft functions for
which a convolution is actually required as can be seen in the factorization formula Eq. (1.48)].

® LM > Mt
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If the renormalization scale of the matrix element is above the mass scale, all massive quark
effects must be taken into account. Furthermore, the heavy quark is an active flavor in the corre-
sponding kernel and in the strong coupling. Finally, the MS renormalized matrix element satisfies
the massless limit.

Mt (e > pm) = MG+ AMy (1.54)
Jim MY G > i) = MG o

o pint <

For a renormalization scale smaller than the mass scale, the heavy quark cannot be an active
flavor any more, and has to be integrated out, leading to a matching coefficient M:

ping = pan == MM (g > pan) = M7, 3 (lr < pim) - (1.55)

The natural scale for the matching coefficient M™ is u,, ~ m, and can be expressed as a series
in powers of a, with n active flavors. There are two equivalent choices: n = ny and n = ny + 1.
Furthermore, the massive quark contribution must vanish when the value of the mass tends to
infinity (decoupling limit) but nevertheless we can still retain these effects that disappear in this
limit in order to impose a smooth transition between the different scenarios:

M (ping < pm) = M + (AMy, — AMpso0) - (1.56)

n
Eq. (1.56) can be seen as an on-shell renormalization prescription for the bare matrix element:
bare,
Mnjrf "= Z5% ne,1 MZﬁ,l(:U'M < fbm) (1.57)

and the p-dependence of this renormalization constant can be shown to be the same as for the MS
renormalization for massless quarks, that is:!3

g e
dZOSTL@,l _Md MS’n[,O

1.58
m au (1.58)
bare,ny _ n n
Mng,O ‘= ZMilsnhO n§707

so, indeed, MZﬁ,l(MM < pm) evolves as if it were MS renormalized with n, active flavors. In addition,
the matching M can also be obtained from the ratio of the renormalization constants in both schemes:

M”—M, n=mng, ng+1, (1.59)

— n
ZOSn(,l

bare,n,
where we have used M,""} metl — Z&—e;:[’l M%T(MM > ) and Egs. (1.55) and (1.57).

With the modifications introduced above, the setup for the evolution of the matrix elements in the
factorization theorem will depend on the scenario and the value of the final u. But, since the result
is independent of this scale, we will have consistency conditions between the different matching coeffi-
cients M. For instance, the two situations giving rise to such relation in scenario III are depicted in
Fig. 1.7.

13Since Zzig does not depend on the mass we have that all Zﬁsw,nh with the same value of ny 4+ nj are equivalent.
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In the case of a massive primary quark, we also have massive collinear degrees of freedom in addition
to the corrections due to massive bubbles discussed above, leading in scenarios III and IV to a massive
jet function [now computed using the Lagrangian Eq. (1.37)] with (p% — m?)/m as its natural scale.

In this case, scenario II is given by the condition m? > sz — m? that leads to large logarithms in
the jet function and therefore calls for another EFT known as boosted Heavy Quark Effective Theory
(bHQET for short). As a remark, scenario I is not realizable for a primary quark since there is enough
energy to produce the massive primary quarks.

M > Ju m A'M m > M
* My
Matrix Natural Matrix Natural
Elements Scales Elements Scales * M,
H(uy)=— Q H(uy)=—— Q H Ms
Un}rl U;+l

)l el
woombet u **IU

Figure 1.7: Running setups in scenario III leading to the consistency relation for the matching coeffi-

cients: My M ;= M§1

1.4.2 bHQET

bHQET accounts for fluctuations very close to the mass-shell of the primary quarks. It is built integrating
out the mass of the primary quarks in their respective rest frames, which leads to two copies of Heavy
Quark Effective Theory (HQET for short). Boosting them back to the COM frame and matching them
onto SCET for the global soft radiation yields the bHQET Lagrangian.

HQET Lagrangian

In order to study the soft degrees of freedom around the heavy quark mass it is convenient to parametrize
the heavy quark momentum as: p = mv + k where k ~ I'(1,1, 1) being I" the decay width of the massive
quark (let’s say, the top quark) and v = (1,1,0) the quark’s velocity in the rest frame.

From the Dirac equation we obtain:

po=mip = (1 =4y ~0, (1.60)
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hence we can split the QCD Dirac spinor into large and small components:

1+¢

p="Tly 1 L ly=y, 17, (1.61)

Finally, setting the small component 1, to zero and factoring out the mass contribution to the momen-
tum: ,
Wy, = e Th, (1.62)

we get the leading order HQET Lagrangian:

L7,

5 ho (1.63)

EHQET = EU w-D

Feynman rules for bHQET can be found in Appendix A.2.

Degrees of freedom (DOF for short) in bHQET

The scaling for the different degrees of freedom within bHQET and the corresponding HQET copies is
summarized in Tab. 1.1. The soft fluctuations around the quark mass in HQET become ultra-collinear
after the boost!® and we have cross-talk between jets through soft radiation in the center of mass frame.

REST FRAMES bHQET
DOF Scaling DOF Scaling
HQET quark: p=mv +k v=(1,1,0) quark: p = muy + ki vy = (%,%,O)
q
soft: k k~T(1,1,1) n-ucollinear: k, ki ~T (%, %, 1)
i- : = = 1- : = = Q m
HQET, anti-quark: p=mv+k | v=(1,1,0) | anti-quark: p=mov_ +k_ | v_ <m7 Q,O)
soft: k kE~T(1,1,1) n-ucollinear: k_ k_~T (%, ol 1)
soft: ¢ qs ~ %” (1,1,1)
Table 1.1: Degrees of freedom involved in the construction of bHQET.
Factorization Theorem
The quark current takes the following form within bHQET:
Thvuqer = (o, Wa )Y T4 Yo (Wih, ), (1.64)

where the soft Wilson lines remain as in SCET but collinear Wilson lines are now made of ultra-collinear
gluons:

W (2) = Pexp (—ig /Ooo dsTi- A, (7s + x)) , (1.65)

Wi(z) = Pexp (ig/ooodsn-A(ns—i-x)) .

14For now we assume the mass being factored is the pole mass.

151f only two back-to-back quarks are produced, their velocity equals 8 = v/1 — 42 ~ 1 — 2/n2, and therefore the
boost factor reads v = 1/(2m). When boosting momenta in light-cone coordinates the plus/minus components get
multiplied/divided by v(1 — 8) ~ 1/7h.
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After matching the bHQET current onto its SCET counterpart:

Jg scer = COm Jg bHQET > (1.66)

we obtain the differential cross-section in bHQET at leading power:

L dinqer — H(Q, i) Hon (1 L 1, 1 /de,B(e—e’ p) S(e's ) (1.67)
of de ’ T ' T

with H(Q, ) and S(e, u) the SCET hard and soft functions, respectively. Additionally, new bHQET
hard and jet functions appear:

Ble,p) = /de’ Bp(e— ¢, 1) Br(e ),
(2m)41Q 5 d—2) (2L T ren
By(e, p) = ~———"Tr (0| W,}(0) hy, (0) 6 (e — &,) 697D (KL) 5(K7) oy, (0) W, (0) [0)" .

2mN,

The corresponding running setup is represented in Fig. 1.8. Notice that since the (primary) quark mass

Matrix Natural
Elements Scales
H ( My ) " Q
UH
A
H,(,) m
U

I
S(us) mT'/Q

Figure 1.8: Renormalization group evolution for matrix elements in the bHQET factorization theorem.
The U; operators are the evolution kernels, p; are the renormalization scales. The associated natural
scales are on the right side.

has been integrated out there is no contribution from massive (primary) quark bubbles to the bHQET
jet and soft functions. All the (primary) quark mass dependence is located in the PHQET Hard function.
1.5 Mellin-Barnes representation

In the last section of this introductory Chapter we review the basics of the Mellin-Barnes representation,
which is a useful tool employed in multi-loop computations that it will appear several times throughout
this thesis although applied in a different way and for different purposes than, as far as we know, it has
been done so far in the literature.
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Given a function f(z), its Mellin transform is defined as:
fn = (M7)0) = [ e fa), (1.69)
0

such that f(h) is convergent for a < Re(h) < b. Then, the initial function can be recovered through the
inverse Mellin transform:

L 1 c+i00 3 N
(M) = 5 [ dha™ () = f(a), (1.70)
with ¢ € (a,b). We also introduce the following identity:
c+ioco o
# _ L dh ™" M , (1'71)
(14+2)Y 27 Joioo I'(v)

with ¢ € (0,v), typically used to solve loop integrals and to obtain expansions in the different regimes
given by the hierarchies between their scales [25]. The procedure to get the power series from the Mellin
plane (converse mapping theorem) is based integrating by residues. The situation is similar to that
depicted in Fig. 1.9, with the poles of the Mellin transform f(h) sitting at points h = £ along the real
axis, and where the path of the inverse integral is also shown.

e Lh.s: if the Mellin transform satisfies limy,_, o, hz ™" f(h) = 0, by Jordan’s lemma we can close
the contour to the left and use the residue theorem, leading to the small x expansion:

o (=DF €1k
flx) = Z o ag, x° log™ (), (1.72)
&k ’

where the logarithms are given by the poles with order higher than one.

e r.h.s: on the other hand, if limy_,oc hz ™" f(h) = 0, the large = expansion is obtained closing the
contour to the right:

(_1)k+1 ¢ &
flx) = ZTvakx log”(x) . (1.73)
&k
In the previous equations, the coefficients a¢ j, are the residues at the corresponding poles with multi-

ag

plicity &, f (h) ~ > W Finally, it is also worth noting that the vanishing condition at infinity
provides the convergence radius of the series.
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Figure 1.9: Converse mapping theorem.
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Chapter 2

Event-shape schemes (Massive
event-shape distributions at N?LL)

This Chapter is dedicated to study how the mass sensitivity of an event-shape distribution changes for
different choices of the schemes used to treat the heavy quark mass in the corresponding event-shape
definition. Firstly, we will show the equivalence of two of the schemes in the collinear limit, result that
shall be used to compute the missing pieces to achieve N2LL + O(ay) accuracy in SCET and bHQET
differential and cumulative cross-sections. The calculation will be carried out for thrust, heavy jet mass
and C-parameter but it can be easily generalized to angularities and other event-shapes. We will also
obtain analytical and fast-convergent expansion series for the resummation of the non-distributional
parts, which otherwise would require a numerical integration, slowing down significantly the numerical
code use to obtain the distributions. Finally, a numerical analysis for the thrust full distribution using
our computations, based on SCET with resummation but also including power corrections and matching
onto fixed-order QCD will be presented.

Let us begin, before introducing the schemes, by working out the decomposition Eq. (1.13) for the
event-shapes we will be dealing with. Whereas this task is trivial for thrust, since it is already defined
as single sum of final-state particle momenta [see Eq. (1.14) ], if there are correlations among the various
components one has to show this explicitly as it was done for C-parameter [see Eq. (1.15)] in Ref. [38].
This is also the case of heavy jet mass, defined as the largest hemisphere invariant mass normalized to
the center of mass energy: p = s, /Q?. For this shape variable we have:

2
Qp=> Y vy - (ZP?) => vy v, (2.1)
i€+ je+ ic+ i€+ je+
where we assumed the thrust axis in the z-direction and used that the component of the total hemisphere
momenta normal to the thrust axis is identically zero. We can take the negative direction of z-axis
pointing towards the plus hemisphere so that it does not contain T-collinear particles (with p, > 0).
Hence, in dijet limit we will have the following contributions:

Soft-Collinear: it has the following form at leading order O(\?):

Q%ps = <ij>(z pi*) ~ 2<Z Eg><z pi*) ~QY pi=QP}, (2:2)

jEN 1€ES 4 JjEN 1€ES 4 1ES L

where s, denotes the soft particles in the plus hemisphere and we made use of the leading order
approximations: p;, ~2E; and ) ;. E; ~ Q.
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Collinear-Collinear: analogously to the previous case, we have for the leading order O(\?):

Qpn =Y pi =P (2.3)
1EN
Soft-Soft: from Eq. (2.1) and the power counting of soft particles we see that if particles 7 and j

are soft the result is power suppressed O(\*).

All in all, the dijet limit of heavy jet mass is the total plus momentum in the hemisphere:

Qp = Qpn + Qps = P,/ + P . (2.4)

2.1 Massive schemes

If the final state contains only massless particles, one can interchange the energy and magnitude of its
momentum, but whenever there are masses into play, this is no longer true. In this context, massive
schemes are a generalization introduced in the event-shape definition for massive particles. They were
initially considered to study the hadron mass effects on (soft) hadronization power corrections [59, 52]
but, since only light quarks were included, they had no consequences for the partonic cross-section. The
computation of the cross section at NLO in fixed-order was carried out in Ref. [48]. In this part of the
thesis, we aim to complete the analysis by incorporating the resummation of the large logarithms that
appear in the peak and tail regions.

Different ways of treating the energy FE, and momentum magnitude |p'| of a massive particle lead to
the three different massive schemes:

e E-scheme: is defined by the substitution of the momentum magnitude by the energy:
=, p _p0 (1, L 2.5
p=".P) > pe=p ) (2:5)

In this way, the scalar product becomes:
P-q
pe-qe = p°q° (1— = q> : (2.6)
Pl
and the E-scheme momentum square will vanish for massless as well as massive particles: p% = 0.
e P-scheme: the replacement is in this case the other way around, that is:
0 = — ﬁ
p="P) = pp=1p| 17@ , (2.7)
giving the following form for the scalar product:
pp-qpr = pl|q| —P- 7 (2.8)
which again implies that the square is always zero: p% = 0.
e M-scheme: refers to definitions that contain both energy and momentum magnitude. It is the

most sensitive to the mass because entails working with the actual four-momentum, which satisfies

(for massive particles): p? = m?.
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[ ][9]

Table 2.1: Thrust, C-parameter and hemisphere jet mass in the three massive schemes. We show in
green the original definitions. The P-scheme normalization is Qp = >, |Pi|, and h is the heaviest
hemisphere of the ones of delimited by the plane normal to the thrust axis ¢

It is worth mentioning that, since the energy and momentum are frame dependent, the cases described
above refer to quantities defined in the COM frame which is usually chosen for most event-shapes
definitions. As a final remark, the light-cone decomposition in Eq. (1.17) applies and the collinear
and soft scaling remain the same for any of the schemes. The original definitions, along with the
generalizations for thrust, Heavy Jet Mass and C-parameter, are given in Tab. 2.1. For other event-
shapes see Appendix D of Ref. [48].

2.1.1 Mass Sensitivity

When studying the sensitivity of event shapes at parton level' the leading order contribution for e*e~
annihilation comes from the production of a heavy quark-antiquark pair without additional radiation. In
this case, the thrust axis is parallel to the three-momenta of the quarks, which makes trivial to calculate
the event-shape value for two particles in the final state with equal mass m. Moreover, this simple
computation sets the minimum value even if additional gluons and (massless) quarks are radiated.

T C p
M-scheme 1—8 12m2(1 —m?) m?
P- and E- schemes 0 0 0

Table 2.2: Minimum value for the considered event shapes in the case of primary production of a stable
quark-antiquark pair in different massive schemes. Here 8 = /1 — 4m? stands for the velocity of the
quarks at this limit in natural units and m = m/Q the reduced mass.

The results in Tab. 2.2 show that for events in which a massive stable quark-antiquark pair is produced
(primary production) only the M-scheme is sensitive to the quark mass while P- and E-schemes are
not. In most of the events there will be some extra radiation present which will modify the former
dijet into two fatter jets or an even more isotropic momentum distributions. For the observables we
study, such processes will mainly contribute for event-shape values away from the lower limit adding
subleading mass sensitivity (i.e. suppressed by a factor of ) even in the P- and E-schemes, but will not
substantially change the leading sensitivity of the M-scheme definition since it comes from the tree-level
peak position. From this we can conclude that the M-scheme is preferred if the aim is a mass-sensitive

1We consider for now partonic final states, assuming stable massive quarks.
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observable (e.g. for quark mass determinations), but in case that one seeks a mass-insensitive observable,
the P- and E-schemes are a better choice.?

2.1.2 Massive Schemes in the Collinear Limit

At N2LL order, the only modification of the SCET factorization theorem caused by massive primary
quarks is confined to the jet function. Therefore, in this Chapter we compute the jet function at O(as).
The first step is then working out the collinear measurement for the event-shapes under consideration
but let us first analyze the differences between schemes at this limit. Recalling the scalings®:

papE7pPanN()‘271a)‘>7 me~ A (29)

One can show that the large components p~, pt are equivalent at leading order in the three schemes
since swapping energy and momentum magnitude causes only a power suppressed effect, that is:

P =t +p)/2~p 24+ 0N

p

- LO -
:>poz\pl+(9(/\2):>£L »

T-& |
v

b
b

7=/ (0°)* = m2 =~ p~/2+O(\?)

From the previous statement we can also see that the E-scheme (Q = >~ p¥) and P-scheme (Q, = >_, |pi|)
normalizations will take the same value in the collinear limit. Therefore, differences among the three
schemes can only be caused by the small components p*,pg, pJIS which take the following form (for
n-collinear particles the z component of momenta is negative):

2 2
s P +m
Pt =" 4pe =9 = VPP LR = S5 + O
o -~ = > ﬁJ_ LO 2
pp = [ +p. = 7| = VIP]> | |21|2pt|) +O() ph=ph=pt -2
0 pO pO 4
pE:p Jrﬁpzfﬁpﬁip;wLO()\)

It is important to notice that in general pj, # p* because m?/(p*p~) ~ O(1). Moreover, this mass
term (and in any other that appears in an event-shape measurement function) comes from kinematic
on-shell considerations and us such it corresponds to the pole scheme.

Since from the previous discussion we obtained for collinear particles (in any direction) pf = ply at
leading power, we can safely conclude that at this order the collinear measurements for all event shapes
take the same form in the P- and E-schemes, but is in general different from the M-scheme. We will use
this result to determine the explicit expressions for thrust, heavy jet mass and C-parameter:

Thrust
The original thrust definition is already in the P-scheme as showed in Tab. 2.1. For n-collinear particles
one has |t - p;| = —p. and therefore up to power corrections we have:
P E + Lm
@l = f = Srh = X (0 - 12). (210)
ic+ ic+ P

2If the massive partons enter the final state via gluon splitting in a massive quark-antiquark pair (that is, through
secondary production) the sensitivity to the quark mass will again be subleading (now suppressed by a factor of a?2).
3We omit in this section the overall factor of @Q in the scaling for clarity.
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where we already indicate that the collinear measurement is the same in the E-scheme. On the other
hand, the collinear limit of the M-scheme generalization of thrust, also known as 2-jettiness, is the total
plus momentum flowing into the plus hemisphere:

ar! =30t @1

i€+

Since the measurement is completely inclusive, the computation of the jet function can be carried out as
the discontinuity of a forward-scattering matrix element. This is not the case for the E- and P-schemes
if quark masses are non-vanishing.

Heavy Jet Mass

We already worked out the collinear measurement for heavy jet mass in Eq. (2.3), and getting the
P-scheme measurement is equally simple since Eq. (2.1) still applies with minimal modifications:

@ = (X |p) - (prf =[S+ S -] = ok Xon, @12

i€+ i€+ i€+ JE+ i€+ JE+

where we once again had use that the total perpendicular momentum vanishes and the identity a? —
b?> = (a + b)(a — b). With this result we can trivially obtain the collinear measurement using that
Pp; = 2p] + O(N?):
m2
Qpe = Qpf = Z(p,»* - i) : (2.13)
ie+ i
that matches the P-scheme thrust result. The total perpendicular momentum does not vanish in the
E-scheme, since there is not such thing as E-scheme three-momentum conservation (in the same way,
P-scheme energy is not conserved either). However, in the dijet limit the perpendicular components are

already O()) and therefore pg = pt + O(A\3), making Zia_pﬁi o O(A\3), thence power suppressed,
such that the result in Eq. (2.13) is also valid for the E-scheme.

C-parameter

From the C-parameter original definition in the P-scheme, as shown in Tab. 2.1, we get:

3 L. 3 -
cr = 207, Z |5:]|5;] sin®(6;;) = 207, Z P3| 5] [1 + cos(0:5)][1 — cos(0ij)] (2.14)
1,] ,]

)

_ 3 3 (Pillps| + pi-py) (iP5 | — i)
2Q% > i
where we simply use sin®(6;;) = 1 — cos?(6;;) = [1 + cos(6;;)][1 — cos(6;;)] and the definition of the

euclidean scalar product to get to the final form. Next one can express the result in terms of P-scheme
light-cone coordinates using Eq.s (2.8) and (1.17) as follows:

3 Q2|pillpi| — pri-pP;) PPi-DP,
= R T (2.15)
207 2; il

)

3 Z (pJJS,z' p;j +PpiPpy T 201 ﬁL,j)(p;z'p;’,j +p1_3,ipJ15,j = 2P0 i P1j)
207 i (p;,i +p1_3,i)(p;,j +p1_3,j)
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with a similar result in the E-scheme. We first consider that both ¢ and j are n-collinear such that the
SCET scaling implies

Com = [(Eznppl) (;%,j) — (;m,l) : (jeznm,j)] = ;ieznp;i + O\, (2.16)

where once again we use that the total collinear perpendicular momenta flowing into the plus hemisphere
is zero up to power corrections. For CL one gets analogously:

Cr = 25 ph, + 00, (2.17)

i€n

while if 4 is n-collinear and j is n-collinear we get (we already include a factor of 2 to account for the
case in which i is fi-collinear and j is n-collinear)

=SS (S () (S0 ) (5]

ien JjEN iEN JEN iEN JEN
(prz + prz) +O(N).
en €N

Summing up the contributions in Egs. (2.16) and (2.18) we obtain the collinear and anti-collinear
measurements in the P-scheme:

ch rof +of =~ <prz+zppl> =cP 4ol (2.19)
ten €N
and hence the result is identical to that of thrust or the hemisphere masses up to a factor of 6:
Qcl = QCE—6ZpPZ—GZ(1 ) (2:20)
ie+ ie+ pi

For the M-scheme, also called C-jettiness, the procedure is similar. From the definition in Tab. 2.1 we
can write:

CJ — i 2Q2 72 (p’L

0,0 2
5 EYas) Z 2(pi - p)pi D5 — (0i - p3)* (1 = di5)] (2.21)
2Q pry plpj 2Q

pzp]

Q2 Zp 0,0 [(pi - p) (20705 — i - pj) + diymi]
iPj

where we used Q? = (3, pi)2 = Zijpi - p;j. Switching to light-cone coordinates and neglecting the
mass term since it is O(A*) we get the same result as in the second line of Eq. (2.15) but with actual
four-momenta. Applying the corresponding power counting leads to:

QCl =6 p;. (2.22)

1€+

Therefore, for the reduced C-parameter variable C = C /6 the collinear measurement for the three event
shapes we consider coincide in every massive scheme.
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2.2 Factorization Theorems

In this section we will take a deeper look at the already introduced factorization theorems. The discus-
sion will be carried out considering the case of thrust (in either massive scheme) but it can be easily
adapted to C-parameter (changing the soft function and taking into account factors of 6 in the mea-
surement function) or heavy jet mass (using the hemisphere jet and soft functions, and including two
convolutions, one per hemisphere).

It is worth mentioning that the factorization formulas already given in Secs. 1.4.1 and 1.4.2, and
those that shall be discussed next, stand for the leading order partonic distribution in the corresponding
EFT. Nevertheless, the leading hadronization corrections (which are soft) can also be factorized as an
extra convolution with the so-called shape function, which will be included in the numerical analysis.
Additionally, we will include kinematic and mass power corrections in the final analysis, but their
discussion is postponed until Sec. 2.7.

2.2.1 SCET

Even though the heavy quark mass is a parameter with a fixed value, the jet and soft scales depend on
the event-shape value and therefore they change along the spectrum, such that several scenarios might
occur in a given distribution. For simplicity, we assume the quark mass is always smaller than the soft
scale, such that we stay in scenario IV even in the peak of the distribution. In this way, we avoid having
to deal with integrating out the heavy quark mass and the partonic factorization formula reads:°.

1 ~ Q("'*Tmin)
L doscrr _ Q*H(Q, M)/ Al T Q% — QU 1) S+ (€, ) (2.23)
o9 dr 0

with the thrust jet function being the convolution of two single-hemisphere jet functions:

S—Smin
(s, 1) E/ ds'J, (s — &', u)Jn(s', 1) . (2.24)
Smin

The M-scheme hemisphere jet function has support for s > sy, = m?, that sets the integration limits
in Eq. (2.24). Accordingly, the thrust jet function has support for s > 28y, implying that the mini-
mal value for 2-jettiness is 77, = 2/m?2. We shall present the computation of the missing piece of the
factorization theorem, which is the P-scheme jet function, in Sec. 2.3 where we also will carry out the
calculation for the known M-scheme result as a benchmark and sanity check.

The factorization formula takes a simpler form in Fourier space:

1 déscer @ / ap 7 [T G

——— = —H dz e J [ = S 2.25
o0 dr 5 H(Qp) [ dz e J; o (2, 1), (2.25)
with p = Q(7 —Tmin) and J; and S the Fourier transforms of the jet and soft functions, respectively. The
thrust jet function in position space is the square of its hemisphere counterpart, and can be computed

as follows -

T (y, 1) = / A5 €7 T (5 + 25min. 1) = Jn(y, )2 (2.26)

4Strictly speaking, the SCET counting m ~ Q) only applies in Scenarios IT and III: in Scenario I no massive collinear
particle can be produced while in IV the mass can be power-counted away. In practice the m — 0 limit is smooth and
using the counting m < QX in Scenario IV captures some power corrections that make the transition between Scenarios
IIT and IV smooth.

5We have rearranged the Q factors with respect to Eq. (1.48) in order to match the units of the arguments of the soft
and jet functions in the original articles, Refs. [23, 24].
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The form and solution of the renormalization group equations is also simpler in position space. Using
those and changing variables to y = px one arrives at

1 doscer  H(Q,pun) (€Pps\ /dy i Y = (Y
. = i) | o= eV (iy)? I =, =, , 2.2
o0 dr p p R(Qhu ) 2 € (Zy) J. Qp wy S » us ( 7)

where p; denotes collectively all renormalization scales (including the common p) which now satisfy
ug ~ Q, py ~ Q7 and ps ~ Qt, such that for small 7 there is a strict hierarchy among those:
g > py > ps and the SCET scaling parameter takes the value A ~ /7. These are the same scaling
as in Fig. 1.5 but expressed in terms of the event shape thrust.® We also used the following compact

notation
72(:)1{ _ 2 L:)J
R(Qhul) Q<M> ek <MJ> )

Q Qus
ke =ky + ks + ks, &=y — 20,
Ws =wr, (s, 1), @y =ar, (s, 1), (2.28)
G =or, (1), ks = Gys (ps, 1) — 2kr, (1, 1)
kit =@y (s 1) — 2k, (i, 1) kg =@y (p, 1) + 4kr, (1, 1)

with @ and % the exponential running kernels defined in terms of integrals over the SCET and QCD
anomalous dimensions as follows

@y (o, 1) = 2/ "da ﬁ;fs()a) ) (229
ko (pos 1) = 2/(10 do Bqep (@) /Ozo da Bacp(e) |

Here ~ can refer to cusp or non-cusp anomalous dimensions, and their dependence on « is in the form
of perturbative series that define their respective coefficients

Bqep(a) = —2 Oész Bn-1 (%)n7 I eusp (@) ZZFn<%)n, () 22%(%)71. (2.30)

The integrals in Eq. (2.29) can be solved analytically in terms of the anomalous-dimension coefficients
if an expansion in oy is carried out and their explicit form up to N3LL can be found e.g. in Ref. [1].

The jet function of a massive quark contains terms which are distributions, and hence easy to Fourier
transform, plus others which are regular functions. Up to one loop, the momentum-space hemisphere
jet function can be decomposed in the following form:
In(5+ smims 1) =8(5) + 2 0 [ 5 L (2 O(a? 2.31
n(5+5m1n7/f6) = (S)"’—? F dm(&ﬂ)*‘w nd W + (Oés), ( . )
_ 1 S 1 5
Jaist (5, 1) = EJM:O(E) + WJM(W> )

where the massive corrections, either with distributions J,,, or fully non-distributional J, 4, are p-independent
dimensionless functions with support for positive values of their (dimensionless) arguments. The u de-
pendence of Jyis; is entirely determined from the jet and QCD anomalous dimensions, does not depend

6Notice that the hemisphere jet mass s is the square of the jet momentum p?, and in the dijet region it satisfies s ~ Q2.
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on the quark mass, and therefore can be fully accounted for in the massless jet function of Eq. (2.31).

The integral in Eq. (2.27) can be easily solved for all terms involving only distributions and for the
non-distributional piece of the jet function we carry out resummation in momentum space. At one loop
it is multiplied by the hard and soft functions at tree-level only so using Eq. (2.26) in (2.27) and carrying
out the y integration, the non-distributional part of the 1-loop partonic cross section reads

Q*r

1 déna N Cras(py) R(Q, i) B & $ — 28min 2 N-1-@
oo dr ~ 2r  QmIl (o) (Qe"® ug) /gqn,indSJnd(mQ>(Q T—3) (2.32)
CFas (/’LJ Q ,uz Se’YE © ~ T — Tmin
2 Q2 { (T — Tmin) ] Ind( m2 ) ’
1} 1 1 ~
@) = s [ o=y ) = s [ ).

The lower limit of integration in the first line has been moved to 2su, since below that value the jet
function has no support. In the E- and P-schemes sp,;;, = 0 so we have not lost any generality. To get
to the second line we have switched variables in the integral to s = 2m? + 25y, and to obtain the
second expression for I;,q(w,y) we switch variables to © = zy. For the partonic cumulative distribution
one gets instead

. 1 [T doy,
Yna(re) = - /O dr de (2.33)
. YE YE w—1 _ .
_ CFas(UJ) R(C?azﬂz) Hse HSE Log (@ —1, Te _ 72—m1n).
2m m Q Q(T(: - 7—min) m

To make the function I(@,y) smooth in the no resummation limit, achieved when @ — 0, one can
integrate by parts to obtain

ha(@09) = ey | 1], 4501 272 + 1) (231

with J}, the derivative of the J,q function. This form is particularly useful if the integration has to
be carried out numerically, making it more convergent and defining its analytic continuation to values
0 < @ < 1. Further integration by parts can be implemented to define the integral for even larger values
of @. Nevertheless, this procedure is unnecessary if a closed analytical form is found.

The discussion in this section has been carried out assuming the pole mass for the heavy quark, but
we can express the result as a function of a short-distance mass by introducing the power series in
for the difference of both schemes. In the scenarios in which SCET applies, the MS scheme is perfectly
adequate. In scenario II it is more convenient to employ low-scale short-distance schemes such as the
MSR mass [36, 37].

2.2.2 bHQET

The need for using this effective theory in Scenario II for massive primary quarks can be seen in a
practical way by looking at the structure of the one-loop jet function in Eq. (2.31). Since the non-
distributional terms are power suppressed when s — spyin, it is enough to focus on the terms with
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distributions,” which generically read

1 5\ .o, B[# C [1?log(5/p%)
EJ’"L:O(E) —ACS(S) + E |:S:| . + E |: . y (237)

By, [m2] .\ Cnm {77; log(s/m2)L—’

m2

%Jm(%) = Ay 3(s) + | i

S

where the coefficients A, B and C (with or without subindex m) depend neither on g nor on m. In
scenarios III and IV one has 3 < m? and therefore the choice p? ~ 5 makes sure there are no large
logarithms in neither term (the massless limit is smooth since J,;, + Jug — 0 when m — 0 and no new
class of large logarithms emerges). On the other hand, if 5 < m? the choice u? ~ 5 cannot prevent the
logarithms in J,,, from becoming large in such a way that the physics at the scale 5/m = Q*7/m, which
in the case of an unstable top quark will be of the order of its decay width I", has to be separated from
that at the mass scale, as the bHQET framework allows.

The factorization theorem for thrust reads:®

~ 2(+ _ ) —
L d%bmiqer =Q2H<Q,um>Hm(m, 2 o u) fac BT(Q (7  Tinin) Q%) Sy, (239)
(s} T m m
with: ,
B.(38,p) = m/ d§'B,(8 — 8§, u)Bn(8,p) . (2.39)
0

The H,, matching coefficient and bHQET jet function satisfy J,(s+ Smin) = Hum By (s/m)[14+O(s/m?)],
such that both factorization theorems smoothly join.

The resummation is done analogously to the SCET case, making use of the Fourier transform, but
with the corresponding anomalous dimensions. The procedure is explained, including explicit expres-
sions up to N3LL + O(a?) order in Ref. [3] and we will apply it in Chapter 5, whereas in this Chapter
we limit our numerical analysis to situations in which it is sufficient to use SCET with masses.

2.3 SCET Jet Function Computation

The jet function accounts for the dynamics of collinear particles within the same hemisphere. Since the
collinear measurement function in the P- and E-schemes is not the total plus momentum, it cannot be
computed as the discontinuity of a forward-scattering amplitude. Instead, one has to use the definition
given in Eq. (1.50) which, after a small modification to match the form of our factorization theorem for

TWe recall here the definition of the plus distribution. For arbitrary exponent w we have:

{9(9:) L i [9(%5) 75(175)5;‘”} , (2.35)

pltw B—0 | zltw w

but it can also be obtained through the analytical continuation of the corresponding integration result to any value of w.
Expanding for small w value leads to

[ 1og”<ac>}+ i [1E B, logn“(ﬁ)] |

(2.36)
T B—0 T n+1

with n > 0, which will appear several times throughout this work.
8We have rearranged again the factors of Q and also m with respect to Eq. (1.67) to match the units with those for
hemisphere jet mass.
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thrust in Eq. (2.23), can be cast into the form:

(s, ) / Tn (s, 0 (2.40)

Tn(s,07) = d?a e (0] fixn(2) 0(s — Q*€n) X (0)|0) ,

4N
with xn,o the jet field with total minus momentum equal to . To simplify the expression in the
second line of Eq. (2.40) we insert the identity I = ) |X)(X] after the delta function and shift the
field xn,g(x) to & = 0 employing the momentum operator. Using the label operators for the large
components of the momenta, the sum over X can be carried out and we obtain the following convenient
expression:

(2m)d-1

Jn(shu) = Ne

e [z<0xn<0>6<s — Qen)8“" P (Px)8(P — Q)X (0)|0)] - (2.41)

For practical computations one inserts a complete set of states after §(P — Q)

S 0= 35 [T gty e Ol .0)

n=1 spin

where we exclude the vacuum from the sum because it does not contribute to the jet function. Each
term in the sum over n can include several contributions, accounting for various particle species (heavy
or light quarks and gluons), and the sum over polarizations affects all particles in the final state. The
perturbative expansion of the jet function in powers of oy is obtained by adding more particles to the
sum as well as more virtual (loop) contributions to the matrix elements that appear after inserting the
identity, which in compact form can be written as

(27T)d_1

S )6k - Qdls — Qen(XIT D 0O OF] . ey

X

Jn(s7 :u'> =

In the following, we carry out the computation of the jet function using Eq. (2.41) for both 2-jettiness
and P-scheme thrust. Although the result is already known for the former, it is instructive to repeat its
computation to highlight the differences between the two approaches. In a way, the computation that
uses Eq. (2.41) can be obtained applying Cutkosky rules to directly obtain the imaginary part of the
forward-scattering matrix element.

It is important to remember that y, in Eq. (2.41) is composed of bare SCET (quark and gluon)
fields, and that it is convenient to carry out our computations using perturbation theory “around”
those (that is, we will not use the so-called renormalized perturbation theory). For the jettiness com-
putation through the discontinuity of the forward matrix element, this entails that the wave-function

renormalization factor
3
~Z 4+ 6log <m> -
€ H

computed with the diagrams shown in Fig. 2.1 (the soft-gluon contribution vanishes), never appears
directly. The mass in Eq. (2.44) should be understood as the pole scheme.

OésCF

Ze=1
¢ +47T

+ O(ag) , (2.44)

When using Eq. (2.41) one needs to account for Zfl/ % since this factor is precisely the overlap between

the quantum (bare) collinear field &, and the physical collinear state |g,): (0] &, |¢n (7, 5)) = Zgl/zus (»),
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Figure 2.1: One-loop diagrams contributing to the wave-function renormalization at O(as).

with u a particle spinor in the collinear limit, and s, p’ the spin and 3-momentum of the on-shell collinear
quark. On the other hand, when using Eq. (2.41) self-energy diagrams on external legs are not included,

since their effect is already accounted for in the Zf1 /2 factor, and it is in this way that one has a one-to-
one correspondence with the computation through the imaginary part of the forward matrix element.

The computation at leading order is simple enough that can be carried out for the two massive schemes

simultaneously. The corresponding tree-level diagram is shown in Fig. 2.2, where the double line repre-

sents a heavy quark and the dashed line marks which particles are on-shell. To compute the phase-space
integration it is convenient to use the following parametrization

ddflp# dpi

2E,  2p

ol 271_175 . oo .
J T i LT

which implies that p™ has to be expressed in terms of the minus and perpendicular components through

0(p~)d* gL, (2.45)

X

Figure 2.2: Lowest order diagram for the jet function.

the on-shell condition p* = (m? + |p'L|?)/p~, and since the mass appears through on-shell kinematic
relations it corresponds always to the pole scheme. In the second line we have carried out the angular
integrals for the perpendicular momentum, assuming that matrix elements depend only on its magnitude.
We then obtain

Tr(6)= [ Gt 269 (1)60 — QT - Qa0 ST B ()] = 805 — s, (240

where we have used that the trace of the polarization sum equals 2p~ and have integrated all delta
functions except the one with the measurement. The color trace cancels the 1/N, prefactor, and the
on-shell condition implies p* = m?/Q, such that for the 2-particle collinear measurement we get

+ 2 +
p m p m
ej(X)=—=—, e (X)=——-——=0, 2.47
(X) 00 (X) 0 (2.47)
which correspond to epin. To include the wave-function renormalization at O(«as) one only needs to
multiply this result by Z¢.

[ V)
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Figure 2.3: Virtual diagrams contributing to the jet function at O(as).

2.3.1 Virtual Radiation

The contribution from virtual gluons can be carried out for the two massive schemes simultaneously
since the phase-space integration is identical to the tree-level computation. There are two diagrams
contributing, as shown in Fig. 2.3, which yield the same result, so we will compute only one of them
which will be multiplied by a factor of 2. Pulling out a collinear gluon field from the Wilson line and
using the Feynman rules for massive collinear quarks we obtain the following integral for the leftmost
diagram:

ddé ﬁ(p+£) B . ) -
2 O E(p+ 2 —m] o Org it prh) (2.48)

where fi2 = p2e7® /(4r), the factor of 2 comes from the product 7in and the Casimir Cp from the color
trace with two Gell-Mann matrices. We are left with two master integrals I; and I> that can be solved
using Feynman parameters for the former

and with a combination of Feynman and Georgi parameters for the latter

I = / ax / dz / dee i mQ;; ml‘éi I (2.50)
Z’i:mf‘(l—ka)/ dz ™ _E/Ood)\{ (1 x)p‘[k—l—(lmia;p] }_1_€

:_(4;);( ( )/ dea™ =4 >2F(p) (T:)

Adding those two results we find a closed expression for Jyit:

. asCrp " T(1+¢) (m\ >
JVlI’t — — 2.51
! 4 52(1 —2) \ p (251)

9 2
_ 0O L 2 tos( ) 44+ T - atog( ™) 421082 (2 V.
4 62 € H 12 H #

Interestingly, this result is zero in the massless limit (which has to be taken before expanding in ¢).
Therefore, using dimensional regularization, only real-radiation diagrams contribute. The m appearing
in Eq. (2.51) is strictly speaking bare, but since we limit our computation to O(«s) we can safely take
it as the pole mass, as the difference between these two is a higher order correction. Implementing this
result into the jet function computation and integrating the real momentum results in adding a factor

Jv1rt —210}:‘92 25/(
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of d(ey, — emin). Multiplying by 2, expanding in € and adding the wave-function renormalization, which
is obviously a virtual contribution, we obtain

virt asCr 2 1 4 (m) 72 (m) 2(m)

= —6(8—Spin)| =+ - — -1 — 44+ — —21 — 41 — |, 2.52

S (s ) === 0(s = )Lﬁg clog( ) +a+ T — 2log( ) +4log™( (2.52)
which is the final result of this section.

2.3.2 Real Radiation

Since the phase-space integrals with two particles do not fully collapse with the Dirac delta functions,
the real radiation contributions differ depending on the collinear measurement. The diagrams that

/
I

!

I

I I
I I
I + ® I
I I
N

I

(b) (c)

Figure 2.4: Real-radiation diagrams contributing to the jet function at O(as).

contribute at O(ay) are shown in Fig. 2.4, where we have omitted the term in which both gluons are
radiated from the Wilson line since it vanishes. Diagrams (a) and (b) give identical contributions and
therefore we will compute one of them which will be multiplied by a factor of 2. For all the real con-
tributions label-momentum conservation implies ¢, = —p| and ¢— = Q — p—, which together with the
Heaviside function in Eq. (2.45) sets the integration limits for p~ between 0 and Q.

