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ABSTRACT

We discuss some aspects of hadron-hadron scattering in the deep region.
The deep region can be very roughly characterized as the kinematic region
which involves large momentum transfers at high energies. Using ideas related
to Feynman's parton model, we derive a formula for the average multiplicity of
an inclusive or semi-inclusive experiment in which at least one final-state
particle is detected with a large {ransverse momentum, and we show how the
average multiplicities in these experiments are related to average multiplicities
in other high energy reactions. We then turn to a discussion of the relationship
between the deep and Regge regions in 2 - 2 hadronic amplitudes. An integral
equation, based on t-channel iterations of two-particle irreducible kerne;s is
derived. We show how these graphs generate Regge poles and how their tra-
jectories are connected to the deep scattering Born term. Physical implications
of our procedure are then discussed. Next, we generalize our approach to in-
clude coupled channel problems. We then show how to include the effects of
signature in the scheme, and we end with some speculations about the physical
interpretation of Harari-Rosner duality diagrams and the dynamical origin of

the Pomeron pole.
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CHAPTER I

INTRODUCTION

One of the most prominent and general features of high energy hadron-
hadron scattering is the fact that the {ransverse momenta of the final state par-
ticles are severly limited. This observation applies both to elastic and in~
elastic reactions, and holds with only minor modifications over a large range of
energies. For example, a hadron-hadron elastic cross section is typically five
to ten orders of magnitude smaller at [t| ~ I GeV then it is at [t} = 0.

This kinematic region (high s, small |t!) may be called the Regge region
gsince hadronic events populating this region are often described by the exchange
of Regge trajectories which correspond to singularities in the complex angular
momentum plane. From a field-theoretic point of view, the origin of these
gingularities is not clear, but the common wisdom is that the trajectories which
dominate the Regge region arise from "coherent" effects in which many differ-
ent T-products must be added together to produce Regge behavior. The simplest
example of this is summing the infinite set of ordinary ladder graphs in, say,
qJ3-theory to produce a moving Regge pole.

While most hadronic events occupy the Regge region, an important few lie
outside this domain. They are important because unlike the Regge dominated
events, these deep events presumably do not require coherent contributions
from many Feynman graphs. This region is called the deep region because the
large momentum transfers involved probe small distances or impact parameters,
and allow us to see more of the detailed structure of the hadrons. Of course, all
these words are reminiscent of statements made about inelastic lepton-hadron
scattering in the Bjorken limit, and indeed, many of the intuitions developed by

physicists for that process can be applied to deep hadron-hadron scattering.
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In this work, we want toc investigate some aspects of the deep region in
hadron-hadron scattering. We ghall treat two rather different problems. In
Chapter II, we derive a formula for the average multiplicity in an inclusive or
semi-inclusive experiment in which at least one final-state hadron is detected
with a large transverse momentum. The basis of the derivation is a parton
model with direct parton-parton scattering, although the final result may well
be more general. In Chapter IIl we fturn to exclusive hadronie reactions — in
particular, 2—2 amplitudes — and discuss how the deep region is related to
the Regge region. After a brief introduction (section III. A), we derive and
examine an integral equation which Reggeizes déep scattering. This equation is
based on t-channel iterations of an irreducible kernel and can be used to see how
deep scattering joins smoothly onto the Regge region. Furthermore, the role
played by coherence effects in near forward scattering are especially clear in
this approach. All this is done in section III. B. In section IlI.C, we generalize
the equation derived in section IIl. B to include coupled channel problems in which
more than one kind of hadron is allowed to participate in the scattering ampli-
tudes. We show that in order to preserve the factorization property of Regge
pole residues we must, in general, introduce extra poles into the description of
the amplitudes, the number of poles being proportional to the dimensionality of
the relevant channel space. Chapter III ends with section ITI. D in which, after
quick reviews of duality diagrams and the parton-interchange theory of deep
scattering, we show how to include signature in our Reggeization scheme. We
then proceed to discuss the relationship between duality diagrams and parton-
interchange diagrams, as well as some ideas and speculations about the origin
of the Pomeron pole. Finally, in Chapter IV, we present some conclusions

along with a summary of what we have learned.
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CHAPTER II

MULTIPLICITIES IN DEEP HADRON-HADRON SCATTERING

The ultimate goal of this section is to derive a formula which describes
the average number of particles produced in a high-energy hadron-hadron col-
lision when at least one particle is observed with a large transverse momentum.
Our discussion will be based largely on ideas of the Feynman parton model and
we shall draw heavily on the work which others have done in elaborating and
applying these ideas. As we go along, the reader may well feel some discom-
fort at the evident lack of rigour in our arguments. We therefore offer our
apologies now and disclaim any responsibility for the tearing of hair and the
rending of garments which may result from one's participation in these pages.
Those with weak hearts are advised to skip to Chapter IT where they may rest
peacefully in the bosom of mathematical formulae.

Let us begin, then, with a review of some ideas about multiplicities in var-
ious high energy processes. Specifically, we will need to discuss multiplicities
in ordinary hadron-hadron scattering, e+ -e annihilation, and deep inelastic
lepton-production. This is necessary because our formula for deep h-h (h is a
hadron) multiplicities involves terms related to these other processes. Let us
first turn to ordinary h-h multiplicities.

It is a well-established phenomenological observation that in high energy
h-h collisions final state particles generally have limited transverse momenta.l’ 2
That is, the great majority of events in h-h interactions yield particles with
Ip | <4 GeV. By ordinary h-h events, we mean just these events. Of course,
the cutoff at ~% GeV is approximate only — say within a factor of two — and, in
any case, may not be entirely energy independent. At the present time we do

not wish to take a firm stand on the exact condition which distinguishes the
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ordinary from the deep scattering regions. This will be discussed more fully
in Chapter III (p.57). For the time being, however, it will be sufficient to
rely on the vague condition given above. We also note that since events which
have a particle with large [p Ll are so rare, it is probably not necessary from
an experimental point of view to distinguish between the average multiplicity of
ordinary h-h events, and the average multiplicity of all h-h collisions for a
given pair of initial state particles.

