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Abstract

This thesis contains two main results related to low-frequency gravitational waves. The first

is a prescription for causality within low energy effective field theories (EFTs), specialised to

gravitational theories. An EFT is a framework for parametrising macroscopic physics while

remaining agnostic about the microscopic degrees of freedom. It turns out that the most generic

naïvely local and covariant EFT action is not necessarily consistent with a physical UV theory,

and thus imposing the causal propagation of waves can place non-trivial constraints on the EFT.

Our criteria for “infrared causality” is that scattered waves do not experience a resolvable time

advance relative to the geometry of the background. We apply this condition to the Gauss–Bonnet

operator on black hole and pp-wave spacetimes and show that, within the EFT’s regime of

validity, causality is respected.

The second result relates to gravitational wave backgrounds (GWBs) within the standard

cosmological model. We show that scalar perturbations to the background metric ruin any phase

coherence in the GWB which may have been present at emission. The main consequence is that

phase-coherent mapping methods have no foreseeable application to GWBs.
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Chapter 1

Introduction

In this thesis we explore the information contained in the phase (specifically, the phase shift) of

gravitational waves (GWs). GWs are perturbations to the metric of spacetime, postulated by

Einstein in 1916 on formulating his theory of General Relativity (GR) [4], and directly detected

by LIGO a century later [5]. The dynamics of GWs is determined by (1) the fundamental theory

used to describe gravity and (2) the background spacetime on which they propagate. In chapters

2 – 4, we will show how changes to the phase of a GW in a scattering thought experiment are

related to the causal properties of the underlying theory, while in chapter 5 we will see how the

cosmological spacetime ruins the phase coherence of GWs with the same primordial origin.

1.1 Causality in the effective field theory of gravity

Despite the many successes of GR, big questions remain which it cannot answer, including

the origin of the universe, the existence of black hole singularities and the nature of “dark”

matter/energy which only interact gravitationally. The inability of GR to address these issues

suggests that our understanding of gravity is incomplete. There are numerous proposals for

fundamental theories of physics — such as string theory, loop quantum gravity or causal set

theory — which seek to resolve such problems by postulating a specific microscopic origin for the

physics at play. On large enough scales, however, any new theory of gravity must approximate

GR, which is itself an experimentally watertight description of (say) solar system physics. The

large-scale or low-energy effective description of a high-energy theory is obtained in practice by

the process of “integrating out” the microscopic degrees of freedom. Their presence is then felt

only through effective couplings between the macroscopic degrees of freedom which remain. In the

9



case of gravity, the macroscopic degrees of freedom come in the form of a metric tensor, and the

effective interactions manifest as higher-order curvature operators. These quantum corrections

to the classical field theory of GR are generically parametrised by the so-called effective field

theory (EFT) of gravity [6–9].

The EFT of gravity is a framework for studying quantum gravity without committing to

any one particular fundamental high-energy (UV) theory. The difficulty with quantising GR

directly is that it is non-renormalisable — indeed, the list of EFT operators coincides with

the infinite list of counter-terms which would appear when attempting to renormalise GR. The

Wilson coefficients in the EFT expansion, however, are kept arbitrary to remain agnostic about

their microscopic origins. The infinite number of operators may seem like a disaster for the

predictability of the EFT, but at sufficiently low energies only the first few terms are ever relevant.

The definition of “sufficiently low energies” is context dependent, and will be returned to many

times over the course of this thesis.

This effective description of quantum gravity is not dissimilar to the effective description

of Beyond Standard Model (BSM) particle physics. The Standard Model EFT (SMEFT)

parametrises the interactions of unknown massive particles — heavy enough to be beyond the

reach of the Large Hadron Collider (LHC) — by the set of all non-renormalisable operators

built from the known SM fields [10–12]. The strength of these higher-dimension couplings is

suppressed by at least the mass of the lightest unknown particle, in much the same way that

the strength of the Weak Force is tempered by the heavy mass of the W -bosons. This means

that BSM interactions, as parametrised by the SMEFT, are necessarily sub-dominant to the

usual SM interactions at LHC energies. At these “low” energies, the SMEFT is a well-controlled

series expansion which can be treated order-by-order, starting with dimension-6 operators, then

dimension-8, and so on. In this way, the SMEFT captures all possible BSM interactions in

one fell swoop at the price of arbitrary operator coefficients (couplings), to be fixed only by

experiment (or a specific choice of BSM theory).

In the same vein, the EFT of gravity captures all possible theories of quantum gravity

in its arbitrary parameters. Reasonable theories of quantum gravity could be expected to

share certain physical properties: that evolution is unitary, causal, local and respects Lorentz

symmetry on the very small scales. Perhaps surprisingly, it turns out that these universal

principles are not necessarily manifest in the most generic EFT described by a superficially

local, covariant Lagrangian. It was shown in [13] that seemingly sensible EFTs can be non-
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local or acausal in certain regions of their parameter space (for the “wrong sign” choice of

operators). Within that region of parameters, the EFT cannot correspond to a consistent UV

theory. By weeding out the unphysical EFTs, an apparently infinite parameter space could

potentially be reduced significantly [14,15]. Understanding the space of possible physical EFTs

has implications for the experimental search for deviations from GR (or the SM). On the one

hand, this theoretical knowledge of the physical parameter space can be used as input for its

prior probability distribution, thus impacting the reported outcome of the data analysis. On

the other hand, a firm experimental measurement of an EFT coefficient in the “bad” parameter

space would indicate a flaw in our assumptions about the UV physics.

One approach in this direction is known as the positivity bound programme [15–29]. The idea

is to use analyticity of the UV S-matrix, in particular the positivity of certain amplitudes, to

constrain the parameters in the infrared (IR). This approach has already helped constrain many

of the numerous SMEFT couplings, e.g. [30]. A related, but distinct, approach is to directly

require the causal propagation of fluctuations in the IR theory [1, 2, 31–39]. This is the approach

we take in this thesis. Defining precisely what we mean by causality within a gravitational EFT

will occupy much of our time.

Intuitively, causality is the requirement that cause comes definitively before effect. In

special relativity, causality is the requirement that information cannot be transmitted outside

the lightcone, or, said otherwise, that there is no superluminal signalling. Superluminal signal

propagation could reverse the temporal order of cause and effect for observers in different reference

frames, thus violating our intuitive notion of causality. There has been some historical confusion,

however, over what exactly constitutes a signal, and its speed. While one can associate both a

phase velocity ω/k and a group velocity ∂ω(k)/∂k to a wave of frequency ω and wavenumber

k, neither necessarily indicate when the wavepacket will “arrive”. Indeed, superluminal group

velocities have been experimentally observed, and do not in any way violate causality [40]. The

resolution according to [41,42] is that a signal, as opposed to any old wave, has “an element of

surprise” represented by a wave front before which the medium is completely at rest. Only the

arrival of the wave front indicates the arrival of the signal and so it is this speed which feeds into

the definition of causality. The existence of a wave front requires a discontinuity, or an infinite

frequency component to the signal, thus the front velocity corresponds to the phase velocity

in the infinite frequency limit. In this sense, causality is a concept intrinsically tied to the UV

theory, of which we are presently ignorant.
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The EFT, being valid only below a certain energy, does not provide access to the high-energy

limit required to define a front velocity. Moreover, in gravitational theories, speed itself is a local

quantity and subject to field redefinitions. A locally superluminal low-energy sound speed at

some point, in some coordinates, may not be an issue if its effects are not observable. A truer

indication of causality violation at low energies is the creation of a closed time-like curve, which

requires prolonged superluminality over an extended region of spacetime. For this reason, instead

of a speed, we use the scattering time delay as our diagnostic for causality. The scattering time

delay is defined on asymptotically flat spacetimes directly from the phase shift of a wave which

has traversed the spacetime. The phase shift, in turn, is simply the eigenvalue of the S-matrix

for the scattering process1, and is therefore invariant under field redefinitions. The time delay

thus serves as a reliable low-energy indicator of signal arrival.

The question now is: how is “(super)luminality” measured by the time delay? To answer this

question we make two assumptions about UV physics. The first is that, in a consistent, causal

UV theory, the UV modes propagate luminally. Even so, it’s possible for the IR modes described

by the EFT to diverge from luminality. As an example, consider Euler–Heisenberg theory,

the leading low-energy EFT of quantum electrodynamics (QED) with the electron integrated

out to one-loop. In 1980 Drummond and Hathrell demonstrated that, within this EFT, the

photon may propagate slightly outside the lightcone of the background metric on certain curved

spacetimes [43]. Of course, the photon of QED propagates luminally and this apparent change

to its speed is only an artefact of the EFT truncation at finite order. We will similarly see that

GWs may deviate from luminality in the EFT of gravity.

The second assumption is that gravity experienced by the UV modes is described by GR, the

“zeroth” order in the EFT of gravity, just as electromagnetism experienced by UV photons is

described by Maxwell’s Lagrangian. In other words, the metric experienced by UV modes is the

metric of GR, and their time delay is the time delay of GR. Together these two assumptions

set a reference scale: luminality means a time delay equal to the time delay of GR. Violating

causality is equivalent to a time delay smaller than the time delay of GR.

Does Euler–Heisenberg theory violate causality, even though QED patently doesn’t? The

answer is, of course, no. The tension between apparent superluminality of low-energy modes

and causality of QED was examined in a series of papers by Hollowood and Shore [44–51], who

showed precisely how luminality is restored in the high-frequency limit (the front velocity) when
1The asymptotic states for a scattering process can only be well-defined if the spacetime is asymptotically flat.
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the microscopic degrees of freedom (the electron in this case) are brought back to life. More to

the point, the issue was resolved entirely within the context of the EFT in [36,52] by showing

that the apparent time advance was unresolvable within the regime of validity of the EFT. The

premise we adopt in this work is that a consistent EFT, which corresponds to a causal UV theory,

will propagate low-energy modes which are either strictly slower, or unresolvably faster, than the

UV modes.

1.2 Phase decoherence of the gravitational wave background

The primordial stochastic gravitational wave background (SGWB) is a conjectured all-sky GW

signal originating in the early universe, very much analogous to the Cosmic Microwave Background

(CMB) of photons. Such a SGWB could have been generated by any number of cataclysmic

events, such as a first order electroweak phase transition, which might have occurred during the

inflationary epoch [53]. Recently, the North American Nanohertz Observatory for Gravitational

Waves (NANOGrav) announced evidence for the detection of such a background in their 15

year data set, and placed constraints on possible origins [54, 55]. The Laser Interferometer

Space Antenna (LISA), which is planned for launch in the 2030s, may also reach the sensitivity

required for the detection of a background at much higher frequencies [56]. Such observations

offer invaluable insight into early universe cosmology and particle physics.

The SGWB generated by an inflationary mechanism is likely to be phase-coherent at source.

In other words, there would be non-trivial angular correlations in the phase of waves from

different points in the sky, just like the angular correlations in the temperature anisotropy of the

CMB. Since GW observatories such as LIGO and LISA can measure the phase of the passing

signal, there is the potential to map the phase of any background detected. Unfortunately, we

argue in [3] that a SGWB would lose all phase coherence between emission and detection, and

there is thus no foreseeable application for phase-coherent mapping of the SGWB. When it comes

to background signals, the most promising avenue is incoherent mapping methods.

This phase decoherence is caused by scalar perturbations in the cosmological metric. By

repeated scattering processes, they induce a large and effectively random phase shift along each

line-of-sight in the sky. The result is that all angular correlations are wiped out for frequencies

larger than 10−12 Hz with the source at any reasonable distance from Earth.
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GWs are one of the most promising avenues for extending our understanding beyond GR and

the standard cosmological model. With so many experiments coming on-line now or in the near

future, it is important to understand where the relevant information could be hiding in the data.

In the first part of this thesis, we argue from a theoretical standpoint that important constraints

can emerge from demanding the causality of effective operators. These constraints can be used

to formulate the prior probability distribution for the statistical analysis of experimental data.

In the second part of this thesis, we argue that any information there once was in the phase of

the SGWB will be unfortunately lost to the cosmos by the time we measure it.

1.3 Thesis overview

The next three chapters are based on the work in [1] and [2]. In chapter 2 we introduce EFT

with a scalar field example. We see that integrating out microscopic degrees of freedom can

modify the propagation speed of the surviving degrees of freedom. We explore the implications

for causality and demonstrate how enforcing causality can constrain a-priori arbitrary coefficients

in an EFT. In chapter 3 we introduce the EFT of gravity and two vacuum spacetime solutions:

the Schwarzschild-like black hole and the pp-wave. We calculate the equations of motion for

gravitational waves propagating on these spacetimes within the EFT. We discuss the regime of

validity of a gravitational EFT and show how it manifests as bounds on the parameter space

of the metric and its fluctuations. In chapter 4 we return to the notion of causality and how

it applies to theories of dynamical gravity. We argue in favour of the “infrared” definition of

causality over the “asymptotic” definition, using again a scalar theory as an example. We then

apply this definition, in tandem with the EFT’s regime of validity, to the black hole and pp-wave

spacetimes in turn.

Chapter 5 is based on the work in [3]. In this chapter, we introduce the notion of a SGWB.

We argue that a SGWB generated in the very early universe could be phase-coherent at emission,

but that scalar perturbations in the metric of the universe will completely randomise the phase

by the time of observation. We quantify this effect with an angular power spectrum for the phase

shift and provide an example of the decoherence process.
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1.4 Conventions

The list of conventions below is for ease of reference. There are reminders of the relevant

conventions throughout the text when they first appear.

Throughout this thesis we work in units where ~ = c = 1. For the first three chapters

2 – 4 we work in general D-spacetime dimensions, and for chapter 5 we work specifically in

D = 4-dimensions.

Full spacetime: Metrics on the full spacetime are denoted by the letter g and come in the

mostly-plus signature (−,+, . . . ,+). Components of tensors on the full spacetime are indexed

with letters from the Greek alphabet {α, β, . . . }. The covariant derivative on the full spacetime

is denoted by ∇α and the associated Laplace–Beltrami operator is � = gαβ∇α∇β.

Euclidean subspace: The pp-wave solution of chapters 2 – 4 has a Euclidean subspace of

dimension d = D − 2. For the most part, we will use the usual Cartesian coordinates x on this

subspace. Components of tensors on this subspace are indexed with letters from the middle of

the Latin alphabet {i, j, . . . }, and the metric is simply the Kronecker delta δij . The covariant

derivative is just the usual partial derivative ∂i = ∂/∂xi, the Laplacian is ∇2
d = δij∂i∂j and no

distinction is made between upper and lower indices in these coordinates.

Spherical subspace: Both the black hole and the point-like pp-wave solution will have

spherically symmetric subspaces. Components of tensors on the sphere are indexed with lower-

case letters from the start of the Latin alphabet {a, b, . . . }. The spherical polar coordinates are

written as θa with metric γab. On the n-sphere, the line element is written as dΩ2
n = γabdθadθb.

(For the black hole solution n = D − 2, whereas for the pp-wave n = D − 3 = d − 1.) The

covariant derivative on the sphere is denoted by D̂a and the associated Laplace–Beltrami operator

is ∆̂n = γabD̂aD̂b. In spherical coordinates, the aforementioned Euclidean metric is

δijdxidxj = dr2 + r2dΩ2
n, (1.1)

with r2 = x2.

Other miscellany: The black hole solution has a 2-dimensional orbit space with indices on

this orbit space (where rarely needed) denoted by upper-case letters from the start of the Latin

alphabet {A,B, . . . }. On the pp-wave background, it will be useful to have a unique symbol for

the Laplace–Beltrami operator as it would act on a scalar: �̃. A “prime” always indicates a

derivative with respect to the sole argument of the function it acts on.
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Chapter 2

Toy example: scalar EFT

Consider a universe with two occupants: omnipotent being (OB) and low energy observer (LEO).

OB has perfect knowledge of the particle content of their universe (up to, say, the Planck mass

MPl) and can predict the outcome of any experiment with arbitrary precision. LEO, on the

other hand, sees only one (real) light scalar field φ. As far as LEO is concerned, he is made up

of a condensate of this scalar field, as is his planet, his planet’s star and everything else around

them. LEO builds a particle accelerator and collides the smallest units of the scalar condensate

he can isolate. However, in all the experiments LEO is capable of, the collisions only result in

more scalars. Sometimes two become three, sometimes four, sometimes even more, albeit at a

lower rate. LEO is forced to conclude that the universe is effectively described by the following

schematic action, called the scalar EFT,

SEFT =

∫
dDx

−1

2
(∂φ)2 + ΛD

∑
m≥0,n≥2

cmn

(
∂

Λ

)m( φ

Λ(D−2)/2

)n
 , (2.1)

where Λ is some “cut-off” energy scale just beyond his reach and the {cmn} are called “Wilson

coefficients”.

Unfortunately, just the relevant operators alone are not enough to explain the results of all

LEO’s experiments. This suggests there are some microscopic degrees of freedom at play beyond

just the single scalar LEO observes. Of course, OB knows all about these microscopic degrees

of freedom but she likes to keep that information to herself. Meanwhile, LEO is faced with

the daunting prospect of performing an infinite number of experiments to measure an infinite

number of Wilson coefficients {cmn}. By observing symmetries in his universe (e.g. scalar shift

symmetry, Z2-symmetry, etc.) LEO can set to zero any coefficients of operators which don’t
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comply with those symmetries. Still, it may seem like such a Wilsonian effective action lacks any

predictive power. However, LEO’s saving grace is that as long as he remains at low energies, the

higher-order terms in the series must be suppressed by the ratio of the field energy (powers of φ

and its derivatives) to the cut-off scale. That is, only the first few terms in this series are usually

important.

On the other hand, OB could simply calculate the value of each cmn to arbitrary precision

given her knowledge of the UV theory which describes the microscopic degrees of freedom, and

which is inaccessible to LEO. For example, consider that up to the energy scale Λ∗ � Λ, there is

only one additional (real) scalar field H of mass M (where Λ � M � Λ∗) with the following

coupling1 to the massless φ,

S∗ =

∫
dDx

[
−1

2
(∂φ)2 − 1

2
(∂H)2 − 1

2
M2H2 +

λ

Λ
(D−2)/2
∗

H (∂φ)2
]
. (2.2)

To understand the world as LEO sees it, and make predictions for the outcome of his experiments,

OB would integrate out the heavy field H at tree-level to obtain just an action for φ,

S∗

∫
DH
−−−→

∫
dDx

[
−1

2
(∂φ)2 +

1

2

λ2

ΛD−2
∗

(∂φ)2
1

M2 −�
(∂φ)2

]
. (2.3)

To leading order in low energies, that is k2 ∼ � � M2, this action reduces to the so-called

Goldstone scalar (GS) action,

SGS =

∫
dDx

[
−1

2
(∂φ)2 +

cGS
ΛD

(∂φ)4 + . . .

]
, (2.4)

where

cGS =
λ2

2
, (2.5a)

ΛD =M2ΛD−2
∗ , (2.5b)

as illustrated in the schematic Feynman diagrams of figure 2.1 and discussed, for example,

in [57]. As well as the Goldstone term, (2.3) contains additional irrelevant operators which we

are neglecting because they are suppressed by powers of k2/M2 compared to the Goldstone
1The action S∗ in (2.2) is really itself still an effective action, valid up until the new, higher cut-off scale Λ∗. It

represents a “partial” UV-completion, introducing some new microscopic degree of freedom, but not enough to

make the action fully renormalisable.
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1

M2−�

λ

Λ
D−2
2

∗

λ

Λ
D−2
2

∗

��M2

λ2

M2ΛD−2
∗

Figure 2.1: At energies much below the mass of the H-field, the tree-level interaction illustrated

on the left is reduced to the effective contact interaction illustrated on the right. The dashed lines

are instances of the light scalar field φ and the solid internal line in the left diagram represents

the heavy field H.

operator. This is the type of mechanism which gives rise, in concrete terms, to the suppression

of higher-order operators in LEO’s effective action (2.1).

This example should make apparent that the values of the Wilson coefficients, which LEO tries

to measure in the low-energy (or infrared/IR) regime, depend on high-energy (or ultraviolet/UV)

details, which only OB knows. In this case, the coefficient of the (∂φ)4-term is related to the

coupling of φ to the heavy H. In particular, as long as that coupling is real-valued λ ∈ R, OB’s

calculation shows that the corresponding Wilson coefficient is positive, cGS > 0.

From LEO’s perspective, the action in (2.2) is just one example of a possible UV-completion

of the low-energy Goldstone action (2.4). Generically, UV theories with a light scalar field in

their spectrum will turn up a Goldstone-term in their low-energy effective description. While

OB knows that the Wilson coefficient of the Goldstone operator cGS takes the value (2.5a) in

their universe, LEO in his ignorance must treat cGS as arbitrary. However, it is possible for LEO

to gain some information about the Wilson coefficients if he makes some assumptions about

physics in the UV. By applying principles of causality, unitarity and S-matrix analyticity, LEO

could, for example, deduce that there are no consistent UV-theories which would generate an

IR action with cGS < 0, as shown in [13]. That is, all possible physical theories must have

cGS > 0. The specific example of OB’s universe discussed above is just one realisation of this

general property of UV-theories. There is a whole host of so-called “positivity bounds” (for

example, [16–29], amongst many others) which use physical assumptions about an UV S-matrix

to bound coefficients in an IR Wilsonian action.

In this thesis, we use the principle of causality to try constrain the a-priori arbitrary coefficients

of an EFT. The presence of effective operators in an action can modify the speed of wave

propagation and, depending on the magnitude of the modification, lead to the possibility of
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faster-than-light signalling. While diagnosing acausality is a relatively straightforward procedure

for non-gravitational theories, there is additional nuance in theories with dynamical gravity where

geometry plays a significant role in a wave’s propagation. This will be discussed extensively in

chapter 4. In this chapter, we use two scalar field examples to establish the basic machinery

necessary to investigate causality. For the first example, we will reproduce the result cGS > 0

for the Goldstone scalar. For the second example, we will consider a different type of effective

operator known as the quartic Galileon (QG) and show that its coefficient must be negative

cQG < 0 to preserve causality. Said otherwise, for this chapter, we share LEO’s perspective that

the universe is described by a scalar field action like (2.1) and try to gain access to some of OB’s

knowledge about the Wilson coefficients contained therein.

2.1 The Goldstone scalar

Consider the Goldstone action (2.4) on Minkowski spacetime. This action represents the leading-

order EFT for a field with shift symmetry φ→ φ+constant and Z2-symmetry φ→ −φ. Causality

will be determined by the propagation of wave perturbations in this theory, so first we determine

their equation of motion. In vacuum, the field equation for the Goldstone scalar is

�φ− 4cGS
ΛD

(
�φ∇αφ∇αφ+ 2∇α∇βφ∇αφ∇βφ

)
= 0, (2.6)

where∇α is the covariant derivative and � = ∇α∇α is the d’Alembertian on Minkowski spacetime.

We will assume that there is a background field sourced by a static point source at the origin.

This choice is meant to emulate the spherical symmetry of the black hole background we will

consider for gravitational theories in chapters 3 and 4. In spherical coordinates, we may solve

(2.6) for the background field φ̄ = φ̄(r) perturbatively to O(Λ−D),

φ̄ =
α

rD−3
+

4(D − 3)3

3D − 7

cGS
ΛD

α3

r3D−7
, (2.7)

where r2 = x2 is the radial coordinate and α is a constant. Recall that we are considering the

Goldstone action (2.4) as an effective theory, meaning it represents only the leading-order terms

in an infinite series expansion (of e.g. the right hand side of (2.3) expanded in powers of k2/M2).

As such, terms of higher order than Λ−D are a) suppressed compared to those written and b)

would contribute at the same order as terms we have implicitly neglected in the action (2.4). In
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this EFT picture, we will only ever work up to O(Λ−D) as a matter of consistency. In fact, the

requirement that the Goldstone term truly dominates in this expansion will define the “EFT

regime of validity” in section 2.1.3.

For now, consider the dynamics of scalar fluctuations on this background φ = φ̄+δφ. Denoting

by φ̄0 = α/rD−3 the leading-order behaviour of the background field, the equation of motion for

the fluctuations up to O(Λ−D) is

�δφ− 8cGS
ΛD

(
∇α∇βδφ∇αφ̄0∇βφ̄0 + 2∇α∇βφ̄0∇αφ̄0∇βδφ

)
= 0, (2.8)

where we have already made use of the fact that �φ ≈ 0 to remove such terms perturbatively.

We make a wave ansatz for δφ and decompose it in a basis of spherical harmonics

δφ(t, r,ΩD−2) = e−iωt
∞∑
l=0

δφl(r)Yl(ΩD−2) (2.9)

where ω is its frequency and Yl are scalar spherical harmonics, eigenfunctions of the Laplace–

Beltrami operator ∆̂D−2 on the (D − 2)-sphere with discrete eigenvalues,

(
∆̂D−2 + κ2S

)
Yl = 0, (2.10a)

κ2S = l(l +D − 3), l = 0, 1, 2, . . . . (2.10b)

Due to the spherical symmetry of the background, each partial wave δφl will evolve independently.

Defining

χl = r
D−2
2

[
1− 6cGS

ΛD

α2

r2(D−2)

]
δφl (2.11)

we obtain a wave equation of the form

d2χl

dr2
+WGS(r)χl(r) = 0, (2.12)

where

WGS(r) = ω2

(
1 +

8cGS
ΛD

α2

r2(D−2)

)
−
κ2S
r2

(
1 +

8cGS
ΛD

α2

r2(D−2)

)
+

1− (D − 3)2

4

1

r2
+ 12(D − 1)(D − 2)

cGS
ΛD

α2

r2(D−1)

(2.13)

is related to the effective potential for a wave of frequency ω, as in (2.17).
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2.1.1 First look at causality

From the wave equation (2.12) we can identify the angular and radial speeds of the Goldstone

scalar,

v2Ω = 1, (2.14a)

v2r = 1− 8cGS
ΛD

α2

r2(D−2)
. (2.14b)

These represent the low-energy sound speed of scalar perturbations on the background φ̄ in the

EFT with action (2.4). Note that the speed is different from the speed of φ-perturbations in the

partial UV-completion (2.2) of the same theory. It was explained in [57] how the sound speed

may return to luminality (v = 1) in the UV even it differs from luminality (v 6= 1) in the IR.

In truth, expressions like those in (2.14) are simply leading-order in our low-energy expansion.

In this case, the leading-order sound speed just happens to be constant-in-momentum for the

low-energy states described by the EFT. In the context of the two-field partial UV-completion

(2.2), “low-energy” means k � M . For that example, corrections to the dispersion relation

appear at higher-order in k2/M2, and return the speed to luminality as k →M .

We can see from (2.14) that if cGS < 0, the low-energy radial speed is superluminal — that

is, greater than the speed of light or other massless particles. The possibility of faster-than-

light signalling seems to align with our expectation from [13] that cGS < 0 is a bad Wilson

coefficient. In field theory, however, causality is determined by the front velocity (and not phase

nor group velocities) of the propagating waves. The front velocity is the same as the phase

velocity of the high-frequency (beyond the EFT regime of validity) modes. In other words, local

superluminality at low energies by itself does not necessarily indicate a bona fide violation of

causality. Unfortunately, without OB’s access to the UV-theory, LEO does not know how the

sound speed behaves at higher energies. He must use the information available to him at low

energies to diagnose possible acausality in his proposed theory.

From LEO’s perspective, what would be in direct tension with causality (even at low energies)

is the potential for closed time-like curves created by prolonged superluminality over some

trajectory. To account for the cumulative effects of superluminality, we instead calculate the

scattering time delay by integrating over the full trajectory of a scattering wave. The time delay

∆T is the difference in time taken to travel between asymptotic infinities on a background (in

this case, the background Goldstone field φ̄ sourced by a point at the origin) compared to in
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a complete vacuum (that is, α = 0). As we can see from (2.14), the radial speed of Goldstone

fluctuations is luminal in vacuum. For that reason, any ∆T < 0 is called a time advance and

corresponds to superluminality-on-average, or net propagation outside the lightcone, over the

full trajectory.

There is a second reason that bare local superluminality in the IR may not indicate a violation

of causality. Goldstone fluctuations represent quantum particles whose properties (including

speed) can only be resolved within the limitations set by Heisenberg’s uncertainty principle.

In particular, this means the arrival time of a wave bears a fundamental uncertainty which

is inversely proportional to its energy. Working in units where ~ = 1, we say that a time

delay/advance for a wave of frequency ω can only be resolved if

ω|∆T | ≥ 1. (2.15)

If an apparent time advance cannot be resolved under this optical resolution scale, it cannot

truly be considered a violation of causality. In that sense, a small amount of superluminality

is not a problem for causality as long as it cannot lead to observable effects. As we will see in

section 2.1.3, there is a chance for the magnitude of ∆T to be bounded within the EFT’s regime

of validity. More on this later.

With this reasoning in mind, our condition for causality has two parts. First, if the time

delay is strictly positive ∆T > 0, then the wave propagation is causal. Second, if the time delay

is negative ∆T < 0 (i.e. a time advance), but not resolvable in magnitude, then we still say the

wave propagation is causal, or at least that there is no resolvable violation of causality. Summed

up in one statement, causality means

∆T & −ω−1. (2.16)

We will sometimes refer this type of bound as “weak positivity” of the time delay. The implicit

assumption in this definition is that high-energy modes travel luminally (as if in vacuum), and

thereby set the front velocity to luminality. A resolvable time advance corresponds to travelling

faster than this front velocity and, in doing so, violating the field-theory notion of causality.
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2.1.2 Scattering time delay

To calculate the time delay, consider an experiment where a wavepacket of frequency ω and

partial wave number2 l scatters off an effective potential Veff defined via the wave equation (2.12)

with

WGS(r) = ω2 − Veff(r). (2.17)

In vacuum (α = 0), the effective potential is an artefact of the spherical-coordinate choice and

given by

Veff =
ω2b2

r2
− 1

4r2
, (2.18)

where we have defined the classical impact parameter as

b =
1

ω

(
l +

D − 3

2

)
. (2.19)

For large-l, the impact parameter is a good approximation to the distance of closest approach to

the origin3. In the presence of a source, the effective potential for the Goldstone particle is given

by the definition in (2.17) with the expression for WGS in (2.13). The situation is illustrated in

figure 2.2.

Deviation from the vacuum trajectory gives rise to an Eisenbud–Wigner time delay [59–62].

For a fixed partial wave number l, the time delay is related to the scattering phase shift δl as

∆T = 2
∂δl
∂ω

. (2.20)

The phase shift, in turn, can be estimated by matching a Wentzel–Kramers–Brillouin (WKB)

ansatz for the field solution χl(r) onto the known asymptotic form for a field scattered in a

central potential. The full derivation of an expression for the asymptotic phase shift is provided

in appendix A, with just the main steps outlined below.