For the first diagram, after integrating the gluon momenta with the delta functions and carrying out
the angular perpendicular integration one gets

4o Cr Qi** /Q P Pt d|pL |
@m) =Tl -e))o — Q—p~ m*(Q—p~)2+ Q?[pL?

whereas the third (symmetric) diagram result, which does not need a factor of two, reads

JEe (s, 1) = 5(s— Q). (253)

real . Cp @Q%eEp® (9 (Q—p ) (p7 )2l > d|pL
Jc (87/”0 - W/O dp 5(8 - Q26n) m2(Q _p_)g + Q2|ﬁL|2 (254)
20 —e)(|pLlP+m? . m? 4<2s>m2]
g { v )2 W@ g |

P-scheme Thrust

To solve the integrals in the previous section, the thrust measurement must be expressed in terms of p~
and [P |. Since the gluon is massless and the quark has mass m we have

o _ofot +mz) 42(1 1 > Q*|p.|?
o Q<p T Q1P T Q-p (Q@—p )p~’ (2.55)
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which is mass independent. With this result we can use the measurement delta function to integrate |p| |

(@—p7)p~ <q (@—p7)sp~
8(s — Q%) = =2 _5(|p| - Y——— ). 2.56
( ) AL 7L | 0 (2.56)
Switching variables to p~ = Qx we find the following 1-dimensional integral for J,:
Croag e s\ o[t el —x) e
Jreal — € _ dg ———2 . 2.57
wp (5:1) 2rm?2T (1 —¢€) <u2) /0 Tz z(1— %) (2.57)

The complication arises because the integral diverges as 1/e2 and contains distributions. The divergence
comes from the (1 — )17 factor, but the subtraction around z = 1 behaves as 1/s, which combined
with the s™¢ prefactor implies a new divergence and invalidates the subtraction.

This pathological behavior is usual in two-loop computations involving double integrals, and the stan-
dard way of solving it is using sector decomposition [6]. To do so, one needs to get rid of distributions
by considering the cumulative jet function, which converts Eq. (2.57) into a double integral. In Ap-
pendix B.1 we show how to use this general method to solve the integral, and follow in this section an
easier, albeit less general, procedure.

Before that, we solve the integral for the massless case, which is not affected by the problem just
described, and is valid for 2-jettiness and thrust:

rea CFase’yE S e F(27€)
Ja,'rr%:O(Snu) = _W <M2) T o\

Sl e Do) () () |

In the second line we have expanded the result around € = 0 to obtain distributions using the identity

gl = %5(1:) +y < Fogn(x)} . (2.59)
+

n! x

(2.58)

n=0

For the m > 0 case we can transform the integral using hypergeometric function identities. Since these
special functions will appear also in Sec. (2.6), we remind here its integral definition (the hypergeometric
function is symmetric with respect to its first two arguments):

c 1
oF1(a,b,c,z) = F(b)FF((c)—b)/o de =11 —2)7 711 — 22) 7@ (2.60)

=(1- z)c_b_‘lgFl(c —a,c—b,¢,z),
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where the second line is the so called Euler transformation.’ The integral in Eq. (2.57) is already in
this canonical form and therefore we can write

rea F3 C Qs S - S
T (s, ) — — e)Cr )(ﬂ) 2F1<1,3—6,3—25,1—mz> (2.62)

(2m)m2el’(3 — 2¢

(
)
e () (Enrso3)

B Cras s —1-2¢ 'LLQ e pl e 1. s —2+42¢
~ 2mm(1 —¢) <m2> (m2 el =o)L el 1= ’

where in the second step we have used Euler’s identity and in the third we write the hypergeometric
function back as an integral. The integration in the last term can be easily expanded in € using Eq. (2.59),
and defining § = s/m? we have 1°

3 — ' 21— )2 S 1751 — (1 — 3 —2+25:_ 2_3)33]
_/0 dz (1 ) [1 (1-23)] /d (2.63)

— (1 —3)z]?
Y o2(1 —x)?log[l — (1 — 3)] + 8z[2 — (2 —8)x + 2] log(z) — (1 — z)%log(1 — z)
”/odf I S CE T
— 14 SRR DO ) =~ 45000 + 20 () + O,

with f1(s) a function involving a dilogarithm. This result can be reexpanded in e together with the

prefactor § 7172, responsible for the appearance of distributions, finding then
e 2 11 log(3 1 K )
06 = 500 -1 (5) +2(MED) - 000+ A 06, 2o
€ e\s/, s ). 2
Therefore one only needs f1(0), which takes a simple form
1 2
log(1 —
£(0) = / ) N (2.65)
0 x 6
Gathering all partial results and expanding in € we get the following expression
Cra m 2 2 [u?log(s/u?)
Jreﬂ = = 1 log?( — — — | 2.66
(s, 1) = 27 {()[252+ Og(u)+0g (u)+24}+,u2[ s 4 (2:66)

1 my\| 1 [ p? 1 5 —2m? S
|2 +2108( ) |5 (5 ) - = log( — ) 1.
L* v h( s >+ s—m? (- m2)2 B2
The result is divergent for s — m?2, although at that kinematic point there is no physical phenomenon

that implies a singularity. We therefore expect that the singularity will cancel when adding together all
real-radiation diagrams.

9This property can be easily shown as follows: switching variables * — 1 — x and rearranging terms one finds

) =01~ Z)_b2F1<C —a,b,c, sz) (2.61)

2F1(a,b,c,z) :(172)_(12}71(0‘707()707 z
z—1

where the second term is obtained using the symmetry a <> b on the first equality. Using the first relation followed from
the second one arrives to the second line of Eq. (2.60).
10 Alternatively one can use the Mathematica package HypExp [41] to expand directly the hypergeometric function.
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For the cut self-energy diagram in Fig. 2.4 (c), performing the same change of variable as in Eq. (2.57)
we arrive at

Cragef'E s\ ¢
real _ &
Tep (s, ) = (27)I(1 —¢) (Lﬂ) (2:67)

/1 z (1 —x)' 2 2
X ; dz SO —2) +a:m2]2{(1 —e)(1—x)zs —m “2(1 —x) — (1 —e)z*]}.

To see how the 1/ divergence occurs, we compute first the massless limit of J**, for which we get

. Cras(1—¢g)e® [ s “lert _ N
Teem—o(s, 1) = 27m21“(1)5) (W) /dexl f(1—x)° (2.68)

_ Crase®I'(2 —¢) s _1_57CF015 i ;ﬁ 1
C 4mplT(2 - 2¢) <u2> Cdm |2\ s +_ 5+15(8)'

At the light of this result one can realize that switching variables to x = ys/m? exposes the divergence,
factoring it out front the integral:

v \2€ —1-2¢ ”';2 —e(1— -5, 1-e
T = gt (MY () [ ) (269
’ 2rl(1 —e)p I I 0 [1+y(1--%)]
2 3
s 9 S 2sy
X {(1—5)9(1+y)m4 —(1-e)y ooy i —2}

_Cra, [ 0(s) (mer® QE/OOd v (e
T ow \eT-9\ w ) Sy Yz T eEs ),

m2

N 1-=35 52 2 2sy
></ dy m? 2[y(1+y)4—y26+2—2}}
o VT g T

S R G

S
m |:5S2 — 16m25 + ].1m4 — 2m2(8 — 4m2) 10g<7’n2):| }

+

In the one-to-last step we have used Eq. (2.59) to partially expand in ¢ and in the last step the following

relation is used:

CIHRCIHE

+ +
The Dirac delta function d(s) sets the upper integration limit to infinity and s = 0 in the integrand.
This makes the integral so simple that no further expansion in € is necessary for this term. For the
contribution proportional to the plus distribution we can set € = 0 right away, and solve the integral with
standard methods. In the last step we have consistently expanded in € the full result. The expression
is again divergent as s — m?2, but as anticipated, the full real-radiation contribution is regular in this
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limit:

(s, >—CF°‘S{[1+ +Z1og(2 )+~ 2105( )+2log2(’j)}6<s> (2.71)

or
[1+1+210 ] “) [ zlogis/“)]

+

s —Tm? (25—5m)
2(s —m2)2 (s —m?2)3 ( )}

For completeness, we also provide the real-radiation contribution for the massless case, which coincides
with the full jet function. Adding the tree-level order we recover the known result

B Craze’® (s \'7° (4—e)(2—¢)
Jm—() = (5(8) - 7471_#2 <’u2> —5F(2 — 25) (272)

3+4 /7,2 2 2
=00+ re L) (G + Zrot) < 2EE() 4 L [elesel)]
dn € € I s/ p s n

Let us express the jettiness measurement in terms of minus and perpendicular components:

Jettiness

PP +m? P QL +m*Q(Q —p)

Qr=Q(" +q" =Q< - = : 2.73

( ) P Q-p~ (Q@—p7)p~ (2.73)

which can be used to solve the measurement delta function for the magnitude of the perpendicular

momentum \/

(Q—p )p~ < . (Q—p7)(sp” —Qm?) >

5(s — Q*r 7_‘75 — . 2.74

The argument of this delta function can be zero only if sp~ > @Qm?2, what sets the lower limit of

integration. Therefore, changing variables to p~ = Q(1 — x) we obtain for the diagram in which the
gluons are radiated from the Wilson line and the quark particle the following result

C 2e & 1 2
real FQs pe ’YE/ e —1—¢ 21—¢
dx (1 — 1-— — 2.
T o) = g (1= 2 (1~ 2)s — ) (2.75)

Crag s€ 2 efE 9 s —m?
:27TF(1—5) s—m21+25/ dy (1 =) v s

_ Cra,e® T(1-¢) <S> +€<S—m2>1 26[3(1—5)—sm2]

2rp?  eT(2 — 2e) \ p?

= Cras {5(5 — mz) {i + élog(%) + logz(%) — W} — 1 - 710g(ﬁ)

2

- [i + 210g<:’;‘ﬂ % <S _’“‘jﬂz >+ + % [uz log[s(s_—mzﬁ)/uz}L},
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where in the second line we have switched variables to x = y(1 — m?/s). Performing the same change
of variables in the diagram in which the gluons are radiated from both quark lines one gets

Crag [TEareaats =5 _ 27—
(1 — - € 2.
27T(1 — ) (s — m2)2 /o dzz7%[(1 = z)s —m7] (2.76)

{1=¢)[zs+ (2 —2)m?] — (2 —e)m?}

Crog (s —m?)~17% (ser= Y 1 e e
— ;r (S2F(1)—5) ( 2 /0 dyy=(1—1y) [(s—mz)zy(l—e)—szs]

~ Crpa, (s —m?)~17% (s e\ T(1—¢)

Jrcal ( )

41 52 ,UQ F(? — 26) [(1 — E)(S — m2)2 _ 4m28]

Crag (|1 m 2 w2 5s — m?
- 242421 (7) (s —m?) — = :
2m {L+ ey ] (s =m") u2(5m2 e

where we have carried out the same manipulations as in Eq. (2.75). Adding the two results we obtain
the total contribution for 2-jettiness:

gpts = Sl L L Buog(2) w2 - T v otog(2) w2 (D]at) 2

2m g2

1 1 2 4 [p?l
_[+1+210g(m)]2(u) +2[uog<8/u>]

€ p/ i\ s )p  p s +
+s—m27 2 o (i)

252 s —m?2 & m2/) |’

2.3.3 Final Result for the Jet Function

Adding together the contributions from real and virtual corrections one obtains the complete jet func-
tion. The divergences are now entirely of UV origin and can be renormalized multiplicatively (with a
convolution). Since in either massive scheme these are the same as for massless quarks, the renormal-
ization factor is identical, along with the anomalous dimension. Therefore we quote directly the result
for the renormalized jet functions [as = a,(u) ]:

Jf(s,u)—5(5)+aﬁ’7{{21g( )+8log( )+ - 8 Fog(s/“z)

oo

( ) z:;@y 28((52877@527;2> log(njz)}’

§ 8{10g(8/u )]
N

()
(s +m?, ) = 6(s) + = CF{{QIOg(ZD + 8log” (M)+8 - 3}5@” s/
|

j[1+210 )( ) 1)2—%105;(1 82)}

L (2.78)

4
—— |1+ 2log
12
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Figure 2.5: Massive corrections to the jet function. Panels (a) and (b) show the differential and cu-
mulative jet functions, respectively. We show with solid lines the non-distributional functions J,q and
Yna for P- (red) and M- (blue) schemes. The differential J,, function is shown multiplied —1 as a green
dashed line in panel (a) (for > 0 it is common to both schemes), while —%,, is shown in panel (b)
with red and blue dashed lines for P- and M-schemes, respectively.

From these equations one can easily read out the functional form of Juq(z) defined in Eq. (2.31). With
some manipulations one can also figure out expressions for J,,,(z) defined in the same equation:

J(z) = Ag 8(z) — (1>+ +4 Fog(‘”)} K (2.79)

T x

T 4
J;{d(l‘) = )2 - ; lOg(l + .'17) )

(x+1
=G et e

with Ay = 272/3+1 and Ap = 472 /3 — 3. We shall see that J,q(z — o0) = —J,,(z) for both schemes,
and show this behavior graphically in Fig. 2.5(a). This is expected since it corresponds to taking the
massless limit, and therefore mass corrections should vanish such that the jet function becomes equal
to the (renormalized) massless result of Eq. (2.72). Since Jnq contains distributions in this limit, it is
advantageous to work with the cumulative jet function

S (50) = /O s Jn(s). (2.80)
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which is a regular function. Likewise, one can define the cumulative functions for Jyq and J,,, which
are also shown in Fig. 2.5(b). The result can be obtained easily and involves polylogarithms:

2

s (s +m?,pu) =1+ 42 {21g(u)+81og2<7z>+8—7;+1og<1+7;2)—s:m2 (2.81)

+ 4log2(%) —4{1 —l—210g(TZ)]log<u ) —|—4L12(—7§)},
SP(s, ) =1+ aZiF{Zlog(Tj) +810g2(%) +4+7§—4[1—|—210g(73)}10g(;)
g () +a1ia(1 - )+ 5+ ()}

As expected, in the m — 0 limit both results reduce to the (same) massless cumulative jet function

E?_O(s,u)zl—l—o%(gzclr{? ™ —310g<’u >+210g (,u )} (2.82)

To take the derivative one needs to recall that the jet function has support only for positive s, such that
it is effectively proportional to an (implicit) Heaviside function 6(s). Using the following relations:

log" ()
x .

D sy, L) on" ()] = n[

(2.83)

one readily arrives at Eq. (2.72). For s > 0 one can expand around m = 0 to find the following compact
series

Jf(s>0,u):a4i {410( ) 3—1—2[1—62 4+i—3i2)log(;2)](nj)i}, (2.84)
Tl(s > 0,) = O‘ﬁ”{lﬂ ( ;) - 3+Z <z+1+3><n;2>}

with similar results for the cumulative jet functions. Since individual pieces of the P-scheme thrust jet
function have divergences at s = m? it is convenient to compute the expansion of Jf;i (z) around = =1,

which can be cast as 9+ 5
Py _ i ¢
(z) = _22(1_:5) AT, (2.85)

2.4 Fixed-order Prediction in SCET

Inserting our result for the jet function into the SCET factorization theorem of Eq. (2.23), setting all
renormalization scales equal and using the known results for the hard and soft function at one loop

H(Q,p) =1+ (47)TCF{3 16+1210g<3>—810g2<g)], (2.86)
(0. =o(0) + U ) - 20 [‘“%WL}
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one arrives at the fixed-order prediction for the partonic singular terms of the P-scheme thrust differential
cross section: !

1 dopgFT as()Cr sceT, - 2
0_70 dr - 5(T) + A Fl (Ta m) + O(as) (287)
SCET,_ 1072 . 2, . (1
F; (r,m) =46(7) — 8+ 4log(m) + 16log=(1) | — 8[1 + 2log(m)]| —
pu
+

2(r — M%) 47(27 — 5m?) T
(r—m2)? (1 —m?)?3 : <m2)

= ASCET(s)6(7) + BSCET (1) (i) + FESET (1, ).
+

plus
In the same way, one can get a similar expression for the cumulative distribution E%CET, which is, among
other things, useful to take the m — 0 limit. The differential cross section has a similar structure in
full QCD, although it is different for vector and axial-vector currents as discussed in Ref. [48], and for
P-scheme thrust takes the following form 2

L %0 _ pC ) a(r) + Op & FQP (r 1) + O(a? 2.88
o q, — o (m)é(r) + Cp—Fg7(7,m) + O(ey) (2.88)
0
i i (1 )
FE (1) = A(a03(r) + B () (1) + Pt
+

where C' =V, A labels the type of current and with Rg the tree-level massive R-ratio. Analytic results
for A and Bglus can be found in Ref. [48] and we quote here the universal value for the latter:

Bius() = (32;?2) {(1 + %) 1og(12—:hﬁ) - B}, (2.89)

with 8 = /1 — 41?2, and where the first and second line of the expression in big parentheses correspond
to the vector and axial-vector currents, respectively. One recovers the SCET result for small masses,

AC (1 — 0) = ASCET (1)) and BSuS(ﬁL —0)= BSSET (m), and also

lim FS (T, = aﬁ) — FSCET (T, = aﬁ), (2.90)

with a ~ O(1). Since for thrust FSg is only known numerically, in Fig. 2.6 we show a comparison of
QCD and SCET results for the NLO corrections scaling the mass as indicated in Eq. (2.90). Excellent
numerical agreement is found as 7 — 0 for various values of « between 1.2 and 15. We show only the
vector current as for small values of 7 it is indistinguishable from the axial-vector one.

2.5 DbHQET Jet Function Computation

The computation of the bPHQET jet function is significantly simpler than for its SCET counterpart since
in this EFT the mass is no longer a dynamical scale and we are left with tadpole-like integrals. As an
immediate consequence of that, much as it happened for the massless SCET jet function, all virtual
graphs are automatically zero in dimensional regularization since they are scaleless (this includes the

11The partonic fixed-order bHQET cross section is identical to the SCET one dropping FI\SIgET.
121n the 7p — 7p" = 0 limit one gets the same result as in full QCD dropping FﬁS(T, m), which is a power correction.
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Figure 2.6: Comparison of the O(a;) correction to the differential cross sections in QCD [F‘(;QCD (r,1)]
and SCET [FPCET(r,/m)]. We enforce the SCET power counting by scaling the reduced mass as
m = ay/7, with & = O(1). Solid blue lines show SCET analytic results, while red dots correspond to
QCD numerical predictions obtained from the computations in Ref. [48]. The numerical values of « are
shown in the figure.

wave-function renormalization factor). We are then left with the tree-level, which is common for both
massive schemes, and real-radiation diagrams. The collinear event-shape measurements are the same in
SCET and bHQET, although the contribution of massive particles needs to be power expanded, such
that using p = mv + k we obtain for thrust and 2-jettiness the following results!'?

2 2
Qhﬁ—ﬁf)zp*—%%::mupf%§+k+:k+, (2.91)
QrF —pt— TE e
T = _ — = - = =0,
P Ty Q Q+k

where to get to the third equality of the second line we have used @ > k= (as can be seen in Tab. 1.1),
and to obtain 77 = 0 we use the on-shell condition for heavy quarks v - k = 0, to be discussed later in
this section.

The adaptation of the field-theoretical definition for the bHQET jet function Eq. (1.68) to the thrust
factorization formula in Eq. (2.38) can be written as

ﬁ?@tﬂngqumy%4m5g-Qi@n—emm)6W—”Mﬁqan-ﬁ@4mmganmy (2.92)

B, (3) =
(3) 2m2Ne m

where K is an operator that pulls out the residual momenta of the heavy quarks and the (full) momenta
of ultra-collinear particles.

The bHQET phase-space integration involving a heavy quark gets also simplified, and using again

13We will omit subscripts 4 _ for clarity where it does not lead to confusion. Since in this section we describe the
computation for the n-collinear hemisphere jet function (recall that the m-collinear case is symmetric and gives the same
result) we will be actually using p = mvy + k4
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p = mu + k one has that

dptdp~d’?p.

2(2m)d-1
dktdk=d42k, m? m?
:—(5( kT 4+ —k~ k2)0< Em+ — k+)

2(2m)i1 QET + ) + Q+k™+ ) +

dktdk=d42k, m?
== 6( k* —kf) 0 =
where in the second line we have used the scaling shown in Tab. 1.1 and in the third we power-count
away the k? in the delta function argument along with all terms but @ inside the Heaviside function.
The on-shell condition for heavy quarks written in light-cone coordinates implies v™k™ + k~vT =0, in
agreement with the argument of the delta function. When comparing to Eq. (2.45) we observe that the
p~ in the denominator got replaced by @) and that the p~ integration is not limited to positive values
only. The phase-space integration for ultracollinear particles stays the same as in SCET.

dd
=P 52 —m2)e(’) =

@y S[ppt = PP —m?]0(p~ +p") (2.93)

dk—d?2k,
2Q(2m)d=1

Feynman diagrams look exactly the same in SCET and bHQET, with the replacement p — k for
the heavy quark momenta. Let us compute the tree-level contribution as given in Fig. 2.2, which is
analogous to the corresponding SCET calculation:

B () = /cik* A4-2E, 592 ()8 (k)6]s — Q2 e ]ZTr us(p)aL(p)] = 8(5),  (2.94)

where we have used that the trace of the polarization sum equals 4m and have integrated all delta
functions except the one with the measurement. The condition £k~ = 0 imposed by the Dirac delta
function makes both (shifted) measurements coincide at tree-level, see Eq. (2.91).

There are some generic features to be learned from this diagram: since there is no Dirac structure
in the diagram, the trace of the polarization sum will be always 4m at any loop order, and since there
is always one heavy quark which brings an inverse power of @ through its phase space one has the
following combination:

o1 [us(p)ﬂs(p)] =1, (2.95)

which eliminates the spurious dependence on m and (), ultraviolet scales that should not appear in
EFT computations. To make this non-dependence explicit at higher orders one can rescale the minus
component of ultracollinear real particles as ¢; = (Q/m)¥;, as we shall do in the rest of the section.

We turn our attention now to real-radiation contributions, for which we can simplify the heavy-quark
propagator using v - k = 0. We start with diagram (a) of Fig. 2.4, that after applying the bPHQET
Feynman rules becomes

9(4)5[§ - %2

2 R 2 vE\€E de= g 1726d g
mB(rLeal(g,/l) _ o CF(/J‘ € ) /(g ‘CIJ_‘ |qJ_|

(1 —¢) -)? v-q

(én — emin)]. (2.96)

The on-shell condition on the ultra-collinear gluon momenta implies in light-cone coordinates: 2v-q =
|7 12Q/(mq™) +mq=/Q = [|7L|* + (¢7)?]/¢~. For diagram (c) we get instead

Q2

Ry U L ) I
m

2r(1 —¢) - (v-q)? o )6[§

MBI (6, 0) =
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Let us work out the measurements for thrust and 2-jettiness

Q* s Q, 4 iy Qlal? m @l -
T n ) =0 =———+ >4 = 2.
m(T” ) m(q +E) m q +Qq - +e, (2.98)
Q@ p_Q_Qlaf _lap
Tn - q = - — —
m m q Y4

where we have used Eq. (2.91), the on-shell condition for heavy quarks and ultra-collinear massless
gluons, and the fact that label momentum conservation implies £k~ = —g~. With this result it is very
simple to solve the measurement delta function in terms of the perpendicular gluon momenta

6[§ - L m2>] = 2|€u| ollaul - Ve = (], (2.99)

2 _
5(§—QT,{’>= i 5(@\—@),
m 2|q.|

and we will use these results to compute the jet functions in the next two sub-sections.

2.5.1 Thrust

We start with the diagram in which the gluon is radiated from the Wilson line. Switching variables to
{~ = Sx we arrive at

s 2 _YE eC a—1—2¢ o —1—¢ sF 1 C evE ~A\N—1—2¢
mBies(s, ) = 2V Cr 8 / do el te)Crent (8 (2.100)
’ 27 I'l—-e¢) Jy 1+z 2 e w

o] - (), 1(25) ]

With an identical change of variables we arrive at the following result for diagram (c):

2 PyE)sC §71725 e e} xr—¢
Breal a :_OLS(,[L ¢ F / [EE— 2.101
m c,P (SMU“) e F(l —E) 0 € (1+$)2 ( 0 )
_ T +9)Cre® (8\T7F_alCr[2, 0 4(n
B T o  4m e p\s /.|

Adding both diagrams with the appropriate factors we obtain the final expression for the P-scheme
hemisphere jet function:

mBY (5, 1) = — (2.102)

TUE

-G e T o a)(5) () )

The Dirac delta function in Eq. (2.99) implies that there is a solution for ||| only if £~ < §, which
can be implemented through a Heaviside function and bounds the upper integration limit for /~. With

e+ 0y 1 (1Y
I

w>

2.5.2 Jettiness
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the change of variables implemented in the previous section the integration limits are mapped to the
interval (0, 1) and we get the following result for diagram (a):

) ’yE eC —1—-2¢
mB (3, 1) = o (1 ;r r 3 e / dzz~15(1—a2)°¢ (2.103)
F(l—e)C’FeE'YE(A>_1 %

2rpel (1 —28) \

(e 2(0), 15 )

that, as expected, differs from the expression in Eq. (2.100) only in the non-divergent term of the
delta-function coefficient. Similarly, we obtain for diagram (c)

Qs (ﬂQG’YE)ECF H —1—2¢

mBY (5, p) = — /ld:c [z(1 —2)]°¢ (2.104)
™ I'(l-e¢)/,

e (w1 HON:

again almost identical to the corresponding P-scheme computation. Adding twice the first diagram plus
the second we recover the known result for the 2-jettiness bHQET jet function:

AN—1—2¢
Jia v al'(2—¢)Cpe® (8
mB;, (8, 1) = il (@ = %) . (2.105)

e O S ORI

Both schemes have the same divergent structure and hence their anomalous dimension, as expected, are
identical. Furthermore, the difference between the respective delta coefficients is the same as that in
the SCET jet functions. This result was also expected since both EFTs should smoothly match in the
bHQET limit.

2.6 RG Evolution of the SCET Jet Function

In this section we solve the renormalization group equation for the non-distributional part of the jet
function for thrust and 2-jettiness. This amounts to finding an analytic expression for the function I,q
defined in the last line of Eq. (2.32).

Even though the result for Iﬁld has been already worked out in Ref. [24], we present here the main
steps to find the solution as they are illustrative. Using the rightmost integral expression of the bottom
line in Eq. (2.32) we find

Jom oy L ! (] — 2)-1-@ zy  4log(l+ zy)
La(@,y) = F(fd;)/o dz(1—2) {(ery)g oy . (2.106)

While the first term on the right-hand side of Eq. (2.106) is already in a canonical form such that
Eq. (2.60) can be directly applied, the second contains a logarithm. Expressing it as an integral

log(1 ! 1
log(1 +2y) _ / dz , (2.107)
2y 0 1+ xzy
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brings the second term also into a canonical form that we can easily integrate, finding

! log(1 o 1
/ dz(1—2)~ 1% og( +2y) / dx/ dz(1 —2)7 7% (2.108)
0 1+ zzy

1 1
= _T/ d$2F1(1,171 _®7_xy) = _T3F2(171717271_‘:)7_y)7
w Jo w

where in the last step we have used the integral representation of the 3F5 function:

T'(b !
3F2(a17a27a37b17b2,z) = ( 2) )/ dttaB_l(]. — t)b2_1_a3 2F1(a1,a2,b17t2), (2109)
0

F(ag)r(bg — as

with a1 = ay = a3 =1, by =1 — @ and by = 2. After adding the result for the first term we find an
expression slightly simpler than that quoted in Ref. [24], although fully equivalent:

- 1 - - -
I (@,y) = T3 [y2F1(2,2,2 - @, —y) — (1 — @) 3F5(1,1,1,2,1 — @, —y)] , (2.110)

which has a smooth @ — 0 limit.
For P-scheme thrust we can write the logarithm as a derivative to bring all terms into a canonical
form:

P | L ] )15 2y — 7 2zy(2zy — 5) (s
La(@ y)_r(—a))/o dz(1 - z) [(1_yz)2+ 0o log( y)] (2.111)

For y > 1 each one of the terms in the integral diverges when z = 1/y. We can regularize the divergence
adding a small imaginary part y — y + ie. This makes each integral complex, although the sum is real
when € — 0. To express our result in terms of a minimal set of hypergeometric functions, we use the
following identity:

(c—Db)oFi(a,b—1,¢,2) + (¢ — 1)(z — 1)2Fi(a,b,c — 1, 2) (2.112)
+z2(a—c+1)+b—1]2Fi(a,b,c,z) =0.

Furthermore, one can use an additional identity to make the final result manifestly real also for the case
y>1

I(e)(1 -2 T(a+b—c)oFi(c—a,c—bl+c—a—b1-—2)
['(a)T'(b)
L(e)T'(c—a—0b)o2Fi(a,ba+b—c+1,1—2)
I'(c—a)T(c—b) '

2 F1(a,bic;2) = (2.113)

+
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After solving all integrals, recursively applying Eq. (2.112) and transforming the hypergeometric func-

tions using Eq. (2.113), one arrives at:4
- dy? — 2@+ 5y —w@Bo+T7) (. d -
Ikt = —oFi(1,1+¢,2 1-— 2.115
nd(way) (l_y)2(1+a})1—\(1_a)) wdEQ 1( 1+e 24w, y) ( )
1—2w

+<leog(y)—<DH1&— = )2F1(171a2+@71—y)}
I-w e—0
1-0)0B0—y+7)[Hi—s —logly)] —@[B3&(y+1) —by+14] —y+7

F2-a)(1-y)? ’

with H, the harmonic number, which for non-integer values of a can be expressed in terms of the
digamma function: H, = ¢ (1 + a) + .

Equation (2.115) has been cast in a way in which the no-resummation limit & — 0 is smooth. The
singularities that appear in individual terms of JI| for z = 1 manifest themselves now as a double pole
in IF, at y = 1, which is however fictitious, as the result is indeed smooth at this value. To solve this
problem in numerical implementations we provide in Sec. 2.6.2 an expansion of this result around y =1
at an arbitrarily high order.

The result in Eq. (2.115) is adequate for a numerical implementation since the derivative with re-
spect to € can be taken numerically through finite differences. It can be also performed analytically,
using Eq. (2.113) in 2 F1(1,14+¢,2+@,1 — y) and the following identity

d - wy(l—y) =% O T P
&2}?1(1, 1+ g, 1—® +€,y) E_)OZ _ngQ(l — W, 1-— w, 1-— (U,Q - w,2 - W7y), (2116)
to arrive at the equivalent expression:
1N (@,y) = (2.117)
Oy(l—y) 3 %2y (@+5) +0(B&+7) —4y? | 3F(1 — 0,1 — 0,1 — 3,2 — ©,2 — @,9)
r'e—-—w)(l—-w)

(I-ww@Bw—y+7)[Hi—g—log(y)| —@w[3w(y+1)—by+14]—y+7
I'(2-a)(1-y)?
[2y@+5)+@@Bo+T7) —4y* {(1 - @)[Hig —log(y)] — 1}2F1(L, 1,1 —@,y)
I'(2-a)(1-y)? '

+

The (1 — y)~3~% factor and both hypergeometric functions are complex for y > 1 but the combination
is real. To have all terms explicitly real for y > 1 one can use the following relation

d 1—y 1
—oFi(1,1 24+ w,1— = ———=3F(2,24+0,24+w,34+w0,3+w0,1 — — 2.118
d€2 1(7 +é&2+w, y) 30 y2(2+&))23 2<7 Fw,2+w,0+w,3+w, y) ( )
o 14+w - - - ~ ~
+y (1—y)mgFg(Qer,Q+w,2+w,3+w,3+w,1—y),

14The result as given in this equation is very convenient for a numerical implementation, since one only needs to evaluate
two hypergeometric functions (which might be numerically expensive) using the following approximations:

d 1

deF1(1,1+6,2+a),17y)‘ OZ?[2F1(1,1+€,2+L:),17y)72F1(1,176,2+L:),17y)], (2.114)
g e= 15

1
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2F1(1,1,2+£:I,17y)2 2F1(1,1+E,2+L:2,17y)+2F1(1,17€,2+¢:),17y)},

with a value of € which can be safely taken as small as 10~6.
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which does not rely on numerical derivatives, is manifestly real for all positive values of y but is numer-
ically unstable if y — 0. This poses no problem in practice, since for y < 1 one can simply switch to
Eq. (2.117). To derive the result in Eq. (2.118) we proceed as follows:

1d 1
2F1(1 b2—|—w 1—)

d
—oFy (1,1 24w, 1— =
de? (L 146240, v) 0 ydb Y

b—1+@
1d 1 1
{ F1<1,1+@,b+1,1—> —2F1<1,b,b+ 1,1—)] (2.119)
ydb Y Y/ lv—s14a
1d Y+ ~ !
= — 77 2F1(b51+w7b+1717y)72F1 1,b,b+1,1**
ydb bo14®

where in the first step we have used Eq. (2.61), in the second we apply the chain rule on derivatives,
and in the third line we use again Eq. (2.61) on the first term. Using the identity

d
—oF(a,b,a+1,2) =

3 s3fh(a+la+1,b+1a+2,a+22), (2.120)
a

bz
(a+1)

in the two terms of the last line in Eq. (2.119) we arrive at the result quoted in Eq. (2.118).

In Appendix B.2 we present an alternative (although more complicated) expression for Ifd which does
not involve numerical derivatives and with every term manifestly real for y > 1. We use this result as
an additional cross-check of our analytic derivations. In any case, we shall see that for implementations
in computer codes, one never needs to use expressions involving hypergeometric functions.

2.6.1 Expansion around s =0

For numerical implementation purposes, it might be convenient to obtain an analytic expansion of
I,4(@,y) around y = 0 since otherwise the evaluation of the non-distributional jet function running might
lead to a performance bottleneck. One can do so by using the known expansions for the hypergeometric
functions, e.g.

Tla+9)T(b+1i)

F b,
2Fi(a, b, ¢, 2) I‘c—l—zfz—i—l)z’

(2.121)

but in order to have a relation valid at arbitrarily h1gh orders it is simpler to use the expansion of Jyq(x)
around x = 0

JE(x) = —Z[Gi—|—7+z’(7+3i)10g(x)}xi, (2.122)
i=0

J(x) = — 7 1 —z)°

O Y (e

on the leftmost expression of the bottom line in Eq. (2.32) and integrate analytically term by term.
It turns out that one can sum up the corresponding series using Eq. (2.121) to recover an expression
analytically equivalent to Eq. (2.117). The master integrals that we will need are

A eai i LA+
m/o dely =2 =y s ) (2.123)
y~ ! —@ 1 i F(1+Z>
S | 07 oste) =y Hea st
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where the bottom line can be obtained from the top one acting with a derivative with respect to i. We
then arrive at

. 1 il , . . i
@) =~ g 2 gy, (O ) i 3 H— Heo los) o' (2120

- 1 . 4 7! i
Iﬁ]d(%y)_M;G‘Fm)M(y) )

where we have used the Pochhammer symbol (a), = I'(a + n)/I'(a). Both series converge well for
lyl| < 1, and therefore apply mainly in the peak of the distribution. For 2-jettiness the series can be
easily summed up using Eq. (2.121) and the series expansion for the 3F; hypergeometric function:

T =T+ +i)l(c+i) ,
sFa(a,b,c,d, e, z) = ORO ; T+ (e + TG+ 1) 2", (2.125)

For P-scheme thrust one can convert the term involving harmonic numbers into the derivative of ratios of
gamma functions to use Eq. (2.121) and recover the result we already obtained with a direct integration.

2.6.2 Expansion around s = m?

The results obtained in Eqgs. (2.115) and (2.117) are not useful for a numerical implementation in the
vicinity of y = 1. When y is sufficiently close to unity one can switch to a series expansion to arbitrary
high power using the change of variables z — 1—z in the rightmost expression at the bottom of Eq. (2.32)
and the following expansion:

TR0 = 2)(1+y)] = — [W log(1— 2) + Z;G} (1 —2) {29_224_22 (2.126)

5z—|—18]_yQ(l_Z){Z(l—z)(18—3z—2z )

x log(1 —z) + g = log(1 —z)

36 — 24z — 722 (=2 , . 2
+Z4}—10g(1—z)§y poe: BE+1)(E+2)—2(i+ 1)z — 427

— 2 i—1

- % Zyi(lz%{w +1)(i +2) — (i + 1)(3i + 10)z — 2[1 — (i — 5)i]2?}
=3

+D oy Zf(—l)’“*i (1= 2)5+1 (k4 1)(k + 2)(6 — 5i + 5k + 42)

S (i—k—2)(i—k—1)(i—k)

=3 k=0

Terms have been combined such that the coefficient of each power in y has a well-defined z — 0 limit and
therefore we can integrate coefficient by coefficient. In practice, one can integrate each piece assuming
a non-integer value of 7 and subsequently convert the gamma functions that would become divergent if
w = 0 using the identity )
ne
Te—n) _ (D" I(=e), (2.127)
T(1+¢) F'n+1-—¢)
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As expected, there are large cancellations among the various terms for a given power of y, but when
adding all contributions one gets the following nicely convergent series:

250+ 9)@H 5+ 7% +190° + 225 + 18

@+ D@+ 2)(@+3)(1—a)

IH(@,y) =

(2.128)

oT(1+@) i (B D) (k+2)(k+2)(5@+9) — 5i(@ + 1)]
CT(1-@) ;(1_‘”) kz;; (i—k—2)(i—k—1)G—-kI(k+o+4)
I(l1+o) il1—y)? - PP e -
+2F(1—dz) ZF(i+®+4){w(z+w+1)[2z3+22(w—3)+2(w(5w—8)—39)

i=1
—(@46) 5@ +9)] +[20i —2i0(i(30+T)+ 70+ 9) +4(5@ + 9)]
x @D @i+1) -0y 1 -a)-1]},

where again special care has been taken to write the expression in a manner in which one can set
@ = 0 without any worries. The series converges well for |1 — y| < 1, and therefore, combined with the
expansion worked out in the previous section, for P-scheme thrust one can use expansions if y < 2.

2.6.3 Expansion around s = oo

Since the numerical evaluation of hypergeometric functions is slow, it is convenient to figure out another
series expression (in this case, of asymptotic type) around s = oo, which is of course tantamount to
m = 0. This limit is very relevant, since it can be applied in the tail of the distribution and almost
everywhere if the heavy quark mass is much smaller than the center-of-mass energy, as is the case for
bottom quarks at LEP.

Even though one could, in principle, use known results for the asymptotic expansions of o F; and 3F5
hypergeometric functions, it is in practice simpler and more efficient to compute the series directly in
its integral form. This is complicated since, as we shall see, the expansions involve powers of log(y), and
so one cannot simply expand the integrand and integrate term by term, as we did in Secs. 2.6.1 and 2.6.2.

We found out that the Mellin-Barnes representation in Eq. (1.71) is optimal to achieve our goal.l®
As we saw in Sec. 1.5, after applying Eq. (1.71), the expansion around x >> 1 is obtained integrating by
residues the poles that appear on the real axis for the Mellin plane variable'6 ¢ > v (the poles for t < 0
correspond to the expansion z < 1).

Mellin-Barnes will be further exploited in Chapter 4 for the development of an easier way to com-
pute massive bubbles contributions, whereas in the rest of this section we just apply it to work out the
corresponding asymptotic expansions for thrust and 2-jettiness in the regime we are now studying.

We note that this expansion is well convergent if 1/y < 1, which for P-scheme thrust means that in
numerical evaluations one can always use one of the three expansions presented in this section and never

15This representation can also be used to solve the RG equation exactly. Applying a Mellin transformation to the first
line of Eq. (2.111) in the y-variable, solving the z-integral and transforming back one gets a closed (and rather short)
analytic expression for [ f 4 in terms of MeijerG functions,

0,0,0 2,3 0,0,0
1,1,@ > ~ 7G55 <y 0,1,& > (2.129)
which are not very convenient for a direct numerical evaluation, but can be related to hypergeometric functions.

161n this Chapter we will use t instead of h.

Ih(@,y) =3G633 (y
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needs to evaluate hypergeometric functions with dedicated routines. For jettiness the same statement is
almost true, except in a small vicinity of ¥y = 1 in which no expansion was found but, unlike for P-scheme,
the analytical results already provided are numerically stable since there are no large cancellations.

2-Jettiness

We start from the integral form given in Eq. (2.106). The only complication in this case is that we have
to deal with a logarithm, which does not have the form in Eq. (1.71). However, it can be brought to
the standard form using Eq. (2.107)

d—i—zoo
—log(l—i-zy o Z/ dx/d t(zyz) ' T(H)T(1 —¢) (2.130)
d+i00
re)raa—«
o [ (e TR,
T J d—ico t

with 0 < d < 1. Since the denominator of the first term in Eq. (2.106) is squared, when applying the
Mellin-Barnes representation (1.71) the first pole appears at ¢ = 2. This is accompanied by an extra
power of y, such that we can nicely map the poles of the first term into those of the second by shifting
the integration variable ¢ — t + 1 in the former. After integrating over z we obtain

Lay(@.y) = (2.131)

1/0“’00 L TA—=t)T ()12 —t+4
2mi /..

dt
Y Ta—t-o) t-1

—i00

with 0 < ¢ < 1. The integrand has a triple pole at t = 1 and double poles at natural values of ¢ larger
than 1. We compute the triple pole by itself and treat the rest generically using

1 [1  2H,—7vE)
(e —n)? = - 0y 2.132
€= = e |+ P o) (2.13)
With this result we obtain the following asymptotic expansion:
1
J (N “n o~

Ind(way) - F(l _ (:}) nzz:l(_y) Cn[wa IOg(y)] ’ (2133)

(@, L)=—-1-20[H o —LP>—(4+@)H_s — L -1+ 7% —20M (1 - &),

~ o (]- +a))n71 _ o ~, _ -
Cn>1(va) - (n_ 1)2(n_ 1)|{(n 1)[(” 2)(n+ 1)+6][W(Hn*1 Hner*l +L)

—cos(mo)I'(1 —@)I'(1+®)] — (n—3)(n+ 1) &},

using again the Pochhammer symbol. We have written each coefficient in a form such that the i — 0
limit, relevant in the far tail of the distribution, is smooth.