The result we seek for ordinary h-h scattering can be obtained from many
different sets of assumptions;1 however, to put the reader in the right frame of

3,4,5 Consider a h-h

mind, we shall approach it from Feynman's poiﬁt of view.
collision in the center of mass with the hadrons moving along the z-axis. At
high energies, the hadron, which is an extended object, or rather, has a field
(or fields) associated with it which have spatial extent, gets Lorentz contracted
along its direction of motion, As s — =, the distribution of field energy in z
becomes a 6-function. Since the Fourier transform of a §-function is a con-
stant, we are led to expect a constant density of energy per unit interval in P,
Thus, the density of field quanta must be cc de/E. Now, since pL is limited
for the final state particlles in a h~h collision, we make the assumption that it is
limited for the field quanta or constituents also. This is reasonable if one re-
membérs that the Lorentz contraction takes place only in the direction of motion,
so the transverse degrees of freedom are unaffected. If we plot the distribution
of constituents in momentum space for the two colliding hadrons, we get a pic-
ture like that of Fig. (1). The horizontal axis, instead of P, is rapidity defined
asy=3% En[(E+pZ) J(E - pz)} . The distribution for each hadron is flat in rapid-

ity except near x =0, #1, where x = 2p, /Vs. We may therefore picture 2 fast
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FIG. 1--Parton distribution immediately after an ordinary
hadron-hadron collision.




moving hadron as a bag of field quanta, i, moving mostly in the same diractjon,
and distributed more or less as dEi/Ei'

The next step in the scattering process is described by saying that the con-
stituents from the two hadrons — called partons by Feynman — which are near
x = 0 interact with each other to smooth out the final parton distribution so it
looks like Fig. (2). The hadrons interact through these "wee' partons, accord-
ing to Feynman, either by direct scattering, or perhaps, predominately by
parton exchange. Since the wee partons have small P, it is very easy for them
to get confused and forget to which hadron they belong. This mixing up of wee
constituents is the mechanism by which most hadronic reactions are supposed to
take place. It is, of course, much more difficult for a very energetic parton
from one hadron to get confused, since that would require a large change in its
momentum, Another way of saying this is to say that only partons which are
relatively close to each other in momentum space can directly interact. An
energetic parton, therefore, has only second-hand information about the hadron
to which it does not belong — it must wait for information to reach it by a series
of close neighbor interactions.

All of this, of course, sounds a lot like the behavior one might expect from
a gas contained in an almost one dimensgional cylinder. 6 In these terms, one
says that the wee partons interact and come to equilibrium with the rest of the
gas. But another, perhaps more convincing way of understanding why the parton
density is uniform in rapidity, is that there is apparently no reason why we
needed to choose the center of mass to formulate the original idea. Another
frame boosted by an amount p’Z = x(Vs/2), where x is some finite fraction would
work just as well. Therefore, there is nothing to single out the center of mass

frame, and even if the parton densities in the incident hadrons were different

-6 -



Fragmentation Regions

=y

l_ Ins .I |

FIG. 2--Final, average distribution of hadrons after an
‘ordinary hadron-hadron collision.,



to begin with, after the interaction they must be the same. Of course, at

x = 1 the distributions must go to zero by energy conservation, and these argu-
ments do not shed any light on the behavior of the distributions in these hadron
fragmentation regions.

Before we can hope to relate these parton ideas to the description of h-h
scattering, we need a mechanism for turning the parfons into hadrons. Since,
as we shall see below, partons have been endowed by their creator with certain
(perhaps inalienable) point-like form factors, the partons, according to the
orthodox view, cannot be ordinary hadrons. (Frankly, I don't believe this.)
Fortunately, we do not need a specific mechanisﬁ to get the result we seek. We
only need to make the probably plausible assumption that the final hadron dis-
tribution is proportional to final parton distribution. With this assumption, we
find from Fig. (2) the well-known asymptotic multiplicity formula for h-h scat-

tering

<n>h = Chlns; s — (2.1

where Ch measures the density of hadrons in the hadron plateau.

Let us now take these ideas and try to apply them to e'e” annihilation pro-
cesses. As long as one is proposing the idea that hadrons are made up of some
kind of constituents, one may as well assume that the constituents are point-like
(.in some sense) in order to explain the SLAC-MIT deep inelastic electroproduc-
tion experiments. | The standard parton description for e+e_ annihilation can

then be stated as follows:4’ 5,7

we assume that only processes which are lowest
order in & contribute. The electron-positron pair, therefore, annihilate into

2
one time-like photon of mass @ which in furn decays into a parton-antiparion

pair. As in the case of hadrons, we may think of the wave function of the spat



out parton getting contracted along its direction of motion. Arguments analo-
gous to the ones presented above for the case of h~h scattering will then give a
similar picture for the final hadron distribution in e e  annihilation. With the
replacement s - Qz, we may view Fig. (2) as the average final hadron distri-
bution for the annihilation experiment. Of course, in this case the fragmenta-
tion regions near X = +1 are parton fragmentation regions, not hadron frag-
mentation regions. The asymptotic multiplicity formula for e'e” annihilation is
therefore

= z . 2
0> o= = Curg- Q75 Q" — =, (2. 2)

We remark in passing that another way to understand the final hadron dis-
tribution in this experiment is to say that the parton and antiparton each brems-
strahilung particles, which fill up the rapidity gap between them. The distribu-
tion is smoothed out by the interactions of each particle with its near neighbors.

Before turning to deep h-h scattering we need to briefly discuss the multi-
plicities expected in deep inelastic lepto-production for large v and Qz. The

parton model for this process5’ 7,8,9,10

pictures the virtual y (for electro-
production) or W (for neutrinoproduction) knocking a parton out of the target
hadron. For our purposes, it is convenient to analyze the situation in the Breit
frame of the struck parton.8 In this frame we have a collection of partons mov-
ing to the right and a space-like photon or W moving to the left. One of the
partons is struck by the photon absorbing its momentum and thereby reversing
the direction of its own momentum. In this frame the z-component of the initial
momentum of the struck parton is p, = x(Mv /\sz) = Qz/ 2, where Q> = —qﬂq“’
and My = qu‘u , qu being the photon's (W's) four-momentum and pp being the

hadron’s initial four-momentum.



The distribution of partons in momentum space immediately after the inter-
action is shown in Fig. (3). On the left we have an isolated parton which, by
arguments similar to those presented above for e+e— annihilation, we expect to
cascade into a final parton distribution which is uniform in rapidity, and when it
finally turns into hadrons has a density o« Ce+e‘ . On the right we have the rem-
nants of the target hadron. Notice in particular (i) the hole in the distribution
created by the absence of the struck parton, 11 and (i) the fact that the parton
distribution goes to zero at y = fn[(w -~ 1) JQZ] , where w = 1/x. This is re-
quired by energy conservation since after the removal of the parton the energy
left in the hadron is ~(w-1) Vi Q2 and the presence of a parton with energy
greater than this would violate energy conservation. Notice also that we cannot
consider the hole to be the presence of a negative energy antiparton, since if
partons are fermions, the negative energy sea is filled, and if they are bosons,
it is not clear how to apply this idea.

