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Abstract

Ultra-high-energy cosmic rays, and their expected counterpart neutrinos, are
the most energetic particles in nature, and their origin remains unknown. The
detection of these particles is key to identifying their origin, but is complicated
by their low flux, which necessitates the use of extremely large detectors. The
largest potential aperture for detecting the most energetic of these particles
is offered by the lunar radio technique, which makes use of the Moon as a
detector, using ground-based radio telescopes to search for nanosecond-scale
radio pulses from particles interacting in the lunar regolith, and it is this
technique that is the subject of this thesis.

In this thesis I present a description of the most sensitive lunar radio ex-
periment to date, conducted in 2010 with the Parkes radio telescope as part
of the LUNASKA project, including a comprehensive test of the purpose-built
Bedlam backend used in this experiment. The signal-processing strategy is ex-
plored in great detail, with an extensive discussion of the statistics of stochas-
tic signals, and an optimal strategy is described which compensates both for
known effects such as ionospheric dispersion and for previously-unidentified ef-
fects such as phase ambiguity from frequency downconversion. A series of cuts
is outlined which successfully removes all anthropogenic radio interference, the
first time this has been accomplished for a lunar radio experiment without the
benefit of a coincidence filter operating between multiple channels. After these
cuts, no radio pulses are observed; this null detection allows limits to be placed
on the fluxes of ultra-high-energy cosmic rays and neutrinos.

To place this experiment in context, I perform a review of the null detec-
tions published for previous lunar radio experiments, including detailed anal-
yses of their experimental techniques, based on the rigorous treatment applied
in the above work. In several cases, I find previously-unidentified problems
which significantly limit the sensitivity of previous experiments. Finally, I im-
prove on existing analytic models for calculating the sensitivity of lunar radio
experiments to ultra-high-energy cosmic rays and neutrinos, allowing a com-
parison with a range of possible future experiments, and comment on future
prospects for this technique.
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