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Abstract

It is one of the most important problems in particle and nuclear physics to
understand the nonperturbative properties of QCD, such as confinement and
chiral symmetry breaking, including these relation. In spite of numerous ef-
forts, these properties have not been sufficiently understood yet. The main
goal of this thesis is to understand the relation between quark-confinement
and chiral symmetry breaking in QCD, both analytically and numerically
from the first principle. To that end, several analytical relations are derived
using the lattice QCD formalism, connecting order parameters for quark-
confinement and the Dirac eigenmodes. We consider the Polyakov loop,
its fluctuations, and the Wilson loop as the order parameters for quark-
confinement. According to the Banks-Casher relation, the low-lying eigen-
modes of the Dirac operator have the dominant contributions to the chiral
condensate which is the order parameter for chiral symmetry breaking. From
these analytical formulae, it is proven that the low-lying Dirac modes have
little contributions to the order parameters for quark-confinement. From
the analysis for the Dirac-spectrum representation of the Polyakov loop, a
new symmetry, referred to as the “positive/negative symmetry,” is found in
the Dirac-mode matrix element of the link-variable operator, and it leads to
the zero value of the Polyakov loop in the confinement phase. However, in
the deconfinement phase, the positive/negative symmetry is broken, and the
Polyakov loop has the non-zero value. Although the analytical relations con-
necting the Polyakov loop and the eigenmodes of the overlap-Dirac operator
seem difficult to derive, we can show that the confinement property such as
the value of the Polyakov loop, is independent of the density of low-lying
overlap-Dirac modes. Then, we conclude that there is no direct one-to-one
correspondence between quark-confinement and chiral symmetry breaking in
QCD.
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Chapter 1

Introduction

1.1 QCD

The fundamental theory of strong interaction is Quantum chromodynamics
(QCD)[1, 2]. The QCD lagrangian is

LQCD = −1

4
GaµνGa

µν + q̄(iγµDµ −mq)q. (1.1)

where the field strength Ga
µν the covariant derivative Dµ are defined as

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν , (1.2)

Dµ = ∂µ + igAa
µT

a. (1.3)

QCD is a non-Abelian gauge theory with the SU(3) gauge symmetry and its
gauge coupling is denoted as g. The quark field qαif has the spinor index
(α = 1, 2, 3, 4), the color index of the fundamental representation of SU(3)
(i = 1, 2, 3), and the flavor index (f = 1, · · · , Nf ). The gauge field Aµ

is called gluon, and has the index of Lorentz vector (µ = 1, 2, 3, 4), and
the color index of the adjoint representation of SU(3) (a = 1, · · · , 8). mq

is current quark mass. One of the most important feature of QCD is that
QCD is non-Abelian gauge theory. When gauge group is non-Abelian, non-
linear terms of gauge fields appear in the fields strength, Eq. (1.2), because
the structure constant is nonzero: fabc ̸= 0. These non-linear terms leads
the self-interaction terms in the lagrangian, Eq. (1.1). Because of these self-
interaction terms, QCD is asymptotic free [3, 4]. In fact, the running coupling
constant of the SU(Nc) non-Abelian theory with massless Nf fermions is
calculated as

αs(Q
2) =

g2(Q)

4π
=

12π

11Nc − 2Nf

1

ln( Q2

Λ2
QCD

)
(1.4)
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up to the order of 1-loop. ΛQCD is the typical scale of QCD and should
be determined from experiment. With the parameter set of QCD, QCD is
asymptotic free. In other words, the coupling constant becomes weak at
high energy scale or short distance. Then, low-energy QCD is practically
difficult to be investigated since the perturbation theory cannot be used due
to the strong coupling. However, low-energy QCD is phenomenologically
very interesting because the nature of the strong coupling leads various non-
perturbative phenomena, such as confinement and chiral symmetry breaking.
These phenomena are main targets of this thesis.

1.2 Confinement

Confinement is one of the most characteristic phenomena in QCD. The most
general statement of confinement hypothesis is that color charged states can-
not be observed and only color singlet states can be observed [5]. For exam-
ple, in QCD with Nc = 3, quark(q), gluon and diquark(qq) are color charged,
and meson(q̄q), baryon(qqq), and glueball are color-singlet states. At the
present, although nobody has succeeded in proving the confinement, or even
quark-confinement from the first-principle, there is no experiment to detect
any color charged states. In particular, the quark-confinement has been
most intensively investigated, and several scenarios for (quark-)confinement
are suggested. In the following, we review them.

Figure 1.1: The schematic figure for the flux tube between quark-antiquark
pair in the QCD vacuum.
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Figure 1.2: The interquark potential calculated from the Wilson loop in the
lattice unit. Each point is obtained by lattice QCD calculation, and it is well
fit with the Cornell potential (1.5), denoted as the solid line. The figure is
taken from Ref. [8].

The linear potential between quark and anti-quark gives the simplest
explanation for quark-confinement [6, 7, 8]. When a quark and an anti-
quark are put in the QCD vacuum, the color electric fields generate the
1-dimensional gluonic flux tube between them, shown in Fig. 1.1. It is
essentially different from the electric fields in QED, where electrons are not
confined. The 1-dimensional flux tube gives the confinement potential for the
system. In fact, as shown in Fig. 1.2, when R is the distance of the quark and
anti-quark, the interquark potential V (R) is calculated in the lattice QCD
from the Wilson loop and it can be very well fit with the Cornell potential

V (R) = −A/R + σR + C (1.5)

where A, σ, and C are fitting parameters. The coefficient σ of the linear term
is called string tension because it gives the strength of the linear-confining
force. The Coulomb-type potential at short distance can be understood from
the asymptotic freedom because the perturbative theory is applicable there.
This potential shows that the interquark potential V (R) infinitely increases
as the distance R becomes larger. Thus, a single quark cannot exist. How-
ever, the above discussion is based on the assumption that the quark mass
is infinitely heavy. Then, in the case of quark with finite mass, when the
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distance R increases and the interquark potential V (R) exceeds a threshold
of pair-creation of quark and anti-quark, a new pair of quark and anti-quark
is generated. In the case of a qqq system, the shape of the flux tube between
quarks is Y-type [9, 10, 11]. In fact, the flux tube is confirmed by the lattice
QCD calculation, shown in Fig. 1.3. At high temperature, the color con-

Figure 1.3: The Y-type flux tube generated in the 3 quark system. It is
calculated from the lattice QCD simulations. The figure is taken from Ref.
[9].

finement does not occur, and the system is changed from the confinement
phase to the deconfinement phase. In the deconfinement phase, the system is
considered to be a gas-like state of quarks and gluons. As a order parameter
for the quark-deconfinement transition, the Polyakov loop has been strongly
investigated. The Polyakov loop is related to the energy of the system with
a single quark [12, 13]. Thus, the Polyakov loop distinguishes the confine-
ment and deconfinement phases because the energy is infinite if the quark
is confined and it is finite if the quark is deconfined. The Polyakov loop is
one of the main observables to study in this thesis, and then we discuss the
properties of it in the subsequent sections.

A candidate of the mechanism for the generation of the 1-dimensional
flux tube is the dual superconductivity picture [15, 16, 17]. This picture of
the confinement is an analogy of the type-II superconductor. In the super-
conductivity phase of the type-II superconductor, magnetic field is squeezed
and 1-dimensional magnetic flux is generated. Although this situation is sim-
ilar with the confinement, there are of course critical differences. The most
important difference is that the electric field should be squeezed in QCD,
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not magnetic field. The roles of the electric and magnetic fields in the su-
perconductor are exchanged in the non-perturbative vacuum of QCD(QCD
vacuum). This dual-superconductivity picture expects that the QCD vacuum
is dual-superconductor, where“ dual”means the duality of the electric and
magnetic fields. However, the duality in QCD is difficult to understand be-
cause QCD is SU(3) gauge theory. In fact, while the magnetic monopole can
be defined in Abelian gauge theory, it is difficult to be define in non-Abelian
gauge theories, such as QCD. This problem is avoided by the gauge fixing.
For example, using the maximally Abelian gauge (MAG), the QCD monopole
appears as a topological object, and it is important for the non-perturbative
phenomena, such as confinement, chiral symmetry breaking. This picture
is confirmed in the dual Ginzburg-Landau theory [18] and the lattice QCD
[19, 20, 21].

As a method to define the magnetic monopole in QCD without gauge
fixing, Cho-Faddeev-Niemi decomposition is suggested [22, 23, 24]. The con-
finement phenomenon can be explained by the condensation of the magnetic
monopole appearing due to the decomposition. In fact, there is the lattice
QCD study to support this picture [24].

There is some studies on the mechanism for confinement based on the
BRST formalism by fixing the covariant gauge [25]. It is shown that physical
state is the BRST singlet state. Motivated by this fact, it is expected that
color charged states are not BRST singlet states, namely physical states. This
theory is called Kugo-Ojima formalism, and it provides a general picture of
color-confinement. However, this picture is found to be not complete by the
lattice QCD calculation [26].

The truncated Schwinger-Dyson equation is useful method to analyze the
properties of the QCD vacuum. Using the Schwinger-Dyson equation, it is
suggested that The quark scalar density is sensitive to the strength of the
confining force [27, 28].

1.3 Chiral Symmetry breaking

Chiral symmetry breaking is the phenomenon that the chiral symmetry
SU(Nf )L×SU(Nf )R of the QCD lagrangian (1.1) with the chiral limit (mq →
0) is spontaneously broken in the vacuum [29, 30, 31]. As a result, (N2

f − 1)
massless Nambu-Goldstone bosons appear and quark obtains constituent
quark mass. Since the quark mass is nonzero mq ̸= 0 in the real world, it
is said that chiral symmetry is approximately broken. SU(Nf )L × SU(Nf )R
chiral transformation is two independent SU(Nf ) transformation to the left-
handed component of a quark field qL,f ≡ (1−γ5

2
)qf and the right-handed
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component qR,f ≡ (1+γ5
2

)qf as

qL,f → q′L,f = U(θL)ff ′qL,f ′ , U(θL)ff ′ = exp(iθaLT
a) ∈ SU(Nf)L (1.6)

qR,f → q′R,f = U(θR)ff ′qR,f ′ , U(θR)ff ′ = exp(iθaRT
a) ∈ SU(Nf)R (1.7)

θaL and θaR are independent parameters. This chiral transformation can be
decomposed to the vector and axial transformations.

qf → q′f = U(θV)ff ′qf ′ , U(θV)ff ′ = exp(iθaVT
a) ∈ SU(Nf) (1.8)

qf → q′f = U(θA)ff ′qf ′ , U(θA)ff ′ = exp(iγ5θ
a
AT

a) (1.9)

The vector transformation corresponds to the chiral transformation with
same parameters (θL = θR = θV) for the right- and left-handed components.
The axial transformation corresponds to the chiral transformation with the
opposite parameters (θL = −θR = −θA). Although the QCD lagrangian
is invariant under the vector transformation even with massive quarks with
mq ̸= 0, the invariance under the axial transformation is valid for the mass-
less case. Then, the chiral symmetry is essentially the invariance under the
axial transformation.

The QCD lagrangian (1.1) has the chiral symmetry in the chiral limit
(mq → 0). Since the quarks have finite masses, the chiral symmetry is not
the exact symmetry of QCD. However, the chiral symmetry is approximate
symmetry in the u and d sectors because these masses are smaller than the
QCD scale ΛQCD. Therefore, if the chiral symmetry is realized at the level
of states, the symmetry should appear in the hadron spectrum. However,
experimental results does not indicate the symmetry, and then it is called
as chiral symmetry breaking. In fact, the chiral symmetry is spontaneously
broken from SU(Nf )L × SU(Nf)R to SU(Nf )V. The order parameter of the
chiral symmetry breaking is the chiral condensate ⟨q̄q⟩. In the following, ⟨q̄q⟩
means the chiral condensate per a flavor.

Since the chiral symmetry is the global symmetry, the Nambu-Goldstone
bosons (NG bosons) appear followed by the Nambu-Goldstone theorem. In
fact, the pions are the lightest hadron, and they can be regarded as the NG
bosons associated with the SU(2) chiral symmetry of the u and d sectors. The
reason why it has the finite mass is that the u and d quarks have the finite
current quark masses. When a global symmetry is spontaneously broken,
some observables related to the NG boson are determined at low-energy.
This is low-energy theorem [1]. For example, the Gell-Mann-Oaks-Renner
relation

m2
πf

2
π = −2mq⟨q̄q⟩ (1.10)
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and the Goldberger-Treiman relation

gπNfπ = mNgA (1.11)

are the examples of the low-energy theorem. The pion decay constant fπ = 93
MeV, the pion mass mπ, the nucleon mass mN , the π−N coupling constant
gπN , and the axial charge gA are important parameters of the low-energy
QCD.

1.3.1 Banks-Casher relation

The order parameter of the chiral symmetry breaking is the chiral condensate
⟨q̄q⟩. The chiral condensate is related with the zero-mode density of the Dirac
operator known as the Banks-Casher relation [32]. Since the Banks-Casher
relation plays a very important role in this study, we show the derivation of
the relation in this subsection. We consider the euclidean QCD. The gamma
matrices are taken as hermit (γ†µ = γµ). The eigenvalue equation of the Dirac
operator D̸ is shown as

D̸|n⟩ = iλn|n⟩. (1.12)

Since D̸ is anti-hermit, the eigenvalue is pure imaginary and λn is real. |n⟩
is the eigenstate. In the following, we call these modes as Dirac modes. The
Dirac mode is orthonormal basis:

⟨m|n⟩ = δmn. (1.13)

The Dirac operator anti-commutes the γ5 as

{D̸, γ5} = 0. (1.14)

This fact means that the state γ5|n⟩ has the eigenvalue −iλn, which is oppo-
site sign of the eigenvalue of the state |n⟩.

D̸γ5|n⟩ = −γ5 D̸|n⟩ = −γ5iλn|n⟩ = −iλnγ5|n⟩. (1.15)

Now we can derive the Banks-Casher relation by deforming the chiral
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condensate ⟨q̄q⟩ in the following.