The wave equation (2.12) has a turning point where WGS(rt) = 0, a point where the kinetic

and potential energy of the system are balanced. Away from this point, the WKB approximation
2Recall l is an integer labelling the eigenspectrum of the Laplace–Beltrami operator on the sphere with

eigenvalues −κ2
S = −l(l +D − 3).

3There is another choice of coordinate, the Langer coordinate r = eρ, which is better suited to analysis of

the scattering problem in a central potential [58]. With the appropriate Langer field redefinition, b would be

exactly the point of closest approach. However, in the eikonal (large-l) limit the difference is immaterial and hence

neglected.
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source

∼ b

Figure 2.2: The scattering of a χ-particle due to an effective potential Veff set up by a source

at the origin. The dashed line represents the particle’s would-be trajectory in vacuum. The

distance of closest approach to the origin is called the impact parameter b. The solid line shows

how the particle deviates from this trajectory in a non-zero potential.

can be used to solve for χl(r). Below the turning point, the potential energy exceeds the kinetic

so this region is classically forbidden and we must choose the decaying branch of the WKB

solution. Using the WKB connection formulae, we then find that the solution above the turning

point is

χl(r > rt) ≈
2χ̄

W
1
4

GS

sin

[∫ r

rt

dr̃
√
WGS(r̃) +

π

4

]
, (2.21)

where χ̄ is a constant amplitude. Now, the known asymptotic form of a wave propagating in a

central potential is

χl
r→∞∼

(
e2iδleiωr + eiπleiπ(D−2)/2e−iωr

)
, (2.22)

where δl is the l-dependent asymptotic phase shift. By matching the WKB solution onto this

asymptotic form, we obtain a formula for the scattering phase shift:

δl(ω) =

∫ ∞

rt

(√
WGS(r)− ω

)
dr − ωrt +

π

2

(
l +

D − 3

2

)
. (2.23)

The various regions and matching points relevant to the WKB solution are illustrated in figure

2.3.

In the large-l eikonal limit, the expression for the phase shift can be simplified further by
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Figure 2.3: WKB solution to (2.12) for χ-field. The region below the turning point (r < rt) is

classically forbidden, so the field must decay exponentially. The behaviour above the turning

point (r > rt) is determined by the WKB connection formula. Lastly, the asymptotic behaviour

(r � rt) is known independently and matching it onto the WKB solution allows us to the

determine the asymptotic phase shift.

splitting the function WGS in two parts:

WGS = ω2

(
1− b2

r2

)
︸ ︷︷ ︸

Wcoord

+
8cGS
ΛD

α2

r2(D−2)
ω2

(
1− b2

r2

)
︸ ︷︷ ︸

WEFT

+O(l0), (2.24)

where terms which have been neglected are lower order in l. The Wcoord-term would be present

even in completely vanilla, flat, vacuum spacetime, without any scalar background as discussed

for the effective potential above. The label “coord” indicates that it arises due to the spherical

coordinate choice. The second part WEFT is due to the effective Goldstone operator in the action

(2.4). By treating WEFT as a perturbation, we show in appendix A.2 that the phase shift reduces

to simply

δl =
1

2ω

∫ ∞

b
dr WEFT(r)√

1− b2/r2

=

√
πΓ
(
D − 5

2

)
Γ(D − 1)

cGSα
2

ΛD

ω

b2D−5
.

(2.25)

Using the relationship between b and l (2.19) to hold l fixed, we find the time delay of a scattering

Goldstone particle on a non-trivial background field φ̄ is

∆TGS =
4
√
πΓ
(
D − 5

2

)
Γ(D − 1)

cGSα
2

ΛDb2D−5
. (2.26)

The sign of ∆TGS is negative if cGS is negative. In other words, for an EFT with cGS < 0, a
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Goldstone particle scattering off a central potential experiences a time advance. This is consistent

with our earlier result that the local sound speed of the Goldstone particle is superluminal if

cGS is negative. However, we cannot yet in good conscience conclude that the Goldstone EFT is

acausal for cGS < 0. It remains to be seen whether this apparent violation of causality is, in fact,

resolvable for states within the EFT.

2.1.3 Regime of validity and resolvability

Recall, the apparent time advance uncovered above can only be resolved if its magnitude exceeds

the optical resolution scale: |∆TGS| > ω−1. A-priori it may seem like the quantity ω|∆TGS| could

be made as large as we like either by increasing the background field strength (as measured by

α), increasing the wave frequency ω or decreasing the impact parameter b. However, any of these

processes would increase the total energy of the system and the EFT action (2.4) is only valid at

sufficiently low energies. At higher and higher energies, more and more terms in the generic series

expansion (2.1) could enter in the description of scalar physics. The parameter regime in which

this expansion is under control, thereby ensuring that the Goldstone term is the single most

important term in the expansion, is called the EFT’s regime of validity. It is incumbent on us to

check whether a resolvable time advance can be generated while remaining within that regime

of validity. Outside of the regime of validity, any supposed violation of causality should not be

taken seriously anyway since the Goldstone EFT would become a bad description of physics.

In practical terms, the regime of validity for a generic scalar EFT is determined by bounding

the magnitude of effective operators in the EFT expansion. Schematically, it means

(
∂

Λ

)m( φ

Λ(D−2)/2

)n

� 1. (2.27)

Here, the φ-field comprises of both the background and its fluctuations: φ = φ̄ + δφ. Taking

the m→∞ limit of this expression returns the condition that ∂ � Λ. In terms of true Lorentz

scalar quantities, we understand such a bound to mean

� · scalar� Λ2 · scalar. (2.28)

There are three possibilities for the stand-in “scalar”. Firstly, when “scalar” is a background

quantity (such as φ̄2), this corresponds to a distance resolution scale inversely proportional to

the EFT cut-off. In spherical coordinates that means r � Λ−1. Applying this to the impact
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parameter, we see why it cannot be made arbitrarily small: b� Λ−1. Secondly, when “scalar” is

a fluctuation δφ, we don’t obtain any new useful bound because �δφ ≈ 0 up to Λ suppressed

corrections. Thirdly, when “scalar” is a mix of background and fluctuation (e.g. the product

φ̄δφ), we obtain a bound of the form k · ∂φ̄� Λ2φ̄ where (kα) = (ω,k) is the momentum vector

for the perturbations. In practice, this represents a bound on the frequency: ω � Λ2b.

Similarly, we should take the n → ∞ limit. However, since our EFT should have shift

symmetry, we can’t take this limit independently of m→∞ because only the shift-symmetric

terms are non-zero. We should first set m = n,

(∂φ)n � ΛnD/2, (2.29)

and then take the limit n→∞. On the background field this amounts to a bound of the form

(∂φ̄)2 � ΛD or, evaluated at r = b, that is α2/b2(D−2) � ΛD.

Lastly, we have contractions of the form

(
k · ∂
Λ2

)m( φ̄

Λ(D−2)/2

)n

� 1. (2.30)

The bounds arising from the m → ∞ and n → ∞ limits of this expression have already been

accounted for above. In between those limits we have e.g.

kαkβ∂α∂βφ̄� Λ(D+6)/2, (2.31)

or

ω2 � Λ(D+6)/2bD−1

α
. (2.32)

It is no use contracting two momentum vectors with each other for the aforementioned reason

that �δφ ≈ 0 up to cut-off-suppressed corrections. So, this concludes our search for the EFT’s

regime of validity.

To summarise, the regime of validity for the Goldstone EFT amounts to the following four

bounds on the parameters of the theory:

b� Λ−1 (2.33a)

ω � Λ2b (2.33b)
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α2

b2(D−2)
� ΛD (2.33c)

ω2 � Λ(D+6)/2bD−1

α
(2.33d)

Arguments similar to above will be repeated again in section 3.3 to establish the regime of validity

of gravitational EFTs on specific spacetime backgrounds. Despite the differences between scalar

theories in Minkowski spacetime and tensor theories on curved spacetimes, the basic story told

by the regime of validity remains always the same. For the EFT to remain a good description of

physics, one cannot use it to probe energies that are too high, distances that are too small or

fields that are too strong.

With the Goldstone’s regime of validity (2.33) in hand, we can now return to the question of

whether the apparent time advance (2.26) for cGS < 0 is resolvable. Ignoring numerical factors,

we have:

ω|∆TGS| ∼ |cGS|
ωα2

ΛDb2D−5
� |cGS|ωb� |cGS|b2Λ2, (2.34)

where we first employed (2.33c) and then (2.33b). There is no limit on the size of the right-

hand-side of this inequality since there is no limit on how big bΛ can be. Therefore, we conclude

that there is nothing stopping us from making a resolvably large time advance in an EFT with

cGS < 0. Finally, we may in good conscience declare that such a theory violates causality. As a

consequence, we know there is no consistent UV-completion for that EFT. We will see in chapter

4 examples of a time advance which cannot be made resolvably large within the EFT’s regime of

validity and thus does not constrain the corresponding Wilson coefficient in a significant way.

To recap: in this section, we started from the low-energy perspective that the shift-symmetric

scalar universe is described by (2.4) with a completely arbitrary Wilson coefficient cGS. We

then calculated the time delay ∆TGS experienced by a particle of this theory in a hypothetical

scattering experiment. We saw that if cGS < 0, the particle would experience a time advance,

i.e. travel superluminally in aggregate. We then determined the shift-symmetric scalar EFT’s

regime of validity (2.33) in order to check whether this time advance could become resolvably

large (in the sense of Heisenberg’s uncertainty principle) for a particle state within the EFT.

Having shown that it could be very large indeed, we conclude that cGS < 0 corresponds to an

acausal theory which cannot have a consistent UV-completion. On the other hand, the EFT

with a positive cGS exhibits no such acausality and can be consistently UV-completed, as for

example in (2.2).
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2.2 The quartic Galileon

For our second example, we will consider the Galileon action [63] which is defined by its invariance

under the (global) non-linearly realised Galilean symmetry

φ→ φ+ c+ bαx
α. (2.35)

In D-spacetime dimensions it is given by [64]

S =

∫
dDx

D+1∑
n=2

cnLn [φ(x)] , (2.36)

where

Ln [φ] = φ εα1α2...αDεβ1β2...βD

n−1∏
i=1

Kαiβi

D∏
j=n

gαjβj
, (2.37)

ε is the Levi–Civita symbol, g is the Minkowski metric and

Kαβ = ∂α∂βφ. (2.38)

The Galileon action has several special properties. Firstly, despite the fact that the action contains

higher-derivative operators, the resulting equations of motion are only second-order. In other

words, this action describes a single real scalar with no additional ghostly degrees of freedom.

In fact, it happens to describe the scalar polarisation contained in deRham–Gabadadze–Tolley

(dRGT) massive gravity [65–67]. Moreover, for a particular choice of coefficients {cn}, the action

(2.36) is dual to a free scalar field theory [64].

Similar to the Goldstone, it is known that Galileons can exhibit superluminality depending

on the sign of their coefficients [68–70]. In this section, we will reproduce the requirement that

the coefficient of the quartic term must be negative to preserve causality, using the same methods

described above for the Goldstone scalar.

Specialising to the quartic Galileon, the action is

SQG =

∫
dDx

[
−1

2
(∂φ)2 +

cQG
ΛD+2

(∂φ)2
(
[K2]− [K]2

)]
, (2.39)

where [K] = Kα
α . The QG action may be considered the leading-order terms in an effective field

theory with both Z2-symmetry and Galilean symmetry (2.35). Since we are considering it as an
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EFT, we have split the coefficient of the QG term into a dimensionless Wilson coefficient cQG

and a cut-off energy scale, again called Λ. The aim of this section is to show that only cQG < 0

could possibly be compatible with a consistent UV theory.

The field equation for φ in vacuum is

[K] +
2cQG
ΛD+2

(
[K]3 + 2[K3]− 3[K][K2]

)
= 0. (2.40)

Once again, we will consider a point source at the origin so that the background field solution

has spherical symmetry. Perturbatively to O(Λ−(D+2)), the background field is

φ̄ =
α

rD−3
− 2(D − 2)(D − 3)4

(3D − 5)

cQG
ΛD+2

α3

r3D−5
, (2.41)

and the equation of motion for the fluctuations is

�δφ+
12cQG
ΛD+2

∇α∇βδφ∇β∇γφ̄0∇γ∇αφ̄0 = 0. (2.42)

As before, we can expand δφ in a basis of spherical harmonics (2.9) and, due to the symmetry of

the background, each partial wave will evolve independently. Defining

χl = r
D−2
2

[
1 + 3(D − 2)(D − 3)3

cQG
ΛD+2

α2

r2(D−1)

]
δφl (2.43)

we obtain the wave equation
d2χl

dr2
+WQG(r)χl(r) = 0, (2.44)

where

WQG(r) = ω2

(
1− 12(D − 2)2(D − 3)2

cQG
ΛD+2

α2

r2(D−1)

)
−
κ2S
r2

(
1− 12(D − 1)(D − 3)3

cQG
ΛD+2

α2

r2(D−1)

)
+

1− (D − 3)2

4

1

r2
− 6(D + 1)(D − 1)(D − 2)(D − 3)3

cQG
ΛD+2

α2

r2D

(2.45)

determines the effective potential.
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2.2.1 Speed and time delay

In this example, both the radial and angular speeds of the QG particles differ from luminality.

They are given by

v2Ω = 1 + 12(D − 3)2
(
D2 + 1

) cQG
ΛD+2

α2

r2(D−1)
, (2.46a)

v2r = 1 + 12(D − 2)2(D − 3)2
cQG
ΛD+2

α2

r2(D−1)
. (2.46b)

Both speeds are superluminal for cQG > 0 and subluminal for cQG < 0 (assuming D ≥ 4). This

seems to be consistent with our expectation from the literature that the quartic Galileon term is

acausal for cQG > 0.

The time delay can be calculated in the exact same manner as for the Goldstone scalar to get

∆TQG = −6
√
π(D − 1)2(D − 3)2

Γ
(
D − 3

2

)
Γ(D − 1)

cQG
ΛD+2

α2

b2D−3
. (2.47)

From here we see that cQG > 0 leads to a time advance, again in line with expectations. To close

the case on the positive-sign quartic Galileon, it remains to check whether this time advance can

be made resolvably large within the EFT regime of validity.

2.2.2 Regime of validity and resolvability

The arguments which established the Goldstone regime of validity apply almost identically to

the quartic Galileon. The only slight difference is that the average operator in the Galileon

EFT has a higher ratio of derivatives-to-fields due to the additional Galilean shift symmetry.

More precisely, there are at least 2(n− 1) derivatives for every φ in an operator with Galilean

symmetry: (
∂

Λ

)2(n−1)+m( φ

Λ(D−2)/2

)n

� 1. (2.48)

As before, the m→∞ limit of this expression provide the bounds bΛ� 1 and ω � Λ2b. However,

now the n→∞ limit, evaluated on the background field φ̄, amounts to

α

bD−1
� Λ(D+2)/2, (2.49)

(c.f. (2.33c)).
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Imposing this condition on the time delay we have:

ω
∣∣∆TQG

∣∣ ∼ ∣∣cQG
∣∣ ωα2

ΛD+2b2D−3
�
∣∣cQG

∣∣ωb� ∣∣cQG
∣∣b2Λ2, (2.50)

where in the last step we also imposed ω � Λ2b. Again, there is no limit on how big bΛ can

be and thus no limit (from the point of view of EFT validity) on how big ω
∣∣∆TQG

∣∣ could be.

That is to say, a resolvably large time advance could be generated in an EFT with cQG > 0 and

violate causality. This conclusion is in good agreement with known results that the positive-sign

quartic Galileon is an unphysical theory.

2.3 Chapter summary

In this chapter, we motivated effective field theory as a low-energy/IR description of (possibly

unknown) high-energy/UV physics. We saw an explicit example how a heavy mode (scalar H)

could be integrated out to obtain an effective theory of the remaining light mode (Goldstone

scalar φ). Or, from a different perspective, we saw an explicit example of how an effective theory

of a light mode (Goldstone scalar φ) could be partially UV-completed by a coupling to heavy

mode (scalar H).

The generic scalar EFT (2.1) is parametrised by a set of unknown Wilson coefficients {cmn}.

We argued that it is possible to constrain the values of these coefficients by making some

reasonable assumptions about the physical properties of the UV-theory. Specifically, we can rule

out parts of the {cmn} parameter space which would lead to a violation of causality. We define

causality as the condition

∆T & −ω−1, (2.51)

where ∆T is the asymptotic scattering time delay for a wave of frequency ω.

We considered two examples of scalar EFTs: the Goldstone scalar,

SGS =

∫
dDx

[
−1

2
(∂φ)2 +

cGS
ΛD

(∂φ)4
]
, (2.52)

and the quartic Galileon,

SQG =

∫
dDx

[
−1

2
(∂φ)2 +

cQG
ΛD+2

(∂φ)2
(
[K2]− [K]2

)]
. (2.53)
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We showed that each theory could exhibit locally superluminal wave speeds for a particular sign

choice of their Wilson coefficients (cGS < 0 and cQG > 0, respectively). We saw how scattered

waves experience a time advance ∆T < 0 (as opposed to a time delay ∆T > 0) for those sign

choices. However, in order to conclude that this behaviour truly indicated a violation of causality,

we needed to check whether it was resolvable within the EFT’s regime of validity.

The regime of validity reflects the energy scales for which the EFT expansion is under control.

For the scalar EFTs, it amounts to the following set of constraints on the wave frequency ω, field

strength α and impact parameter b,

b� Λ−1, (2.54a)

ω � Λ2b, (2.54b)

α

bD−2
� ΛD/2 (Goldstone) or α

bD−1
� Λ(D+2)/2 (quartic Galileon) , (2.54c)

ω2 � Λ(D+6)/2bD−1

α
. (2.54d)

By imposing the above conditions on the time advances, the best bound we can achieve (in both

theories) is ω|∆Tx| � |cx|(bΛ)2, which is no bound at all because bΛ can be made arbitrarily

large. In other words, remaining within the EFT’s regime of validity does not prevent us from

generating a resolvably large time advance when cGS < 0 or cQG > 0, respectively.

Up to some subtleties, we will apply the same logic to the EFT of gravity over the coming two

chapters. We will find that, unlike the above scalar operators, we cannot generate a resolvable

time advance within the Einstein–Gauss–Bonnet effective theory and thus there is no causality

constraint on its Wilson coefficient.
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Chapter 3

The EFT of gravity

“All models are wrong, but some are

useful”
— George E. P. Box

Much like LEO in his scalar universe, we seem to lack a fundamental understanding of the

microscopic degrees of freedom in our gravitational universe. At a macroscopic level, gravity is

remarkably well-described by Einstein’s theory of General Relativity (GR) [4]. Predictions of

GR (and the associated equivalence principle) agree closely with experiment (see e.g. [71] for a

review) and, starting in 2015, observations of gravitational waves [5]. However, the theory itself

speaks to its own demise at singularities in spacetime — at the centre of black holes or the Big

Bang at the beginning of the universe, for example — where presumably quantum effects become

crucial to the proper description of physics. Moreover, it provides no microscopic origin for the

“dark energy” which is currently driving the accelerated expansion of the universe.

GR may be treated as a field theory of the spin-2 particle known as a graviton. This theory is

already non-renormalisable, however, so extending it to the full EFT of gravity is not unnatural.

The EFT of gravity follows the same principles as the EFT of a scalar field. Its action consists of

all (local) scalars built from the fundamental field of a gravitational theory, the metric, and its

derivatives. Schematically, in D-spacetime dimensions, the action for the EFT of gravity is

SEFT =

∫
dDx
√
−gMD−2

Pl

1

2
R+ Λ2

∑
m≥0,n≥2

cmn

(
∇
Λ

)m(Riemann
Λ2

)n


+

∫
dDx
√
−g Λ̃D

∑
m≥0,n≥2

c̃mn

(
∇
Λ̃

)m(Riemann
Λ̃2

)n
(3.1)
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where MPl is the Planck mass. The leading-order term in this action is the familiar Einstein–

Hilbert action of GR. Beyond that, the sums represent all possible contractions of any number of

Riemann tensors and its derivatives. Both Λ and Λ̃ are cut-off scales and {cmn, c̃mn} are sets of

Wilson coefficients. Although there appears to be a redundancy in this description, the two scales

have been introduced to draw a distinction between two types of processes which contribute to

the low-energy EFT when massive particles have been integrated out [72,73]. Terms from the top

line would arise as an effective description of tree-level exchange of higher-spin (s ≥ 2) particles

of mass Λ. These higher-spin effects are typical of weakly coupled string theories. Terms from

the second line would arise as an effective description of loop-corrections from particles of any

spin (including s < 2) and of mass Λ̃. This could include, for example, loops of Standard Model

particles. For Λ ∼ Λ̃, second-line terms are suppressed by (Λ/MPl)
D−2 relative to their top-line

partners. From a low-energy perspective, ignorant of the UV-theory, it is impossible to know

whether a particular curvature operator arose from tree-level or loop effects in the UV and so

both must be generally allowed for with their respective parametrisation. In this thesis, without

loss of too much generality, we will only focus on terms from the top line.

In this chapter, we establish some basic results about gravitational wave propagation in the

EFT of gravity at leading order on some particularly interesting spacetimes.

3.1 Einstein–Gauss–Bonnet gravity

The first terms in the sum of (3.1) (that is, m = 0, n = 2) are the dimension-4 operators

LD4 = c1R
2 + c2RαβR

αβ + c3RαβγδR
αβγδ. (3.2)

We will consider only vacuum solutions of GR for which R = Rαβ = 0 to zeroth-order in the

EFT. Consequently, only the last of the three terms in (3.2) survives at leading order. It can be

recast in terms of the Gauss–Bonnet (GB) operator

R2
GB = RαβγδR

αβγδ − 4RαβR
αβ +R2, (3.3)

so that the leading-order effective action in vacuum coincides with Einstein–Gauss–Bonnet (EGB)

theory

SEGB =

∫
dDx
√
−gMD−2

Pl

(
1

2
R+

cGB
Λ2

R2
GB + . . .

)
. (3.4)
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The Wilson coefficient cGB is unknown a-priori without access to the precise UV-theory of

quantum gravity. In [31], it is argued that the GB term violates causality irrespective of the

sign of cGB except in the presence of an infinite tower of massive higher-spin particles, thus

effectively fixing cGB to a value arising from string theory. Contrary to this result, we will

argue in this thesis (as in [1, 2]) that the GB term does not violate causality as long as its

coefficient is (at most) any order-one number, |cGB| . O(1). This is the subject of chapter 4. The

motivation for revisiting the result of [31] is that, from a low-energy perspective, the UV-origin of

an effective operator is unknown and unknowable. As such, the physical properties we associate

to a particular operator (the causality of the GB operator, in this case), should not be tied to

any one particular completion (like string theory). Instead, they should be determined within a

low-energy framework. In chapter 4, we provide a prescription for determining whether an EFT

operator is causal or not based solely on the calculation of a low-energy observable — namely,

the time delay.

Note that in D = 4-dimensions, where the GB term is topological, the leading-order terms in

the EFT would start at dimension-6 [74]. For this reason, we focus only on D ≥ 5-dimensions.

The fact that (3.4) is a Lovelock theory — its equations of motion are second order — is

a coincidence. The EFT does not distinguish between second- and higher-order equations of

motion since higher derivatives can be removed perturbatively by substituting in the lower-order

equations of motion. Outside of vacuum solutions, all three terms in LD4 would be generically

expected to contribute in the low-energy EFT. Unless some symmetry dictates, their coefficients

need not be fixed to the values in (3.3).

The vacuum EGB equations are

Eαβ := Gαβ +
2cGB
Λ2

Bαβ = 0, (3.5)

where

Bαβ = 4RσαβρR
σρ + 2R σρκ

α Rβσρκ − 4RασR
σ

β + 2RRαβ −
1

2
R2

GB gαβ. (3.6)

Throughout this thesis, we will consider two solutions to (3.5) and study the causal properties

of propagating metric perturbations on those backgrounds. The first is a static, spherically

symmetric, black hole solution which reduces to the Schwarzschild solution in GR (cGB = 0).

The second solution is the pp-wave metric, which is an exact solution to all orders in the EFT of

gravity. This latter example represents a broad class of spacetimes, given its universality as the
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Penrose limit of any spacetime [75].

Unlike the flat-space scalar field theories studied in chapter 2, in these dynamical gravitational

theories there is both a time delay associated to the geometry of the curved spacetime (famously

known as the Shapiro time delay) as well as a time delay associated to the EFT operator. In

chapter 4, we will argue that only the latter has a bearing on causality. In both cases, we will

arrive at the same conclusion: there is no violation of causality on these spacetimes for any

|cGB| . O(1), regardless of the UV-origin of the operator. For lack of a counter-example, the

GB term is thus considered a causal contribution in the EFT of gravity.

3.1.1 Black hole solution

While the exact background solution and master equations for static black holes in EGB theory

are known [76–78] — in fact, they are known for any Lovelock theory in any dimension [79–82]

— we will only be interested in their leading-order behaviour in the EFT of gravity. The

perspective we take in this thesis is that the GB term is just the first in an infinite series of

higher-dimensional operators in the EFT of gravity. Its subleading behaviour would be degenerate

with other higher-order terms that could enter into the EFT (e.g. R3, (∇R)2, R4 etc.). In this

context, the expansion parameter is roughly the ratio of the spacetime curvature to the cut-off

energy. For ease of notation, in the context of the black hole background, we denote this small

dimensionless parameter by µ = (rgΛ)
−2 where rg is the Schwarzschild radius of the BH in GR.

Unless otherwise stated, throughout all sections pertaining to the black hole solution, we will

work up to linear order in µ, thus implicitly assuming that higher-dimension curvature operators

can be neglected compared to the GB term. We will check this assumption in section 3.3 and

use it to define the EFT’s regime of validity.

With this, the leading-order Schwarzschild-like (static, spherically symmetric and asymptoti-

cally flat) solution to (3.5) is the metric

gαβdxαdxβ = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

D−2 (3.7)

where dΩ2
D−2 = γabdθadθb is the line element on the (D−2)-sphere SD−2 and the metric function

is

f(r) = 1−
(rg
r

)D−3
+ 2(D − 3)(D − 4)cGBµ

(rg
r

)2D−4
+O

(
µ2
)

(3.8)

See appendix B.1 for a derivation. The location of the horizon rH of this black hole, set by
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f(rH) = 0, is shifted relative to its GR value rH = rg(1− 2(D− 4)cGBµ+O(µ2)). The Riemann

components of this metric are

RABCD = −f
′′(r)

2
(gACgBD − gADgBC) , (3.9a)

RAaBb = −
f ′(r)

2r
gABgab, (3.9b)

Rabcd =
1− f(r)

r2
(gacgbd − gadgbc) , (3.9c)

where prime denotes a derivative with respect to r, upper-case letters {A,B,C, . . . } denote indices

on the 2-dimensional orbit space (i.e. (t, r)-coordinates) and lower-case letters {a, b, c, . . . } denote

indices on the (D − 2)-sphere. In particular, we have this relation between metric components:

gab = r2γab.

3.1.2 pp-wave solution

The second solution we will consider is the stationary, asymptotically flat pp-wave metric, given

in Brinkmann coordinates:

gαβdxαdxβ = 2dudv +H(u,x)du2 + δijdxidxj , (3.10)

where u = x1 − t and v = x1 + t are the lightcone variables, and x are the remaining coordinates

on the d = (D − 2)-dimensional Euclidean “transverse” subspace. Every metric, with a choice of

null geodesic, can be associated to a pp-wave metric via the Penrose limit process [75]. The upshot

is that they can be used as analogues to study the physics of systems where the exact metric

is unknown. For example, a pp-wave metric (3.10) with appropriately localised singularities in

H(u,x) is analogous to a mutli-black hole spacetime via an Aichelburg-Sexl boost [83]. By this

association, the (a)causality of an EFT operator on the pp-wave metric should be reflective of its

(a)causality on a much broader class of metrics.

The only non-zero component of the Riemann tensor (up to symmetry) of the pp-wave metric

is

Ruiuj = −
1

2
∂i∂jH(u,x). (3.11)

The only non-zero component of the Ricci tensor is Ruu = −1
2∇

2
dH(u,x) and the Ricci scalar

automatically vanishes because the inverse metric component guu is zero. The metric (3.10)

is thus a solution to the vacuum EGB equations (3.5) if H is harmonic in transverse space
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∇2
dH(u,x) = 0. Actually, we will be interested in spacetimes sourced by point particles (analogue

black holes) for which the Laplacian of H is non-zero at a discrete set of points {bi}:

−∇2
dH(u,x) =

2π
d
2

Γ
(
d
2

)∑
i

ji(u)δ
(d)(x− bi). (3.12)

The functions of the u-coordinate ji(u) must be positive for such a source to satisfy the null

energy condition but are otherwise unspecified at this time. The asymptotically flat solution to

(3.12),

H(u,x) =
∑
i

ji(u)

|x− bi|d−2
, (3.13)

is singular at each bi.

Throughout this thesis, we will consider two simple cases:

1. a point source located at the origin with spherical symmetry in the transverse directions,

Hpt(u, r) =
j(u)

rd−2
, (3.14)

and

2. two equal strength sources located at ±b, which we shall refer to as the “balancing” case

for reasons which will become clear in section 4.4.1,

Hbal(u,x) = j(u)

(
1

|x− b|d−2
+

1

|x+ b|d−2

)
. (3.15)

For the most part, the arguments in this thesis apply for arbitrary j(u) but there are some

specific examples we will refer to for illustrative purposes. Firstly, the “shockwave”,

jsw(u) =
4Γ
(
d−2
2

)
π

d−2
2

GPuδ(u), (3.16)

corresponds to a point particle moving very fast in the v-direction with momentum Pu, and

features prominently in the discussion on causality in [31]. Second, the “sequence of shockwaves”,

jssw(u) =
N∑
i=1

jsw(u− ui), (3.17)

corresponds to series of shockwaves which occur one after another in the u-direction. Lastly, we

consider a constant j(u) = j, which can be seen as the limit of jssw as the number of shocks
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Figure 3.1: An illustration of the pp-wave sources referred to in the text. Each dot represents a

Dirac delta function in the u-direction.

grows very large N →∞ while the u-distance between them goes to zero ui − ui+1 → 0. All of

the possible configurations are illustrated in figure 3.1.

It can be shown that there are no non-vanishing curvature invariants on a pp-wave background.