P-scheme thrust

Applying the Mellin-Barnes representation in Eq. (1.71) to the first line of Eq. (2.111) and integrating
over z we arrive at an expression that involves different powers of y with poles shifted accordingly.
Therefore, using the same strategy as in the previous section, we can shift the integration variable by
one or two units such that poles and powers of y in each term exactly match. This is very important,
since the expansion in 1/y must be carried out consistently given the large cancellations that take
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place among the various terms due to the divergence at £ = 1 of individual terms in de (exactly as it
happened for the expansion around s = m?). After some work we arrive at the following expression:

1 fetiee cos(mt)T(1 — )T (t)

— dty™" 2.134

omi / 4 T(1l—t—a) (2.134)
X {(7T—3t)t{H-y — H_y_5 + log(y)] + 6t — 7} .

We have already implemented a few simplifications because we assume the result is real, and therefore

discarded the imaginary parts that would arise from (—y)~*. We have checked that indeed this is the

case as long as one expands strictly in y without mixing any powers. Harmonic numbers are caused by
the term in JX) proportional to log(z).

IH(@,y) =

—100

The integrand has now double and triple poles, located at natural values of ¢, the latter arising precisely
because of the harmonic numbers. There are no poles arising from H_;_; because the corresponding
gamma function in the denominator has poles at the same values, making the ratio regular. To compute
the residues of the poles we need, on top of Eq. (2.132), the following expansion

H. T(=—n)? = (nl')g{—; + é[w(o) (n) — 2H, + 3] (2.135)

2 2 — D)y (n) —
+ YEN + (n')/En25 )n¢ (’I’L) 3}+O(€0>7

which can be obtained from the relation between harmonic numbers and the digamma function and a
bit of algebra. Using these results we arrive at the following expression, in which again special care has
been taken to make the w — 0 limit smooth:

Irﬁ((:),y) _ 1_‘(117(:)) Z Cn[(:%yl:g(y)] 7 (2.136)
n=1

en(@, L) = (;(—; ﬁ);)'l {n _|2_ = [L(3n — T)n(n + &) — 3n? — 6n® + 70]

x [cos(m@)T(1 — )T (1 + @) — (@ (n) — O (n+ @ +1))]

o1 5y R Bnln +20) = 70) = 3n(& —3n +7) — 70)

—(7=3n)n|oyV(n — oW+ @) —oL? e
(7= 30 w4 1) - a4 &) - o -
+ [ () = O (n+ @+ DD (1 +n+@) - (n)

+ 2 cos(mw0)I(1 — 0)T'(@ + 1)]

2.7 Power corrections

Once we have all the ingredients in the factorization theorems we can carry out the implementation of
the partonic cross-section at leading order in the corresponding EFT. As discussed before, when con-
sidering a massive primary quark, the bHQET and SCET frameworks will be suitable to describe the
peak and tail regions respectively. Nevertheless in this section we present a procedure to complete the
EFT setup by adding the missing power corrections to extend the regime of validity.

Since the numerical analysis will be for the SCET results we will also consider this case for the
discussion below but an analogous process can be applied in bHQET.
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2.7.1 Mass and kinematic

For massless quarks, there are only kinematic power corrections and SCET reproduces entirely the
singular terms'” (which are the leading order part) of QCD. Therefore to include the fair-tail region in
the analysis by matching to the full-theory description one can just add the non-singular part of the
corresponding fixed-order massless QCD cross-section to the massless resummed SCET result

1 dgm=0 1 d6SCET,m=0 1 da,QCD,m:O

NS
— =— — 2.137
o9 dr o) dr + 0o dr ’ ( )

On the other hand, a non-vanishing primary quark mass is power counted in SCET as the square
root of the kinematic variable i ~ /7 ~ X in such a way that in the factorization theorem only the
leading order mass terms of the singular and the limit A — 0 of the non-singular QCD distribution [see
Eq. (2.90)] are considered:

N ~QCD ~QCD
1 dO'IS:;‘(OjET 1 dasing . 1 dUNS 2
i - n = 1 —_—— ~N.m~N\). 2.1
P 0 dr (r,m =0)+ lim P (r ,m~ ) (2.138)

Then, to account for the power corrections we will follow the same approach as in Refs. [1, 2, 8], where
the corresponding singular structures are implemented within the SCET factorization theorem in order
to apply the resummation on them as well. This is achieved by modifying the matrix elements in the
following way:

HC(Q,m,M):RS(m){HW[?g — 16 + hS (1 )+1210g<i)—81og2(§)ﬂ, (2.139)

I ) =[S ) + Apla(e) + 4| 25 )L—[l—yg<m>](1>+,

X €T

and carrying out the rescaling due to the tree level mass corrections RS (1) accordingly when combining
them together. Notice that the soft function cannot have mass contributions at one loop so it remains
unchanged. Imposing that the modified factorization theorem to reproduces full-QCD at fixed order,
one arrives at

V) = ey (L= B G0 Bs i)+ BSs(m)} (2:140)

R () [, () + 2jy, (1) ] = 2{ Bs(m)[1 — Rg ()] + Bys () } log (1)
+[1 = Rf (M) As (1) + ARs (i) = HG (1) |

where we defined A (1) = ASCFT (i) + AFS (i) and B, () = BSFT (1) + B{g(1). The system of
equations is undetermined but we can distribute the corrections according to a parameter £ and vary it
in the numerical analysis (between 0 and 1) to account for this uncertainty:

¢ e (1) . (2.141)

. 1- . C/a
) = o B (). J500) = Gl oG,

Rg (m) corr

17By singular terms we mean in practice those terms that contain distributions. There may be other terms with
divergences in the dijet limit but they are of logarithmic nature and therefore integrable singularities. This happens for
the event shapes whose minimum value is zero such as any in P- or E-schemes.
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The final partonic cross-section is then given by adding the non-singular corrections to the resummed

o)
SCET factorization theorem with modified matrix elements denoted by dafﬁET, that is:

~C ~C ~C

I g g (2.142)
1 d6Gs  ay(u)Cr ) A
AN O UICE ) — ST ().

09

2.7.2 Hadronization

Despite the fact that in the fair tail of the distribution hadronization effects can be taken into account
through an OPE leading to a shift towards the right at leading power, to account for them in the whole
range one needs to convolve the partonic result with a hadronic shape function:

do®(7) Qr  ds¢ P
= dp—(7— = |F(p). 2.143

o e Ul (») (2.143)
The shape function properties are the following: it must be different form zero only for positive values
of p, should be normalized to unity fooo dpF(p) =1, has to peak at p ~ Aqcp and its moments shall be
well defined such that they can be matched to the OPE results. In particular, even though the code we
have developed allows the convolution with any function, for the numerical analysis we will work with:

_ 128p e~ ¥

F
(p) o

(2.144)

that comes from the basis proposed on Ref. [49], taking A = 0.5 GeV.

2.8 Numerical analysis

In this section we present an analysis based on the numerical results obtained for the P-scheme thrust
distribution at N?LL+O(ay) in SCET including power corrections for a (massive) primary bottom
quark, but first we shall discuss a last couple of details necessary to obtain the final expression.

The natural scales of the matrix elements are dynamical (different on each point of the distribution)
therefore, to properly implement the resummation, a different value for the renormalization scales on
each point is also needed. This is achieved through so-called profile functions, that is, function that de-
pend on the value of the event-shape. Here we use the ones introduced for the massless case in Ref. [38]
because we will consider physical situations in which the mass effects are still small (scenario IV) and,
in principle, there is no need of mass-dependent profile functions.

Additionally, the fixed-order QCD distribution, necessary to extend the validity of the analysis to the
far tail as explained in the previous section, is only known numerically (but with arbitrary precision)
from the algorithms described in Ref. [48]. To incorporate this contribution in our code, we parametrize
the function obtained after the known singular behavior is subtracted, combining a fit (for the lower
values) and an interpolation, smoothly joined.

Having added all pieces to our code, we show some cross sections as a number of plots in the rest
of this section for which we use a; running at 4-loops with five active flavors (four light quarks plus

the heavy bottom) and the reference value aﬁ"f :5)(m z) = 0.1181. We also employ the 4-loop MS mass
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scheme with, unless otherwise stated, the following reference value: 7, () = 4.2 GeV.

Fig. 2.7 represents the contribution from the different pieces (each of them convolved with the shape
function) in the following cross-section decomposition:

do  doscer |, dons _ doging . dong | dons
— = = 2.145
dr dr + dr dr + dr + dr ( )
_ doi;n:go n daf,ilng n dopna n dons _ daf::;go n dJ%CET n dong
- dr dr dr dr = dr dr dr ’

where the current superscript C is omitted to alleviate the notation. The SCET part, given by the
modified factorization theorem [see Eq. (2.142)], is split first into terms with non-distributional origin
and those coming from singular ones, which then are further divided into massless and mass corrections.
In the last equality all kind of mass corrections, singular and non-distributional, are grouped together. It
is worth noting the large cancellation between the singular mass corrections and the non-distributional
terms that, together with the fact that the non-singular corrections are almost negligible, leads to the

Q = 20GeV, vector current, P—scheme Q = 40GeV, vector current, P—scheme
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Figure 2.7: Decomposition of the differential cross section at @ = 20 GeV (left panels) and 40 GeV (right
panels) in various components for the vector (upper plots) and axial-vector (lower plots) currents. Red
and blue correspond to the singular and non-distributional terms, respectively, while their sum defines
the SCET cross section, shown in magenta. The massless approximation is shown as a dashed gray line,
while massive singular corrections are depicted in cyan. The massive corrections to the SCET cross
section (massive singular plus non-distributional) are shown in pink. Finally, the black solid line is the
sum of all contributions.
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expected low mass sensitivity of the distribution, in such a way that the sum of all contributions is very

similar to just the massless result, specially for the vector current.

0O = 40GeV, P—scheme, vector current Q = 40GeV, P—scheme, axial current
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Figure 2.8: Uncertainty bands for LL (green), NLL (blue) and N2LL (red) for P-scheme thrust cross
sections at 40 GeV (figures on top) and 80 GeV (figures at the bottom), for vector (left figures) and axial-
vector (right figures) currents. The bands are obtained with 500 profiles generated randomly selecting
values for the parameters that define them.

The quantities in Fig. 2.7 were obtained with the default values for the profile-function parameters
and £ = 0.5 but we varied them within given intervals to estimate the uncertainty in each perturbative
order of resummation. The profiles ranges are those specified in Ref. [38] and we also considered:
’RSE[—Ll], 56[0,1]

o = S[@ 4 n)asr — 1], (2.146)

2

As a result, we ended up with the error bands in Fig. 2.8 where we can see a good convergence in the
tail region since the higher-order bands are contained within the lower-order ones. This is however not
happening in the peak with the LL band being far below the other ones, which could be a sign of the
need of wider intervals for the variation of the parameters setting that part of the profile functions. On
the other hand LL and NLL orders lead to very similar relative uncertainties, increasing with the value
of i at @ = 40 [80] GeV they change from 36 [45]% at 7 = 0.07 to 84[80]% at 7 = 0.28. At N2LL the
relative uncertainty is completely flat between 0.07 < 7 < 0.3, and smaller than the two lower orders:
36 [30]% for @ = 40[80] GeV. We observe the same relative uncertainties for vector and axial-vector
currents.
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In Fig. 2.9 we plot the difference between the vector and axial-vector currents normalized to their average.
To make the figure clearer, we use a logarithmic scale on the y axis. We observe, as expected, that for
larger energies the difference becomes smaller, since both currents approach the (current-independent)
massless result.

V-A 1 0 - rrrrrrrrrrrrrrrrrTrT T T T T T T T T T '__
ddo-vT/z [ P—scheme thrust ]
o

[ 0=20GeV 1
1 -

01k 0 =80GeV
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0.01 005 0.10 0.15 020 025 0.30

T

Figure 2.9: Difference between the vector and axial-vector differential cross sections normalized to the
average of the two currents. We show results for Q = 20 GeV (red), Q@ = 40 GeV (blue) and Q = 80 GeV

(green).

Finally, we carried out a comparison between schemes. Fig. 2.10 shows the P-scheme result together
with the 2-jettiness and massless distributions. The 2-jettiness pothole is caused by large logarithms
signaling the necessity of bHQET to correctly describe that region, as explained in Sec. 2.2.2. As
expected, the three cross-sections become similar for large energies but the P-scheme is always closer to
the massless case whereas 2-jettiness’ peak is higher and shifted to the right.

This behavior of the peak is better appreciated in Fig. 2.11 where its position and height are rep-
resented for different values of the MS mass reference value at a fixed center of mass energy. Indeed,
we can see how both P-scheme plots are almost constants while the 2-jettiness ones increase. In the
case of the position the growth is basically quadratic, coming mainly from the tree level dependence:
Tr}flin =1—+1—4m2 ~2m2 In fact, we performed a fit of the form: Tax ~ 0.0255 + 1.757%2 which

closely reproduces the curve.

2.9 Summary

In this Chapter we have studied the mass sensitivity of event-shape cross-sections when considering
variations of their massive scheme. First, we examined the collinear limit of the 4-momentum and found
the same expression both in the P- an E-schemes, which leads to equivalent jet functions in both cases.

We have computed for thrust, heavy jet mass and C-parameter the remaining matrix element in the
SCET and bHQET factorization theorems at N2LL + O(a) precision, namely the NLO jet function.
Since the P-scheme measurement is non-inclusive, the calculation has been done through cut Feynman
diagrams which therefore involve phase space and loop integrals. Nevertheless, we provided an optimized
and compact form for the jet function definition in each EFT, written in terms of quantum and kine-
matic operators, that facilitates its computation and applied it also for M-scheme as a comparison with
the previously employed method, that is, through the discontinuity of a forward-scattering amplitude.

The results contain singular terms and a non-distributional part whose RG evolution represents the
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Figure 2.10: Differential cross section for massless quarks (green lines), 2-jettiness (blue lines) and
P-scheme thrust (red lines) produced through the vector current. Panels (a), (b), (¢) and (d) correspond
to center-of-mass energies of 20, 30, 50 and 80 GeV, respectively.

most severe source of computational resources in the code for the final cross-section. As a consequence,
we tried to get the most optimized expression for the implementation of its corresponding convolution
with the running kernel and ended up with several analytical solutions as well as fast converging expan-
sion series for each regime, that overlap, so the whole range can be covered.

Before carrying out a numerical analysis, we discussed how to complete the EFT description, extending
its validity region by incorporating full-theory power-suppressed information. Having a non-vanishing
mass leads to singular power corrections, which can however be absorbed in the factorization theorem
by modifying the matrix elements in order to have resummation over these divergent terms. We can also
account for soft hadronization effects through a shape model function. All these theoretical refiniments
have been included into a numerical code.

Finally, several plots for the final SCET P-scheme thrust distribution were shown making important
remarks, among which we count: the cancellation between singular mass corrections and the non-
distributional part, the convergence of the resummed perturbative series and the low mass sensitivity,
which makes this scheme more suitable for « determinations.
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Figure 2.11: Peak position (a) and peak height (b) for 2-jettiness (blue) and P-scheme thrust (red)
massive cross section. Results correspond to default profiles, vector current and a center-of-mass energy
of 40 GeV, and with my, = m, (). We vary the bottom mass between 0 and 14 GeV, such that SCET
still applies.
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Chapter 3

Oriented event-shapes (NLO
Oriented Event-Shape Distributions
for Massive Quarks)

In this Chapter we will be concerned not only with the geometric properties of the event (so to say, the
value of the event shape variable itself) but also with its orientation with respect to the beam direction,
that is we will consider double (event-shape and angular) differential cross-sections. An infrared- and
collinear-safe way of determining this orientation is by employing the axis that appear in the thrust
determination of Eq. (1.14). The final-state configuration studied in this part of the work is represented
in Fig. 3.1.

hemisphere A hemisphere B

~>

I“
SN

( : A
A
\ /

ultrasoft particles

Figure 3.1: Schematic representation for the measurement of the event orientation through the thrust
axis

In Ref. [51] it was shown that, if the QCD-electroweak factorization shown in Eq. (1.5) holds, the oriented
distributions in the final state for massive or massless particles, parton or hadron, can be decomposed
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in two different structures at all orders in perturbation theory:

1 do 3 1 do 1 daang
. — ~%n- 1
oo dcos(B7)de 8[ + cos?(07)] o0 de + [1 — 3 cos? (GT)}UO 1o (3.1)
1 do ! 1 do
oo de /_ ldCOSwT)aO dcos(O7)de ’
1 doang 3 (! 1 do
— “rang _ © 9 _ -
o9 de 8/_1 deos(6r)[2 — 5 cos” (GT)]O'O dcos(fr)de’

and the specific computations were carried out at parton level for massless quarks, analytically at O(«s)
and through a Monte Carlo generator at O(a?). From these differential distribution one can also define
the total oriented cross-section: L
o
Rang = / de— ang , (3.2)
0o

which is in fact a suitable observable for a; determinations since it is proportional to the strong coupling
but is less affected by hadronization effects that event-shape differential distributions.

In this Chapter we aim to obtain these analytical fixed-order results at NLO for massive quarks. We
will see that, unlike for the massless case, the leading order O(a?) contribution for the vector current
channel is different from zero due to the primary quark mass, leading also to singular terms at one-loop
with infrared divergences in the virtual and real contributions that will cancel each other when added up
to yield the final result, making necessary to keep d = 4 — 2¢ in the phase space integrals if dimensional
regularization is chosen to make such IR divergences manifest.

The form of the angular event-shape distribution is the same as in Ref. [48] for the unoriented case:!

1 do—ac;l ~ S Qs (lu‘) an, A 2
o B = RO () e — eqn ()] + O ML AT ) — i (17) (33)
0
( ) pa 1 as(p) ;
BaeC c Fors O(a?
plus ( ) € — emin () N +CF T Cie (evm) + (Ots) )
with the non-singular terms contained in F7%. For the axial-vector current one has ng Azng A —
B;H‘ugsA =0 in Eq. (3.3). Therefore, for s1mphc1ty we adopt the convention RY,, = RJY, A28 = AaneV

1%
and By = B, and do not refer to the axial-current coefficients anymore.

3.1 Procedure and Notation

The strategy we follow is projecting out the angular part from the beginning of the computation through
the application of the third line in Eq. (3.1). However, one could also carry out the calculation of the
whole double differential cross-section and group the coefficients for the structures together at the end,
checking that indeed no other angular structures emerge. We have followed both paths and found agree-
ment, but present here only the direct strategy.

Since we are sensitive to the orientation, the starting point in this case is Eq. (1.3), to which we have
to insert the measurement delta and the oriented projector to get the angular part of the event-shape

1See also Eq. (2.88) for the specific case of unoriented P-scheme thrust.
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distribution.
Writing the hadronic vector as:

XI5 ) = [‘“fjﬂi[“(“)]hc (3.

™
=0

where renormalization has already taken into account, the hadronic tensor takes the following form:

n—2
v as(H v
0171 (x17210) = | 2] g 35)
v - as(ﬂ“)i C,uv C,uv __ C, Cyv t
HS’N :Z|: ™ ]Hm»”, H"iu Zzhnji hnz j)\] )
=0 j=0 X

where in the previous two equations the subscripts p and A stand for the polarization of the initial-
and final-state particles, respectively, n for the number of external partons, and we have also factored
out some powers of the coupling constant such that ¢ represents the number of loops. All in all, the
expression for the angular cross-section is:?

1 doly  =[as(i)]” an [ o[ e 5 B
et e (neg). mas R [E mee(ng). oo

n=0 n=0

L
ang,C (m,e,“) fﬁé; Z / AP ioHS Y 0le — e(@,)][2 — 5eos? 07 (D,,)]

mpec(n ) - [ ;r;fvo(e,mw),
Q ’ Q

being d®,, the Lorentz-invariant n-particle phase space. Here e(®,,) and 07 (®,) return respectively
the value of the event shape e and angle 6 at the phase space point ®,,. For n = 2 one has that
e(P2) = emin, the lowest possible value of the event shape and 07 (®2) = 6 is the angle formed by the
massive quark and the beam. In the remainder of this Chapter we compute the first two perturbative

orders:
/ Ady HSH / d(bgHg%“l’] , (3.7)

with HS" = 2Re{>", hzcoﬁf [hgli] }and HSGM = > hgoﬁf [h3coi}\] . Finally, hgdﬁf has contributions from
two different Feynman diagrams.

HE =L, / AP, HSGM™,  HE =L,

3.2 d-dimensional phase space

Since virtual and real contributions are individually IR divergent (collinear divergences are regulated
by the primary quark mass) we need to regulate the phase space integrals. We choose dimensional reg-
ularization d = 4 — 2¢ because it does not introduce an additional scale that would make computations
much harder, and moreover also preserves gauge invariance.

The final state containing the lowest possible number of particles consists of a massive quark-antiquark

2In practice, to compute Ring’c one can simply use the integral formula for fecn dropping the measurement delta
function dle — e(Qn)]-
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pair which are back-to-back (we consider the computation in the center of mass frame). Therefore,

setting the z axis on the beam direction, the factor necessary for the tree-level and virtual-radiation
contributions is:

I doy, B2 sin~%¢(0) 33

2Q2 dcos(f) ~ 25-4eQ2+2eT(1 —¢g)ml—=’ (3:8)

with m and 8 = v/1 — 4m2 the primary quark mass and velocity, respectively, and 6 the angle formed
by the quark’s 3-momentum and the beam direction that corresponds to the fist polar angle 6; in the
construction of the (3 — 2¢)-dimensional spherical coordinate system. Carrying out the integration over
0 one recovers the known result for the 2-body phase space:

_ ﬁl—ZEF(l _ E)
2Q% (4m)1—eT(2 — 2¢)

®, (3.9)

At NLO the real-radiation part is given by two particles with the equal mass m (the quark-antiquark
pair), labeled as 1 and 2, and a gluon labeled as 3 in the final-state. We introduce the dimensionless
variables z; = 2FE;/Q with E; the energy of the i-th particle and ¢ = 1,2, 3. Conservation of 3-momentum
in the beam direction (z axis) and energy conservation implies:

b1 cos(01) + B2 cos(B2) + x5 cos(f3) =0, 1+ xo+1T3=2, (3.10)

where we have defined 3; = 2|p;|/Q = \/x? — 4m? —not to be confused with the particle’s velocity
B — with m; = mo = m and M3 = 0. One has that x; > 2/ within the phase space boundaries.

For simplicity, we define the x axis such that p; has no y component and a positive projection on
the z axis (that is, through the Gram-Schmidt process):

fi = ﬁl 7(ﬁ1'ﬁz)ﬁz

[p1]? = (D1 @iz)

s (3.11)
Here @; with ¢ = x,y, z are three unitary vectors pointing in the direction of the respective coordinate
axes. To define the y axis we use once again the Gram-Schmidt procedure:

o P (P )i — (P )l
y = = ~ = ~
VIP2l? = (P2 02)2 — (Do g)?

such that, by construction, - p> > 0, which is exactly what we need to define spherical coordinates
in a coherent way in our (3 — 2¢)-dimensional euclidean vector space. This choice greatly simplifies
the computations but, however, implies @, x @, = sign[t,- (p1 X p3)]é,, so that the axes orientation is
not always standard. Since there are no outer products in our matrix elements this fact is irrelevant.
Moreover, the inner product pi- po can take positive and negative values. In any case, to avoid this
issue, whenever .- (p1 X p3) < 0 one can use ps first to define the z axis followed by pj that fixes the y
axis. In Fig. 3.2 we illustrate this procedure for the ¢ = 0 case.

, (3.12)

To compute oriented event shapes we need the phase space differential in the quark and anti-quark
energies, as well as in the angles 0; and 6; defined by the 3-momenta of particles ¢ and j, which do
not have to be necessarily the quark and anti-quark (but of course we need ¢ # j), and the beam. The
angles éij formed by the 3-momenta of any two different particles in the final state do not depend on
6; or 6; (ergo, do not depend on the orientation), and can be expressed in terms of masses and energies
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Figure 3.2: 3-dimensional coordinate system for the computation of the three particles phase space

as follows:
Lo 4[(1 — 21)(1 — 2o (21 + 29 — 1) — 222 4E(h, 21, 22)
sin?(0;;) = 3= st (3.13)
5267 5252
~ xix; — 2(x; + x5 — 1) + 4,
cos(6;;) = —2 ﬁJB- A
iP5

The result on the first line shows that j;3; sin(éij) = \/4&(m, x1,x2) is independent of ¢ and j as long
as i # j. Since 0 < 0;; < 7 one has that sin(éij) > 0 anywhere in the phase space such that the square
root can be computed unambiguously. Including the flux factor one finds the following result for the
3-particle phase space in d = 4 — 2¢ dimensions:

d(I)g 45Q745

_ B, % B; %6(hy)
2Q2  2(4m)1-2%T(1 — 2¢)

1/24¢ !
h!
hi; = sin®(0,;) — cos?(6;) — cos?(0;) + 2 cos(f;;) cos(6;) cos(6;)
= [cos(0;) — cos(0;;)] [005(9;;) — cos(6;)],

cos(@f;) = cos(6j) cos(8;) £ sin(6;;) sin(0;) = cos(8ij F 0;) .

/dxldxgdcos(ﬂi)dcos(ﬂj) (3.14)

As expected, the flux-normalized 3-particle phase space is dimensionless for € — 0. Here 0; is identified
with the first polar angle 6} in the (3 — 2¢)-dimensional spherical coordinates that specify the direction
of the i-th particle’s 3-momentum.

For simplicity, we carry out our discussion for the choice ¢ = 1, j = 2, but the result is valid for
any other pair of values, as shall be proven later. Our axes choice is such that, as far as particle 1 is
concerned, there is no angular dependence except for 6} = 0y, therefore we can integrate 67>! getting
simply a solid angle. There is, however, dependence on 63 = 6, and 63, the two polar angles that specify
the direction of pp. We stress that since @, > 0 one has 0 < 63 < , such that 63 is necessarily a polar
angle, not azimuth. We therefore can integrate 65>2 getting again a solid angle. We note that in d — 1
dimensions there is a single azimuth angle ¢ = 0,;_1 that is always integrated over in our computations.
The dependence on 63 comes solely from the scalar product

2
D1 P2 = |P1||P2| cos(b12) = %51[32 [sin(6;) sin(f2) cos(p2) + cos(61) cos(f2) ], (3.15)

that appears in the Dirac delta function enforcing energy conservation. We integrate 635 against this
delta function to obtain the result in Eq. (3.14).3

3Enforcing 4-momentum conservation in Eq. (3.15) one obtains the result in the second line of Eq. (3.13).
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Before going on, we pause and show that fdcos(&i)dcos(é’j)6{256;25/@]-/2% does not depend on the

values of 7 and j as long as ¢ # j. To that end we need to use the following relations:

2 ~ 2 R _
1+ gg — % cos(f12) = x—g , % + cos(b12) = —% cos(f13), (3.16)

with k,¢ < 2 and k # £. Using Eq. (3.10) to express cos(f2) [cos(1)] as a linear combination of cos(f;)
[cos(f2)] and cos(f3), with the help of Eq. (3.16) it is trivial to show hia = (z3/82)?h13 = (73/B1)%ha3
and dcos(f)dcos(02) = (x3/P2)dcos(61)dcos(f3) = (x3/51)dcos(hz)dcos(f3). The first result implies
that 0(h;;) does not depend on ¢ or j, and together with the second it is immediate to check that

5—255—25 ﬁ_Qsﬂ_Qs 6—26ﬂ—2s
/dcos(&l)dcos(Gg)lhl/zis /dcos(@l)dcos(Gg);Ll/Qis /dcos(ﬂg)dcos(ﬂg)w . (3.17)
12 13 23

The Heaviside function 6(h;;) makes that, for a fixed value of 8;, the integration limits for 6; coincide
with 95 (note that 95 #+ Gjii even though h;; = hj; and éij = éﬂ) Let us provide some master integrals
that will become necessary for projecting out the angular structure when dealing with real radiation
[for simplicity the step function 6(h12) is over understood ]:*

4 dcos(6)dcos(62) cos®*(0;)  2m(2k)IEE (1, 21, T2)
= 7 (3.19)
(1 —2e) 2e g2ey 1/ 2t 4REN(3 — ), T(2 — 2¢)
4 /dcos(@l)dcos(eg)cos(&i)cos%“(ﬁj) ~2m[2(k + D! cos(8i5)E = (1h, 1, 2)
I'(1-2¢) B2 g2ep 1 e kDS -e),, T2 2)
4¢ / dcos(6y)dcos(6) cos?(6;) cos? (6;)  m(2k)![1 + 2k cos?(0;)|€ % (1, 1, 22)
(1 - 2¢) g - AREN(2 — €)p1D(2 — 2¢) ’

with &k a non-negative integer number, 7,j = 1,2,3 and (a),, = I'(a +n)/T'(a) the Pochhammer symbol.
Of course one has cos(é,;i) = 1, and in that sense the first line is contained in the second and third if
one sets ¢ = j. Likewise, for ¢ = j the second and third lines become equal, as can be easily checked.
Setting k& = 0 in the third line is identical to setting £ = 1 in the first. Finally, if the power of cos(§;)

on the upper or lower (middle) lines is set to an odd (even) number, the integral vanishes.

Using the first line of Eq. (3.19) with £ = 0 one can integrate §; and 6; in Eq. (3.14) to recover
the known result for the angular-integrated 3-particle phase space in d dimensions:
d(I)g Q274E [(171‘1)(171‘2)(1‘1%’172 71)77?12(27.’,81 7.%2)2]75

= .2
dzidzy  2(4m)3-2 (2 — 2¢) ’ (3:20)

While the Dalitz region looks somewhat awkward when expressed in terms of the x; variables, it
takes a much simpler and more symmetric form if the following change of variables is implemented:

4To obtain these results we use the fact that fdcos(@i)dcos(ej)6;255528/112]-/21% does not depend on the values of ¢
and j as long as i # j and the following integrals:

1 n=20
1 /dcos(@i) cos™ (6;) _ mE S (1, @1, 2)sin > (6;) « cos(éij) cos(6;) n=1
F(l - 28) ngﬂggh}/QJrE F(l — 6)2 cos2(92)[2(1—5)—(3—25)sin2(éij)]+sin2(9_ij) 9 ’
L ) 2(1—2)
& 1 1—-2k |
47/ da(1 — z?) 2%k = 2 (2? . (3.18)
L(1—-e)2/ KD(2—2e) (2 —¢),
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21 =1—(1-2)y, 22 = 1 — zy, making the soft limit y — 0 apparent as y = x5 is proportional to the
gluon energy. The Dalitz region is now specified by the conditions z_ < z < z4 and 0 < y < Ymax (10, 2),
with 24 and the symmetric function Ymax (1, 2) = Ymax (M, 1 — 2) defined as:

2 148
- e =——.
2(1—2)’ = 2

ymax(ma Z) =1

(3.21)

Since we aim to obtain a distribution differential in 87 and the thrust axis coincides with the direction of
the particle with largest 3-momentum magnitude, it is clear that 67 = 6; if 8; = max{f1, 52, 83}. Hence
we can design a function that will project out the correct value of 61 depending on the phase-space
point:
5% =6(22 — 1)6[y, (1, 1 — 2) — y]d[cos(B1) — cos(6;)] (3.22)
+0(1 — 22)0y, (7, =) — y)dlcos(0r) — cos(6)
+6ly — yr (7, 2)l0ly — v (1o, 1 — 2)]6[cos(0r) — cos(0s)] = 6 + 57 + 6,

where we assume that 55? ) acts only inside the Dalitz region. We have defined the function

. V1—4m2(1—22)— 2 (3.23)

y‘r(m7z) = 1_ 2 ’

which, for 7 < z < 1/2 sets the limit between the regions in which the thrust axis points into the
anti-quark or gluon momenta. Likewise, y,(h,1 — 2) for 1/2 < z < 1 — i is the limit between the
regions in which it points into the momenta of the quark and gluon. For completeness, the boundary
between the regions in which it points in the same direction as the quark or anti-quark momenta is
parametrized by z = 1/2 and 0 < y < 4(v/1 —3m2 — 1/2)/3 = Ymidaie(?). The Dalitz region, along
with these borders, is depicted in Fig. 3.3.

1-0_ A B B N B
: ymax(mNZ) ]
08¢ ]

:
y L

EsU
Q

0.4F ]

02F ]

OO
0.0 0.2 04 0.6 0.8 1.0
z

Figure 3.3: Dalitz region in (z,y) coordinates for two massive quarks and a gluon. In addition to the
phase-space boundaries, in black, we show in blue the borders between the regions in which the thrust
axis points into the direction of the quark, anti-quark or gluon 3-momentum. To generate the plot we
use m/Q = 0.2.

Since in this Chapter we exclusively deal with the angular distribution, we can project out this term
using Eq. (3.22) and the third line of Eq. (3.1) to obtain the following integration kernel for 3-particle

76



contributions:

K(6i,2) = g K deos(07)[2 — 5eos® (7))o = Z{H(Qz D)0y, — 2) — ]2 — Seos¥01)]  (3.24)

+0(1 = 22)0[y.(1h, 2) — y][2 = 5 cos¥(82)] +6[y — y- (1, 2))0]y — y- (i, 1 — 2)][2 — 50082(93)]}-

3.3 Lowest Order Result

At the lowest order in the strong coupling we have to compute the tree-level Feynman diagram shown
in Fig. 3.4. Despite the results are known since long, we sketch the computation as it sets the basis for
the more complex NLO case. Furthermore, the results presented in this section with the quark mass
set to zero constitute the normalization of the cross section at any order. To make each step of the
computation free from spurious logarithms with dimensionful arguments that would otherwise appear
when expanding the results in € —as an artifact of having d-dimensional phase space integrals—, we
normalize the distributions with the d-dimensional Born cross-section.

et (p2) q(q)

v, Z
e (p1) 7(q2)

Figure 3.4: Lowest-order Feynman diagram contributing to oriented event shapes for massive quarks.
The distribution is proportional to a Dirac delta function.

A standard computation yields the following result for the hadronic tensor
v v v 1 1%
HZC:E)# = 4{(]5‘11 +a'es - B [s+2(1 F )m?]g" }, (3.25)

where in F the upper (lower) part corresponds to the vector (axial-vector) current. Taking the massless
limit, including the flux factor and integrating over the phase space one obtains the d-dimensional
massless Born cross-section

o N@ (1=l ) (dmPer)T
0 4 (3 —2e)1(2 — 2¢) Q? ’
with the factors L, containing the different leptonic couplings, given in Eq. (1.6) such that, neglecting

the Z-boson contribution (that is, only the photon exchange is considered) the result, called point-like
cross section reads:

(3.26)

(4m) (1 -T2 - e)ad,,
(3 —2e)[(2 — 26)Q%+2%¢
If quark masses are not neglected and the polar angle is left unintegrated one obtains the following

result for the vector and axial-vector currents:

1 dofee (B=200T(2—2¢) 1 9. . _o Y o
oy dcots(ﬂ) T3 2er2(2 ¢ BT sin™(0)[2(1 — €) — B sin”(0)], (3.28)
1 dof,, (3—2e)(2—2¢)

_ 5

oB = NcQg

(3.27)

- _ 3—2¢e i, —2¢ o 2
o2 deos(0) T3 B sin™“*(0)[1 — 2e + cos=(0)] .
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Both results shown above coincide for § = 1. We can project out the total angular cross-section using
the last line of Eq. (3.1) and the second line of Eq. (3.18), obtaining

381728 [5+ 8% — 22¢ — 3%(5 — 4e)] 3m?3
ang,V _ 2
Ho 16(1 —¢) 5—2¢ e=0 4 (3:29)
A _ 33372 £(9 — 4e)
o —

8 (U-oB-2) =0

where, the tree-level Born-normalized differential distribution is simply f;%g’c = R 5]e — emin(1h)].

A graphical representation of RSng’V is shown in Fig. 3.5, together with its massless and mass threshold

expansions. For the axial-vector current we obtain a vanishing result, but the vector result only becomes
zero in the m — 0 limit. As anticipated, this will significantly complicate the NLO computation.

Tree-level total angular cross section
LIS NN B NI B B

0.08F —— full -
S SCET E 1

0.06 «=++-+- threshold N

=~ [ i
éﬂ L .
c‘300.04_— ]
0.02F .
000 T 0 e e T
0.0 0.1 0.2 0.3 0.4 0.5

Figure 3.5: Total angular cross-section at O(a?) for the vector current R3"®Y (1n) in solid blue, together

with its SCET (dashed red) and mass threshold (dotted green) approximations. The RV (1) cross
section vanishes in the massless limit /i = 0 and at threshold m = 1/2.

3.4 Virtual Contribution

As long as IR singularities are handled in dimensional regularization, the computation of the virtual
contribution is very similar to the lowest-order term outlined in Sec. 3.3. We take advantage of the well-
known results for the so-called vector and axial-vector form factors for massive quarks shown in Fig 3.6,
which, after accounting for the wave function renormalization ZqO S, are UV finite due to vector current
conservation, making the present 1/ pole of IR origin. The general form of the wave-function-corrected
form factors up to one loop is as follows ®

VH = |:1 + CFaSA(ﬁ’L):| ’7“ + CF%M(CH — QQ)H y (330)

T ™ 2m

At = [1 +CFaSC(fn)]7“75 + CF%MVB q",
s T 2m

with ¢ = ¢1 + g2 the photon or Z-boson momentum, and ¢; with ¢ = 1,2 the quark and anti-quark
momenta, respectively.

5Mass renormalization is carried out in the OS scheme such that, unless otherwise stated, all quark masses appearing
in the various expressions are understood in the pole scheme.
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a2

Figure 3.6: Feynman diagram representing the vector and axial-vector form factors for massive quarks.

Vector current conservation implies ¢, V* = 0 and also ensures (when applied on the leptonic current)
that the term proportional to D(7) from the axial-vector current will vanish when contracted with the
leptonic tensor. For our purposes we only need the real part of the A, B and C coefficients that can be
written as [44, 32]

Re[A(r)] = (1 ;ﬁBQL _ ;)[i - 210g(7:)] + Aveg (1) (3.31)
Apeg () = ;Mﬁ IS 1652 [7# —2L% — 2Li <12+ﬂg>}
Re[C(1)] = Re[A(1i)] + 47;2% :

where we have defined Lg = log[(1+ 8)/(21)]. For the vector and axial-vector current, after taking the
€ — 0 limit we find

. 3C 2 12 3
REY = SFB {[1 -50- 2m2)Lﬁ] [zmQ log(73> - L3 2?) + 2 10g(6)} (3.32)
+ 21 Re[Areg (1)) — m2ﬁLﬁ},
270k B2 [

ang, A P ]
R21 20 [2 (1 2m )L5:| .

Since there are two particles in the final state, the contribution of the virtual radiation to the differential
cross section is once again fea;gl’c = R35[e — epmin(h)]. Surprisingly, we find a non-zero result for the
axial-vector current. Likewise, the vector-current result does not vanish in the massless limit. These
are artifacts of dimensional regularization, and once the real-radiation contribution is added, there will
be no term proportional to d(e — emin) for the axial-vector current, and the coefficient of such delta will

vanish as m — 0.

3.5 Real Radiation and Total Angular Cross Section

The last terms that contribute at O(a;) come from the two diagrams shown in Fig. 3.7 in which a real
gluon is emitted. The complete contribution consists on the modulus squared of each diagram plus the
interference of the two. We compute the relevant traces using TRACER [43], and organize the result in
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Figure 3.7: Feynman diagrams for the real-radiation contribution at NLO.

the following angular structures:

L 8120y [ p2evE
Ly Gy =S (TR V1A 4+ AT 6 cos(00) + AF 5300w (0) + AS 52 cos() cos)].
1 —2¢)(2? + 23 — 23e) 8mta3 212
AV _ ( 1 2 3¢) 3 _ 92
0 (1, 22) (1 —21)(1— 22) 1 —21)2(1 — 22)2 (1—331)2(1—9;2)2[8 R
+ 5(33% + x%) + ldzi2e — 4(x1 + 22) (3 + 2122)],
1 —2¢) (23 + 23 — z3¢) 8mta3 212
AA _ ( 1 2 3¢) _ 3 _ _8(1 —
0 (z1,22) (1 —21)(1 - 22) (1= 21)2(1 — 2)? (1—331)2(1—3:2)2{ 8(1-¢)

+2(1 — &) [#3(1 — 29) + 25(1 — 21)] + 21[20 — 1331 — 8(3 — 221)e] + 22[20
—13z9 — 8(3 — 2x9)e] + 2wy 22[—19 + 24e + (9 — 11e) (21 + 22) — 2(1 — &)x122]},

v v 1-¢ 2?2
Ay (z1,22) = Aj (22, 21) = (1— 1‘1)(1 — ) o (1— 1‘1)2 )

1 — e+ 4m2e 2m2(3 — 221 — 2)
A—e)—22) " (A—m2(—2)
2[2m2 4 e(1 — 4n?)]

(1 —z1)(1 = 22)

A (21, 22) = A (22, 71) =

2(2m? — ¢)
(1 — 1‘1)(1 — 1’2) ’

AYy(z1,w2) = Aty (w1, m0) = (3.33)

Of course, both currents yield the same result if i = 0, the functions AS and A$, are symmetric under
the exchange of its two arguments, and, as expected, A, vanishes for d = 4 if the quark mass is set to
zero. With this result we find for the 4-times differential distribution at O(as) the following expression
(for conciseness, in what follows we omit the arguments of the A¢ functions)

1 Aol 45, Op (3—22)(1— 2¢) [ p2e™= BB,
0§ dzidzadeos(f;)deos(d;) 1672 (1—e)['(2—¢) \ @2 h}j/2+5

x [A§ + AT B} cos?(01) + AF B3 cos?(02) + A B1B2 cos(61) cos(61)] .