⟨q̄q⟩ = 1

V

∫
dx
∑
α,i

⟨q̄αi(x)qαi(x)⟩ (1.16)

= − 1

V

⟨
Trc,γ

(
1

D̸ +m

)⟩
(1.17)

= − 1

V

⟨∑
n

⟨n| 1

D̸ +m
|n⟩

⟩
(1.18)

= − 1

V

⟨∑
n

1

iλn +m

⟩
(1.19)

= − 1

V

∫ ∞

−∞
dλ

1

iλ+m

⟨∑
n

δ(λ− λn)

⟩
(1.20)

= −1

i

∫ ∞

−∞
dλ

1

λ− im
⟨ρ(λ)⟩ (ρ(λ) ≡ 1

V

∑
n

δ(λ− λn)) (1.21)

→ −1

i

∫ ∞

−∞
dλ ⟨ρ(λ)⟩

(
P
1

λ
+ iπδ(λ)

)
(m→ 0) (1.22)

→ −π ⟨ρ(0)⟩ (V → ∞) (1.23)

We assume the homogeneous condensate ⟨q̄q⟩. Trc,γ is the functional trace
over the indices of space-time, color, and spinor. In Eq. (1.18), the Dirac
modes are taken as the basis of the functional trace. The Dirac eigenvalue
density ρ(λ) is defined as

ρ(λ) ≡ 1

V

∑
n

δ(λ− λn) (1.24)

and it becomes a smooth function at the thermodynamics limit V → ∞. P
in Eq. (1.22) denotes the principal value integral, and we use the relation
between the delta function and the principal value integral

lim
ϵ→0

1

x+ iϵ
= P

1

x
− iπδ(x). (1.25)

From Eq. (1.15), ρ(λ) is even function, and then the first term of Eq. (1.22)
vanishes. Therefore, the Banks-Casher relation is expressed as

⟨q̄q⟩ = − lim
m→0

lim
V→∞

π⟨ρ(0)⟩. (1.26)

The Banks-Casher relation means that the density of the Dirac zero modes
gives the chiral condensate. In other words, the Dirac zero modes are the
important modes for chiral symmetry breaking. This fact is one of the most
important points of this thesis.
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1.4 Lattice QCD

In this section, we review the basics of the lattice QCD. The lattice QCD is
the discretized QCD respecting the gauge symmetry on the euclidean space-
time [12, 33, 34]. Although the QCD lagrangian is defined on the Minkowski
space, the euclidean QCD can be obtained by the Wick rotation. The action
and the lagrangian of the euclidean QCD are

SE
QCD =

∫
d4xELE

QCD (1.27)

LE
QCD =

1

4
(GE)aµν(G

E)aµν + q̄(γEµD
E
µ +mq)q (1.28)

In this thesis, the gamma matrices are taken as hermit and satisfy the anti-
commutator relation

{γEµ , γEν } = 2δµν (1.29)

(γEµ )
† = γEµ (1.30)

After Wick rotation, the euclidean generating functional is

Z =

∫
DADq̄Dqe−SE

QCD . (1.31)

In the following, we suppress the Euclidean index “E”.
The lattice QCD is discretized euclidean QCD respecting the SU(3) gauge

theory. There are multiple lattice actions, corresponding to associated dis-
cretization, and they have the same continuum limit. In this thesis, we con-
sider the plaquette action for the gauge sector and the Wilson, Wilson-clover,
the overlap actions for the fermion sector.

We use a standard square lattice with spacing a, and the notation of sites
s = (s1, s2, s3, s4) (sµ = 1, 2, · · · , Nµ), and link-variables Uµ(s) = eiagAµ(s)

with gauge fields Aµ(s) ∈ su(Nc) and gauge coupling g. The link variable
Uµ(s) has the relation with the gauge variable Aµ(s) as

Uµ(s) = eiagAµ(s). (1.32)

The gauge transformation on the lattice is

q(s) → q′(s) = Ω(s)q(s) (1.33)

Uµ(s) → U ′
µ(s) = Ω(s)Uµ(s)Ω(s+ µ̂)† (1.34)

Ω(s) ∈ SU(3), (1.35)
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where µ̂ is the unit vector with the direction µ satisfying |µ̂| = a. This
transformation is the gauge theory in the continuum theory at the continuum
limit a→ 0.

The plaquette action for the gauge sector is

Sg = β
∑
s

∑
µ>ν

[
1− 1

2Nc

Tr(Uµν(s) + Uµν(s)
†)

]
, (1.36)

where the plaquette Uµν(s) is defined as

Uµν(s) = Uµ(s)Uν(s+ µ̂)Uµ(s+ ν̂)†Uν(s)
†, (1.37)

and has the connection with the field strength Gµν near the continuum limit.

Uµν(s) = exp
[
ia2gGµν +O(a3)

]
. (1.38)

The plaquette action approaches the continuum kinetic term of the gauge
field with O(a2).

The fermionic action a4
∑

s q̄(s) (DLat +m) q(s) on the lattice is more
complicated than the gauge sector, where DLat is the Dirac operator on
the lattice. If the Dirac operator is naively discretized respecting all the
symmetries of QCD, unphysical modes appear and the number of the doubler
modes is 2d on a d−dimensional lattice. This problem is referred to as the
fermion doubling problem. The number of low-energy modes is important for
the low-energy dynamics. Thus the doubling problem should be avoided by
some way. However, it is proven that the fermion doubling problem cannot
be solved if the lattice fermionic action satisfies the conditions

• translational invariance

• chiral symmetry

• hermiticity

• bilinear form of quark field

• locality

known as Nielsen-Ninomiya theorem [12, 35, 36]. Then, the doubling problem
is usually avoided by breaking the condition: chiral symmetry. The concrete
method to avoid the doubling problem is discussed in the chapter 3.
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1.5 Motivation and Outline of this thesis

As reviewed above, the non-perturbative phenomena are important for the
dynamics of QCD at low energy. In this study, we focus the relations between
them, in particular quark-confinement and chiral symmetry breaking. In the
following, we explain our motivation with previous works and outline of this
thesis.

Whether quarks are confined or deconfined, and whether the chiral sym-
metry is broken or restored determine the phases of QCD, such as the
hadronic phase where color is confined and chiral symmetry is broken, the
quark gluon plasma where color is deconfined and chiral symmetry is re-
stored, and the color-superconductivity phase where the Cooper pair of the
quarks is condensed [37, 38, 39]. The diagram explaining the phases of QCD
at finite temperature T and chemical potential µ is referred to as the QCD
phase diagram, and it has been intensively investigated by mainly effective
models of QCD [40, 41]. An expected QCD phase diagram is shown in Fig.
1.4. However, nobody has not drown the full range of the QCD phase di-
agram based on the first principle1 because the Monte-Carlo simulation for
the lattice QCD is quite difficult to perform at finite chemical potential.
This is referred to as the sign problem, and has not been fully solved yet
[42, 43, 44, 45].

In addition to the sign problem, there is a problem on the relation be-
tween confinement and chiral symmetry breaking in the past studies on the
QCD phase diagram. In fact, color-deconfinement and chiral restoration are
supposed to be simultaneously happened. However, this is nontrivial as-
sumption, and that is what we will show in this thesis. Then, the relation
between these nonperturbative phenomena is important topic.

Although that relation has been studied [46, 47, 48, 49, 50, 51, 52, 53], it
has not been sufficiently understood yet. In many lattice-QCD calculations
at finite temperature, both quark deconfinement and chiral restoration occur
in the same temperature range [54, 55]. Moreover, after removal of the QCD
monopole, quark-confinement and chiral symmetry breaking simultaneously
disappear [56, 57]. However, these result does not necessarily imply that
quark-confinement and chiral symmetry breaking are strongly correlated, as
there are some opposite results. For example, there are calculations showing
that the deconfinement crossover temperature is significantly higher than the
chiral crossover temperature for physical values of quark masses [58, 59, 60].
In addition, some numerical analysis suggest that after removing the low-

1In the cases of finite temperature with zero chemical potential, color SU(2), imagi-
nary chemical potential, or isospin chemical potential, the Monte-Carlo simulation can be
performed.
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Figure 1.4: An expected QCD phase diagram based on several studies using
effective models. The figure is taken from Ref. [41].

lying Dirac modes, “hadrons” as bound state of quarks and gluons can be
still observed on the lattice [50], and the Polyakov loop and the srting tension
are almost unchanged [51, 52]. The main goal of this study is to understand
the relation between confinement and chiral symmetry breaking based on the
first principle, namely the lattice QCD, both analytically and numerically.

In the following, the outline of this thesis is shown. In Chapter 2, we dis-
cuss the relation between confinement and chiral symmetry breaking by de-
riving the analytical formulae connecting the Dirac eigenmodes and the order
parameters for quark-confinement, such as the Polyakov loop, the Polyakov
loop fluctuations, and the Wilson loop. Then, we analytically and numeri-
cally observe the negligible contributions from the low-lying Dirac modes to
these order parameters. However, the argument in Chapter 2 has a problem
about the fermion doubler modes on the lattice. Then, in chapter 3, the
above discussion is generalized to the chiral fermion on the lattice. Finally,
in Chapter 4 we draw some conclusions and present an outlook.
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Chapter 2

Relation between confinement
and chiral symmetry breaking

2.1 Polyakov loop

In this section, we discuss the relation between confinement and chiral sym-
metry breaking in QCD by deriving several analytical formulae connecting
the Polyakov loop and the Dirac eigenmodes.

Operator formalism & Dirac modes on lattice

In order to derive the relations, we first prepare the operator formalism and
the Dirac modes in the SU(Nc) lattice QCD [51, 61].

The link-variable operator Û±µ is defined as the matrix element

⟨s|Û±µ|s′⟩ = U±µ(s)δs±µ̂,s′ , (2.1)

where s denotes the site on the lattice and µ̂ is the unit vector in direction µ
in the lattice unit. Using the link-variable operator, the several quantity can
be redefined. The covariant derivative operator D̂µ on the lattice expressed
as

D̂µ =
1

2a
(Ûµ − Û−µ) (2.2)

corresponding to the matrix element (3.2). And then the naive Dirac operator
on the lattice ˆD̸ can be given by

ˆD̸ = γµD̂µ =
1

2a

4∑
µ=1

γµ(Ûµ − Û−µ). (2.3)
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Corresponding to Eqs. (1.12), (1.13), and (1.14), the eigenvalue equation
of the naive Dirac operator is

ˆD̸|n⟩ = iλn|n⟩ (2.4)

with the completeness relation the chiral symmetry

⟨m|n⟩ = δmn (2.5)

{D̸, γ5} = 0. (2.6)

The coordinate representation of the eigenstate is expressed as the eigenfunc-
tion ψn(s) ≡ ⟨s|n⟩, and the explicit form for the Dirac eigenvalue equation
is written by

1

2a

4∑
µ=1

γµ[Uµ(s)ψn(s+ µ̂)− U−µ(s)ψn(s− µ̂)] = iλnψn(s). (2.7)

Here, the link-variables are given by the Monte-Carlo simulation in the lattice
QCD, and then the eigenfunction can be directly calculated. The Dirac
eigenfunction ψn(s) has an irrelevant phase factor eiφn[V ] because ψn(s) is
gauge-transformed as

ψn(s) → V (s)ψn(s), (2.8)

by the gauge transformation of Uµ(s) → V (s)Uµ(s)V
†(s + µ̂). The trans-

formation law is the same as that of the quark field. This mode-dependent
global phase factor corresponds to arbitrariness of the phase in the basis |n⟩
[51].

The antiperiodic boundary condition for the imaginary-time direction is
necessary for the finite-temperature formalism. Thus, we impose the an-
tiperiodic boundary condition to the link-variable operator as

⟨s, Nτ |Û4|s, 1⟩ = −U4(s, Nτ ),

⟨s, 1|Û−4|s, Nτ ⟩ = −U−4(s, 1) = −U †
4(s, Nτ ). (2.9)

at the temporal boundary t = Nτ (= 0) [62]. This temporal boundary con-
dition does not influence the plaquette action and the clover term because
they are constituted of the spatial loop of the link-variables. If a loop crosses
the temporal boundary, the minus sign appear twice and they are canceled
in the loop.

Next, the Polyakov loop, which is an order parameter for the quark-
confinement, is expressed as

L = − 1

NcV
Trc{ÛNτ

4 } =
1

NcV

∑
s

trc{
Nt−1∏
n=0

U4(s+ n4̂)}, (2.10)
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using the link-variable operators, where Trc is the functional trace, Trc ≡∑
s trc, taken over the indeces of sites and colors. The minus sign in the

definition comes from the additional minus on U4(s, Nτ ) in Eq.(2.9).
We discuss the property of the Dirac-mode matrix element of the link-

variable operator ⟨m|Ûµ|n⟩. It can be explicitly written as

⟨m|Ûµ|n⟩ =
∑
s

⟨m|s⟩⟨s|Ûµ|s+ µ̂⟩⟨s+ µ̂|n⟩

=
∑
s

ψ†
m(s)Uµ(s)ψn(s+ µ̂). (2.11)

This quantity is gauge invariant for the arbitrary modes |n⟩, and |m⟩. In fact,
by the gauge transformation Eq.(2.8), the matrix element is transformed as

⟨m|Ûµ|n⟩ =
∑
s

ψ†
m(s)Uµ(s)ψn(s+ µ̂)

→
∑
s

ψ†
m(s)V

†(s) · V (s)Uµ(s)V
†(s+ µ̂)V (s+ µ̂)ψn(s+ µ̂)

=
∑
s

ψ†
m(s)Uµ(s)ψn(s+ µ̂) = ⟨m|Ûµ|n⟩. (2.12)

However, the irrelevant n-dependent phase factor appears. Nevertheless, this
phase factor cancels as eiφn[V ]e−iφn[V ] = 1 in the diagonal element |n⟩ and ⟨n|.
In fact, physical quantities such as the Wilson loop and the Polyakov loop
have only the diagonal element [51, 61, 62].

The relation between Polyakov loop and Dirac

modes on the temporally odd-number lattice

Then, we analytically derive the relations connecting the Polyakov loop and
the Dirac modes. First, we derive the analytical relation for the naive Dirac
operator (2.3) on the on the temporally odd-number lattice, where the tem-
poral lattice size is odd number. Then, the relation will be generalized for
the even lattice.