Now, as we said before, we expect a parton plateau to develop from the
isolated parton. The wee partons from this cascade will mix with the wee par-
tons from the remainder of the target and, as in other such cases, will smooth
out the parton distribution in the region of the origin. Upon reflection, we see
that we could have performed this analysis in a number of other frames with
origins anywhere between the hole and the final position of the struck parton.
This means that the parton distribution cannot depend on the choice of frame and
so must be uniform in rapidity in this region. Because of the implicit assump-
tion of short range correlations, we do not expect the distribution of partons to
the right of the hole to be significantly affected by all this, so the parton plateau

there should stay pretty much the same.
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FIG. 3--Parton distribution immediately after a deep inelastic
lepton-hadron collision.
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The final parton distribution, therefore, is shown in Fig. (4). In addition
to the two plateaus(which will give hadron plateaus of heights Ce*e" and Cps
there are three fragmentation regions (parton, hole and target) which stay finite

as v, Q2 — =, Asgsuming that the final hadron distribution resembles this par-

ton distribution, the average multiplicity for large w and Q2 will be given by

2
D>p = Ce+e‘ mhQ + Chﬂn(w-l) . (2.3)

Having finished our review of the Feynman parton model and some of its
previous applications, we now turn to the main task of this section: deriving a
multiplicity formula for deep hadron-hadron scattering. 12 In what follows, we
shall refef to the notion of direct parton-parton scattering. However, we do
not believe that our results depend crucially on the nature or existence of such
an interaction. The hard parton-parton scattering is used here merely as a
device for producing partons with large transverse momenta. While this ap-
proach seems close in spirit to that of Berman, Bjorken and Kogut, 9 our re-
sults may also be consistent with a parton interchange theory such as that of
Gunion, Brodsky and ]31a\.nlf:enbec:ler13 in which direct parton-parton scattering
does not play a role.

With these remarks in mind, let us begin by considering the inclusive pro-
. In the

Lc
following, we shall always work in the center-of-mass of a and b, unless we

cess a + b — ¢ + X where ¢ has a large transverse momentum, p

specify otherwise. The picture we have in mind for the production of particles
with large p L involves two stages. First, a high energy parton from a scatters
off a high energy parton from b, both receiving a large sideways kick. The

parton distribution in phase space immediately after the scattering is shown in

Fig. (5).
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FIG. 4--Final distribution of hadrons after a deep inelastic
lepton-hadron collision.
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FIG. 5--Parton distribution immediately after deep hadron-
hadron scattering.
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Next, the two partons which are each isolated in phase space separately
evolve into hadrons in a way which is more or less independent of each other,
as well as independent of the remaining pieces of a and b. At sufficiently high
energies and momentum transfers, we expect that each such isolated parton
will contribute ~Ce+e_ in Ep to <n> for this reaction. Ep is the parton's energy
in the a+b center of mass. This result follows from the observation that these
partons are isolated in phase space, and should produce final state particles
just as the isolated partons in e+e,_ annihilation do. That is, we will have had-~
rons distributed, on the average, aé dE/E in a cylinder in phase space pointing
in the direction of the liberated parton plus, perhaps, a finite parton fragmen-
tation region. A possible exception to this is when the parton-parton scatter-
ing angle is small in the parton-parton center of mass. 14 (See below for a dis-
cussion of this point.) These regions are shown in Fig. (6) where we display
the average final hadron distribution for our deep scattering event.

In addition to the e e plateaus developed by the isolated partons, the re-
maining pieces of a and b develop certain plateaus and fragmentation regions.
Furthest from the origin we have the {ragmentation regions of a and b. Moving
in along the Py axig, we next encounter two plateau regions. Here we also ex-
pect a distribution of hadrons like dE/ E, but the coefficient in this case is Ch.
Next, we have the hole fragmentation regions which result when the remaining
partons try to heal the wound left in a and b by the removal of the two partons.
Notice that these configurations (hadron fragmentation region, hadron plateau,
hole fragment region) are exactly what appear in part of the lepto-production
distributions (Fig. 4). Finally, we have two more plateaus of density Cx’ as
yet unknown (we shall return to this point later), and a finite overlap region at

the origin where the tails of all the final hadron distributions come together.
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FIG. 6~-Final, average hadron distribution associated with deep
hadron-hadron scattering events.
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At sufficiently large s and p the major contribution to the average multi-

le’
plicity of the reaction a + b — ¢ + X comes from the six plateau regions, and is

given by

<n(s, pic’ E

= (C +C mE 6 Cyfn Vs 2
-(e+e ) + O(s- 16E) ZE - .

c) >deep
(2.4)

Notice that the right-hand side depends on p, _ only through Ec' EG is the energy

lc
of ¢ in the a+b center of mass, and the § function is included so that the term
o« Ch will not contribute when 4Ec > 8. This, of course, is required by energy
conservation. We have neglected terms which stay finite as s, p Lo ., These
correction terms include the contribution to the multiplicity from the finite frag-
mentation and overlap regions, as well as certain factors which multiply the
arguments of the logs. Some of these factors come from averaging over the
possible orientations of the undetected parton cylinder, and depend in detail on
the parton-parton scattering amplitude and the parton distributions in a and b.
The others arise when we write Ep in terms of Ec, since EC = prp where f
is some finite fraction. However, none of these complications change the
asymptotic formula (2.4).

This formula has several interesting features. When EC ~<m, > (say,

L

hln s, and we recover the well-known ex~-

pression for the multiplicity in ordinary hadron-hadron scattering. On the other

about 1 GeV), Eq. (2.4) gives <n> ~C

hand, when Ei is some finite fraction of s, and the scattering angle is greater
than zero, we find <n> ~ (Ce"'e‘ + CX)Qn Ei, and the multiplicity becomes
essentially independent of the second term. Of course, if the scattered partons

have essentially all of the incident hadrons' energy, there is no plateau along

Py and the term « Cx is absent.
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There are two somewhat technical aspects of Eq. (2.4) and its derivation
we would now like to discuss. First, as implied above, we note that if we detect
a hadron with a large p |+ Wecan be fairly certain that it is the most energetic
hadron in its cylinder, and therefore has some fixed, finite fraction of its
parent parton's energy. The reason is that the probability of knocking a parton
to a distant region of phase space falls rapidly with the parton's energy. So, if
we observe a widely scattered hadron with energy Ec >> <m >, it is unlikely
that another hadron with energy > Ec was produced by the same parton since the
parton's energy would then have had to have been extremely large. We can
make this argument somewhat more quantitative as follows: suppose the prob-
ability to produce a parton at large p | e E;N, where N is some fairly large
humber. On the average the kth hadron produced in the parton cylinder will
have energy fl; Ep = Eh, where Ce+e_ﬂnfp = -1. If we observe an energetic
hadron with energy Eh’ the probability that it is the kth hadron preduced by a
parton Oﬁfl; N/ Ellf . Therefore, if fg << 1, we can be fairly certain that the had-
ron we observe is the most energetic in the parton's cylinder.