In brief: On one hand, any components of the Riemann tensor with a covariant v-index or a

contravariant u-index are zero. On the other hand, any non-zero component of the Riemann

tensor contains either a covariant u-index or a contravariant v-index. Hence, there are no non-zero

scalars involving contractions of Riemann tensors only. Allowing for covariant derivatives, a

covariant u-index (say) on a Riemann component could only be contracted with ∇v. However,

∂vH = 0 and the Christoffel symbols with a lower v-index must also vanish because of the above

restrictions on the Riemann components.

The consequence is that the pp-wave metric (3.10) is an exact (background) solution, not only
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to GR or EGB theory, but to any EFT of pure gravity, for any choice of metric function j(u). In

particular, it is often studied as an example of an exact solution to string theory. This should be

contrasted with the BH solution (3.7), which (generally) has to be solved for order-by-order in the

EFT expansion. It is clear that the BH solution as given in (3.8) is only good until the next-order

term at O(µ2) become important. Naïvely, there seems to be no such restriction on the pp-wave

solution. Having a well-defined regime of validity will play an important role in establishing the

causality of the GB operator (see e.g. section 4.3.2). Without it, one might be tempted to think

that a real violation of causality is possible on the pp-wave spacetime. Fortunately for GB, the

presence of metric perturbations gαβ → gαβ + hαβ on a pp-wave means the total metric is no

longer an exact solution to the EFT of gravity. As we will see in section 3.2.2, their equations of

motion are corrected at each order in the EFT, thus introducing a non-trivial regime of validity

for pp-wave spacetimes. In other words, probing the spacetime in any way ruins the “exactness”

which makes it special.

3.2 Gravitational waves in the EFT

We will now introduce metric perturbations hαβ on top of the background metrics described

above. It is their dynamics which will determine the causal properties of the GB operator. Their

field equations are given by

δEαβ = 0. (3.18)

In D-spacetime dimensions, there are D(D − 3)/2 propagating gravitational degrees of freedom

parameterised by so-called “master variables”. In this section, we will use the symmetries of

the black hole and pp-wave spacetimes to identify their master variables from the D(D + 1)/2

components of the symmetric hαβ-tensor, and derive their governing master equations. Since

EGB gravity is a Lovelock theory, the linear perturbation equations will be naturally second-order

in derivatives.

3.2.1 On black hole background

The master equations of a 4-dimensional Schwarzschild black hole in GR were first derived

for the so-called “axial” mode by Regge and Wheeler [84] and later for the “polar” mode by

Zerilli [85]. This formalism was extended to higher-dimension, maximally symmetric black holes

by Kodama, Ishibashi and Seto in [86–88]. It has also been extended for EGB gravity by Dotti
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and Gleiser [77,78] and, more recently, for Lovelock gravity by Takahashi and Soda [80–82].

In this section we will specialise the results of Dotti and Gleiser [77, 78] to the spherically

symmetric case (constant sectional curvature of 1) and treat the GB parts as a perturbation to

GR. More detail is provided in appendix B. Due to the spherical symmetry of the background,

the components of hαβ are naturally decomposed according to their transformation properties

under the symmetry group SO(D − 1). Accordingly, perturbations are split into three types:

scalar (S), vector (V) or tensor (T). The form of the master equation is the same for all three

types and is given below in (3.28)

The scalar-type perturbations can be expanded in terms of scalar spherical harmonics S as

hAB = fABS, hAa = rfASa, hab = 2r2 (HLγabS+HTSab) , (3.19)

where

(
∆̂D−2 + κ2S

)
S = 0, (3.20a)

Sa = − 1

κS
D̂aS, (3.20b)

Sab =
1

κ2S
D̂aD̂bS+

1

D − 2
γabS. (3.20c)

As suggested by (3.20a), the scalar spherical harmonics are eigenmodes of the Laplace–Beltrami

operator on the (D − 2)-sphere ∆̂D−2 = γabD̂aD̂b with eigenvalue −κ2S , where

κ2S = l(l +D − 3), l = 0, 1, 2, . . . . (3.21)

Expressions for the scalar (and vector and tensor) spherical harmonics on the N -sphere can

be found in [89], but their exact form is not important for what follows. There is a mapping

between this parametrisation {fAB, fA,HL,HT } and the scalar master variable ΦS , which is the

higher-dimensional analogue of the 4-dimensional polar mode. However, the mapping is rather

complicated. It is discussed in appendix B.4.

The vector-type perturbations can be expanded in terms of transverse vector spherical

harmonics Va as

hAB = 0, hAa = rfAVa, hab = 2r2HTVab, (3.22)
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where

(
∆̂D−2 + κ2V

)
Va = 0, (3.23a)

Vab = −
1

2κV

(
D̂aVb + D̂bVa

)
. (3.23b)

The vector spherical harmonics are eigenmodes of the Laplace–Beltrami operator with eigenvalue

−κ2V where

κ2V = `(`+D − 3)− 1, ` = 1, 2, . . . . (3.24)

The mapping between this parameterisation {fA,HT } and the vector master variable ΦV , which

is the higher-dimensional analogue of the 4-dimensional axial mode, is discussed in appendix B.3.

Lastly, the tensor modes are expanded in terms of transverse-traceless tensor spherical

harmonics Tab as

hAB = 0, hAa = 0, hab = 2r2HTTab, (3.25)

where (
∆̂D−2 + κ2T

)
Tab = 0. (3.26)

The tensor spherical harmonics are eigenmodes of the Laplace–Beltrami operator with eigenvalue

−κ2T where

κ2T = `(`+D − 3)− 2, ` = 1, 2, . . . . (3.27)

The tensor modes do not have an analogue in 4-dimensions with transverse-traceless tensor

spherical harmonics Tab only existing in higher dimensions. The mapping between HT and the

tensor master variable ΦT is straightforward, and is discussed in appendix B.2. The tensor modes

come first in the appendices simply because they are easiest to understand, followed by vectors,

followed by scalars.

The resulting master equations for each mode M ∈ {S, V, T} can be cast in the form of a

Schrödinger-like wave equation with potential VM sourced by the background curvature, and

depending on the perturbation type,

− ∂2

∂t2
ΦM + f

∂

∂r

(
f
∂

∂r
ΦM

)
− VMΦM = 0. (3.28)

Each partial wave (with usual label l omitted here) for each perturbation type M evolves
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independently according to the above. We may also write this equation as

�2ΦM −
VM
f

ΦM = 0, (3.29)

where �2 is the d’Alembertian operator in the 2-dimensional orbit space — that is,

�2ΦM ≡ −
1

f

∂2

∂t2
ΦM +

∂

∂r

(
f
∂

∂r
ΦM

)
. (3.30)

All three potentials VM are given explicitly to leading order in µ in appendix B — see (B.20)

for VT , (B.33) for VV and (B.50) for VS . Here, they are presented with a further truncation to

leading order in large-l:

VM
f

=
ω2b2

r2

(
1 +AMcGBµ

(rg
r

)D−1
)
+O

(
l0

r2

)
, (3.31)

where

AT = 8(D − 1), (3.32a)

AV = −4(D − 1)(D − 4), (3.32b)

AS = −8(D − 1)(D − 4). (3.32c)

As usual, ω is the frequency of the perturbation and b is classical impact parameter, related to l

by the convention

b =
1

ω

(
l +

D − 3

2

)
, (3.33)

the same as in chapter 2. In section 4.3.1, in order to make contact with causality, we will

consider the scattering problem of a propagating GW against a BH in the eikonal (large-l) limit.

In this sense, VM (r) is the central potential of the black hole source as felt by a wave of type M .

In the limit of vanishing Schwarzschild radius rg → 0, the apparent potential is independent

of mode-type, being only an artefact of the spherical-coordinate choice,

VM (r) =
ω2b2

r2
− 1

4r2
. (3.34)

There is no large-l or small-µ truncation in this expression. In the context of the scattering
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problem, the impact parameter b would be (almost1) the point of closest approach to the origin

on the Minkowski geodesic (rg = 0). In the presence of the BH, the actual point of closest

approach will be referred to as the “turning point”. The turning point rt coincides with the

impact parameter when rg = 0, but the curvature corrections will depend on whether we are

considering scalar-, vector- or tensor-type perturbations. As explained by the derivation in

appendix A, it is not strictly necessary to calculate the turning point for our purposes.

3.2.2 On pp-wave background

On the pp-wave background, we work in lightcone gauge, as in [90]:

hvα = 0 ∀α. (3.35)

The full set of perturbation equations is given in appendix C. The δEvα equations reduce to two

constraint equations

hii = 0, (3.36)

∂vhiu + ∂jhij = 0. (3.37)

Taking the trace of the δEij equation, and applying the above two constraints, produces a third

constraint,

∂vhuu + ∂ihiu = −4d− 2

d

cGB
Λ2

∂i∂jH∂vhij , (3.38)

so that the huu and hui components are all specified in terms of the hij components, as long as

∂vhαβ 6= 0. This leaves only the D(D − 3)/2 components of the traceless hij as the dynamical
1In this thesis, all analysis on the BH spacetime is performed in the standard radial coordinate r. As first

mentioned in section 2.1.2, we would see that b is the exact point of closest approach for the Langer field if we had

chosen to work in the corresponding Langer coordinates.
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degrees of freedom. Their equations of motion2 are given by

�̃hij − 8
cGB
Λ2

∂2vXij = 0,

Xij =
1

2
(hik∂j∂kH + hjk∂i∂kH)− 1

d
δijhkl∂k∂lH,

(3.39)

where

�̃hij = 2∂u∂vhij −H∂2vhij + ∂k∂khij . (3.40)

Unlike the pp-wave background solution, the equation for the perturbations is modified by the

GB operator in the action. In fact, it would generically receive corrections from any effective

gravitational operator. Demanding that these corrections are under control will define the regime

of validity of the EFT in the next section.

The decoupled master variables are some linear combination of the hij , depending on the form

of H(u,x). In the case of the point source (3.14), the spherical symmetry means the equations

(3.39) are all but immediately decoupled when expressed in spherical coordinates. The single

caveat is that not all of the diagonal components of hij are independent because of the traceless

condition (3.36). Choosing hDD as the dependent component, the master variables are

Φ ∈ {hrr, hra, hab for a 6= b, haa − hDD (no sum)}, (3.41)

where {a, b, . . . } label the angular directions. Their master equations are

�̃Φ+A
cGB
Λ2

∂rH

r
∂2vΦ = 0, (3.42)

where A is a number depending on the master variable in consideration,

A ∈ {8(d− 2), 4(d− 2),−8,−8} (3.43)

respectively, and we have used the fact that H is harmonic (away from the origin) to replace

∂2rH = −(D − 3)∂rH/r. In the balancing source case (3.15), it is less straightforward to identify
2Interestingly, unlike the black hole master equations given in (3.28), the pp-wave master equations (3.39) are

not derived perturbatively in Λ−1. That is, the pp-wave master equations in EGB theory are simply linear in cGB

and do not need to be expanded to make them EFT-compatible. This is just a quirk of the GB operator. By ways

of contrast, the extended EFT considered at the end of section 3.3.2 has master equation (3.66) which is only

perturbative in Λ−1.
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the master variables. Some details are given in appendix C but are not crucial in what follows.

Suffice to say, the master equations will take a similar form to (3.42).

3.3 Regime of validity of gravitational EFT

As discussed in section 2.1.3, a feature of all EFTs is that they cease to be a good description

of physics above a certain energy, related to the cut-off scale. The reason for this is that in

artificially truncating an infinite series of possible higher-dimensional operators at some finite

order, it is implicitly assumed that the first few terms dominate. In the present context, the

EGB action (3.4) is understood to be only the leading-order terms from an infinite series of

curvature operators (3.1), corresponding to truncation at dimension-4 (R2-operators). However,

the low-energy expansion of a real UV-theory would generically contain all possible dimension-6,

-8, -10,. . . operators unless some symmetry prohibits them. The requirement that these operators

are “under control”, and so don’t contribute significantly to physics at low energies, defines the

regime of validity [1, 36]. Physically, this translates into a number of bounds on the various

parameters of the theory (i.e. the length scales in the metric or the frequency of gravitational

waves), which we investigate in this section.

While there is a general consensus in the literature that EFTs are only valid below a certain

energy scale, careful consideration is not always given to defining this scale. It is sometimes

wrongly assumed that validity amounts to bounding the frequency of wave perturbations by the

cut-off energy “ω � Λ”. However, this is not a Lorentz-invariant statement since energy itself

is not a scalar quantity. Therefore, its meaning is ill-defined, being frame-dependent. Below,

we endeavour to extract the EFT regime of validity by bounding only scalar quantities built

from the metric tensor and its derivatives. In fact, we will find in the case of the BH spacetime

that we are allowed to consider frequencies a certain amount beyond the cut-off scale while still

remaining within the EFT regime of validity.

Schematically, the regime of validity for a gravitational EFT corresponds to

(
∇
Λ

)m(Riemann
Λ2

)n

� 1 (3.44)

where the left-hand-side represents all possible scalar contractions built out of m covariant

derivatives and n powers of the Riemann tensor. For a spacetime with perturbations, the

“Riemann” tensor in (3.44) refers to sum of the background Riemann tensor (henceforth R̄) and
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its perturbation δR. On highly symmetric backgrounds, the perturbed Riemann tensor generally

has a much richer structure than its background counterpart and thus provides important

information about the EFT’s validity. This observation will be especially crucial to defining

the regime of validity of pp-waves in section 3.3.2 where all curvature invariants vanish on the

background.

Throughout this discussion, we use the GR values of the (background and perturbed) Riemann

tensor components on the left-hand-side of (3.44), instead of the full EFT values, as a matter of

consistency. In the regime where the expansion is well-controlled, the GB corrections to the GR

components are additionally suppressed by factors of Λ−1 and would lead to weaker bounds.

3.3.1 Black hole validity

In this section, we specialise the generic statement about EFT validity (3.44) to the black hole

spacetime introduced in 3.1.1. First we deal with constraints on the background geometry, and

then with constraints on the energy of gravitational wave perturbations. At the level of the

action of a tensor theory, the idea of “control” over EFT operators may seem a bit abstract. To

address this, in the final part of this section we will track the effects of an explicit example of a

higher-dimension operator on the potential of GWs and show how requiring its sub-dominance

(to the GB terms) leads to a constraint on the GW frequency.

Constraints on background

To obtain a complete picture of the EFT’s validity, we should consider all possible scalar contrac-

tions of the Riemann tensor and its covariant derivatives. However, the Schwarzschild background

is Ricci-flat at leading order which means any contractions involving a Ricci tensor/scalar will

lead to weaker bounds. Thus, all indices on a Riemann tensor components should be contracted

elsewhere, as in e.g.

∇α∇αRβσρκR
βσρκ � Λ6. (3.45)

Components of the Riemann tensor scale like ∼ rD−3
g /rD−1, so the strongest bounds are of the

form

∇mR̄n ∼ r
(D−3)n
g

r(D−1)n+m
� Λm+2n. (3.46)

In particular, the n→∞ limit gives
rD−3
g

rD−1
� Λ2 (3.47)
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and the m→∞ limit gives

r � Λ−1. (3.48)

These bounds on the distance scales are a reflection of the fact that we cannot look too closely

at the geometry of the spacetime while remaining within the regime of validity of the EFT. At

short distances (high energies) the low-energy effective description breaks down and microscopic

degrees of freedom should be described in their own right.

Evaluating the above at the impact parameter b of a scattering GW, we obtain two constraints

for the EFT regime of validity:

rD−3
g

bD−1
� Λ2 (3.49)

b� Λ−1 (3.50)

The first of these (3.49) is the requirement that the BH radius of curvature is small relative to

the distance of the probing GW, or that the GW doesn’t pass too close to the BH. The second

(3.50) is the requirement that the probing distance scale b is not smaller than the inverse cut-off.

Constraints on perturbations

So far, we have constrained the curvature of the background spacetime. To test causality with

propagating GWs, we should ensure that their own energy does not cause large distortions and

ruin our control over the EFT. Consider GWs of momentum (kα) = (ω,k) so that the perturbed

Riemann components, which depend on second derivatives of the metric perturbations, may be

replaced with powers of the momentum tensor δRασβρ ∼ ∇α∇βhσρ ∼ kαkβhσρ. As such, the

regime of validity for perturbations is determined by scalar bounds of the form

(
∇
Λ

)m( R̄

Λ2

)n(
k

Λ

)p

� 1. (3.51)

Once again, there are a number of possible contractions which would simply lead to weaker

bounds. As before, indices on a given background Riemann tensor should not be contracted with

each other. Additionally, the divergence of the Riemann tensor ∇αRαβσρ vanishes to leading

order in the GR vacuum (a consequence of the contracted second Bianchi identity). Then, by its

symmetries, the Riemann tensor may only enter via contractions with at most two k’s, at most

two ∇’s and at most two other Riemann tensors. We should also note that the GR equation of

49



motion for the metric perturbations is ∇α∇αhσρ = 0 + . . . , so to leading order k2 = kαk
α ≈ 0.

The upshot of all this is that the strongest EFT validity bounds come from contractions of the

form

(k · ∇)m(k · R̄ · k)2n � Λ2m+8n, (3.52a)

(∇ · ∇)m(k · R̄ · k)2n � Λ2m+8n. (3.52b)

A non-trivial m = 1, n = 1 example of (3.52a) written in terms of components is

kα∇α(kβRβγδσk
δkκR

κγρσkρ)� Λ10.

Similarly, kα may be replaced with ∇α for an example of (3.52b).

Taking the n→∞ limit of (3.52), replacing k ∼ ω and evaluating at r ∼ b gives

ω2 � Λ4bD−1

rD−3
g

. (3.53)

Taking the m→∞ limit of (3.52a) with the same replacements gives

ω � Λ2b. (3.54)

Lastly, the m→∞ limit of (3.52b) reproduces (3.50).

Both (3.53) and (3.54) put upper bounds on the energy of GWs which are allowed to safely

propagate within the EFT. In particular, GWs used to probe the causal properties of the GB

operator on this spacetime, by the scattering process described in section 4.3, must obey these

constraints. In fact, as long as the scattered wave passes far from the Schwarzschild radius

b� rg, the constraint in (3.54) is always stronger than the constraint in (3.53). For all practical

purposes, the maximum wave frequency for which the EFT may be trusted is ω ∼ Λ2b.

Explicit example

The above arguments to establish a regime of validity rely only on generic assumptions about the

EFT series expansion, but were largely schematic. In this section, we will consider an explicit

example of a higher-order truncated EFT expansion. Demanding that the higher-dimension

operators in the expansion are subdominant to the GB operator will concretely reproduce the
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black hole EFT validity bound (3.53).

Consider the following effective action, which contains (3.4) as its leading-order part and

then a further higher-dimension operator:

SEFT =

∫
dDx
√
−gMD−2

Pl

(
1

2
R+

cGB
Λ2

R2
GB +

cR4
Λ6

RαβγδR
γδσρRσρκλR

κλαβ + . . .

)
, (3.55)

where cR4 ∼ O(1) is a new Wilson coefficient. The presence of the R4-operator will modify the

equation of motion of GWs by introducing higher-derivative, O(µ3)-corrections. In the context

of effective field theory, the appearance of higher derivatives does not mean the appearance of

ghostly degrees of freedom. Rather, they should be replaced perturbatively using the lower-order,

lower-derivative equations until we return to a second-order linear differential equations for the

master variables. Ultimately, the net effect is a correction to the effective potential VM in the

master equation. At large-l, the dominant contribution from this process can be obtained by

tracking only the highest- (four-) derivative terms, which is done explicitly for the tensor modes

in appendix B.5. The resulting new contribution to the potential is

V R4
T = −16(D − 1)2cR4µ

3
(rg
r

)2D κ4T
r2

+ . . . (3.56)

where . . . represents terms lower-order in κ2T , the tensor-eigenvalue of the angular-derivatives.

Comparing this term to the leading-in-κT GB term in (B.20),

V GB
T = 8cGBµ(D − 1)

(rg
r

)D−1 κ2T
r2

+ . . . , (3.57)

and replacing κ2T ∼ l2 ∼ (bω)2, we see that V R4
T � V GB

T when the EFT validity condition (3.53)

is satisfied, assuming the Wilson coefficients (cGB, cR4) are themselves O(1) numbers.

There is nothing special about this particular choice of dimension-8 operator. It would

generically be expected to enter the low-energy expansion of any UV-theory with some non-zero

Wilson coefficient cR4. However, if chance or symmetry had it vanish, other higher-derivative

operators could play the same role. Without extreme fine-tuning of all their Wilson coefficients,

the conclusion that the effective EGB theory is only valid in a certain regime is unavoidable. That

being said, it happens for the highly-symmetric Schwarzschild spacetime that dimension-4 and -6

operators would not have produced the necessary higher-derivative terms in the tensor potential

which bound the frequency. This was our motive for extending the EFT with a dimension-8
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operator, as explained in appendix B.5.

3.3.2 pp-wave validity

The arguments which establish the pp-wave regime of validity follow very much along the same

lines as those for the black hole spacetime. One major difference is that there are no non-vanishing

scalar invariants built purely from background quantities on the pp-wave metric, meaning there

are no bounds of the form (3.46). Naïvely, without the experience gained from the BH example,

one might (wrongly) assume that the pp-wave regime of validity is trivial, that there are no

constraints on its parameters, since the background metric as given in (3.10) is an exact solution

to all orders in the EFT of gravity. However, as we have seen already from their equation of

motion (3.39), metric perturbations spoil this exactness. We must still demand that their energy

is under control, thus leading to a highly non-trivial EFT regime of validity for the pp-wave

spacetime as soon as GWs are allowed to propagate.

Constraints on perturbations

In Brinkmann coordinates, the GW wavevector is (kα) = (ku, kv,k). On the pp-wave spacetime,

the v-momentum kv is conjugate to the Killing vector ∂v and is therefore analogous to the

frequency ω on the BH spacetime, which is conjugate to its Killing vector ∂t. Bounds on wave

energy will take the form of bounds on kv.

Aside from this difference, the strongest EFT validity requirements still arise from (3.52).

Taking the n→∞ limit of (3.52) gives us our first EFT regime of validity bound:

(kv∂i∂jHkv)
2 � Λ8

or

∂i∂jH �
Λ4

k2v
(3.58)

where this bound is understood to apply for any i, j. In particular, for the spherically symmetric

point source, it can be written as

∂2rH ∼
∂rH

r
� Λ4

k2v
. (3.59)

This represents a bound on the strength of the source at any given distance from its singularity
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in transverse space.

Taking the m→∞ limit of (3.52a) gives

kα∇α � Λ2, (3.60)

where ∇ is understood to be acting on a scalar (i.e. the metric function H(u,x)). In particular,

for a non-zero momentum in the v-direction kv, we obtain a bound on the u-derivative of H:

∂uH

H
� Λ2

kv
. (3.61)

Lastly, taking the m→∞ of (3.52b) gives

�̃� Λ2, (3.62)

where �̃ is understood to be acting on a scalar (e.g. H2). Isolating the transverse Laplacian

results in a distance-resolution scale (say, again, for the spherically symmetric source),

r � Λ−1. (3.63)

Below we gather the three EFT regime of validity bounds. On the left hand side, they are

written in their generic form as they would apply without specifying a metric function explicitly.

In the middle, they are specialised to the point-source metric (3.14). On the right hand side,

they are further specified at a particular impact parameter x = b = bb̂, which (in an analogous

fashion to the BH set-up) corresponds to the transverse distance at which a test GW passes by

the pp-wave source as it probes the spacetime.

�̃� Λ2 r � Λ−1 b� Λ−1 (3.64a)

∂i∂jH �
Λ4

k2v

∂rH

r
� Λ4

k2v

j(u)

bd
� Λ4

k2v
(3.64b)

kα∇α � Λ2 ∂uH

H
� Λ2

kv

j′(u)

j(u)
� Λ2

kv
(3.64c)

The top line (3.64a) represents the familiar limit on the distance scales we may probe within the

regime of the validity of the EFT. The middle line (3.64b), as mentioned previously, represents

a bound on the strength of the pp-wave source at a given distance from the source. The last
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line (3.64c) represents a bound on how quickly j(u) many vary in u-time. The latter two depend

not only on the EFT cut-off Λ, but also on the energy kv of the gravitational wave probing

the spacetime. This underlines the role that metric perturbations (or any other probe) play in

establishing an EFT regime of validity on a pp-wave spacetime.

Explicit example

Once again, the above arguments to establish a regime of validity rely only on generic assumptions

about the EFT series expansion, but were largely schematic. In this section, we will consider an

explicit example of a truncated EFT expansion. As with the BH example, demanding that the

higher-dimension operators in the expansion are subdominant to the GB operator will concretely

reproduce the pp-wave regime of validity given in (3.64).

Consider the following effective action, which contains (3.4) as its leading-order part and then

two further higher-dimension operators (including the same R4-operator as in the BH example):

SEFT =

∫
dDx
√
−gMD−2

Pl

(
1

2
R+

cGB
Λ2

R2
GB +

cR3
Λ4

RαβγδR
γδσρR αβ

σρ

+
cR4
Λ6

RαβγδR
γδσρRσρκλR

κλαβ + . . .
)
.

(3.65)

The full field equations for the background and perturbations are provided in appendix C. The

pp-wave metric (3.10) of course remains an exact (background) solution to (3.65). Choosing

lightcone gauge as before, the traceless components of the metric perturbations in the transverse

directions hij remain the dynamical degrees of freedom. With the addition of the new operators,

it is less straightforward to decouple the equations of motion and identify the master variables.

In the case of the spherically symmetric point source, one can perform an scalar-vector-tensor

decomposition on the transverse space with the result that the tensor modes ΦT are immediately

decoupled. For our purposes, it is enough just to consider their master equation, up to corrections

of O(Λ−8):

0 = �̃ΦT −
κ2T + 2

r2
ΦT − 8

cGB
Λ2

∂rH

r
∂2vΦT + 24

cR3
Λ4

∂2v

[
d
∂rH

r2

(
∂rΦT +

ΦT

r

)
−∂u∂rH

r
∂vΦT

]
+ 16

cR4 − 12cGBcR3
Λ6

(
∂rH

r

)2

∂4vΦT ,

(3.66)

where κ2T is here the eigenvalue of the tensor spherical harmonic on the (d − 1)-sphere. This

equation can be expressed in v-momentum space by replacing ∂v → −ikv. For the GB operator
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to truly be the leading-order term in the EFT expansion, the contributions of the higher-

order operators to this equation of motion (∝ cR3, cR4), specifically to the potential, should be

subdominant to the contribution from the GB operator itself (∝ cGB). Assuming that the Wilson

coefficients (cGB, cR3, cR4) are themselves O(1) numbers, then control of the EFT amounts to:

24d
cR3
Λ4

∂rH

r3
∂2vΦT � 8

cGB
Λ2

∂rH

r
∂2vΦT =⇒ r � Λ−1 (3.67)

16
cR4
Λ6

(
∂rH

r

)2

∂4vΦT � 8
cGB
Λ2

∂rH

r
∂2vΦT =⇒ ∂rH

r
� Λ4

k2v
(3.68)

24
cR3
Λ4

∂u∂rH

r
∂3vΦT � 8

cGB
Λ2

∂rH

r
∂2vΦT =⇒ ∂uH

H
� Λ2

kv
(3.69)

which is exactly the regime of validity of the EFT obtained in the previous section (3.64). Note, it

was not strictly necessary to include the dimension-8 operator ∼ Riemann4 since the subleading

correction from the dimension-6 operator produced the same term. Its inclusion illustrates that

there is nothing particular about our choice of higher-dimension operators in reproducing the

regime of validity. There are many possible higher-dimension operators whose presence in the

EFT of gravity would constrain the parameters of the spacetime in the same way.

Regulating the shockwave (and friends) in the EFT of gravity

In light of the bounds (3.64) obtained above, the pp-wave solutions provided in section 3.1.2 need

to be revisited. In particular, the singular shockwave solution jsw(u) (3.16) is clearly against the

spirit of the bound (3.64c) on j′(u)/j(u). The shockwave may be regulated to bring it within

the remit of the EFT by expressing it as a Gaussian,

jreg
sw (u) = α

1√
2πL2

exp

[
− u2

2L2

]
. (3.70)

where α is a dimensionful constant. The singular shockwave is recovered in the limit of vanishing

width, limL→0 j
reg
sw (u) = jsw(u). Plugging the regulated expression into the left hand side of the

bound (3.64c) ∣∣∣∣ ∂∂u log jreg
sw (u)

∣∣∣∣ = ∣∣∣ uL2

∣∣∣ L→0−−−→ ∞ (3.71)
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shows how the singular limit clearly violates the bound for any finite EFT cut-off Λ. It also

provides a lower bound on the width of the regulated solution by evaluating at u ∼ L,

L� kv
Λ2
. (3.72)

This means that the more highly-peaked the source (the smaller L), the slower the GW needs to

be (the smaller kv) in order to probe the spacetime within the regime of the validity of the EFT.

The sequence of shockwaves may be regulated in an analogous way: jreg
ssw =

∑
jreg

sw (u− ui).

Since each regulated shock now has a finite spread ∼ L and height ∼ αL−1, if the distance between

them shrinks, they become indistinguishable and approach a constant source j(u) = j ∼ αL−1.

Conversely, if they are to remain distinguishable, there must be a minimum u-separation between

them ∆u ∼ ui+1 − ui > L.

3.4 Chapter summary

In this chapter, we introduced the EFT of gravity as an expansion in higher-dimension curvature

operators (3.1) before specialising to the leading-order action on a vacuum background in

dimensions D ≥ 5,

SEGB =

∫
dDx
√
−gMD−2

Pl

(
1

2
R+

cGB
Λ2

R2
GB + . . .

)
. (3.73)

We consider the following two vacuum solutions: first, the Schwarzschild-like BH,

gαβdxαdxβ = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

D−2,

f(r) = 1−
(rg
r

)D−3
+ 2(D − 3)(D − 4)cGBµ

(rg
r

)2D−4
+O

(
µ2
)
,

(3.74)

where µ = 1/(rgΛ)
2, and second the pp-wave with singular point sources,

gαβdxαdxβ = 2dudv +H(u,x)du2 + δijdxidxj ,

H(u,x) =
∑
i

ji(u)

|x− bi|d−2
.

(3.75)

GW propagation on these backgrounds is governed by the following master equations. On
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the BH background we have

−∂2tΦM + f∂r (f∂rΦM )− VMΦM = 0, (3.76)

where the potential VM = VM (r) for the three types of perturbations M ∈ {S, V, T} are given

approximately in (3.31). On the point-like pp-wave background we have

2∂u∂vΦ−H∂2vΦ+∇2
dΦ+A

cGB
Λ2

∂rH

r
∂2vΦ = 0, (3.77)

where A is a real number given in (3.43) for the corresponding master variables in (3.41).