First of all, consider products of the link-variable operators which cor-
respond to each path. If the path is a closed loop, the functional trace of
the associated products of the link-variable operator is gauge invariant and
an observable. However, if the path is not a closed loop, the corresponding
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quantity is gauge variant and exactly zero as

Trc(Ûµ1Ûµ2 · · · ÛµN
) = trc

∑
s

⟨s|Ûµ1Ûµ2 · · · ÛµN
|s⟩

=trc
∑
s

Uµ1(s)Uµ2(s+ µ̂1) · · ·UµN
(s+

N−1∑
k=1

µ̂k)⟨s+
N∑
k=1

µ̂k|s⟩

=0, (2.13)

where
∑N

k=1 µ̂k ̸= 0 is satisfied for non-closed path and N is the length of
the path. This is due to the definition of the link-variable operator Eq.(2.1).
Also, this fact is understood from Elitzur’s theorem [63] that the vacuum
expectation values of gauge-variant operators are zero.

Figure 2.1: An example of odd lattice. This is Nτ = 5 case. Each line

corresponds to each term in Û4
ˆD̸
Nτ−1

in Eq.(2.14). All the lines in the left
figure correspond to the gauge-variant terms while the line in the right figure
is the unique closed loop using the temporal periodicity, namely the Polyakov
loop.

We consider the temporally odd number lattice shown in Fig. 2.1 because
the later discussion is very simple and understandable. We use the spatially
symmetric lattice, i.e., N1 = N2 = N3 ≡ Nσ and N4 ≡ Nτ , and assume that
the spatial length is larger than temporal length. The periodic boundary
conditions are imposed on both temporal and spatial directions. These as-
sumptions are not unnatural because the temporal length is finite and the
spatial length is infinite in the ideal situation for the continuum theory at
finite temperature.

On such a lattice, we introduce a functional trace I defined as

I = Trc,γ(Û4
ˆD̸
Nτ−1

). (2.14)
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Substituting the definition of the Dirac operator (2.3), the functional trace
I is expressed as a sum of products of odd-number link-variable operators
because Nτ is odd number. Some examples are shown in Fig. 2.1. Note
that most of the terms in the expansion of I exactly vanish because one
cannot make a closed loop by using odd-number link-variable operators on a
square lattice. Thus there is only contribution from the closed path due to
the temporal periodicity, that is the Polyakov loop L, which can be closed
loop and gauge invariant with odd-number link-variables using the periodic
boundary condition. This is why we use the temporally odd-number lattice.
In this way, the functional trace I can be expressed as

I = Trc,γ(Û4
ˆD̸
Nτ−1

)

= Trc,γ{Û4(γ4D̂4)
Nτ−1}

= 4Trc(Û4D̂
Nτ−1
4 )

=
4

(2a)Nτ−1
Trc{Û4(Û4 − Û−4)

Nτ−1}

=
4

(2a)Nτ−1
Trc{ÛNτ

4 }

= − 12V

(2a)Nτ−1
L. (2.15)

On the other hand, using the completeness of the Dirac mode, the functional
trace is expressed as

I =
∑
n

⟨n|Û4 ̸D̂Nτ−1|n⟩ = iNτ−1
∑
n

λNτ−1
n ⟨n|Û4|n⟩. (2.16)

Therefore, combining Eqs. (2.15) and (2.16), we find a relation

L = −(2ai)Nτ−1

12V

∑
n

λNτ−1
n ⟨n|Û4|n⟩. (2.17)

This is a relation directly connecting the Polyakov loop and the Dirac modes,
i.e., a Dirac spectral representation of the Polyakov loop.

Note that Eq. (2.17) is gauge invariant relation because the Polyakov loop
is gauge invariant quantity and the Dirac modes can be gauge-covariantly
calculated. Thus our discussion perfectly respects the gauge symmetry. The
relation holds for each gauge configuration, namely an arbitrary set of the
link-variables. Consequently, this relation is satisfied regardless of whether
the gauge-configuration is generated in full QCD or quenched QCD. How-
ever, the Dirac modes, λn and |n⟩, are calculated by use of the naive Dirac
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operator (2.3). This point is generalized in the later section. Of course, the
configuration average of the formula (2.17) is valid.

⟨L⟩ = −(2ai)Nτ−1

12V

⟨∑
n

λNτ−1
n ⟨n|Û4|n⟩

⟩
. (2.18)

The outmost bracket ⟨⟩ means gauge-configuration average.
From the analytical relation (2.17), the relation between confinement and

chiral symmetry breaking in QCD because the Polyakov loop is an order pa-
rameter for quark-confinement and the Dirac modes are strongly related with
the chiral symmetry breaking via the Banks-Casher relation (1.26). First, we
note that the Dirac matrix element is finite: |⟨n|Û4|n⟩| < 1. Thus, we can
find that the factor λNτ−1

n determines the magnitude of the contribution from
each Dirac mode λNτ−1

n ⟨n|Û4|n⟩. The overall factor is not related with the
comparison of the magnitude of each contribution. However, when the Dirac
eigenvalue is small |λn| ≃ 0, the factor λNτ−1

n plays as the damping fac-
tor. Thus, the contributions from the low-lying Dirac modes are strongly
suppressed compared to the other Dirac-mode contribution. However, as
discussed in the previous sections, the low-lying Dirac modes are essential
modes for the chiral symmetry breaking. Thus, the negligible contribution
from the low-lying Dirac modes to the Polyakov loop indicates that the im-
portant modes for the chiral symmetry breaking are not important for quark-
confinement in QCD. In other words, our analytical discussion suggests that
there are no direct one-to-one correspondence between quark-confinement
and chiral symmetry breaking in QCD.

In order to derive the relation (2.17), we assume only the following con-
ditions:

1. odd Nτ

2. square lattice

3. temporal periodicity for link-variables

Due to the first assumption, the analytical relation (2.17) is satisfied only on
the temporally odd-number lattice. However, this constraint is not so serious
because this choice of the parity for the lattice size does not alter the physics
in the continuum limit with any large number of Nτ . In fact, the relation
(2.17) can be generalized for the even lattice with even Nτ . By the same
reason, the second assumption is also not problem. The third assumption is
necessary for the finite-temperature formalism. Therefore, the relation (2.17)
is fully general and valid in full QCD and in finite temperature and density,
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and furthermore regardless of the phase of the system. In other words, the
relation holds in confinement and deconfinement phases, and in chiral broken
and restored phases.

One might consider that the Polyakov loop and the Dirac modes are not
related each other because the Polyakov loop is defined by gauge fields alone
and the Dirac modes look are fermionic modes. However, the Polyakov loop
in influenced by the quarks, and the Dirac modes are strongly affected by
the gauge fields because the Dirac eigenvalue equation (2.7) includes the link-
variables. A similar example is instantons. The instantons are defined by
gauge fields alone, however they have a close connection to the axial U(1)
anomaly, which relates to a fermionic symmetry. Thus, it is not unnatural
that the Polyakov loop has a connection to the Dirac modes. Thus, when
the dynamical quarks are considered, its effect changes the values of the
Polyakov loop L, the Dirac eigenvalue distribution ρ(λ) and the matrix el-
ements ⟨n|Ûµ|m⟩. However, the relation Eq.(2.17) holds even if considering
the dynamical quarks.

The relation between Polyakov loop and Dirac

modes on the even lattice

Moreover, the Polyakov loop can be expressed in terms of the Dirac modes on
the even lattice where all the lattice sizes are even number with the periodic
boundary condition for link-variables [61]. It is also derived in the following.

Corresponding to I in Eq.(2.14), we introduce a quantity

Ĩ(Nτ ) ≡ Trc,γ(γ
ξ(Nτ )
4 Û

Nτ/2+1
4

ˆD̸
Nτ/2−1

) (2.19)

with ξ(Nτ ) is defined as

ξ(Nτ ) =

{
0 (Nτ/2 : odd)

1 (Nτ/2 : even)
(2.20)

This quantity Û
Nτ/2+1
4

ˆD̸
Nτ/2−1

can be expanded as a sum of products of Nτ

link-variable operators. An example for the even lattice is shown in Fig. 2.2

and each line corresponds with each term in the expansion of Û
Nτ/2+1
4

ˆD̸
Nτ/2−1

in Eq.(2.19). In Û
Nτ/2+1
4

ˆD̸
Nτ/2−1

, any spatially closed loops cannot be made

because the number of Û4 is larger than that of Û−4. Then, Û
Nτ/2+1
4

ˆD̸
Nτ/2−1

does not have any gauge-invariant quantities except for the Polyakov loop,
which is the temporally closed loop. Therefore using the temporal periodic
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Figure 2.2: An example of even lattice. This is Nτ = 6 case. Each line

corresponds to each term in Û
Nτ/2+1
4

ˆD̸
Nτ/2−1

in Eq.(2.19). The Polyakov
loop is the unique closed loop using the temporal periodicity.

boundary condition, one finds

Ĩ = Trc,γ(γ
ξ(Nτ )
4 Û

Nτ/2+1
4

ˆD̸
Nτ/2−1

)

= Trc,γ{γξ(Nτ )
4 Û

Nτ/2+1
4 (γ4D̂4)

Nτ/2−1}
= Trc,γ(γ

ξ(Nτ )+Nτ/2−1
4 Û

Nτ/2+1
4 D̂

Nτ/2−1
4 )

= 4Trc(Û
Nτ/2+1
4 D̂

Nτ/2−1
4 )

=
4

(2a)Nτ/2−1
Trc{ÛNτ/2+1

4 (Û4 − Û−4)
Nτ/2−1}

=
4

(2a)Nτ/2−1
Trc{ÛNτ

4 }

=
12V

(2a)Nτ/2−1
L. (2.21)

On the other hand, taking Dirac modes as the basis for the functional
trace in Eq.(2.19), the quantity Ĩ is expressed as

Ĩ =
∑
n

⟨n|γξ(Nτ )
4 Û

Nτ/2+1
4 ̸D̂Nτ/2−1|n⟩

= iNτ/2−1
∑
n

λNτ/2−1
n ⟨n|γξ(Nτ )

4 Û
Nτ/2+1
4 |n⟩. (2.22)

Combining Eqs.(2.21) and (2.22), the relation is found as

L =
(2ai)Nτ/2−1

12V

∑
n

λNτ/2−1
n ⟨n|γξ(Nτ )

4 Û
Nτ/2+1
4 |n⟩. (2.23)
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In this way, we derive the relation connecting the Polyakov loop L and the
Dirac eigenvalues iλn on the even lattice. Comparing Eqs.(2.17) and (2.23),
the form of Eq.(2.17) is simpler than that of Eq.(2.23). However, both equa-
tions give the same content of physics because it should be independent of the
temporal lattice size Nτ . The dumping factor λ

Nτ/2−1
n in RHS of Eq.(2.23)

and λNτ−1
n in RHS of Eq.(2.17) are expected to have the same roles.

As we discuss in the previous section, the analytical relations Eqs. (2.17)
and (2.23) indicate small contribution from low-lying Dirac modes to the
Polyakov loop. However, it is also important to quantitatively confirm the
expectation. For simplicity, we consider the temporally odd-number lattice,
namely Eq. (2.17).

Since Eq. (2.17) is given as a sum over all the Dirac modes, each term
expresses the individual contribution from each Dirac mode and it can be
numerically obtained for the quantitative discussion. In the relation (2.17),
the Dirac matrix element ⟨n|Ûµ|m⟩ can be explicitly written as Eq.(2.11).
Thus, the relation (2.17) is expressed as

L = −(2ai)Nτ−1

12V

∑
n

λNτ−1
n

∑
s

ψ†
n(s)U4(s)ψn(s+ 4̂). (2.24)

In principle, the Dirac eigenvalues λn and the Dirac eigenfunctions ψn(s)
in RHS of Eq. (2.24) can be obtained by solving the Dirac eigenequation
(2.7) for each gauge configuration generated in the Monte-Carlo simulation.
However, it is not easy task because the numerical cost for solving the Dirac
eigenequation is very large. In fact, the dimension of the Dirac operator
(4 × Nc × V )2, it is very huge in general. Nevertheless, using the Kogut-
Susskind (KS) formalism [64], the numerical cost can be partially reduced
without approximation. We discuss it in the next part.

Modified Kogut-Susskind formalism for tem-

porally odd-number lattice

All the eigenvalues and the eigenmodes of the Dirac operator D̸ defined by
Eq.(2.3) are needed for the quantitative analysis for the relation between
confinement and chiral symmetry breaking in QCD. In order to reduce the
numerical cost, the technique of the KS formalism for diagonalizing the Dirac
operator ̸D is useful. The KS formalism is originally given by Kogut and
Susskind [64]. However, it is applicable to only the even lattice, where all the
lattice sizes are even number with the periodic boundary condition. Hence,
it is not applicable to the temporally odd-number lattice. However, the KS
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formalism have been generalized for the temporally odd-number lattice in
our study [61]. In the following, we discuss “modified KS formalism” on the
temporally odd-number lattice after we review the KS formalism on the even
lattice.