Second, we note that the derivation of Eq. (2.4) is based on an average over
configurations of final hadrons as pictured in Fig. (6). Let us now ask what
Specific dynamical mechanisms for the production of hadrons by isolated partons
are consistent with this picture. We may roughly characterize various mech-
anisms in terms of how the isolated partons finally communication with the rest
of the scattering system. One possibility, which is obviously consistent with
Fig. (6) is that the isolated partons form cylinders of hadrons to communicate
with the wee partons.in the center of mass of a + b. However, there are at least
two other very plausible possibilities: (1) in the center of mass of the two

scattered partons, a straight cylinder joining the partons may develop, or
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(2) in the rest frame of the hole {i.e., the rest frame of the scattered parton
before it was scattered), a straight cylinder may develop between the hole and
the scattered parton. When p Le and s get large, however, both of these alter-
natives also give the result (1). The reason is that for Ip J_l > @“(<m_L >), both
alternative distributions become, when viewed in the center of mass of a and b,
approximately straight cylinders pointing toward the origin, as in Fig. (6).
Appreciable deviations from these asymptotes occur only when Ipll < O (<m ke ).
But, this is the region where the parton cylinders begin to overlap the hadron
cylinders lying along the P axis. These corrections can only affect C, or the
finite pionization region near the origin, and therefore both these possibilities
will result in asymptotic multiplicities given by Eq. (2.4). Notice that we do
not mean to imply that these differences are moot or untestable; in fact, we
believe they are quite important. We only mean that they all result in the same
~asymptotic expression for <n> deep’

We would now like to discuss some limitations and possible corrections to
Eq. (2.4). 14 First, our picture is not the correct one in the limit that the
scattering angle of ¢ — 0, even though p Le gets large. In this limit, the cen-
tral pionization region in Fig. {6) spreads out"along the p I axis and forms an
additional platean which will significantly contribute to <n>> of such events. As
we shall see in Chapter III, the deep region may include values of p | and s such
that in the scattering angle of ¢ goes to zero asymptotically, so this is an impor-
tant qualification to bear in mind. Second, there may be corrections to our
forumla coming from events in which two partons scatter through a small angle
in their center of mass. It is possible that such partons, if they communicate
with the holes, will contribute C ete- In Pl o to <n> rather than Ce"‘e" MmE . If

p
such a mechanism exists, it will alter our expression for <n> deep in certain
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kinematic regions. However, these corrections will become less important as
the energy and scattering angle of the observed particle increase.

Another interesting experiment to consider is the semi-inclusive process
a+hb —c+d+ X where both ¢ and d come out with large Ipll in opposite hemi-
spheres, each being produced by one of the isolated partons. From Fig. (6) we

easily find that the multiplicity for this process is asymptotically given by

_ Vs
<n{s, Ec’ Ed)>deep_ (Ce+e_ C ) an E + 0 (s- 16E )C ﬂ.n(zE -1
+ 6(s-16E%) C m(‘fs -1 (2.5)
d 2Ed :

where, again, we have neglected the terms which remain finite as s, Ec and
Ej—. Notice the similarity between this expression and expression (2.4) for
the one particle inclusive case. However, in this experiment we can, on the
average, deduce the energy of the partons which produce c and d if we know fp
(or, equivalently, Ce+e _). While this knowledge does not strongly affect the
asymptotic relation (2.5), we can get a firmer handie on the possible correc-
tions from small angle parton-parton scattering if we know Ep and Ep' . Further-
more, it is important to know the parton energies if we wish to derive non-
asymptotic relationships between the multiplicities in deep hadron-hadron scat-
tering and multiplicities in other high energy reactions. Let us turn now to a
brief discussion of such relations.

We expect Egs. (2.4) and (2.5) to be valid when clear badronic and partonic
plateaus in fn E have developed. 1In the absence of such plateaus, we cannot pre-
dict the s or p | dependence of <n> since then the fragmentation region will play

a major role, and their contributions to <n> depend in a more detailed way on
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on specific (model-dependent) assumptions. However, we can try to relate
<n(s, E o’ E d) > to the multiplicities in other reactions. There are a number of
detailed forms which such relations could take, but most simple options follow
from one of four general arguments:

{1). In e(v) - h scattering we remove a parton with energy Ep from the
target hadron. We then have a hadron with a hole in it and a parton distant in
momentum space. In whatever way the hole and liberated parton evolve in £-h
scattering, they do the same thing in deep h-h scattering. If the results of
Cahn, Cleymans and Colglazier® are correct, this argument evaluated asymp-
totically predicts C " C eta

(2). The hole turns into hadrons just as the parton does. This also implies
Cy = Cote

(3). The hole does not significantly affect the final hadron multiplicity so
that the final hadron distribution along the Py axis looks as if no partons were
removed. Then the Py distribution contributes to <n> deep just the average
multiplicity of an ordinary h-h reaction. Asymptotically this gives CX = Ch.

(4). The hole and parton dispose of themselves in similar ways, but these
contributions to <n> deep simply add to the contributions coming from the origi-
nal hadrons sans holes. 14 This argument predicts Cx = Ch + Ce+e‘ , asymp-
totically.

All of these arguments are plausible. While each is based on a seemingly
different notion about the way parton distributions overlap and turn into hadrons,
more than one may be correct. For instance, if Ch = Ce"'e‘ » possibilities (1),
(2) and (3) may all be true. On the other hand, it is possible that Ch = Ce"'e'
with, say, only one of these arguments correct, nonasymptotically. It would

indeed be very interesting to know which of the relations that follow from these
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options are satisfied, and over what ranges of s and p Ik Tests of such expres-

sions, as well as asymptotic determinations of CX, C, and Ce“"e_ can yield

h
much valuable information about the nature of partons and about the correct way
to construct the amplitudes which describe the development of partons into final
state hadrons. 15

In this chapter we have presented a review of Feynman's version of the
parton model and its application to the problem of average particle distributions
and multiplicities in e+e_ annihilation experiments, deep inelastic lepto-
production, and ordinary hadron-hadron scattering. We have tried to extend
these ideas to deep hadron-hadron scattering, and we have derived asymptotic
formulae for the average multiplicities to be expected in such experiments.
Although our arguments have been somewhat loose and heuristic, they have been
based on notions which have been developed and applied to 2 number of differ-
ent processes. As we have tried to show, the beauty and utility of this ap-

proach is its ability to correlate many a priori uncorrelated high energy pro-

cesses by fairly simple, general arguments.
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CHAPTER III
REGGE POLES IN DEEP HADRON-HADRON SCATTERING
A. Introduction

Recently, a number of theories have been proposed to explain the structure
of inclusive and exclusive differential cross sections at large momentum trans-
fers. The connection of at least some of these theories with the usual notions
of Regge theory is rather obscure. For example, it is not obvious how to relate
Regge theory to a theory in which partons play a role in the deep region, either
by being scattered or being exchanged.