In the next chapter, we will ask whether GW propagation in this EFT, and on these

backgrounds, is causal. To answer this question, it will prove crucial to understand the EFT’s

regime of validity. The regime of validity corresponds to the range of parameters (describing

the background spacetime and GW energy) for which the EFT is under control, i.e. the regime

in which (3.73) is truly the leading-order action. This will feed into the question of whether an

apparent causality violation is resolvable within the EFT. On the BH background, the regime of

validity is defined by the following four constraints:

rD−3
g

bD−1
� Λ2, (3.78a)

b� Λ−1, (3.78b)

ω2 � Λ4bD−1

rD−3
g

, (3.78c)

ω � Λ2b, (3.78d)

where ω is the GW energy and b is the classical impact parameter. On the pp-wave background,

the regime of validity is defined by the following three constraints:

b� Λ−1, (3.79a)

j(u)

bd
� Λ4

k2v
, (3.79b)

j′(u)

j(u)
� Λ2

kv
, (3.79c)

where kv is the GW momentum in the v-direction.
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Chapter 4

Causality

In this chapter, we explain how the question of causality arises in the EFT of gravity, provide a

definition for causality in this context and show how it can be used to constrain (or not) the

Wilson coefficients in the EFT expansion.

In GR, the speed of all massless particles minimally coupled to the background metric,

including photons and gravitational waves, is the same constant vm=0 = vγ = vGW = 1. In the

EFT of gravity, the higher-order curvature operators modify the coupling of metric perturbations

to the background metric and thus change their local speed of propagation in a background-

dependent sense [35]. For example, consider the potential for tensor modes propagating on the

BH background (B.20), reproduced here for convenience:

VT
f

=
1

r2

[
κ2T

(
1 + 8(D − 1)cGBµ

(rg
r

)D−1
)

+
D(D − 6) + 16

4

(
1− 32(D − 1)(D − 6)

D(D − 6) + 16
cGBµ

(rg
r

)D−1
)

+
(D − 2)2

4

(rg
r

)D−3
(
1− 6(D − 4)(D2 − 7D + 4)

D − 2
cGBµ

(rg
r

)D−1
)]

.

(4.1)

From here, we can identify the angular speed vΩT of the tensor modes as the coefficient of κ2T /r2,

v2ΩT = 1 + 8(D − 1)cGBµ
(rg
r

)D−1
, (4.2)

which deviates from 1 at leading-order in the EFT expansion (∝ cGBµ) by an amount depending

on the curvature of the background. (As a side note, we see from the Schrödinger equation (3.28)

that the GB term does not modify the radial speed of GWs.) In theories with a positive Wilson

coefficient cGB > 0, the tensor modes would be locally superluminal (vΩT > 1). That is, they
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could propagate slightly outside the lightcone set up by the background metric. To avoid such

a fate, one might be tempted to conclude that causal UV theories must lead to only cGB ≤ 0

when their heavy modes are integrated out. However, examination of the vector potential (B.33)

reveals that their angular speed

v2ΩV = 1− 4(D − 1)(D − 4)cGBµ
(rg
r

)D−1
(4.3)

would be superluminal for cGB < 0. Thus, with this logic, it seems we should be forced to

conclude that cGB = 0 is the only viable option and that the GB term is not a good, causal

operator. This would be a rather unfortunate, since it is known that integrating out loops of

heavy (e.g. Standard Model) fields leads to a non-zero cGB.

The implications for causality of the apparently enlarged lightcone have been considered in

the literature [91–98]. However, an implicit assumption in such works (and the flawed argument

above) is that EGB (or Lovelock, respectively) theory is a complete theory in and of itself.

In [1, 2], we view EGB theory as just an effective theory of gravity, the leading orders in an

infinite series. Within this context, it is important to ask whether any apparent violation of

causality is resolvable within the EFT’s regime of validity. As discussed in chapter 2, there

is an optical resolution scale proportional to the wavelength of the propagating modes, as a

consequence of Heisenberg’s uncertainty principle. But without knowledge of the EFT regime of

validity, there would be no reason to suspect that the magnitude of apparent causality violation

could be limited (in a way made precise below) and thereby pushed into unresolvable territory.

Said another way, without a proper understanding of the regime of validity, the superluminality

of the vector/tensor modes could be made very large indeed.

Another reason that the above argument is flawed is that local superluminality alone is not

necessarily problematic unless it can lead to closed time-like curves [35]. Depending on the

spacetime, it may be possible for local superluminality to be compensated by subluminality later

down the trajectory such that a closed time-like curve may never be achieved. To capture this

cumulative effect, we instead calculate the time delay of a gravitational wave travelling between

asymptotic infinities and scattering off a potential set up by the curvature of the spacetime in

the interim.

On asymptotically flat spacetimes, one can define a generalised Eisenbud–Wigner time

delay [59–62] from the energy-derivative of the phase shift, which are eigenvalues of the S-matrix.
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The bulk of this chapter is dedicated to various classical, semi-classical and quantum methods

for calculating the phase shift of a gravitational wave scattering off a BH or pp-wave spacetime.

After that, it is simply a matter of differentiating with respect to ω, in the case of the BH, or

kv, in the case of the pp-wave, to obtain a time delay. Physically, this time delay represents the

difference in journey time of a GW traversing the curved spacetime in question as compared to

the same journey in flat (Minkowski) space. This is analogous to the scalar field examples of

chapter 2 where the time delay was the difference in wave propagation between a non-trivial

background field configuration and a zero-background field. However, unlike those toy examples,

the time delay on a curved spacetime is non-vanishing even when the Wilson coefficient of the

EFT operator is vanishing ∆T (cGB = 0) 6= 0. The time delay may be split into two contributions:

∆Tnet = ∆TGR +∆TEFT (4.4)

where

∆TGR = lim
Λ→∞

∆Tnet (4.5)

is known as the Shapiro time delay and represents the time delay due to the geometry of the

spacetime in GR. The remaining contribution ∆TEFT captures terms from the expansion in the

inverse cut-off scale, including explicitly terms from the GB operator (∝ cGB). It encodes the

effect of interactions of the scattering particle with high-energy modes, inlcuding e.g. heavy

Standard Model particles or higher-spin string states. While the GR time delay is in general

positive on reasonable spacetimes, the EFT term may be positive or negative depending on

the mode under consideration and the sign of cGB. This will become clear after some explicit

calculations coming up in sections 4.3 and 4.4.

4.1 Infrared vs asymptotic causality

The definition of causality presented in [99] and used in the arguments of [31] is that the total

time delay should be positive, i.e. there should be no net time advance,

∆Tnet > 0. (4.6)

This is known as “asymptotic causality” because it corresponds to the condition that waves

cannot travel faster than they would have on the asymptotic (in this case, Minkowski) spacetime.
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Actually, as eluded to already in this chapter, and discussed previously in chapter 2, a small

time advance is not a problem as long as it is not resolvable. The resolvability scale is set by

the uncertainty principle for the scattering waves — a time delay for a wave of energy E is only

resolvable if E|∆T | & 1. As a consequence, asymptotic causality is really the weak positivity

condition

∆Tnet & −E−1, (4.7)

where E = ω in the case of the BH spacetime and E = kv in the case of the pp-wave spacetime.

In this thesis, we take the different perspective that causality should be defined accounting

for the local background geometry, and not just the asymptotic geometry. Our definition of

“infrared causality” (so-named because it is solely determined from low-energy behaviour) is that

EFT contribution to the time delay should be weakly positive,

∆TEFT & −E−1. (4.8)

In general, if this condition for infrared (IR) causality is satisfied, then the condition for asymptotic

causality will be satisfied (since ∆TGR ≥ 0), although the converse is not true. That is, asymptotic

causality is a weaker condition than IR causality.

This stronger condition for causality is analogous to the field theory criteria that causality is

determined by the front velocity (and not phase nor group velocities) of propagating waves. As

stated in chapter 2, the front velocity is the same as the phase velocity of high-frequency (beyond

the EFT regime of validity) modes. We consider the GR metric (the standard Schwarzschild

metric in the BH case, and the same pp-wave metric) to represent the fundamental geometry

that those high-frequency GWs are coupled to. Thus they, and all other massless particles

minimally coupled to the metric, experience the GR time delay ∆TGR. It is the universal time

delay experienced by particles sticking always to the local lightcone of the background geometry.

In this sense, having a net time delay of that value ∆Tnet = ∆TGR corresponds to “having speed

v = 1”. The EFT time delay contribution ∆TEFT is uniquely felt by low-frequency GWs due

to their interactions with heavy states as captured in the EFT. A negative value of ∆TEFT

corresponds to travelling faster than speed v = 1 in aggregate which must be a result of violating

relativistic causality locally via interactions with heavy states.

We will use this IR definition of causality in both sections 4.3 and 4.4 of this chapter. As

we will see on both the BH and pp-wave spacetimes, there is no choice of Wilson coefficient
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cGB which will guarantee ∆TEFT > 0 for all propagating GWs. This precisely corresponds to

the different signs in the speeds of vector (4.3) and tensor (4.2) modes on the BH background

discussed above. Therefore, the only possible recourse for the causality of the GB operator is to

show that the magnitude of the EFT time delay is unresolvable for all propagating modes on

both spacetimes, that is

|∆TEFT| � E−1. (4.9)

Recall, when checking this condition, we need only concern ourselves with the time delays of

scattered GWs which are within the EFT regime of validity. Otherwise, there is no reason to trust

that the EFT was a good description of physics to begin with. The bounds on the spacetime and

wave parameters which define this regime were found in section 3.3. By applying these bounds,

we will in fact find in all scenarios that the EFT time delay obeys

E|∆TEFT| � |cGB|. (4.10)

Thus, we conclude that the GB operator, as it enters the EFT action in (3.4), is perfectly causal

if and only if its Wilson coefficient is at most an order-one number,

GB causal ⇐⇒ |cGB| . O(1). (4.11)

Said another way, if we absorb cGB into the scale Λ to define the “strong coupling scale”

Λsc ∼ Λ/cGB, then there is no indication that the GB operator violates causality as long as the

cut-off scale is not far above the strong coupling scale, Λ . Λsc. An EFT has its limits and

should not be abused beyond those limits. This is the main result of this chapter.

4.2 Toy example: Goldstone scalar

Before we turn to pure gravitational theories, we will first reconsider the Goldstone scalar field,

this time minimally coupled to gravity. This toy example will serve as evidence for IR causality as

the correct definition of causality. Consider, once again, the massless scalar with shift symmetry

φ→ φ+ constant on a curved spacetime:

SGS =

∫
dDx
√
−g
[
−1

2
(∇φ)2 + cGS

ΛD
(∇φ)4 + . . .

]
. (4.12)
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In this action, (∇φ)4 is considered the effective operator with Wilson coefficient cGS and cut-off

scale Λ. As we have seen in chapter 2, in the absence of gravity, there are known positivity

bounds on the coefficient cGS which demand that it is strictly positive cGS > 0 [13, 16, 17]. More

recently, there have been efforts to establish analogous positivity bounds in the presence of

gravity [100–103] with the conclusion that, for this type of operator,

cGS & −
(

Λ

MPl

)D−2

, (4.13)

up to numerical coefficients. In this section we will show how the condition of IR causality (4.8)

correctly reproduces both the standard and the gravitational positivity bounds, while asymptotic

causality (4.7) produces much weaker statements.

Consider the scalar on a general spherically symmetric background spacetime

ds2 = −B(r)2dt2 +A(r)2dr2 + r2dΩ2
D−2. (4.14)

On a curved vacuum spacetime, such as a black hole, the metric coefficients would take values

B(r)2 = A(r)−2 = f(r) = 1− (rg/r)
D−3. And, if the Goldstone boson itself has a backreaction

on the spacetime, the metric would be B(r)2 ∼ A(r)2 ∼ 1 + h. For the time being, we keep the

metric quite general but we will return to these two cases.

The corresponding spherically symmetric background field configuration φ̄(r) for the Goldstone

boson is determined by

φ̄′(r) =
α

rD−2C(r)
(4.15)

at leading order, where prime denote a derivative with respect to r, α is a constant and

C(r) = B(r)/A(r). Fluctuations around this background φ = φ̄+ δφ have the following equation

of motion to leading order in the EFT, for each partial wave,

∂2δφl
∂r2

+
∂

∂r

[
ln(rD−2C)− 12cGS

ΛD

( α

rD−2AC

)2] ∂δφl
∂r

+

(
ω2

C2
−
A2κ2S
r2

)(
1 +

8cGS
ΛD

( α

rD−2AC

)2)
δφl = 0

(4.16)

where

δφ(t, r,ΩD−2) = e−iωt
∞∑
l=0

δφl(r)Yl(ΩD−2) (4.17)

as usual. Defining
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χl = r
D−2
2

√
C

[
1− 6cGS

ΛD

( α

rD−2AC

)2]
δφl (4.18)

we obtain an equation of the form

d2χl

dr2
+WGS(r)χl(r) = 0 (4.19)

where

WGS(r) = ω2

(
1

C2
−A2 b

2

r2

)(
1 +

8cGS
ΛD

( α

rD−2AC

)2)
+ . . . (4.20)

to leading order in large-l and leading order in Λ−1.

4.2.1 Asymptotic time delays

The equation of motion for the χ-field (4.19) is now in a form appropriate for a WKB analysis.

Such an analysis is performed in appendix A with the main result that the phase shift due to a

source Wsource is

δ =
1

2ω

∫ ∞

b
dr Wsource(r)√

1− b2/r2
. (4.21)

The time delay is calculated from the phase shift as

∆T = 2
∂δ

∂ω

∣∣∣∣
l

. (4.22)

There are three “sources” of a phase shift/time delay for the Goldstone scalar coupled to gravity.

They are: the curvature of the background spacetime, the dimension-(2D) effective operator in

the action, and the gravitational backreaction of the scalar field on the spacetime. We will deal

with each in turn.

On a BH background, in the weak field limit rg/r � 1, we have

WGS = ω2

(
1− b2

r2

)
︸ ︷︷ ︸

Wcoord

+ω2
(rg
r

)D−3
(
2− b2

r2

)
︸ ︷︷ ︸

WBH

+
8cGSα

2ω2

ΛDr2D−4

(
1− b2

r2

)
︸ ︷︷ ︸

WEFT

+ . . . . (4.23)

For the remainder of this section we will work with order-of-magnitude estimates, as it will be

enough to establish the differences between asymptotic and IR causality. With this in mind, the

time delay due to the BH background source (which is calculated by replacing Wsource with WBH
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in (4.21) explicitly in appendix A.4) is

∆TBH ∼
(rg
b

)D−3
b (4.24)

and the time delay due to the effective operator in the action (replace Wsource with WEFT in

(4.21)) is

∆TEFT ∼
cGSα

2

ΛDb2D−5
. (4.25)

It remains to estimate the backreaction of the scalar field on the spacetime. In harmonic

gauge, the linearised metric perturbations satisfy

�

(
hαβ −

1

2
gαβh

)
= − 2

MD−2
Pl

Tαβ. (4.26)

For the spherically symmetric scalar source (4.15) the stress-energy tensor has magnitude

T ∼ α2/r2(D−2) and thus the scale of metric perturbations is

h ∼ α2

MD−2
Pl r2(D−3)

. (4.27)

For the purposes of estimating the effect of the backreaction on the time delay, we take A2 ∼

B2 ∼ 1 + h in the expression for WGS (4.20) and find

Wbr ∼
ω2b2α2

MD−2
Pl r2(D−2)

, (4.28)

with corresponding time delay,

∆Tbr ∼
α2

MD−2
Pl b2D−7

. (4.29)

The net time delay is the sum of the above three contributions (to leading order in each of the

appropriate expansions):

∆Tnet ∼
rD−3
g

bD−4
+

α2

ΛDb2D−5

(
cGS +

b2ΛD

MD−2
Pl

)
. (4.30)

Recall, asymptotic causality is the condition that ∆Tnet & −ω−1, while IR causality is the

condition that ∆TEFT & −ω−1. Both of these conditions would put a bound on the Wilson

coefficient cGS. Clearly, if cGS is positive then there is no violation of either causality condition

because both ∆Tnet and ∆TEFT would be positive. If cGS is negative, it may be possible to
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generate a time advance. However, the magnitude, and thus resolvability, of that time advance

depends on the allowed range for the other parameters in the theory. Just as in sections 2.1.3

and 3.3, we should determine the regime of validity of this EFT.

4.2.2 Regime of validity

A number of constraints carry over directly from the non-gravitational version of the Goldstone

theory. As before, there is a distance resolution scale coming from the requirement that

� · scalar � Λ2 · scalar meaning that the impact parameter is bounded from below: b � Λ−1.

In addition, the requirement that the background field is under control puts a bound on its

magnitude: (
∇φ̄
)2 � ΛD =⇒ α2

b2(D−2)
� ΛD. (4.31)

Lastly from an EFT perspective, the energy of the scalar fluctuations cannot be too large, i.e.

the Lorentz-invariant bound k · ∇ � Λ2 gives the bound on frequency ω � Λ2b.

On top of the EFT requirements above, we must also demand that the backreaction of the

scalar field on the gravitational field is under control, as that has been implicit in our calculations

so far. This condition h� 1 gives us the following bound

α2

MD−2
Pl b2(D−3)

� 1, (4.32)

which, as we will see, plays a crucial role in determining the correct gravitational bound on the

Wilson coefficient cGS.

4.2.3 Asymptotic causality

Asymptotic causality is the condition that ∆Tnet & −ω−1, or

cGS & −
rD−3
g bD−1ΛD

α2
− b2D−5ΛD

ωα2
− b2ΛD

MD−2
Pl

. (4.33)

To find the tightest possible bound on cGS, we would want to make the RHS of the above as

large as possible. Since the RHS is strictly negative, this corresponds to making its magnitude

as small as possible. To this end, we choose rg → 0 so that the Schwarzschild contribution is

negligible and we push the frequency to its maximum ω ∼ Λ2b within the regime of validity. This
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leaves us with

cGS & −b
2D−6ΛD−2

α2
− b2ΛD

MD−2
Pl

. (4.34)

Now, we have a choice of bounds, the “background bound” (4.31) or the “backreaction bound”

(4.32), to fix the maximum possible α. Since neither condition is obviously stronger, we try each

in turn. Starting with the background bound (4.31), we have

cGS & − 1

b2Λ2
− b2ΛD

MD−2
Pl

. (4.35)

The RHS of this inequality is extremised with respect to the impact parameter at b2 ∼

M
(D−2)/2
Pl /Λ(D+2)/2, which is well within the regime of validity b � Λ−1 since Λ is gener-

ally well below the Planck mass. It can also be checked that the backreaction is under control

at this impact parameter and choice of α, h ∼ (Λ/MPl)
(D−2)/2 � 1. At this value of b, both

elements on the RHS of (4.35) contribute equally and we obtain the following bound on cGS,

cGS & −
(

Λ

MPl

)D−2
2

. (4.36)

Note that this is a weaker bound than the gravitational positivity bound (4.13) coming from

[100–103].

If, instead, we use the backreaction bound (4.32) to set α2 ∼ b2D−6MD−2
Pl , we find

cGS & −
(

Λ

MPl

)D−2

− b2Λ2

(
Λ

MPl

)D−2

. (4.37)

This time, the minimum value of b is obtained from the background bound (4.31) with α already

fixed, as above, to give b ∼M (D−2)/2
Pl /ΛD/2. This leads to the even weaker bound on cGS,

cGS & −1. (4.38)

Therefore, the bound in (4.36) is the strongest bound on c to be had from asymptotic causality.

4.2.4 Infrared causality

Having seen how asymptotic causality produces weak bounds on the Wilsonian coefficient cGS,

we will now show how IR causality exactly reproduces the known positivity bounds. IR causality

is the condition that ∆TEFT & −ω−1. In this case, ∆TEFT is given by (4.25), so IR causality
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means

cGS & −b
2D−5ΛD

ωα2
(4.39)

Once again, maximising the RHS means setting the frequency to its maximum ω ∼ Λ2b,

cGS & −b
2D−6ΛD−2

α2
, (4.40)

and choosing a maximum for α. Mirroring the above discussion for asymptotic causality, we first

choose α2 ∼ b2D−4ΛD from the background bound (4.31),

c & − 1

(bΛ)2
. (4.41)

Now, since bΛ can be made arbitrarily large with the appropriate choice of b, we effectively have

cGS > 0, which is consistent with the standard positivity bound in Minkowski spacetime [13,16,17].

Really, we have just reproduced the result of section 2.1.3 by ignoring all gravitational input to

the theory.

If, instead, we use the gravitational backreaction bound (4.32) to set α2 ∼ b2D−6MD−2
Pl , we

find

cGS & −
(

Λ

MPl

)D−2

(4.42)

which is precisely the recent gravitational positivity bound (up to numerical coefficients) [100–103].

The lesson of this toy example is that IR causality correctly reproduces known positivity

bounds where asymptotic causality fails, suggesting that IR causality is the correct definition of

causality in theories with dynamical gravity.

4.3 Black hole spacetime

Having convinced ourselves that IR causality is a good definition, we will now apply it to GWs

scattering in a BH background to show that the GB operator does not violate causality on

this background. In complete analogy to the scalar field scattering problems of the previous

section and of chapter 2, GW scattering in the central BH potential may be treated by a WKB

approximation. Our approach is first to bring the Schrödinger-like master equation to a form

appropriate for WKB analysis, then use the results of appendix A to calculate the asymptotic

time delay.
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4.3.1 Scattering phase shift and time delays

The master equations for GWs on a Schwarzschild BH background are given by (3.28) for each

mode M ∈ {S, V, T} where the scalar/vector/tensor potentials are given by (B.50), (B.33) and

(B.20) respectively, or to leading order in large-l by (3.31). Performing a field redefinition to

remove the single derivative term from the equation, and making a wave-ansatz for the time

dependence of the solution,

ΦM (t, r) =
e−iωt

√
f
χM (r), (4.43)

the master equation becomes
d2χM

dr2
+WM (r)χM = 0, (4.44)

where

WM (r) =
ω2 − VM

f2
− f ′′

2f
+

(
f ′

2f

)2

. (4.45)

The master equation is now in an appropriate form for the WKB analysis described in appendix

A. We focus on the high-energy regime l ∼ bω � 1 where issues of causality could potentially

arise, and assume b� rg to avoid quantum complications at the horizon. In these eikonal l� 1

and weak-field r � rg limits, the leading-order terms in the functions WM are

WM ≈ ω2

(
1− b2

r2

)
︸ ︷︷ ︸

Wcoord

+ω2
(rg
r

)D−3
(
2− b2

r2

)
︸ ︷︷ ︸

WGR

+AMcGBµω
2
(rg
r

)D−1 b2

r2︸ ︷︷ ︸
WEFT

(4.46)

where, as a reminder, the numbers AM are

AT = 8(D − 1), AV = −4(D − 1)(D − 4), AS = −8(D − 1)(D − 4). (4.47)

From here, it is clear that the asymptotic time delay of the GWs will have the two contributions

claimed in the introduction to this chapter (4.4). The first is the “GR” Shapiro time delay. It

is the exact same as the “BH” effect felt by the Goldstone boson in the previous section, and

is calculated explicitly in appendix A.4. The second is due to the EFT coupling of the GWs

with the curved background spacetime. The asymptotic phase shift due to this term may be

calculated by (see appendix A for derivation)

δEFT =
1

2ω

∫ ∞

b
dr WEFT(r)√

1− b2/r2
. (4.48)
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with the result that the net time delays (at fixed-l) for the three types of perturbations are

∆T T
net = ∆TGR

(
1− 8(D − 1)(D − 4)

D − 3
cGBµ

(rg
b

)2)
, (4.49a)

∆T V
net = ∆TGR

(
1 +

4(D − 1)(D − 4)2

D − 3
cGBµ

(rg
b

)2)
, (4.49b)

∆TS
net = ∆TGR

(
1 +

8(D − 1)(D − 4)2

D − 3
cGBµ

(rg
b

)2)
, (4.49c)

where

∆TGR =
(D − 2)

√
π

2

Γ
(
D−4
2

)
Γ
(
D−3
2

) (rg
b

)D−3
b. (4.50)

Note that the time delays vanish in the Minkowski limit rg → 0, as they should by definition.

Also, all three time delays agree in the GR limit cGB → 0, which is another reflection of the

universal speed of massless perturbations in GR.

When the GB term is included, the time delay experienced by GWs depends on their

polarisation. If, for example, cGB is positive then the tensor modes gain a time advance as

compared to the GR time delay, while the vectors and scalars receive an additional delay. This

is consistent with the expectation that tensor modes would travel superluminally, while vectors

and scalars would travel subluminally for cGB > 0. As claimed previously, there is no choice

of cGB for which ∆TM
EFT > 0 for all three M ∈ {S, V, T}. Thus, we are faced with an apparent

violation of IR causality. It may also seem possible to violate asymptotic causality by choosing

b2 ∼ cGBµr
2
g = cGBΛ

−2 so that ∆TM
EFT could rival ∆TGR in magnitude. Then, since at least

one ∆TM
EFT must be negative, it would be possible to have a negative net time delay (i.e. time

advance). This is analogous to the shockwave situation in reference [31] where, in their notation,

b2 ∼ |λGB| (e.g. below their equation (2.19)).

4.3.2 Unresolvability of EFT time delay

Despite appearances, our central claim in [1] is that there is no violation of either causality

condition when the EFT regime of validity is properly accounted for. The regime of validity is

defined on the BH background in section 3.3.1. It amounts to four constraints (3.49), (3.50),

(3.53) and (3.54) which bound the curvature of the background spacetime and the energy of

the propagating GWs. We show below that to violate either causality condition (4.7) or (4.8)

would require going to energies beyond this regime and thus does not represent a true violation
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of causality at all.

As said at the end of the last subsection, to stand a chance of generating an asymptotic

acausality, one would need to push the impact parameter down to b2 ∼ cGBΛ
−2. Assuming

cGB ∼ O(1), as we have throughout, this represents a simple and immediate violation of (3.50).

So there is certainly no violation of asymptotic causality in the regime in which the EFT can be

trusted as a good description of physics.

As for the stronger IR causality condition, consider the magnitude of the GB contribution to

the time delay relative to the GW frequency:

ω
∣∣∆TM

EFT
∣∣ ∼ |cGB|µωb

(rg
b

)D−1
∼ |cGB|

ω

bΛ2

(rg
b

)D−3
, (4.51)

where we have used µ = (rgΛ)
−2. Using either bound on frequency (3.53) or (3.54) provides

effectively the same result. Firstly, applying (3.53):

ω
∣∣∆TM

EFT
∣∣� |cGB|

(rg
b

)D−3
2 � |cGB|, (4.52)

assuming b� rg. Or, applying (3.54) gives the slightly stronger

ω
∣∣∆TM

EFT
∣∣� |cGB|

(rg
b

)D−3
� |cGB|. (4.53)

Either way, we arrive at the same conclusion: the GB time delay is unresolvable
∣∣∆TM

EFT
∣∣� ω−1

for |cGB| . O(1). Thus, in this context, the EFT described by the action (3.4) is causal. This

conclusion holds regardless of the magnitude of the other parameters in the theory. It does not

matter how heavy the black hole is, or how big the scale Λ is, as long as they are within the

regime of validity of the EFT then GW propagation is causal. The same result is obtained for

cosmological solutions in [36].

Having found that one BH could not generate a resolvable causality violation, a natural

question is whether many BHs could? Could enough small (unresolvable) time advances be

accumulated, one after another, to generate one large (resolvable) time advance? We claim the

answer is no. To study this scenario, we turn to the analog pp-wave system. We will find that,

effectively, the scattering problem cannot be sustained for long enough in a multi-shock (analog

multi-BH), EFT-valid spacetime to generate a resolvable time advance. So once again, there will

be no violation of causality.
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4.4 pp-wave spacetime

The set-up for the scattering problem in the pp-wave spacetime is somewhat different from the

BH spacetime. The conserved quantity is now momentum kv in the v-direction, rather than

energy ω, of the scattering particle. As we will see below, the other null coordinate u plays

the roll of time in this Schrödinger-like problem. At any instance in time u0, the potential

V (u0,x) extends in the v-direction with a constant strength determined by j(u0) and decays

in the transverse direction as 1/rd−2. If the source j(u) is “switched on” for long enough (i.e.

doesn’t decay to zero with growing u), the ultimate fate of any particle at finite transverse

distance from the source is to collide with the source. Thus, to maintain a well-defined scattering

problem, the pp-wave source needs to be “switched off” before scattering in the transverse

direction becomes too significant. The aim of this section is to estimate the maximum allowable

scattering time, according to the given initial impact parameter b and v-momentum kv, and from

there estimate the phase shift/time delay of the scattered particle. A fully quantum definition

and calculation of the time delay is postponed until section 4.4.3. First, we discuss some more

intuitive (semi-)classical derivations and arguments that bound the magnitude of the time delay.

4.4.1 Classical time delay

For now, we will consider the behaviour of a point-like test particle scattering on a point-like

pp-wave background (see figure 3.1 for possible background spacetime configurations). This

captures the main physics at play, except for the possibility of an equilibrium point in the

potential, which will be addressed later at the end of this subsection. The test particle’s phase

shift can only be calculated in the limit where scattering is minimal. Within this limit, the EFT

contribution to the time delay is here shown to be unresolvable when the EFT-validity bounds of

section 3.3.2 are applied. Outside this limit, scattering is significant enough that the test particle

would soon collide with the singular source and the concept of “asymptotic phase shift” loses

meaning.
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Scattering due to point source

After performing a Fourier transform in the v-coordinate ∂v → ikv, the EGB master equation for

the point-source (3.42) can be recast as a Schrödinger equation

i
∂

∂u
Φ(u,x) = − 1

2kv
∇2

dΦ(u,x) + V (u,x)Φ(u,x) (4.54)

where the u-coordinate plays the role of time, ∇2
d = ∂i∂

i is the Laplacian on the d-dimensional

transverse Euclidean space and the potential term arises from the curvature of the spacetime.

With this language, we can treat the metric perturbations as a particle of mass kv being scattered

off a potential V sourced by the pp-wave metric. At present, we leave the u-dependence of the

source arbitrary. The point source potential is

V (u, r) = −kv
2
H(u, r) +Akv

cGB
Λ2

∂rH(u, r)

r
, (4.55)

where A is some number depending on the particular master variable mode.