The KS formalism is the method for spin-diagonalizing the naive Dirac
operator on the lattice. We consider the even lattice, where all the lattice
sizes N1∼4 are even numbers. A matrix T (s) is defined as

T (s) ≡ γs11 γ
s2
2 γ

s3
3 γ

s4
4 . (2.25)

This matrix depends on all the components of the site s = (s1, s2, s3, s4).
Using the matrix, one can diagonalize all the γ-matrices γµ (µ = 1, 2, 3, 4);

T †(s)γµT (s± µ̂) = ηµ(s)1, (2.26)

where the staggered phase ηµ(s) is introduced as

η1(s) ≡ 1, ηµ(s) ≡ (−1)s1+···+sµ−1 (µ ≥ 2). (2.27)

Note that the Dirac operator ̸D = γµDµ is linear in the γ-matrices. Thus,
the Dirac operator is spin-diagonalized as∑

µ

T †(s)γµDµT (s+ µ̂)

= diag(ηµDµ, ηµDµ, ηµDµ, ηµDµ), (2.28)

where the KS Dirac operator ηµDµ is defined as

(ηµDµ)ss′ =
1

2a

4∑
µ=1

ηµ(s) [Uµ(s)δs+µ̂,s′ − U−µ(s)δs−µ̂,s′ ] . (2.29)

From the Eq. (2.28), one can find fourfold degeneracy of the Dirac eigenvalue
iλn relating to the spinor structure of the Dirac operator. Thus, all the
eigenvalues of the Dirac operator can be obtained by only solving the KS
Dirac eigenvalue equation

ηµDµ|n) = iλn|n) (2.30)

where |n) is the KS Dirac eigenstate. Note that the KS Dirac operator has
only indices of sites and colors, not spinors. Thus, the numerical cost for
solving the KS Dirac eigenvalue equation (2.30) is smaller than that for the
Dirac eigenvalue equation (2.7), and the ratio is about 1/16. Using the KS
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Dirac eigenfunction χn(s) ≡ ⟨s|n), the KS Dirac eigenvalue equation (2.30)
is explicitly expressed as

1

2a

4∑
µ=1

ηµ(s)[Uµ(s)χn(s+ µ̂)− U−µ(s)χn(s− µ̂)]

= iλnχn(s). (2.31)

Also, KS Dirac matrix element (n|Ûµ|m) is expressed as

(n|Ûµ|m) =
∑
s

(n|s⟩⟨s|Ûµ|s+ µ̂⟩⟨s+ µ̂|m)

=
∑
s

χn(s)
†Uµ(s)χm(s+ µ̂). (2.32)

Because of fourfold degeneracy of the Dirac eigenvalue, there are four
states with the same eigenvalues. These states are labeled with quantum
number I = 1, 2, 3, 4, namely |n, I⟩ [12]. Using this notation, the Dirac
eigenvalue equation (2.7) can be expressed as

D̸|n, I⟩ = iλn|n, I⟩. (2.33)

The relation between the Dirac eigenfunction ψI
n(s)α ≡ ⟨s, α|n, I⟩ and the

spinless KS-Dirac eigenfunction χn(s) is

ψI
n(s)α = T (s)αIχn(s). (2.34)

The quantum number I is mixed with spinor indices. That can be understood
from the fact that the quantum number I comes from the fourfold degeneracy
of the Dirac eigenvalue in the spinor space.

At the temporal boundary, the matrix satisfies

T (s+Nτ 4̂) = T (s)γNτ
4 . (2.35)

Then, the matrix T (s) is periodic if the temporal length Nτ is even num-
ber. Since this situation holds in all the directions, the periodic boundary
condition

T (s+Nµµ̂) = T (s) (2.36)

is satisfied only on the even lattice. Although the spatial periodic boundary
condition is not necessarily need physically, the temporal periodic boundary
condition is necessary for the imaginary-time finite-temperature formalism.
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Therefore, the original KS formalism is not applicable to the temporally
odd-number lattice.

Note here that this procedure is just a mathematical technique to diago-
nalize D̸, and this never means to use a specific fermion like the KS fermion.
In fact, the diagonalization of D̸ is mathematically equivalent to the use of
the KS formalism.

Now, we present the modified KS formalism as the generalization appli-
cable to the temporally odd-number lattice, where the lattice size for tem-
poral direction Nτ is odd number and the lattice sizes for spatial direction
Ni (i = 1, 2, 3) are even number with the periodic boundary conditions for
all the directions.

Instead of the matrix T (s), a matrix M(s) is introduced by

M(s) ≡ γs11 γ
s2
2 γ

s3
3 γ

s1+s2+s3
4 . (2.37)

Although the matrix M(s) is similar to the matrix T (s), it is independent of
the time component of the site s4. Using the matrixM(s), all the γ−matrices
are transformed to be proportional to γ4:

M †(s)γµM(s± µ̂) = ηµ(s)γ4, (2.38)

where ηµ(s) is the staggered phase given by Eq. (2.27). This relation 2.38 is
always satisfied for arbitrary representation for the gamma matrices. In the
Dirac representation, γ4 is diagonal as

γ4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (2.39)

and the Dirac representation is taken in this paper. Thus, the Dirac operator
̸D = γµDµ can be spin-diagonalized also on the temporally odd-number
lattice:

∑
µ

M †(s)γµDµM(s+ µ̂) =


ηµDµ 0 0 0

0 ηµDµ 0 0
0 0 −ηµDµ 0
0 0 0 −ηµDµ

 , (2.40)

where ηµDµ is the KS Dirac operator given in Eq. (2.29).
Note that the modified KS formalism can be applicable to the temporally

odd-number lattice. because the periodic boundary condition for the matrix
M(s) is satisfied for any direction. In fact, at the temporal boundary,

M(s+N44̂) =M(s), (2.41)
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is trivially satisfied becauseM(s) is independent of s4. Moreover, the spatial
boundary conditions for each direction

M(s+Nîi) =M(s) (i = 1, 2, 3) (2.42)

is valid because the spatial lattice sizes are even number. The staggered phase
ηµ(s) satisfies the periodic boundary condition on the temporally odd-number
lattice because the staggered phase ηµ(s) is also independent of the time
component of the site s4. In this way, the KS formalism can be generalized
for the temporally odd-number lattice.

The Dirac operator has two positive modes and two negative modes for
each eigenvalue λn on the temporally odd-number lattice from Eq. (2.40).
From the anti-commutator relation (1.14), the existence of the chiral partner
γ5|n⟩ is guaranteed with the eigenvalue −iλn. Thus, also on the temporally
odd-number lattice, all the eigenvalues of the Dirac operator can be obtained
only by solving the KS Dirac eigenvalue equation (2.31).

In the case of the temporally odd-number lattice, the Dirac eigenstates are
labeled with quantum number I = 1, 2, 3, 4 according to the spinor structure
of the Dirac operator given by Eq. (2.40). These four Dirac eigenfunction
ψI
n(s)α ≡ ⟨s, α|n, I⟩ are constructed For each KS Dirac mode |n) as

ψI
n(s)α =M(s)αIχn(s). (2.43)

The Dirac eigenstates |n, I⟩ have the eigenvalue iλn with I = 1, 2 and have
the eigenvalue −iλn with I = 3, 4.

Next, the relation (2.17) is rewritten using the KS Dirac modes. Now the
relation (2.17) is correctly written as

L = −(2ai)Nτ−1

12V

∑
n,I

λNτ−1
n ⟨n, I|Û4|n, I⟩. (2.44)

The diagonal Dirac matrix element ⟨n, I|Û4|n, I⟩ can be expressed by the
diagonal KS Dirac matrix element (n|Û4|n):

⟨n, I|Û4|n, I⟩ = (n|Û4|n). (2.45)

The detailed derivation is shown in Appendix A.2). Using the relation (2.45),
and taking the structure of the Dirac eigenfunction (2.43) into consideration.
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RHS of Eq. (2.44) can be rewritten using the KS Dirac modes:∑
n,I

λN4−1
n ⟨n, I|Û4|n, I⟩

=
∑

n,I=1,2

λN4−1
n ⟨n, I|Û4|n, I⟩

+
∑

n,I=3,4

(−λn)N4−1⟨n, I|Û4|n, I⟩

=
∑

n,I=1,2,3,4

λN4−1
n ⟨n, I|Û4|n, I⟩

=
∑

n,I=1,2,3,4

λN4−1
n (n|Û4|n)

= 4
∑
n

λN4−1
n (n|Û4|n), (2.46)

where N4 − 1 is even number on the temporally odd-number lattice. Thus,
the relation (2.17) is rewritten as

L = −(2ai)Nτ−1

3V

∑
n

λNτ−1
n (n|Û4|n) (2.47)

using the modified KS formalism. Note that the (modified) KS formalism
is an exact mathematical method for spin-diagonalizing the Dirac operator,
not an approximation. Thus Eqs. (2.44) and (2.47) are exactly equivalent.
Therefore, each Dirac-mode contribution to the Polyakov loop can be ob-
tained by solving the eigenvalue equation of the KS Dirac operator whose
dimension is (Nc×V )2 instead of the original Dirac operator whose dimension
is (4×Nc × V )2 on the temporally odd-number lattice.

Note again that a specific fermion like the KS fermion is not used. We
just use the KS formalism for diagonalizing the naive Dirac operator ̸D
defined by Eq.(2.3), and obtain all the eigenvalues and the eigenfunctions.
Actually, all the eigenvalues and eigenfunctions can be obtained without the
KS formalism by the direct diagonalization of the Dirac operator ̸D, and
they gives the same results. however, the numerical cost is larger.

Numerical analysis

Next, the numerical analysis is shown for the relation between confinement
and chiral symmetry breaking in QCD based on the relation (2.47) connecting
the Polyakov loop and Dirac modes on the temporally-odd number lattice.
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The eigenvalue and engenfunction of the KS Dirac operator is obtained by
using the Linear Algebra PACKage (LAPACK) [65].

The SU(3) lattice QCD Monte Carlo simulations are performed at the
quenched level with the standard Wilson plaquette action in both cases of
confinement and deconfinement phases. The lattice setup is 103 × 5 with
β ≡ 2Nc

g2
= 5.6 (i.e., a ≃ 0.25 fm), and 103 × 3 with β = 5.7 (i.e., a ≃ 0.20

fm), The former corresponds to T ≡ 1/(Nτa) ≃ 160 MeV, and it describes
the confinement phase. The latter corresponds to T ≡ 1/(Nτa) ≃ 330 MeV,
and it describes the deconfinement phase. 20 gauge configurations are used
for each phase, and they are taken every 500 sweeps after the thermalization
of 5,000 sweeps.

In order to confirm that the relation (2.47) is satisfied numerically, we
have independently calculated LHS and RHS of the relation (2.47) and com-
pare them. The numerical results for each gauge-configuration in both con-
finement and deconfinement phases are shown in Table 2.1 and Table 2.2,
respectively.

Table 2.1: Numerical results for LHS and RHS of the relation (2.47) on the
103 × 5 lattice with β = 5.6 for each gauge configuration, where the system
is in confinement phase. LD is defined as the R.H.S of the relation (2.47).
This table is essentially same as that in Ref. [61].

configuration No. ReL ImL ReLD ImLD

1 0.00961 -0.00322 0.00961 -0.00322
2 -0.00161 -0.00125 -0.00161 -0.00125
3 0.0139 -0.00438 0.0139 -0.00438
4 -0.00324 -0.00519 -0.00324 -0.00519
5 0.000689 -0.0101 0.000689 -0.0101
6 0.00423 -0.0168 -0.00423 -0.0168
7 -0.00807 -0.00265 -0.00807 -0.00265
8 -0.00918 -0.00683 -0.00918 -0.00683
9 0.00624 -0.00448 0.00624 -0.00448
10 -0.00437 0.00700 -0.00437 0.00700

From Tables 2.1 and 2.2, it is found that Eq. (2.47) is exactly valid
for each gauge configuration in both confinement and deconfinement phases
as expected above. In fact, the Elitzur’s theorem is not necessary for the
derivation of the relation because it is satisfied for each gauge-configuration.
Then, we can quantitatively investigate the relation between confinement
and chiral symmetry breaking in QCD using the relation (2.47) with a single
gauge-configuration.
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Table 2.2: Numerical results for LHS and RHS of the relation (2.47) on the
103 × 3 lattice with β = 5.7 for each gauge configuration, where the system
is in deconfinement phase. This table is essentially same as that in Ref. [61].

configuration No. ReL ImL ReLD ImLD

1 0.316 -0.00104 0.316 -0.00104
2 0.337 -0.00597 0.337 -0.00597
3 0.331 0.00723 0.331 0.00723
4 0.305 -0.00334 0.305 -0.00334
5 0.313 0.00167 0.314 0.00167
6 0.316 0.000120 0.316 0.000120
7 0.337 0.000482 0.337 0.000482
8 0.300 -0.00690 0.300 -0.00690
9 0.344 -0.00102 0.344 -0.00102
10 0.347 -0.00255 0.347 -0.00255

In the deconfinement phase, the Z3 center symmetry at the quenched level
is spontaneously broken, and the Polyakov loop is proportional to ei

2π
3
k (k =

0,±1) for each gauge configuration [12]. In this paper, the vacuum where the
Polyakov loop is almost real (j=0) is referred to as the “real Polyakov-loop
vacuum” and the other vacua is called as the “Z3-rotated vacua.” At the
quenched level, it is numerically confirmed that the relation (2.47) is exactly
satisfied in the Z3-rotated vacua as well as the real Polyakov-loop vacuum.

In the case of the full QCD calculations, where dynamical quarks are
included, the real Polyakov-loop vacuum is selected as the stable vacuum,
and the Z3-rotated vacua are meta-stable states. Then, the real Polyakov-
loop vacuum would be more significant than other vacua in the deconfinement
phase. Even in full QCD, the mathematical relation (2.47) is exact because
it is not related to how the link-variables are generated.

Next, we numerically investigate each Dirac-mode contribution in order
to confirm that the low-lying Dirac modes have negligible contribution to the
Polyakov loop based on the relation (2.47). This is expected from the analyt-
ical relation (2.47) as discussed above, however, the quantitative numerical
analysis is also meaningful.

Since RHS of the Eq. (2.47) is expressed as a sum over the Dirac-mode
contribution, the individual contribution to the Polyakov loop from each
Dirac mode. Then, the Polyakov loop without low-lying Dirac-mode contri-
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bution is introduced as

LIR-cut = −(2ai)Nτ−1

3V

∑
|λn|>ΛIR

λNτ−1
n (n|Û4|n), (2.48)

where ΛIR is the infrared (IR) cutoff for Dirac eigenvalue λn. The chiral
condensate ⟨q̄q⟩ is expressed on the lattice as

⟨q̄q⟩ = − 1

V
Trc,γ

1

D̸ +m

= − 1

V

∑
n

1

iλn +m

= − 1

V

(∑
λn>0

2m

λ2n +m2
+
ν

m

)
, (2.49)

where m is the current quark mass and ν the total number of zero modes of
D̸.

In Fig. 2.3, the Dirac eigenvalue distribution ρ(λ) in confinement and
deconfinement phases are shown. In the deconfinement phase, the density of
low-lying Dirac-modes is small and ρ(λ = 0) ≃ 0. It means that the chiral
condensate is almost zero and the chiral symmetry is restored. Then, in the
deconfinement phase, the effect of low-lying Dirac-modes to the Polyakov
loop might not be interesting because low-lying Dirac-modes are almost ab-
sent.