(3.34)

As a cross-check, we can integrate the polar angles to obtain the unoriented cross section, differential in
the dimensionless variables y and z already defined:®

1 d26¢ a,Cp y172a uQeWE €
_ as _ s 1 {— oge '
of dydz 8t (1—¢e)'(2—¢) ( Q2 ) (1 =91 =2)z —m7] (3.35)

x {(3 = 22)A§ + BLAT + BFAS + AGly + 12 (1 — 2)z + 4m® — 1]}

If the AZ-C coefficients given in Eq. (3.33) are substituted in the previous expression, full agreement with
Ref. [48] is found. On the other hand, projecting out the angular distribution differential in y and z

6Note that in these variables one has &(7, 21, 22) = ¥?[(1 — y)(1 — 2)z — 1?] and dz1dzs = ydydz.
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through the integration kernel in Eq. (3.24) yields

1 oy 1 dio€
o dady o dcos (61 )dcos(62) K (0:, y, z) dedydeos(r )dcos(0s) (3.36)
30430F yl—Qs MZBVE £ oy
= 1 _ 1 _ _ €
8t (1—e)2T(1—¢)\ Q2 (T =y)(A —2)z — W7

{4590 (= = 3 )0lnin 1 = 2) = o1+ A8 0,290 3 = =)ol 2)
+ Agc(mv Y, Z)H[y - y'r(mv Z)]a[y - y'r(ma 1- Z)]}a

with Agc(m,y, z) = Agc(m,y, 1—z) and Ag(fn,y, z) = Ag(fn,%l — 2). A tedious but straightforward
computation yields

5+ 4e

C(n C
8A, (1, y,2) = (1 —4e) Ay — E o

{0 =y = 212 = 22) AT + [(1 - y2)? - 4?4 (3.37)

40AS 42[(1 — y)(1 — 2)z — 02
5—2¢ [1—y(l—2)]2—4m2

+AG[y+ (- 2)z + 402 — 1]} +

8AY (1h, y, z) = (1 — 4¢) A — %{([1 —y(1 = 2))2 — 4m2) AC + [(1 - y2)? — 4m2]Ag‘}
(e y)52£12_5 2~ ] (A + AF +245)
+ 5{%8{(5 +4e)[1 —y — y%2(1 — 2)] — 1202(1 — 2)(1 — y) + 4(25 — 4e)m>}.

Plugging the expressions for AS in Eq. (3.33) and setting both 1 = & = 0 one recovers the results
displayed in Eq. (1.3) of Ref. [51].

3.5.1 Axial-vector current

Since in this case there are no IR singularities, neither in the virtual-radiation term (as long as one sets
d = 4 in the phase-space right away) nor in the real-radiation one, for conciseness we show results with
€ =0 only:

(1—y)2® —m?2{2 —y* + 2[2+ y(y — 2)]}+ 2*
Z{[1 —y(1 = 2)]? — 4m?} ’
2(1 —y)(1 —2)222 —m2(1 — 2)2(4 — y? — 2y) + 21t
20— |

A/~
Ag(m,y, z) =

(3.38)

A/ A
Ag (m7y”z) =

As anticipated, A;;‘(m, Yy, z) is finite as y — 0, therefore no soft singularity is present. On the other hand,
yA;?4 (rh,y, z) diverges if y = 0, but the Heaviside functions that multiply this term in Eq. (3.36) impose
Y > Ymiddle() which is a positive number in the physical range 0 < i < 1/2, and therefore screens the
soft singularity. This entails that for any event shape, the angular axial-vector distribution will have
no singular structures at O(w;). Only a non-singular distribution will remain, that can be computed
analytically or numerically depending on the event shape. We will explore this further in subsequent
sections.

Since, as we just discussed, for the axial-vector current only the real radiation contributes, we can
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already provide a closed form for the total angular cross section, simply integrating Ag‘, Ag‘ and A’;
in their respective patches within the phase space. Since there is a mirror symmetry with respect to
the z = 1/2 vertical axis, it is enough to integrate between z = z_ and z = 1/2 and double the result.
Finally, the region in which the thrust axis points into the anti-quark direction has two distinct upper
boundaries: Ymax (M, z) for z_ < z < m and y, (11, z) for 7 < z < 1/2, and we split the corresponding
integral accordingly:

R4 (1) = 32}7{/ dzfl?[m,ymax(m, 2), 2] +/2 dzﬁ? [, yr (1, 2), 2] (3.39)
_1/2 R
[ A g 297 (01,2),21 .
Ay ) = —— =2 — o2 — 2] |(1 = 20)(1 = 2 — i) log (1 — —2=
a2 T (1 = 2)228 ST 1 2m
. S i A2 Y=
(14+2m)(1 —z+ ) log(l T 27%)}
- 2iy(1 = )21 - ) = i~ (4 - p:D}),
Ay, 2) = ————La[(1 = 2)z — 2P 1og( L
grEIe 2(1 — 2)222 Y2
+ (1= 2)2(y1 — y2) [P (yr +y2 +4) — 4(1 — Z)Z]},
where the functions fl{;‘ and flﬁ are defined as
FAf A Y Ao o v Coos
Az (m,y, 2) :/0 dh hAZ (1, h, 2), Ay (M, Y1, Y2, 2) :/y dh hAy (1, h, z) . (3.40)

Even though the definition of flg can be used both for vector and axial-vector currents, due to soft

singularities we need to define fl? and /L‘{ separately. While the integrals in y have been carried out
analytically, we have not found simple expressions for the z integrations.” Instead, we carry out these
(along with similar ones for the vector current or cumulative cross sections, to be discussed in Sec. 3.6)
numerically.

3.5.2 Vector current

Due to the non-vanishing tree-level result, the vector-current matrix element diverges in the soft limit
and the linear dependence on € must be retained. However, we only need to keep track of this parameter
in the terms of A,‘J/’q which do diverge when y — 0. Accordingly we define

V i (m,z75) = lim y2A (m,y,z) = lin yQA- (ﬁLy,Z) =V i (TATL7Z,U) +V E(m,z)g + 0(62) y (3.41)
y—0 4 y—0 q

VIV, 2,0) = —2m> ML (1, 2) Ve (1, 2) =

M (i, 2),

(1—2)z —m?

M‘l/(m,z) =- (1= 2)222

"We found extremely lengthy analytical expressions in terms of polylogarithms and have not been able to simplify them
to an amenable size. Therefore it is unpractical to code these and we instead opt for a numerical implementation.
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where the function M{ (1, z) is present also in the computation of the unoriented cross section, see
Eq. (3.18) of Ref. [48]. We note V¥ (1i1, z,e) = VIV (1, 1 — 2,¢) and also that V4V (7, z,0) vanishes in
the massless limit. The fact that V¢(0, z) # 0 is an artifact of dimensional regularization that leaves no
trace once the virtual-radiation contribution is added. Keeping only the necessary (linear) dependence
on ¢ to carry out the computation we end up with the following expressions:

VWi, 2,0) + VE(rh, 2)e

AY (1, y, ) 2 + Vi (y, 2, 1m) (3.42)
.-G 0
VAR (g 2) = (1= yy(l = 2)2* —m?z[2 — y(1 = 22%)] + 2*[y(1 — 2) +42]

y(1 = 2)22{[1 —y(1 = 2)]* — 4m?}

It is simple to see that y integrals with zero lower integration limit (such as the total cross section or
any cumulative distribution) will produce a 1/e pole.

As for the axial-vector current, we postpone the computation of the differential distribution to the
next section and show now results for the total angular cross-section, discussing how the cancellation
takes place. One has to integrate A;-/ between the lowest part of the phase space, y = 0, and the up-
per boundary of the region in which the thrust axis points in the same direction as the anti-quark’s
3-momentum. We define Agng(ﬁ”L) as the contribution to the total angular cross-section coming from
the terms inversely proportional to y? in A(‘I/. As we discussed in the previous section, the z integra-
tion can be restricted to z < 1/2 such that one can compactly write the y upper integration limit
as Yiop (M, 2) = minfy, (M, 2), Ymax (1, 2)]. With this definition one can compute Aﬁng analytically as
follows (we do not include the prefactor 3Cr/4 that equals unity in QCD):

~ 1 CIGAY 2 iva 5 21—¢ pron (71:2) dy
A = 1T =5 <“Q2 >/ A=V (1, z,€)[(1 — 2)z —1in?] /0 T (849)
3 2 i’
= / dz{m2 [i +2- 10g<§2> —log[(1—2)z — mﬂ — W}M‘l/(mJ)

— 2972 /2 dz log[yiop (172, z)]M‘l/(m, z)+ O(e),

where in the first line we have already discarded a term that vanishes as ¢ — 0, see discussion after
Eq. (3.51). Expanding in € one gets [*"dyy 172 = —1/(2¢) +10g(ytop) + O(¢) for the y integral. The
divergent term does not depend on the upper integration limit, simplifying the subsequent computations.
The z integrals in the second line can be carried out analytically, and for that we shall only need the
following two integrals:

/é dzM (i, 2) =B — 2(1 — 2m?)Lg, (3.44)
/§ dz My, (1, 2) log[(1 — 2)z — m?*|=2Lg — 2B1log(B) + ! —;ﬂQ |:L12 (;’81>
— 2Lis <ﬁ2—fl> + 4log(5)L5} .

The result in the first line of the previous equation shows that the 1/e pole cancels against its virtual
counterpart, along with the y dependence and the term which does not vanish in the massless limit.
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Figure 3.8: Coefficient As (solid blue) and its SCET (dashed red) and threshold (dotted green) approx-
imations.

We are now in position to show the final expression for the total angular cross-section at O(«s) for
the vector current. We split the result in a term dubbed As(h), which contains the virtual-radiation
contribution from the second line of Eq. (2.52), and the analytical z integrals on the second line of
Eq. (3.43) combined in an IR-free coefficient, plus terms in which the z integrals do not admit a simple
analytical form and hence, in practice, are computed numerically:

an 30 1/2 1 % 1
R} g,v(m) = 4F{A5(m) + dzA}z/ (170, Ytop (M, 2), 2] +[ dzA_}]/[m,ymax(m, 2),yr (1, 2), z]},

As(1n) :m2{2ﬁ[1og(m) — 1]+ ! +252 [wQ —2L% + Liy (;ﬂ) —3Liy (2’3>

~aLsfog(m) - 1]| |

Vi~ _ y/fin/ ~ div /2
Aq (mvyv Z) _V (mvyv Z) + IOg(y)V (m7 Z, 0) )

A;/(m’ymax’ Yr Z) =2 |:y‘l' — Ymax — Mll/(zam) 1Og(ymdx>:| y

Yr
VR (i, y z):; (1—z—2m%2) (1 —2m)(1 —z—m)?log( 1 — Y=
e dim(1 — 2)223 1—2m
_ 4 _ 412 _ Yz An 2
(I1+2m)(1—z+m) log(l T 27?1)] dmy(l —z) z} , (3.45)
where the expression for fl;/ can be found in Eq. (3.40) and V" is defined as
. y
ViR, y, 2) = / drhV (52, h, 1 — 2) . (3.46)
0

The function As can be expanded for small 7, and the leading term will be referred to as its SCET
limit, and also around 8 = 0, whose leading approximation is the mass threshold limit:

As(1n) = ém’é’ [72 — 6log(1n) — 6] + O(m?), (3.47)

As(i) =" 5+ 0.

This coefficient, along with its expansions in the previous formula, are shown in Fig. 3.8, where an
enhancement towards m = 1/2 can be observed.
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3.5.3 Total Angular Cross Section Results

O(a;) total angular cross section
e )
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Figure 3.9: Total angular cross-section at O(«y) for vector (blue) and axial-vector (red) currents. While
R&4(1/2) = 0, one has that RZ®“(0) and RV (1/2) are both non-zero.

In Fig. 3.9 the dependence of RTng’C on 7 is shown. One can observe that, whereas the O(ay) total
angular cross-section vanishes at m = 1/2 for the axial-vector current, the vector result does not vanish
neither in the massless limit nor at threshold. Vector and axial-vector currents agree for m = 0 and re-
produce the analytic result quoted in Ref. [51], that is R (. = 0) = 3Cr /8[log(3/2) — 3] ~ 0.12186.
All terms in Ring’v except for As tend to zero in the limit m — 1/2. Hence, we can provide an analytic
result for the total angular cross section at threshold: R*™&Y (1/2) = 372Cr/36 ~ 1.09662. In fact, As
is responsible for the vector current cross section being larger than the axial-vector one over most of
the spectrum. In particular, this non-vanishing result (which is also found for the total unoriented cross
section) seems to point into a Sommerfeld enhancement at higher orders, which would imply the need
for NRQCD resummation. This, a priory, indicates that Ra,e might be an interesting viable observable
to measure the top quark mass at a future linear collider through threshold scans.

Although all our results have been expressed in terms of the quark’s pole mass, with a single sim-
ple modification we can obtain MS results. At the order that we are working we only need the relation
between these two mass schemes at leading order:

Mpole = m(u){l - [0‘75“)} Cr [1 - glog(mip))] } +0(a?). (3.48)

None of the results for the axial-vector current need any modification: one simply replaces the pole mass
by m (). For the vector current, one proceeds in the same way and corrects the O(as) angular cross

section. Defining m, = m(p)/Q and B,L = /1 —4mZ, and using the notation that quantities with a

bar on top are expressed in the MS scheme, one has:

—ang,V , _ an - 3CF NS
Ry (i) = Ry () + =00 (3.49)
2 m
S = T {2 — 3log {m(u)]} .
By H

We close this section quantifying the size of the bottom quark mass corrections to the total angular
cross section as a function of the center-of-mass energy ). For this analysis we use the quark mass
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in the MS scheme and set the renormalization scale to its canonical value ;¢ = Q. Finally, we use the
canonical reference values Ty, () = 4.2 GeV and agnfzs)(mz) = 0.1181, which are evolved to u = Q
using REvolver [39].

In our first analysis, we assume that one can experimentally ‘tag’ on bottom quarks and a given current
and compute the ratio of the bottom correction over the massless result for both currents at leading and
next-to-leading order for the vector current, and at the only available order for the axial-vector current
—that is, O(as). The vector current represents always a much bigger correction since it starts at O(a?)
while the massless results and the axial-vector current have no tree-level contribution. As expected, the
correction is significantly larger at smaller energies: for the NLO prediction, while at @ = 30 GeV the
correction is 1.85 times larger than the massless approximation, at @ = {50,100} GeV it has already
gone down to {64, 16} %, as can be seen in Fig. 3.10. For the axial-vector current the correction is always
negative and at the three energies just quoted amounts to 11%, 3.8% and 9 %o, respectively.

Bottom mass corrections to R,

F_~ ~ -~ 1~ 1 1 L
O(O‘S)A ]
10°F E
== F
E |1
%;’ £
ﬂ 510_I E 3
1072 E 1 N N N 1 N N N 1 N N N 1 N N N 1 E
20 40 60 80 100

Figure 3.10: Bottom mass corrections to the total angular cross-section as a function of the center-of-
mass energy Q for bottom- and current-tagged measurements. In blue and red we show the LO and
NLO results for the vector cross section. The green line corresponds to the axial-vector current, which
starts only at O(as).

A more realistic comparison, presented in Fig. 3.11, considers the inclusive measurement of the cross
section, that is, the incoherent sum of cross sections for all quarks lighter than the top and includ-
ing the two currents. We again consider the ratio (mass correction)/(massless approximation), which

Bottom mass corrections to o,g

I L ) B A | T
03f — 0(a?)
| — O(ay) |
;gr?l\ 0.1F -
a|é I 1
0.025_— ]
S I B S B i
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Figure 3.11: Bottom mass corrections to the total angular cross-section as a function of the center-of-
mass energy () for totally inclusive measurements. In blue and red we show the LO and NLO results.
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is computed taking into account the electroweak factors L [see Eq. (1.6)] in the Born cross-section
Eq. (3.26). We use the numerical values mz = 91.1876 GeV, I'; = 2.4952 GeV and sin(fy) = 0.23119.
Here the correction is milder, but still sizable such that it has to be included in any precision analysis,
in particular if it includes data at small or intermediate energies. For the NLO prediction the massive
correction is 38%, 4.27% and 1.11% for @Q = 20,50 and 100 GeV, respectively.

3.6 Event-shape differential Distributions

In this section we combine the real- and virtual-radiation results and project out the differential distri-
butions. For three particles in the final state, one has that the measurement for any event-shape is a
function of the reduced mass and the kinematic variables y and z. Expanding the measurement function
in the soft limit is useful to analytically obtain the plus and Dirac delta function coefficients:

é(m,y, 2) = emin(1h) + yfe(m, z) + O(y*) = €(im, y, z) + O(y?) . (3.50)

This function has the property that é(m,y, z) = emin(m) if and only if y = 0. We can use the measure-
ment function to write down a formal integral expression for the angular-differential distribution which
is valid for both currents:

% ymaX(mﬁz)
fzrig,c(m,e) - 3?’{ ang7c(§[ — emin ()] / dz/ - dy yAg(ﬁL,y,z)(S[e —é(m,z,y)] (3.51)
yr(1h,z

1 purere Ytop (11,2) dyy'—2¢ X o
" (L-e)l(2- ( )/ dz/ (1—-2)z — m2]EAqg(mvy7 z)0le — é(m, y, 2)] ¢,

where we have set ¢ = 0 already in the AC integration as that term has no support in the soft part of
the Dalitz region, and also y = 0 in £(rh, .1717.’172) /y? since keeping a non-zero y yields the same result
plus a term that vanishes in d = 4 dimensions.

3.6.1 Axial-vector current

For the axial-vector current, given that there are no soft singularities, one can use € = 0 right away as
long as R5® A is also set to zero. This implies that the e-dependent factor out front the integral becomes
1 and also that fang A(m e) is purely non-singular: it is an integrable function as e — empin(h).8 The y
and z integrals can be carried out analytically for some simple event shapes such as 2-jettiness or heavy
jet mass (see next section for explicit expressions), and can be integrated numerically yielding unbinned
distributions with machine precision in fractions of a second using the algorithm introduced in Ref. [48].
Finally, for completeness, we connect with the notation of Eq. (3.3): CpF}'2 (1, e) = f;’ig’A(Tm e).

3.6.2 Vector current

For the vector current one has to proceed with care, as there are soft singularities that need special
treatment. To that end, following the same strategy as for the computation of the total angular cross-
section, we single out the A}{ terms inversely proportional to y? in the integral on the second line, as

8Recall that, as seen in the previous Chapter, this does not imply that fang’ [M, emin (77)] is finite since it can have a

logarithmic divergence in the dijet limit, which happens for those event shapes with epin () = 0, including any observable
in the E- or P-schemes.
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those are the only ones, together with the virtual radiation, that can yield singular structures:

el o) e o) M S U
— e - emin(m)]/:dz{m2 [i 42— log[(1— 2)z — 2 — 10g<cj2 )] - W}M@(m,z)

Ytop (112,2)
—m2/ dz M (1, z)/ dy [1} dle —e(m, y, 2)]
0 Y1t

% ytop(mz)dy
—mQ/ dz} mz/ Y fofe - e, )] = dle — el 2]}
0

where to get to the second line we have used the identity y=172¢ = —1/(2¢)d(y) + [1/y]+ + O(e) and
expanded in €. When one adds the virtual-radiation contribution to the first line, the IR singularity
and p dependence disappear and the coefficient As defined in Eq. (3.45) is found. The term in the last
line is regular when y — 0 and does not yield any distribution. It is important to add and subtract
dle — e(m, y, z)] and not simply d[e — emin ()] since otherwise the subtracted term would still contain
singular structures.

To fully disentangle the coefficient of the plus and Dirac delta functions we proceed as follows with
the term in the third line:

/ dz% /01 Ay Blyeop (1. 2) =] m N [y - W} (3.53)
N /Zédz A?ig?;j) L fpiz;?;z)kr 01 fe (170, 2)Ytop (112, 2) — € + €min(1M)]

-/ L gt o z){ {1} - Ole — cnin )] gl )]

- emin(m)
Ole — emin(1n) — fe(ihr, z)ytop(mv z]) }

€ — €min (m)

where we used the rescaling identity® and Eq. (2.70) for the plus distribution, and the completeness
relation 0(x) 4+ 6(—x) = 1 for the Heaviside theta. We can now write down the analytic form for the
Dirac delta and plus distribution coefficients defined in Eq. (3.3):

A8 (m) = %[A(;(m) = 2m? 1. ()], B (in) = ——[2(1 — 2in*)Lg — A], (3.55)

plus
I() = — / * d=M} (1, 2) log[f.(2)]

where both coefficients vanish in the massless limit and the event-shape-dependent function I, was
already defined in Ref. [48], and analytically computed for a large number of event shapes in various
schemes.

9That is

[log”(ax)} _1 {log”'*'l(a)a(m) n
L a

ax n+1

i

Il
=}

el ) e

k3
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Additionally, we provide the leading term of the plus function coefficient when expanded around the
massless limit, B[ (1) &~ —3m?*[1 + 2log()]/2, which we again call the SCET approximation, and
around 8 = 0 (threshold approximation), Bf¥ (1) ~ $%/2. Therefore, B vanishes both in the
massless limit and at threshold. We have already argued that such behavior is expected for m = 0:
for massless quarks the distribution is purely non-singular. At threshold there is not enough energy to
emit an extra particle and therefore there is no radiative tail, causing a null value for Bgﬁi (one can
however have a non-zero coefficient for the delta function). In Fig. 3.12 BY%, A2"8(1n), A%"8(m) and

plus’
their approximations are shown.

We close this section writing down an expression for the non-singular distribution

1 A 1 ~
3 2 Ymax (1M,2) 2 Yeop (112,2)
resen =3 [ae[ " apuagnp + o [ @y - 2)fole - etnz)
m zZ_
m2

yr(1h,2)
32 (2 L vrop (2:2) 4 o o
_T dZMV(m7 Z) 0 ?{5[6 - e(ma Y, Z)] - 6[6 - e(m,y, Z)]}
3m? [z Ole — emin(1h) — Fo (1, 2)Yiop (11, 2
+= / dz M (i, 2) [ ( 6)_ - -((m)) top (11, 2]) . (3.56)

Even though we have a formal expression for the non-singular terms, in practice it is simpler to compute
(numerically or analytically, depending on the event shape) the complete distribution (singular plus
non-singular) for e > e, such that one can drop the plus prescription from 1/[e — epyin(M)]+ and the
delta function is simply zero. Furthermore, one can set ¢ = 0 and work only with the real-radiation
contribution in d = 4 dimensions. Since the coefficient of the plus distribution has been computed
analytically, the non-singular distribution is then obtained by simply subtracting the radiative tail:

1
CrF(e,i) = F25 i e > eoan(i)]eco - CoBRa() | o). (3.57)

plus € — €min (m)

As for the total angular cross section, in order to express the vector current result in the MS scheme,
one needs to account for the following modification:

AME(7,,) = AZE () + 6008 (3.58)

ang *

Eqgs. (3.58) and (3.49) can be encompassed in the following single substitution: As — As + (4/3)(5.1\TS

ang*

3.7 Thrust and Heavy Jet Mass Distributions

In this section we compute and discuss the differential and cumulative angular cross sections for
2-jettiness (M-scheme thrust) and heavy jet mass (see Tab. 2.1 for the corresponding definitions). While
we are capable of obtaining fully analytical results for the differential distribution, for the cumulative
versions we are left with a one-dimensional numerical integral.

For three partons, one of them massless, it can be shown that the 2-jettiness measurement function
can be expressed as a minimum condition:

77 =min{l —y,1 — mod(7h,y,1 — 2),1 — mod(m,y, 2)}, (3.59)
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Figure 3.12: Panel (a): Plus function coefficient BJ}¥ (112) (solid blue) and its leading SCET (dashed
red) and threshold (dotted green) approximations. Panel (b): Dirac delta function coefficient A2"(1h)
for 2-jettiness e = 7; (blue) and heavy jet mass e = p (red) as solid lines for the full result, dotted lines

for the respective threshold expansions, and as a black dashed line for the common SCET expansion.

with mod (7, y, z) = /(1 — yz)2 — 4m?. The three values in the list correspond to the thrust axis par-
allel to the 3-momentum of the gluon, quark and anti-quark, respectively.

On the other hand, for the configuration just described, the heavy jet mass measurement is best written
as a piece-wise function:

1 R N
Z—\Z\§7 Ogygytop(mwz)v p:m2+yz, (360)
1 N N
§<Z<Z+’ Ogygytop(m717'z)7 p:m2+y(1iz)7
ﬁLngl*ma ylow(maz)gygymax(maz)a Pilfy,

where we have defined yiow (T, 2) = max[y, (M, 2), y- (M, 1 — z)]. Again, the three regions correspond to
the thrust axis pointing into the anti-quark, quark and gluon 3-momentum directions, respectively. It
is therefore trivial to see that in the massless limit heavy jet mass and 2-jettiness, with either two or
three partons, are identical.

3.7.1 Thrust

Even though we have provided a very compact expression for the 7; measurement in Eq. (3.59), for an
analytic computation it is more practical to use the regions displayed in Eq. (3.60). The Dalitz region
mirror symmetry simplifies the discussion, since it restricts the integration to z < 1/2 such that it is
enough to consider the anti-quark and gluon regions only, for which the corresponding measurement
delta functions read

T 2 (ry) z
where we have defined ¢(7;) = 1 — 75 and £(rh,75) = /t(7)% + 4m2. Since the highest possible
value of y in the Dalitz region is ymax(1/2) = % (in the gluon region), the contour line of constant
77 lives only in the anti-quark region for 7; < 47?2, where it meets the phase space boundary at

5T — t(7s) 5{ _ 1_§(TJ)} , 5;] =6[y —t(rs)], (3.61)
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z1(m,77) = [L+ 77 — (M, 77)]/2. From the limiting condition z (1, 79™) = z_(m) one obtains the
minimal value of 2-jettiness: 71" (/m) = 1 — /1 — 4/m2. From the condition 2z; (17, 77d) = 7 (that is,
the contour line hits the point at which the phase-space boundary meets the line that separates the anti-
quark and gluon regions) one can see that for 4m? < 7; < m/(1—m) = 79(1m) the contour line also has
a patch in the gluon region, which cuts the phase space boundary at za(m, 77) = [1 — /1 — 412 /7;]/2
[one can imagine that the contour line “leaves” the Dalitz region (anti-quark patch) through z; and re-
enters it in 2o (gluon patch)]. One can easily check that zo (1, 79) = 7. Finally, if 7; > 754(1h) the
contour line becomes continuous (although not smooth), lives both in the anti-quark and gluon regions,
never exits the Dalitz region but meets the thrust axis boundary at z3(m, 7;) = [1 — &(7h, 7.0)]/t(7s).
From the limiting condition z3(rh, 75"**) = 1/2 one obtains the maximum value of 2-jettiness: 77**(1h) =
(5 —4v1—3m2)/3. One can easily see that for physical values of m the hierarchy 7" () < 4m? <
7mid (7)) < 718X (1) holds, as can be checked graphically in Fig. 3.13.
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m

Figure 3.13: Values of 2-jettiness for which the contour lines of constant event shape reach a limiting
value: either they take their maximum or minimal values or transition from hitting the phase space
boundary to enter the Dalitz region.

Defining z;; (1, 77) = max|[z; (1, 7), 2; (M, T.7)] we obtain

C
108y 30.Cr e

oo dry T ar I (.71, (3.62)
1—¢(m, Dt(r) (2 d 11— €(m, N .
gi?g,C(m’ T> - w/m(m,r);Ag |:ma§i7n7—)a Z:|+t(7—)0(7-_ 4m2?/223(7’ff;4§ [m7 t(T)7 z]
t(1)

= gg[m, z13(, 1), 1 — &(1, 7)) + 0(1 — 4m2)g_§[m, zo3(1, T), 7],

§(m, T)
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where the functions ggq can be computed analytically:

1
E[(1*£)2*4A2]

{f [€ —2(1 - &)z] + (1 — 2)[4(1 — )z +¢]

9y (1, 2,€) = 5 [QmQ [2+3(6 — 2)6 + 4m>(4€ — 3) + 16m4]10g(i - 1) (3.63)

+4m4z(1 — 66 +482) — 16m62}} ;

51252 .2 9 1
50:8) = gt g |2 e 40 = €toe(1 1)

€

— (1 —22){&(1 — 2m?)(1 — 2)(1 + 22) — 2z2[1 — z + 22 (1n* + 22 — 2)]}

—m2e2(1 — 2)(1 + 42)] ,

9, 2, 75) = 1 {(122){TJ+21%;J+W(734TJ52)1og<i1)}.

A graphical representation of the 2-jettiness angular differential distribution at O(as) is to be found in
Fig. 3.14. For both currents, implementing the SCET counting 7 oc O(A\?) and m o< O(\) one finds:

_8m — 821 + 72 — 42 (1 — m?) log(r

¥ (1, 7y) =~ Y ™) Lo, (3.64)

N (T — 2m?)

QTJ( m,Ty) =~ m+0(>\)»

which is significantly different to the case of the unoriented cross section, for which both currents coin-
cide at leading order in the SCET power counting.

One can also compute the oriented cumulative distribution, which is defined as

4 1 [ dol s .
yane.C (1, e.) = e / de Zeg = R (10)0]ee — emin (12 +Z{a } S (1, pee) . (3.65)
0 e

min

Since ¥28:C obheys an homogeneous renormalization group equation, there is no y dependence in o C.

At O(as) one ends up in the following compact result:

Eir;glc(m ) = RangC( ) — SZYF/Q(A )dz{A 112, Yrop (12, 2), Z]—Af{m,l_f(zw,z}} (3.66)

3Cp [2 ~
- TF/2 dz ch[ma min(Ymax (1M, 2), 1 — 7], y- (11, 2), 2],
m,z3 (M, 7. )] ’

where the analytic expressions for Acg have been already given in Egs. (3.39) and (3.45) for the axial-
vector and vector currents, respectively. The z integrals are in practice computed numerically with high
accuracy even for values very close to 7% (sn). In Fig. 3.14 we show the NLO pieces for the 2-jettiness
differential and cumulative cross sections for two values of m. For m = 0.32 one can observe small kinks
in7T=4m?and 1 = T}“id. Finally, we observe a negative cumulative cross section for the vector current
and m = 0.2, indicating the necessity of Sudakov log resummation.
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2-jettiness cross section for 1m = 0.2 2-jettiness cross section for m = 0.32
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Figure 3.14: Differential (upper panels) and cumulative (lower panels) 2-jettiness distribution for 7/ =
0.2 (left panels) and /m = 0.32 (right panels) for the vector (red) and axial-vector (blue) currents. In
panels (a) to (c) we multiply the cross section by 7; — 7" to achieve a finite result across the whole
spectrum. In panel (d) we show only the axial-vector current and do not multiply by 7; — T}nin. Vertical
dashed black lines signal the limiting values of 7 shown in Fig. 3.13, where one can observe either cusps
or discontinuities in the cross sections.

3.7.2 Heavy Jet Mass

The differential and cumulative cross sections for heavy jet mass can be expressed in terms of functions
already computed. In fact, for the region in which the thrust axis is collinear to the gluon momentum,
heavy jet mass and 2-jettiness are identical. For the region of n pointing into the same direction as pj
the measurement delta function reads:

1 i
5L = Za(y _P ) (3.67)

z

It is useful to define r(m, p) = 1+ p—m? and x (11, p) = /7(1h, p)2 — 4p. Since the patch of the contour
line in the gluon region has been discussed at length in the previous subsection, we now focus on the
q region exclusively. We anticipate that there is no value of p for which the full contour line becomes
continuous. For m? < p < Mm(l —1m — m?)/(1 — 1) = pine(1h) it hits the phase space boundary at
z4(m, p) = [r(, p) — x(7h, p)]/2 in the g region. From the limiting condition z4(M, pmin) = z— (1)
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we obtain the minimal value of heavy jet mass puyin(12) = m?. The value pi,(7h) is obtained from

the condition z4 (17, pint) = 1. For pin () < p < m? + 21 — 312 /3 — 1/3 = ppia(h) the contour line
hits the boundary of the g and ¢ regions at z5(1i, p) = [r(1h, p) — 1]/1/(1 — p)2 — 2m2(1 + p) + 1 #
z3(m, p). The expression for puyiq() is obtained from the condition z5 (i, pmia) = 1/2. Finally, for
pmid(M) < p < 77* (1) the contour line exists only in the gluon region. Therefore the maximum
value of heavy jet mass is pmax() = 79**(1). One can easily see that for 0 < /m < 1/2 one has
Pmin (1) < pine (M) < {7P9(10), pmia (1) } < pmax(1h) as can be checked graphically in Fig. 3.15.

1'0: — Pmm —— T ]
08F — 4m®  —— pui ]

L —— Pint T Pmax ]
0.6F .
P 1h = 0.248226 ]
0.4F -
0.2F .
0'0:_| N .:.m.:.0'|2?:24.10.8. Ly v 0 |_:
0.0 0.1 02 03 0.4 0.5

m

Figure 3.15: Values of heavy jet mass for which the contour lines of constant event shape reach a
limiting value: either they take their maximum or minimal values or transition from hitting the phase
space boundary to enter the Dalitz region.

For m < 0.248226 one has puyia() = 74(sh), while m < (5 — v/13)/6 ~ 0.232408 implies 4m? <
pint (M), although these have no implications. On the other hand, if m < /(2413 — 5)/27 = 0.286169

one has 4m? < pnia (1), and this entails the cross section is zero for pmiq () < p < 4?2 as can be seen
in Figs. 3.16(a) and 3.16(b).

A simple computation yields the following result for the differential cross section

ido’glg — SQSOF ang,C
oo dp 4o 7T

3 dz —n

. A ) . P m

gp g,c(m7p) :H[pmld(m) - p]/ ( )/&'2145|:’rn7 z
zas5(M,p

(12, p) (3.68)

2

Nl

|ttt 4wt [* asagiio).

23(12,p)
=60pmia () — plgs [, 245 (10, p), p — 10°] + O(p — 40°)g$ [, 2231, p), p) ,

where the analytic form of gcﬁ for both currents has been given already in Eq. (3.63). Implementing
the SCET counting p x O(A*) and m «x O(\) one finds:

m* — 6m?p — 4m?plog(p) + p

2p(p —m?)
2 A4
p°—m
o T o),

+O0, (3.69)

fpv(m,p) =

FiHm, p) =
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where again we find different limits for vector and axial-vector currents. Finally, for m = 0 the limits of
both currents coincide.

For the cumulative distribution we have

; / Az A [, min e (11, 2), 1 — pel, (11, 2)]  (3.70)

max|[rh,z3 (1, pc)]

3C
Sy i) = 1575 )~ 25

~ Olpusali) — o] [

Z45

— ) e | pe— 12
(5 )dZ ["4110 [ma Ytop (m, Z)a Z] - Aqg (ma P P ) Z>:|}a
m,pe

where again all pieces are known and we compute the z integration numerically. In Figs. 3.16(c) and
3.16(d) we show Ezf’lg’c for two values of 7. In general we find that cusps for cumulative cross sections
are less pronounced than for their differential counterparts. In particular, for m = 0.32 one can see that
for pmig < p < 4m? the cumulative cross section is constant, since the differential cross section is zero
in that patch.
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Figure 3.16: Same as Fig. 3.14 for heavy jet mass. Panel (d) shows only the results for the axial-vector
current to highlight the region of constant cumulative cross section.
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3.7.3 Cross-checks

One can perform a number of tests on the numerical and analytic computations carried out in this sec-
tion. First, we have checked that both for 2-jettiness and heavy jet mass, taking a numerical derivative
of the cumulative distribution accurately reproduces the differential one, including the kinks.

Second, the differential cross section for the vector current must verify the following condition (the
equivalent statement for the axial-vector current is that the limit is simply zero)

im e — emm()]g™Y (1, €) = S B™E (1) (3.71)

e—+emin (1) © 37 plus

A graphical verification of this requirement can be found in Fig. 3.17(a) for the vector current.
Third, integrating the differential cross section must yield the total cross section. For the vector current

this implies a constraint between the radiative tail of the differential cross section and the coefficients
of the singular distributions, while for the axial-vector current it is simply an integral condition:

ang,V / ~ emax 3 ang,V ( » B;{lfs(m) ang ¢ ~ ang( »
Rl (m) =CF de 79 (m7 6) - |t Bplus(m) log(emax - emin) + Ae (m) ’

€min 4 € — €min
Ry ) = 2F / T de g A ). (3.72)
€min
An equivalent test on the cumulative cross section can be derived. To that end we note that Eg,nlg’v can
also be decomposed into singular and non-singular terms:
DY (i, e) = CpAZ™E(1m)0(e — emin) + CrBons (112) log(e — emin) + Sonte (M, €) (3.73)

while for the axial-vector current one has only the non-singular term. For the cumulative non-singular
cross section (which is nothing more than the cumulative of the non-singular differential cross section)
implies Eznﬁscl (M, emin) = 0 (again, this is trivial to see because the non-singular differential distribution
is by definition integrable and therefore vanishes if the lower and upper integration limits coincide). This

can be translated into the following constraints:

an A . ang,V / an A
CrpAZ8(m) = eilemmin Yo (m,e) — C’FBplugs(m) log(e — emin)| » (3.74)
I F ang, A »
0= e_l)lglnm Yo (mye).

These conditions have been checked graphically, as can be seen for the axial-vector current in Fig. 3.17(b)
(both for 2-jettiness and heavy jet mass), and for the vector current in Figs. 3.17(c) and 3.17(d) for
2-jettiness and heavy jet mass, respectively.

3.8 Results for other event shapes
For cases other than 2-jettiness and heavy jet mass, in which analytical expressions were obtained for
their differential distributions, we have adapted the formalism described in Ref. [48] to project out the

event-shape distribution from the double differential cross-section in the variables y and z by replacing
the unoriented result with the one for the angular part in Eq. (3.36).
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Vector differential cross section
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Figure 3.17: Panel (a): Limit of the differential cross section as taken in Eq. (3.71) for the vector
current, for 2-jettiness (solid lines) and heavy jet mass (dashed lines), for various values of the reduced
mass 772. The dotted lines indicate the analytic value of (4/3)B}|%. Panel (b): Limit of the axial-vector
cumulative distribution as taken in the second line of Eq. (3.74) for 2-jettiness (solid lines) and heavy
jet mass (dashed lines), for a number of reduced masses /. Lower panels: Limit of the vector current
cumulative cross section as taken in the first line of Eq. (3.74) for 2-jettines [ panel(c) | and heavy jet mass
[panel (d)] for various values of 7. Dashed horizontal lines indicate the analytic values of CrA,(1h).

The algorithm computes the radiative tail of the distribution, that is, the contribution for e > ey,
which consists in the plus and non-singular terms:
Cr B ()

fealm,e > epin(m)] = +CpF.(e,m), (3.75)

€ — €min (m)

through a one-dimensional numerical integral in the z variable. Since the coefficients of the plus and
delta can be obtained analytically we know the contributions from each different term [see Eq. (3.57)].

The measurement delta is solved for the variable y as a function of z and the event shape value e and
the Brent algorithm [7] is used to determine the boundaries of the integration depending on the form of
the contour lines with constant event-shape value. For continuous convex curves with no intersections
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with the phase space boundaries, the radiative tail can be written as:

2 o
% el e > emm(i)] = /dzdyid 7 sle — é(in, y, 2)] (3.76)

oo dzdy

€>emin (1)

12 1 1d%%
=2 d -
/z : Z dé(riny.2) | o dzdy

min®) Y=y (e.2) | T ay

where yi(e,z) are the two zeros of the Dirac delta argument, zmin(e) is the minimum value of the
variable z for the line with constant event-shape value e and the upper limit of the integral is 1/2 since
the phase space symmetry was taken into account with the factor 2.

For discontinuous contour lines, the intersection with the curves delimiting the thrust axis (see Fig. 3.3)
is needed and computed also through the Brent algorithm, and a different event-shape function é(m, y, z)
is defined for each of the three regions.

Finally, for the cases having intersections with the phase space boundaries, which are the mass sen-
sitive ones such as M-scheme thrust, C-parameter and heavy jet mass, an individual analysis of the
contour lines is carried out to get the integral limits similar to the one in the analytic computation of
the previous section.

The output for the angular distributions of several event shapes!'® in the P- and E-schemes is rep-
resented in Fig. 3.18 considering the vector current and different values of the reduced mass m. We
multiply the results by the event shape value e in order to have a finite result at e = 0. Recall that
both schemes have a small sensitivity to the quark mass since ef&f = 0. The E-scheme heavy-jet-mass
distribution for large values of the reduced mass presents kinks and discontinuities, while the rest of
schemes, masses and event shapes are quite smooth.

As a comparison, the angular differential cross sections for thrust and heavy jet mass in their origi-
nal (mass-sensitive) schemes are provided in the same way as for P- and E-schemes in Fig. 3.19.

Furthermore, we also checked that the results given through this procedure agree with those analyt-
ical in the previous section.