In this chapter, we will describe a general scheme which can connect
theories of deep scattering with Regge theory for 2 — 2 amplitudes. Briefly,
our approach consists of considering deep scattering amplitudes as Born terms -
and iterating them in the t-channel to build up moving Regge poles. We find
that as Itl — 0 graphs involving more and more Born terms in the t-channel
become increasingly important, while as {t| — « the only graph which sur-
vives is the original deep-scattering amplitude. As we shall show, this ap-
proach unifies many of the intuitive features of a number of different theories:
in particular, We- see how the "hard" deep scattering interactions connect
smoothly onto the '"soft", coherent structures which dominate the Regge region.
The existence of such a connection, furthermore, means that it is not neces-
sary (indeed, it is not allowable) to introduce two different components, hard
and soft, to describe hadron-hadron scattering. A field theory with hard inter-
actions will automatically generate the coherent structure which is necessary
to describe near forward scattering.

The chapter is organized as follows: in section B we derive and examine

an integral equation (not unlike the Bethe-Salpeter equation) for the 2 — 2
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amplitude which is obtained by summing graphs with various numbers of Born
terms in the t-channel. Because section B is so long it is divided into five
parts. In the first of these (subsection 1) we present a brief review of old-
fashioned perturbation theory and the infinite momentum frame, In subsection
2, we give a covariant derivation of the integral equations and recursion rela-
tions on which we base the connection between the deep and Regge regions.
Subsection 3 consists of a careful examination of these equations and what they
imply for our Reggeization procedure. In subsection 4, we discuss some of
the graphs which might be found in the Born term. This discussion illuminates
the role played by various s and t-channel intermediate states in various kine-
matic regions. Section B concludes with subsection 5 in which we present an
alternate derivation of our integral equation using old-fashioned perturbation
theory rather than covariant perturbation theory (as used in subsection 2).
Turning to section C, we find a discussion of our Reggeization scheme for the
case in which the scattering matrix has more than one (coupled) channel.
Finally, in section D we show how to correctly incorporate signature into our
problem. Furthermore, we apply our methods to the parton-interchange theory
of deep scattering and end with some ideas about the relationship between
parton-interchange diagrams and duality diagrams as well as gsome speculation

about the dynamical origin of the Pomeron pole.

B. The Basic Integral Equation

1. Old Fashioned Perturbatfion Theory and the Infinite Momentum Frame.

In this section, we shall derive the integral equation which lies at the
heart of our Reggeization procedure. Before beginning the actual derivation,

however, it will be useful to review the simplest properties of the infinite
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momentum frame (IMF) and its use in conjunction with old fashioned perturba-
tion theory (OFPT).

As is well known, covariant perturbation theory is simply related to old
fashioned perturbation theory. In OFPT, when working to some order in the
couplings, one calculates a number of time ordered diagrams and adds them
together to get the covariant scattering amplitude. In covariant perturbation
theory, on the other hand, the use of Feynman propagators automatically en-
sures that all time orderings are included in the calculation of a single
Feynman diagram. In a Feynman diagram with N vertices, there are in gen-
eral N! different time orderings for the N vertices, each one of which must be
calculated separately in OFPT. Cast in these terms, the advantage of covar-
fant perturbation theory in most calculations is evident.

There is a technique, however, which can restore the atiractiveness of
OFPT and give it a fighting chance for the affections of high energy theorists.
This technique is the use of an infinite momentum frame. The usefulness of
doing OFPT calculations in a special frame derives from the fact that the value
of a given time ordered graph is not invariant. It is often possible to choose
a frame in which only a few of the N! graphs which contribute to some Feynman
diagram are non-zero.

To illustrate the use of OFPT in the IMF, let us look at the crossed box
diagram of Fig. (7). We wish to calculate this diagram in OFPT. In general.
we must consider the 24 different time orderings of the four vertices, and in
an arbitrary frame all of them may contribute. Being clever physicists, how-
ever, we choose a frame in which all of the external particles are moving very

fast to the right. Eventually, we shall let very fast approach c. We
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FIG. 7--Sample Feynman diagram for illustration of
: old-fashioned perturbation theory in the
infinite momentum frame.
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parameterize the momenta in our frame as follows:

2
my )
p = (P+2—P' ,» 0, P
_ (e )
? ( P
- [P-T
r ( R r_L, 0)
,u2+kf
k = {(xP+ 5%P ,ki,xP (3.1)

The mass of each internal line is p. Since the enérgy of each internal particle
is positive, we must have 0 <x <1 for sufficiently large P. The limit we are
interested in i P — =, Notice that in this limit p> = m’ , as it should. When

P — », the other external mass-shell conditions become:

. 2 2
2 m, +2p-r 2 2 2
(p+r)y = P+-—~———~2—-P——,rl,P =m1+2p"r—rj_=m3
2 2 2 2
(p+tq = m1+2p q fl_L = m,
2 2 2 2
(p+g+r) =m1+ 2peq+ Zp'r—(q_L +rl) = m2 (3.2)

Since q, T i do not depend on P, this shows explicitly that p. r does not de-

pend on P, either. In this frame the Mandelstam variables become

- .2
t ql
u=—r2
1
= 2m_ - 2 2+ + 2 3.3
s 1-2myt(g +r)) (3.3)
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where we have used the last equation in (3.2) in evaluating s. Adding together
' . . 2 . . .
the three equations of (3.3) andusing s+t+u= Z m, , we find the interesting
1 1
relation
2 2 2 2
2q, *r = m,+m, -m, -m 3.4
q T T Mmgtm, -my; -my (3.4)

Let us now move on from kinematics, and evaluate diagram Fig. (7). In
OFPT, one conserves three-momentum at each vertex and calculates time
ordered diagrams according to the following rules (for spinless particles). 17

(1) Afactor (E - Ej + i€)—1 for each intermediate state, j. E is the energy
of the initial state, and Ej is the energy of the ‘intermediate state.