After the removal of contribution from the low-lying Dirac modes below
IR cutoff ΛIR, the chiral condensate is written as

⟨q̄q⟩ΛIR
= − 1

V

∑
λn≥ΛIR

2m

λ2n +m2
(2.50)

In this thesis, the IR cutoff is set as ΛIR ≃ 0.4GeV. In the confined phase,
using this IR Dirac-mode cut, chiral-symmetry is almost restored, and the
chiral condensate is strongly reduced as

⟨q̄q⟩ΛIR

⟨q̄q⟩
≃ 0.02 (2.51)

in the case of physical current-quark mass, m ≃ 5MeV [51].
For 10 gauge configurations, the numerical results for L and LIR-cut in

both confinement and deconfinement phases are shown in Tables 2.3 and 2.4,
respectively.
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Figure 2.3: The lattice QCD result for the Dirac eigenvalue distribution ρ(λ)
in confinement and deconfinement phases in the lattice unit. The upper
figure is the results on 103 × 5 lattice with β = 5.6 (i.e., a ≃ 0.25 fm), where
the system is in the confinement phase. The lower figure is the results on
103 × 5 lattice with β = 6.0 (i.e., a ≃ 0.10 fm). where the system is in the
deconfinement phase. These figures are taken from Ref. [61].

From Tables 2.3 and 2.4, it is found that

L ≃ LIR-cut (2.52)

is almost satisfied for each gauge configuration in both confinement and de-
confinement phases. In the deconfinement phase, we have confirmed that
L ≃ LIR-cut is valid for both real Polyakov-loop vacuum and Z3-rotated
vacua. Thus, the configuration average ⟨L⟩ ≃ ⟨LIR-cut⟩ is of course almost
satisfied. Therefore, the low-lying Dirac modes have negligible contribution
to the Polyakov loop. This results suggest that the low-lying Dirac modes
below the IR cutoff |λn| < ΛIR ≃ 0.4GeV are not essential for confinement
while they are essential for chiral symmetry breaking From Eq. (2.51). Thus,
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Table 2.3: Numerical results for L and LIR-cut on the 103 × 5 lattice with
β = 5.6 for each gauge configuration, where the system is in confinement
phase. This table is essentially same as that in Ref. [61].

configuration No. ReL ImL ReLIR-cut ImLIR-cut
1 0.00961 -0.00322 0.00961 -0.00321
2 -0.00161 -0.00125 -0.00160 -0.00125
3 0.0139 -0.00438 0.0139 -0.00437
4 -0.00324 -0.00519 -0.00325 -0.00520
5 0.000689 -0.0101 0.000706 -0.0101
6 0.00423 -0.0168 0.00422 -0.0168
7 -0.00807 -0.00265 -0.00807 -0.00264
8 -0.00918 -0.00683 -0.00918 -0.00682
9 0.00624 -0.00448 0.00624 -0.00448
10 -0.00437 0.00700 -0.00436 0.00698

our results indicate that there is no direct one-to-one correspondence between
confinement and chiral symmetry breaking in QCD.

New “positive/negative symmetry” on Dirac matrix el-
ement in confinement phase

We investigate the properties of the matrix element (n|Û4|n) and each Dirac-
mode contribution λNτ−1

n (n|Û4|n) in both confinement and deconfinement
phases. The Polyakov loop is obtained by multiplying all the sum of each
Dirac-mode contribution

∑
n λ

Nτ−1
n (n|Û4|n) by the overall factor−(2ai)Nτ−1/(3V )

in Eq. (2.47).
In Fig. 2.4, the numerical results for the matrix elements Re(n|Û4|n)

and Im(n|Û4|n) in confinement phase are shown. They are plotted against
Dirac eigenvalues λn in the lattice unit for one gauge configuration. In Fig.
2.5, each Dirac-mode contribution to the Polyakov loop λNτ−1

n Re(n|Û4|n)
and λNτ−1

n Im(n|Û4|n) are shown in the confinement phase. They are plotted
against Dirac eigenvalues λn in the lattice unit. From Fig. 2.4, it is found
that the real part of the matrix element Re(n|Û4|n) is generally nonzero in
the confinement phase, and it is not small in low-lying Dirac-mode region
with |λn| ∼ 0. However, from Fig. 2.5, it is directly confirmed that the
Dirac-mode contribution to the Polyakov loop, λNτ−1

n Re(n|Û4|n), is small in
low-lying Dirac-mode region thanks to the damping factor λNτ−1

n Thus, the
damping factor λNτ−1

n plays an important role in the Eq. (2.47).
On the other hand, from Fig. 2.4, the imaginary part Im(n|Û4|n) of the
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Table 2.4: Numerical results for L and LIR-cut on the 103 × 3 lattice with
β = 5.7 for each gauge configuration, where the system is in deconfinement
phase. This table is essentially same as that in Ref. [61].

configuration No. ReL ImL ReLIR-cut ImLIR-cut
1 0.316 -0.00104 0.319 -0.00103
2 0.337 -0.00597 0.340 -0.00597
3 0.331 0.00723 0.334 0.00724
4 0.305 -0.00334 0.307 -0.00333
5 0.314 0.00167 0.317 0.00167
6 0.316 0.000120 0.319 0.000121
7 0.337 0.0000482 0.340 0.0000475
8 0.300 -0.00690 0.303 -0.00691
9 0.344 -0.00102 0.347 -0.00102
10 0.347 -0.00255 0.350 -0.00256

matrix element is relatively small in low-lying Dirac-mode region unlike the
case of the real part, Re(n|Û4|n). However, as shown in Fig. 2.5, the low-
lying Dirac mode contribution to the imaginary part of the Polyakov loop,
λNτ−1
n Im(n|Û4|n) is small.
As a remarkable feature, from Fig. 2.4, one can find a new symmetry of

“positive/negative symmetry” in the distribution of Dirac-mode matrix ele-
ment (n|Û4|n), namely Re(n|Û4|n) and Im(n|Û4|n) in the confinement phase.
Since the damping factor trivially has the same symmetry, the distribution
of each Dirac-mode contribution to the Polyakov loop, λNτ−1

n (n|Û4|n), has
the same symmetry. The Polyakov loop is proportional to all the sum of
each Dirac-mode contribution to the Polyakov loop, and the zero-value of
the Polyakov loop ⟨L⟩ = 0 comes from the new symmetry in the confinement
phase. Moreover, due to the symmetry in the confinement phase, the contri-
bution to the Polyakov loop from arbitrary Dirac-mode region Λ1 ≤ λn ≤ Λ2

is zero: ∑
Λ1≤λn≤Λ2

λNτ−1
n (n|Û4|n) = 0 (in the confinement phase). (2.53)

This behavior in the confinement phase is consistent with the previous works
[51, 52].

Since quarks are deconfined and the chiral symmetry is restored in the
deconfinement phase, it might be less interesting to consider their relation.
In the following, only the real Polyakov-loop vacuum is considered because
it is selected as the stable vacuum in full QCD.
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Figure 2.4: The numerical results for the real part Re(n|Û4|n) and the imag-
inary part Im(n|Û4|n) of the KS-Dirac matrix element in the confinement
phase, plotted against the Dirac eigenvalue λn in the lattice unit on 103 × 5
with β = 5.6. One can find the positive/negative symmetry in the distribu-
tions. These figures are taken from Ref. [61].

In Figs. 2.6 and 2.7, the matrix elements (n|Û4|n) and each Dirac-mode
contribution λNτ−1

n Re(n|Û4|n) in the deconfinement phase with real Polyakov
loop. They are plotted against the Dirac eigenvalue λn. Since the imaginary
part of the Polyakov loop is also zero in the real Polyakov-loop vacuum, the
imaginary part Im(n|Û4|n) of the matrix element shows the same behavior
as the case of the confinement phase. (Compare Fig. 2.4(b) and Fig. 2.6(b).)
Then, only the results for real part of these quantities are considered in the
deconfinement phase. The results for a single gauge configuration are shown
like the case of the confinement phase because the results show almost same
behavior as the other configuration.

From Fig. 2.6, one can find a peak structure in the distribution of the
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Figure 2.5: The numerical results for each Dirac-mode contribution to the
Polyakov loop, λNτ−1

n Re(n|Û4|n) and λNτ−1
n Im(n|Û4|n) in the confinement

phase, plotted against the Dirac eigenvalue λn in the lattice unit on 103 × 5
with β = 5.6. These figures are taken from Ref. [61].

real part Re(n|Û4|n) of the matrix element in the low-lying mode region.
However, like the case of the confinement phase, from Fig. 2.7, each Dirac-
mode contribution λNτ−1

n Re(n|Û4|n) is relatively small in low-lying Dirac-
mode region due to the damping factor λNτ−1

n . More quantitatively, from
Fig. 2.7, since the distribution of the matrix element in the intermediate
region is almost symmetric, only the high-lying Dirac modes have nonzero
contribution to the Polyakov loop.

In the deconfinement phase, there is no more positive/negative symme-
try for the distributions of the matrix element (n|Û4|n) and each Dirac-mode
contribution λNτ−1

n (n|Û4|n), unlike the case of the confinement phase with the
symmetry. The Polyakov loop is nonzero because of the asymmetry in the
distribution of the matrix element and each Dirac-mode contribution, while
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Figure 2.6: The numerical results for the real part Re(n|Û4|n) and the imag-
inary part Im(n|Û4|n) of the KS-Dirac matrix element in the real Polyakov-
loop vacuum in the deconfinement phase, plotted against the Dirac eigenvalue
λn in the lattice unit on 103 × 3 with β = 5.7. there is no positive/negative
symmetry in the distribution of the real part Re(n|Û4|n) unlike the confine-
ment phase. These figures are taken from Ref. [61].

the Polyakov loop in the confinement phase is zero because of the symme-
try. Thus, the appearance of the positive/negative symmetry on the matrix
element (n|Û4|n) is strongly related to deconfinement phase transition. This
behavior is similar to the Z3 center symmetry, which is not broken in the con-
finement phase and is broken in the deconfinement phase at the quenched
level. Therefore, it is interesting to investigate the relation between the new
positive/negative symmetry and the Z3 center symmetry.
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Figure 2.7: The numerical results for each Dirac-mode contribution to the
Polyakov loop, λNτ−1

n Re(n|Û4|n) and λNτ−1
n Im(n|Û4|n), in the real Polyakov-

loop vacuum in the deconfinement phase plotted against the Dirac eigenvalue
λn in the lattice unit on 103 × 3 with β = 5.7. These figures are taken from
Ref. [61].

2.2 Polyakov loop fluctuations

In this section, we will improve the discussion on the relation between the
Polyakov loop and the Dirac modes by considering the Polyakov loop fluc-
tuations [66]. In fact, there are 2 reasons to consider the Polyakov loop
fluctuations. One is the correctness of the order parameter for the deconfine-
ment and the other is the ambiguity for the renormalization of the Polyakov
loop.

The pure SU(3) gauge theory corresponds to the quenched QCD, quarks
are treated as the heavy probes. However, the theory interested is the real
QCD where quark masses are small. If the quark is light, the behavior
of the Polyakov loop changes due to the explicit breaking of the Z3 center
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symmetry. On the one hand, the Polyakov loop is an exact order parameter
of the Z3 center symmetry and for deconfinement, which leads a first order
phase transition in the quenched QCD [12, 67, 68, 69]. On the other hand,
in the presence of light dynamical quarks, the Polyakov loop is no longer an
order parameter for the deconfinement transition and is smoothly changing
with temperature [70, 71, 72, 73, 74]. Then, it will be shown that particular
ratios of the Polyakov loop susceptibilities reflect the underlying Z3 center
symmetry and can serve as observables to identify the onset of deconfinement
in QCD

In the lattice QCD, the ultraviolet (UV) divergence of the free energy of
bare quark in the continuum limit, and then the bare Polyakov loop vanishes
at any temperature. Thus, the Polyakov loop must be renormalized so that it
has a physically meaningful continuum limit. However, the renormalization
of gluon correlation functions in general, and the Polyakov loop susceptibility
in particular, still has uncertainties. Then, it will be that the ambiguities of
the renormalization of the Polyakov loop are partially canceled in particular
ratios of the Polyakov loop susceptibilities.

After we review the properties of the Polyakov loop fluctuations, and
investigate the relation between confinement and chiral symmetry breaking
in terms of the Polyakov loop fluctuations and their ratios. We derive the
analytic relations between the real, imaginary and modulus of the Polyakov
loop and their fluctuations and the Dirac modes on the temporally odd-
number lattice with the periodic boundary condition. Then, we particularly
consider the contribution of the low-lying Dirac modes to the Polyakov loop
fluctuations.

Polyakov loop fluctuations

For each gauge configuration, by operating the Z3 rotation the Polyakov loop
(2.10), the Z3 rotated Polyakov loop L is defined as

L̃ = Le2πki/3 (2.54)

with k = 0,±1 [75, 76]. The variable k is determined so that k = 0 in the
confined phase is taken, and k in the deconfined phase is taken such that
the transformed Polyakov loop L̃ lies in its real sector. Using the Z3 rotated
Polyakov loop and its absolute value, the Polyakov loop susceptibilities are
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defined as

T 3χA =
N3

σ

N3
τ

[⟨|L|2⟩ − ⟨|L|⟩2], (2.55)

T 3χL =
N3

σ

N3
τ

[⟨(LL)
2⟩ − ⟨LL⟩2], (2.56)

T 3χT =
N3

σ

N3
τ

[⟨(LT )
2⟩ − ⟨LT ⟩2], (2.57)

where LL ≡ Re(L̃) and LT ≡ Im(L̃), and consider their ratios,

RA ≡ χA

χL

, (2.58)

RT ≡ χT

χL

. (2.59)

Figure 2.8: The temperature dependence of the ratio RA. The lattice QCD
simulations are performed at the quenched level and with the physical dy-
namical quarks. The temperature T is normalized by the deconfinement
temperature Tc. The figure is taken from Ref. [76]
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In particular, the ratio (2.58) of the Polyakov loop susceptibilities is im-
portant quantity. It is numerically shown to be robust probes of the decon-
finement transition, shown in Fig. 2.8. It is almost temperature independent
above and below the transition and there is a rapid change near the chiral
crossover T ≃ 150. This characteristic behavior is understood in terms of the
global Z3 symmetry of the Yang-Mills Lagrangian and the general properties
of the Polyakov loop probability distribution [75]. Moreover, the ambigui-
ties of the renormalization of the Polyakov loop are partially canceled in the
ratios. In fact, when renormalization of the Polyakov loop is multiplicative
renormalization

Lren = Z(g2)L, (2.60)

the renormalization function Z(g2) is canceled in the ratios. Therefore, the
ratios of the Polyakov loop susceptibilities are superior to the Polyakov loop
itself.