Recall, our criteria for acausality is being able to generate a resolvably large EFT time

advance within the regime of validity defined by (3.64). We will return to make a precise quantum

calculation of the time delay in section 4.4.3, but for now we will follow the approximations

taken in [31] and neglect scattering in the transverse directions. This amounts to ignoring the

Laplacian-term in (4.54) so that the particle deviates from its initial configuration only by a

phase. Setting up our initial conditions Φ = Φ0 at time u = 0 with initial particle displacement

x = b = bb̂, then the approximate solution at a later time is

Φ(u,b) = Φ0exp [iδ(u,b)] , (4.56)

δ(u,x) = −
∫ u

0
du′V (u′,x). (4.57)

The corresponding time delay accumulated up until time u is thus

∆Tnet(u) =
∂δ(u,x)

∂kv

∣∣∣∣
x=b

= − 1

kv

∫ u

0
du′V (u′,x)

∣∣∣∣
x=b

=

(
1

2

∫ u

0
du′H(u′, r)−AcGB

Λ2

∫ u

0
du′∂rH(u′, r)

r

)∣∣∣∣
r=b

.

(4.58)
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Figure 4.1: The probe particle (purple) scatters in the transverse directions on the pp-wave

spacetime. It begins a distance b from the source (pink) and approaches the source after a finite

time umax.

(Note, the time delay defined in the first line above differs from the definition in the BH spacetime

by a factor of 2. The reason for this difference is simply because we have “switched on” the

interaction at finite time (u = 0) and distance (x = b), without allowing the test-particle to

approach from asymptotic infinity. The factor of 2 in the BH case reflected the symmetry of

that scattering problem.) As anticipated, there are two contributions to this expression. The

first ∆TGR(u) is from the non-trivial spacetime curvature (represented by the metric function

H) and would be present in any theory of gravity, including GR. The second term ∝ cGB is

due to the presence of the GB operator in the action. The criteria for IR causality [1] is that

the GB contribution is not resolvably negative ∆TEFT(u) & −k−1
v . Since the theory contains

propagating modes for which the constant A can be either positive or negative (3.43), neither

sign choice for cGB can guarantee causality on this spacetime either. As such, the magnitude of

the EFT time delay |∆TEFT(u)| must be bounded from above to preserve causality.

On the pp-wave spacetime, it turns out that the GB contribution to the time delay cannot

be meaningfully bounded from above by EFT validity constraints (3.64) alone. However, the

key is that the approximations used to obtain (4.58) do not hold for all time. As such, we need

only concern ourselves with the magnitude of the time delay accumulated by some time umax

when our approximations break down. Physically, this is the time at which the particle has

scattered significantly in the transverse directions so as to make the ∂i-derivatives non-negligible,

see figure 4.1.
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A Newtonian perspective

An estimate for this time can be obtained by considering the classical trajectory a particle of

mass kv experiencing a force due to the potential V (u,x) would follow:

kv
d2x

du2
= −∇V (u,x). (4.59)

Since the main contribution to the potential is from the GR term, we will neglect the GB

term for the sake of estimating umax. The amount scattered in the transverse direction is thus

approximately

∆r(u) ∼ − 1

kv

∫ u

0
du′
∫ u′

0
du′′∂rV (u, r)

∣∣∣∣∣
r=b

∼ −
∫ u

0
du′
∫ u′

0
du′′∂rH(u, r)

∣∣∣∣∣
r=b

, (4.60)

and umax is defined by the condition

∆r(umax) ∼ b =⇒
∫ umax

0
du
∫ u

0
du′ j(u

′)

bd
∼ 1. (4.61)

This could be understood in two ways. First, if the parameters of the spacetime background (i.e.

j(u)) are fixed, (4.61) tells us the timescale on which the test particle is expected to encounter

the source singularity. In other words, the source must be switched off by time umax to avoid

significant corrections to (4.58). The second option is to view the time umax as arbitrary, and

(4.61) as a condition on the strength of the source in order to avoid collision by that time (just).

Returning to consider the maximum EFT time delay generated by time umax,

|∆TEFT(umax)| ∼
|cGB|
Λ2

∫ umax

0
duj(u)

bd
, (4.62)

and making the judicious choice to express j(u) as the integral of its derivative,

|∆TEFT(umax)| ∼
|cGB|
Λ2

∫ umax

0
du
∫ u

0
du′ j

′(u′)

bd
, (4.63)

and finally applying the EFT-validity bound (3.64c) j′(u)/j(u)� Λ2/kv, we obtain the desired

result with the application of (4.61):

|∆TEFT(umax)| �
|cGB|
kv

∫ umax

0
du
∫ u

0
du′ j(u

′)

bd
∼ |cGB|

kv
. (4.64)
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That is, kv|∆TEFT(umax)| � cGB, or the EFT time delay is unresolvable for any |cGB| . O(1).

A WKB perspective

For a more sophisticated argument, rather than just ignoring the spatial derivatives, we will

treat them perturbatively via a WKB-type approximation. Now treating

Φ(u,x) = Φ0 exp [iδ(u,x)] (4.65)

as an ansatz for the full solution, the phase must obey

−∂δ (u,x)
∂u

=
1

2kv
(∇δ (u,x))2 − i

2kv
∇2

dδ (u,x) + V (u,x) . (4.66)

The leading-order solution δ(0) (u,x) in the WKB expansion is already given by (4.57). The first

correction δ(1) (u,x) is obtained by substituting the leading term back into (4.66),

−∂δ
(1) (u,x)

∂u
=

1

2kv

(
∇δ(0) (u,x)

)2
− i

2kv
∇2

dδ
(0) (u,x) . (4.67)

Given that V is harmonic, the solution is simply

δ(1) (u,x) = − 1

2kv

∫ u

0
du′
(∫ u′

0
du′′∇V

(
u′′,x

))2

. (4.68)

Using the magnitude of this correction term as a proxy for the effects of scattering, we say

umax is the time at which it becomes comparable to δ(0)(u,x). At the level of the phase equation

(4.66), we ask when their partial-u derivatives become comparable, i.e.

1

2kv

(∫ umax

0
du∇V (u,x)

)2

∼ V (umax,x) . (4.69)

Evaluating at the initial impact parameter b, the condition for umax is (c.f. (4.61))

∫ umax

0
duj(u)

bd
∼
√
j(umax)

bd
. (4.70)

The left hand side of (4.70) can be directly replaced by the right in the expression for the
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EFT time delay (4.62) to give

|∆TEFT(umax)| ∼
|cGB|
Λ2

√
j(umax)

bd
. (4.71)

We can now deploy a second EFT validity bound (3.64b), in the form
√
j(u)/bd � Λ2/kv, to

arrive again at the expected result: kv|∆TEFT(umax)| � |cGB|.

Neither of the above arguments required a specific choice for the time-dependence of the

background spacetime, j(u). The conclusion — that the EFT contribution to the time delay

is unresolvable for |cGB| . O(1) — holds for any choice of spherically symmetric pp-wave.

Regardless of whether there is one shockwave or many shockwaves, as long as they are contained

within time umax and respect the EFT regime of validity, there is no violation of causality.

Scattering due to balancing source

Aside from the EFT validity bounds, it should now be clear that the obstruction to generating

an observably large EFT time advance is scattering in the transverse directions. This scattering

is the result of an attractive gravitational potential pulling waves propagating in the v-direction

towards the source. The source must be “switched off” before the wave encounters the singularity

(before time umax), or else the question of its time delay loses all meaning.

Naïvely, it may seem like this fate could be avoided by engineering an equilibrium point in

the potential at which the v-moving-waves could sit without deviation. To this end, we now

consider the balanced metric function (3.15), which sets up a symmetric potential sourced by

two pp-waves located at x = ±b. The GR term in the potential is

V (u,x) = −kvj(u)
2

(
1

|x− b|d−2
+

1

|x+ b|d−2

)
. (4.72)

We refer to this scenario as “balancing” pp-waves because there is an unstable equilibrium at

x = 0 at which the forces are perfectly balanced, ∇V = 0. An ideal point particle perfectly

localised at the origin in transverse space could move in the v-direction without fear of scattering

into a gravitational well. In terms of the previous arguments, it is clear that both strategies for

obtaining a umax (4.59) and (4.69), which rely on a non-zero gradient of the potential, are now

scuppered.

However, with the potential being unstable along the b-direction, any small perturbation

will lead to an instability on a timescale associated to the second derivative of the potential in
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that direction. If the sources were not time-dependent and, for example, aligned along the z-axis

b = b ẑ, this would simply be

uinst ∼
1

|ω|
, (4.73)

ω2 =
1

kv

∂2V (x)

∂z2

∣∣∣∣
x=0

, (4.74)

where ω is the imaginary instability frequency of the unstable direction. Quantum in nature, our

test particle’s position will be inherently uncertain and thus experience fluctuations which will

trigger this instability. It is therefore impossible to truly “balance” a quantum particle in such

an attractive potential.

In the case of a time-dependent problem ω = ω(u), it is useful to consider again the classical

equation of motion in the z-direction near the origin,

kv
d2z

du2
= −∂V (u, z)

∂z
≈ −kvω2(u)z. (4.75)

Assuming that the potential is slowly varying in space, we may once more use a WKB approximate

solution

z(u) ∝ 1

ω(u)1/2
exp

[
±i
∫ u

0
du′ω(u′)

]
(4.76)

to see that the instability emerges around

∣∣∣∣∫ uinst

0
duω(u)

∣∣∣∣ ∼ ∫ uinst

0
du
√
j(u)

bd
∼ 1. (4.77)

Treating uinst as our umax (c.f. (4.61) and (4.70)) we can again bound the maximum achievable

EFT time delay. The master equations in the balancing potential are very similar to the point

source potential and can be found in appendix C.2. The parameter dependence of the EFT-

induced time delay is still given by (4.62). This time, first applying the (square-rooted) EFT

validity bound (3.64b)
√
j(u)/bd � Λ2/kv and then using the expression for the instability

timescale (4.77) we arrive at the (by this point, usual) conclusion:

|∆TEFT(umax)| ∼
|cGB|
Λ2

∫ umax

0
duj(u)

bd
� |cGB|

kv

∫ umax

0
du
√
j(u)

bd
∼ |cGB|

kv
, (4.78)

i.e. the EFT time delay is unresolvable for |cGB| . O(1).
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4.4.2 Becoming quantum

A crucial fact which has been brushed over in the above discussion is that a generic initial scalar

field configuration Φ0 will typically have support beyond a single point. Viewed as a wavefunction

for a quantum particle, it must at least obey the uncertainty principle ∆x ·∆k & 1 and thus

have some spread in transverse space. Viewed as a field in a low energy EFT, its spatial extent

σ ∼ |∆x| is additionally bounded below by the EFT cut-off as σ � Λ−1 (see appendix D.1 for

a precise argument). In the balancing case above, this means that a realistic state cannot be

perfectly localised at the equilibrium point and will always feel the effects of the potential’s

gradient away from that point. In fact, there are two effects which drive a localised quantum

state away from the equilibrium:

1. free-field diffusion and

2. scattering due to the attractive gravitational potential.

To see these effects in action, consider an initial spherically symmetric Gaussian profile,

Φ0(x) =
1

(2πσ2)d/4
exp

[
− x2

4σ2

]
, (4.79)

centred on the origin with width σ much smaller than the distance to the source(s) σ � b. After

time u under free evolution, the wavepacket for a particle of mass kv will diffuse to an effective

width of σ2eff(u) = σ2 + (u/2kvσ)
2. Relative to the pp-wave background, we say diffusion of

the wavepacket is “complete” when its effective width is comparable to its distance from the

source(s),

σeff(udiff) = b =⇒ udiff = 2kvσ
√
b2 − σ2. (4.80)

Thus the wavefunction Φ(u,x) can no longer be considered localised after a finite time udiff and

its time delay is not well captured by (4.58). Moreover, on top of diffusion, the wavefunction is

now subject to scattering by the source(s) because at most one point of measure-zero can be at

equilibrium. The remainder of the wavepacket is probing points with non-zero potential gradient

and feels the tug of the pp-waves.

To correctly account for both of these effects, and to see the limitation they impose on the time

delay, it is necessary to perform a fully quantum calculation as in the next section. Nonetheless,

the result of the last section will remain unchanged: bounds imposed due to scattering in the

transverse space render the GB time delay unresolvable within the EFT regime of validity.
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4.4.3 Quantum time delay

As eluded to earlier, the scattering process described by the Schrödinger equation (4.54) has a

well-defined S-matrix Ŝ if the source is only switched on for a finite amount of time so that the

scattered particle may escape to asymptotic infinity. The eigenvalues of Ŝ are then exactly the

asymptotic phase shifts eiδ of its eigenstates. An Hermitian time delay operator, known as the

Wigner–Smith operator [61,62], can thus be defined in terms of the S-matrix as

∆̂T = −iŜ† dŜ

dkv
. (4.81)

Connection can be made with the semi-classical definition in (4.58) by acting with ∆̂T on an

eigenstate of Ŝ. Denoting the eigenstates by |δ〉, then we see

∆̂T |δ〉 = −ie−iδ d(e
iδ)

dkv
|δ〉 = dδ

dkv
|δ〉 , (4.82)

i.e. eigenstates of the S-matrix are eigenstates of the time delay operator with eigenvalues

precisely equal to the semi-classical expression. In this formalism, causality is equivalent to an

unresolvable (and/or strictly positive) EFT contribution to the expectation value of ∆̂T for any

physical state |Φ〉,

〈∆̂T 〉ΦEFT ≡ 〈Φ| ∆̂T |Φ〉EFT & −k−1
v . (4.83)

Below we will use tools from perturbation theory in the interacting picture to calculate

〈∆̂T 〉Φ order-by-order for both the point source and balancing potentials. Actually, we will

explicitly calculate only the GR terms 〈∆̂T 〉ΦGR in this expansion with the understanding that

the corresponding EFT terms differ typically only by an O(1) number and a suppression factor of

1/(bΛ)2. Demanding that this perturbative expansion is under control will define the scattering

time, or umax, in a fashion analogous to the WKB approach of the previous section. However,

since the eigenbasis for physical states in this system is not known analytically, we will satisfy

ourselves with performing this calculation and checking (4.83) for a typical in-state of the form

|Φ0〉 =
∫

ddxΦ0(x) |x〉 , (4.84)

where |x〉 is a position eigenstate and the wavefunction Φ0(x) is the Gaussian wavepacket in

(4.79). In the interaction picture’s in-in formalism, the system’s time-evolution is captured in
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Figure 4.2: Snapshot at time u = 0 of the point-source and balancing potentials and the

wavefunction which probes the spacetime.

the operator’s time-dependence, which is coming up next. Expectation values are computed over

this fixed in-state, chosen to represent the initial state of our test particle at time u = 0. In other

words, the time delay we compute below is the expected asymptotic time delay for a given initial

state, automatically averaged over all possible final states. The physical scenario for the two

types of potential we have in mind is illustrated in figure 4.2.

The S-matrix is defined by

Ŝ = T
{
exp

[
−i
∫ +∞

−∞
du V̂I(u)

]}
(4.85)

where T is the (u-)time-ordering operator and V̂I is the interaction picture potential. The

interaction picture potential V̂I(u) is related to the Schrödinger potential,

V̂ (u) ≡ V (u, x̂) ≡
∫

ddxV (u,x) |x〉 〈x| , (4.86)

via conjugation with the free Hamiltonian H0:

V̂I(u) = eiĤ0uV̂ (u)e−iĤ0u. (4.87)

For a particle with mass kv, the free Hamiltonian may be written as

Ĥ0 =
k̂2

2kv
= − 1

2kv

∫
ddx∇2

d |x〉 〈x| . (4.88)

where k is the particle’s momentum in transverse space. The interaction potential can thus be
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expressed as the Schrödinger potential with a translated space coordinate,

V̂I(u) = V

(
u, x̂+

u

kv
k̂

)
. (4.89)

Already the appearance of k is an indication that the quantum formalism will account for motion

in transverse space where the semi-classical formalism failed.

Away from any singularities, the potential V̂I may be treated as a perturbation. By definition,

the time-ordered exponential in (4.85) may be expanded as

Ŝ = 1 + (−i)
∫ +∞

−∞
du V̂I(u)︸ ︷︷ ︸

Ŝ(1)

+(−i)2
∫ +∞

−∞
du
∫ u

−∞
du′ V̂I(u)V̂I(u′)︸ ︷︷ ︸

Ŝ(2)

+ . . . , (4.90)

and the time delay can be identified order-by-order in powers of V̂I . The first three terms in the

series expansion for the time delay are

∆̂T
(1)

=− i∂Ŝ
(1)

∂kv
, (4.91)

∆̂T
(2)

=− i

(
∂Ŝ(2)

∂kv
+ Ŝ(1)†∂Ŝ

(1)

∂kv

)
, (4.92)

∆̂T
(3)

=− i

(
∂Ŝ(3)

∂kv
+ Ŝ(1)†∂Ŝ

(2)

∂kv
+ Ŝ(2)†∂Ŝ

(1)

∂kv

)
. (4.93)

Since we will only ever consider the one type of in-state (4.84), without ambiguity we denote the

corresponding n-th order term in the expectation value simply by

∆T (n) = 〈Φ0| ∆̂T
(n)
|Φ0〉 . (4.94)

The first three orders in the expectation value of ∆TGR are calculated in appendix D.2, with

the results below. As noted at the top, the S-matrix is only well-defined when interactions are

turned on for a finite amount of time. We have already chosen to start the clock at u = 0 by

defining our in-state at that time. In other words, it should be understood that j(u < 0) = 0.

The source must also be switched off at some finite time which we continue to call umax, i.e.

j(u > umax) = 0. The expressions below correspond to the time delay accumulated up until

some interim time 0 < u < umax. The infinite limits on the integrals in the expressions for Ŝ(n)

have been replaced accordingly. For a potential generated by either a single point source located
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at x = −b or balancing sources at ±b the first three orders in the GR time delay are

∆T
(1)
GR(u) =

∫ u

0
du1 j(u1)

(
1− u1

∂

∂u1

)
K(1)(u1), (4.95a)

∆T
(2)
GR(u) = kv

(
2∏

i=1

∫ u

0
dui j(ui)

)
×[

θ(u1 − u2)
(
1− u1

∂

∂u1

)
− θ(u2 − u1)

(
1− u2

∂

∂u2

)]
K(2)(u1, u2),

(4.95b)

∆T
(3)
GR(u) = k2v

(
3∏

i=1

∫ u

0
dui j(ui)

)
×[

θ(u1 − u2)θ(u2 − u3)
(
3− u1

∂

∂u1
− u2

∂

∂u2
− u3

∂

∂u3

)
− θ(u2 − u3)

(
2− u2

∂

∂u2
− u3

∂

∂u3

)
+ θ(u2 − u1)

(
1− u3

∂

∂u3

)]
K(3)(u1, u2, u3),

(4.95c)

where θ(u) is the Heaviside step function and

K(n)(u1, . . . , un) =(−i)n+1

(
− 2π

d
2

Γ
(
d−2
2

))n( n∏
i=1

∫
ddqi
(2π)d

eiqi·b +Θbale
−iqi·b

q2
i

)
(4.96)

exp

−σ2
2

( n∑
i=1

qi

)2

+

(
1

2kvσ2

n∑
i=1

uiqi

)2
+

i

2kv

n∑
i<j=1

(ui − uj)qi · qj

 ,
and we have introduced the notation

Θbal =


0, point source

1, balancing sources

in order to deal with both cases simultaneously.

The classical limit — identifying diffusion and scattering

The effect of diffusion is captured at every order in ∆T by the first (bracketed) term in the

exponential on the second line of (4.96), which is proportional to the initial spread of the

wavepacket σ2. The classical limit of this quantum calculation indeed corresponds to vanishing
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wavefunction width σ → 0. In this limit, the first-order term becomes

lim
σ→0

∆T
(1)
GR(u) = −

1

kv

∫ u

0
du1V (u1,b)(1 + Θbal), (4.97)

which is exactly the semi-classical expression of (4.58). In this section, we use the classical limit to

argue that the higher-order terms in the time delay expansion are the manifestation of scattering

effects. In particular: the higher-order terms will be shown to vanish in the classical limit of the

balancing source case but not in the classical limit of the point source case. This is attributed

to the fact there is no classical scattering in the balancing case (because a point-like particle

may rest at the equilibrium), unlike the point source. Crucially, however, the higher-order terms

∆T (n>1) in the balancing case do not vanish outside the classical limit. That is, there is some

“diffusion-induced” scattering effects which leads to corrections to the classical expression (4.97).

In the next section, we use the growth of those corrections to bound how big ∆T (1)(u) may

become before it ceases to be a good approximation to the full time delay.

After some manipulation, the classical limit σ → 0 of the second- and third-order terms in

the time delay expansion can be written as

lim
σ→0

∆T
(2)
GR(u) =−

(
− 2π

d
2

Γ
(
d−2
2

))2

kv

∫ u

0
du1j(u1)

∫ u1

0
du2j(u2)

∫
ddq1
(2π)2

ddq2
(2π)2

eiq1·b +Θbale
−iq1·b

q2
1

eiq2·b +Θbale
−iq2·b

q2
2

(4.98)(
sin

[
1

2kv
(u1 − u2)q1 · q2

]
− u1

2kv
q1 · q2 cos

[
1

2kv
(u1 − u2)q1 · q2

])
,

and

lim
σ→0

∆T
(3)
GR(u) =

(
− 2π

d
2

Γ
(
d−2
2

))3

k2v

∫ u

0
du1j(u1)

∫ u

0
du2j(u2)

∫ u

0
du3j(u3)

∫
ddq1
(2π)2

ddq2
(2π)2

ddq3
(2π)2

eiq1·b +Θbale
−iq1·b

q2
1

eiq2·b +Θbale
−iq2·b

q2
2

eiq3·b +Θbale
−iq3·b

q2
3[

θ(u1 − u2)θ(u2 − u3)
(
1− u1

∂

∂u1

)
− θ(u2 − u1)θ(u2 − u3)

(
1− u2

∂

∂u2

)
(4.99)

+θ(u2 − u1)θ(u3 − u2)
(
1− u3

∂

∂u3

)]
exp

[
i

2kv
((u1 − u2)q1 · q2 + (u1 − u3)q1 · q3 + (u2 − u3)q2 · q3)

]
.
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For the second order term, in the balancing case Θbal = 1, it is easy to see that the integrand of

(4.98) is odd under q1 → −q1 (or q2 → −q2) and thus the integral vanishes. In the point source

case, there is no such anti-symmetry so the integral does not vanish.

The vanishing of the third order term in the balancing case is less straightforward. The

trusting reader may be happy to believe that it does indeed vanish and skip to the next paragraph.

Otherwise, first note that as the eigenvalue of an Hermitian operator the expression in (4.99)

should be real. We can verify that it is real by simultaneously exchanging

u1 ←→ u3 and q1 ←→ q3, (4.100)

in the integrand to retrieve its complex conjugate. Thus, the exponential factor at the bottom of

(4.99) may be replaced by its real part, a cosine. Then, in the balancing case only, we have the

following situation

lim
σ→0

∆T
(3)
GR(u) =

∫ u

0
du1du2du3j(u1)j(u2)j(u3)

[
θ(u1 − u2)θ(u2 − u3)

(
1− u1

∂

∂u1

)
−θ(u2 − u1)θ(u2 − u3)

(
1− u2

∂

∂u2

)
(4.101)

+θ(u2 − u1)θ(u3 − u2)
(
1− u3

∂

∂u3

)]
G(u1, u2, u3)

where G(u1, u2, u3) is a function that is invariant under any permutation of the ui’s. (For example,

the exchange u1 ↔ u2 in G may be offset by the exchange of the integration variables q1 ↔ q2

and the change of variables q3 → −q3 to leave it invariant.) With this in mind, the first and

third terms in the square brackets give the same contribution overall (by exchange of u1 ↔ u3).

Merging these terms and additionally exchanging u1 ↔ u2 in the second term, we obtain:

lim
σ→0

∆T
(3)
GR(u) =

∫ u

0
du1j(u1)

∫ u1

0
du2j(u2)

(
2

∫ u2

0
du3 −

∫ u1

0
du3
)
j(u3)(

1− u1
∂

∂u1

)
G(u1, u2, u3).

(4.102)

Now, note that

∫ u1

0
du2

(
2

∫ u2

0
du3 −

∫ u1

0
du3
)

=

∫ u1

0
du2

(∫ u2

0
du3 −

∫ u1

u2

du3
)

=

∫ u1

0
du2

∫ u2

0
du3 −

∫ u1

0
du3

∫ u3

0
du2

(4.103)
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and since the integrand is invariant under the exchange of u2 ↔ u3, the whole integral in (4.102)

is zero.

It is expected that all higher-order corrections to the leading term (4.97) in the balancing-

source time delay vanish in the classical limit. Again, let it be stressed that this is a reflection

of the fact that there is classically no scattering from the unstable equilibrium point in the

balancing potential. Thus, outside the classical limit, the higher-order terms ∆T (n>1) may be

regarded as the result of diffusion-induced scattering in the quantum problem.

Scattering bounds

Just as in section 4.4.1, the requirement that the higher-order scattering-induced terms ∆T (n>1)
GR (u)

are under control compared to the leading-order GR term ∆T
(1)
GR(u) imposes a time cut-off umax

beyond which we may no longer trust perturbation theory. With the help of the EFT validity

bounds (3.64), we will again find that umax is such that ∆T
(1)
EFT(umax) is unresolvable. Below, we

will determine the parameter “ε” which controls the series expansion of ∆TGR(u). As we will

see, this parameter will grow with time u itself — at early times, the series expansion is under

better control and ∆T
(1)
GR(u) represents a good approximation for ∆TGR(u), but at late times

that approximation begins to fail. The scattering timescale uscatt will be defined as the time at

which it becomes large, ε(uscatt) ∼ 1.

As a concession to simplicity, consider the case of a constant j(u) = j, i.e. a potential with

no time dependence. In fact, not only will this make the expressions in (4.95) less unwieldy, it’s

also the physical scenario with the best chance of violating causality, for two reasons. First, one

of the three EFT validity bounds (3.64c) is automatically satisfied because ∂uH = 0. Secondly,

the metric function H(u,x) is constantly (in time) at its maximum allowed by the third EFT

bound (3.64b) meaning the growth of ∆T
(1)
EFT(u) never slows down due to dips in H. From

the perspective of trying to generate acausality, there is no benefit to varying H(u,x) in time

(e.g. with a sequence of N time-separated shockwaves). While you may gain a longer run

without significant scattering (a bigger umax), you lose out in the magnitude of the integrand of

∆T
(1)
EFT(u).

With this simplification, the u-derivative-terms in expressions (4.95) may be integrated by
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parts so that for u < umax we get, explicitly,

∆T
(1)
GR(u) =− 2

(
− 2π

d
2

Γ
(
d−2
2

)) j ∫ u

0
du1

∫
ddq1
(2π)d

eiq1·b +Θbale
−iq1·b

q2
1

exp
[
−σ

2q2
1

2
− u21q

2
1

8k2vσ
2

]
,

(4.104a)

∆T
(2)
GR(u) =− 2

(
− 2π

d
2

Γ
(
d−2
2

))2

kvj
2

∫ u

0
du1du2

∫
ddq1
(2π)d

ddq2
(2π)d

eiq1·b +Θbale
−iq1·b

q2
1

eiq2·b +Θbale
−iq2·b

q2
2

exp
[
−σ

2

2
(q1 + q2)

2 − 1

8k2vσ
2
(u1q1 + u2q2)

2

]
sin
[

1

2kv
(u1 − u2)q1 · q2

]
,

(4.104b)

∆T
(3)
GR(u) = 2

(
− 2π

d
2

Γ
(
d−2
2

))3

k2vj
3

∫ u

0
du1du2du3

∫
ddq1
(2π)d

ddq2
(2π)d

ddq3
(2π)d

eiq1·b +Θbale
−iq1·b

q2
1

eiq2·b +Θbale
−iq2·b

q2
2

eiq3·b +Θbale
−iq3·b

q2
3

exp
[
−σ

2

2
(q1 + q2 + q3)

2 − 1

8k2vσ
2
(u1q1 + u2q2 + u3q3)

2

]
cos
[

1

2kv
((u1 − u2)q1 · q2 + (u1 − u3)q1 · q3 + (u2 − u3)q2 · q3)

]
(2Θ(u1 − u2)Θ(u2 − u3)−Θ(u2 − u1)Θ(u2 − u3)) ,

(4.104c)

While the cross-terms in the integrands mean these expressions are not readily integrated,

we can estimate the parameter dependence of each ∆T
(n)
GR(u) as long as we make the following

assumptions:

σ � b, (4.105)

u� kvσb. (4.106)

Physically, the first assumption (4.105) corresponds to the (very natural) requirement that the

width of the initial Gaussian wavepacket σ is much smaller than the distance to the source b, or

that the initial configuration is well localised compared to the background profile. The second

assumption (4.106) is that the timescale under consideration u is earlier than the diffusion time

udiff ∼ kvσb (see (4.80) with the first assumption σ � b). This one may not seem like a given —
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why should all the action happen before diffusion has taken hold? — but, as we will check later,

this is the main regime of interest. If it were the case that the scattering timescale came after

the diffusion timescale uscatt > udiff, we would have to find ourselves in a potential so weak that

even the GR time delay is unresolvable (see later).

Scattering before diffusion

By switching to dimensionless integration variables wi = ui/u and pi = bqi, the parameter

dependence of ∆T (n)
GR(u) can be extracted to leading order in σ/b and u/kvσb:

∆T
(1)
GR(u) ∼

ju

bd−2
, (4.107a)

∆T
(2)
GR(u) ∼

j2u3

b2d−2

[
1 + Θbal

(
−1 + a(2)

σ2

b2
+ ã(2)

u2

k2vb
2σ2

)]
, (4.107b)

∆T
(3)
GR(u) ∼

k2vj
3u3

b3d−6

[
1 + Θbal

(
−1 + a(3)

σ2

b2
+ ã(3)

u2

k2vb
2σ2

)]
, (4.107c)

where a(n) and ã(n) are numbers expressed in terms of n(d+ 1) dimensionless integrals (given in

appendix D.3).

There are two notable features of (4.107). Firstly, all higher-order time delays ∆T
(n≥2)
GR (u) in

the balancing case are further suppressed compared to the point-source case. This is a reflection

of the fact that all higher-order terms vanish in the particle limit σ → 0 as discussed in the

previous section. Outside this limit, even a very small initial spread σ will drive growth in the

higher-order corrections due to the diffusion term growing like (u/kvbσ)
2.