3.9 Summary

This Chapter was dedicated to the computation of event-shape distributions for massive primary quarks
at NLO when considering the angle between the beam and the thrust axis 67 . As was already demon-
strated in Ref. [51], only two structures involving fr contribute, the one multiplied by the known
unoriented cross section and the angular part. Here we presented the direct computation of the later

10The corresponding definitions are in Tab. 2.1 except for jet broadening, which reads:

1 R N

Bp=—= (|- [t-5 )" (7 |+ 50", (3.77)
2Qp %

B — 1 P? (‘ﬂ_l_lt@ _,_|)1/2 (‘_._H_'f_ q'|)1/2

E = 72@ E’L F?z | Pi pi Pi Di s
1 A L nN1/2 00 r o n1/2

Bo=-=> (0} —1t-p: Py + |t pi :

Q=55 i ( | ) ( | 1)
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Figure 3.18: Differential cross sections for the vector current in the P- (solid lines) and E-scheme (dashed
lines) for m = 0.1,0.2,0.3 and 0.4 in red, blue, green and magenta, respectively. Panels (a), (b), (¢) and
(d) correspond to thrust, heavy-jet-mass, C-parameter and jet broadening, respectively.
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Figure 3.19: Same as Fig. 3.18 in the original massive scheme for 2-jettiness and heavy jet mass.

by introducing the corresponding projector.

The vector-current contribution begins at tree level, leading also to a non-vanishing virtual part at
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one loop, which is IR divergent. These infinite terms cancel out when the real emission is added to the
virtual one, but it forces us to keep d = 4 — 2¢ in the phase space integrals in order to regulate them.

Therefore, we first worked out the d-dimensional phase space integrals for two and three particles in the
final state and next we carried out the calculation of the virtual and real matrix elements. Putting both
pieces together, a result for the total angular cross section has been obtained, and the corrections due to
the primary bottom mass have been analyzed. The small hadronization effects afflicting this observable
and its high sensitivity to the strong coupling (it is proportional to «; for massless quarks) makes it a
suitable candidate for accurate determinations of this parameter. It also turned out to be a plausible
choice to measure the value of the top quark mass through threshold scans, due to the enhancement our
result shows in the limit of top quarks produced with small velocity.

Since the axial-vector part is purely non-singular, once the soft singularities of the vector-current con-
tribution have been isolated, we were able to obtain a closed expression for the plus coefficient, which is
universal, and for the factor multiplying the Dirac delta (as an integral depending on the event-shape)
in the oriented event-shape differential cross-sections.

Finally, we studied the cross sections for two of the most recurrent observables in the literature: thrust
and heavy jet mass, finding analytical results for the differential distributions while, for other event
shapes, we modified the algorithm described in Ref. [48] in order to numerical obtain the oriented cross
sections.
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Chapter 4

Massive secondary quark corrections
to bHQET cross-section (Secondary
massive quark corrections to
boosted-top cross sections)

As we saw in Chapter 2, the minimal value of an event shape in the M-scheme depends on the mass
of the primary quark, see Tab. 2.2 for several examples. Since the peak position of the distribution is
in the vicinity of this lower limit, it is very sensitive to the primary quark mass (denoted as M in this
Chapter) and can be used for determining this parameter through comparisons with experimental data
or to calibrate parton shower Monte Carlo generators.! Nevertheless, energy fluctuations around the
minimal value in the peak region are in general very small. For instance, in the case of hemisphere jet
masses one has:
S — Smin s — M?

= M 4.1
i g <M, (4.1)

and therefore, accounting for (perturbative) low-energy effects is of utmost importance to get a precise
position for the peak.

We also argued in previous Chapters of this thesis that this regime is conveniently described within
bHQET, and the corresponding 2-jettines distribution has been implemented and analyzed at N3LL +
O(a?) precision in Ref. [3]. In this Chapter we aim to include the corrections due to a non-vanishing
secondary (lighter) quark mass (the bottom quark), which remain the last missing piece at this order.

Regarding the matrix elements of the factorization theorem [see Eq. (2.38)], the mass of the mas-
sive lighter quark will be always smaller than the primary quark mass, therefore it will be an infrared
scale of SCET, having no effect on the QCD to SCET matching coefficient (that is, on the SCET hard
function).? We will discuss about the different possibilities for the secondary mass scaling below in

1Trying to measure the top quark mass by a determination of the endpoint is pointless since the top is unstable and
the minimal value of any dijet event shape is effectively zero, no matter what the value of my is.

2For massless primary quarks, one can choose not take the (secondary) massless limit (m/Q = m — 0) to compute
the (strict) QCD-SCET matching coefficient, that is, keeping the effects of the secondary mass corrections. This implies
accounting for all power-suppressed terms of the form " in the matching condition. Keeping such subleading terms
makes the transition between scenarios smooth. This does not work when there are massive primary quarks involved. A
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Sec. 4.5. Finally, the soft function is the same as in SCET and the corresponding contribution was
already computed in Ref. [30].

All in all, we just need to consider the corrections to the bHQET hard and jet functions which, due to
the fact that the latter can be cast as the imaginary part of a forward scattering matrix element (as we
will see in Sec. 4.3), come solely from a virtual massive quark bubble in the gluon propagators, leading
to the possibility of using the dispersive integral method.

4.1 Dispersive integral method

Computations beyond the 1-loop level are in general hard, but if they include more than one scale,
the difficulty is severely increased. The special class of bubble diagrams for massless quarks can be
computed to all orders at once using a modified propagator. If the quarks running in the bubble are
massive there is also a standard trick to simplify the 2-loop computation. The idea is to write the
insertion of the massive quark bubble in the gluon self-energy as an integral over the mass of an effective
massive gluon propagator. In this way, to get the 2-loop result we only need to perform the calculation
at one loop with the massive gluon on top of which we carry out the dispersive integration. For a
graphical representation see Fig. 4.1.

Wm@m S

Figure 4.1: Dispersive integral method. The bold gluon propagator in the Feynman diagrams of this
Chapter will represent the massive gluon (we will omit the label of the effective mass m).

Let us start by writing the massive bubble insertion to the gluon propagator (left hand side of Fig. 4.1)
in a closed form. Applying Feynman rules and after some algebraic manipulations we obtain:

— . —i g, i w  PrpY
— g"ill(p®, m*)(p°gap — Papp) 9" = —— (g‘ - 2) I(p*, m?), (4.2)
p p p p
Massive Bubble
with:
4in ;Trg? 2m? die 1
m(p?,m?) = —LE2 11— / 4.3
o) =55 |(1-o+ 5) e )
2(1-¢) / dde 1
p? @m)d ez —m2]’
and solving the 1-loop scalar master integrals leads to:
dnsTrg® T(e) (4np?\° 2m? 3 p? 2m?
I(p?,m?) = ——1 l—et+ ) oF (1,2 =) - 2. 4.4
(v, m7) 3—2 (4m)2 \ m? et p2 )2t S 9 im? p? (44)

similar procedure can be carried out for the matching between SCET and bHQET.
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7

Figure 4.2: Contours in the complex X\ plane that give rise to the dispersive representation.

In order to have an on-shell renormalized result we need to consider the subtraction of the zero-
momentum vacuum polarization function, that is:

I(p?, m?) on—shell (p?,m?) — T1(0, m2) = HOS(pQ, m, 1), (4.5)
2 ~2\ €
o o ngTpg?I'(e) (4rnpi
I1(0,m*) = My(m*) = — 1972 2 ,
35, o niTrg? dri?\© 1

The original derivation of the dispersive integral expression was based on the unitarity and analyticity
properties of the bubble, accounting for the fact that it develops an imaginary part for p?> > 4m?2. The
derivation starts choosing as contour a small circle around the point p? in the A complex plane, such
that through Cauchy’s residue theorem one gets:

1 (A, m?) 1 (A, m?)
(p%, m?) = — 2 Tg(m?) = 7% - 4.

The circle can be deformed to the contour drawn in Fig. 4.2 and provided the function vanishes at
infinity, the on-shell renormalized bubble takes the following form:

o8, m,p) _ 1 %d HAm?) 1 % Il + e, m?)]

AA=P?) T Jame AA—p?)

p? T 2mi

(4.7)

Finally, plugging in the imaginary part of the massive vacuum polarization function in d dimensions
(that can be computed e.g. using Cutkosky rules or using properties of the hypergeometric function)
gives the dispersive representation:

am?\2
HOS(p2,m, ) _ nyTrg® T(2 ) [ e (Y (1) .
p? o2m2 T(4—2¢) Jyme A A A p? — A +ie '
00 (d=4—-2¢)( 7
Y - R i UT)
AT Jym2 p* —m? + e

where we represent the gluon mass by m, here and in the remaining computations of this Chapter.
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There is however no need to follow the path explained above to achieve the previous result. Here
we present an alternative derivation that will be the starting point of the method developed in the next
Chapter. Starting from the integral form of the hypergeometric function in Eq. (4.4)

om2 3 2 2 gl—ep(] — 1 oIm2 r—2+e(1 — )¢
ﬂ2217'1 Les o) =" 1-¢) / mZ 2 x2)2 . (4.9)
D 27 4m? I'e) T(2-2¢) J P2 p? — Am?
one can apply partial fractioning in the following way:
2m? 1 1 1
;sz_w:g;(pz_w_pz)’ (4.10)
to recover Eq. (4.8) from the relation
198 (p2 T g2 2\ T(2 — 1 —1+e(q _ i_¢
Whmp) _nfleg® (W) TR0 [y, ry e Ui
p? 2n2 \m? ) T(4-2) J, 2 p? — dmZ

after performing the change of variables  — A\ = 4m? /.

4.2 HQET Lagrangian with massive gluons

Before getting into the main calculation, let us discuss a modification in the HQET Lagrangian one
needs to introduce compared to Eq. (1.63) when an additional infrared scale such as the gluon mass is
present in the theory. It has been discussed that in HQET the pole mass of the heavy quark is integrated
out and its off-shellness is proportional to v - k with v the heavy quark velocity parameter and k the
residual momentum describing the fluctuations around the mass. On the other hand, if we denote the
one-particle-irreducible diagrams by i3 (v - k, A, u), where A represents a generic IR scale, and carry out
the infinite sum for the contribution to the dressed propagator, using the geometric series one finds:
i
vok+Xw-k A p)

Propy, = (4.12)
By dimensional analysis we can infer from the previous expression that if A = 0 the propagator has a
pole when the primary quark is on-shell. However, in general X(0, A, 1) may be different from zero, such
that we need to include a counterterm in the HQET self energy such that the 2-point Green functions
in full QCD and the EFT agree with one another. This is achieved adding a quark bilinear term in the
Lagrangian — which is allowed by symmetry — that cancels the X(0, A, ) contribution and which will
be dubbed AM, leading to the following primary quark part of the HQET Lagrangian:

‘CﬁQET = E’U w - D h'u + E'u AM h'u B (413)
AM = -%(0,A, p).

Next, we focus on the 1-loop determination of this shift when having massive gluons. The Feynman
diagram we need to consider is shown in Fig. 4.3 and this self-energy term reads
d4 1

STy = — dra,Cpi® = —dna,Cpii2[®Faer | (4.14
*~HQET rastrhk /(Qw)d 2 —m2+i0][v- (k—1) + 0] restrh (4.14)

To solve the integral we use Georgi parameters and after the loop integration one finds

IZ;—;ILQET _ 2ZF(E)

- 2 _ow. 72 7c . 4.1
(4@275/0 AN[Z — 20 kA + ] (4.15)
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Figure 4.3: One loop massive gluon contribution to HQET quark self-energy.

We assume v - k£ < 0 in order to simplify the computation. The general case can be recovered using
analyticity and the ie prescription. Hence, implementing the change of variables z = %k + 1 in order
to complete the square, followed by & = 1/z leads to the expression:

" il'()4° e [t 11 4m? e
[Eqer = HEL g .k”E/d Slm-1+ =] 4.16
(471')2—5( v-k) 0 e + (=2v-k)? (4.16)
which can be easily integrated
m ) F(E) 1—2¢ 1 1 ’fh2
I¥HoeT = —v-k F — =& —1l——]. 4.1
94—2e;2-e 9 _ | (—v-k) 2| E7 588 + 9’ (—v- k) (4.17)
With this result we find a closed form for Xf{qpy in d dimensions
R . OZSC'F/)*28 F(E) 1—2¢ 1 . ]- Th2
ZEHQET: _121—25771—6 2% —1 (—v-k) 2 F1 5—§a€»5+§71—m ) (4.18)

which is finite when taking ¢ — 0. Taking the v -k — 0 limit we obtain for the HQET Lagrangian with
massive gluons the following result

Liiqer = hoiv - D hy + hy AM h, (4.19)
AM = _70456;1? m

4.3 Jet function

In Chapter 2 we carried out the computation of the hemisphere jet function for the event shapes con-
sidered in the M-scheme through the insertion of the complete set of real states, represented by cuts in
the Feynman diagrams. However, it was already mentioned that this is not the optimal way to proceed
for observables in that scheme since their collinear measurement consists on the total collinear plus
momentum of the hemisphere and therefore it can be integrated right away to express the jet function
as twice the imaginary part (the discontinuity) of a forward-scattering matrix element. This was the
form used in the original computations at one loop [24] and the most convenient for this Chapter, since
otherwise the dispersive integral method needs to be adapted using phase space factorization, which is
not the purpose of this thesis.

To get the computational expression just mentioned for the SCET jet function, we first introduce
the respective collinear measurement [see Eq. (2.11)] into the definition given in Eq. (2.40), to obtain
the following result:

Taloun) = [ G e T [ e 01 () 365 — QP %, 0)10) (120)
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with P+ the momentum operator in the plus direction. Since the total energy in the state has to be
positive, we can rewrite the identity in Eq. (2.42) as:

o aip =
=3 /O dt/(%)d O(P°) 5(P? — t) (2m) "6 (P = > pi) d®p | X)) (Xl , (4.21)
n, spin 1=0
being ®,, the n-particles phase space [see Eq. (1.3)]. After inserting the expression for the identity in
this form before the Dirac delta function appearing in Eq. (4.20), we employ the momentum operator
to shift the field x,, ¢(x) to z = 0. After integrating ¢, one can express the jet function as:

e <] d
(s, 1) = 4]\16 5 / d'z /O at / (C;f;i 0(PY) 5(P? — 1) t=P)= f(p) | (4.22)

where we defined ¢ = (s/Q, @,0) in light-cone coordinates and

n

f(P)= Y 1 [ ot P - Yo p)d, Ol OX) (KGO0 . (429

n, spin 1=0
Finally, we can integrate = and use the resulting delta for P to get:

1

Jn(sﬂ lu) = 4NcQ

o0
/ dtO(e°) s(02 —t)f(0). (4.24)
0
On the other hand, if we carry out the £+ integral in Eq. (4.20), multiply by 4, and take the time ordered
product of the jet fields, we get the forward-scattering matrix element

7

8TN.Q

Tr [ d%z e (0| T {fixn(z) X, (0)} 0) = iJT (s, 1), (4.25)

using again £ = (s/Q, @, 0). Applying to this quantity the same set of steps used to in the jet function
we obtain

iTS _ i dl‘ > ddP 0 2 eielr e—iP':c LIJO eiPnr —.TO
T (s, 1) = /d /Odt/ 0(P%) 5(P*—1)c* £(P) [P *0(c%) + ¢ P 70(—a2)] . (4.26)

4N.Q (2m)d
In order to continue, we use the integral form of the Heaviside theta 6(x) = ﬁ ffooo d:fi;w7 leading to
. I Y f(1)
Jr =—— [ d&t [ dw——"2"—[6(°- 5(1° - 4.27
Ol A B v s L GRE R R LU RD) I tE

with wy = \/t + |I]2. After carrying out the w integral and summing up the resulting terms through a
common denominator we end up with

. LY O (UY)
T _ )
i, (s,pu) = SN0 /0 dtt R (4.28)

The relation to the imaginary part is obtained using the Cauchy principal value relation

1 1 . 9
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Comparing Eqs. (4.24) and (4.28) we obtain the final expression for the jet function:

i

8TN.Q

Jn(s, 1) =2Im { Tr [ d% ™ (0| T {7hxn(2) X, (0)} |0) ] - (4.30)

For the bHQET jet function an analogous procedure can be followed (or one can simply match the
previous expression to bHQET fields) to obtain:3

i
" 47 Ne
MB,(3, 1) = Im [MBn(é,M)} :

MB,, (5, 1t) Tr / A%z ™ (0] T { W,f () hy(z) hy(0) W, (0)} ]0) (4.31)
where 2v - k = 8.

We are now all set for carrying out the computation. Let us start considering the tree-level diagram,
depicted in Fig. 4.4, to illustrate this way of calculating the jet function.

R

Figure 4.4: Tree-level diagram for the bHQET jet function, computed through the discontinuity of a
forward-scattering matrix element.

The contribution to B, is given by

) 1+ i
tree — Tr v
MB,™(3) [szC( 2 )v~k+i0

where we have defined § = 5+ {0 in the last equality. It is also worth noting that since the Dirac

structure of the heavy quark propagator is simply the projector ¥ the trace over spin results in a

2
factor of 2 for all Feynman diagrams.

- (4.32)

™s

In order to take the imaginary part of the singular terms in § = § + i0 we can use the following
identity:

Im [W] = cos? (%) (_nWjL)Z/Z o(x) (4.33)
VO [% 1og"-2f—1<x)]
2 @+ DIn—2j-1)! T L
where [(n—1)/2] refers to the closest integer number smaller or equal than (n—1)/2] (that is, [...] is the

floor function). We may need to take into account its derivatives if higher powers of the denominator

3Recall that in this Chapter we use M for the primary quark and m for the secondary. Hence, we the notation

vy = (%, %,O), v = <%, %,0) is employed. Notice that the jet function calculation carried out in this Chapter
refers to the n-collinear hemisphere, therefore the relevant velocity is v4, although we omit the subscript for clarity in the
formulation. The other hemisphere computation is analogous, using v_ instead, but leading to the same result.
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are involved, for instance
1
Im|——— | =¢ 4.34
w || =), (1.34)
where ¢’ stands for the first derivative of the Dirac delta function.* All in all, the tree-level result reads:

MBPee(3) = Im {} =5(3). (4.35)

4.3.1 Massive gluon computations

As argued in Sec. 4.1, first we need the result of the jet function with a massive gluon at one loop
order to get the secondary massive quark corrections through the dispersive integral. At this order,
renormalization must be already taken into account. We will carry out the computations assuming the
mass of the primary heavy quark in SCET was defined in the pole-scheme. In Sec. 2.3 was already
mentioned that Z¢ does not appear directly in calculations based on Eq. (4.31). The reason is that all
fields in the jet function definition are bare, but one does not need to insert a complete set of states.

Additionally, we saw in Sec. 4.2 that when considering massive gluons one gets an extra contribution to
the self-energy coming from a non-zero quark bilinear term in the HQET Lagrangian that restores the
position of the primary quark propagator pole at the zero off-shellness (v - £ — 0) point.

All in all, the non-vanishing contributions® to the bHQET jet function with a massive gluon come
from the Feynman diagrams shown in Fig. 4.5.

AM

X > X

Figure 4.5: One loop diagrams with a massive gluon contributing to the Jet function, computed through
the discontinuity of a forward scattering matrix element.

Quark self-energy

Applying Feynman rules for diagram c) we get:

. SiasCrp¥ / dq 1
M C — . 4
By, (8, p, 1) 32 (2m)? [¢? — m? 4 i0][v - (k — q) + i0] 430

4The n-th derivative of the Dirac delta is defined applying n times integration by parts.
5Notice that the diagram with the gluon propagator connecting both collinear Wilson lines is proportional to n? = 0
in the Feynman gauge and therefore we ignore it.

108



The result of the integral was already obtained in Eq. (4.17) with the replacement v - k — §/2, yielding
the following contribution to B:

o asCr(p?e¥®)s(—5)7172¢ 45T (¢) 1 1 41n?
MBn(S,M,m): 27(2 1—9 2F1 6_§7€;§+5;1—(—T)2 . (437)

In order to take the imaginary part we split the previous expression in the following way:

MBY(5, 1,17) = MBA(3, 17— 00) + [ MBA(, 1) — MBL(S, i — 00) |, (4:38)

since the decoupling limit divergences are the same and we can safely take € — 0 in the term in square
brackets to obtain

MBS (3, p, 1)

_ a,Cpl(e)(p2e77)e m~% [ _4r'Pr(1/2+4¢) m } (4.39)
d .

A 3) 2c —1)I(e) (—3)

_aCp 1 [mw 4t 4Bl log <1+5[m2]>] ,

dr? (=5) | (=9) 2m/(=8)

with B[z] = /1 — 42 /(—8§)?. At this point, Eq. (4.33) can be directly applied except for the last term,
for which we still have to isolate the § — 0 singularities, getting in this way

V2 —4x
T—

52

Im {Bm log (”ﬂmﬂ = Vz 20 (8) — m6(3) — (52 — 4w) (4.40)

5 2V /(=5)

Finally, the contribution of the diagram to the jet function is:

(’u2e’yg)sm172s4ﬂ.1/2 F(1/2 4 5)
1—2¢

a,Cr

M B (5, 17) =22

§(3)  (4.41)

{QF(S) (u2eE)em 2 §(3) +

V& —dm? }

2 42
—0(5% —4m*)4 =

Wilson line gluon

The result for diagrams a) and b) is identical, hence we describe the computation for a) and account for
b) multiplying the result by 2. In this case, the integral given by the Feynman rules reads

MB2 (5, 1, 1) Ie (4.42)

i, Cpp® Q
= ak
o — / ddq 1

) @2m)d v (k—q) +i0][¢> —m? +i0][n - g+ 0]
and receives a non-vanishing 0-bin contribution [see discussion around Eq. (1.27)]:

~ dq 1
Igfbin = a Q ~ . (4.43)
@2m)* vk — 53t +1i0][q% — M2 + i0][n - ¢ + i0]

Therefore, in order to avoid double counting for the soft momentum, we have:

_ 4iasCFﬁ26 Q

MBS (3.1 1) = Wﬂla (4.44)
*=J*—Je . :/ d’q %
0—bin 2m)e [v- (k- q) +i0][v - k — 5&q* +i0][g2 — m? + i0]
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To perform the computation of I¢ we first integrate ¢t by residues and use a Feynman parameter to
combine the resulting denominators. Subsequently, we solve the integrals of the perpendicular com-
ponent in d — 2 dimensions in first place and afterwards the one for the Feynman parameter. Lastly,
changing the minus component integration variable to A = % q~ we get:

iT(e) M [*dA

[f=—— =
23—28772—5 Q 0 by

(02 = ax+m2) ™ = (=aa+m?) ] (4.45)
To the best of our knowledge, a closed form for the whole integral in the previous equation cannot be
obtained directly and if we try to solve each term independently a rapidity divergence appears in each
one of the terms. Therefore, we switch variables to z = E—); + 1 and introduce the analytic (massless)
regulator T to modify the exponent of the factor (z — 1), responsible for such divergence. Finally, we
make another change of variable x = 1/z and carry out the integrals of both terms:®

1) M 45T (2e = T T 1-7 1 4mm?
I = s g ) | SR (- g g e g sl - s ) (o)
2 T—¢
S (%) I(e— )
I'(e)

It can be checked that the previous result is indeed finite when T goes to zero e.g. expanding around
this limit. The part of the jet function corresponding to this diagram is:

i - - QU (e v
T1-T 1 AR (%)T_ (e =)
XQFl(g_z’z“;2*5;1_(—@)2)_ @) }

The imaginary part can be taken following a procedure analogous to the one for diagram c), that is,
adding and subtracting the m — oo limit:

MBE(5, 1) = MBG(5, 1 — 00) + | MB3 (3, iy 1) — MB35, 1, 17— 00)] (4.48)

However, in this case, in addition to the € expansion of the second term, we must also set T — 0 in
both. This leads to:

a,Cr 26"/ em—Zs —3 7.‘.1/2 Sy
VB iy = 25C rg%_g)) [( ) mr((;)/zﬂ)_Ha_l_Qlog((m))] (4.49)

o 27757;@ +4log? (W)] ’

OéSCF
872 (—3)

+

where H,, is the harmonic number, which for non-integer argument can be related to the digamma
function: H._; = ¥ (e) + yg. We can see from the result above that we only need the following
imaginary part:

1
fm [(—é) 8"\ 2m/(-5) ; 2

6Notice that the last two changes of variable are the same as those in Eq. (4.16)

" o (s+VE—ar\
log? (MHH =0 (2 — 4i?) 2 log <W> -2 69), (4.50)
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and Eq. (4.33) to get the contribution to the jet function, which results in:

C 0(s
M B (5,1, m) = 2 { D(e) (u2e})f =2 “2 log(7) — H. 1] 3(5) — 2 [ (f)] ] (451)
7i S +
4 51 /32 _ 4m2
+0(52 — 4m?) = log <M> } .
5 2m
Quark bilinear term
Feynman rules for diagram d) read:
L 1 1+¢ 1 , 7 2AM
MB =T AM = 4.52
Bulsoaem) rLWNC( 2 )U-k—FiOZ v-k 410 w82’ (4.52)
and the corresponding part of the jet function is
MB(3, 1) = 2AM&' (3) = —a,Crm d'(5), (4.53)

which exactly cancels the derivative of Dirac delta term in Eq. (4.41) if we set ¢ — 0. This is expected
since AM is defined as the on-shell contribution to the primary quark self-energy from the massive
gluon diagram with the sign reversed (see Sec. 4.2), and therefore the cancellation will happen for any
value of € provided we treat both terms on the same footing.

Massive gluon result

Combining all individual pieces we get the final result for the NLO jet function with a massive gluon:

M B (5, pu, ) = O‘Z:F {QF(s) (:;g) [(1 —H._,+ 2log(ﬁ1))5(§) (4.54)

- A R

S

s+ /2 a2 YN T
+0 (5 — 4im?) Flog<s+\/zm m)_ \/5§2 m]}
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Let us consider the massless limit of the previous expression as a cross-check. In this limit some other
distributions may arise so we will work with the e-expanded cumulative jet function:

S (3, 1, 70) z/ " ds B (4, u, ) (4.55)
0

_ aCr +2+ ~log(u) +8lo (1) + 41o 2()Jr—2+410
Sy g g (m g g(p

4
+ 161og(2) log(m) + 4log?(2) + 4log(2) + <_5 — 8log(p) — 8log(2 > log (8.)

4 7
LAVEE A, (§c+ > —4m2) 1+ log (s > )
3c
2
(éc +/EE 4m2) (sc + 4m2
—2log | 1+ e +4Liy | — 4m2

We can safely take m — 0 in the previous expression, finding

2 2 2 Se $ S

Bl Y Y PPN —flog Falog?( 2) |, (4.56)
e ¢ 2 I ju ju

d
ds.
to recover the known massless result using Eqgs. (2.83) and (2.70)

MBgs(gvﬂ):ascF{ ;+§+4_ﬂ]5(§)_4<1+i>1 {a(g/)} .8 {Wg(s/ﬂ)L} (458)

4T 2 IO R ! $/1

asCF

B (Se, py 11 =1
(8¢, 1 — 0) + .

from where we can differentiate

By (3,1) = = |00 5% oo - 0)] (4.57)

S.—8

4.3.2 Final result

In order to get the secondary massive quark corrections we split the integral of Eq. (4.54) involving the

kernel V(@=4=29) (7, i) = V*~2¢ into the different terms:
oo 4P (1 — 267 (m2)P " (e —
/ din2 Yi—2¢ (mz)p _ V/aP( ) (/JJ & _ ) (m ) (e —p) . p=—¢c,1/2— ¢, (4.59)
4m? I'(3-»)
o0 4_5 2 YE € 2 —2e P 2
dﬁ”L2 V4—25 (mQ)—s log(ﬁ12) — ﬁ (/j‘ € ) (m ) ( 8)

i T+ D)

X {(s +1)log (4m?) — (e +1) O (2e) + (e + 1) »© (e + ;) - 1} ,

52/4 8 (32m2 + 352 16m2\ 4 (16m2 — 1182 16m2
/ Qi V5 e = S (32 4 35) S)K(l— 6Am>+ (16m S)E<1—6m),
4

95 §2 95 5

82
/52/4 a2 i L §+VE — dm?
4 2 ’

m2

I[3,m] = % o log

m2
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where F and K are elliptic integrals” and we postpone the discussion of I[3,m] to Appendix C.1 where,
starting from the dispersive integrals, we work out an analytical expression along with series expansions
in two different (but overlapping) regimes for the non-distributional part of the jet function. Neverthe-
less, we shall see that in the way we carry out the computations in the next Chapter the series and
analytic results are obtained much more easily.

Note that the second line of Eq. (4.59) can be obtained from the first writing (m?)~¢log(m?) =

limg_,o {% ((m2)—5+5)} and in the last two lines € can be set to zero right away.

Since the dispersive integral corresponds to the on-shell renormalized bubble diagrams [see Eq. (4.8)]
we have to add back the IIo(m?) part [see Eq. (4.5)] to recover the unrenormalized MS result. And
since IIp(m?) appears in a term which is proportional to the (massless) gluon propagator, we account
for it simply multiplying the (massless) one loop jet function by the vacuum polarization function at
zero momentum, such that

asTF

MBe(3, jm) = Tp> [ din® V2 M By (5, 1) + [ To(m?) +

MBy: (s 4.62
) [Bgs), (462)

3me

with M B2 (3 1. m) the contribution of the secondary massive quark to the bare jet function.®

As a cross-check, we can see that the divergences obtained are canceled by the bubble terms of the
MS renormalization Z-factor obtained in Ref. [42], where the 2-loop bHQET jet function was computed
considering massless secondary quarks.”

Finally, after the convolution of the MS-renormalized hemisphere jet functions [see Eq. (2.39)], the
correction to the thrust bHQET jet function due to a non-vanishing secondary quark mass bubble takes
the form

B (5, m) = BUFD (8, 1) + 6BISY (5, u,m) + 0B (5,m) (4.63)
» 20T, 32 128 976 — 4872 3568 6472 32
5Bdist (3 et il 1 el i 5 L, - — e 83

)

2 2 1672 4 2 2
+ (—SL%—%Lm—mﬁ— om ) £0(3) + <6Lm+56> El(é)—iﬁ(é)

3 9 27 9 3 9 3
2
1/ 4 a;Crlr 2 2
5B (3, m) :@TWGM(S —16m?) fa,
"Defined as
1 V1 — xt2 1 1
B(z) 5/ a YA K () z/ o (4.60)
0 V1 —t2 0 V1 —1t2y/1 — zt?
They can be written also in terms of hypergeometric functions
™ 11 s 11
E =—oF1 |—=, ;1 , K =—oF1 |-, 1; . 4.61
(@) 221(22 m) (@) 221(22 x) (461)

8In the previous equation we did account for the MS renormalization of the as parameter through the subtraction of
the divergent term of ITg(m?2).
9Recall that in mass-independent renormalization schemes, divergences do not depend on infrared scales.
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where ny is the number of massless flavors, o, = a&"‘“% L, = log(%), L£i(3) = ﬁ [W} , and
+

32m? + 352 16m? 16m? — 115 16m?
wa = 1[8,m] — _ K(1-— — _ - — . 4.64
Jua 8,m] 933 < §2 ) 18 83 ( §2 ) (4.64)
The massless secondary quark jet function 35"”1)(@, w) (for ngy 4+ 1 flavors) can be found in Ref. [42].

Again, we can take the massless limit of the cumulative of the massive-bubble correction to see that
indeed it vanishes but, due to the complexity of the integrals involved, the procedure was carried out
numerically, finding a successful outcome.

4.4 bHQET Hard function

Another fundamental ingredient that appears in the bHQET factorization formula, see Egs. (1.67)
and (1.68), is the bHQET Hard function. It corresponds to the modulus square of the matching coef-
ficient between the SCET and bHQET dijet quark currents [see Eq. (1.66) ], whose calculation will be
presented below taking the simplest possible matrix element, that is through the ratio of the so-called
quark form factors in both theories:

(2,7 Jlé bHQET ‘0> Fpuqer ’

— J;t 0 F
Crr — (99| JE scer 0) SCET (4.65)

where (g, G| stands for the quark and anti-quark on-shell final state particles. For simplicity, we have not
displayed the spinors (as they cancel in the ratio) and current-type structures (the form factors coincide
for vector and axial-vector currents) that appear in the matrix elements'® and shown only the form
factors themselves (F'). Furthermore, we will consider the current operators before the usual BPS field
redefinition in such a way that, instead of soft Wilson lines, we will deal with collinear-soft interactions
given by the Lagrangian in Eq. (1.37) and whose Feynman rule (which is the same in both EFTSs) can
be found in the dedicated Appendix A.

4.4.1 Massive gluon computations

The Feynman diagrams for the form factors are the same in both theories and depicted (with fields
defined prior to BPS redefinition) in Fig. 4.6, where diagrams (a) and (b) correspond to collinear
radiation, while (c) stands for a soft-gluon exchange between the quark legs. Since primary quarks are
massive, one must include the corresponding wave function renormalization factor Zy, that accounts for
the fact that fields in the current are bare.

Figure 4.6: Contributions to SCET and bHQET form factors

The SCET one-loop form factor with a massive gluon is already known for massless and massive primary

10They result in a common factor Up, Fév%, with u, v the corresponding quark and anti-quark spinors, respectively.
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quarks. The calculation for massless primary quarks can be found in Ref. [31]. To compute the different
loop integrals, which contain non-vanishing 0-bin subtractions, the authors of that reference use the
residue theorem on one light-cone component of the loop momentum, carry out the perpendicular integral
in the usual way, finding that the remaining light-cone component integral is divergent (even with a
non-zero value of epsilon). Nevertheless, these divergences cancel out when summing the contributions
from all Feynman diagrams, leading to a well-defined integral. In Ref. [40], the finite corrections due to
the mass of the primary quark were computed.'’ The combination of both results reads

-2

gLCET = aSCF{F(s) <:;e'£>e {Hl_E —(-1)°r2—-el'e—1)+ M + log <g2>} (4.66)

2 2 — 3e + &2
+6—b3—5b10 1—b _b3+5b+610 b+1
2(b+1)2 e\ 2 21— b2 e\ 2

b* — 25 1-b b+1
+ m +210g <2> IOg <2> +O(€)},

with b =4/1 — 471;‘;[22. Thus, we just need to care about the bHQET form factor computation, that will

be performed analogously to the procedure in Ref. [31] just described.

Collinear and Soft diagrams contribution

Applying Feynman rules to the n-collinear diagram a) we get:

Fiiter = — idma,Cpi® vy 1™ (4.67)

I :/ a4l 1
=) @r)dZ —m2 +i0] vy -1 +40] [l —i0]

where 1™ has the following 0-bin subtraction:

Im,a ddl 1
0—bin :/( (4.68)

2m)4 12 — 2 +40] [An-vyn - 14i0] [m-1—i0]

Therefore the diagram contribution reads:

i 1 ddl 1
PR — , 4.69
bHQET = ATAsCFl ﬁ.m/(gw)d (12 — W2 +40] [vg - L +140] [n - L + i0] 09

Then we use residues to integrate the minus component, keeping track of the ¢0-prescription:

pia_ _ aCrp2 1 /0 di+ /°° Al [1]43 (4.70)
bHQET 2-2egl-— (1 —¢) J_ It 410 J, |1J_|2 T %22 (l+)2 ) .
and carry out the perpendicular integral to obtain:
- OéSCFﬂQE 0 dl+ 5 Q2 2 —€
FL’LH(ZQET = T 9l-2e,l-¢ F(g) I +i0 m”+ M2 (l ) : (4'71)
On the other hand, Feynman rules, including 0-bin subtraction, for the 7-collinear diagram b) give:
; 1 d?l 1
Fb = idraCri® / 4.72
bHQET = PSMAT A "5 ™ | (@m)d 12 — 2 + 0] [u_ -1+ 0] [ + 0]’ (4.72)

11Since these are finite, the computation was done in four dimensions.
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and employing the same procedure, the remaining integral in this case is:

m,b asCF/jZE 0 dl+ ~ 92 M2 2 o ~27—¢€
Fiiqer = g10-,1== 1 (€) /oo o) | g ) S (4.73)

Finally, the soft contribution from diagram c) leads to

" d4 1
Fac — < ~2e
bHQET i8rasCrfi / (2m)4 [I12 — 2 + 0] [n - | + 0] [72 - | + 0]

_ Ofsc’F,[/f25 . 91—¢€ o dit
- 91—2el—¢ F(é‘) [m ] 0 I+ 440"

Now we add up Eqs. (4.71), (4.73) and the second line in (4.74) to obtain
m,a+b+c e C'F/l%5 o dl+ ~ Q2 2 ~ M2 2 -
Foiger = ol—2e1-¢ I'(e) T m? + e (M) —m?+ o (M) (4.75)

e [ At
o [

where we also reversed the sign of the plus loop momentum [T — —IT in the first integral. To solve
the integral in the first line we can use an analytic regulator, modifying the exponent of [T in the
denominator, that is through a rapidity regulation: [T — (I*)'*Y. The integral in the last line can

(4.74)

—€

be carried out using the Cauchy principal value prescription m =P.V. (l%) —imd(I1). After taking
T — 0 the contribution from the collinear and soft diagrams results in
~2e 2
m,a+b+c asCF//(‘ ~ 27—€ M
Fonger = ol—2e 1« I'(e) [m ] log <Q2) . (4.76)

On-shell wave function renormalization constant

In Fig. 4.7 we show the 1-loop Feynman diagrams for bHQET quark self-energy due to a massive gluon,
which is the same as in HQET. The diagram on the right gives just the constant term iAM that will
not contribute to the on-shell wave function renormalization constant since it does not depend on the
off-shellness [see Eq. (4.19)]. For the left one, we obtain the same as in Eq. (4.18):

AT
KAL) i) t'p‘,“_:;”

\'F
\'F

P AM

Figure 4.7: One loop massive gluon bHQET quark self-energy

_ d4l 1
nin = _4 SC r2€
bHQET TasCEp / (2m)d [12 — m2 +i0] [v - (k + 1) + 0]

~ 1—2¢ 2
CaCrii* T(e) [—A2 1 1 _of 2M
= — l? —_ = N — 1 — _—
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but where now v - k = % was defined with A? the quark off-shellness. Therefore, the value for the
wave function renormalization constant given by the on-shell condition is:

_ 1—loop d 5 a.C ~2e _

OS,m . m sUFrp . 971—¢€

(Zw7bHQET> =i2M {dA2 bHQET} = s @[] (4.78)
A2—0

From the sum of the previous equation with Eq. (4.76) we get the one loop bHQET form factor with a

massive gluon

" a,C 1% . 91—€ M?
QBT = %Tl;ﬁ—e L(e) [m?] {1 + log (—QQ)] . (4.79)

4.4.2 Final result

After taking the ratio of form factors, which at one loop is simply the difference between both O(ay)
terms, and carrying out the dispersive integral, we must add back the subtracted IIo(m?) term as in
Eq. (4.62) to account for o renormalization in the MS scheme. After this process, we find that UV
divergences agree with the ones corresponding to the massless quark bubble color structure of the results
obtained in Ref. [40].12

Squaring the renormalized matching result, that leads simply to a factor of two for the bubble part, the
corrections to the bHQET hard function due to the mass of the secondary quark can be written as

n n m
H](we+1) (M, ]{Q/[,M,m) - H](\/H) <M7 E,/O +0Hy (M) , (4.80)

2
C’](\Z”l) (M , ]{Qp,u> , the secondary massless quark result computed in
Ref. [40], and the mass correction

with H](\Zﬁl) (M, %, u) =

m o2CpTr | 1747 5272 532 16 . 104 . 32 .
SHy[—) == 2 ) L+ — L2 + 2218 4.81
M(M) (4m)2 81+27+(27+97T> g P g (4.81)
o 6 — b3 — 5b 1-b\ B3+5b+6 b+1
+/ dm2 V| 2 = ( )— 210, (+>
2 b(b+ 1) 2 1 -0 2
b2 — 25 1-b b+1
+ YA -0 + 4log (2 ) log (2 ) } ,
where a, = o™V and L, = log (12).

Since the running of the hard function is just multiplicative and does not involve any distributions,
the dispersive integral to be carried out in the second and third lines of the previous result does not
require many numerical evaluations. Nevertheless, more efficient expressions for the whole correction
will be achieved through the method developed in the next Chapter.

4.5 bHQET Variable Flavor Number Scheme

Unlike in Sec. 1.4.1, where the SCET VFNS was introduced focusing on the matrix elements partici-
pating in the factorization theorem,'? in this Section we will present a similar discussion for bLHQET

12These are not directly given for the divergences of the bHQET matching but for the MS renormalization constants of
the form factors so, in order to make the comparison, their difference must be taken.
13 This is how it was first proposed in Ref. [56].

117



from the point of view of the operators appearing in the corresponding EFTs. This approach is more
transparent and theoretically based on more solid grounds. As a consequence, the main object of study
will be the factorization theorem building blocks, that is, the currents, whose definitions are given in
Egs. (1.9), (1.43) and (1.64) for QCD, SCET and bHQET respectively.

Let us start by the secondary massless quark case. The chain of EFTs needed is sketched in Fig. 4.8.

QCD11,+1

125:8 Cn,+1
SCETHI-H

K cy
bHQET™

Figure 4.8: Sequence of EFTs for bHQET computations with massless secondary quarks. The horizontal
lines signal energy scales, as marked on its left, and delimit the regions of validity of the various EFTs.
We also show to the right of each line the matching coefficient necessary to relate two consecutive EF Ts.