In the following, we derive the analytical relations between the Polyakov
loop fluctuations and the Dirac eigenmodes on the temporally odd-number
lattice. And then, we both analytically and numerically investigate the con-
tributions of the low-lying Dirac modes to the Polyakov loop fluctuation
ratios.

The Polyakov loop fluctuations and Dirac modes

Next, we derive the relations between the Polyakov loop fluctuations and the
Dirac modes. For simplicity, we consider the temporally odd-number lattice.
We start the relation between the Polyakov loop and the Dirac modes (2.17).
Since Eq. (2.17) is satisfied for each gauge-configuration, one can find the
relation between the Z3 transformed Polyakov loop L̃ and the Dirac modes,

L̃ =
(2ai)Nτ−1

12V

∑
n

λNτ−1
n e2πki/3⟨n|Û4|n⟩, (2.61)

by multiplying Eq. (2.17) by the Z3 factor e
2πki/3. Then, taking the real and

the imaginary parts of Eq. (2.61), the longitudinal and transverse Polyakov
loops can be expressed as

LL =
(2ai)Nτ−1

12V

∑
n

λNτ−1
n Re

(
e2πki/3⟨n|Û4|n⟩

)
, (2.62)

LT =
(2ai)Nτ−1

12V

∑
n

λNτ−1
n Im

(
e2πki/3⟨n|Û4|n⟩

)
, (2.63)
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respectively. Also, by taking the absolute value of Eq. (2.17), the absolute
value of the Polyakov loop can be written as

|L| = (2a)Nτ−1

12V

∣∣∣∣∣∑
n

λNτ−1
n ⟨n|Û4|n⟩

∣∣∣∣∣ . (2.64)

Since Eqs. (2.61), (2.62), (2.63) and (2.64) are satisfied for each gauge
configuration, the relations between them and the Dirac eigenmodes by sub-
stituting Eqs. (2.62)-(2.64) to Eqs. (2.55)-(2.57). In particular, the Dirac
spectral representation of the RA = χA/χL ratio is expressed as

RA =

⟨∣∣∣∑n λ
Nτ−1
n ⟨n|Û4|n⟩

∣∣∣2⟩−
⟨∣∣∣∑n λ

Nτ−1
n ⟨n|Û4|n⟩

∣∣∣⟩2⟨(∑
n λ

Nτ−1
n Re

(
e2πki/3⟨n|Û4|n⟩

))2⟩
−
⟨∑

n λ
Nτ−1
n Re

(
e2πki/3⟨n|Û4|n⟩

)⟩2 .
(2.65)

Here, ⟨x⟩ denotes an average over all gauge configurations.
These relations (2.61)-(2.64) are satisfied both in full QCD and at the

quenched level like the case of the Polyakov loop, namely Eq.(2.17). All
these relations are derived on the temporally odd-number lattice for practical
reasons. Of course, the relations on the even lattice can be derived by Eq.
(2.23), and both choices of the parity for the lattice size in time direction
give the same content of physics. However, the continuum limit is hard
to practically perform. For example, the renormalization of the Polyakov
loop has not been determined. Nevertheless, at least the ambiguity of the
multiplicative renormalization of the Polyakov loop can be avoided by the
cancellation of the renormalization function in the ratio of the Polyakov-loop
susceptibilities [75, 76].

Numerical results

In order to numerically investigate the contribution of different Dirac modes
to the Polyakov loop susceptibilities and their ratios, we use the above rela-
tions. Since the KS formalism can be applicable to the relations, we rewrite
the relations using the formula ⟨n|Û4|n⟩ = 4(n|Û4|n).

We calculate the contributions from the low-lying Dirac modes to the
Polyakov loop fluctuations using the SU(3) lattice QCD Monte Carlo sim-
ulations. The numerical setup is the same as the previous section. The
Linear Algebra PACKage (LAPACK) [65] is used for diagonalization of the
KS Dirac operator to obtain the eigenvalues λn and the eigenfunctions χn(s).
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The lattice spacing a is determined by the string tension σ = 0.89 GeV/fm
on a large lattice at each β at zero temperature. In this setup, in the con-
finement phase, the average of the plaquette is calculated as ⟨Uµν⟩=0.53(2).
This is consistent with the previous SU(3) lattice studies [77]. In deconfined
phase, the average value of plaquette is ⟨Uµν⟩=0.60(2), which is also consis-
tent with the previous works [77]. For each value of β = 5.6 and β = 6.0,
we use 20 gauge configurations, which are taken every 500 sweeps after the
thermalization of 5000 sweeps.

Like the case of the Polyakov loop itself, the infrared cutoff Λ is introduced
and we investigate the influence of the low-lying Dirac modes below Λ. Then,
we introduce the Λ-dependent Polyakov loops,

|L|Λ =
(2a)Nτ−1

3V

∣∣∣∣∣∣
∑

|λn|>Λ

λNτ−1
n (n|Û4|n)

∣∣∣∣∣∣ , (2.66)

for the modulus, and

(LL)Λ = Cτ

∑
|λn|>Λ

λNτ−1
n Re

(
e2πki/3(n|Û4|n)

)
, (2.67)

(LT )Λ = Cτ

∑
|λn|>Λ

λNτ−1
n Im

(
e2πki/3(n|Û4|n)

)
. (2.68)

for the real and the imaginary part, respectively, with Cτ = (2ai)Nτ−1/3V .
Applying the cutoff dependent Polyakov loops from Eqs. (2.66), (2.67) and
(2.68) to Eqs. (2.55)-(2.57), we also introduce the Λ-dependent susceptibili-
ties

T 3(χA)Λ =
N3

σ

N3
τ

[⟨|L|2Λ⟩ − ⟨|L|Λ⟩2] (2.69)

T 3(χL)Λ =
N3

σ

N3
τ

[⟨(LL)
2
Λ⟩ − ⟨(LL)Λ⟩2] (2.70)

T 3(χL)Λ =
N3

σ

N3
τ

[⟨(LT )
2
Λ⟩ − ⟨(LT )Λ⟩2], (2.71)

where, and their ratios

(RA)Λ =
(χA)Λ
(χL)Λ

, (2.72)

(RT )Λ =
(χT )Λ
(χL)Λ

. (2.73)
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In order to investigate the influence of the low-lying Dirac modes to the
properties of the Polyakov loop fluctuations and the chiral condensate, we
introduce two ratios. The cutoff-dependent chiral condensate ⟨q̄q⟩Λ in Eq.
(2.50) and the ratio

Rchiral =
⟨q̄q⟩Λ
⟨q̄q⟩

(2.74)

for chiral symmetry breaking. In the same spirit, we introduce the ratio,

Rconf =
(RA)Λ
RA

, (2.75)

in order to quantify the sensitivity of the Polyakov loop fluctuations to the
particular Dirac modes. When, the ratio satisfies Rconf ≃ 1, then the low-
lying Dirac modes below the IR cutoff Λ are not essential to the Polyakov
loop fluctuations.

The numerical results for the ratios Rconf and Rchiral in a confined phase at
β = 5.6, for various values of the infrared cutoff Λ in Fig. 2.9. The ratio Rchiral

is calculated with the quark mass m = 5 MeV. From the Fig. 2.9, it is found
that the low-lying Dirac modes below Λ have the dominant contribution to
the chiral condensate. Thus, the low-lying Dirac modes, which are important
modes for chiral symmetry breaking. In contrast to Rchiral, the Rconf ratio
is almost unchanged by the removal of the low-lying Dirac modes even with
relatively large cutoff Λ ≃ 0.5 GeV.

Thus, the important modes for chiral symmetry breaking are not impor-
tant for confinement properties in QCD. In Table 2.5, the numerical results
for the Polyakov loop fluctuations and IR cut fluctuations with the IR-cutoff
Λ ≃ 0.4 GeV. In the deconfinement phase, the same behavior is observed as
seen in Table 2.5.

Like the case of the Polyakov loop, we can analytically understand the
differences in the influence of the low-lying Dirac modes on the chiral conden-
sate and the Polyakov loop fluctuations. Due to the damping factor λNτ−1

n ,
the contributions from the low-lying Dirac modes are strongly suppressed
for the Polyakov loops, |L|, LL, LT from Eqs. (2.62)-(2.64) because the
Dirac matrix element ⟨n|Û4|n⟩ is finite. Then, since the susceptibilities and
their ratios are defined from the Polyakov loops, the low-lying Dirac modes
have the negligible contributions to them, too. Thus, the essential modes
for chiral symmetry breaking are not essential for a sensitive probe RA for
deconfinement in QCD. This result suggests no direct one-to-one correspon-
dence between confinement and chiral symmetry breaking in QCD. In this
way, we have improved the discussion in the previous section by considering
the Polyakov loop fluctuations.
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Figure 2.9: The numerical results for the ratios Rchiral and Rconf from Eqs.
(2.74) and (2.75), respectively, as a function of an infrared cutoff Λ intro-
duced on Dirac eigenvalues, expressed in the lattice unit. The Monte Carlo
calculations have been performed on the 103×5 lattice with β = 5.6, and for
the quark mass of m = 5 MeV. This figure is taken from Ref. [66].
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Table 2.5: Numerical results for the original values of the Polyakov-loop
fluctuations, and IR cut fluctuations with the IR-cutoff Λ ≃ 0.4 GeV. The
results are obtained in quenched QCD on 103 × 5 lattice with β = 5.6 (con-
fined phase) and β = 6.0 (deconfined phase) with 20 gauge configurations.
This table is essentially same as that in Ref. [66].

β original IR-cut
β=5.6 T 3χA 3.475× 10−4 3.470× 10−4

T 3χL 5.307× 10−4 5.298× 10−4

T 3χT 6.005× 10−4 5.994× 10−4

RA 0.6548 0.6549
RT 1.131 1.131

β=6.0 T 3χA 2.965× 10−3 2.965× 10−3

T 3χL 3.015× 10−3 3.015× 10−3

T 3χT 7.848× 10−4 7.848× 10−4

RA 0.9834 0.9834
RT 0.2603 0.2603

2.3 Wilson loop

In this section, we derive a formula to express the Wilson loop in terms of the
Dirac eigenmodes [62]. In addition to the Polyakov loop and its fluctuations,
the Wilson loop is also important quantity for quark-confinement because
interquark potential can be defined from the Wilson loop. The formula is
valid on an arbitrary square lattice, unlike the formulae for the Polyakov
loops. In the following, we show the detailed derivation.

We consider the Wilson loop W (R, T ) corresponding to a rectangular
loop with R × T , shown in Fig. 2.10. It can be expressed as the functional
trace

W (R, T ) ≡ Trc

[
ÛR
1 Û

T
−4Û

R
−1Û

T
4

]
= Trc

[
ŜÛT

4

]
, (2.76)

where Ŝ is the “staple operator” defined as

Ŝ ≡ ÛR
1 Û

T
−4Û

R
−1. (2.77)

Like the formula (2.17) for the Polyakov loop, that for the Wilson loop
can be derived by introducing a particular functional trace, showing that it is
proportional to the Wilson loop, and expanding it with the Dirac eigenmodes.
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Figure 2.10: (Left) A rectangular loop with R × T on the square lattice
corresponding to the Wilson loop W (R, T ). (Right) The loop is decomposed
to the two parts, the staple Ŝ and the temporal line ÛT

−4.

For simplicity, we consider even number T . The functional trace is introduced
as

J ≡ Trc,γŜ /̂D
T
, (2.78)

where /̂D is given in Eq. (2.3). It corresponds to Eq. (2.14) in section 2.1.
We can show that the quantity includes only the Wilson loop. Here, we note
that the distance between the end points of the staple operator is T , and the
Dirac operator /̂D is expressed as the linear combination of the link-variable

operators. Thus, only the ÛT
4 term in the expansion of /̂D

T
is only the gauge-

invariant term corresponding to the closed loop, namely the Wilson loop.
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Therefore, we can obtain

J = Trc,γŜ /̂D
T

= Trc,γŜ(γ4D̂4)
T

= 4TrcŜD̂
T
4

=
4

(2a)T
TrcŜ(Û4 − Û−4)

T

=
4

(2a)T
TrcŜÛ

T
4

=
4

(2a)T
W. (2.79)

On the other hand, when the Dirac mode is taken as the basis for the func-
tional trace, J is expressed as

J =
∑
n

⟨n|Ŝ /DT |n⟩ = (−)
T
2

∑
n

λTn ⟨n|Ŝ|n⟩, (2.80)

where we use the eigenvalue equation (2.4). In this way, we obtain the relation

W (R, T ) =
(−)

T
2 (2a)T

4

∑
n

λTn ⟨n|Ŝ|n⟩ (2.81)

for even T . We again note that the low-lying Dirac mode contributions to
the Wilson loop is expected to be negligible compared to the other higher
modes due to the damping factor λTn . Although the matrix element ⟨n|Ŝ|n⟩
has the explicit T -dependence, the absolute value is finite, and then it does
not disturb the argument.

Of course, the similar analysis can be performed in the case of odd number
T . In fact, instead of J , when we consider the functional trace for odd T

K ≡ Trc,γŜÛ4 /̂D
T−1

, (2.82)

we can calculate

K = Trc,γŜÛ4 /̂D
T−1

= Trc,γŜÛ4(γ4D̂4)
T−1

=
4

(2a)T−1
TrcŜÛ4(Û4 − Û−4)

T−1

=
4

(2a)T−1
TrcŜÛ

T
4

=
4

(2a)T−1
W, (2.83)
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and

K =
∑
n

⟨n|ŜÛ4 /D
T−1|n⟩

= (−)
T−1
2

∑
n

λT−1
n ⟨n|ŜÛ4|n⟩. (2.84)

Therefore, the similar formula holds for the odd T as

W =
(−)

T−1
2 (2a)T−1

4

∑
n

λT−1
n ⟨n|ŜÛ4|n⟩. (2.85)

The indication from Eq. (2.85) is the same as that from Eq. (2.81). That is,
the low-lying Dirac modes have little contribution to the Wilson loop.