The second thing to note is that the ratio of one term ∆T
(n)
GR(u) to the next ∆T

(n+1)
GR (u) is

not the same for all n. The even terms ∆T
(2n)
GR (u) are artificially suppressed by the presence

of an odd sine in their integrands compared to the even cosine in odd terms ∆T
(2n+1)
GR (u). In

other words, the third-order term ∆T
(3)
GR(u) is not necessarily subdominant to the second-order

term ∆T
(2)
GR(u), and so on. This means that the ratio which truly controls the expansion is not

the ratio of one term to the next ∆T
(n+1)
GR (u)/∆T

(n)
GR(u) but instead it is the ratio of even terms

∆T
(2n+2)
GR (u)/∆T

(2n)
GR (u) (or equivalently, the ratio of odd terms ∆T

(2n+1)
GR (u)/∆T

(2n+3)
GR (u)).

Although the explicit parameter dependence of the generic n-th term is not given here, it is

apparent from the general expression (4.96) and the examples (4.107) that the series expansion
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of the time delay is controlled by

ε(u) ∼
∆T

(2n)
GR (u)

∆T
(2n+2)
GR (u)

∼
(
kvju

bd−2

)2

. (4.108)

The S-matrix expansion is under control when ε(u)� 1. The expansion is no longer valid when

ε(u) ∼ 1. Since the higher-order terms represent the effect of scattering, we identify this time

with the scattering timescale and say

ε(uscatt) ∼ 1 =⇒ uscatt ∼
1

kv

bd−2

j
. (4.109)

To compare with the classical estimates, see (4.61), (4.70) and (4.77).

How does this scattering timescale compare to the diffusion timescale? In fact, using the

expressions for the two timescales, (4.80) and (4.109), and the approximation for the leading

order time delay (4.107a), we find

uscatt � udiff ⇐⇒ kv

∣∣∣∆T (1)
GR(udiff)

∣∣∣� 1. (4.110)

In other words, the assumption that scattering takes effect before diffusion is consistent as long as

the GR time delay generated by udiff is resolvable. As the time delay is a monotonically increasing

function of time u, the condition that ∆T (1)
GR(udiff) is resolvable is even weaker than the condition

that ∆T
(1)
GR(uscatt) is resolvable. Simply using (4.107a) to evaluate ∆T

(1)
GR(uscatt) ∼ 1/kv suggests

that the GR time delay is on the edge of resolvability by the time the test wave has scattered.

While we haven’t explicitly calculated the EFT contribution to the time delay in this formalism,

its leading order can generally be estimated as

∆T
(1)
EFT(u) ∼

cGB
b2Λ2

∆T
(1)
GR(u) ∼ cGB

ju

bdΛ2
(4.111)

since the GB Lagrangian is suppressed by R̄/Λ2 compared to the Einstein–Hilbert Lagrangian.

Treating uscatt as the time umax at which we switch off our source, the total EFT time delay

∆T
(1)
EFT(uscatt) ∼

cGB
b2Λ2

1

kv
(4.112)

is evidently unresolvable for |cGB| . O(1) due to the EFT-validity bound bΛ� 1.
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Diffusion before scattering

We have already seen that the assumption uscatt < udiff is self-consistent, and we will now show

that it is actually the only regime of interest. Assuming that we can trust the expressions for

∆T
(n)
GR(u) given in (4.107) all the way up until u ∼ udiff, we can write

∆T
(3)
GR(udiff) ∼ k2v

(
∆T

(1)
GR(udiff)

)3 [
1 + Θbal

(
−1 + a(3)

σ2

b2
+ ã(3)

)]
. (4.113)

Of the parts that are exclusive to the balancing case, ã(3) will dominate over a(3) (σ/b)2, so we can

write-off the totality of the square brackets as an O(1) number plus suppressed corrections. If the

scattering time comes after the diffusion time then, by our definition of scattering, the first-order

term ∆T
(1)
GR(u) should still dominate the series expansion by u = udiff. However, asking for the

third-order term to be sub-dominant,
∣∣∣∆T (3)

GR(udiff)
∣∣∣ < ∣∣∣∆T (1)

GR(udiff)
∣∣∣ leads to the conclusion

∣∣∣∣k2v (∆T (1)
GR(udiff)

)3∣∣∣∣ < ∣∣∣∆T (1)
GR(udiff)

∣∣∣ =⇒ kv

∣∣∣∆T (1)
GR(udiff)

∣∣∣ < 1, (4.114)

the first-order GR time delay is unresolvable. As hinted at previously, we see that if we try to

slow down the effects of scattering for long enough that diffusion takes hold first, then the price

to pay is a potential so weak (i.e. j so small) that even the leading-order GR time delay cannot

be resolved. Since the EFT contribution is further suppressed by 1/b2Λ2 � 1 compared to the

GR contribution, it will certainly not be resolvable.

To summarise the logic of this section: defining the quantum scattering timescale uscatt as the

time at which the series expansion of the time delay ∆T (u) = ∆T (1)(u) + ∆T (2)(u) + . . . stops

being under control ε(uscatt) ∼ 1, the EFT time delay accumulated up until uscatt is unresolvable

kv

∣∣∣∆T (1)
EFT(uscatt)

∣∣∣� |cGB| as long as the EFT validity bounds (3.64) are satisfied.

4.5 Chapter summary

In this chapter, we introduced two notions of causality on a curved spacetime based on the

asymptotic time delay experienced by propagating waves. The first, known as asymptotic

causality, is the condition that the net time delay (GR + EFT) is weakly positive,

∆Tnet & −E−1. (4.115)
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The second, dubbed infrared or IR causality, is the condition that the EFT time delay is weakly

positive,

∆TEFT & −E−1. (4.116)

We argued for the latter as the correct definition of causality based on the fact that it is the

front (and not phase/group) velocity which determines the causality of waves. In addition, we

supported this argument by showing that IR causality correctly reproduces previously known

positivity bounds for the Goldstone boson.

We then applied IR causality to GW propagation on BH and pp-wave spacetimes in the

leading-order EFT of gravity. With various appropriate approximations, we calculated the time

delays experienced by each of the GW polarisations on both spacetimes. There is no choice of

GB Wilson coefficient cGB which ensures ∆TEFT > 0 for all polarisations, thus we instead ask

whether |∆TEFT| is resolvable. Such a question may only be asked within the EFT’s regime

of validity, which was found in section 3.3, otherwise the whole problem loses meaning. In the

case of the BH, showing that |∆TEFT| is indeed unresolvable was a direct application of the

constraints defining the BH regime of validity. In the case of the pp-wave, we additionally need

to cut-off the interaction time of the GW with the background in order to control the scattering

problem. In both cases, we arrived at the same conclusion: the GB operator is causal on these

spacetimes as long as its Wilson coefficient is an order-1 number, |cGB| . O(1). This is the

main result of this portion of the thesis. The methods used to obtain it — the definition of

IR causality, determining the EFT time delay, applying the EFT regime of validity — may be

applied to any effective operator on a curved spacetime.
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Chapter 5

Phase decoherence of gravitational

wave backgrounds

Over the course of the last three chapters, we saw how the phase shift of a scattered gravitational

wave can determine the causality of effective operators in the EFT of gravity. A negative phase

shift/time delay corresponded to faster-than-light signalling and indicated a possible causality

violation. However, if the phase shift were too small to be resolved |δ| � 1 (or |∆T | � ω−1 in

the language of the preceding chapters), then there was no true violation of causality.

For the last section of this thesis, we will find ourselves in the entirely opposite regime:

dealing with very large phase shifts indeed, and taking causality as a given. Our focus remains

on scattered gravitational waves, but we return to the concrete case of D = 4 dimensions, gravity

described strictly by Einstein’s GR, and a perturbatively inhomogeneous cosmological spacetime.

Moreover, we’re upping our game from one gravitational wave to a whole multitude of them

singing in chorus (rather discordantly, as we will see...) from the dawn of time. In this chapter,

we will show how inhomogeneities in the metric of our universe cause the phase decoherence of

the so-called Stochastic Gravitational Wave Background (SGWB).

There are a number of sources of gravitational waves in our universe. Famously, there have

already been a number of direct detections of gravitational waves generated by compact binary

mergers by the LIGO–Virgo–KAGRA collaboration [104–106], starting with GW150914 [5].

However, only very few GW-producing events, relative to their expected occurrence, are loud

enough to be resolved above the background noise in our detectors. The remainder fall below some

effective confusion limit, which is particular to each detector, and form a stochastic background

signal [107]. These overlapping signals from many individual sources form the astrophysical
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component of the SGWB. They are likely to include signals from black hole/neutron star binaries

in their early phases of coalescence, white dwarf binaries, pulsar systems and supernovae [108–114].

This SGWB should act as a tracer for Large Scale Structure [115,116] and sophisticated mapping

techniques are being developed for data from future generations of detectors, [117–119] for

example.

The other component of the SGWB is primordial in origin. These backgrounds were seeded

in the early universe, during inflation or reheating, by (e.g.) phase transitions (electroweak or

otherwise) or topological defects [120,121]. These cosmological SGWBs are the signals we will

be interested in, though the exact mechanism which generated them is not important for our

purposes.

One major difference between the astrophysical SGWB and the cosmological SGWB is that

the latter is expected to be “phase-coherent” at origin, whereas the former is not. The phase of a

GW from some binary merger, for example, is entirely random and there is no reason to expect

any two individual events to share a phase [122,123]. Indeed, causality should ensure that there

is no correlation over large angular scales for signals generated by subhorizon mechanisms (i.e.

astrophysical sources). On the other hand, different patches of the sky were in causal contact

with each other during inflation, meaning signals arriving from different directions could very well

share the same cosmological origin and thus oscillate in-phase. For this reason, an inflationary

SGWB would form a standing wave [124], a feature which would distinguish it from other types

of backgrounds [125].

In principle, this feature of the cosmological SGWB could be tested by coherent GW detectors

such as LIGO and the upcoming LISA [126–128], which measure both the amplitude and phase of

the metric strain h for passing waves. Phase-coherent methods to solve for the underlying signal

using this full wealth of data have already been developed [129–131]. For transient astrophysical

point sources, access to the phase of a GW signal can help determine the direction of the source

on the sky, especially with a network of multiple detectors [132]. And from the above discussion

about the stochastic background, it may seem like phase-coherence in a particular frequency

band could be the smoking gun for a cosmological origin.

Unfortunately, in [3] (and this thesis chapter) we argue that any SGWB would quickly

lose its phase coherence. Before arriving at our detectors, GWs emitted in the early universe

are repeatedly scattered off perturbations in the background metric. As we have seen in

previous chapters, these scattering processes generate a phase shift. The process is analogous
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to the integrated Sachs-Wolfe [133] (or Rees-Sciama [134]) effect for the photons in the Cosmic

Microwave Background (CMB). We will find that at observable frequencies (f & 10−12 Hz), the

total cumulative phase shift along any particular line-of-sight in the sky is very large δ � 1,

typically orders-of-magnitude larger than a single cycle. The result is a phase-profile across the

sky that appears totally random. All information contained in the initial phase-profile of the

background is completely lost.

The consequences are two-fold. The immediate consequence is that phase-coherent methods

have no foreseeable application in mapping the SGWB. The astrophysical background was

never expected to exhibit phase coherence anyway, and now in addition we argue that the

cosmological background loses any phase-coherence it once had. Only intensity-based mapping

techniques [118, 135], which use the square of the detector response h2 and discard the phase

information, are useful for reconstructing SGWBs. The second consequence relates to the

characterisation of SGWBs with higher-order statistics [136–139]. The sky-average of the metric

strain 〈h〉 for the SGWB vanishes due to its own phase-incoherence (in the same way the average

of a centred random variable vanishes). But moreover, the product of any odd number of h’s will

have this (random) phase dependence causing their correlators (e.g. the bispectrum ∼ 〈hhh〉) to

also vanish. As noted also in [140–142], only observables which are quadratic in h have meaning

for a phase-incoherent background.

The rest of this chapter is organised as follows. In the next section, we will derive a standard for-

mula for the phase shift of a GW propagating through the perturbed Friedmann–Lemaître–Robert-

son–Walker (FLRW) spacetime. Then, we define an angular power spectrum for the phase shift.

Finally, with the help of pre-existing software, we illustrate with an example the consequences of

this effectively random phase shift on an initially phase-coherent background.

5.1 Line-of-sight phase shift

As a reminder, we are returning to gravity as described purely by general relativity, i.e. the

Einstein–Hilbert action. Observations of the homogeneity, isotropy and curvature of the universe

suggest that our cosmology is well-described by the flat FLRW metric:

g
(0)
αβdxαdxβ = a2(τ)

(
−dτ2 + dx2

)
(5.1)
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where τ is the conformal time coordinate and a(τ) is the scale factor. The evolution of the scale

factor is determined by the dominant component of energy density of the universe at that time.

It will actually drop out of our calculation of the phase shift, the important point being only

that the background metric is conformally flat.

On top of this background, we introduce two types of perturbations: scalar and tensor. Once

again, their origin is not strictly important to the following discussion, but the standard picture

is that the scalar perturbations were seeded by quantum fluctuations of the so-called “inflaton”

field which drove inflation in the early universe. They are parametrised as

g
(1)
αβdxαdxβ = −2a2(τ)

(
Φ(τ,x)dτ2 +Ψ(τ,x)dx2

)
. (5.2)

We consider these perturbations part of the background (in the sense that we are not interested in

their dynamics) and write the background metric as gαβ = g
(0)
αβ + g

(1)
αβ . The tensor perturbations,

hαβ(τ,x), represent the gravitational waves seeded by whatever primordial means. We ignore

the backreaction of these waves on the background spacetime metric. The total metric is then

gαβ + hαβ.

To leading order, the scalar and tensor perturbations evolve independently. To subleading

order, however, the scalar perturbations leave an imprint on the amplitude, frequency and phase

of the GWs, as calculated in [143]. Over the course of the history of the universe, all three

aspects of the wave are modified by the intervening matter between emission and detection.

The amplitude and frequency both carry interesting information about these line-of-sight effects.

Indeed, the scalar perturbations of the cosmological metric introduce an angular dependence to

the intensity (squared amplitude) of the SGWB, which has been discussed already in [144,145].

The phase shift, on the other hand, is so large as to override any interesting information (e.g.

initial coherence) several times over. We will reproduce the calculation of [143] for this phase

shift below.

We work in transverse-traceless gauge:

h ≡ gαβhαβ = 0, (5.3a)

∇αh
αβ = 0, (5.3b)
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so that the linearised Einstein equations for the metric perturbations are

∇α∇αhµν − 2Rα
µνβh

β
α −Rαµh

α
ν −Rανh

α
µ = 0. (5.4)

We write the metric perturbation tensor as

hαβ ≡ Aαβ e
iϕ ≡ A eαβ eiϕ, (5.5)

where eαβ is the unit-normalised polarisation tensor (eαβeαβ = 1) and A and ϕ are real functions

corresponding to the amplitude and phase of the GW. The GW wavevector can be identified as

kα = ∂αϕ, (5.6)

and so

∇α∇αhµν = [−kαkαAµν + i (2kα∇αAµν +∇αk
αAµν) +∇α∇αAµν ] e

iϕ. (5.7)

At the level of the unperturbed FLRW background metric g(0)αβ , we may follow Isaacson’s

geometric optics approach [146,147], which is equivalent to the high-frequency/eikonal approxi-

mation used in previous chapters. We will use a superscript (0) to indicate quantities at this

zeroth-order in scalar perturbations, so k(0)α is the wavevector of a GW propagating through a

perfectly homogeneous FLRW spacetime. The underlying assumption of Isaacson’s approach

is that the GW varies on scales much shorter than the curvature of the spacetime so that the

geometry may be treated as locally flat. On our cosmological background, this amounts to the

requirement that ε ≡ H/ω � 1 where ω = k
(0)
τ is the wave frequency and H = a′/a2 is the

Hubble parameter. In this sense, both k(0)α and ∇αk
(0)
β are O(ε−1) while the amplitude is treated

as O(ε0). At the same time, the energy is not so large as to warrant consideration of the GW’s

backreaction on the geometry.

The linearised Einstein equations (5.4) can then be studied order-by-order in ε. For our

purposes, all that is relevant is the lowest order, O(ε−2)-equation1, which is the requirement that

k
(0)
α k(0)α = 0. In other words, the GW follows a null geodesic x(0)α(l) with affine parameter l

1We will really only need this O(ε−2) behaviour to describe the phase shift. The next order gives an equation

for the amplitude A of the GW. After some rearranging, and using the fact that eµνe
µν = 1 (and consequently

eµν∇αeµν = 0), the O(ε−1)-equation amounts to

2kα∇α lnA+∇αk
α = 0. (5.8)
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such that
dx(0)α

dl
= k(0)α. (5.9)

The phase shift along this geodesic is determined by the linear-order correction to the wavevector:

d
dl
δϕ =

dxα

dl
∂

∂xα
δϕ = k(0)αk(1)α . (5.10)

The wavevector, in turn, is determined by the geodesic equation:

dkµ

dl
+ Γµ

αβk
αkβ = 0. (5.11)

The Christoffel symbols for the perturbed FLRW metric are

Γτ
ττ =

a′

a
+Φ′ , (5.12a)

Γτ
τi = ∂iΦ , (5.12b)

Γτ
ij =

[
a′

a
(1− 2Φ− 2Ψ)−Ψ′

]
δij , (5.12c)

Γi
ττ = ∂iΦ , (5.12d)

Γi
τk =

[
a′

a
−Ψ′

]
δik , (5.12e)

Γi
kl = ∂iΨδkl − ∂kΨδil − ∂lΨδik , (5.12f)

where prime denotes a derivative with respect to τ and ∂i is a derivative with respect to the

Cartesian coordinate xi. Our conventions for the zeroth-order wavevector are

k(0)µ = ω(1, n̂) and k(0)µ =
ω

a2
(−1, n̂), (5.13)

where ω is the frequency of the GW at emission and n̂ is the unit vector in its direction of travel.

The geodesic equations at first order are given by

dk(1)τ

dl
+

2ωa′

a3

(
n̂ · k(1) − k(1)τ

)
=

2ω

a2
dΦ
dl

+
ω2

a6
∂

∂τ

[
a2(Φ + Ψ)

]
, (5.14a)

dk(1)

dl
− 2ωa′

a3

(
k(1) − k(1)τ n̂

)
=

2ω

a2
dΨ
dl

n̂− ω2

a6
∇
[
a2(Φ + Ψ)

]
. (5.14b)

A second consequence of the O(ε−1)-equation is that the polarisation tensor is parallel-transported along the null

geodesic: kα∇αeµν = 0, which is a standard result for high-frequency GWs.
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Taking the dot product of the second equation with n̂, then adding it to the first gives the simple

result
dk(1)τ

dl
+ n̂ · dk(1)

dl
= ω

d
dl

Φ+Ψ

a2
. (5.15)

Returning to our expression for the phase shift in terms of the linear wavevector (5.10), we have

d
dl
δϕ = k(0)α k(1)α

= ω(k(1)τ + n̂ · k(1))

=
ω2

a2
(Φ + Ψ).

(5.16)

The phase shift can be expressed as a simple line-of-sight (l.o.s) integral in conformal time τ as

δϕ(n̂) = ω

∫
l.o.s

[Φ(τ,x) + Ψ(τ,x)]dτ. (5.17)

The integral should be understood to run from conformal time at emission τe to observation τo

and follow the null trajectory x = (τo − τ)n̂. The cosmological time delay is related to the phase

shift as ∆T = δϕ/ω and represents the extra distance travelled by the GW due to gravitational

wells along its path.

There are two things to note here. The first is that the phase shift will be different for

each direction in the sky, and so waves which were initially in-sync will receive different phase

shifts depending on their direction of origin. In principle, there is some angular correlation

between scalar perturbations as evidenced by the correlations of temperature anisotropies in the

CMB [148]. Naïvely, one might expect those correlations to survive in the phase shifts. However,

the second thing to note is that the phase shift is very large for frequencies typical of primordial

GWs, much larger than a single wave cycle. We will quantify just how large in the next section.

The result is that the apparent phase at observation is effectively randomised, and all possible

correlations (from initial coherence or inherited from large scale structure) is completely washed

out.
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5.2 Decoherence on the sky

The phase shift is determined by the combination

ΦW =
Φ+Ψ

2
(5.18)

known as the Weyl potential. The information contained in the phase shift correlator is captured

by its angular power spectrum Cδϕ
l [149],

Cδϕ
l =

8

π
ω2

∫ ∞

0
dkk2PW (k)|∆W,l(k, τo)|2, (5.19)

where PW (k) is the primordial power spectrum of the Weyl potential,

〈Φ0
W (k)Φ0∗

W (k′)〉 = (2π)3δ(3)(k− k′)PW (k), (5.20)

ΦW (τ,k) is the potential in Fourier space, Φ0
W is its stochastic primordial value and ∆W,l(k, τo)

is its angular transfer function,

∆W,l(k, τo) =

∫ τo

τe

dτjl[k(τo − τ)]
ΦW (τ, k)

Φ0
W (k)

, (5.21)

where jl(x) are spherical Bessel functions. The transfer function is constructed so that it is not

stochastic and is independent of direction on the sky. It simply translates the initial stochastic

distribution (as captured by the power spectrum) from inflation to today. In [3] we use the

best-fit Λ-Cold-Dark-Matter (ΛCDM) cosmology to compute ΦW with CAMB2 [150]. A typical

angular power spectrum is plotted for various emission times in figure 5.1. (All figures in this

chapter come from [3].) The emission time is given in terms of its redshift, z = 1/a− 1, which

is monotonically decreasing over the course of cosmic history. The convention is that redshift

z = 0 corresponds to the present (as does scale factor a = 1) and it increases into the past.

The angular power spectrum for the phase shift converges by ze ∼ 1000, which is to say that

the situation doesn’t change much for earlier emission dates. The source in these plots has a

frequency f(= ω/2π) = 10−9 Hz, characteristic of the pulsar timing array (PTA) band in which

the NANOGrav experiment operates [151].

A measure of the typical phase shift is given by the one-point correlator (or root mean squared
2https://camb.info/
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Figure 5.1: The phase shift angular power spectrum Cδϕ
l for GW sources at various emission

redshifts ze = 1/ae − 1 with a frequency f = 10−9 Hz. The spectrum converges by ze ∼ 1000.

Image from [3].

(rms) value),

δϕ2
rms ≡ 〈δϕ2(n̂)〉 =

∞∑
l=1

2l + 1

4π
Cδϕ
l , (5.22)

where the angular brackets denote sky-averaging (over the direction n̂). At high redshifts

z & 1000, the rms time delay ∆Trms = δϕrms/ω (which is not frequency dependent) is roughly

∆Trms = 0.8 Mpc, in agreement with estimates for the magnitude of the same effect on CMB

photons [152]. At nanoHertz frequencies, this translates to an expected phase shift of δϕ ∼ 106

which, as promised, is very large indeed. A realisation of δϕ for an emission redshift ze = 1000 at

a frequency of f = 10−9 Hz is shown in figure 5.2. Modulo 2π, these massive phase shifts become

completely randomised. In fact, for any source at a redshift ze & 0.01, the expected cosmological

phase shift only approaches O(1) for frequencies below 10−12 Hz. Meanwhile, for any reasonable

frequencies within the bands of our current and planned array of detectors, the phase shift is too

large to be treated perturbatively and cannot be expected to transmit useful information about

the SGWB. We will see an explicit “worked example” of this next.
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Figure 5.2: A realisation of the phase shift δϕ across the sky for a SGWB emitted at redshift

ze = 1000 at a frequency 1 nHz. Along any line of sight, the phase shift is typically orders of

magnitude larger than a single cycle, δϕ� 2π. Image from [3].

5.3 Consequences for signal estimation

The sky maps in figure 5.3 illustrate the decoherence process for an originally coherent SGWB.

A detailed description of each image follows, but in summary: The top line is an example of

a SGWB at emission. The middle line represents the same SGWB after propagating through

the universe and experiencing phase decoherence. The last line is a “smoothed” version of the

middle line, meant to imitate the effect of estimators which effectively average the strain signal

from detectors over the sky.

Top line: In 4-dimensions, GWs have two polarisations: h+ and h×. Both are modelled as

spin-2 realisations of a constant l2Cl power spectrum of equal amplitude for both grad and curl

modes3 [153]. The leftmost images on the top line of figure 5.3 show the real and imaginary

components of the h+-component of the strain. The maps are normalised to unit variance. The

third image shows the corresponding phase colour-coded in the range [−π, π). The angular

correlations of the SGWB are visible in the phase of the original signal. The last image on the

right shows the intensity of original background I = (|h+|2 + |h×|2)/2, also with visible angular

correlations.

Middle line: The same background after propagating through the perturbed FLRW universe.
3https://healpix.jpl.nasa.gov/
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Figure 5.3: An illustration of the decoherence process for an originally coherent SGWB. The top

line contains sky maps of the SGWB at emission — the real and imaginary components of its h+-

polarisation, the phase of this polarisation and the total intensity I = (|h+|2 + |h×|2)/2. All four

show initial angular correlations. The middle line shows the same background after undergoing

phase decoherence by the scalar perturbations in the FLRW universe. The correlations have

been wiped from the linear strain and phase maps but remain in the intensity. The bottom line

represents a “smoothing” of the signal to imitate the effect of finite resolution detectors. Only

the quadratic estimator for the signal (rightmost map) retains any of the original correlation.

Details of how the maps were generated are provided in the main text. Images from [3].
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We ignore corrections to the amplitude of the waves, which are truly perturbative in nature and

have been considered elsewhere [144,145]. The difference in the first three images comes from

the addition of a phase shift δϕ, as represented in figure 5.2. Across the sky, both the real and

imaginary components of h+ have been rotated randomly and the phase has lost all semblance

of coherence. The intensity, on the other hand, is unaffected and retains its correlations.

Bottom line: The finite resolution of our detectors completely erases even the white noise

which remains in the phase signal. Small patches of the sky are averaged over in estimators

which produce SGWB maps. In the bottom line of figure 5.3, the maps from the middle line

have been smoothed by a Gaussian kernel of full-width-half-maximum of ∼ 20 degrees as a

proxy for the limited resolution of observations. Any remaining structure in the linear maps

for h+ are completely washed out. Likewise, if one tries to estimate the intensity from these

smoothed maps (third image), all correlation is lost. Information can only be recovered through

incoherent reconstruction methods which are based on cross-correlation of the data (order h2)

and discards any phase information from the outset. The result is an estimate for the intensity

of the underlying signal which does not vanish in the ensemble limit (fourth image). The original

correlations, now smeared by finite resolution, are still visible in this map.

5.4 Chapter summary

Many inflationary models predict the existence of a cosmological gravitational wave background,

and detecting such a background could be a window into the early universe. It seems likely that

a primordial SGWB would be phase-coherent at generation, raising the possibility of applying

phase-coherent mapping methods (which are already very useful in the case of point-like sources

such as binary mergers). However, in this chapter, we argued that any initial coherence is spoiled

by a cosmological phase shift due to inhomogeneties in the universe.

We calculated the phase shift δϕ along any given line-of-sight n̂ in an FLRW metric with

scalar perturbations, Φ and Ψ. The result for a wave of frequency ω was

δϕ(n̂) = ω

∫
l.o.s

[Φ(τ,x) + Ψ(τ,x)]dτ, (5.23)

where τ is conformal time. We showed that the typical phase shift is very large for detectable

frequencies, δϕ ∼ 106 in the nanoHertz band, and varying across the sky. When added to the

original profile of the SGWB, the result is a completely randomised phase which harbors none of
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the initial coherence. The process from emission to detection is illustrated in figure 5.3.

The consequence is that odd-correlators (including the linear strain map ∼ h or the bispectrum

〈hhh〉) of the observed SGWB signal will vanish due to their randomised phase dependence.

Only quadratic observables (such as the intensity) transmit meaningful information about the

primordial SGWB and only incoherent mapping methods produce a faithful representation of

the SGWB.
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Chapter 6

Discussion

In this thesis we explored what the phase shift of scattered GWs can teach us about gravity.

In chapters 2 – 4, we used the phase shift (more specifically, the associated time delay) as a

diagnostic for the causality of the underlying EFT. We saw how demanding a weak positivity

condition for the time delay could, in principle, constrain certain EFT parameters. We studied

the GB operator (the leading non-trivial correction to GR in vacuum) in depth since its potential

to violate causality has come under scrutiny in recent years. We found that, in practice, the

GB operator does not violate our notion of causality as long as |cGB| . O(1), as expected from

naturalness considerations. In chapter 5, we demonstrated that the very large phase shift induced

over cosmological timescales can destroy the phase coherence of a primordial SGWB. We used

an angular power spectrum to quantify this effect.

The first portion of this thesis ties in to efforts to constrain EFT coefficients in the IR based

on physical assumptions about the UV. In our case, we assumed that any reasonable theory

of quantum gravity would be causal and that this causality would manifest as luminal GW

propagation. We saw that within the leading-order EFT of gravity in vacuum, the propagation

of GWs is modified by the presence of the GB operator. We studied this effect on both BH and

pp-wave spacetimes, with the latter representing a multi-BH configuration via an Aichelburg–Sexl

boost. In both cases, it is unavoidable that at least one polarisation of low-energy GWs will enjoy

superluminal speeds as a result. However, we argued that low-energy superluminality alone was

not enough to declare acausality. Instead, we calculated the scattering time delay experienced by

GWs in these curved spacetimes and again found that some waves will undergo a time advance

compared to the geometry of the background.

We discussed two viewpoints on how to relate the scattering time delay to causality. One

105



perspective is that causality should be defined relative to the asymptotic spacetime — which

is Minkowski in the spacetimes we study. This “asymptotic causality” simply requires weak

positivity of the net time delay so that information cannot travel faster than it would have on

the flat asymptotic region. From this point of view, there would be no issue with a large EFT

time advance |∆TEFT|, so long as it is not larger than the GR time delay |∆TGR|. We argued

in favour of the stronger condition, dubbed “IR causality”, which requires the weak positivity

of the EFT time delay itself. From this point of view, any (resolvable) gain over the GR time

delay represents a violation of causality. The UV modes are assumed (1) to experience the GR

delay and (2) to be luminal, thus cementing the GR timescale on the curved background as the

relevant reference scale, and not the flat asymptotics. To support our claim that IR causality is

the better criteria, we showed that it correctly reproduces the known gravitational positivity

bound for the Goldstone boson.