(ii) An overall factor -27i6(E - E') where E' is the energy of the final

state.
4°B

3 E;%

(iii) For each internal line an integration where P, is the

(2m)
energy associated with the line.

(iv) For each vertex, a vertex function times (27r)3 53(p

Pout ~ Ein)' These

rules give the s-matrix element <f|S}i > which is related fo the invariant
amplitude, .#,by <fiSli> = (271')4 64 (pf - pi) 4 with the conventions
Bjorken and Drell.

We may now proceed to calculate some of the time orderings of Fig. (7).
Let us first look at the time ordering shown in Fig. (8). Calculating accord-

ing to the rules above, we find

2 2 . 2,.-1 -1
4 dk dx u +k
A = 3 —2-—1—-— [mi - —-—]-_:L} [m? -F - 4(1—x)P2]
2i2m” | x“(1-x) x(1-x)
o HEele +ma)*]T
[m[_l__ = X( 1_x) (3 . 5)
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. ) u2+kf+(rl k)
where F = m_. - m

1" Mg T 1-x

notice here is that there is a term « p2 coming from the middle energy de-

L

. The important thing to

nominator. Since the rest of the expression is independent of P (and finite),
this time ordering will not contribute in the P — « limit. One can usually
recognize such norcontributing graphs (at least in a spinless theory)18 by ob-
serving that they always have at least one line whose momentum is flowing the
wrong way. In this case, it is the top horizontal line, as indicated by the
arrow in Fig. (8).

Continuing our analysis, we find that 20 of the 24 time orderings graciously
vanish as P — « leaving the four time orderings shown in Fig. (9) with their
energy denominators indicated by the dashed lines. To get the final covariant
matrix element, we need only calculate these four time orderings and add them
together. This is facilitated by the observation that the central energy denom-
inator is the same in all four time orderings. The remaining pieces of each

time ordering add together in a natural way, and the resultant expression for

their sum is

K dzkldx 0 1f, -1
M = A m - Sk ,x) m, - Sk +(1-%)q, -xr ,x)
2zm® | x%(1-»° v ] [ 2 Lo
2 = Tl e -1
mB—S(kl—xrl,x) m4—S(kl+(1—x)ql,x (3.6)
where
~ kf+u2
S(kl,x) " X1
and A Em2+m2u§(k _x)*§(k+(1—x)q-xr X)
1 72 il L L
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FIG. 8--One of the 20 time orderings of Fig. 7 that
vanish in the infinite momentum frame.
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FIG. 9--Time orderings of Fig. 7 that survive in the infinite
momentum frame.
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A is the central energy denominator which now appears in the numerator, and
the four factors in the denominator are the energy differences across the f(;ur
vertices. Notice that this expression for .# does not depend on P, and so
survives the P — = limit,

The equivalence of this result with the evaluation of the corresponding
Feynman diagram can be demonstrated in a straight-forward way using a pro-
cedure suggested by M. Schmidt. 19 We shall only outline the method here
since we shall discuss it in detail for a similar problem later in this section.

The technique consists of writing down the covariant Feynman expression

and evaluating the k> integral in the IMF. The Feynman amplitude for Fig. (7)

4 -1 -1
A =f d k4 {ikz - ,uz + ie} [(p-k)2 - “2 + ie’]
i(2m)

-1 -1
[(k+q)2 - ,uz + ie} [(p+r—k)2 - u2 + i€] (3.7

is

With the parameterization of k in (3. 1), we can make the transformation

4 2 T dx [T 2
d’k — d kl . BTx] /*m dk (3.8)

We now use(3.1) to write the propagators in (3.7) in terms of x, kJ. and kz.
The dkz integration can now be done using contour integrals. We find that all
poles in the kz—plane are in the lower half plane unless 0 <x <1. Then, the

integral for this range of x gives us back the expression (3.5).

2. Derivation of the Basic Equation

Having become facile in the use of OFPT in the IMF, let us turn to the
problem of deriving the basic integral equation that Reggeizes large-angle
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scattering. In what follows, we shall present two derivations of the equation.
The one presented in this subsection will start from a Feynman diagram, and
will use the frick outlined above. The second (subsection 5) will use OFPT
from the outset. The first derivation is the more elegant, but the second can
provide valuable insight into the Reggization process within the context of
parton models for large angle scattering.

To begin, we recall that our approach is to iterate two particle scattering
amplitudes in the t-channel, and sum over the number of iterations in order to
build up a moving Regge pole. The type of amplitude over which we shall sum
is shown in Fig. {10). At the top of the ladder is a Born term, B, followed by
j iterations of a 2 — 2 scattering amplitude, K. K and B may or may not be
the same. This figure represents a term ‘/ﬂj' The final Reggeized scatter-

ing amplitude is gotten by summing over j:

o
M= Z M= B+ E M. (3.9)
£ =1

It is convenient at this stage to derive a recursion relation between J(j 1

and ,/t{j. The equation we want is shown in Fig. (11). It can be written as

-1

4 -1
At v v R e gt = [ v ie]  [rg2-MP +i€.]
j*+1 1(211_)4 ]

x Ku', t; 2,02 12, (trq)d) A 2, wrd 1 @nd (3.1

where »° = pz, pt? = (P‘*'Q)zs u = (p~r)2, t= qz, u = (:2—1*)2 and u' = (p—ﬂ)z-
Notice that we have changed the labellings of the momenta from our previous

example.
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FIG. 10--Graphical illustration of amplitude, J{j.
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FIG. 11--The recursion relation connecting
ul(j +1 with th.
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At this point, we Wish to introduce a dispersion relation for K in the vari-

able u'. We can write

2

2 2
K@',t' N2, A% = fdcz Wo 6, N, A) (3.11)

u'—0'2 + i€
where we have set 7&2=22 and 7\‘2 = (ﬂ.+q)2. Also, the capital Nz and A2 in the

2,and 7\2 and ?\'2

arguments of K and W indicate dependence on both Vz and v'
respectively. We shall use this convention from now on. The reason for
choosing such a representation for K will become clearer as we go along. For
the time being, we only want to make three remarks. First, one must keep an
open mind about how the do‘2 contour is supposed to be performed in oz—plane.
Naively, one expects that the discontinuities of the integral in (3.11) are given
by the denominator, and so the c'lcr2 integral is performed by integrating along
a line near the real crz—axis. However, because of the dependence of W on the
off-shell variables 7\2 and 7\‘2, it may be necessary to deform the da'2 contour
away from the real axis and pick up contributions from complex s.ing'ularities.20
This is a way of incorporating possible diagrams in which the mass }\2 or )\'2
can become sufficiently time-like and is allowed to freely decay fo internal
lines. We shall have more to say about this gituation as we proceed.