The q̄q potential V (R) is considered in terms of the Dirac modes using
the relation connecting the Wilson loop and the Dirac modes. We consider
even T case. In the large T limit, the interquark potential V (R) is extracted
as

V (R) = − lim
T→∞

1

T
ln⟨W (R, T )⟩. (2.86)

Since now the Wilson loop is expressed by the Dirac modes and the relation is
valid for arbitrary gauge configuration, the potential V (R) can be expressed
as

V (R) = − lim
T→∞

1

T
ln

∣∣∣∣∣
⟨∑

n

(2aλn)
T ⟨n|Ŝ|n⟩

⟩∣∣∣∣∣ . (2.87)

Similarly, the string tension σ can be expressed as

σ = − lim
R,T→∞

1

RT
ln⟨W ⟩

= − lim
R,T→∞

1

RT
ln

∣∣∣∣∣
⟨∑

n

(2aλn)
T ⟨n|Ŝ|n⟩

⟩∣∣∣∣∣ . (2.88)

Again because of the damping factor λTn in the sum, we can find that both
the q̄q potential V (R) and the string tension σ are not almost affected by the
low-lying Dirac modes unless ⟨n|Ŝ|n⟩ has a counter factor such as λ−T

n . Also
for odd T case, similar arguments can be done with Eq.(2.85). Therefore, we
directly confirm that the string tension σ, or the confining force, is almost
unchanged even if the low-lying Dirac modes disappear, which means chiral
symmetry restoration.
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Chapter 3

Generalization to chiral
fermion on the lattice

In this chapter, we generalize the previous discussion for the relation between
the Polyakov loop and the Dirac eigenmodes. As mentioned in section 1.4, the
fermionic action a4

∑
s q̄(s) (DLat +m) q(s), equivalently the Dirac operator

DLat on the lattice, is complicated due to the fermion doubling problem. This
problem is usually avoided by explicitly breaking the chiral symmetry, which
is one of the conditions for the Nielsen-Ninomiya theorem [12, 35, 36]. In
fact, the naive Dirac operator ˆD̸, which is used in the above chapter, includes
the fermion doubler modes, and their contributions must be removed. Since
the analytical relations are nontrivial between the Polyakov loop and the
eigenmodes of the Dirac operators which explicitly break the chiral symmetry
on the lattice, we discuss the relations in this chapter.

First of all, we review the Wilson, Wilson-clover, and overlap fermion
formalism as the lattice Dirac operators. Second, the relation between the
Polyakov loop and the Wilson(-clover)-Dirac modes is analytically derived.
Finally, we discuss the relation between quark-confinement and chiral sym-
metry breaking in QCD using the overlap-Dirac operator, which is referred
to as chiral fermion.

3.1 Lattice fermion and fermionic doubler modes

The Wilson fermion is the simplest lattice fermion which can avoid the dou-
bling problem [12, 33]. The fundamental idea of the Wilson fermion is to
give the heavy masses to the doublers modes. The Wilson-Dirac operator is
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given by

D̂W = ˆD̸ − ar

2
D̂2, (3.1)

The first term ̸D ≡ Dµγµ is the naive discretization of the Dirac operator,
and the second term is the Wilson term. The real parameter r is referred
to as the Wilson parameter, and it is usually set r = 1. Using the covariant
derivative on the lattice

⟨s|D̂µ|s′⟩ =
1

2a
(Uµ(s)δs+µ̂,s′ − U−µ(s)δs−µ̂,s′) , (3.2)

and the center discretization for D2, the Wilson-Dirac operator is

⟨s|D̂W|s′⟩

= 4ar − 1

2a

∑
µ

[(1− γµ)Uµ(s)δs+µ̂,s′ − (1 + γµ)U−µ(s)δs−µ̂,s′ ] . (3.3)

The Wilson-Dirac operator approaches the continuum Dirac operator with
O(a). In the case of the free fermion, the quark propagator in the momentum
space is

⟨q̄α(s1)qβ(s2)⟩ =
∫ π

a

−π
a

d4p

(2π)4
(−iγµ ˜̃pµ +M(p))αβ∑

µ(
˜̃pµ)2 +M(p)2

eip(s1−s2)a, (3.4)

where ˜̃pµ = 1
a
sin(pµa) and

M(p) ≡M +
2r

a

∑
µ

sin2(pµa/2). (3.5)

The second term is contribution from the Wilson term and increases as 1/a
with the continuum limit a → 0 when pµa ̸= poles, corresponding to the
doubler modes. Then, the doubler modes obtain large masses at the contin-
uum limit and do not contribute to the low-energy physics. In this way, the
Wilson fermion formalism solves the doubling problem.

The Wilson-Dirac operator can be improved by the adding the space-
diagonal term referred to as the clover term

A(s) = −1

2
cSW

∑
µ<ν

[γµ, γν ]Fµν(s), (3.6)

where the parameter cSW is set as cSW = 1 at the tree level, and the field
strength tensor Fµν(s) on the lattice is defined as

Fµν(s) =
1

8

(
Pµν(s)− P †

µν(s)
)

(3.7)
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with

Pµν(s) = Uµ(s)Uν(s+ µ̂)U †
µ(s+ ν̂)U †

ν(s)

+ Uν(s)U
†
µ(s− µ̂+ ν̂)U †

ν(s− ν̂)Uµ(s− ν̂)

+ U †
µ(s− µ̂)U †

ν(s− µ̂− ν̂)Uµ(s− µ̂− ν̂)Uν(s− ν̂)

+ U †
ν(s− ν̂)Uµ(s− ν̂)Uν(s+ µ̂− ν̂)U †

µ(s). (3.8)

The improved Dirac operator is referred to as the clover-Wilson-Dirac oper-
ator. The origin of the name of the clover-term comes from the form of Eq.
(3.8), shown in Fig. 3.1.

Figure 3.1: Clover-like structure of the quantity Pµν(s) of Eq. (3.8) on a
square lattice. The red squares express the corresponding terms in Eq. (3.8).

The Wilson type of the Dirac operator on the lattice explicitly breaks
the chiral symmetry in order to avoid the doubling problem. However, the
chiral symmetry and its spontaneous breaking are important for the low-
energy dynamics on QCD, and thus the chiral symmetry is expected to be
maximally respected. Based on this concept, the Ginsparg-Wilson (GW)
relation is derived [78]. If the lattice Dirac operator D on a lattice satisfies
the GW relation

γ5D̂ + D̂γ5 = aD̂γ5D̂, (3.9)

the lattice action SF = q̄Dq has the exact symmetry on the lattice. The
infinitesimal transformation operating the fermionic fields associated with
the exact symmetry is

δq = γ5(1−
1

2
aD̂)q, δq = q̄(1 +

1

2
aD̂)γ5. (3.10)
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The transformation (3.10) approaches the axial transformation with the con-
tinuum limit a → 0. In this sense, the lattice-Dirac operator satisfying the
GW relation is the best Dirac operator on the lattice because it solves the
fermion doubling problem with approximate chiral symmetry, which is max-
imally realized on the lattice.

One of the Dirac operator satisfying the GW relation is the overlap-Dirac
operator Dov [79] defined as

D̂ov =
1

a

1 + D̂W(−M0)√
D̂†

W(−M0)D̂W(−M0)

 , (3.11)

where DW(−M0) is the Wilson-Dirac operator with the negative mass term
(−M0). If one adjusts the negative mass, the contribution from doubler
modes are decoupled from the low-energy dynamics in the continuum limit.
In the case of the free fermion, the condition is M0 as 0 < M0 < 2 [79]. The
overlap-Dirac operator satisfies the GW relation (3.9) [80]:

γ5D̂ov + D̂ovγ5 = aD̂ovγ5D̂ov. (3.12)

3.2 The relation between Polyakov loop and

low-lying modes of overlap-Dirac opera-

tor

Fist of all, we derive the analytical relation connecting the Polyakov loop and
the Wilson-Dirac modes. The main motivation is eliminating the fermion
doubling problem and ensuring the correct continuum limit. The relation
will be used for the discussion for the overlap-Dirac modes.

The relation between Polyakov loop and Wilson-Dirac
modes

Using the link-variable operators, the Wilson-Dirac operator is given as

D̂W = 4r/a− 1

2a

4∑
µ=1

[
(r − γµ)Ûµ + (r + γµ)Û−µ

]
. (3.13)

While the Dirac operator (2.3) is anti-hermitian, the Wilson-Dirac operator
(3.13) is neither hermitian nor anti-hermitian. Thus, the eigenvalue equation
of the Wilson-Dirac operator is written as

D̂W|n⟩W = ΛW
n |n⟩W, (3.14)

53



where Λn ∈ C. Note that these Wilson-Dirac mode is not complete system.
However, the explicit breaking of the anti-hermiticity is O(a), it is almost
complete set with sufficient small lattice spacing.

Figure 3.2: An example of odd lattice. This is Nτ = 2N + 1 = 5 case. The
blue line corresponds to the operator ÛN+1

4 in Eq. (3.20), and the red line
corresponds to the link-variable operator Ûµ. Due to the diagonal term in
the (clover-)Wilson-Dirac operator, the length l of each line is in the range
N + 1 ≤ l ≤ Nτ . The The Polyakov loop is the unique closed loop using
the temporal periodicity. All the lines in the left figure correspond to the
gauge-variant terms while the line in the right figure is the unique closed loop
using the temporal periodicity, namely the Polyakov loop.

We again consider the temporally odd-number lattice and we set the
temporal size as Nτ = 2N + 1. The derivation of the relation between the
Polyakov loop and the Wilson-Dirac modes is the essentially same as the
derivation of Eq. (2.23). The single difference is the degree of the link-
variable operator. We introduce the functional trace IW

IW ≡ Trc,γ(Û
N+1
4 D̂N

W) (3.15)

with the functional trace Trc,γ ≡
∑

s trc. From Eq.(3.13), each term in

the expansion of ÛN+1
4 D̂N

W has products of n link-variable operators, where
N+1 ≤ n ≤ 2N+1(= Nτ ). Here, we note two points. The first point is that
any closed loops cannot be made using odd-number link-variable operators
on a square lattice. The second point is that the possible closed loop is the
Polyakov loop using the temporal periodic boundary condition because the
number of Û4 is larger that of Û−4. Therefore, we conclude that the quantity
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IW is proportional to the Polyakov loop. The total derivation is

IW = Trc,γ(Û
N+1
4 D̂N

W)

=
1

(2a)N
Trc,γ(Û

N+1
4 (r − γ4)

N ÛN
4 )

=
1

(2a)N
Trc(Û

Nτ
4 )trγ[(r − γ4)

N ]

= − 3V

(2a)N

(
N∑

n=0

NCnr
ntrγ[(γ4)

N−n]

)
L. (3.16)

If we set the ordinary value r = 1 of the Wilson parameter, the above relation
becomes simpler as

IW =
3V

2aN
L (3.17)

because (γ4)
2 = 1, trγγ4 = 0 and

∑N
n=0 NCn = 2N−1. In the following, we

use r = 1.
On the other hand, taking the Wilson-Dirac modes as the basis for the

functional trace in Eq.(3.20), we find

IW =
∑
n

⟨n|ÛN+1
4 D̂N

W|n⟩W

=
∑
n

(ΛW
n )N⟨n|ÛN+1

4 |n⟩W, (3.18)

where we abbreviate the bra-vector W⟨n| to ⟨n|.
Combining Eqs.(3.17) and (3.18), we obtain

L = −2aN

3V

∑
n

(ΛW
n )N⟨n|ÛN+1

4 |n⟩W. (3.19)

This analytical relation connects the Polyakov loop and the Wison-Dirac
modes. Note that the clover term is diagonal in the space-time space, and
then the relation (3.19) is satisfied with the clover-Wilson-Dirac operator.

The relation between Polyakov loop and low-lying modes
of overlap-Dirac operator

The overlap-Dirac operator is expressed as the infinite series in terms of
the link-variable operator while the naive-Dirac operator ˆD̸ and the Wilson-
Dirac operator D̂W include only the linear terms. Thus, it is difficult to
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directly show the analytical formula connecting the Polyakov loop and the
eigenmodes of the overlap-Dirac operator by the similar method in the case
of ˆD̸ and D̂W. Nevertheless, their relation can be understood through the
eigenmodes of the Wilson-Dirac operator, and it is explained in the following.

We explain why it is difficult to derive the direct relation connecting the
Polyakov loop and the overlap-Dirac modes. Consider the expansion of the
overlap-Dirac operator. If the overlap-Dirac operator has finite terms with
finite degrees of the link-variable operators, we can derive the analytical
formula by considering

Iov ≡ Trc,γ(Û
N+1
4 D̂N

ov) (3.20)

with sufficiently large N . However, it is found from the GW relation (3.12)
that the overlap-Dirac operator is infinite series of the link-variable operators
because the highest degree in RHS is larger than the highest degree in LHS.
Then, the method in the case of the Polyakov loop and Wilson loop using the
naive or Wilson-Dirac operator is not applicable to the case of the overlap-
Dirac operator.

The eigenvalue equation of the overlap-Dirac operator is written as

D̂ov|n⟩ov = Λov
n |n⟩ov, (3.21)

where Λov
n ∈ C is the eigenvalue. Since the overlap-Dirac operator satis-

fies the GW relation and γ5-hermiticity, The eigenvalues Λov
n of the overlap-

Dirac operator are distributed on a circle in the complex plane which has
the center (1/a, 0) and the radius 1/a, shown in Fig. 3.3. In particular,
the eigenmodes around the origin (0, 0) correspond to physical modes while
eigenmodes around the point (2/a, 0) correspond to doubler’s modes. In
fact, in the continuum limit, the former approach the eigenmodes of the
continuum Dirac operator while the latter is decoupled from the low-energy
physics because of divergence of the radius of the circle. Moreover, the chiral
condensate ⟨q̄q⟩ is expressed by the overlap-Dirac modes as

⟨q̄q⟩ = − 1

V

∑
n

1

Λov
n +m

, (3.22)

where m is the current quark mass. The low-lying modes (|Λov
n | ≪ 1) of the

overlap-Dirac modes have large contribution to the chiral condensate, which
is the order parameter of chiral symmetry breaking. Thus, the low-lying
overlap-Dirac modes are physical and essential for chiral symmetry breaking.