Regardless of the specific criteria used, it is crucial to remember that it should only be

applied within the EFT’s regime of validity. Any truncated EFT is guaranteed to break down

at high enough energies or small enough distances where microscopic degrees of freedom must

come into play. We defined the EFT regime of validity by a set of bounds on the parameters

of the background spacetime and the probing GW. These bounds emerge by demanding that

the EFT asymptotic series expansion is under control. Pragmatically, it can also be seen that

specific higher-dimension operators would come to dominate outside the limits set by these

bounds. It is only sensible to question the causal properties of the GB operator within the

parameter space where it dominates. Doing so, we found that the EFT time advance generated

by the GB operator is unresolvable on both the BH and pp-wave spacetimes studied, so long as

|cGB| . O(1).

An added subtlety in the case of the pp-wave spacetime is that the scattering process is only

well-defined for a finite amount of time. As a consequence, we only had to worry about the

biggest time advance that can be reasonably generated within that time-frame. We demonstrated

various methods for calculating that time-frame on some representative spacetimes. In the limit

in which the probe GW can be treated as a point particle, the classical argument is simply

that scattering in the transverse directions will bring the probe dangerously close to the source

pp-wave after a finite amount of time. It may seem like this effect can be negated by a special

“balancing” configuration of sources. However, by promoting the probe to a quantum particle

we showed that its wavepacket diffusion will spoil the balance and we return to the previous
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scenario.

It is expected that for any EFT derived as the low-energy expansion of a consistent UV theory

(e.g. the Euler–Heisenberg expansion of QED), any apparent superluminality could be shown to

be unresolvable within that EFT’s regime of validity. Flipped on its head, this statement means

that any genuinely resolvable EFT time advance indicates a bad choice of Wilson coefficients,

ones which could not possibly correspond to a good UV theory. In this sense, low-energy causality

is a viable method for possibly constraining large swathes of the EFT parameter space. The

framework developed in [1, 2] can be applied to generic gravitational EFTs, and the constraints

produced may be tested in future generations of GW and cosmological experiments.

Since the publication of [1], further work has been done on the application of causality to

EFTs. In [39], the authors obtain interesting constraints on scalar EFTs by applying IR causality.

They find that, for now, positivity bounds provide the tighter constraints. However, this does

not preclude the possibility that a more general analysis on a broader (less symmetric) class of

backgrounds could shape up the causality bounds.

The second portion of this thesis relates to the cosmological phenomenon of a gravitational

wave background. A primordial SGWB may have been generated during the inflationary period in

the early universe. It has been argued that such a background could be phase-coherent at origin —

that is, there could have been non-trivial angular correlations in its phase profile. Unfortunately,

between emission and detection, the GWs comprising this background each undergo a series of

scattering events induced by the scalar perturbations to the FLRW metric. The result is adding

an effectively random phase shift, thus thoroughly scrambling the original phase information.

The immediate consequence is that phase-coherent mapping methods will be ineffective at

mapping the SGWB. It had already been noted that the astrophysical background would be

incoherent by default, and now we have shown that the coherence of a primordial background

will be wiped out before detection. The second consequence is that odd-correlators (e.g. the

bispectrum) are expected to vanish due to their residual phase dependence. Thus only statistics

based on even-correlators can be used to characterise the SGWB. Work is ongoing within the LISA

and NANOGrav collaborations to develop accurate mapping methods and tools for statistical

analysis of the SGWB if/when it is detected in the future.

107



Appendix A

Asymptotic time delay in a central

potential

Throughout this thesis we encounter several spherically symmetric scattering problems — the

scalar fields of chapter 2, the Goldstone boson of section 4.2 and GWs scattering off a BH in

section 4.3. (Of course, the first two examples are specifically chosen to have spherical symmetry

in analogy with the third.) Particles propagating through these fields obey a wave equation of

the form
d2χ

dr2
+W (r)χ(r) = 0, (A.1)

where W (r) ∼ ω2 − V (r) is the difference between the kinetic and potential energy, roughly

speaking. There is such an equation describing the motion of each partial wave χl in the spherical

harmonic expansion described for (e.g.) GWs in appendices B.2 – B.4. Unless otherwise specified,

we omit the partial wave label. In this appendix, we use the Wentzel–Kramers–Brillouin (WKB)

approximation to identify the asymptotic phase shift experienced by waves scattering through a

central potential described by W (r)1. From the phase shift, we may then calculate the asymptotic

time delay.
1We will analyse the equation in the standard radial coordinate r ∈ [0,∞). It is well known that changing to

Langer coordinates r = eρ, and thus mapping the source from the origin to −∞, improves the form of the WKB

solution at low energies [58]. In our notation, when combined with a field redefinition of the form χ → e
ρ
2 χ, it

has the effect of mapping W → e2ρW − 1
4
. However, later in the process of calculating the time delay, we will be

making a high-energy approximation anyway and thus negate any effect the change in coordinates would have had.
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A.1 The WKB approximation

The WKB approximation amounts to the assumption that the solution varies (spatially) at a

much slower rate than the background field generating the potential. The derivation below is

due to [154]. To begin with, we insert a bookkeeping parameter ε to track the derivatives of the

wave solution

ε2
d2χ

dr2
+W (r)χ(r) = 0, (A.2)

and at the end we will set ε = 1. The WKB ansatz for the solution is

χ(r) = exp

[
1

δ

∞∑
n=0

δnSn(r)

]
. (A.3)

Inserting this ansatz into (A.2) gives

ε2

1
δ

∞∑
n=0

δnS′′
n +

1

δ2

∞∑
m,n=0

δm+nS′
mS

′
n

+W = 0 (A.4)

where prime denotes derivative with respect to the radial coordinate r. To leading order as

δ → 0, this equation reads
ε2

δ2
S′2
0 = −W (A.5)

Since the RHS depends on neither ε nor δ, we must have δ = ε and thus

S0(r) = ±
∫ r

dr̃
√
−W (r̃). (A.6)

At subleading order in ε we have

2S′
0S

′
1 + S′′

0 = 0. (A.7)

Upon substituting the solution for S0, this equation can be solved for S1 = −1
4 ln|W |+ c. We

will stop at this order with WKB solution (setting ε = 1)

χ(r) =
c+

|W |
1
4

exp

[∫ r

dr̃
√
−W (r̃)

]
+

c−

|W |
1
4

exp

[
−
∫ r

dr̃
√
−W (r̃)

]
. (A.8)

This solution is valid away from any region where W = 0. However, the scattering problems

we deal with will all have a turning point r = rt where the kinetic and potential energy are equal
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and thus

W (rt) = 0. (A.9)

On either side of this turning point, the WKB solution (A.8) is valid, but at the turning point

we must use a different approximation to patch the two solutions together smoothly.

Below the turning point

First, below the turning point r < rt we have a classically forbidden region where W (r < rt) < 0.

In this region, we choose the decaying branch of (A.8):

χbelow(r < rt) ≈
χ̄

(−W (r))
1
4

exp

[
−
∫ rt

r
dr̃
√
−W (r̃)

]
(A.10)

where χ̄ is some constant determining the amplitude.

Near the turning point

Close to the turning point, we expand the function W in its linear Taylor series

W (r) ≈ (r − rt)
dW
dr

∣∣∣∣
r=rt

(A.11)

and define the (in our case, positive) constant

α3 =
dW
dr

∣∣∣∣
r=rt

(A.12)

so that the wave equation takes the form

d2χ

dr2
≈ −α3(r − rt)χ(r). (A.13)

Changing variables to z = −α(r − rt) puts the above equation in the form of an Airy equation

d2χ

dz2
= zχ(z). (A.14)

The solutions to the Airy equation are the so-called Airy functions

χnear(z) = aAi(z) + bBi(z) (A.15)
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whose asymptotic behaviour is known,

Ai(z) ∼


1

2
√
πz

1
4

exp

[
−2

3
z

3
2

]
z � 0

1
√
π(−z)

1
4

sin

[
2

3
(−z)

3
2 +

π

4

]
z � 0

(A.16a)

Bi(z) ∼


1

√
πz

1
4

exp

[
2

3
z

3
2

]
z � 0

1
√
π(−z)

1
4

cos

[
2

3
(−z)

3
2 +

π

4

]
z � 0

(A.16b)

To determine the constants a and b, we must match the near-turning-point solution (A.15) to

the below-turning-point solution (A.10). Evaluating the below-turning-point solution as r ↗ rt,

and rewriting it in terms of z = −α(r − rt), we find

χbelow(r ↗ rt) ≈
χ̄

(−α3(r − rt))
1
4

exp

[
−
∫ rt

r
dr̃
√
−α3(r̃ − rt)

]
≈ χ̄√

α

1

z
1
4

exp

[
−2

3
z

3
2

]
.

(A.17)

Comparing this with the asymptotic behaviour of the Airy functions at z � 0, we see that we

need

a = 2

√
π

α
χ̄, b = 0, (A.18)

for the below- and near-turning-point solutions to connect smoothly.

Above the turning point

Above the turning point, where W (r > rt) is positive, the WKB solution is oscillatory

χabove(r > rt) ≈
c+

W
1
4

exp

[
i

∫ r

rt

dr̃
√
W (r̃)

]
+

c−

W
1
4

exp

[
−i
∫ r

rt

dr̃
√
W (r̃)

]
. (A.19)

The constants c± must be determined by matching onto the near-turning-point solution as r ↘ rt.

Again, in terms of z = −α(r − rt), we have

χabove(r ↘ rt) ≈
c+√
α

1

(−z)
1
4

exp

[
2i

3
(−z)

3
2

]
+

c−√
α

1

(−z)
1
4

exp

[
−2i

3
(−z)

3
2

]
. (A.20)

111



Comparing this with the z � 0 asymptotic form of the near-turning-point solution (A.15), and

the required choice of a and b (A.18) for matching with the below-turning-point solution, gives

us the “WKB connection formula”:

c+ = 2χ̄
e

iπ
4

2i
, c− = −2χ̄e

− iπ
4

2i
. (A.21)

Note that dependence on the constant α has dropped out.

The upshot of this derivation is that in the classically allowed region of interest, the WKB

solution to (A.1) is

χabove(r > rt) ≈
2χ̄

W
1
4

sin

[∫ r

rt

dr̃
√
W (r̃) +

π

4

]
. (A.22)

A.2 Asymptotic phase shift in the eikonal limit

The solution to the spherically symmetric Schrödinger problem has known asymptotic form, for

each partial wave l. Temporarily reinstating the partial wave label, it is

χl
r→∞∼

(
e2iδleiωr + eiπleiπ(D−2)/2e−iωr

)
, (A.23)

where δl is the l-dependent asymptotic phase shift. In a vacuum Minkowski spacetime, the phase

shift is zero, by definition. The phase shift due to the source Wl(r) can be identified by matching

the solution calculated in the previous section (A.22) with this asymptotic form to find

δl(ω) =

∫ ∞

rt

(√
Wl(r)− ω

)
dr − ωrt +

π

2

(
l +

D − 3

2

)
, (A.24)

where both Wl(r) and the turning point rt are implicitly dependent on ω and l.

To make progress, we will split W into two parts: there is a part which would be present

in a Minkowski vacuum (due to coordinate choice) and there is a part due to the source of the

external field (Galileon, Goldstone or gravitational). Sufficiently far away from the source, in

a weak field limit, we may treat the source term as a perturbation to the coordinate term and

thereby isolate the phase shift due to the source. First, we calculate that term which is present

even when the source is “switched off” due to the coordinate choice and show how the phase

shift vanishes in this case.
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In vacuum Minkowski spacetime

In a Minkowski vacuum, a scalar perturbation φ (specifically, some partial wave φl of the scalar

perturbation) experiences an apparent potential simply due to the spherical coordinates. Its

equation of motion is

∇2φ = 0 =⇒ ∂2φ

∂r2
+

(D − 2)

r

∂φ

∂r
+

(
ω2 −

κ2S
r2

)
φ = 0 (A.25)

where −κ2S is the scalar eigenvalue of the Laplace–Beltrami operator on the (D − 2)-sphere and

takes discrete values

κ2S = l(l +D − 3), l = 0, 1, 2, . . . . (A.26)

Rescaling the field as φ = r−
D−2
2 χ puts the equation in the form of (A.1) with

Wcoord(r) = ω2 − 1

r2

(
l +

D − 3

2

)2

+
1

4r2
. (A.27)

The subscript “coord” indicates that the non-zero effective potential is due to the spherical

coordinate choice. By convention, we define the impact parameter as

b =
1

ω

(
l +

D − 3

2

)
. (A.28)

At high-l (or high frequencies), the impact parameter represents a good approximation to the

turning point. Had we worked in Langer coordinates r = eρ [58] instead of the traditional

radial coordinate, the turning point for the corresponding Langer field χL = e−
ρ
2χ would be

exactly equal to the impact parameter at all l. In those improved coordinates, where the WKB

approximation does well even at low-l, we would see the exact vanishing of the phase shift of the

Langer field in vacuum Minkowski spacetime. As it is, for the sake of sticking to one coordinate

system, we will satisfy ourselves with the high-energy regime where

Wcoord(r) ≈ ω2

(
1− b2

r2

)
+O

(
l0

r2

)
(A.29)

and rt ≈ b. At high energies, the phase shift is thus

δ ≈ ω
∫ ∞

b

(√
1− b2

r2
− 1

)
dr − ωb+ π

2
ωb = 0, (A.30)
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i.e. the phase shift of a wave perturbation in vacuum Minkowski spacetime vanishes, as promised.

With a source

In the suitable weak field limit — which will depend on the scenario — we may write

W (r) =Wcoord(r) +Wsource(r) (A.31)

and treat the source as a small correction term. The turning point W (rt) = 0 depends on the

source as

ω2b2 = ω2r2t + r2tWsource(rt) (A.32)

and thus expanding the integral term in (A.24) is not straightforward. The solution, coming

from appendix C of [36], is to use the relationship between b and rt to write (in the high-energy

limit)

Wcoord ≈ ω2

(
1− r2t

r2

)
− r2t
r2
Wsource(rt) (A.33)

so that, to linear order in Wsource, the phase shift is

δ ≈
∫ ∞

rt

(√
ω2

(
1− r2t

r2

)
− ω

)
dr − ωrt +

π

2
ωb

+
1

2

∫ ∞

rt

1√
ω2
(
1− r2t /r2

) (Wsource(r)−
r2t
r2
Wsource(rt)

)
dr.

(A.34)

Performing the integrals (where the integrand is explicit) gives

δ =
π

2
ω(b− rt)−

π

4ω
rtWsource(rt) +

1

2ω

∫ ∞

rt

Wsource(r)√
1− r2t /r2

dr. (A.35)

Now note that from (A.32) we can recognise the difference between the impact parameter and

the turning point as a linear order term,

b− rt =
r2t
ω2

Wsource(rt)

b+ rt
≈ b

2ω2
Wsource(b). (A.36)
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In terms linear in Wsource, the turning point rt may be replaced with the impact parameter b

without affecting this order in the expansion. The resulting phase shift is

δ =
1

2ω

∫ ∞

b
dr Wsource(r)√

1− b2/r2
. (A.37)

This is the main result of this appendix and is referred to several times throughout the main text.

A.3 Time delay from phase shift

The phase shift depends on three parameters: the conserved energy ω, the impact parameter b

and the partial wave number l (though this last one is hidden in Wsource). These three parameters

are not all independent and are related by (A.28). There are thus two reasonable definitions of

time delay: one at fixed impact parameter

∆Tb = 2
∂δ

∂ω

∣∣∣∣
b

, (A.38)

and one at fixed partial wave number

∆Tl = 2
∂δ

∂ω

∣∣∣∣
l

. (A.39)

The two are very similar, differing usually in numerical factors. In this thesis, we will use the

latter definition ∆Tl for the time delay as it is best suited to the spherically symmetric problem.

Both get used in the literature — in particular, [31] considers the fixed-b time delay.

The factor of 2 appearing in the formulae for time delay accounts for the fact that the

definition of δ in (A.24) only captures half the total journey, from the turning point rt to +∞

rather than from −∞ to +∞ as intended.

A.4 Example: Shapiro time delay

To see the above formalism in action, we will calculate the time delay due to a D-dimensional

Schwarzschild black hole in GR (i.e. without any EFT corrections). This is famously known as

the Shapiro time delay, the fourth classical test of GR. Consider the Schwrazschild black hole

metric

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

D−2, (A.40)
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where dΩ2
D−2 is the line element on the (D − 2)-sphere and

f(r) = 1−
(rg
r

)D−3
. (A.41)

The Schwarzschild radius is rg and the weak field limit in this case corresponds to passing far

away from the black hole so that rg/r � 1. In vacuum, the BH potential experienced by any

massless particle is the same and can be obtained from (e.g.) the Goldstone scalar calculations,

(4.20) with B2 = A−2 = f and c = 0, or the high-energy, weak-field, GR (cGB = 0) limit of

(4.45). At leading order in ω, we have

W = ω2

(
1− b2

r2

)
︸ ︷︷ ︸

Wcoord

+ω2
(rg
r

)D−3
(
2− b2

r2

)
︸ ︷︷ ︸

WBH

, (A.42)

with WBH the stand-in for Wsource. The phase shift due to the BH source according to (A.37) is

thus

δBH =
ωrD−3

g

2

∫ ∞

b
dr 1

rD−3

2− b2/r2√
1− b2/r2

=

√
πΓ
(
D
2

)
2(D − 4)Γ

(
D−1
2

) ωrD−3
g

bD−4

=
(D − 2)

√
πΓ
(
D−4
2

)
4(D − 3)Γ

(
D−3
2

) ωrD−3
g

bD−4

(A.43)

where we have used a property of the gamma function, Γ(n + 1) = nΓ(n), to move from the

second to last line. At a fixed-l, the impact parameter must be replaced with (A.28) so that

δBH ∝ ωD−3 and the D-dimensional Shapiro time delay is

∆TBH =
(D − 2)

√
π

2

Γ
(
D−4
2

)
Γ
(
D−3
2

) (rg
r

)D−3
b. (A.44)
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Appendix B

The Schwarzschild metric and its

master equations

B.1 Background metric

The general spherically symmetric solution to Lovelock gravity was found in [76, 79, 155]; the

latter of these also proved Birkhoff’s theorem for Lovelock gravity, i.e. that such solutions are

static. For our purposes, we are interested in the Schwarzschild-like solution to just EGB theory.

To this end, consider the general spherically symmetric, static metric ansatz

ds2 = −f(r)dt2 + g(r)dr2 + r2dΩ2
D−2 (B.1)

which has non-zero Riemann tensor components

Rtrtr =
2ff ′′g − f ′2g − ff ′g′

4fg
, (B.2a)

Rtatb =
f ′

2rg
gab, (B.2b)

Rrarb =
g′

2rg
gab, (B.2c)

Rabcd =
g − 1

r2g
(gacgbd − gadgbc) . (B.2d)

As a reminder, the indices {a, b, c, . . . } label directions on the (D − 2)-sphere and gab = r2γab

where γab is the metric on the (D − 2)-sphere. Prime indicates a derivative with respect to the
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radial coordinate r. The non-zero Ricci tensor components are

Rtt =
2ff ′′g − f ′2g − ff ′g′

4fg2
+ (D − 2)

f ′

2rg
, (B.3a)

Rrr =
−2ff ′′g + f ′2g + ff ′g′

4f2g
+ (D − 2)

g′

2rg
, (B.3b)

Rab =

(
fg′ − f ′g
2rfg2

+ (D − 3)
g − 1

r2g

)
gab, (B.3c)

and the Ricci scalar is

R =
−2ff ′′ + f ′2g + ff ′g′

2f2g2
+ (D − 2)

fg′ − f ′g
rfg2

+ (D − 2)(D − 3)
g − 1

r2g
. (B.4)

In terms of this ansatz, the GB operator is easily calculated:

R2
GB = (D − 2)(D − 3)

[
(g − 1)(−2ff ′′g + f ′2g + ff ′g′)

r2f2g3
− 2

f ′g′

r2fg3

+ (D − 4)(D − 5)
(g − 1)2

r4g2
+ 2(D − 4)

(g − 1)(fg′ − f ′g)
r3fg3

]
.

(B.5)

The metric (B.1) should be a solution to the EGB equations (3.5). To find the ordinary

differential equations (ODEs) governing the behaviour of f(r) and g(r), we substitute the above

ansatz directly into the EGB action (3.4) and demand that it is stationary with respect to

variations in these functions1. The result is two first order ODEs:

0 = g′
(
1 + 4(D − 3)(D − 4)

cGB
Λ2

g − 1

r2g

)
+ (D − 3)

g(g − 1)

r

(
1 + 2(D − 4)(D − 5)

cGB
Λ2

g − 1

r2g

)
,

(B.6a)

0 = f ′
(
1 + 4(D − 3)(D − 4)

cGB
Λ2

g − 1

r2g

)
− (D − 3)

f(g − 1)

r

(
1 + 2(D − 4)(D − 5)

cGB
Λ2

g − 1

r2g

)
.

(B.6b)

Combining these two equations gives
f ′

f
= −g

′

g
, (B.7)

and the condition that the solution be asymptotically flat (i.e. g(r →∞) = f(r →∞) = 1) fixes

g =
1

f
. (B.8)

1The VariationalMethods package of Mathematica was used to perform this calculation.
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To find the solution for f(r), consider the ansatz

f(r) = 1− r2ψ(r). (B.9)

Now, the equation for ψ(r) can be written in the form

2(D − 3)(D − 4)
cGB
Λ2

(ψ2)′ + ψ′ = −D − 1

r

(
2(D − 3)(D − 4)

cGB
Λ2

ψ2 + ψ
)
, (B.10)

so that the solution obeys the functional equation

2(D − 3)(D − 4)
cGB
Λ2

ψ2 + ψ =
rD−3
g

rD−1
, (B.11)

where the integration constant has been chosen appropriately.

Finally, since we are working in the context of an EFT expansion, the function ψ(r) can

be solved for perturbatively in powers of Λ−1 by plugging the GR (cGB = 0) solution, ψ(r) =

rD−3
g /rD−1, back into the first term on the left-hand side of (B.11) to obtain (3.8).

B.2 Tensor modes

Over the next three subappendices, we derive the tensor/vector/scalar master variables respec-

tively and calculate their master equations. For each mode, we first outline how the calculation

was done explicitly in D = 5-dimensions, with the help of Mathematica. The results in general

D-dimensions come courtesy of Dotti and Gleisir [77, 78].

Following similar notation to [87], the tensor-type metric perturbations are expanded in terms

of tensor spherical harmonics Tab on SD−2, which satisfy

(
∆̂D−2 + κ2T

)
Tab = 0, (B.12a)

Ta
a = 0, D̂aTa

b = 0, (B.12b)

where −κ2T is the eigenvalue of ∆̂D−2 acting on the tensor Tab, and takes discrete values:

κ2T = `(`+D − 3)− 2, ` = 1, 2, . . . . (B.13)

All mode numbers (e.g. `) that could label Tab have been suppressed. For each such tensor, the
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tensor-type metric perturbations can be written at each ` as

hAB = 0, hAa = 0, hab = 2r2HTTab. (B.14)

It is clear that the only tensor-mode freedom is in the function HT ≡ HT (t, r). The dynamics of

HT are governed by the perturbation equation δEab = 0.

B.2.1 5-dimensions

The xTras package for xAct [156, 157] in Mathematica was used to find the first perturbation of

Eαβ (3.5) in terms of hαβ and its derivatives. The package Ricci.m [158] was used to calculate

the background Riemann/Ricci tensors etc. explicitly in coordinates in 5-dimensions. Simple

methods were developed to turn covariant derivatives into coordinate expressions in Mathematica.

The result is 15 differential equations for HT and the components of Tab. The transverse-traceless

constraints and the eigenvalue equation for the spherical harmonics (B.12) were implemented

by hand to remove all dependence on Tab. This leaves just one independent equation for the

function HT coming from any of the ab-equations δEab = 0,

0 =

(
1− 8cGBµ

(rg
r

)2
rf ′
)(
−∂

2HT

∂t2
+
∂2HT

∂r2

)
+

(
3f

r
(f + rf ′) + 16cGBµ

(rg
r

)2(f2
r
(1− f)− ff ′

2
(2f − rf ′

))
∂HT

∂r

− f

r2
(
κ2T + 2

)(
1 + 16cGBµ

(rg
r

)2
(1− f)

)
HT .

(B.15)

We always work only to linear order in µ, the leading order in the EFT. Finally, to bring this

equation into the appropriate form we rescale HT ,

ΦT = r3/2
(
1− 4cGBµ

(rg
r

)4)
HT . (B.16)

The master equation for ΦT is then

�2ΦT −
VT
f

ΦT = 0. (B.17)

where the potential in 5-dimensions is identified as

VT
f

=
1

r2

[
κ2T +

11

4
+

9

4

(rg
r

)2
+ cGBµ

(rg
r

)4(
32κ2T + 32 + 31

(rg
r

)2)]
. (B.18)
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B.2.2 Arbitrary dimensions

In general D ≥ 5-dimensions, the tensor master variable and master equation in this EFT can be

obtained from the results of [77] by expanding to linear order in the GB parameter they call “α”

≡ 4cGB/Λ
2. As in 5-dimensions, the master variable is related to the function HT by a simple

rescaling:

ΦT = r(D−2)/2

(
1− 4(D − 4)cGBµ

(rg
r

)D−1
)
HT . (B.19)

The master equation is then of the form (4.54) where, to linear order in µ, the potential for this

master variable is

VT
f

=
1

r2

[
κ2T

(
1 + 8(D − 1)cGBµ

(rg
r

)D−1
)

+
D(D − 6) + 16

4

(
1− 32(D − 1)(D − 6)

D(D − 6) + 16
cGBµ

(rg
r

)D−1
)

+
(D − 2)2

4

(rg
r

)D−3
(
1− 6(D − 4)(D2 − 7D + 4)

D − 2
cGBµ

(rg
r

)D−1
)]

.

(B.20)

B.3 Vector modes

The vector-type metric perturbations are expanded in terms of transverse vector spherical

harmonics Va on SD−2, which satisfy

(
∆̂D−2 + κ2V

)
Va = 0, (B.21a)

D̂aVa = 0, (B.21b)

where −κ2V is the eigenvalue of ∆̂D−2 acting on the vector Va and takes discrete values2:

κ2V = `(`+D − 3)− 1, ` = 1, 2, . . . . (B.22)

All mode numbers (i.e. `) that could label Va have been suppressed. For each vector, the

vector-type metric perturbations can be written at each ` as

hAB = 0, hAa = rfAVa, hab = 2r2HTVab, (B.23)
2The ` = 1 vector harmonic corresponds to rotational perturbations of the BH and not a dynamical degree of

freedom.
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where

Vab = −
1

2κV

(
D̂aVb + D̂bVa

)
. (B.24)

Identifying the master variable for vectors is a more involved process than it was for tensors

because of the non-trivial hAa components.

B.3.1 5-dimensions

As with the tensor modes, a combination of the xTras [156] and Ricci.m [158] packages were

used to render the equations δEαβ = 0 explicitly in coordinates for D = 5 in Mathematica. The

transverse condition and eigenvalue equations (B.21) for the vector spherical harmonics were

implemented by hand to make explicit the structure of the harmonic expansion in the perturbation

equations. In particular, we have that δEAB is identically zero due to the vectors being transverse.

The other equations are

δE ta =
rVa

2

[(
1− 4cGBµ

(rg
r

)2
(rf ′ + r2f ′′)

)
∂2rft

+

(
3 + 4cGBµ

(rg
r

)2
(4(1− f)− 3rf ′ − r2f ′′)

)
∂rft
r

−
(
(κ2V − 2)

(
1 + 4cGBµ

(rg
r

)2
(2(1− f)− rf ′)

)
+ f

(
3 + 4cGBµ

(rg
r

)2
(7− 4f − 3rf ′ − r2f ′′)

))
ft
r2f

−
(
4 + 8cGBµ

(rg
r

)2
(2(1− f)− 2rf ′ + r2f ′′)

)
∂tfr
r

−
(
1− 4cGBµ

(rg
r

)2
(rf ′ + r2f ′′)

)
∂t∂rfr

− (κ2V − 2)

(
1 + 4cGBµ

(rg
r

)2
(2(1− f)− rf ′)

)
∂tHT

rf

]
,

(B.25a)

δEra =
rVa

2

[(
1− 4cGBµ

(rg
r

)2
(rf ′ + r2f ′′)

)(
∂2t fr − ∂t∂rft +

∂tft
r

)
+
f

r2
(κ2V − 2)

(
1 + 4cGBµ

(rg
r

)2
(2(1− f)− rf ′)

)
(fr + r∂rHT )

]
,

(B.25b)
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δEab = D̂aVb

[(
rf ′ − 8cGBµ

(rg
r

)2
(2f2 + r2f ′2)

)(
fr
r2

+
∂rHT

r

)
+ 2f

(
1 + 4cGBµ

(rg
r

)2
(2− rf ′)

)
fr
r2

+ f

(
3 + 16cGBµ

(rg
r

)2
(1− rf ′)

)
∂rHT

r

+

(
1− 8cGBµ

(rg
r

)2
rf ′
)(

f
∂rfr
r

+ f∂2rHT −
∂tft
rf
− ∂2tHT

f

)]
.

(B.25c)

From the initial parametrisation, we then construct the variables

FA = fA + rDAHT . (B.26)

Substituting the fA for FA and the background solution for f(r) in the perturbation equations

has the effect of removing HT from the equations altogether.

δE ta =
rVa

2

[(
1 + 8cGBµ

(rg
r

)4)
∂2rFt +

(
3 + 8cGBµ

(rg
r

)4) ∂rFt

r

−
(
(κ2V + 1)

1− 3
( rg

r

)3
1−

( rg
r

)2 + 2cGBµ
(rg
r

)4(
(κ2V − 2)

( rg
r

)2(
1−

( rg
r

)2)2 − 4

))
Ft

r2

−
(
1− 8cGBµ

(rg
r

)4)
∂t∂rFr −

(
4 + 4cGBµ

(rg
r

)4) ∂tFr

r

]
(B.27a)

δEra =
rVa

2

[(
1 + 8cGBµ

(rg
r

)4)(
∂2t F − r − ∂t∂rFt +

∂tFt

r

)
+ (κ2V − 2)

(
1−

(rg
r

)2
+ 2cGBµ

(rg
r

)6) Fr

r2

] (B.27b)

δEab = D̂aVb

[
−
(
1− 4cGBµ

(rg
r

)2(
4− 5

(rg
r

)2)) ∂rFr

r
+

(
2 + 48cGBµ

(rg
r

)6) Fr

r2

−
(
1 + 4cGBµ

(rg
r

)2(
4− 3

(rg
r

)2)) ∂tFt

r

] (B.27c)

The last of these, δEab = 0 (B.27c), may be rearranged to get ∂tFt in terms of Fr and its

r-derivative. Substituting this into δEra = 0 (B.27b) gives one second order partial differential

equation (PDE) for Fr(t, r). The remaining equation δE ta = 0 is automatically inferred from the

other two. The master variable is then related to Fr as

ΦV = r1/2
(
1− 4cGBµ

(rg
r

)4)
f(r)Fr, (B.28)
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such that the equation for Fr becomes the master equation

�2ΦV −
VV
f

ΦV = 0. (B.29)

The vector potential in D = 5-dimensions is

VV
f

=
1

r2

[
κ2V

(
1− 16cGBµ

(rg
r

)4)
+

7

4

(
1 +

640

7
cGBµ

(rg
r

)4)
− 27

4

(rg
r

)2(
1 +

760

27
cGBµ

(rg
r

)4)]
.