Since the goal is computing an observable within the bHQET framework, we need the corresponding
renormalized quark current operator at the scale i inside the theory regime.!'* Since the EFT is designed
to reproduce the infrared behavior of the full theory, in order to account for the high-energy effects not
accounted for in the EFT, matching onto the theory above (SCET) is necessary. The SCET-bHQET
matching takes place at scale 57 whose associated natural scale is the primary quark mass M.'5 There-
fore, even though the calculation of the coefficient is carried out as the ratio of form factors in fixed-order
perturbation theory, we evolve the bHQET current to a smaller scale to avoid large logarithms in the
jet and soft functions, leading to the following relation'®

Js&tr (uar) = Cif (par) UG (e = 1) Tqur (1) (4.82)
with J¥cpr (Jouqer) the SCET (bHQET) dijet current operator with n active flavors. One can repeat
the procedure for the SCET current at the full theory (QCD) boundary uy close to the center of mass

energy X ) ) )
Toén = O™ (um) Ut (pa = par) J5&ET (ar) - (4.83)

JsceT
It is worth mentioning that, since the primary quark mass is an infrared scale in both theories, the
coefficient C™¢*1 cannot depend on this parameter and only leading-order power corrections in M/Q
are accounted within SCET. All in all, the starting point for the factorization theorem is:

Joen = C" ) Ugt o (na = ) C3f (an) UG (r 4 1) Jifiqer (1) - (4.84)

14The scheme used for the renormalization of the currents is the MS.

15The renormalization scale pps should not be confused with sy, used in Sec. 1.4.1 to denote the renormalization scale
of a general matrix element M.

161n this section, to alleviate the notation we only account for a superscript indicating the number of active flavors.
Notice that in bHQET the primary quark is not an active flavor anymore.
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Figure 4.9: bHQET factorization theorem from the point of view of EFTs and operators.

From the previous equation, the factorization theorem is obtained by splitting the square of the bHQET
current, with the insertion of the measurement delta in the theory limit, into the collinear and soft
operators, whose vacuum expectation values constitute the jet and soft functions respectively

B(enu) = <OC011> y S(eu,u) = <Osoft> . (485)

The last step is evolving these operators to a renormalization scale close to their natural scales using
the corresponding RGE equations. The setup just described for the bHQET factorization theorem with
massless secondary quark is depicted in Fig. 4.9. It is completely equivalent to the one already presented
in Fig. 1.8 for the matrix elements and can be argued from the fact that the QCD current operator
does not depend on any renormalization scale. This implies the evolution of the matching coefficients is
reversed with respect to the one for the currents. This setup, from the point of view of both operators
and matrix elements, is sketched in Fig. 4.10.

Next we analyze the situation of a non-vanishing secondary quark mass m within the bHQET regime.
If @ > M > m one can choose a common g larger than the renormalization scale associated to the
secondary mass f,,, we just need to consider the same EFTs setup as before but changing a light active
flavor to a heavy one. The matching onto SCET is:
2 1 1 1

Jsbir (par) = Cyf ™ (uar, m) UG (uar <= 1) Tier (1) (4.86)
where we also kept a residual dependence on the the secondary mass, even though it is an infrared scale
in both theories and should not appear in matching coefficients, because this class of power corrections
in m/M can be consistently incorporated in the EFT framework and makes the transition between
scenarios smooth. However, its effects are not included at the QCD-SCET boundary matching since
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Figure 4.10: Equivalence between the bHQET matrix element setup introduced in Sec. 1.4.1 (left panel)
and the corresponding EFTs operators approach followed in this section (right panel).

there is no consistent way of treating them in the presence of primary quark masses!” so the coefficient

will be identical to that in Eq. (4.83) but with the corresponding number of active flavors

jgé-EQ — O () U2 (g i) ngé—g?f(#M) (4.87)

JscET

On the other hand, below u,, the secondary quark must be integrated out, leading to bHQET™¢. The
bHQET current operators with ny+1 and n, flavors are connected through the flavor matching condition

Joteer (Bm) = Munqer (tm) Jfiger (m) (4.88)
which can be computed as the ratio of form factors in both theories in the limit at which both should

be valid, that is, taking m — oo (we suppress the dependence of the currents and matrix elements on
the renormalization scale fi, ):

(07| I QET |0) Fynqerne+ n
. . 3 PR L P = . v
MbHQE B W}I <q7 q ‘ “}?HE QE |O> N ”’}1 roo I bHQET™¢ =1 n’}lﬁmoo [FbHQE ’”—b“bble:| ren (489)

In the previous equation we defined FﬁﬁQET as the contribution to the bHQET form factor from

m—bubble
the secondary massive quark bubble expressed as a power series in ag ’Z), which reads:

ne Qg o0 ~ 9 N yd—2eqh 2 oaTr (1 MQ m=0
FbHQET'nL—bubble = TFE : dm V FbHQET+ [Ho(m )+ 371' g-&-log(ﬁ) :| bHQET > (490)

m2

where the last term comes from the MS renormalization of oy [see Eq. (4.62)] and from the strong

(ne)
coupling threshold condition ™™ (1) = o™ (1) {1 + O‘SZB% log(T’:;ﬂ. The term within square

17Recall that primary quark mass effects are not taken into account either, since there is no consistent way of treating
them within the leading-power factorization theorem. Hence, we are strictly working at leading power in M/Q and m/Q.
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brackets in Eq. (4.90) is O(e) such that only the divergences in FIZIHZ(SET contribute (and coincide with
those of F?HQET since they do not depend on infrared scales). All in all, we can introduce Eq. (4.79)
into the previous expressions to obtain the bHQET flavor matching

o2CrTr 16 5 (M m Q?
=14 —=2———|91 — 151 — 1-1 —— 4.91
Monger =1+ S oot () + o (57) 7] 1w (5 )| e
with o, = o™ The two different EFTs setups discussed for the massive secondary quark are summa-

rized in Fig. 4.11.

QCD"I+2 QCD"HQ
17 Cnut? 10 Cnut2
SCET™+2 SCET™+2
pr Cyy ™ m) Har Chi(m)
bHQETnI+1 bHQETn’Jrl
’UI -------------------------
Hom o MyaqeT
,Uz -------------------------
bHQET™
(a) (b)

Figure 4.11: Same as Fig. 4.8 accounting for massive secondary quarks. In this case there are two
different possibilities, depending on the hierarchy between u,, and pu.

Once the factorization theorem is set up at the scale p for the calculation of the observable, the operators
Ocon and Ogopy must be evolved from their natural scales (as explained before) to avoid the presence of
large logarithms. The evolution will sum up those to all orders in perturbation theory. Nevertheless,
depending on the choice for the common renormalization scale p and the value of the natural scale, some
threshold might be crossed in the jet or soft evolution, and therefore one needs to take into account
the p,, boundary conditions in the corresponding functions. The connection between these operators in
both theories is also written as a flavor matching coefficient which can be computed through the ratio

between the two vacuum expectation values'®
e B
ne ne+1 T <Ocoll> 1
Ocoll =Mp Ocoll ’ Mp = WP_I;%O <One+l - n}g%o Brnetl? (492)
coll
+1 (O grett
orert = Mg OnL Mg = lim soft L — lim
soft soft ? mM—00 <O:<fft> m—oo SNe

18We oversimplified here the notation for the sake of a clearer argumentation: The flavor matching for collinear and soft
operators actually involves a convolution, so the ratio actually refers to the convolution with the inverse function.
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The result for Mg is already known from Ref. [56]° whereas for M p we have, in analogy to Eqgs. (4.89)
and (4.90):%0

—os(aY . T; ng
Mp =4(5) "}E,noo [Bmfbubble]ren ) (4.93)
pne -7 %/OO dm? V=2 B (8, u, )+ |11 (m2)+aSTF Lrlo (”—2) }ZB“S(é )
m—bubble F2ﬂ_ A2 n y 1y 0 3 c g m2 n )

therefore we can use the previous equation together with Eqgs. (4.54) and (4.58) to obtain the result. In
addition, given that the real radiation term §B™* vanishes when taking the m — 0 limit (due to the
Heaviside theta), the collinear flavor matching can be expressed as

o A ng=1 __ dist asTF LQ Qs (a
Mp = 6(3) — B! B [TW log(m2>2Bn (s,u)} : (4.94)

ren

such that we can also introduce Eq. (4.58), the corresponding part of Eq. (4.63) and the value for By’ =t
provided in Ref. [42] into this formula to get the same result, which reads

Q2CpTp 32 128 in? 688 440
—o(g) ¢ BEELE ) Cops 20pe (T D90 g 2 1.95
M =06) + 155 9™ g m+( 9 27) 27 (4.95)
5m? 28 32 160 224
M e 8(8) 4 (S22 4~ L+ ) £O(3) Y
+ o+ 56 (s)+<3 2+ +27> (s)}

What determines all the various running possibilities given in the bHQET factorization theorem with
secondary massive quarks is the hierarchy between the jet and soft scales with respect to .., together
with the choice of the common renormalization scale u. They can be organized in different scenarios
leading to the matrix elements setups shown in Figs. 4.12, 4.13 and 4.14. No matter what the hierarchy
between p,, and the soft/jet scales is, p can take any value (in Fig. 4.11 we picked the most physical
choice, but this is not unique). The equivalence between p > p,, and p < i, within the same scenario
gives the consistency conditions for the flavor matching conditions: Mg = |./\/leQET|2 M p, which is
indeed satisfied by Egs. (4.91), (4.95) and the result for Mg provided in Ref. [56].

It is also worth mentioning that, in order to achieve a smooth transition between the different sce-
narios, the effects of the secondary quark mass that vanish in the decoupling limit must be kept in the
computations within bHQET™ as was done e.g. in Eq. (1.56).

4.6 Numerical results

In this section we present some phenomenological studies based on the numerical implementation of
the computations carried out for the bHQET cross-section at N3LL + O(a?2) with massive secondary
quarks. The cross section has been constructed following the procedure described in Ref. [3], where
all the massless ingredients at that order are provided, to which we add the corrections discussed in
this Chapter. Since the bottom mass appears for the first time at two loops, it can be considered in
the pole or MS schemes. In these preliminary studies we also choose the pole mass for the top quark
mass. The various plots that show the effect of the secondary bottom mass consider an unstable top

19Recall that the SCET and bHQET soft functions are equivalent (up to diagrams with primary quark loops) since
both theories agree in the infrared. Furthermore, we choose the definitions of the respective flavor matching conditions in
opposite directions for the jet and soft functions, such that they coincide with the ones given in Ref. [56].

20With an additional factor of 2, coming from the convolution of the two hemisphere jet functions.
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Figure 4.12: bHQET factorization theorem setup with secondary mass. Scenario I.
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Figure 4.13: bHQET factorization theorem setup with secondary mass. Scenario II.

quark thrust distribution with the standard values of the profile functions parameters. This configuration
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Figure 4.14: bHQET factorization theorem setup with secondary mass. Scenario III.

can be encompassed within scenario II throughout the peak region, which is the one we are interested in.

Our first analysis is shown in Fig. 4.15, where we compare the cases for a massless and a massive
bottom quark, taking as input for the center-of-mass energy, top quark pole mass and top width the
following values: @ = 2000 GeV, m; = 170.034 GeV and ' = 1.32 GeV.

T SOFT T T T —
100F ]
C ] oo 4oF 3
o 3l
L ~ L _
s OF 1 .
-t £ 50k 3
40 ] |
r o
20F my =4.2GeV ] ciﬁ 10F 3
C my =0 ¥
4 0 — — 4

(] A T A SN TP S S P T B
0.0145  0.0150  0.0155 0.0160 0.0165 0.0145  0.0150  0.0155 0.0160 0.0165

T T
(a) Thrust distributions for massless and mas- (b) Percentage of relative difference between
sive secondary quark massless and massive distributions.

Figure 4.15: Comparison of massive and massless bottom quark distributions for = 2000 GeV, for
unstable primary top quarks with m; = 170.034 GeV and I' = 1.32 GeV. The peak positions are marked
by dashed vertical lines in both panels.
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In our second analysis, we scan over the bottom mass and analyze the dependence of the peak position
for the corresponding distributions with this parameter, see Fig. 4.16, to get a taste of the impact it
has on top mass determinations. The hemisphere jet mass associated to the thrust peak position is also
indicated since it is more instructive for this purpose.

Finally, we repeat the analysis shown in Fig. 4.15 modifying one parameter at a time (COM energy, top
mass or width) while the rest remain at default values. The results are shown in Fig. 4.17.
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Figure 4.16: Peak position (left panels) and peak height (right panels) as a function of the bottom mass
in GeV units. We also show the corresponding value for the hemisphere jet invariant mass /s;.

4.7 Summary

The effects of a non-vanishing bottom quark mass must be taken into account in precise top quark
mass determinations through the analysis of differential event-shape distributions in the peak region.
Therefore, the goal of this Chapter has been including these corrections in the factorization theorem
of bHQET, an EFT well suited to describe the process in this regime. We have computed the missing
pieces: the massive quark bubble contribution to the hard and jet functions, and the threshold matching
conditions. In order for that, we expressed its insertion in the gluon self-energy as an integral over the
mass of an effective gluon propagator, also known as the dispersive integral method.

Before obtaining the necessary one-loop results with a massive gluon, we discussed the modification
in the HQET Lagrangian due to the gluon mass. This was in fact an unknown feature of HQET, a
theory that has been around for many decades now: massive gluons or secondary quarks require the ad-
dition of a quark bilinear term in the Lagrangian to keep the pole position of the propagator untouched.
We have also cast the thrust jet function as the imaginary part of a forward-scattering matrix element,
which facilitates the corresponding computation.

Once the matrix elements have been obtained, along with the flavor matching conditions for the hard,
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Figure 4.17: Same as Fig. 4.15 changing the value of a single parameter.

jet and soft functions, the various ingredients have been included in a numerical code in order to carry
out phenomenological studies. The bottom mass contribution was added to complete the N3LL + O(a?)
order of the thrust bHQET differential cross-section. The impact of these corrections has been presented
through several illuminating plots.
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Chapter 5

Mellin-Barnes for massive quark
bubbles and massive bosons
(Secondary massive quarks with the
Mellin-Barnes expansion)

In Chapter 2 we used the Mellin-Barnes representation to expand the RG-evolved SCET jet function
with massive primary quarks in a certain kinematic regime. In the previous Chapter we employed
the dispersive integral method to compute the 2-loop secondary massive quark corrections to bHQET
matrix elements. In this Chapter we combine both tools to obtain in a straightforward manner these
2-loop contributions in an expanded form. With minimal modifications, the same strategy can be also
employed to compute the expansion of the 1-loop correction caused by an actual massive gauge boson.
We will apply this method to a plethora of examples, in particular those relevant for factorized cross
sections involving massless and massive jets, recovering previously known results and those derived for
the first time in Chapter 3.

As already mentioned in Sec. 1.5, the use of Mellin-Barnes is widely extended in multi-loop calcula-
tions. The general idea is, for a given master integral, carry out all loop momenta integrals using
Feynman parameters, apply the MB representation as many times as necessary, and after carrying out
the remaining Feynman parameter integrals, employ the converse mapping theorem to obtain the result
(which in the case of having the ratio of scales, can be an expansion in powers of a small parameter).
On the contrary, in our procedure we will use the MB identity at a very early stage of the computa-
tion: right after expressing the massive polarization function in terms of an integral over a Feynman
parameter x — keeping the exact dependence on d = 4 — 26 — but before any other loop integration is
carried out. After applying the MB representation, the integration over x can be carried out trivially
giving rise to gamma functions, such that only a single loop integral remains. This loop computation
involves a modified (massless) gluon propagator which is exactly the same one employed in large-Sg
computations (that is, the denominator of the gluon propagator is raised to a non-integer power 1 — h).
This is convenient, since many existing results can be recycled, see e.g. Ref. [27].

Furthermore, one can apply the converse mapping theory after RG evolving the SCET and bHQET

jet functions, such that easy-to-use expansions are obtained. An additional nice feature of this method-
ology is the fact that one does not really need to use any additional regulator beyond dimensional
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regularization, since no rapidity divergence appears in any loop integral. Indeed, the Mellin variable h
in the modified gluon propagator effectively acts as an analytic regulator which does not involve any
additional energy scale. Moreover, O-bin subtractions identically vanish.!

The downside of our method is that —unless some off-shellness is used — it cannot be applied to
quantities afflicted by IR singularities at one-loop (with massless gluons), but it will turn out particu-
larly good at computing matching coefficients between EFTSs, since those are IR-safe. However, using
consistency conditions we will be able to separate the QCD, SCET and bHQET pieces of the matching
computations in all cases under study.

Finally, extracting the UV poles, taking m — 0 or m — oo limits, or figuring out the flavor matching

condition between two consecutive EFTs is completely trivial in our method: these simply correspond
to the residues of some poles close to the origin in the complex h plane.

5.1 Massive Quark Vacuum Polarization Function

We begin by obtaining the MB representation of the bubble insertion into the gluon self-energy that we
already studied in Sec. 4.1. This can be done using the Mellin identity [Eq. (1.71)] in Eq. (4.11), which

leads to
€ pctioco —h
0S(, 2 _as(p) prer® / e dh (om?
il (p ,TTL,,LL) I TF< m2 i 20 p2 G(h,&), (51)
L(R)T(1 — A2+ h)T(h+e)

G(h,e) =

(3+ 2h)L(2h + 2)

Since, as already discussed, the method can only be applied to IR-finite quantities, € > 0 in order to
regulate UV divergences, hence the fundamental strip is 0 < ¢ < 1. From Eq. (5.1) one can read the form
of the “effective” gluon propagator which will yield the MB representation from a 1-loop computation:
the insertion of IT1°%(p?, m, u)/(—p?) in the MB representation modifies the denominator of the gluon
propagator from (—p?) to (—p?)!~" and adds an overall factor.

Our expansions will become useful to compute the matching between two consecutive EFTs, one in
which the secondary massive quarks are dynamic, another one in which they are not, as in Sec. 4.5.
Recall that, in order to compute the matching condition we need to relate the strong coupling in the
two EFTs which can be done using directly ITI}™(m?) [see the definition of this quantity in Eq. (4.5)],
getting:

(ng) T 2
" () = ol () |1+ T 3(:) £ 1og(7‘;2)] +0(e) =al (w(1+5").  (5.2)

Indeed one has that

N T s 2 2
S (1m0, 1) + 60 = —%a fr“) {logQ (;;) + ”6] +O®E2). (5.3)

Before discussing any further the computation of the 2-loop massive bubble diagrams, we apply the
converse mapping theorem to I19%(p?, m?), as it will serve as an illustration. Since the on-shell vacuum

1Depending on the quantity one wishes to compute, an off-shellness regulation might be necessary, but such regulator
is not specific of computations with secondary masses and appears for massless quarks as well.
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polarization function is UV finite, we can set ¢ — 0 in Eq. (5.1).2 The inverse mapping theorem is
nothing less than closing the contour towards the positive or negative real axis and using the residue
theorem together with Jordan’s lemma, as we explained in Sec. 1.5. Moreover, we saw that to pick
either side, we need to study the behavior of G(h,0) for large h:

G(h,0) (—Zf)h _ 79 cse(mh) (4m2 )h.

= T\

h—o00

(5.4)

It is clear that for [p?| < 4m? (|p?| > 4m?) the contour must be closed towards the positive (negative)
real axis, resulting in an expansion for big (small) masses. This is exactly what one could have guessed
from the analytic behavior of II(p?,m?): the distance from the origin of the p? complex plane to the
branch point, which sets the convergence radius, is exactly |p?| = 4m?. For |p?| = 4m? the contour can
be closed on either side due to the damping factor h%/2.

When closing towards Re(h) > 0, simple poles will be found at positive integer values of h = n,
hence no non-analytic terms will be present. This is expected, since for large m one is always below the
branch cut of the vacuum polarization function. Each pole generates a term in the power expansion for
large m, namely (—p?/m?)™ with n > 1 such that I1°%(0,m, ) = 0.

On the other hand, when closing towards Re(h) < 0 one finds double poles at all negative integer
values of h = —n, except for h = —1 where the pole is simple. Logarithms are expected since, for small
m and positive p?, an imaginary part should appear. Each pole generates a term in the power expansion
for small m, namely (—m?/p?)". Double poles generate a power of log(—p?/m?), whereas simple poles
do not. The expansions read

> —D!(n+1)! p2 "
1708 (2 _ T 3 (n 5.5
<p7m,ﬂ) T Fn 1 2n+3 2n+1) ( )
Tra, [1 p? 5 2m? m2\" (2n —2)!
™ { 3 0g< m2) 9 p? * Z p? ) (2n —3)nl(n —2)!

where H; = Zfz:l n~! is the harmonic number. The first series can be summed up analytically and we

obtain the well-known result
2 _ 4m2 Am2 — 5
6/ — <2+)log( = p i >12 p] (5.6)
D m2

The vacuum polarization function diverges at p?> — +oco, which is nothing less than the massless limit,
not well defined due to the OS subtraction. We compare the exact form to both expansions in Fig. 5.1
where it can be seen that both series can be used at p? = —4m?2. We observe an oscillatory behavior of
the large-mass expansion.

8 (p?,m, p) =

s (1) Tpm?
T 9p?

2If keeping a non-zero &, the UV-finiteness is transparent when closing towards Re(h) — +oco. When closing towards
Re(h) — —oo the poles at h = 0 and h = —e generate 1/ singularities which however cancel when both terms are added
up.
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Figure 5.1: On-shell subtracted vacuum polarization function for a massive quark measured in units of
as(pu)Tr /7 in its exact form (dashed green), small- (blue) and large-mass (red) expansions. Left panel:
195 at the boundary between the mass expansions p?> = —4m?2, as a function of the expansion order n
of each series. Right panel: Dependence of I19%(p?, m?) with the ratio p?/m? including 4 and 8 non-zero
terms in the small- and large-mass expansions, respectively.

5.2 One-loop with a Massive Vector Boson

Before we discuss in detail the two-loop contribution from a secondary massive quark bubble, we pause
to describe how the MB representation can be applied to generate large and small mass expansions to
one-loop computations involving a massive vector boson. For simplicity, we consider a gluon with a
non-zero mass mg, but the method can be generalized to other massive mediators. In this case, one
simply uses the MB identity Eq. (1.71) directly into the massive gluon propagator

L /:HOO dh( m?’)_hl“(h)l“(l—h), (5.7)

“p*+my  —p® Je i 2mi\ P?

where the fundamental branch is 0 < ¢ < 1. This result again implies that for obtaining the Mellin
representation one modifies the gluon propagator shifting the power of its denominator in exactly the
same way, (—p?) to (—p?)'~", and multiplies by the factor I'(h)I'(1 — h) = 7 csc(mh) which changes sign
under h — —h. Let us assume that our matrix element is dimensionless: then, the 1-loop computation
with a massless gluon whose propagator has been “shifted”, and where d = 4 — 2¢ has been kept
unexpanded, can be written as

2 2.vE \¢
MiQ) = Lor e (K5 ) o). 5.9

where Q, with mass-dimension 1, is the only scale in the matrix element we are computing — necessary
to render the 1-loop result non-zero— and g, is the bare strong coupling constant. The function m/ (¢)
is dimensionless and does not depend on Q, while the prefactor Q%" accounts for the overall dimension

caused by the shifted gluon propagator. All in all, the one-loop result with a massive gluon takes the
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following form:

My(mg, Q, i6) = O‘ST(“)CFFl(mg,Q, e), (5.9)
p2evE o [eTie0 dp m,
Amg.0.w9) = (U5 ) [ a2 ),
m 02 h
M(hg) - (m) PRI — hym (&)

where, at this order, a,(p) is already the renormalized strong coupling. We will use the notation
Ml(h757 ]-) = Ml(h,€).

Let us discuss some generic features. The function m?(g) can modify the fundamental strip, and
whenever the matrix element needs renormalization (that is, when the 1-loop computation with an
unmodified gluon propagator generates 1/¢™ poles), it gets narrowed down to 0 < ¢ < €. This is easy
to understand: since the Mellin parameter h acts as a UV-regulator, UV poles manifest themselves as
singularities of the type 1/(h — &)™ with n = 2 for quantities carrying a cusp anomalous dimension,
n = 1 otherwise.?

The massless result F;(0, Q, ¢) is trivial to obtain: it corresponds to the h = 0 pole’s residue.? Since the
massless limit is manifest, there will be no logarithms of m,/Q in this limit. The poles at h = 0 and
h = € contain the same (mg-independent) UV poles, but have different finite terms. Since the correction
to the massless result AgFi(my/Q) = Fi(my, Q, u,e) — F1(0,Q, i, ¢) is UV finite —and p-independent
as well— we can “move” the fundamental strip to —1/2 < Re(h) = e < 0 and set ¢ — 0 to obtain a

closed form: y b
AV 3 ("S) z/ d—h. (Q> L(Rh)T(1 — h)m”(0). (5.10)

2
—ico 2mi\ My

The my — oo limit corresponds to minus the residue of the h = € pole, and since the decoupling limit
is not manifest in the MS scheme, it will contain powers of log(m,/Q). The correction to this limit
A Fi(mg/Q) = Fi(mg, Q, 1, €) — Fi(mg — 00, Q, i, €) is also UV finite and p-independent, and can be
cast in the same way as Eq. (5.10) (that is, with e = 0) moving the fundamental strip to 0 < Re(h) < 1.

Finally, the difference of the my — oo and my — 0 limits A§PF(my,/Q) = Fi(my — o0, Q, pt,€) —
Fy(0, Q, i, €) is once more UV-finite and p-independent, and equals the residue at h = 0 obtained if € is
set to zero before computing the residue. This increases the pole’s multiplicity, generating the expected
logs of my/Q.

We will consider the matching between two EFTs: the high-energy one, containing a massive and a
massless gluon, and the low-energy one, with a massless gluon only. At 1-loop, the coupling in the two
theories coincides, and since there are massless gluons in both, such contributions cancel in the match-
ing. Since the two theories should yield the same answer in the my, — oo limit, the relevant quantity
for the matching is

[Fl(mg — 00, Q, 5)]ren = [Fl(o, Q;e)]ren + A8°F1(mg/Q) y (5.11)

3Tt is not hard to deduce the poles’ form. Let us assume a generic scalar 1-loop bubble containing a regular and a
modified gluon propagator. The d-dimensional integration measure after Wick rotation is d%¢ = £3-2¢dQd¢, while the
product of propagator denominators behaves as £2=2" When combined, one has ¢~1+2(h=¢)4Qd¢, which upon integration
diverges like 1/(h — €).

4One trivially gets F1(0, Q, pu,€) = (

p2eVE
Q2

&
) m(l) (e) from the converse mapping theorem or directly from Eq. (5.8).
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where, since the matching is performed using renormalized matrix elements, the subscript “ren” has
been added to signify that the 1/e™ poles have been stripped away, that is renormalized in MS scheme.®

5.3 Two-loop massive bubble

In this section we derive the general expression for the renormalized 2-loop matrix element due to the
insertion of a massive bubble. On top of the dispersive integral, which we have written as an inverse
Mellin transform, one has to account for the contribution due to Ilo(m?) and the strong coupling renor-

malization as in Eq. (4.62), which can be combined as a term proportional to HlaTS(mQ).

When inserting the vacuum polarization into the gluon internal line, the contribution from IIy cor-
responds to the replacement 1/¢2 — TIy(m?)/¢? in the gluon propagator. Since ITo(m?) does not depend
on the loop momentum ¢, this contribution is proportional to the 1-loop result computed with a massless
gluon propagator. The two-loop result can be then written as

g (l‘)

2
Ma(m, O, p1,) — [ } CoTrFy(m, Q. 12, (5.12)

1 2e1E 1
F2(m7QnU/7E) =H2(m7Q7u,5)—§F1(0, Q,,u7E) |:<M,nj2 >F(€)_:|’

2e7E N [ 2e7E \° et qp m
simans~ (55 (5 o)

M2<h,s,1gg) - <92 >h G(h,e)m"(e).

m2

where G(h,e) has been given in the second line of Eq. (5.1). The coupling constant a(u) is already
renormalized and runs with ny = n, + 1 active flavors, where n, is the number of massless quarks. We
will refer to the term H, as the “dispersive contribution”.

Let us again discuss some generic features. As argued in Sec. 5.2, m’(¢) narrows the fundamental
strip to 0 < h < ¢ since single or double singularities appear at h = . We denote the second term
in the second line of Eq. (5.12) as “the IIy contribution”. The UV singularities are contained in the
contribution from the pole at h = ¢ for the large m expansion, and in the sum of residues of the poles
located at h = 0 and h = —¢ for the small m expansion, to which one has to add the divergent terms
coming from the Iy insertion. Once again, the divergences for the two expansions are m independent
and coincide, but the finite remainders differ.

The massless result F»(0, Q,e) can be obtained as the sum of the residues of poles at h = 0 and
h = —e plus the IIj contribution. Since the massless limit is manifest, no logs of m/Q arise. The cor-
rection to the massless limit AgFa(m/Q) = Fa(m, Q, u,e) — F»(0, Q, i, €) is UV-finite, u-independent,
and can be obtained moving the fundamental strip to —1/2 < Re(h) < 0:

m\ [ dh Q2" h(h + T3 (A)T(1 - h)
A°F2<Q> _/E 2m<m2> (3 + 2h)T(2h + 2) mi (0). (5.13)

—i00

The m — oo limit is simply the Il contribution minus the residue at h = e. Since the decoupling limit
is not manifest in the MS scheme, it will contain powers of log(m/Q). The correction to the decoupling

5In previous Chapters we used that label for renormalization in any scheme.
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limit Ao Fo(m/Q) = Fa(m, Q, p,e) — Fo(m — 00, Q, u, €) is also UV-finite and p-independent, and can
be written as in Eq. (5.13) moving the fundamental strip to 0 < Re(h) < 1.

Subtracting the m — oo and m — 0 limits yields a UV-free and p-independent quantity denoted
as AP Fa(m/Q) = Fa(m — 00,9, pu,e) — F2(0, Q, i1, ) which again can be obtained as the residue at
h =0 if € is set to zero prior to computing the residue, increasing the multiplicity of the pole sitting at
the origin.

The previous quantity is related to the matching between two consecutive EFTs: one where the massive
secondary quark is an active degree of freedom, another one in which it is not. Let us succinctly describe
how such matching condition is computed. In the theory where the massive quark is no longer active
we have ny active flavors. To carry out the matching it is convenient to express the renormalized matrix
elements as a series of agm). After the conversion the 2-loop term takes the form

F 20,7 \* 1 2
F{ne) (m, Q. ) ={H2(m, 0,p,¢) - L& f’“’a) [(“ ° )F(e)—g—log(ﬂﬂ} . (5.14)

analogous to Eq. (4.90). As we already mentioned, the factor between the brackets is O(eg), so if
F1(0,Q,¢) is UV-finite, the second term vanishes. Furthermore, in such cases the decoupling limit is
manifest Ha(m — 00, Q) = 0, and the matching condition is trivial: the effects from massive quark
bubbles are fully captured in the a, decoupling relation. If one assumes F; (0, Q, u, ¢) has the following
divergent structure:

Fi(0,Q, p1,¢) = % n % +mo, (5.15)

where mg can potentially depend on an IR regulator, the relevant quantity for the matching coefficient

n 207E \¢ 207E \¢ m m 2
Figpm = 00.0) = { - (250 ) (50 ) Resnec Mol e 2 )|} = 220w (1) o)
2 2 2 2
_ mllogz(u> _mm 10g<MQ) LMl T
m

6 m? 36 9 36

which can be rewritten as [F2(0, Q, €)]ren + A Fa(m/Q) 4+ 2[F1(0, Q, €)]ren log(p/m) /3, does not depend
on my.

5.4 Relation between the pole and MS masses

Our first application is to a quantity which does not carry a cusp part in its anomalous dimension. Even
though the results derived in this section are known, it is nevertheless worth re-deriving them within our
formalism as it will illustrate the method on a simple example. To avoid confusion, we will also denote
the primary quark mass as M in this Chapter. We start by quoting the result for [ M (1) — Mpote| /Mpole
at 1-loop using a modified gluon propagator, and identify Q = Mg, where UV-divergences must be
removed through a Z factor in the MS scheme

3—2s(1+h—¢e)'(e = H)I'(1 4+ 2h — 2¢)

mi(e) =~ T3+ h—2e) ’ (5.17)

result that was computed in the form given above in Ref. [27].
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5.4.1 Massive gluon

Multiplying the result in Eq. (5.17) by the factor I'(h)['(1 — h) we obtain the corresponding Mellin
transform M5 (h7 E). To figure out the convergence radius of both expansions, we look at the large-h
behavior of M!S with & = 0. Defining &, = m,/Mpole We have

31%/2 csc?(mh) & —2h
|h[>1 2h3/2 2 ’

MY (h,0,&,)] (5.18)

from where we read that the small (large) gluon mass expansion works for ¢, smaller (larger) than 2,
while at £, = 2 both expansions are convergent, as can be seen in Fig. 5.2(a). After setting ¢ = 0,
if closing towards Re(h) > 0 there are double poles at all positive integer values of h. When closing
towards Re(h) < 0, one finds simple poles at all negative integers and half-integer values of h, except

for h = —2 where the pole is double. The divergences of both expansions coincide:
s 3 (5.19)
1,div de : .

This result correctly yields the well-known 1-loop MS mass anomalous dimension, but is removed after
renormalization. The massless limit is given by the pole at A = 0, and after renormalization takes the
form

MS 3
Flhﬁ"in(oaMpole7M7€) = _5 10g<M’u : ) —-1. (520)
pole

At this point we can compute both series expansions for the corrections to the massless gluon limit,
obtaining

207 (21, "l
FMS(gg) log fg Z %—i_ 2 e )n) l:H2n_1 —H,_ 1 — log(ﬁg) — M] (521)
& 35~ (-6)"T°(3)

5—61 — =L
n=1
The bottom line can be summed up, and we find®

AOFIMS(fg) ] [(2 + 53) \/4— §2 arccos<§g> + ES log(&,) — 59} . (5.23)

This agrees with a direct computation whose details will be given elsewhere. To the best of our knowl-
edge, this result has not been presented anywhere before. The large-mass expansion has only same-sign
even powers. The series for small gluon mass has odd and even powers of ¢, and is oscillatory, hence it
converges slowly, as can be seen in both panels of Fig. 5.2.

Let us provide the matching coefficient between the MS masses defined in the full theory, with massless

gluons and a single massive gluon M(ng ), and in an EFT containing only massless gluons M(m). The

6For &4 > 2 one simply replaces

4-¢ arccos(%") 2«/52 —4 1og{§2‘7 (gg —\Jez—4) - 1} , (5.22)

to have every term manifestly real.
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Figure 5.2: Gluon mass correction to the relation between the pole and MS quark masses in its exact
form (dashed green), small- (blue) and large-mass (red) expansions. Left panel: AqFMS at the boundary
between the mass expansions {, = 2, as a function of the expansion order n of each expansion. Right

panel: Dependence of Ay F’ 1NTS (&) with the parameter &, including 10 and 3 non-zero terms in the small-
and large-mass expansions, respectively.

strategy to obtain the matching coefficient is through the condition of having a universal pole mass in
the limit where both theories should be valid:

Mo — M(ng)(u){l 0l 0 S (0, M) + Ao FIS(e, oo)]} (5.21)

™

=101 20 0, My

ren

Noting that AOFlNTS(ég — 00) = AgoFll\Ts(fg) = 3/8 + 3/2log(&,), we easily obtain the matching
condition, which moreover is independent of Mple:

7(”0)
M s MS MS s
= W W) _q 28 Cp[FMS, (0, Myote, 11, €) + AL FMS(£)] = 1+ 2 Cps MM~ (5.25)
(me) ™ ? ™
M ()
3 " 5
SM™Mo=me = — 2pe H) 2
2 Og(mg) 8

5.4.2 Secondary massive quark

Multiplying Eq. (5.17) by G(h,e) we obtain MYS(h,e), and setting e = 0 we can figure out the
convergence radius. Defining & = m /M. one has

3¢ 20 (h 4+ 1)T2(R)T2(1 — h) 3r2esc(mh) -

MS —
Mz7(1,0,8) = 2(h 4+ 2)h(2h +3)(2h + 1)  |nI>1 8h?

(5.26)
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It is clear that the small and large m expansions work for m smaller and larger than M, respectively.”
The divergences of both expansions are m-independent and coincide:
S 1 5
FMS = — 4 | 5.27
2,div ]2 + 48¢ ( )
This result correctly reproduces the ny color piece of the two-loop MS mass anomalous dimension. From
the sum of residues corresponding to the poles located at h = 0 and h = —¢ and the Il contribution
— after removing the UV divergences— we reproduce the known 2-loop massless result or Ref. [28],
which accounts for the full u dependence.

1 13 2 71
FY5,(0, Mpoie, 1, €) = 210g2(MM1 ) + 3510 g(MM1 ) R TRETE (5.28)
pole pole

After setting ¢ = 0 we find double poles at all positive and negative integer values of h, except for
h = —1, and h = —2 for which the pole multiplicity is 1 and 3, respectively. Furthermore, there are
simple poles at h = —1/2 and h = —3/2. The difference of the massless and m — oo limits is UV finite
and p-independent, but contains logarithms that blow up in any of those two limits. It can be computed
as minus the contribution of the pole at h = 0 obtained setting ¢ = 0 before computing the residue

13 72 151

MS 1
ASOFQMS(f):_*Lg_E £ 19 T 144

5 (5.29)

with Le = log(&). Since the factor containing all gamma functions in Ms(h,0,§) is symmetric under
h — —h, and given that gamma functions are the only structures with an infinite number of poles, we
expect that this symmetry will be manifest in the infinite sums of the ‘left’ and ‘right’ expansions. In
fact that is what we find for the corrections to the massless limit:

) Vi 3 w2 2
BoF31S(6) =AF S + 5 2 GO =3¢ - e3¢ (5.30)
1 13 w2 151
+£4<2L§—12L5+ 144)—2(:
NS g2 2(3 4 10n + 5n?)
S ey o Yo 1)(2n+3){n(2 e Bgan) AT DLf]'

For £ = 1, that is, the contribution of the heavy quark to its own self-energy, we can sum up either
series obtaining the known result AgF»(1) = (3 — m2)/4. These expressions can be summed up to all
orders, fully reproducing the known result or Ref. [28]:

N ’/T2 ,].(.2 2
AWS(@—{H1<1s><1g3>[L12<15>+§L§+ TS (e3) e

1 3| 1 4 2 1 4
+5 L+ +E) {LIQ(g) — 5LE +log(1+€)Le + 6} +5LE ¢
The small- and large-mass expansions are shown in Fig. 5.3.

We observe that the small-mass expansion is badly convergent for the first orders. After the fourth power
of ¢ is included (which coincides with the first appearance of L¢), the accuracy improves drastically.

"We do not assume any hierarchy between m and M since our results are general and one could consider e.g. the
secondary virtual top correction to the bottom mass in QCD with six active flavors.
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Figure 5.3: Secondary mass correction to the relation between the pole and MS quark masses in its
exact form (dashed green), small- (blue) and large-mass (red) expansions. Left panel: AgFMS at the
boundary between the mass expansions & = 1, as a function of the expansion order n. Right panel:
percent deviation of the expansions compared to the exact result as a function of the parameter £, using
4 and 3 non-zero terms in the small- and large-mass expansions, respectively.

The plots also reveal that the small- and large-mass expansions approach the exact result from above
and below, respectively. Finally, the convergence of the small-mass expansion is much better behaved
than it is for the gluon mass case. This can be understood since the gluon mass expansion contains an
infinite number of odd-power corrections.

Let us compute to the O(a?) matching condition between the MS masses with ny + 1 and ny fla-

= 1 = . . . . . .
vors, M (ns+1) and M (ns ), respectively, following the same strategy as in the previous section. Using

Eq. (5.16), or equivalently the relation underneath, we find

2

S7(ns+1)
u TrCpdM™F 7, (5.32)

— )
M ()

ol (p)
™

=1+

2
SM™ 7™ = Fy(Mpote, 0,€) + AgFa (€ — 00) + gFl(Mpole, 0,¢) log(::l)

1 p\ 5. () 89
= Clog?( B} 4 Ziog( L) - 22
2 %8 (m>+12 °g<m> 283

independent of Mol and in agreement with Ref. [11].

5.5 SCET Computations

We turn our attention now to the computation of matrix elements which enter the SCET factorization
theorem with massless primary quarks, see Eq. (1.48). Since our formalism as it stands now only applies
to virtual massive bubbles, we will be able to compute only the corrections to the general (event-shape
independent) hard matching coefficient and to the hemisphere jet function, which enters the factorized
expressions for thrust, heavy jet mass and C-parameter in the M-scheme because, as we already dis-
cussed in Sec. 4.3, it can be computed as the discontinuity of a forward-scattering matrix element.
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Even though both results have been already computed in closed form, to the best of our knowledge, the
small and large secondary mass expansions were not known. Furthermore, the RG evolved jet function
was not known in closed form, and in that respect our result in terms of expansions can be regarded as
a new analytic result.

5.5.1 Hard Matching Coefficient

In this section we compute the corrections to the Wilson coefficient appearing when matching QCD
and SCET due to a massive vector boson or a massive quark bubble. To write expressions as simple as
possible, it will be useful to define the reduced mass also for the vector boson 7?2 = m?2/Q>.

For contributions of either massive vector bosons or secondary massive bubbles, the non-zero mass
acts as an IR regulator and neither the QCD nor the SCET loop-level form factors vanish any more if
dimreg is used — in fact, they are IR finite and no regulator is needed.® Furthermore, in either case
the SCET form factors are finite only after soft bin subtractions are included, requiring regulators in
individual Feynman diagrams due to rapidity divergences.

However, with our computational strategy we bypass all problems at once: only the QCD Feynman
diagrams contribute, soft bin subtractions identically vanish and there are no rapidity singularities. On
the other hand, the calculation does not disentangle the QCD and SCET IR-finite contributions. As
we will see, consistency conditions can be used to obtain these separately. For the 1-loop computation
with a shifted gluon propagator we have Q% = —Q?, and the following result was found in Ref. [27]:

ey LT T to)
my(e) = —=

2 TB+h-2) {2—e[3+n%+h(2-3¢) — (3 - 20)]}, (5.33)

from which we observe a double pole sits at h = €.