The eigenmodes of the Wilson-Dirac operator can be obtained, and the
eigenvalues ΛW

n of the Wilson-Dirac operator DW(−M0) are shown in Fig.
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Figure 3.3: The distribution of the eigenvalues Λov
n of the overlap-Dirac op-

erator. The eigenvalues are distributed on the circle with the center (1/a, 0)
and the radius 1/a. In this figure, we set a=1.

3.4, where we setM0 = 1.6 [82] in the lattice unit. In the eigenvalue distribu-
tion, there are 5 types of the real modes whose eigenvalues are real. Among
these modes, the modes which have the negative real eigenvalues correspond
to the physical near-zero modes while other real modes correspond to the
doubler modes. Moreover, one can adjust the location of the physical mode
so that the eigenvalue Λ̃W

n ∈ R lie in the range −1 ≤ Λ̃W
n ≤ 0 by vary-

ing M0. Thus, from the view point of the physical and doubler modes, the
low-lying modes of the Wilson-Dirac and overlap-Dirac operators correspond
each other.

The correspondence between the low-lying eigenmodes of the overlap-
Dirac operator and the Wilson-Dirac operator can be understood by another
way. If a general matrix M is normal, matrices M ′ ≡ M√

M†M
and M have the

same eigenvectors and the relation of their eigenvalues can be expressed as

m′ =
m

|m|
, (3.23)

where m′ and m are the eigenvalues of M ′ and M , respectively. However,
since the Wilson-Dirac operator is not normal, the relation of the eigenvalues
Λov

n and ΛW
n is nontrivial. Nevertheless, the their relation is expected to be

expressed as

Λov
n =

1

Ra

(
1 +

ΛW
n

|ΛW
n |

)
+O(a) (3.24)

because the breaking of the normality of the Wilson-Dirac operator is caused
by the so-called Wilson term and its amplitude is O(a). As long as the

57



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1  0  1  2  3  4  5  6

Im
Λ

n
[a

-1
]

ReΛn[a
-1

]

Figure 3.4: The distribution of the eigenvalues ΛW
n of the Wilson-Dirac op-

erator D̂W(−M0), where we set M0 = 1.6 in the lattice unit. The gauge-
configuration is generated in the quenched simulation on 64 lattice with
β = 5.6.

continuum limit is interested in, Eq. (3.24) can be regarded approximately
satisfied. A notable point about Eq. (3.24) is that an eigenvalue ΛW

n of
the Wilson-Dirac operator corresponds to the unique eigenvalue Λov

n of the
overlap-Dirac operator while an eigenvalue Λov

n determines the only phase
θn of the eigenvalue ΛW

n , where the phase θn is defined by ΛW
n = |ΛW

n |eiθn
(0 ≤ θn < 2π). In particular, the low-lying Dirac modes of the overlap-
Dirac operator are correspond to the Wilson-Dirac modes whose phases are
around π. By adjusting the negative mass M0, these modes with θn ≃ π
can have the small absolute values (|ΛW

n | < 1). Thus, the low-lying overlap-
Dirac modes correspond to the Wilson-Dirac modes whose eigenvalues of the
absolute value are relatively small.

The above discussion is summarized as the three important points:

• the low-lying overlap-Dirac modes are essential for chiral symmetry
breaking.

• the low-lying overlap-Dirac modes correspond to the low-lying Wilson-
Dirac modes.

• the low-lyingWilson-Dirac modes have little contribution to the Polyakov
loop.

The first point is confirmed by the Dirac representation of the chiral con-
densate, Eq (3.22). The second point is confirmed from the consideration
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for the eigenvalue distributions of the Wilson-Dirac and overlap-Dirac opera-
tors in the view point of the correspondence of the fermionic doubler modes.
The 3rd point was confirmed by the formula (3.19) connecting the Polyakov
loop and the Wilson-Dirac modes. From these points, therefore, the presence
or absence of the low-lying overlap-Dirac modes is not related to the value
of the Polyakov loop while the chiral condensate is sensitive to that. This
result indicates that there is no direct, one-to-one correspondence between
confinement and chiral symmetry breaking in QCD.
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Chapter 4

Summary and Outlook

In this thesis, we have discussed the relation between the non-perturbative
phenomena, such as quark-confinement and chiral symmetry breaking using
the relations connecting order parameters for quark confinement and the
eigenmodes of the Dirac operators in the lattice QCD. In the following, we
summarize our study and present an outlook in this context.

Using the naive Dirac operator on the temporally odd-number lattice,
where the temporal lattice size is odd number with the proper periodic
boundary condition, the analytical relation connecting the Polyakov loop
and the Dirac eigenmodes is derived. This analytical relation can be gener-
alized to the even lattice, where all the lattice sizes are even number. These
analytical relations indicate that the low-lying Dirac eigenmodes have the
negligible contributions to the Polyakov loop. Then, this observation means
that the important modes for chiral symmetry breaking are not important for
quark-confinement. This is also numerically confirmed by the lattice QCD
calculations. After removal of the low-lying Dirac modes below the infrared
scale ΛIR ∼ 400 MeV, the Polyakov loop is almost unchanged. Moreover,
from the analysis for the Dirac matrix element of the link-variable appear-
ing in the analytical relation, there is a new symmetry, which we refer as to
the “positive/negative” symmetry. This symmetry is realized in the confined
phase, and then the contributions from arbitrary range of the Dirac eigen-
values are canceled due to this symmetry. Although the behavior of the new
symmetry is similar to the center symmetry, the origin of the new symmetry
has not been revealed yet. Thus, it is interesting to investigate the relation
between the positive/negative symmetry and the center symmetry because
both symmetries are very related to confinement property.

Next, we improve the above discussion by considering the Polyakov loop
fluctuations. In particular, the specific ratio RA is a very sensitive probe for
the onset of the deconfinement transition of quarks. The Dirac spectrum
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representations for the Polyakov loop fluctuations can be derived, and it is
numerically confirmed that the low-lying Dirac modes have the negligible
contributions to the Polyakov loop fluctuations. The Wilson loop is also
expressed by the Dirac eigenmodes. Due to the damping factor, the con-
tributions from the low-lying Dirac modes to the Wilson loop are strongly
suppressed. Since the interquark potential is calculated from the Wilson
loop, this observation indicates that the linear confining potential of the
quark-antiquark system is not related with the density of the low-lying Dirac
modes.

The various quantities, namely the Polyakov loop and its fluctuations,
and the Wilson loop, which are relevant to quark-confinement, are not al-
most influenced by whether the Dirac operator has the low-lying modes, or
not. Then, it is expected that the confinement property of the QCD vac-
uum is always not directly affected by the chiral symmetry breaking and its
restoration. However, the quark-deconfinement and the chiral restoration al-
most simultaneously occur at finite temperature. Unfortunately, the reason
of this coincidence of the critical temperatures has not been explained, and
thus the problem still remains. Moreover, other quantities such as the quark
scalar charge [27, 28] and the kurtosis of the net-quark number fluctuations
[83, 84, 85] are also important for quark confinement, and then it might be
interesting to investigate those in terms of the Dirac mode expansion.

In the above discussion, the Dirac operator is taken to have the naive
form. Then, the analytical relation should be generalized to the proper Dirac
operator on the lattice. However, it is difficult to directly derive the ana-
lytical relations connecting the Polyakov loop and the overlap-Dirac eigen-
modes. Thus, we first derive the analytical relation between the Polyakov
loop and the Wilson-Dirac operator. Using the relation, we conclude that
the confinement property is independent of the low-lying mode density of the
overlap-Dirac operator. Strictly speaking, the Wilson-Dirac modes are not
complete system, and thus the above argument is approximately valid. How-
ever, the Wilson-Dirac operator is almost anti-hermite, and the hermitian
term is O(a). Therefore, the result is expected to be exact in the continuum
limit.

Our study consistently indicates no direct one-to-one correspondence be-
tween quark-confinement and chiral symmetry breaking in QCD. However,
there are some opposite findings. That is, they suggest some strong cor-
relation between these non-perturbative phenomena. Unfortunately, this
contradiction has not been sufficiently explained yet. A solution for this
controversial problem is to find a new phase where quarks are confined but
the chiral symmetry is restored. If the new phase exists, it means that con-
finement and chiral symmetry breaking can independently occur in QCD.
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Although the new phase does not exist at finite temperature, it might ap-
pear at finite chemical potential, or under the external fields, for instance,
magnetic fields [86]. In particular, the phase structure of QCD attracts much
attention in the context of the internal structure of neutron stars because an
extreme state with high density and low temperature is expected to be real-
ized there. However, the first-principle calculation is prevented by the sign
problem at finite chemical potential, in particular large chemical potential
[87, 88, 89, 90]. Recently, the sign problem is being solved thanks to de-
velopment of new techniques [91, 92, 93, 94, 95]. When the first principle
calculation is available for SU(3)c QCD at finite temperature and chemical
potential, we can more deeply understand the phase structure of QCD and
then the relations between the nonperturbative phenomena, such as confine-
ment and chiral symmetry breaking.
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Appendix A

The relation between the Dirac
matrix element and the KS
Dirac matrix element

The relations between the Dirac matrix element and the KS Dirac matrix
element are shown in both even and temporally odd-number lattices.

A.1 The case of the even lattice

First, the even lattice and the original KS formalism is considered. Using the
relation between the Dirac eigenfunction ψ and the KS-Dirac eigenfunction
χ, the Dirac matrix element of a link variable operator ⟨n, I|Ûµ|m, J⟩ is
expressed as

⟨n, I|Ûµ|m, J⟩

=
∑
s,α

ψI
n(s)

†
αUµ(s)ψ

J
m(s+ µ̂)α

=
∑
s,α

χn(s)
†T †(s)IαUµ(s)T (s+ µ̂)αJχm(s+ µ̂)

=
∑
s

χn(s)
†{T †(s)T (s+ µ̂)}IJUµ(s)χm(s+ µ̂). (A.1)

From the direct calculation, the matrix T †(s)T (s+ µ̂) is calculated from the
definition of the matrix T (s) (2.25):

T †(s)T (s+ µ̂) = η̃(E)µ (s)γµ, (A.2)
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where η̃
(E)
µ (s) is a sign function defined as

η̃(E)µ (s) = (−1)sµ+1+···+s4 (µ ≤ 3), η̃
(E)
4 (s) = 1, (A.3)

which is similar to the staggered phase (2.27). Then, the Dirac matrix ele-
ment is expressed as

⟨n, I|Ûµ|m, J⟩

= (γµ)IJ
∑
s

η̃(E)µ (s)χn(s)
†Uµ(s)χm(s+ µ̂)

= (γµ)IJ(n|ˆ̃η(E)µ Ûµ|m), (A.4)

where ˆ̃η
(E)
µ is an operator defined as

⟨s|ˆ̃η(E)µ |s′⟩ = η̃(E)µ (s)δss′ (A.5)

corresponding to the sign function η̃
(E)
µ (s). In particular, since η̃

(E)
4 (s) = 1 is

satisfied for µ = 4, we obtain

⟨n, I|Û4|m, J⟩ = (γ4)IJ(n|Û4|m). (A.6)

Here we consider only the Dirac matrix element of one link-variable opera-
tor ⟨n, I|Ûµ|m, J⟩. However, that of other operator consisting of link-variable
operators ⟨n, I|Ô(Û)|m, J⟩ can be evaluated in terms of the KS Dirac matrix
element or the KS Dirac eigenfunction χn(s) by similar calculation on the
even lattice.

A.2 The case of the temporally odd-number

lattice

Next, the temporally odd-number lattice and the modified KS formalism are
considered. Corresponding to the even lattice, the Dirac matrix element of
a link variable operator ⟨n, I|Ûµ|m, J⟩ is expressed as

⟨n, I|Ûµ|m, J⟩

=
∑
s,α

ψI
n(s)

†
αUµ(s)ψ

J
m(s+ µ̂)α

=
∑
s,α

χn(s)
†M †(s)IαUµ(s)M(s+ µ̂)αJχm(s+ µ̂)

=
∑
s

χn(s)
†{M †(s)M(s+ µ̂)}IJUµ(s)χm(s+ µ̂) (A.7)
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Like the case of the Eq.(A.2), M †(s)M(s+ µ̂) can be calculated as

M †(s)M(s+ µ̂) = η̃(O)
µ (s)γµγ4, (A.8)

where η̃
(O)
µ (s) is a different sign function defined as

η̃(O)
µ (s) = (−1)s1+···+sµ (µ ≤ 3), η̃

(O)
4 (s) = 1. (A.9)

Using this fact, the Dirac matrix element can be written as

⟨n, I|Ûµ|m, J⟩

= (γµγ4)IJ
∑
s

η̃(O)
µ (s)χn(s)

†Uµ(s)χm(s+ µ̂)

= (γµγ4)IJ(n|ˆ̃η(O)
µ Ûµ|m), (A.10)

where ˆ̃η
(O)
µ is an operator defined as

⟨s|ˆ̃η(O)
µ |s′⟩ = η̃(O)

µ (s)δss′ (A.11)

corresponding to the sign function η̃
(E)
µ (s). In particular, since η̃

(O)
4 (s) = 1 is

satisfied for µ = 4, we obtain

⟨n, I|Û4|m, J⟩ = δIJ(n|Û4|m). (A.12)

For more special case, the diagonal component ⟨n, I|Û4|n, I⟩ is expressed as

⟨n, I|Û4|n, I⟩ = (n|Û4|n). (A.13)

This is used in chapter 2 in this thesis.
Like the case of the even lattice, one can evaluate the Dirac matrix el-

ement of the other operator ⟨n, I|Ô(Û)|m, J⟩, using the KS Dirac matrix
element or the KS Dirac eigenfunction χn(s) on the temporally odd-number
lattice.
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