(B.30)

B.3.2 Arbitrary dimensions

To find the vector master variable in D-dimensions, we begin by defining the gauge invariant

variables3

FA = fA +
r

κV
DAHT . (B.31)

as per [87] and [78]. The master variable ΦV is directly related to Fr as [78]

ΦV = r(D−6)/2

(
1− 4(D − 4)cGBµ

(rg
r

)D−1
)
f(r)Fr, (B.32)

and its potential is

VV
f

=
1

r2

[
κ2V

(
1− 4(D − 1)(D − 4)cGBµ

(rg
r

)D−1
)

+
D(D − 6) + 12

4

(
1 + 16

(D − 1)(D − 4)(3D − 5)

D(D − 6) + 12
cGBµ

(rg
r

)D−1
)

− 3(D − 2)2

4

(rg
r

)D−3
(
1−

2(D − 4)
[
5D3 − 57D2 + 134D − 88

]
3(D − 2)2

cGBµ
(rg
r

)D−1
)]

.

(B.33)

B.4 Scalar modes

The scalar-type metric perturbations are expanded in terms of scalar spherical harmonics S on

SD−2, which satisfy (
∆̂D−2 + κ2S

)
S = 0, (B.34)

3Note this definition for FA in D-dimensions differs from the corresponding definition in 5d by a factor of κV ,

which was omitted in the 5d case for computational ease in Mathematica.
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where κ2S is the eigenvalue of ∆̂D−2 acting on the scalar S and takes discrete values4:

κ2S = `(`+D − 3), l = 0, 1, 2, . . . . (B.35)

All mode numbers (e.g. `) that could label S have been suppressed, as before. For each `, the

scalar-type metric perturbations can be written as

hAB = fABS, hAa = rfASa, hab = 2r2 (HLγabS+HTSab) , (B.36)

where

Sa = − 1

κS
D̂aS, (B.37a)

Sab =
1

κ2S
D̂aD̂bS+

1

D − 2
γabS. (B.37b)

B.4.1 5-dimensions

The equations describing scalar perturbations are long and unwieldy. As such, this section

is largely schematic with explicit equations provided only for the end result. Once again, a

combination of the xTras [156] and Ricci.m [158] packages were used to render the equations

δEαβ = 0 explicitly in coordinates for D = 5 in Mathematica. There is no transverse/traceless

condition for the scalars, but still the eigenvalue equation (B.34) must be implemented to render

apparent the structure of the harmonic expansion. There are seven coupled equations for the

seven variables appearing in the parametrisation of the scalar modes (B.36),

δEAB ∝ S → 3 equations,

δEAa ∝ D̂aS → 2 equations,

δEab ∝ D̂aD̂bS (a 6= b) → 1 equation,

and 1 equation from the diagonal components δEaa (no sum), which has complicated dependence

on D̂aD̂bS and the metric.

As for the vectors, a stepping stone towards identifying the master variables in terms of the
4The ` = 0 scalar harmonic corresponds to a shift in the BH mass, while the ` = 1 scalar harmonic turns out to

be pure gauge [87], so neither are dynamical.
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functions in (B.36) is constructing the following gauge-invariant quantities:

F = HL +
1

3
HT +

1

r
DArXA, (B.38a)

FAB = fAB +DAXB +DBXA, (B.38b)

XA =
r

κS

(
fA +

r

κS
DAHT

)
. (B.38c)

Making this field redefinition, and using the explicit background solution for f(r), removes

dependence on {HT , fA} from the equations. This leaves just four variables {F, FAB}. The

equation δEab = 0 can be rearranged to obtain Ftt in terms of F and Frr and their derivatives.

The equation δE tr = 0 can be rearranged to obtain Ftr in terms of F and Frr and their derivatives.

The equations δErr = 0, δE tt = 0 and δEra = 0, may then be massaged to give Frr in terms of F

and its derivatives. This leaves us with fives PDEs for one function F (t, r). Furthermore, it can

be shown that δErr is proportional to δE tt and δE ta is proportional to its t-derivative. Thus, we

are down to three equations: δE tt = 0, δEra = 0 and δEaa = 0 (no sum).

The master variable must be related to F . To identify it, we need to find a change of variables

of the form

F (t, r) = α(r)ΦS(t, r) + β(r)∂rΦS(t, r) (B.39)

such that a second order PDE for ΦS of the form

∂2tΦS = A(r)ΦS +B(r)∂rΦS + C(r)∂2rΦS (B.40)

consistently implies all of the above three equations for F are simultaneously satisfied. We

have the freedom to choose B(r) by rescaling ΦS accordingly, so we choose B(r) = f(r)f ′(r), to

mimic the derivative structure of �2ΦS . We use (B.40) to eliminate ∂2tΦS (and some derivatives

thereof) from the remaining three perturbation equations. Then, demanding that the 5th order

terms (in particular, the coefficient of ∂2t ∂3rΦS) should vanish from δEra allows us to solve for

C(r) = f(r)2. Demanding that the 4th order terms should vanish allows us to solve for β(r):

β =
1

r1/2

(
1−

(rg
r

)2
+ 4cGBµ

(rg
r

)4)
. (B.41)

Demanding that the 3rd order terms should vanish allows us to solve for A(r) in terms of α(r)

and α′(r). Finally, demanding that the 2nd and 1st order terms vanish (separately) allows us to
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solve for α(r),

α =
1

6r1/2H

[
2κ4S − 3κ2S − 9 + 9(κ2S − 5)

(rg
r

)2
+ 54

(rg
r

)4]
+
2

3
cGBµ

(rg
r

)4 r1/2
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)2
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(rg
r

)4
+ 864

(rg
r

)6 ]
,

(B.42)

where

H ≡ H(r) = κ2S − 3 + 6
(rg
r

)2
. (B.43)

The scalar master variable now satisfies the master equation

�2ΦS −
VS
f
ΦS = 0, (B.44)

where the potential is −A(r) and given by

VS
f

=
1

4r2H2
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(κ2S − 3)2(4κ2S + 3) + 9(κ4S − 18κ2S + 45)

(rg
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+ 162(7κ4S − 106κ2S + 255)

(rg
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)4
+ 108(47κ2S − 269)
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)6
+ 6696

(rg
r

)8 ]
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(B.45)

Only one perturbation equation (δEra = 0) was used to derive the master equation, but it was

checked that the other two (δE tt = 0 and δEaa = 0) are also satisfied.

B.4.2 Arbitrary dimensions

For the scalar master equation in D-dimensions, we use the results of [82] for Lovelock theory

and set only the GB coefficient (“a2”) to be nonzero5. They work in a gauge in which fA = 0

and HT = 0. Note, with this choice of gauge, the functions F (r) and HL(r) are equal (B.38a).
5The previously referenced [78] also derives the scalar master variable but does not provide an explicit expression

for the potential.
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The master variable ΦS is directly related to HL via a change of variables of the form

HL = α(r)ΦS + β(r)∂rΦS , (B.46)

such that all components of the perturbed EGB equations (3.18) are automatically satisfied

when ΦS obeys the master equation (3.28). To leading order in µ, we need [82]

α(r) =
1

4(D − 2)r
D−2
2 H

[
2
(
κ2S − (D − 2)
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(B.47)

where

H ≡ H(r) = κ2S −D + 2 +
(D − 1)(D − 2)

2

(rg
r

)D−3
, (B.48)

and

β(r) =
1

r
D−4
2

[
1−

(rg
r

)D−3
+ 4(D − 4)cGBµ

(rg
r

)D−1
(
1 +

D − 5

2
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)]
. (B.49)

The scalar potential is

VS
f

=
1

16r2H2
VGR +

D − 4

16H3r2
cGBµ

(rg
r

)D−1
VGB, (B.50)
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where the contribution from GR is given by

VGR = 4
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(rg
r

)3(D−3)
,

(B.51)

and that from the GB term by

VGB = − 128(D − 1)
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)4(D−3)
.

(B.52)

B.5 Higher-dimension operators

At the end of section 3.3.1, we gave an explicit example of an operator in a generic EFT

expansion whose sub-dominance to the GB operator reproduced an EFT validity requirement.

In this appendix, we motivate our choice of dimension-8 operator above a dimension-4 or -6

operator. We also derive its leading-in-κT contribution to the effective potential by tracking the

highest-derivative terms and perturbatively replacing them with the lower-order equations.

B.5.1 Dimension-4 operators

It transpires that dimension-4 and -6 operators do not produce higher-derivative terms in the

tensor master equation due to the symmetry of the background and the transverse-traceless

condition of tensor perturbations. Higher-derivatives are necessary to produce non-trivial energy

bounds. Rather than explicitly calculating perturbations of such terms in this next and the
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section, we will just outline why they lack higher-derivatives.

The dimension-4 operators which we neglect

LD4 ∼
R2

Λ2
,
R2

αβ

Λ2
, (B.53)

are suppressed in vacuum so enter the EFT equations of motion at O(µ2). By dimensional

analysis, they may introduce terms of the schematic form

∇4h, R∇2h, R4h. (B.54)

Of these, obviously only the first has the potential for fourth-derivatives. It may appear in the

equation δEαβ = 0 as

∇4h → �2hαβ, �∇α∇σhσβ , �∇α∇βh
σ
σ. (B.55)

The last term vanishes because tensor modes are traceless hσσ = 0, and the middle term vanishes

becasue tensor modes are transverse ∇σhσβ = 0. In all three possibilities, we are forced to

contract at least two covariant derivatives. Using the leading GR equations, �hαβ ≈ 0, we see

that the first term is doubly suppressed and so doesn’t contribute until a higher order.

B.5.2 Dimension-6 operators

Similarly, the dimension-6 operators LD6 ∼ R3/Λ4 (not listed here), produce terms in the

equation of motion of the form

∇6h, R∇4h, R2∇2h, R3h. (B.56)

Of these, only the first two have a chance of introducing truly higher-derivative terms. The first

term unavoidably has at least two “boxes” ∇6h ∼ �2∇•∇•h •
• , meaning it is again suppressed

upon substitution of the lower-order equations. Furthermore, due to the transverse-traceless

nature of the tensor-type perturbations and symmetries of the Riemann tensor, the only possible

non-trivial contraction of the second kind that could appear in δEαβ is

∇4h → Rσρκλ∇α∇β∇σ∇κhρλ. (B.57)
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Since hAB = hAa = 0 for tensor-type perturbations, and using the Riemann components in (3.9),

we find

Rσaκb∇α∇β∇σ∇κhab = RAaBb∇α∇β∇A∇Bhab +Rcadb∇α∇β∇c∇dhab (B.58)

= − f
′

2r
gABgab∇α∇β∇A∇Bhab +

1− f
r2

(
gcdgab − gcbgad

)
∇α∇β∇c∇dhab

= 0

that this term also vanishes for transverse-traceless tensors.

B.5.3 Dimension-8 operator

We will now show that the dimension-8 operator included in (3.55) does lead to genuine higher

derivatives in the perturbation equation. The modified Einstein equations for this theory are

Eαβ := Gαβ + 2
cGB
Λ2

Bαβ + 2
cR4
Λ6

Dαβ = 0, (B.59)

where

Dαβ = −1

2
gαβ(R

4) + 4(R4) σ
ασβ + 8∇σ∇ρ(R

3) σ ρ
α β . (B.60)

The only term in the perturbed tensor δDαβ with four derivatives acting on the metric perturbation

is

δDαβ = −16RασµκRβρνλ∇ρ∇σ∇κ∇λhµν + . . . (B.61)

where . . . stands for trivially lower derivative terms for reasons similar to the previous two

sections. (This was checked using the xTras [156] package for xAct [157].) The four-derivative

contribution to the δEab-equation for tensor modes (hAB = hAa = 0) is

δDab =− 16RaσcκRbρdλ∇ρ∇σ∇κ∇λhcd + . . .

=− 16

[(
f ′

2r

)2
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r3
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∂c∂
c∂d∂

d

]
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=− 16
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g

r2D−2

[
(D − 3)2

4
+ (D − 3) + 1

]
∂c∂

c∂d∂
dhab + · · ·+O(µ)

=− 4(D − 1)2
r2D−6
g

r2D+2
∆̂2

D−2hab + · · ·+O(µ). (B.62)

131



In going from the first to second line, we have isolated just the full four-derivative terms out of

the covariant derivative expression. In going from the second to third line, we have used the

lower-order GR equation � ≈ 0 to replace ∂A∂A → −∂c∂c + . . . up to leading order in µ.

This term appears in the perturbation equations as

0 = δEab = δGab + 2
cGB
Λ2

δBab + 2
cR4
Λ6

δDab

= − 1

2
�hab + 2

cGB
Λ2

δBab − 8(D − 1)2
cR4
Λ6

r2D−6
g

r2D+2
∆̂2

D−2hab + . . .

(B.63)

and since the metric perturbations are simply related to the tensor master variable by a rescaling

hab ∝ ΦTTab which cannot change the derivative structure, we can simply read off the contribution

to the potential
V R4
T

f
= −16(D − 1)2cR4µ

3
(rg
r

)2D κ4T
r2

+ . . . (B.64)

to leading order in κT .
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Appendix C

The pp-wave metric and its master

equations

C.1 Explicit field equations

In lightcone gauge hvα = 0, the left-hand-side of the EFT field equations for the metric

perturbations (3.18) on the pp-wave background are explicitly given by

− 2δEvv = ∂2vhii, (C.1a)

− 2δEvu = −�̃hii + ∂v∂uhii + ∂i(∂vhiu + ∂jhij), (C.1b)

− 2δEvi = ∂v∂ihjj − ∂v(∂vhiu + ∂jhij), (C.1c)

−2δEuu = �̃huu − 2∂u(∂vhuu + ∂ihiu) + ∂iH∂vhiu − ∂j(∂iHhij) + ∂2uhii −H�̃hii

+
1

2
∂jH∂jhii −

1

2
∂uH∂vhii +H∂i(∂vhiu + ∂jhij) +H∂v(∂vhuu + ∂ihiu)

+
4cGB
Λ2

∂i∂jH(∂v∂ihju − ∂v∂jhiu + ∂k∂khij − ∂i∂khjk − ∂j∂khik + ∂i∂jhkk),

(C.1d)

−2δEui = �̃hui + ∂jH∂vhij − ∂i(∂vhuu + ∂jhju)− ∂u(∂vhiu + ∂jhij)

+ ∂i∂uhjj −
1

2
∂iH∂vhjj

− 4cGB
Λ2

∂v [∂i∂jH(∂jhkk − ∂khjk) + ∂j∂kH(∂ihjk − ∂jhik)] ,

(C.1e)
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−2δEij = �̃hij − ∂i(∂vhju + ∂khjk)− ∂j(∂vhiu + ∂khik) + ∂i∂jhkk − δij�̃hkk

+ δij∂k(∂vhku + ∂lhkl) + δij∂v(∂vhuu + ∂khku)

+
4cGB
Λ2

∂2v(∂i∂jHhkk − ∂i∂kHhjk − ∂j∂kHhik + δij∂k∂lHhkl).

(C.1f)

These equations are satisfied with the constraints (3.36) – (3.38) and the equation of motion for

hij (3.39).

C.2 Master variables in balancing source background

Identifying the master variables for the metric perturbations on the point-source background was

a straightforward procedure described in the main text above equation (3.42). When a second

source is introduced (to “balance” the first as discussed in section 4.4.1), spherical symmetry is

lost and the previous decomposition is no longer suitable. Without loss of generality, assume

the two sources are aligned along the z-axis. Then, we can write the transverse-space metric in

cylindrical coordinates as:

δijdxidxj = dz2 + dr2 + r2dΩ2
d−2. (C.2)

For this appendix only, γab will refer to the metric on the (d− 2) = (D − 4)-dimensional sphere.

In these coordinates, the harmonic condition on the metric function is

∂2

∂z2
H(u, r, z) = − ∂2

∂r2
H(u, r, z)− (d− 2)

1

r

∂

∂r
H(u, r, z). (C.3)

While most of the components of the metric perturbations — hrr, hrz, hzz, hra, hza and the

diagonal components of hab — are coupled in a complicated way via (3.39), it happens that the

off-diagonal components of hab are completely decoupled from the rest and evolve independently.

These account for (D− 5)(D− 4)/2 of the total D(D− 3)/2 propagating modes. Their equation

of motion is

�̃hab − 8
cGB
Λ2

∂rH

r
∂2vhab = 0, a 6= b (C.4)

which has the same format as the equations for the modes in the spherically-symmetric background

(3.42). From this, it is clear that the estimates for the time delay used throughout section 4.4.1

apply equally well to the balancing source background.
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C.3 Higher-dimension EFT field equations

In section 3.3.2, we show that control over the higher-dimension EFT action (3.65) amounts to

exactly the regime of validity found by generic arguments (3.64). In this appendix, we provide

the field equations for that action and also identify the tensor-type master variable and its master

equation.

The background equation is

Eαβ := Gαβ + 2
cGB
Λ2

Bαβ + 2
cR3
Λ4

Cαβ + 2
cR4
Λ6

Dαβ = 0, (C.5)

where

Bαβ =4RσαβρR
σρ + 2R σρκ

α Rβσρκ − 4RασR
σ

β + 2RRαβ −
1

2
R2

GB gαβ, (C.6)

Cαβ =− 1

2
gαβ(R

3) + 3(R3) σ
ασβ + 6∇σ∇ρ(R

2) σ ρ
α β , (C.7)

Dαβ =− 1

2
gαβ(R

4) + 4(R4) σ
ασβ + 8∇σ∇ρ(R

3) σ ρ
α β , (C.8)

and

(Rn)αβσρ = RαβγδR
γδ•• . . . R••κλRκλσρ, (C.9)

(Rn) = (Rn) αβ
αβ . (C.10)

The vacuum pp-wave metric (3.10) is again a solution to (C.5).

In lightcone gauge, the presence of the R3-operator modifies the v-component perturbation

equations

−2δEvv = ∂2vhii, (C.11a)

−2δEvu =− �̃2
vhii + ∂v∂uhii + ∂i(∂vhiu + ∂jhij)

− 12
cR3
Λ4

∂2v∂i [∂i∂jH(∂vhju + ∂khjk) + ∂i∂j∂kHhjk] ,

(C.11b)

−2δEvi = ∂v∂ihjj − ∂v(∂vhiu + ∂jhij)

+ 12
cR3
Λ4

∂3v [∂i∂jH(∂vhju + ∂khjk) + ∂i∂j∂kHhjk] ,

(C.11c)
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such that, while the traceless condition hii = 0 is unchanged, the second constraint equation

(3.37) becomes

∂vhiu + ∂jhij = 12
cR3
Λ4

∂2v [∂i∂jH(∂vhju + ∂khjk) + ∂i∂j∂kHhjk] . (C.12)

The δEij is also modified by both new operators

−2δEij = �̃hij − ∂i(∂vhju + ∂khjk)− ∂j(∂vhiu + ∂khik) + ∂i∂jhkk − δij�̃hkk

+ δij∂k(∂vhku + ∂lhkl) + δij∂v(∂vhuu + ∂khku)

+
4cGB
Λ2

∂2v(∂i∂jHhkk − ∂i∂kHhjk − ∂j∂kHhik + δij∂k∂lHhkl)

−12cR3
Λ4

∂2v
[
∂i∂kH�̃hjk + ∂i∂kH�̃hjk + ∂u∂i∂kH∂vhjk + ∂u∂j∂kH∂vhik

− ∂i∂kH∂j(∂vhku + ∂lhkl)− ∂j∂kH∂i(∂vhku + ∂lhkl)

−∂i∂k∂lH(∂jhkl − ∂khjl)− ∂j∂k∂lH(∂ihkl − ∂khil)]

+ 16
cR4
Λ6

∂i∂kH∂j∂lH∂
4
vhkl

(C.13)

The final constraint will again come from the trace of this equation. However, the process is

complicated by the presence of the R3-operator. In EGB theory, the second constraint (3.37)

allowed us to exactly remove the hiu components which appeared in the ij-equation. But now,

the hiu components also appear on the right hand side of (C.12). As a result, they may only be

replaced perturbatively in inverse powers of the cut-off inside δEij . Up to corrections of O(Λ−8),

the third constraint equation is

∂vhuu + ∂ihiu = − 4
d− 2

d

cGB
Λ2

∂i∂jH∂vhij

+
24

d

cR3
Λ4

∂v

[
∂i∂jH�̃hij + ∂u∂i∂jH∂vhij −

d− 2

2
∂i∂j∂kH∂ihjk

]
− 16

d

cR4
Λ6

∂i∂jH∂i∂kH∂
3
vhjk.

(C.14)

As before, we see that the dynamical degrees of freedom contained within the metric per-

turbations are in the transverse directions hij . Applying the three constraint equations, their

equation of motion becomes (up to corrections of O(Λ−8)):

�̃hij − 8
cGB
Λ2

∂2vXij − 24
cR3
Λ4

∂2vYij − 16
cR4
Λ6

∂4vZij = 0, (C.15)
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where

Xij =
1

2
(hik∂j∂kH + hjk∂i∂kH)− 1

d
δijhkl∂k∂lH, (C.16)

Yij =
1

2

(
�̃hik∂j∂kH + �̃hjk∂i∂kH

)
− 1

d
δij�̃hkl∂k∂lH

+
1

2
(∂vhik∂u∂j∂kH + ∂vhjk∂u∂i∂kH)− 1

d
δij∂vhkl∂u∂k∂lH

+
1

2
(∂lhik∂j∂k∂lH + ∂lhjk∂i∂k∂lH)− 1

d
δij∂mhkl∂k∂l∂mH

+ hkl∂i∂j∂k∂lH,

(C.17)

Zij = −hkl∂i∂kH∂j∂lH +
1

d
δijhlm∂k∂lH∂k∂mH. (C.18)

Tensor modes

The perturbation equations (C.15) couple all components of hij in a non-trivial fashion when

cR3 6= 0. Even in the point source case, the master variable identification used in section 3.2.2

for EGB theory no longer works when the R3-operator is included in the EFT. For illustrative

purposes, we will just consider the spherically symmetric point source case. Due to the symmetry,

we may perform a scalar-vector-tensor decomposition with each type of perturbation (scalar,

vector or tensor) evolving independently of the other types. The simplest of them are the tensor

modes, which are parameterised by

hrr = hra = 0, hab = r2ΦTTab, (C.19)

where Tab is a tensor spherical harmonic on the (d− 1)-sphere and satisfies

(
∆̂d−1 + κ2T

)
Tab = 0, (C.20a)

Ta
a = 0, D̂aTab = 0. (C.20b)

There is one tensor mode ΦT for each tensor spherical harmonic on the (d− 1)-sphere. They all

share a master equation, which can be derived from the ab-components of (C.15),

0 = �̃ΦT −
κ2T + 2

r2
ΦT − 8

cGB
Λ2

∂rH

r
∂2vΦT + 24

cR3
Λ4

∂2v

[
d
∂rH

r2

(
∂rΦT +

ΦT

r

)
−∂u∂rH

r
∂vΦT

]
+ 16

cR4 − 12cGBcR3
Λ6

(
∂rH

r

)2

∂4vΦT .

(C.21)
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In arriving at this equation, the �̃hab terms present in Yab have been replaced perturbatively

using the lower-order equation of motion, giving rise to the cross term ∝ cGBcR3. Once again,

this equation is valid up to corrections of order O(Λ−8).
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Appendix D

Quantum arguments on the pp-wave

spacetime

D.1 EFT validity bound on wavefunction spread

At the end of section 4.4.1, we discuss how a generic initial quantum state has a non-zero spread

σ in transverse space and thus cannot be perfectly balanced at an unstable equilibrium point.

As a state in a low-energy EFT, this spread is in fact bounded below by Λ−1. To demonstrate

this, we must initially bound a Lorentz-invariant quantity dependent on σ (as we did for H(u, r),

kv and b in section 3.3.2). The spread in momentum space is inversely related to the spread in

real space, |∆k| ∼ σ−1, so we would like to bound the dot product of two opposing wavevectors

k± = k0 ±∆k, where k0 is some central momentum. But to construct a scalar quantity, they

must first be embedded in D-vectors on the full D-dimensional pp-wave spacetime

(
k±α
)
=
(
k±u , k

±
v ,k

±) (D.1)

with the condition that k± is null due to the GR equations of motion,

gαβk±α k
±
β = 0 =⇒ k±u =

H(k±v )
2 − k±2

2k±v
. (D.2)

For a fixed “mass” k+v = k−v = kv, the dot product reduces simply to

k+ · k− = −2∆k2. (D.3)
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With the Lorentz-invariant bound k+ · k− � Λ2, we get the desired result |∆k| � Λ, or σΛ� 1.

D.2 Expectation values for time delay in perturbation theory

In section 4.4.3 we define a quantum time delay operator ∆̂T and calculate its expectation

value for a representative in-state with wavefunction (4.79). In this appendix, we provide details

of that calculation. We will deal with both the point source case and balancing source case

simultaneously. In order to accommodate this, the location of the point source x = −b is shifted

relative to the discussion of sections 3.1.2 and 4.4.1. The GR potential is thus

V (u,x) = −kvj(u)
2

(
Θbal

|x− b|d−2
+

1

|x+ b|d−2

)
(D.4)

or, expressed as a Fourier transform,

V (u,x) = − 2π
d
2

Γ
(
d−2
2

)kvj(u) ∫ ddq

(2π)d

(
eiq·b +Θbale

−iq·b)
q2

eiq·x. (D.5)

The interaction picture potential is related to this Schrödinger potential via a shift in the space

coordinate (4.89), i.e.

V̂I(u) = −
2π

d
2

Γ
(
d−2
2

)kvj(u)∫ ddq

(2π)d
eiq·b +Θbale

−iq·b

q2
e
iq·

(
x̂+ u

kv
k̂
)
. (D.6)

Applying the Zassenhaus formula for operators in the exponential and inserting a complete set

of momentum states and a complete set of position states appropriately, we arrive at

V̂I(u) = −
2π

d
2

Γ
(
d−2
2

)kvj(u)∫ ddq

(2π)d

∫
ddk

(2π)d

∫
ddx

eiq·b +Θbale
−iq·b

q2

exp

[
ix · (q+ k) +

iu

kv
q ·
(q
2
+ k

)]
|x〉 〈k| .

(D.7)

Roughly speaking, the n-th order time delay expectation value is the expectation value of

n-powers of V̂I over the state

|Φ0〉 =
1

(2πσ2)d/4

∫
ddx exp

[
− x2

4σ2

]
|x〉 . (D.8)
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Additionally, in (4.95) the kv-derivatives of (4.91) have been replaced in favour of u-derivatives

by noting that

∂V̂I(u)

∂kv
= − 2π

d
2

Γ
(
d−2
2

)j(u) ∫ ddq

(2π)d

∫
ddk

(2π)d

∫
ddx

eiq·b +Θbale
−iq·b

q2(
1− u ∂

∂u

)
exp

[
ix · (q+ k) +

iu

kv
q ·
(q
2
+ k

)]
|x〉 〈k| .

(D.9)

Lastly, the Heaviside θ-functions in (4.95) simply capture the different limits of the nested

integrals in the S-matrix expansion (4.90).

D.3 Expressions for a(n) and ã(n)

The expressions (4.107) give the parameter dependence of the first three orders of the Wigner–

Smith time delay expanded in 1) S-matrix perturbation theory, 2) small Gaussian width, and 3)

early times. Four dimensionless numbers {a(2), ã(2), a(3), ã(3)} feature in these equations and are

given below in terms of integrals, where b̂ = b/b is the unit vector in the direction of b.

a(2) = − 2

(
− 2π

d
2

Γ
(
d−2
2

))2 ∫ 1

0
dw1dw2Θ(w1 − w2)

∫
ddp1
(2π)d

ddp2
(2π)d

eip1·b̂ +Θbale
−ip1·b̂

p2
1

eip2·b̂ +Θbale
−ip2·b̂

p2
2

(p1 + p2)
2 (w1 − w2)p1 · p2

(D.10a)

ã(2) =− 2

(
− 2π

d
2

Γ
(
d−2
2

))2 ∫ 1

0
dw1dw2Θ(w1 − w2)

∫
ddp1
(2π)d

ddp2
(2π)d

eip1·b̂ +Θbale
−ip1·b̂

p2
1

eip2·b̂ +Θbale
−ip2·b̂

p2
2

(w1p1 + w2p2)
2 (w1 − w2)p1 · p2

(D.10b)

a(3) =2

(
− 2π

d
2

Γ
(
d−2
2

))3 ∫ 1

0
dw1dw2dw3

∫
ddp1
(2π)d

ddp2
(2π)d

ddp3
(2π)d

eip1·b̂ +Θbale
−ip1·b̂

p2
1

eip2·b̂ +Θbale
−ip2·b̂

p2
2

eip3·b̂ +Θbale
−ip3·b̂

p2
3

(p1 + p2 + p3)
2

(2Θ(w1 − w2)Θ(w2 − w3)−Θ(w2 − w1)Θ(w2 − w3))

(D.10c)
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ã(3) =2

(
− 2π

d
2

Γ
(
d−2
2

))3 ∫ 1

0
dw1dw2dw3

∫
ddp1
(2π)d

ddp2
(2π)d

ddp3
(2π)d

eip1·b̂ +Θbale
−ip1·b̂

p2
1

eip2·b̂ +Θbale
−ip2·b̂

p2
2

eip3·b̂ +Θbale
−ip3·b̂

p2
3

(w1p1 + w2p2 + w3p3)
2

(2Θ(w1 − w2)Θ(w2 − w3)−Θ(w2 − w1)Θ(w2 − w3))

(D.10d)
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