Massive gluon

We quote the relevant results for the QCD to SCET matching coefficient before showing the expansions.
We use the superscript H since from this coefficient the hard factor can be obtained:

221 - h) _ mesc?(mh)

H(p o R o
e )= - 5.34
My (h, g, 0) (h+1)(h+2)( Tg) T B (=mg)™", (5.34)
1
Fll,{div(Q27.U’a€) = *@ — 4 (2L +3)
1. 3 a2
Pl n(0,Qup) = =712 = Thu+ 57— 2,

2
A F{! (1ng) = log?(—1i2) + Slog(—id) + o=+ T,
where L, = log(—u?/Q?) and we have displayed the 1-loop massless limit already renormalized, which
agrees with the well-known result of Ref. [23]. The divergences shown in the second line make clear
the result does not correspond to the full-theory computation, since a massive gluon yields a UV- and
IR-finite result and does not need any regulator. As for the convergence radius, 1, smaller or larger
than 1 call for small- or large-mass expansions. This result can be confirmed using the Cauchy root
criteria on the general terms shown in Eq. (5.35). As shown in Fig. 5.4(a), at the boundary one can use

8The computation with a massive vector boson is IR finite. For the massive bubble, the 198 insertion is also IR finite,
but that proportional to H%\)/IS needs regularization.
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either expansion, and both series converge equally fast.

The two expansions for the correction to the massless limit are computed easily noting that there
are double poles at all negative and positive integer values of h, except for h = —1 and h = —2 that are
triple. Once again, the factor containing all gamma functions in M is symmetric under reversing the
sign of h, thence a symmetry between the infinite sums will be manifest. We found

1 2
AoF (1h,) = AFFH Z Gl (1hg) =Y G, (1ng) — ] {2 log?(—mg2) + % +1 (5.35)

3 2 7

- 1 -1 P2+ — 4+ -
m{ og?(—m?) og(— g)+6+8},
(—m2)" 3n® +6n + 2 }

G (1) = n(n+1)(n + 2) n(n+1)(n + 2)

[mg(mg) +

The infinite sum can be carried out analytically:

71_2 1 m2 2

Ao P! (1hg) = 75 =5 (1+1m5) L12(1+m§)—79[1og(7m3)+1]f%(ﬂmg) (72 +3log?(—m2)]. (5.36)

For my > 0 the expression above develops an imaginary term. To take the real part, relevant to obtain
the hard factor, one simply has to make the following replacements:

Liy (1 + 1)) — @2 — Lip(—1h}) — log(1 4 1) log(my) , (5.37)
log"(—m?2) — {Re[log" (m2) + in] }"

The plots for the exact result and expansions are shown in Fig. 5.4. The respective approximations can
be made arbitrarily precise adding more and more terms. Obtaining expansions for the hard matching
coefficient poses no difficulty, but to avoid cluttering we do not show them.

At this point we can split the Wilson coefficient in the QCD and SCET terms. In order for that,
we use that the QCD form factor must vanish in the decoupling limit m, — oco. Hence we have

FRP (i) = Ao FH (1hy) = AgFH (1hy) — AP FH | and using the result in Eq. (5.36) we find full agree-
ment with Refs. [34, 35, 47]. Note that the my — 0 limit of F?CD diverges, signaling the need for an
IR regulator.

Finally, we can obtain the bare SCET form factor that should contain all UV divergences but is oth-
erwise IR finite. It takes the following simple form F$CET —= F?CD —Fl = —ALFE — FH(0,Q,1) =
—FH (my — 00,Q, i), and corresponds to the contribution of the residue at h = e:

c 2e7E e—¢€?
ot =S (E5) e o) + meotne + 5 5%

- 1

l,ren >
1 3 w2 3 w2 572 9
FSCET - _ ] 2(_ ~ 2 71 71 o <
1,ren 4 0og ( g) 4 Og( ) + 4 Og Q2 + 0og Q2 24 + ] )

where the harmonic number with a non-integer argument can be expressed in terms of the digamma func-
tion 1)(®) — the derivative of the logarithm of the gamma function — as follows: H;_. = () 2—e)+vE.
One can also relate the cotangent to digamma functions: 7 cot(me) = 1 (1 — &) — () (g). Our unex-
panded result agrees with Eq. (321) of Ref. [29], and our expanded result agrees with Ref. [12].
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Figure 5.4: Gluon mass correction to the massless SCET Wilson coefficient in its exact form (dashed
green), small- (blue) and large-mass (red) expansions. Left panel: AgF{! at the boundary between
the mass expansions mﬁ = —1, as a function of the expansion order n of each series. Right panel:
Dependence of AgF{ (1n2) with the reduced gluon mass, including 3 and 2 non-zero terms in the small-

and large-mass expansions, respectively.

We close the section computing the QCD and SCET “gluonic flavor” matching coefficients relating
the renormalized quark currents in the theories with massive and massless gluons (operators labeled
with a superscript ny) and with only massless gluons (operators labeled with a superscript n,). That
is, analogously to Eq. (4.88), we have:

n Ng—Nn

Jobp = Maen  Toén » (5.39)
n, _ ng—sny

Jsépr = Mglpr' J3émT -

Since the contribution of massless gluons is the same in both theories, the result of the ratio between
renormalized form factors keeping all the dependence is simply the massive gluon contribution (the
strong coupling is the same in both theories at 1-loop):

T o
n n (07
Mzt =14 2 STy .1

1,ren

On the other hand, if one takes the decoupling limit, the only non-trivial contribution for the strict
matching will be the SCET one, which agrees with Eq. (29) of Ref. [31].
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Secondary massive bubble

The relevant results for the QCD to SCET matching coefficient with massive corrections are in this case

ME (b, 0) = —(—m2) ™" 4(h + 1F)(r;§1+—5;z)r4(h) - /4c;;;/2(77h) (—am?) ™, (5.41)
Fyaiv(Qs p1,6) = —é - ;(112% + 118) 41 (356L“ + ﬂ; + 5352)
Fon(0,Q, pye) = %Li + %Li - (3(1)2 + QE)LM + g?é + Zj’;; + ;lg%,

with L,, = log(—m?). Our results for the massless limit and the renormalization factor agree with
Ref. [53]. From the top line result it becomes clear that the small- and big-mass expansions converge
for 4m? < |Q|? and 4m? > |Q|?, respectively. Fast convergence at 4m? = |Q|? is expected from any of
the two expansions, as can be seen in Fig. 5.5(a).

After removing the massless limit one can set ¢ = 0 and examine the pole structure of the Mellin
transform. On the positive real axis there are double poles at all integer values of h. On the negative
real axis one has a quartic pole at h = —2 and triple poles at h = —n with n # 2. We can use the
inverse mapping theorem to obtain the corresponding expansions for AgFs:

. +D[(n—=11% 5 _ 74 4n
AoFL (1) = AFFY 4§ (n —102) ™" | 2(Hyy—y — Hopg1) — Lyp — ———
oFy7 () o Fy' (M) + (2n + 4)! (=) ( ! 2n+1) (n+2)(2n+3)
2 33 + 272 13 7
—mZ(L;+2Lm+8+3)+m (L —6L3 yLm+4+g+2gg)

(2n — 2)! ovn|  204n—T) 1

2 — RSV Hn— *Hn 7Lm

* z;) n—2)(2n — 3)(n!)? 5 (=) [(n—2)(2n—3) 2n=2 *3
1 @) o T2 37— 42n + 1202

—2(Hopo—Hp+ =Ly, | +2H , —H® - — — , 42

(2 2 *y >+ =26 (= 2)2(2n — 3)2 (5.42)

where H }gz) = Zle n~2 is the harmonic number of order 2. The infinite sum for the large-mass
expansion can be summed up and we obtain the following result:
23r? 5 r—1 r+1 55r2 25
H/ ~ o -~ . _ . b
5 rt g2 (r—1 C(r+1 11972
* (48 - 16+8> [Lls(r+1> +Ll3<r—1> _2C3} R
L3 1912 265 2 (s 1972 119
—— ot o | mt+ 5 — o — )
36 72 216 36 3 216 72

with r = 4/1 4+ 4m?2, in agreement with Ref. [46, 35]. In the equation above all terms are manifestly
real for 0 > m? > —1/4. For m? < —1/4 some terms develop imaginary parts, but AgF (1) is still

141



real-valued. To have every term explicitly real in this case we simply make the following substitutions:

T{LiQ(:_l) ng(:+ 1)} —>—2\/—1—74m2(312[arcc05< )] (5.44)

-1 1 2
Lig(:+ 1) +L13(:1— 1) —>2013[arccos<:2 t 1)],

where the Clausen functions are defined as

Cly(a) =" Sm]if‘” . Clyla)=Y Coslifo‘) . (5.45)
k=1 k=1

For 7?2 > 0 a genuine imaginary part is generated. To obtain the real part (which is most relevant to
compute the hard factor), one has to do the following replacements:

r—1 L (r+1 fr—1 ofr—1 2
L L 2L 1 - — 4
12( +1> 12(7’—1) -~ 12<r+1>+ o8 (r+1> 3’ (5.46)

1

2
o (r—1 r+1 o (r—1 1 sf{r+1 2 r+1
L L 9Li. — 2 ™o
13<r+1>+ 13( 1>_> 13(r+1) 6 8 (7’—1)+ 3 g( —1>’

L" — Re[log(m?) + iz]™.

Obtaining the expansions for the SCET hard factor is trivial from the results quoted in this section and
to avoid cluttering these will not be explicitly shown.

A comparison of the small- and large-mass expansions to the summed-up result is shown in Fig. 5.5,
where one can observe that both expansions converge very fast, specially for large masses, where includ-
ing only two terms is enough to achieve sub-percent accuracy everywhere the sum converges.

The dispersive contribution to the two-loop QCD form factor is IR-finite and given by the difference

F(dicl]s)p = Ffl (1) — Ff (i — o0). The dispersive contribution to the SCET form factor is also IR finite

and obtained as Fg%lEs}; = FH (m — o0), which is simply the pole at h = € of the Hy contribution.

1 1 /L, L 1 L2 12 1 L L 72 65
FSCET — — 4 (Zh_Tmoy o T ] = e R R
2disp =33 T 2 + + 1 T T 9 3 4 144 432 (5.47)

+L7i+L %_Ll_ﬂj_ﬁ +7L%1_~_L2 E_Lim
"\ 6 2 72 216 18 #\ 9 3

121 «%\ 5 7 875
+L< +7T> s, T 5T

216 36 12 18 864"
Our result agrees with Ref. [29].

We can obtain the flavor matching SCET decoupling coefficient analogously to Eq. (4.89) for the bHQET
case, leading to:

2 L3 L, 1 Ly, 2
MSCET:1+{QST<‘_M:|CFT By L3—L2< + ) Lu( +65+W) (5.48)

18 36 ™ 72 4 216

—L2 4+ -— (1214 97°) L,,, - —= +

L1 1 13¢3 %Jr@
M RCTT; 36 | 864 | 144’

in agreement with Ref. [56] if setting p,, = pm.
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Figure 5.5: Secondary mass correction to the massless SCET Wilson coefficient in its exact form (dashed
green), small- (blue) and large-mass (red) expansions. Left panel: AqF4 at the boundary between the
mass expansions m? = —1/4, as a function of the expansion order n of each series. Right panel:
Dependence of AgF{ (m?) with the reduced secondary quark mass, including 2 non-zero terms in each

expansion.

5.5.2 Jet function

In this section we present results for the SCET single-hemisphere jet function, which appears in the
factorization theorems for 2-jettiness and C-jettiness. The distributions contained in the momentum-
space jet function might get obscured when expanding in big and small masses, therefore we compute
its cumulative version, defined as

S (50, 1) = / s d(sap). (5.49)

to obtain those, and provide the expansions for the non-distributional terms of the differential jet func-
tion.

For either secondary quarks or massive vector bosons, the jet function has real and virtual radiation
contributions. The virtual contains only distributions that become singular at s = 0, while the real ra-
diation has only non-distributional terms. The virtual correction is easy to obtain since for large (gluon
or secondary quark) masses one cannot radiate a massive particle any more. Hence, the expansion for
large masses will be given by the residue of a single pole sitting at h = . The non-distributional terms
(which are proportional to a Heaviside theta function) are simply obtained as the sum of residues on the
real non-positive axis, from which one must subtract the radiative tails of the plus distributions coming
from the virtual diagrams.

For the 1-loop computation of ¥ ; with a shifted gluon propagator we have Q2 = s, and the following
result was found in Ref. [27]:

NGRS 5. 22-h)

h _1
™) = S AT = IT B h =2 h—e |’

(5.50)

from which we observe a double pole sits at h = . We label quantities related with the differential and
cumulative jet functions with J and X ; superscripts, respectively.
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Massive gluon

To simplify the notation we define the dimensionless and positive-definite variable 5, = s/m?], which
will be used in the differential and cumulative versions. The relevant results for these are
 (Bht4)s 38p

C2h3(2+h)(1+h) (a1 2R

1 3 11 [p?
FJ ==+ 2 )5(s) = == [ =
1,d1v<s?ﬂa5) (52 + 4€> (5) 2 |: S :|+’

M7 (h, 54,0)

(5.51)

en
1 [p? s 31 [u? 7 w2
FlJ,rcn(O,S,M) _lﬂ{slog<u2)]+4u2[5 ++ 11 d(s),
1 [m? 31 [m? 5
AFF] (5,) = —— | —2log(5 —— || —=d(s).
o FY (34) mg[ S Og(sg)]++4mg[ S :|+ ) (s)

The Mellin-Barnes transform for the differential jet function is trivially obtained applying a derivative:
M (h,3,,0) = hMT7 (h, 5,,0)/s. Interestingly, after setting e = 0 there is finite number of poles on each
side of the real axis. The virtual contribution is simply the pole at h = ¢, and prior to renormalization
we find

Ff e = @ (ﬂ:f ){ [ZW cot(re) — 210g(;:;> + (2_3@5_5)} 5(s) — 52{“:] +} (5.52)

g9 g
= FlJ,div(& s 5) + FlJ,Virt,ren + O(E) ’

1 2 2 2 1 2
Fﬂvirt’ren =3 [6 log<:12> — 410g2 <::12) +9— 27r2] d(s) — log<:12> E {MS] .
g g g +

The unexpanded result agrees with Eq. (365) of Ref. [29]° and FY ;. .., in the expanded expression
reproduces Eq. (33) of Ref. [31] up to a global factor of 2 that accounts for the fact that in that article
jet function accounts for the two hemispheres combined. Besides, since the pole at h = € moves to zero

when taking four dimensions in the Mellin plane, Fi] virt,ren Can be obtained equivalently through the
sum of FY .. (0,s, 1) and AGFY (3,).

The real-radiation part is then obtained simply as the sum of residues of M{(h,3,,0) to the left of
the origin minus the radiative tail of the virtual contribution and it must vanish for 3, < 1 as can be
deduced from the top line in Eq. (5.51). The calculation can be done through the sum of the residues
at h = 0 (double), —1 and —2 (simple) setting € = 0 before computing them:

1(1—54)(1+334)

FY e ==
1,real s 433

+log(84)|0(54 — 1), (5.53)

again in agreement with Eq. (34) of Ref. [31] (once more up to the factor of two already mentioned).
The one-loop correction to jet matching coefficient relating the jet functions in the theories with and
without massive gluons is given by

J,,?[(S) _ /0 dS/MrJuﬁmg (S _ 3/) J;Lg (s'), M’rjeﬁng — 5(3) — QST(M)OFFIJ,Virt,ren7 (5.54)

in agreement with Eq. (37) of Ref. [31] (once again we account for the factor of two). The gluon mass
correction to the massless jet function can be written as

L~y .
Do (s,m2) = _F{(5,). (5.55)

9There is indeed a typo in that equation: there should be a minus sign in front of Hi_qy2.
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From that, we define the following RG-evolved jet function that is the relevant object to carry out
large-log resummation in differential and cumulative cross sections:

_— So dg/ SN o [T dh (3h +4)T(h)8"
Fit) = /0 S’(l_ég) Fi](s)_/c 21 9122+ W) (L + h)(—a)n (5.56)

—100

with —1 < ¢ < 0 and where (a), = I'(a +n)/T'(a) is the Pochhammer symbol. The convergence regions
are identical as for the fixed-order case. Closing to the right one encounters only the triple pole at h = 0.
Closing to the left there are double poles at h = —1, —2 and simple poles at h = —k with k > 3. All in
all, we find

F2(3,) = 2; {[Ly — ¢ (=@)](@+1) +50+4} + % ,;, 813 (24_—23)2@ ;:L;:»ﬂ (5.57)

" 823{@9 O @)@+ D)o+ 2@+ 2) 41}
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co| ot

=L, {7#(0)(—00) + 3} - Li-?’ _ YO (~w)? -~ 39O (-w) N P (=) 2

)

4 2 2 4 2 1

where L, = log(5,) — vg and the trigamma function M is the derivative of the digamma (). The
series can be summed up and we find a closed form for the RG-evolved jet function:

L 1 o i 1 o B
F{ (59) = g {1Lo = 00 (-0))(@ + 1) 455+ 4} + g {[By — v (-0)](@ + 1) +26(2 +2) +1)
g g9
@A D3y (113,65 1 4:4,4.4:5-) — 0aFy (115 + d:d, 4: 3~ 5 55
g (B (LL.0+ 6044550 - 93P (L L& + 454,415, (5.58)

Plots for the exact result and the small-mass expansion are shown in Fig. 5.6. Nice convergence is
achieved for any value of §; (in particular, at threshold) and various values of the resummation param-
eter w.

Figure 5.6: Gluon mass correction to the massless RG-evolved jet function in its exact form (dashed), and
expansions for small masses (solid lines) for three values of &w: —0.15 (blue), —0.2 (red) and —0.3 (green).
Left panel: small mass expansion of 1:“1“3 at threshold 5, = 1 as a function of the expansion order n.
Right panel: Dependence of 1:"1& with 84, including 2 non-zero terms in the small-mass expansion.
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Secondary massive bubble

We proceed in the same way as in the previous section, switching between cumulative or differential to
identify distributions and virtual corrections. To simplify expressions as much as possible, we define
5 = s/m?. In this case we also compute the expansion for the differential jet function prior to its RG
evolution. The most relevant results before we discuss any expansion are the following:

3h+4)(h+ 1)T2(h) , v 1 (s
W20 +5) ¢ 1 8 A2\ 4 )

11 1/x* 121 5 1\ 1 [p
Jazin = — - (4= |5 oo [adl
e (5,15 ) {453 72e2 ¢ <72 * 432)] (s) + (185 662) 12 { s L’

G 17n% 4057 w247\ 1 [p?
5.ren (0,85 41, €) (9 + 108 2592 (s) 18 216 ) pu%| s |,

29 1 [p? 11 [p?
B[] sl )]
36 4| s " L 6pls " i

AFFS (3) = —énllz[ilogQ(é)} 21 [llog(g)L— (359 ”2) . H+

M3 (h, 3,0) = X (5.59)

L 36m? |3 216 18 )m?2 |3
. 2
(4325 205 297 ) 5(s).

1296 3 216

From the first line we see that the expansion for small masses converges if § > 4, that is, above threshold.
Much as happened for the massive vector boson, below threshold one only has the contribution from the
virtual diagrams, captured by the residue of the only pole with h > 0, sitting at h = ¢ [after removing
the massless limit and setting € = 0, the pole moves to h = 0, making it of multiplicity 4, and one is
left with the last line of Eq. (5.59)].

We can split the virtual and real-radiation contributions again, and compare to known results. In fact,
the virtual terms of the massive corrections to the 2-loop massless jet function are given by A Fy/(3), in
agreement Ref. [56].19 The non-distributional (or real-radiation) part is the sum of poles in the negative
real axis minus the radiative tail, which is simply the sum of residues corresponding to all poles with
h < 0 having set € = 0 prior to its computation. The extra factor of h in M (h,m,0) makes the pole at
h = 0 triple. The pole at h = —2 is double, while the rest of poles sitting at negative integer values of
h are all simple. The result quoted below is valid only for § > 4, since otherwise it identically vanishes,
and the series is convergent in its whole domain of validity, as can be observed in Fig. 5.7(b):

350 72 1 29 log(3)+1 2430 (2n—2)!
Agpy = 1359 T Ly B 65— 4
7052 real {216 13 tgloe (¥~ 35lo8(8) 252 ; 32037 (n = n( J0E Y

3 4
3F2 <1717 773541 A>
2 s
7 3 4 4 3 4
— —3Fy (1,1, =;4,4; - — 4 F3 1 1,1,=,3;4,4,4; - 5—4 .
93 2(772177§>+274 3<a727317a7§>‘|}9(8 ) (560)

where to get to the last equality we have summed up the infinite series. This result is equivalent to
Eq. (42) of Ref. [56], which is expressed in terms of logarithms and a dilogarithm. As can be seen in

359 2 1., 29 1 log(3)+1 1
20227 T T 002(8) — P op(g) — - — e\ T
{216 15 T gloe (¥) — 3g108(5) — 3 92 T3

10Despite appearances, Eq. (41) of Ref. [56] is p-independent as it should: the dependence on the renormalization scale
is entirely contained in the massless jet function.
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Fig. 5.7(a), indeed our result for AOFlJ,real exactly vanishes at § = 4.

S e e
L small m 1

0.0015F
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Figure 5.7: Secondary mass corrections to the jet function: real radiation part. We show exact results
as a green dashed line, and the expansions for small masses as a red solid line. Left panel: small mass
expansion of mQAOFl‘{ roa) &t threshold 5 = 4 as a function of the expansion order n. Right panel:

Dependence of m2AgFy ., with 3, including 6 non-zero terms in the expansion.

rea.

The jet matching condition, defined as in Eq. (4.92) for the bHQET case, is obtained using Eq. (5.14),
and the obtained result

2
My =6(s) + {O‘S(’“L)] T CpMP (m, s, 1), (5.61)
@) 292 () DL (N (233, 7 #Y 5G
M (m’s’“)_[m log <m2> 15 198"\ 2z 516 36 ) %8\ 2 9
5m2 1531 5 u? 1. of u? 147 1 [p?
Oy 200 Dog( F) — 102 ( ) - S| S|
o6t 864} () + [9 Og<m2> 6 5 \m2) 27]2 s ),

in agreement with Eq. (46) of Ref. [56] if setting u,, = ps after accounting for the factor of 2 explained
already.

We discuss next the RG-evolved jet function, defined as in Egs. (5.55) and (5.56), and considering
once more only the evolution of the correction to the massless result. From the inverse Mellin transform
we find for the jet function:

o [Fds SN\ Vo [T dh 2(h + 1)(3h + 4)D3(h)
mo- [ S(-5) #e- [ e, 09

where the convergence radius does not depend on @. Once again, closing to right for § < 4 one picks
only the multiplicity-4 pole at h = 0 corresponding to the virtual radiation contribution. For § > 4 one
closes to the left, finding an infinite number of poles sitting at integer negative values of h: double at
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h = —2, simple otherwise. Defining L = log(5) — vg — z/J(O)(—JJ) we obtain the following results:

29712 [ L
== 2 4 =369 (—@) + 672 — 359 5.63
72~ 18 T a1g 30 (-®) + 6 ) (5.63)
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F5(3)

_ {[ﬁ - %2 - ¢<1>(—w)} (@ +1)o 4+ L0560 + 11) + 4] + o(7@ + 11) + 1}

852
n#2

(3n—4)(2n—2)!(@ + 1),
+ ngl $mn(n —2)(2n — 3)(n!)3

12n3 — 45n? 4 56n — 24
n(n —2)(2n — 3)(3n — 4)

[L +3H,, — 2H2,_o + O (=@) — O (—n — @)

The infinite sum can be carried out and one obtains an analytic expression in terms of MeijerG functions.
We find it more convenient to carry out the sum, adding as many terms as necessary to achieve the desired
numerical accuracy. For efficient computer implementations, it is convenient to express ¥(9) (—n — @) in
terms of (9 (=) as follows:

1
O(—p—2)=vV (- . 5.64
WO (n=a) =)+ 3 (5.64)
In Fig. 5.8 we show the good convergence of the small-mass expansion, and how it agrees with the single
term corresponding to the virtual radiation contribution at § = 4. The agreement of the two series is a
strong cross-check on our results.

Figure 5.8: Secondary mass correction to the massless RG-evolved jet function in its exact form (dashed),
and expansions for small masses (solid lines) for three values of &: —0.15 (blue), —0.2 (red) and
—0.3 (green). Left panel: small mass expansion of F¥’ at threshold § = 4 as a function of the expan-
sion order n. Right panel: Dependence of Fg’ with §, including two non-zero terms in the small-mass
expansion.

If applying the strict EFT philosophy, when the secondary quark is no longer active (that is, if pt,, > ),
the secondary quark simply and plainly does not participate in the jet function. The matching condition
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M ; accounts for the discrepancy of the two EFTs in the UV. Since the two theories are required to
agree for m — oo, the matching condition takes into account only the virtual radiation, as real emissions
cannot occur in this limit. However, as already discussed in Sec. 1.4.1 (and Sec. 4.5 for bHQET), one can
make the transition between the two scenarios smoother by including the mass-suppressed real-radiation
contribution not accounted for in M, which will naturally become increasingly small as § decreases.
This “improved” n,-flavored jet function is simply:

(me)

e

2
T (s, pym) = T (5, 1, 0) + {ﬂ(“)] CrTrdnFY (5), (5.65)

that agrees with the EFT result T(an)(S,M,O) in the limit m — oco. In Ref. [56], this mass-modified
jet function is obtained from the ny jet function computation using an OS renormalization factor Z?S.
Even if different in spirit, the results are of course equivalent.

5.6 DbHQET computations

We consider now the situation of jets produced by boosted heavy primary quarks [see Eq. (1.67)]. We
will compute the mass corrections from secondary quarks to the matching between SCET and bHQET
and the bHQET hemisphere jet function. Even though these results were already obtained in the previ-
ous Chapter, in this section we apply the Mellin-Barnes procedure developed in this Chapter which, as
we shall see, turns out to be much easier. It also leads to much more efficient expressions for numerical
evaluations than the ones we could get from the dispersive integral method (see appendix C.1), and
allows for an analytic evolution of the bHQET jet function, which could only be carried out numerically
if the exact results were used.

Therefore, in this section, instead of just taking the one loop results with a modified gluon propagator
first obtained in Ref. [27], as we have done in previous sections, we will carry out those computations
anew. As we will see, it will be instructive to compare those with the corresponding dispersive integral
method as carried out in Chapter 4. Additionally we will calculate the contribution from massive gluons
to those matrix elements as an expansion.

5.6.1 DbHQET Hard function

One loop computations

As was done in previous Chapters, we take the ratio of form factors in SCET and bHQET to obtain
the matching coefficient, as those are the simplest matrix elements one can come up with. If using
dimensional regularization to take care of IR and collinear singularities, since our gluon is massless
even for a modified propagator, all Feynman diagrams for the form factor in bHQET are scaleless and
vanish. Therefore, the matching coefficient is simply the SCET form factor in dimensional regularization.

For a change, in this section we will regulate IR divergences with off-shellness A? = p? — M? = p? — M?,
(with p, p the quark, anti-quark momentum) since in this way we can see explicitly the cancellation of IR
divergences, and these results, to the best of our knowledge, have not been provided before. Addition-
ally, they can be used to get the individual SCET and bHQET contributions directly from the inverse
Mellin without relying on consistency conditions, but we shall not follow this path to avoid duplicating
the computations.!?!

1 One just needs to consider the poles corresponding to A — 0 limit.
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The Feynman diagrams that contribute both in SCET and bHQET (albeit with different Feynman
rules) are shown in Fig. 4.6, where one has to use the appropriate gluon propagator. We will denote the
quantities related to the form factors with F as in Sec. 4.4. This should not be confused with F' from
Eq. (5.9).

e Collinear Contribution:

Applying SCET Feynman rules to diagram 4.6(a) leads to:

Fh»(a) —

sopr = — 8T Cpp® I

, (5.66)

s [0 )
@m)d (=1 =" 2 440 " [ - 1+ 0] [(p — )2 — M2 + 0]
where in this case the 0-bin subtraction integral is zero, as can be seen through Georgi parameters:

e = / i ! (5.67)
O @m) (=D 2 0] P [ 1+ 0] [—n A+ Ay io}

il(14+e—nh) o A? el e h—e—1
= — -2 4 r—€ =0.
922 2= (1 — h)/o dAg [ 0 + /\2] /o dAg AT 0

Using the residue theorem to carry out the [T integration, followed by the integration of the
perpendicular component, we obtain:

@ _ =i T(e=h)

1
_ e h—e
= Y T(1 D) /0 dz(1—2)' 7h e (A% 4+ M)z — A% (5.68)

which yields a Gaussian hypergeometric function that must be power expanded in A? to get:

Opii2e e [T(h =) (26 — 2 A2 2h=e)
Fh,(a) asCrl (MQ)h { (h 5) (5 h)( ) (5.69)

SCET = ™ gi-2eri—e T(1—h) M2

22(h=2)(1 —h) T(e = )T (h — e)T'(h — £ + 1/2)
2/ I'(2+h-—2¢) '

The bHQET counterpart for this diagram is:

Flipr = idra,Cpi® (- vy) I, (5.70)

ha :/ ddl 1
S o) 2 0] T 1 — 0] [uy 1+ 22 4i0]

We first use Georgi parameters to again show that 0-bin subtractions identically vanish:

fha / dl ! (5.71)
0—bin — — _ :
@Cm) (=D 12 0] " 71— i0] {%n 4 A +i0}

iT(1+¢e—h) e A? Q1" > h—e—1
= d _— 2 _— d 1€ =
22-2em?<T(1 —h)/o A { R /0 ML 0,
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and then to solve the integral:

~ _ ) h—e—1
) _ asCpp* (n-vy)T(1+e—h) he—1 _ A?
FbHQET = — 2_2E7T1_8 F(l — h) . d)\l d/\2 (/\2) 2/\1 (n . 1}+) + )\2 - M
- (h—e)
a,Cpi% , oh-eT(h—e)T(2e —2h) [ A2\’
=— " (M —— : 72
217257T175 ( ) F(l _ h) M2 (5 7 )

We double these results to account also for diagram (b). We can take the difference of SCET and
bHQET results already at this stage, and we observe that the IR divergent terms exactly cancel
for any value of h and ¢, as expected. We keep them apart since we aim to isolate the form factor
for each EFT separately.

e Soft Contribution:

The contribution form the exchange of a soft gluon between the two collinear sectors coincides in
both EFTs as expected, hence cancels in the difference. The result will nevertheless be important
to isolate each form factor. We obtain

F(9 = — i8ma,Cpi® 1", (5.73)

Thee :/ d4 1
@m)* (=D 2 4 0" {n e iO] [—n A+ iO} ’

with th = SCET,bHQET. The resulting integral can be solved once more through Georgi
parametrization:

~ h—e—1
h,(c) _ O‘sCFMZE I'(1+e—h) [ A?
Fth R s s g F(l — h) | dA1dAg [—4X1 Ao — 2()\1 + )\2)6 (574)

- _ M(Q%hfs [%(e =LA +h—e)(=1)"* (N)Q(h—f)
= 21-2el—¢ F(l — h) Q2 .

e On-shell wave function renormalization constant:

Since we are using an off-shellness, self-energy diagrams will contribute in both EFTs, and

Figure 5.9: SCET quark self-energy

since the UV behavior of both theories differs, they will not coincide. The diagrams contributing
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to the SCET quark self-energy are depicted in Fig. 5.9 and read:

h,1 d? 1
Sebpr = idrasCpji* / @ D [ a0 (1% M 0] (5.75)

(-1, (@-2)a-p(E - )
R N

(=
X [QdM2 G 2)JV:[ n
n-p

, i d?l (d— 2)ﬁ P
Eh,Q — _ 14770530 26/ .
SCET FH @m)d (=P iz 440" [m- (p - 1)]

Taking into account that 0-bin subtractions are power suppressed and hence do not contribute,
the sum of both gives:

1 2
S4cer = ZeGpT T SSoET (5.76)

d
1
:i47TaSCFﬂ2€/( 2m) i

(=D 2 50! " [(p — )2 = M2 + 0]
X {2dM2 (d- 2”22 (p l>—(d—2)n-pn-(p—1)}
asCpji* T'(e _n)2(1—¢)? 2.2 2 —e
== 5 257:1 T ;/ (1—2)" h{g(_lhi)l[Mz + A (z—l)z]h +

+ M2+ A2z —1)2]"F [(8 —4e)M?*(z — 1) +2(1 —e)M?(z — 1)* +2(1 — E)Mﬂ }

where we first integrated the plus component by residues and then carried out the perp integral.
After taking the derivative with respect to the off-shellness, solving the last integral and expanding
the result in A2 we obtain for the renormalization constant at one loop the following result:

0S,h ngCET OzSCFﬁQE F(E - h) o\ h—¢
2y SCET = [ A2 |, =y 1 TR (M?) 42h —2e + )I(1 + h —¢€) (5.77)
(A2 ree—2n-1) (DM A g
M? I'(e — h) I'(2 4 2h — 2¢)
| 2(2e—3)(e—h— DI(2 — h)D(~2¢ +2h + 1)
I'(—2e+h+3) '

The bHQET quark self-energy diagrams were already shown in Fig. 4.7 but since our gluon is
massless, the quark bilinear term AM vanishes'?

ddl 1
nh =A4ra,C ~25/ 2 578
PHQET PR emyd (C1)k 12 440" " [v- 1+ &7 + 0] o

. ~ h—e
_ _ZasCFﬂza F(E_h)l—\(l_’_h_g) A72 2(h—e)+1
21=2egl—c (1 —h) M

[F(Ze —2h—1) (=) T(1+h-— 5)]

Te—h) | T@+2h—29)

12The off-shellness in not an actual scale but a regulator.
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Georgi parametrization was again used to solve the integral. Applying the on-shell condition we

end up with:
) d
ZgngET =M l:dAQEIgHQET] (5.79)
AZ—0

0 (h—e)

a,Cpji? hee T(e —MT(1+h—¢) [ A2)\?

=z 1= (2h—2e+1) (M?) ) e
I'(2—2h—1) (1" T(1+h—¢)

I'(e —h) I'(2+2h — 2¢)

As expected, the difference of self-energies is also finite in the A — 0 limit. This comes at no
surprise, since this cancellation already occurred in the difference of collinear contributions and
the soft diagrams are identical in both EFTs.

Altogether, the one-loop results for the form factors with modified massless gluon propagator and
regularization of IR singularities through an off-shellness are:

e

+

o1+2(e=h)(_1)2(h=2)(1 4 & — h)m3/2 csc [2(e — h)7] ( A )2<h€) (5.80)

(e =1 —=h)T(1/2 —c+h) el
FQ(g—h)F(lﬂLh—&)(—l)h_s( = )h}

I'(1—h) M2Q?
and
A a,Cr (,MQB'YE)E gy h—e | 212 (1)2(h=e) (1 4 ¢ — h)7w3/2 csc [2(e — h)n] [ A? 2h—e)
Fonqer = ————— (M?) Evel
o (c— (1 - hI(1/2—¢+h) M2

T eBE (5.81)

I2(e — W1+ h —e)(~1)h—= < A )h‘a}
In the previous expressions, as long as h and ¢ are kept arbitrary, one can take A2 — 0, and in dimen-
sional regularization the limit simply Kkills all non-analytic terms in A, recovering the same result found
in Ref. [27]. Notice that bHQET form factor only contains terms depending on the IR regulator, so it
indeed vanishes in dimreg, and cancels all the SCET A2-terms when taking the difference of the two to
render the matching coefficient.

On the other hand, one can also plug these results into Eqs. (5.9) and (5.12), and take A2 — 0 limit
after computing the Mellin inverse to obtain the corresponding form factor contributions in each theory.
However, in order to stick to the line argument of this Chapter, this possibility is left for future work
and we will consider only the difference of the one-loop results to compute directly the matching. We
then employ consistency conditions to obtain each EFT part separately. Therefore, the input for our
Mellin procedure will be 0% = M? and

11-hAT1—-h+e)(1+2h—2¢)
2 D(3+h—2¢)(h—¢)2
x {24+ h*(3 —2e) +4h(1 —&)? — ¢[5 — (5 — 2¢)e]},

ml(h,e) = (5.82)

where we spot a double pole at h = ¢, expected due to the presence of Wilson lines.
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Massive gluon

In this section we use again the dimensionless variable {; = my/M defined in Sec. 5.4.1. The most
relevant results to be presented before turning to the small- and large-m, expansions are the following:

M71n(h7 07 f{]) =

2(9 _ ~2h Sese?(r -2
[2+ h(3h + 4)]T%(2 — h)T(2h)¢, " _3mresc’( h)(fg) L (5.83)

h2(1 —h?)(h+2) |h>1 Wh 9
Fn (. .2) = 555 + 2 2108 472 ) +1).

m 7T2 1 2 ’UJ2 1 ,U'Q
A0 M0 =1+ 5y + 3108 (115 ) + s ).

2

LT log?(&,) — %log(fg)-

AFFME) =5~ 5

The form of the 1/&e™ terms on the second line makes clear the result cannot correspond to a SCET
computation, since in this EFT the primary mass is an infrared scale and UV divergences can only
depend on UV physics. The result in the second line agrees with the known 1-loop result, computed for
the first time in Ref. [24], see Eq. (131) therein.

The result in the last line of Eq. (5.83) comes from the triple pole at h = 0. From the first line of
Eq. (5.83) one can see that the small and large gluon mass expansions will converge for m, smaller or
larger that 2M, respectively. On the negative real axis there are double poles at h = —1 and —2, and
simple poles in all other negative integer and half-integer values of h. The pole sitting at h = —1/2
reflects a linear sensitivity to IR momentum and is directly related to the u = 1/2 renormalon found in
Ref. [27]. On the positive real axis one finds a triple pole at h = 1 and double poles at all other integer
values of h. All in all, we find

n#2,n#4 n n2 — 8n 2(n
AoFT" (&) = — & [log(fg) + ﬂ + 1%53 [41og (&) — 3] — Z (—&)" : 4_(73)_(34)(71 _82;38();_(;)?_ 2

n=1
3 o, (2n—1)! (84 22n + 2002 + 9n3 — 2n* — 3nd
— A m Y2 2n
LR B [(n+2)!]2{ n
—2(n® = 1)(n+2)(3n® + 4n + 2) [log(&,) + Hp—1 — HQM]}. (5.84)

The expansion for small m, can be summed up and we find the following analytic result:

1067 — 4 -3¢ (fg + rg) " log? <5g + rg> w2+ 362+ £2(4 - 362) log &)
2

ANgFm =29 9¢ ]
041 ggog 2 4 )

T (5.85)

with 7y = /2 — 4. The expression above has all terms manifestly real for {; > 2. For §; < 2 the result
is also real-valued, but to have all terms manifestly real one has to make the following replacements:
rg = Tg = (/&2 —4, log?((&, + 14)/2] — —arctan?(7,€,) and log[(&, + 74)/2]/ry — arctan(,/€,) /7.
At the limiting value one gets of course a finite result, AgF" (¢, = 2) = 8log(2) — 6 — 72 /4.

In Fig. 5.10 we study the convergence of the small and large gluon mass series. The small mass expansion

has an oscillatory behavior, and converges at a slower pace than its large-mass counterpart. We observe
that the latter needs many terms to approach the exact value at the limiting value £; = 2, hence it is
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also slowly convergent.
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Figure 5.10: Gluon mass correction to the massless Wilson coefficient relating the dijet operators in
SCET and bHQET in its exact form (dashed green), small- (blue) and large-mass (red) expansions.
Left panel: AgF" at the boundary between the mass expansions &; = 2, as a function of the expansion
order n of each series. Right panel: Dependence of AgF"({,) with the reduced gluon mass, including
20 and 10 non-zero terms in the small- and large-mass expansions, respectively.

Next we compute the matching condition Mﬁfﬂlagfr at one loop, which coincides with the bHQET mas-

sive gluon form factor F?HQET and is obtained from the m, — oo limit of the SCET to bHQET Wilson
coefficient. This is due to the fact that within bHQET there is only one remaining dynamic (not hard)
scale, in such a way that the dependence of the form factor on this scale my must be logarithmic.'
In SCET, the primary mass is not integrated out yet so we have two scales: M and mg leading to the
equivalence: (my — o) <+ (M — 0) in the corresponding form factor.'* Therefore, we can add to the
SCET form factor with massless primary quark, that we already computed in Eq. (5.38), the decoupling
limit (my — 00) of the Wilson coefficient to recover the bHQET part:

ng—n Qg
Mitiqer =1+ Cr 77(:0 FYHOE (M, Q my, 1) (5.86)

Fll)HQET(MaQ7mg7M) :FSCET(OaQamgvu) - Fln,lren(Oan ,u) - ASOFlm(gg)

1,ren

= IOg(ng) [log(—A1?) +1] .

The presence of powers of log(s/m,) makes clear that the gluon mass is acting as a regulator for IR
divergences. The dependence on the renormalization scale agrees with that of Eq. (130) in Ref. [24],
where off-shellness was used as a regulator. We finish this section by computing the primary-mass-

corrected matching condition Mgé}?z at one loop, which coincides with the SCET form factor for

13Notice that the dependence of any EFT form factor on hard scales can only be logarithmic since any other kind would
suppose a power correction to the EFT and we work at leading (fixed) order in the power counting.