Second, in order to give the reader some idea of the forms one may expect
W to take, we remark that for large [u'l and |tl, a (tu) graph in the parton
interchange theory of Gunion, Brodsky and Bla\.n.l-cenlcrecler‘z1 gives an expression

for K like

K-~ f(t) (m> - u") >

if all external particles are on the mass ghell. m is some finite mass
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parameter. The W that reproduces such a K has the form

5o-1] (- o?)

W~ f(t) EETE

(3.12)

Of course, K does in general depend on the off-shell variables, Az, but bearing
in mind the possibility of complex singularities, this functional form for W is
probably not a bad ansatz as we shall see later.

The final comment we wish to make here is that in this and the next sections
we shall, for simplicity, assume that there are singularities of K in u' only for
positive u' when the external masses are on-shell. (Actually, when we use our
ansatz to explicitly calculate the trajectories, we shall implicitly assume that
this is also true when A2 goes off-shell. That this latter is a reasonable as-
sumption for K will become clear when we examine some simple kernels in
subsection 4.) This will have the consequence that all thQ amplitudes we shall
deal with will be purely real. Furthermore, such a singularity structure for K
will generate a singularity in J{j at positive u (or u if Jlj appears under an
integral). In Regge language, the means that the frajectories we generate will
not have a rotating phase part in their signature factors. That is, each trajec-
tory will really represent a pair of strongly exchange degenerate trajectories.
In section D, we will extend the discuasion to kernels involving other singu-
larities, when we examine the relation of our work to duality diagrams.

With these remarks in mind, let us continue with the derivation of our re-
cursion relation. Inserting (3,11) into (3.10), we have

4 -1 1-1 -1
,/lz’j+1(u,t;N2,R2) :[d 4 dcr2 [22—M2+i€] [(!2+q)2~M2+iEJ [(P—jz)z—crzﬂe:l
i(2m)

2

W(o2, t; N2, A2 (3, A%, RY (3.13)
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Where R2 stands for the variables 2 and (q+r)2.
We evaluate (3. 13) by the trick outlined above. We choose an infinite mo-

mentum frame and parameterize the momenta as follows:

2
v
(P+ —Z—P—,O,P)
= g—:—.ﬂ
- (50 o)
pomd) -I;—.-E
r (P’r_L’O)

o
£ = yP+—2—3}T§-—,.@l,yP (3.14)

Il

P

Again we have ip mind the limit P— . With this notation,
u = (p-—r)2 = v2+r2 -2per, t= q2 and s = (pi-q+r)2 = vz +(q+r}2 +2p.q+ 2p- 1,
Since these are invariants they cannot depend on P. This shows explicitly that
p-r and p+ g are independent of P, The observant reader will immediately
notice that this means that the two external masses r2 and (q+r)2 are space-like,
This is a convenient choice for our problem, and will cause no difficulty since
the final matrix element will be analytic in the external masses, and we will be
able to continue q2 and (q+r)2 to stable physical masses.

The next step is to transform the d42 integral in (3.13) and pick out the

singularities in J&z. Using (3.14), we now introduce a dispersion relation for

,//(]. similar to (3.11) which is for K. We write

(o, t; 4%, RY)

th (u, t; AZ,RZ) = ﬁpz (3.15)

u —p2+i€

The remarks made below (3. 11) apply here also — we must keep an open mind

about the location of the path of integration in the pz—plane.
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Now we wish to insert (3.15) into (3. 13) and perform part of the d4£ inte-

gration. Using (3.14), we easily carry out the transformation

4 _ |7 g 2, |7
fdz f_m 51T [dﬁlj:m

We can expand the four propagators which now appear in (3. 13) (because we
have used (3. 15)) and perform the dJZ2 integral by locating their poles in ﬂz.
Using (3.14), we easily verify that the pole from the propagator in (3. 15) is

always in the lower half ﬁz—plane. As for the other three propagators, we have

22—M+ie] = [22—M2+16}

L

L(HQ)Z —M2+ie] - [’22”3’13"1“2“‘1'21 +€I2-M2+ie]

"o

}P—£)2—02+ie] = [(1— ;—7)122+(1-y) Vz— - crz+ie:|

(1 - %) > 0 all the poles from these factors also lie in the lower-half ﬁz-
plane. Closing the contour in the upper half plane, we get zero. If
1 - S’]:) <0 { =0 <y <1), the propagator from the dispersion representation of
K is in the upper half plane, and so we pick up a non-zero contribution for this

range of y. Carrying out the dﬂz integration therefore gives

dyd .Q 2 2 -1
dcr d 1 A -M +ie
2(21r) o Y’

[ M2+1e] [u p2+1€]_ W(UZtNZA)W(p tA R)

(3. 16)

]+1(ut N R)
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where now

- 2
u -M =y [u—S(!Zl - (1-y) r_L’ y)]
2 2 2
A2 om? =y [v —sozl,y)] (3.17)
and
2
AT — Mz = yl:]}'z - S(E_L + (l_y) q.L ,Y):l ?
with S8, = [’“2 (15 M2+y“2]
L’ - y(1-y) LL '

S as defined here is similar to S as defined in (3.6), the difference being the
.appearance of the off-shell mass, 0'2, in the present case.
It is instructive to rewrite (3.16) in a way that makes its connection with

OFPT calculations more apparent. Using (3.17), we can write (3. 16) as

2
1 dyd™g -1
Jl,+1(u,t; Nz,Rz) = 1 3 [doz dpz [ —3———=L [Vz - S(ﬂi ,y):l
j 2(2m) 0 y(1-y)

-1

-1
[v'z - 81, + (1—y)qL,y)] [u -8, - (1) rl,y)] w(o?,t; N7, A7)

Wj(pz, t; A%, RY | (3. 18)

where

1 - 1 2 _ 2 2

To interpret this form we refer the reader to Fig. (12). If we set both W's

equal to 6 -function in (3.18), i.e.,

W(oh Wip%) — ou” - 0% s® - ph)
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The right-hand side would be exactly the OFPT expression for the crossed box
diagram evaluated in our IMF. Notice that because of the judicious choice of
space-like values for 1‘2 and (q+r)2 only one time-ordering survives. The
three factors in square brackets are just the three energy denominators which
appear in this remaining diagram. Therefore, the right-hand side of (3. 18) is
the crossed box diagram evaluated in the IMF and convoluted with weight func-
tions that measure the spectrum of the horizontal lines, as shown in Fig. (12).