14 As a consequence of the fact that the non-logarithmic dependence can only consist on a power series on the ratio of
the two dynamic scales.
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. . . . . bHQET
massive primary quarks and a massive virtual gluon, adding F; QET and F 1ren:

Mgtpr' =1+Cr s )FSCET(M Q. myg, 1), (5.87)
FYCEL (M, Q my, i) = FSCET<07Q7mg, 1)+ DoFI (&) — AT FI" (&)

1,ren
It can be shown that all these massive gluon results just obtained are equivalent to the ones provided
in Sec. 4.4.1.
Secondary massive bubble

In this section we will write the expressions in terms of the dimensionless parameter ¢ defined in
Sec. 5.4.2. The most relevant results prior to discussing any expansions are

(h — 1)[h(3h + 4) + 2|72 csc?(mh)¢ 2" 3m2 csc?(mh)
2h2(h + 2)(2h + 1)(2h + 3) h>1 8h?

1 1 1\ 1/5 72 5
Fy (M, — Ly —g) -\ gglv+ g+ 53
(M €)= o5+ 55 ( M 3) <36 T 432)

MZ(h,€,0) = — g2k, (5.88)

1 72 77T\ 13¢;  37x% 1541
o (0, M =——IL3 - L ~L — ] - - -
2en (0, Mo ) = =55y - 72 M (18 * 216) 36 432 2502
2 13 133 + 1272 1747 + 15672
ASC i — 3 1 1
Q) = D10(6) + 1o log?(€) + T P tog(e) 4 Tt 0T

with Ly = log(u?/M?). From the first line we see that the boundary between expansions is £ = 1, and
they overlap at this point, where both converge due to the h=2 overall dependence of M3'(h,&,0) for
large h. The divergent pieces and massless part agree with the results found in Ref. [40].

Let us study now the different series for the mass corrections: there are double poles at all integer
values of h except for h = 1, which is simple, and h = —2 with multiplicity equal to 3. Additionally,
we have simple poles located at h = —1/2, —3/2. Since the factor containing gamma functions in
M5 (h, €, 0) is invariant under the replacement h — 1 — h, one expects some symmetry in the infinite
sums appearing in the expansions for small and large mass. Indeed, after applying the converse mapping
theorem, we get the following expansions:

AoFf' () = AFFS(€) = D An(6) (5:89)
3w 55r2S 2o w145 2 .
=5~ ¢ ( Tkt ) Z
P2+ 4n+ 3n?)
An(€) = n?(n+2)(2n+1)(2n + 3) (n=DlLe

3(8n 4 20n°® — 45n3 — 68n* — 42n — 8)
2n(n+2)2n+1)(2n + 3) (3n?2 + 4n + 2)
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where L¢ = log(€§). For £ = 1 one finds AgF3*(1) = 43 +58 m The series for large ¢ can be summed
up and we find the following expression, in which all terms are manifestly real for £ > 1:

2¢4 5523 832 142 2 10 132
AOFJ"(E):W; - 17885 + 32 18L§ ( 95 + 6>L5+7r4£—9L2 21”6 (5.90)
13 3¢t L . 1
{Ll?)(fQ) + 2L log(&* — 1)] + (36 - ;)ng (1 _ §2>
3¢ 5563 1
+(4§—3§) {leog(fSJrl)—210g2(£+1)+L12(1—§) L12<£i1>}

For ¢ < 1 the expression is still real, but the individual pieces on the term in square brackets in the
second line become complex. To have each term manifestly real, the following substitution should be
implemented:

Lig (512) +2L7log(&% — 1) — Lis (&) + 2L log(1 — &%) + %Lg - §w2L5 : (5.91)
In Fig. 5.11, a comparison of the exact expression and both expansions is shown at various orders. We
see that at £ = 1 both expansions converge very quickly, although the large-mass one is accurate already
at very low orders, and the small-mass series exhibits an oscillatory behavior related to the poles at
half-integer values: after the third power of zi is included, the sign alternating behavior disappears.
Both expansions excel reproducing the exact result in their respective convergence domains, but the
large-mass expansion is particularly fast at reproducing the all-order result.
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Figure 5.11: Secondary mass correction to the 2-loop massless Wilson coefficient relating the dijet
operators in SCET and bHQET in its exact form (dashed green), small- (red) and large-mass (blue)
expansions. Left panel: AgFj" at the boundary between the mass expansions & = 1, as a function of the
expansion order n of each series. Right panel: Dependence of AgF3"(¢) with the reduced gluon mass,
including 4 and 1 non-zero terms in the small- and large-mass expansions, respectively.

An additional cross-check was made with the results of Chapter 4 in the following form:

7T2

5HM &, (5.92)

with Hpr(€) given in Eq. (4.81).
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To recover the expression of each EFT form factor independently, we can follow a procedure analo-
gous to the one for the massive gluon, that is, we can subtract from the result in Eq. (5.47) for the
dispersive part of the massless primary SCET form factor, the decoupling limit of the dispersive term of
the matching, given by just the pole h = € contribution. In this way, we obtain the part corresponding
to the unrenormalized bHQET form factor:

M2 1 1 2
FPHQET _ | 1 _ _—~ |5-61 £ )
zae = |08\ gz ) 1122 T 6e |0 018 2 (5.93)
1 2 2
+ 516 [36 log? (;;) — 60log (;;) 432 56] } :

and adding the I} contribution together with the term coming from the flavor threshold condition
in ay (all of them proportional to the one loop bHQET form factor) we arrive again to Eq. (4.91) for
the flavor matching.!® Finally, the dispersive part of the SCET form factor with massive primary and
secondary quarks is given by the sum of the previous result and the dispersive part of the matching
results, that is, one must subtract the HB/IS contribution from the corresponding expressions in Eq. (5.88).

The secondary massive bubble part of the bHQET and SCET form factors was also compared to the cor-
responding results obtained with the dispersive integral method, discussed in Sec. 4.4.1 and agreement
(analytical for bPHQET and numerical for SCET) was found.

5.6.2 Jet function
One loop computations

Since the measurement function is completely inclusive, we will perform the calculation of the PHQET
jet function as the discontinuity of a forward-scattering matrix element, in a way analogous to the
calculation carried out in Sec. 4.3. Therefore, we need to consider the diagrams shown in Fig. 4.5 with
the quark bilinear contribution set yo zero.

e Quark self-energy:

. ia,Cp i / d?] 1
MBS (5, 1) = — - . 5.94
(& k) 52 @m)d (=DP 2 440" v - (k +1) +i0] (5:94)

The result of the integral can be read from Eq. (5.78), which can be rewritten to obtain the
following result for this contribution to the forward-scattering matrix element:

. as Cp e 22+ h—e) (-2 —2h+2¢), . _ _
MBS et 2.7E _a)—1+2h—2¢ 595
() = SE (1) b (-5) RS
a form more convenient to take the imaginary part since we can use the identity
Im (—§)"* =Im (=8 —i0) " =Im (§ ") = L, (5.96)
I'(a)I'(1—a)

right away, obtaining for the contribution coming from the self-energy diagram to the jet function
the following expression:

T(1+h-— E)§—1+2h€sw 2e
MBSh(5,p) = —Cp2 . :
W) = O S T T T 9h = 29) ) (5.97)

15Recall that only the divergent pieces contribute when multiplied by log-subtracted HIOVIS vacuum polarization function.

SR
w | =

158



e Wilson line gluon: The contribution to the forward-scattering matrix element from the Feynman
diagram in which the gluon is radiated directly from the gluon line and absorbed in the heavy-quark
propagator is

_ i, Crp* Q a4l 1

(=8) M J @Cm) (=12 400" " [a-1—i0][v- (k+1)+i0]

MB"(3, 1) (5.98)

This integral was also computed previously and its value can be deduced from Eq. (5.72). Using
again Eq. (5.96) to determine the imaginary part, we end up with

) s D+ h—eg)sgtt2hesrn 12
M B " —_ops K 5.99
w8 0) For (e — MDA — W)T(1 + 2h — 2¢) (s) (5.99)
Adding all contributions one gets
. s T2+ h—¢g)s 1H2hesE N2
MB" —_p By 5.100
n(8:11) F e (e W1 — WD(2 + 2h — 2¢) (3) (5.100)

For the Mellin calculations of the massive gluon and secondary quark corrections we will work with
the cumulative X as in the SCET case so we identify Q = §., and use the following 1-loop modified
expression

I'2+h—e¢)

mh(e) = 1 . (5.101)
2(e—=h)2I'(1 — hI'(242h — 2¢)
Massive gluon
Let us apply the previous equation first to the massive gluon contribution, for which we have:
L(h)L(h + 2)32 VT (5\"
Y5 (h, 54,0) = g -4 5.102
My (1, 59,0) 2h2T(2h +2)  |h|>1 4h5/2 ( 2 > ’ ( )

2 1 1 W 11fp
o) = (g 32 )00 - 235

rosn =2fere(2)], 4[], (- D)oo

AFFP(5,) = —— {”;g 10g(§g)} + L {"TQL - (1 _ ”2> 5(5),

my L mgl $

where we defined 5, = §/my, variable which is used also for the cumulative related quantities (that is,
54 = 8./my in the first line). This is analogous to the variable defined in the corresponding SCET com-
putation, but in this case we placed a tilde instead of a hat to remark that they are different variables.
The second and third lines agree with the results given in Ref. [24] .

We can also isolate the virtual part from the residue of the double pole sitting at h = ¢, that con-

stitutes the only contribution from the right side of the fundamental strip, and after renormalization
also coincides with the sum of FZ (0,3, u) and AFF(5,):

1 MQ ,LL2 R ,U/2 1
B _ 2 2
Fl,virt,ren Y [_6 log (Tn?) + 121log (ng — 7] §(8) — log m—g ;
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For the real radiation part, which is u independent, since it does not involve any distribution, we can
safely apply the inverse Mellin transform direct to the differential jet function. This can be extracted
from Eq. (5.100) or from the derivative of the cumulative’s Mellin transform. We have to consider the
double pole at zero, and the simple poles for all the negative integers smaller than —1 that appear when
setting ¢ — 0.

1 i T'(2n — 1)5;2"
FlBiICal :g |:2 log(s ) -1-2 § TL’I’L'F(?’l — 1)
n=2

1 4 3 4|,
:g[210g<1/1—§!2]+1>+210g(2>— 1—% 0(5,—2).

The Heaviside theta condition comes from the large h behavior shown in Eq. (5.102), and to get to the
second line we just sum up the series. Adding up real and virtual results one gets the same result as
the e-expanded and renormalized version of Eq. (4.54). In Fig. 5.12 we compare the series expansion
of the real-radiation contribution for small gluon masses with the exact result. We observe an excellent
convergence everywhere except for 8§, = 2 where convergence is rather slow.

]9(59 —2) (5.104)
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Figure 5.12: Real-radiation term of the 1-loop massive gluon bHQET jet function. We show exact
results as green dashed line, and the expansions for small masses as a red solid line. Left panel: small

mass expansion of 2myA¢F ™ at threshold 3, = 2 as a function of the expansion order n. Right

Breal

panel: Dependence of §A¢F; """ with 54, including 6 non-zero terms in the expansion.

The one-loop correction to the jet matching coefficient relating the jet functions in the theories with
and without massive gluons is given by

1,virt,ren

B’n[ / dA/MnZ%ng( )Bn ( )’ an%ng _ 5(§) _ MCFFB ) ) (5'105)
™

Next, we study the series for the RG evolved gluon mass corrections following the same procedure as in
SCET. Therefore, we have to consider

AoFB(5,m ) 9)> (5.106)

§ FP(3
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with —1/2 < ¢ < 0, in such a way that the only pole to the right is triple and located at h = 0, whereas
to the left simple poles appear at h = —1/2 and h = —1, and double poles for the rest of integers on
that side. The expansions can be written as:

. ~ ~ 2
MB§(3,) =Ly — L2+ oM (-&) - % 1 (5.107)
m@+1) (@4 1), (n—1)(@+1)2n5,2" -
= - L,+H,
5, > n@n -y |t
o2n% —4dn+1

on(n—1)@n—1) & PO@+1) @ 2n+o+ 1)] :

where log(34) — 75 — (0 (—@). We have not been able to sum up the previous series, therefore we
consider “exact” the sum of the first 140 terms. In Fig. 5.13 we study the convergence of the series
for the RG-evolved bHQET jet function for three values of the running parameter .. We observe that,
analogously to our findings for the real-radiation bHQET jet function, convergence is not great at 5, = 2,
although it becomes better for values w further away from zero. Likewise, the series converges rapidly
for 5§, > 2, and the further @ is from zero, the faster it converges.

Figure 5.13: Gluon mass correction to the massless RG-evolved bHQET jet function in its exact form
(dashed), and expansions for small masses (solid lines) for three values of @: —0.15 (blue), —0.2 (red)
and —0.3 (green). Left panel: small mass expansion of MB% at threshold 54 = 2 as a function of
the expansion order n. Right panel: Dependence of M B‘f’ with 3,4, including 6 non-zero terms in the
small-mass expansion.
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Secondary massive bubble

As a final application of this thesis, we compute the 2-loop secondary massive quark correction to the
bHQET jet function, therefore we multiply Eq. (5.101) by the kernel G(h,¢), leading to
1 1 1 [ w2 29
FP. (3 =|— — — — | |4(8
2.iv (3 11 €) {853 Tt (144 108)] &)+ { 152
1w
9 271)pls],
223 2 47
+ < _ % ”)5(5).

214 () 520 -\ 2h
MEB( ’~c’0) _ (1+h) r (h)Sc T (j) | (5108)
2
F2Bren(07§7/1/7 5) = (NC?) + 5971- 281>6(§) o (7T 47)
s 210p, o3
()], sl (o)),
9 p Iz 3p n)l.
81 3 27

2(2h +3)I'2(2h +2) |ni>1 16h*
o Lk
18 6¢2)pu[5],°
36 432 162 9
16 1 [
21 16 1 [1 61 w2\ 11
AFFP(5) = —=—|Z1og?(5 ——|=log(3 — - — ) —|=
FRPE = —3n )]+ 5o see| - (5-F)m 1)
where we defined § = §/m and 5. = §./m to point out the difference with the analogous SCET variable.
The limit taken on the first line establishes the boundary for the small mass expansion convergence at

§ = 4m. The second and third lines agree with the massless result provided in Ref. [42] and the last
line can be compared (once we account for the color, as/m and M /2 factors) to §Bst given in Eq. (4.63).

Therefore we are left with the calculation of the real-radiation contribution to the mass corrections
and the residues to be considered for that purpose, once we set € = 0 in the Mellin transform of the jet
function, are the triple pole at h = 0 along with the double poles for all h = —n with n > 2, ending up
with:

2z—2n

61 72 16 2n— 1“5
§A0F§realz{ fffff log()+ log +32Z 2)%4 (5.109)

[log( ) +2H,, —2Hz,_» + 27;;14[??(;”42 3)] }9(5 —4),

where the Heaviside theta condition can be derived from the large h limit we took in Eq. (5.108). This
expansion can be cross-checked by implementing numerically the dispersive integral in the result of
Chapter 4, that is by the comparison:

2
|:as<lu):| C(F:FF A0F|2]?’rea,l = M(SB;?Lal(é? m)/2, (5'110)

s

with 6B (3,m) as appears in Eq. (4.63). The outcome of this comparison is depicted in Fig. 5.14
where the dispersive integral result is marked with a label to indicate numerical output (num). Notice
that if one considers instead Eq. (C.10) for this comparison both sides are completely equivalent so we
just reproduce, through this simpler procedure, the main result of the previous Chapter for the bHQET
jet function. Likewise, we can also use Eq. (5.14) to recover the flavor matching in Eq. (4.95).

We can take advantage of the flexibility of our MB representation and go one step further by pro-
viding a fast convergent series also for the convolution with the running kernel. The Mellin transform
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Figure 5.14: Secondary mass corrections to the bHQET jet function: real radiation part. We show
dispersive integral results as green dashed, and the expansion for small masses as a red solid line. Left
panel: small mass expansion of EAOFfreal at threshold § = 4 as a function of the expansion order n.

Right panel: Dependence of §A0Ff | with 5, including two non-zero terms in the expansion.

rea

of the RG-evolved mass corrections is:

§ds/(1 S/)—I—QFQB /c+ioo dh ﬁ(h+1)2f(h)3 (§§

o )2h
(") = Cioe 270 8h(1+20)T (h 4 3) (—@)an

s (5.111)

S

MBE) = [ S
0 S
with —1/2 < ¢ < 0 and the same condition for convergence found before holds, despite appearances.
The configuration of singularities is simple: one has a fourth-order pole sitting at the origin, while to
the left of this point simple poles at h = —1/2, —1 and triple poles at integers below —1 are found. All
in all we obtain:
61 223 2(3

s 8:y 2., L N 8 2 5
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with L = log(8) —¢©) (—w) — g . Again, we verified numerically this series through the analysis plotted
in Fig. 5.15.
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Figure 5.15: Secondary mass correction to the massless RG-evolved bHQET jet function in its numerical
form (dashed), and expansions for small masses (solid lines) for three values of @: —0.5 (blue), —0.6
(red) and —0.7 (green). Left panel: small mass expansion of MBY at threshold 5 = 4 as a function
of the expansion order n. Right panel: Dependence of M Bg’ with §, including 3 non-zero terms in the
small-mass expansion.

5.7 Summary

In order to obtain the expansion for small and large masses to arbitrary high order in processes involving
massless or massive quarks at lowest order, we reorganize the usual sequence of steps carried out when
solving multi-loop integrals through the Mellin-Barnes procedure, and derive a simple way of computing
the massive virtual quark bubble contributions to any given matrix element (not necessarily within
QCD), which can also be adapted to virtual massive vector bosons.

This was achieved through an inspection of the integrals involved in the corrections from massive quark
bubbles in the gluon self-energy, that lead to the conclusion that we can expand away the mass very
early in the calculation by working in the Mellin plane. This, in turn, implies that we do not have to
deal with additional scales in the remaining loop integrals and once they are solved one is left with the
Mellin transform of the final result. From this representation, the application of the converse mapping
theorem, that basically is nothing else than carrying out the corresponding integral using the residue
theorem and Jordan’s lemma, leads to small- and large-mass expansions, whose convergence radius can
be inferred from the behavior of the Mellin transform at infinity.

After analyzing the massive quark bubble insertion on the gluon self-energy from the Mellin plane,
we applied this method to the difference between the pole and MS mass schemes and to matrix elements
in the factorization theorems for the processes we are interested in this thesis, that is, event shape
differential distributions in the context of ete~ — hadrons, both in SCET and bHQET. We reproduced
without much effort all known results, including those first derived in Chapter 4.

We conducted numerical investigations of the convergence for each series and obtained closed expressions
in the cases in which the expansions can be summed to all orders. Finally, for the jet functions in both
EFTs, we convolve with the running kernel already using their original representation in Mellin space,
and invert at the very end in order to have access to a series for the RG-evolved results. These turn out
to be much more efficient than the direct numerical implementation of the corresponding integral.
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Conclusions

The particle physics community is currently making a big effort in the quest for finding new physics
that could overcome the theoretical less sound aspects of the Standard Model, and that could explain
some tensions found between Standard Model predictions and experimental data. Since no clear signals
of new physics have been found in high-energy colliders such as the LHC, the search has to be more
subtle. Reducing the theoretical uncertainties is then crucial to search for small deviations that could
be overlooked if the precision is not high enough.

The slow convergence of perturbative series in powers of the strong coupling o and the non-perturbative
effects inherent to the strong sector of the Standard Model (QCD) makes it hard to get a grip on the
actual theoretical accuracy. Additionally since the coupling of particles to the Higgs boson is propor-
tional to their own mass, the top quark can be used as a gate to explore physics beyond the Standard
Model.

Having this in mind, the research carried out in this thesis has focused on NLO and NNLO computa-
tions for observables called event shapes with massive quarks, either primary or secondary, necessary
for precise determinations of QCD parameters and to distinguish standard and non-standard experi-
mental signals. Our interest has not been limited to fixed-order computations, but also has dealt with
resummed perturbation theory, with special focus on jets involving massive particles.

We have developed new calculation methods that can be applied in EFTs or full QCD to optimally
expand the results for various hierarchies between the (primary or secondary) mass with respect to the
kinematic variable (jet mass, center-of-mass energy, primary quark mass, etc...). As a result, higher
precision for these observables was obtained in several ways:

- Exploring the sensitivity to quark masses through different choices for the event shape definition
(E-, P- and Massive schemes). We worked out the resummed expression at NLO + N2LL for
boosted tops and no-so-boosted bottom and top quarks. To that end, we computed the missing
jet functions in the corresponding factorization theorem of each EFT (SCET and bHQET) using
cut Feynman diagrams instead of the discontinuity of a forward-scattering matrix element due
to the non-inclusive nature of the observables. We have also worked out the RG-evolved version
of each jet function. For the SCET setup, the results have been implemented as fast-converging
series expansions (to arbitrary order) for the resummation of the new non-distributional parts,
which would otherwise involved high-order hypergeometric functions, which are not easy to code
(neither fast) in standard high-level computer languages such as Fortran, C++ or Python. The
three expansions that we worked out have overlapping convergence radius and cover the whole
physical domain. Therefore they are equivalent to the exact result, but much faster and convenient.

- Computing oriented event-shape distributions for massive quarks at NLO. Measuring the orienta-
tion of the event with respect to the beam axis permits gaining further sensitivity to the strong
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coupling and quark masses while, in the case of a total cross section, decreasing hadronization
effects. The fixed-order computation at NLO requires projecting out the angular distribution
from the regularized cross section differential in two energies and two angles, and requires using
multi-differential phase-space integrals in d = 4 — 2¢ dimensions. It involves a delicate cancellation
of infrared singularities between real and virtual radiation, that we worked out analytically. Our
results can be used to obtain the strong coupling from the total oriented cross section, and this
has left for future work.

Through the calculation of secondary massive quark corrections to massless and massive resummed
cross sections at NNLO. We have establishing a new variable-flavor number scheme (VFNS) for
boosted tops in the resonance region. The results of the secondary bubble diagrams were obtained
first with the usual dispersive integral method in which the massive bubble is expressed as an
integral over a massive gluon propagator. In order to obtain series expansions for small and large
secondary masses to arbitrarily high order, we used the Mellin-Barnes representation to replace
the secondary massive bubble insertion by a massless gluon with a modified exponent. This novel
strategy, which can be used only for IR-finite quantities, significantly simplifies the calculations
since the additional mass scale is expanded away at early stages of the computation. The method
can be trivially adapted to compute 1-loop matrix elements with massive vector bosons. We have
employed this novel technique to a plethora of examples: the relation between the pole and MS
masses, and the hard and jet functions of SCET and bHQET. Furthermore, we have obtained fast
converging expansions for the RG-evolved versions of the corresponding jet functions, which so far
could be obtained only numerically.
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Conclusiones

La comunidad de fisica de particulas estd haciendo actualmente un gran esfuerzo en la busqueda de
nueva fisica para poder explicar las tensiones encontradas entre las predicciones del Modelo Estandar y
los datos experimentales. Reducir las incertidumbres teéricas ayudaria a esclarecer las discrepancias y
por tanto acotaria dicha bisqueda.

La lenta convergencia de las series perturbativas y los efectos no perturbativos en el sector de QCD
dificultan el control de la precision tedrica. Ademads, debido a que el acoplo al Higgs es proporcional a
la masa del quark, el quark top se usa como una puerta de exploracion a la fisica mas alla del Modelo
Estandar.

Con esto en mente, la investigacion llevada a cabo durante este trabajo se ha centrado en calculos
NLO y NNLO para observables llamados formas de evento con quarks masivos, primarios o secundar-
ios, para ayudar a la determinacién de los pardmetros de QCD.

Hemos desarrollado nuevas técnicas de cdlculo que pueden ser aplicadas a teorias efectivas o a QCD para
expandir de forma éptima los resultados para varias jerarquias de las masas con respecto a las variables
cinéticas. Como resultado, se ha obtenido mayor precisién para estos observables de varias maneras:

- Explorando la sensibilidad a las masas de los quarks a través de diferentes elecciones para la
definicién de la forma de evento (esquemas E, P y Masivo). Hemos hallado la expresién resumada
a NLO + N2LL para quarks top impulsados y para quarks bottom y top menos impulsados. Para
dicho fin, hemos calculado las funciones chorro restantes en el teorema de factorizacién correspon-
diente de cada teoria efectiva usando diagramas con cortes en lugar de mediante la discontinuidad
de un elemento de matriz de dispersion hacia adelante debido a la naturaleza no inclusiva de
los observables. Los resultados se han implementado como expansiones en serie de convergencia
réapida (a un orden arbitrario) para la resumacién de las nuevas partes no distribucionales. Las
tres expansiones halladas tienen un radio de convergencia solapado y cubren todo el rango fisico.
Por tanto, son equivalentes al resultado exacto pero mucho méas convenientes y rapidas.

- Calculando las distribuciones de forma de evento orientadas para quarks masivos a NLO. Medir la
orientacién del evento con respecto al eje del haz permite ganar mayor sensibilidad al pardmetro de
acoplo fuerte y a las masas de los quarks, a la vez que se disminuyen los efectos de hadronizacion.
El célculo de orden fijo a NLO requiere proyectar la distribucién angular desde la seccién eficaz
regularizada diferencial en dos energias y dos angulos. Tiene lugar una delicada cancelaciéon de
singularidades infrarrojas entre la radiacién real y virtual que hemos llevado a cabo analiticamente.
Nuestros resultados se pueden emplear para obtener el parametro de acoplo fuerte a partir de la
seccién eficaz total orientada.

- A través de la determinacién de las correcciones de masa del quark secundario a la seccion eficaz
resumada para la produccién de quarks masivos y sin masa a NNLO, estableciendo un esquema de
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numero de sabores variable para tops impulsados. Los resultados de los diagramas burbuja se obtu-
vieron mediante la modificacién del método de integral dispersiva usual en el que la burbuja masiva
se expresa como una integral sobre un propagador de gluén masivo. Usamos la representacion de
Mellin-Barnes para reemplazar este propagador por el correspondiente a un gluon sin masa con el
exponente modificado. Esta innovadora estrategia, la cual se puede aplicar a cantidades finitas en
el infrarrojo, simplifica significativamente los célculos ya que carece de una escala adicional.
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Appendix A

Appendix Feynman rules

In this Appendix we collect all the Feynman rules necessary of carrying out all EFTs computations
presented in this thesis. The momentum g is always outgoing.
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A.2 bHQET
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For the m-collinear Wilson lines one just has to replace
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Appendix B

Appendix Event-Shape schemes

B.1 Sector Decomposition

The direct & expansion of J;%' becomes much simpler if one does not have to deal with distributions,
therefore we consider the cumulative jet function, and to that end we define

Sa(se 1) = / s 28 (5, 11) (B.1)

Switching variables to s = ys. in Eq. (B.1) and x — 1 — z in Eq. (2.57) we get
Crag e\ m?
S (50, 1) = ——F%s_(Ze) p B.2
(50 18) = 2wr<1—s<u) () (B2)

— —1 £
d d .
/ vy / T —a) +tx l—x +tx

We apply sector decomposition by splitting the z integration in two segments: (0,y) and (y,1). In the
former we switch variables to x = zy and in the latter we reverse the order of integration, which is
followed by the change of variables y = z x, to find

1 1 2—e . ,—1—¢ 1 1 .
- d
Is(t) :/ dy y—1—28/ dz ( Zy) z +/ da :L'_l_28(1 _ 1.)2—5/ _dzzt
0 0 (1—zy)+tz 0 =2zt
= Ig(t) + I5(1). 3

Since the original singularities at x = 0,1 have been properly separated, mapping the former at y =0
and the latter at = 0, one can expand in ¢ before integrating. Let us solve I. 5 first, which has a single
pole only, such that we can use Eq. (2.59) on 27172¢ to obtain

1! 2t —tx —
Ig(t):—?g/ dz [1—elog(z) /dx/ dz fotr etz (B.4)

0 Z+t (t+z2)(xzz—t—2)
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For I§ one must start applying Eq. (2.59) to y~ in order to regulate the pole of the z-integral.
Taking into account the plus-function prescription and that the upper integration limit is 1 we get

1 14 t2(2 -
O—— / / / 122 —yz) —uz (B.5)
2 (1+1t2)(1 +tz —yz)
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where in the second term we have already set ¢ = 0. Using again Eq. (2.59) to expand z in € and

solving the resulting integrals we arrive at

1 1 1
IS(t) = — + —log(1 +t) + = Liy(—t) — Lip(1 — ¢ L'( ) B.6
5(t) =55 + 5 lo8(1+1) + 5 Lia(—t) — Lia(1 — 1) + Lia ( 1 (B.6)
t
—t_llog(t)+tlog(1+t)+log(1+t)—1.
Thus, summing I§ and Ig we obtain:
1 1 1 1 w2
I(t) = — + — log(t L'( )7127571771%7 log(t) + ~— . B.
$(0) = 5y + 5o 08(0) + Lin( 17 ) + S log®(t — 1) — [ log?(t) — = log(t) + 1. (B)

To obtain this expression, which facilitates taking the ¢ — oo limit (that corresponds to s. — 0), we
have applied the following identities of dilogarithms:

. . w2 . /1 1. 5 2
Liy(z) = —Lia(1 — 2z) — log(1 — 2) log(z) + 5 Lis(z) = —ng(f) —3 log*(—z) — 5 (B.8)
z
where the second line holds for z ¢ (0,1) only. Now we insert Eq. (B.7) into (B.2) and expanding again
in € becomes trivial. To compute J are?gl we have to take the derivative of ¥, (s.) with respect to s. taking
into account that it has support only for s, > 0:

T, ) = < [00) Bals. )] (B.9)

Using the relations in Eq. (2.83) ! and the identity given in Eq. (2.70) one arrives at the result quoted
in Eq. (2.66).

B.2 Alternative Analytic Expression of I”, for s > m?

In this appendix we present an alternative form of Ifd in which all terms are manifestly real for y > 1
and where no numerical derivatives are involved. In a first step we express o F1(1,14+¢,2+ @,1 —y) in
Eq. (2.115) in terms of 9 F1(1,14+¢,1 — @ + ¢, y) through Eq. (2.113), and then use that for y > 1 one
has 2

on(y— 1)1 Jeot(me) +i]y“ T (1 —@ +¢)
1 —o)l(e+1)

1
2PH<1,1 + w 4’8,1 6,).
)

JF(Ll+el—@+ey) =— (B.12)

Gl
ye

1To use these relations the functions multiplying 6(z) should be either log™(z) or regular at x = 0. Therefore it is
convenient to write log(t — 1) as log(¢) — log(1 — 1/t).

2To obtain this relation one simply has to divide the integration path in Eq. (2.60) into the segments (0,1/y) and
(1/y,1). Using

I—2yxie)] *=001-2y)(1—yz)"*+0(zy —1)(yz — 1)~ *cos(ar) £ isin(ar)], (B.10)

remapping each segment back to (0,1) by a change of variables (z — z/y in the first segment and z — [1 — (1 — 1/y)z] in
the second), and carrying out the integrals one finds the following identity:
I'(1—a)yr(c)
1-—a+bI(c—-0

:tiﬂ'al“ 1—a)l b—c(,, _ 1 —a—b+c —1
e (1-a)l(0)y*°(y—1) 2F1(1_67C_b71_a_b+c7y7)_
TG —a—bto) y

1
2F1(a,b,c,yii<€):F )2F1(b,1+b—c,1—a+b, ;) (B.11)
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The only involved computation left is finding an analytic expression for the derivative of the hypergeo-
metric function 2 F1(1,1+ @ —¢,1 — €, 1/y) with respect to & in the ¢ — 0 limit. The complication here
arises because there are poles in 1/e such that one also needs the second derivative, which as we shall
see implies the appearance of the 4F3 function. A practical way of doing the derivative is by Taylor
expanding. The first derivative reads

yo(l—y) '

w;gFg(l—@,1—5,1—5,2—5,2—5,3/). (B.13)

d -
d*€2F1(1,1+W—€,1—6,Z/)=

For the second one needs the first derivative of the 3F5 function:

d
—s3Fh(1-0,1—¢,1-¢,2—¢,2—¢,y) = (B.14)

de
2y(1 —@)(1 —¢)

g BR-e2-e2-c2-c3 633 -ey).

With these results one can obtain the Taylor expansion of o F;(1,1 4+ & —¢&,1 — ¢,1/y), which allows to
compute the first derivative of o Fy (1,1 +¢,1 — @ +€,y)

d

LR 14el—a ‘ B.15
d€2 1( ) +5a w+€ay) 0 ( )
a)(y_ 1)—&)—1yd)—1

1 1
= 1204F5(1,1,1,1 —©0,2,2,2,— | —123F( 1,1,1 —©,2,2, —
12 Y Y

o[~ og(o)) i~ H o + logty) ~ 660 ~2) +57°] |

Using this result we arrive at the alternative expression for Irﬁl

L @[04 5)y+ @30 + 7) — 4y?]

(@) = Nl1-o)(1+a0)(1-—y)? {

30y +30% — by + 4o +y—7
I2-o)(y—1)?

1
Hl_g, — m — 10g(y):| 2F1(1, 1,(:] + 27 1-— y)

+ (g — 1) 3%y gy — 2@+ 5)y — (30 + 7)]

1 1
X {@24F3(1,171,1 —&),2,272,) —&)3F2<1,1,1 —@,272,) (B.16)
Yy Y
wy >
o 5r2 —6(Hy s — —1 — V(1 -3
< 548 s = 0o - 25~ loxtw)) — 001~

1-w

+ycos(mo)I'(1 —0)I(1 + @) F1(1,1,2+@,1 — y)[Hla, _ log(y)]}.
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Appendix C

Appendix Massive secondary quark
corrections to bHQET cross-section

C.1 Non-distributional term

From the result obtained for the contribution of a secondary massive quark bubble to the bHQET jet
function applying the dispersive integral method —that is, an integral that cannot be solved analyt-
ically — we were able to get neither the Fourier transform of the non-distributional part of the jet
function, nor a closed from for its RG-evolved version. Therefore, the running of the cross section needs
to be done, for these non-distributional terms, in momentum space. This involves another integration,
as in Chapter 2, which might again be numerical in the worst cases.! In addition, if we convolve the
result with a Breit-Wigner distribution to account for the finite width of the primary quark (in the case
of top production) we have to confront the numerical evaluation of a triple integral.

To improve the efficiency of the numerical implementations necessary to build up a computer code
for the differential cross-section, we will provide in this Appendix a closed form and series expansions in
two different (but overlapping) regimes for f,q. Since the properties and expansions of the elliptic inte-
grals are well known and there are internal routines in different packages and programming languages
for their evaluation (such as Mathematica [63] and the Scipy module [61] in Python [58]), the previous
task amounts to get a suitable form for I[s, m].

Closed expression

Starting from its integral expressions as provided in the last line of Eq. (4.59) we carry out three
consecutive changes of variables:

m? — b= /m?—4m?, (C.1)

b
V324 —am?’
r — z=+1-22,

10ne could try to get an analytical expression for the convolution of the kernel with the one loop massive gluon result
and then take the dispersive integral numerically.

b —z=
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to get to the following expression

1—a? ld zV1 — 22 g(l—i—az) zvl—z2 1 <1+az>

g =— 1
3, m] 35[ 2 )y Z(l_a222)5/20 — q222)%/? 1—az

where we defined a = /1 — 16m?2/52. Then we apply integration by parts once to the first term and
twice to the second in order to get always the derivative of the logarithms involved in the resulting
integrals, which leads to

. (C2)

1|16 — 2a? 16—a 1+az
I[3,m —— F(a?) - / dz ( ) ., (C3
[3,m] = 33[ 9 C \/1—z2\/1—a222 (©3)
=f(a)
with a remaining logarithmic type integral. Taking its derivative with respect to a
1 2az + log (}""”) %
(@)= [ dz—=2 =/ = K(a?), C.4
o= [ s ~ o K@) (C.4)
we can write the auxiliary function f(a) as
@ 2a _
fla) = / di = K(a®) + f(ao) . (C.5)
ag

Since the integral in the previous form for f(a) is divergent in the massless (a — 1) limit, we subtract
the corresponding contribution at this boundary, that can be inferred from the result in Ref. [42],% to
express the function as

f(a) :/1 di - ;aQ [21{ (a2) + log (1 ;65‘2)} +log? <14_“2) - %2 (C.6)

Now we can replace the elliptic integral by its series expansion
% (L) 12 [ — O (41 2y 2 ((1) )2
2\ _ [(z)k] [1/J (k+1)—4 ( + 2)} 2\k log(1 —a®) ((Q)k) 2\k
K (a®) =) F (1—a?)k — 5 > k)2 (1—a®)*, (C.7)
k=0 k=0
valid in the whole range we need to consider,? solve the integral, and cast the infinite sum of the resulting
terms into hypergeometric functions. This procedure leads to the following closed expression, which can
be used in the entire regime, for the non-distributional part*

. 61 8m? 16m? 8 14m 16m
2m? 3 3 16m? 2m? m? 3 3 16m?
— Ful1,1,1,=,-;2,2,2,2; — |2+1 — F3(1,1,=-,-:2,2,2; ——
32 5 4(7 ; 7252 52 )+ 32 |:+Og(§2):|4 3(7 72327 ) Ly 4y 32 >

4m? d 33 16m? 1, 5 (m? 2
— | 4F5 (1 2,2,2 -1 - —.
" 82 de [4 3(7 2’ 2+6 e §2 >L_0+4 o <'§2) 6

Even though having a closed expression seems advantageous, the evaluation of the high order hyperge-
ometric functions involved is computationally time consuming, in particular when their last arguments
approach the value of 1. Therefore, we will consider now the expansions around this limit and also
around the massless one.

2We carried out a numerical cross-check of the massless limit in our expression to be sure that we can trust this result.

3Notice that the Heaviside theta forces § > 4m = 0<a < 1.

4The value of the hypergeometric derivative can be obtained in a numerical way analogously to Eq. (2.114), through
finite differences.
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Expansion around m/$ — 0

This series expansion can be directly obtained from the outcome of introducing Eq. (C.7) into Eq. (C.6)
and the corresponding series for the elliptic integrals already given for K in Eq. (C.7), whereas for the
expansion of the FE elliptic function we have

E (aQ) =1- 1(1 —a?)log(1 — a?) i 7%)" (%)k (1—a?)* (C.9)
4 = kl(k+1)! '

1 s D () [ — 200+ ) + 200 (k4 D)
-1 Kk +1)!

k=0

(1—a?)".

On the other hand, one could also use the elliptic and hypergeometric expansions in Eq. (C.8). The
series expansion for the non-distributional coefficient in this limit is

((3),)°

1/61 x2 8 m\ 1. ,/m =
nd =7 loy g tglos(7) t3log™ (+ e C.10
Jua §l54 18+90g(§)+30g (§)+§3Q(n!)2(n+2)3x (C.10)

X (4:;21 +2(1+2n) [wm)(n +1) =@ (n+1/2) — log (i”)D (1652)”*2] .

Expansion around s — 4m

In this regime we were only able to get a double series and cast it as a Kampé de Fériet type [18] and,
for some cases, as Appell generalized hypergeometric series. The expansion for the elliptic integrals is

E (a?) :Ii%a%; K (a?) :Iima%. (C.11)

2 & (k)2 2 &= (k])?

And for f(a) we can consider its definition in Eq. (C.3) or the form in Eq. (C.5). The former procedure

2n—1
consists in the insertion of the inverse hyperbolic tangent series expression tanh™*(az) = 3.°° (az)

n=1 2n—1
into
! az
a) =2 dz tanh ™' (az) , C.12
f(a) S e (az) (C.12)
leading to a sum of hypergeometric functions which can be reexpanded and identify as Kampé de Fériet
(3+k) T(z+n+k) , kT o921 351,353
TR = SRy 332 2 | de?] . (Ca3
ZZ 1—|—n—|—/<; (2n—1) k! (a”) 5 @ F110 2; 3, — | a%a ( )

n=1 k=0

On the other hand, if we do not reexpand the hypergeometric functions from the direct integration but
apply the identity

oF1(a,b;c2) = (1 —2) %9y (a, c—b;c Zl> , (C.14)
P

to then write those as a power series, the result, valid only for a? < 1/2, is an Appell function

Do+ DT ER+LD 7 a® \* pn
fla) = 2\F\/7a2;2 T(k+n+1)k! <a21) G (C.15)

2
F3 (1/2 1/2;1/2,1;2; 1,a2>.
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If we begin instead from Eq. (C.5), we can replace the denominator by the geometric series or use
Eq. (C.11) to get®

oo 00 2
1 1) Nk4ntl _ T 2121 1;
52;—1—1—71—&—1@‘ (k)2 (a”) =3¢ Fito 9

2

1 |a2,a2} ) (C.16)

which again can be transformed into an Appell series for a* < 1/2 following the same procedure as

before

AT+ TA+n) [ o \",
fle) = 1—a2 Z::kz 2+)n+k)k! <a2_1) a** (C.17)
(1 1/2;1,1/2;2; 21,a2).

All in all, the expansions given by the different approaches for f,q are:

e e (4] 31 1
fnd_&éz{?ﬁ () (1+n+2n_1—48> (C.18)

n=0
Ll iF(%+k)F(%+n+k) Lo tem\EL L 1em?\”
2n+1 & I'(2+n+k)k! 52 52 ’

from the first one and

1-16m = (1) )7/ 31 1
Jna =33 ;_20{36 (n!)2 <1—|—n+2n—1 _48) (C.19)
o F k l 2 2 k 2 n
N 1 3 (k+3) L L ’
214+ n+k) = (k12 §2 §2

from the latter.

5The constant term satisfies f(0) = 0.
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