A few remarks are in order about equations (3.16) and (3.18). First, the
reader will surely have noticed that we never considered possible singularities
in the ﬁz ~-plane from the dependence of the weight functions, W and W]. on the off-
shell masses )\2 and ?\‘2. The reason is that while there are such singularities
in the off-shell amplitudes, K and ./t{j, they do not appear in the imaginary
parts, W and Wj‘ This was realized in another context by a number of smart
men at Princeton when I was 13 years old. 20 If one continues the external
masses Az to large time-like values, one is in general required to deform the
path of integration in the 02 {or pz) plane to avoid complex singularities in 0-2
(pz) which appear in W (Wj). However, this does not introduce extra singulari-
ties in the !Zz—plane until after we perform the dcrz(dpz) integral. Then, of
course, the sipgularities are in K(MJ.), and not their imaginary parts. In sub-
section 4, we will present an example of a kernel for which this sort of thing
occurs, and we shall then present a graphical explanation of these statements.

The equations (3.16) and (3.18) are exact recursion relations for the scatter-
ing amplitudes which contain j t-channel iterations of an irreducible kernel.
Now, there is evidently nothing stopping us from formally redoing the dp2 integral

(with the proper choice of the path of integration). Doing this in (3. 16), and
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FIG. 12--The recursion relation in terms of integrals over
the spectral functions of the subamplitudes.
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using (3.15), we have

. 1 dzﬂ.ldcrz o 5 1[5 o 71
+1(ut N R)— 3 dy T A-M +ie| [7\' - M +i€]
J 2(27) 0 y

wie?, t; N2, A% AT, A%, R (3. 192)

which is also an exact recursion relation. Using (3.18), we can also write this

as

dyd™¢ do -1
+1(u,tN R?) = ,_J._[ S(!Z,y)]
2(27T) 0 (1-y)

-1
[u'z— S, + 1y g, . y] wel, 687, 4% @, A% B

(3.19b)
To perform the final (trivial) step in the derivation of our integral equation,

we sum both sides of (3.19a) over j from zero to infinity. Doing this, we have

2 2
1 dyd™{ do -1
M (U, t; Nz, Rz) = B(u, t;Nz, Rz) + L [ —L I}z Mm%+ ie]

2(2m)° 1y

[wz - M? +i€] Wwoo?, t; N2, A%) @, t; A, RY (3. 20)
with # defined as in (3.9). This equation is depicted in Fig. (13).
Because it is so useful, we wish to display this equation another way. Using
(3.19b), we easily find

2 2
1 dyd™¢ do -1
e, tN% B = B, tNZ, ”Y+ L [ N [vz -8, y)]
2(2m) y(1-y)

-1
[v'z - 82, + (1-) qi,y)] wio?, ;8% Ah) @, 4 A% RY) (3.21)
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FIG. 13--The full integral equation.
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3. The Reggeization Procedure

These are the equations that lie at the heart of our Reggeization procedure.
We would now like to analyze the behavior of the solutions given the Born term,
B, and the kernel, K. Notice that both sides of equation (3.21) are evaluated at
a fixed value of t. In principle, therefore, we need to know B and K at all values
of t in order to determine .#/(t) .22 However, since our approach is to Reggeize
the deep scattering region, it is natural to begin by examining (3. 21) for large
Itl.

Measurements of differential cross sections at large a.nglesz3 indicate a
power law behavior both in s and t. Matrix elements which describe large angle
scattering must therefore reflect this behavior, and a number of theories of deep
scattering24 have been proposed to describe these gross properties, A simple
expression which may be taken as an approximation to the results of some of
these models is a form alluded to earlier:

-n

B=f(t) 12 - (3.22)

As our notation indicates, we wish to regard such a function as a Born
term. In fact, we will also use it for the function K. At this point, such a form
may be regarded as a general and reasonably accurate ansatz based partly on
phenomonology and partly on features which are common to a number of models.
Later, however, especially in Section D, we will call upon the parton-
interchange model21 for a more specific interpretation of the Born term.

In the present calculation, the expression (3.22) is intended to be purely
real. Actually, we could have chosen any number of similar forms for B, some
of which would have imaginary parts, and in certain 2 — 2 amplitudes other forms

for B may be more appropriate. But,as we have stated before, we wish to
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confine ourselves in this and the next sections to the simplest possible cases.
Furthermore, (3.22) is physically relevant since it is the Born term expected
from the parton interchange theory for exotic reactions such as p-p elastic
scattering where only a (tu) quark interchange graph is allowed.

To begin Reggeizing the Born Term, (3.22), let us examine first the am-

plitude Jll in the series which sums to .# . Using (3.19b), we have

2 2
1 dyd™¢ do -1
e/ﬂl(u, £, sz RZ) = _%L 9 [Vz - S(I.L’ Y)]
2(2m°(n-1)! 0 y(1-y)

-1 _
[v'z - 8(t, +(1-y) qi,y] s (2 0% )™

(3.23)
where we have used the fact that
2. 2, .2 .2
K@',t; N2, A% = sy @ian™ = [d“ W(e ,zt,N » A)
u' - o%+ie
_ 1 ao?sy oY% - A
(n-1): u -o? 4 ie
and so
w(o?, t; N2, A% = A0 sb-1 2 2 (3.24)

(n-1)!

The superscript on the §-function refers to the number of derivatives of
the 6-function. For simplicity, we have assumed that n is an integer. (This
result was mentioned earlier-in (3.12). We wish to examine (3.23) in the large
lul limit. To do this it is first convenient to Feynman parameterize the

denominators. Using the well-known Feynman integral, we easily derive
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the identity

-1 )
[})1D2D3] =n(n+1)[ der, der ey B(1-cry -ty -crg)ery T

0
-(n+2)
alDl + o D2 + QSDS]

by differentiation with respect to D3. Using this in (3.23), we find after some

simplification,

M L = n§n+12f (t) ]d (1- )n+1 2 o [n 1] 2 _42
2(211') (n-1)!

-(n+2)
n-1{,2, .2 2 2 (n
daldazda 6(1-011 —a, a3)oz [p + !ll + (1-y) P y(l—y)a3u+y0' ]

(3.25)

with
= (1) [(“ rrg )M + g ] y1-y) [“ viragy' ]”1'3’)2“ E"lr?mz(qfrl)z]

p'2 is a mass paramefer, which is independent of t = -q'rf and u. Incidentially,
this form clearly demonstrates the analytic dependence of .# 1on the external

. : 2 '
masses, in particular -r i
expected symmetry under the interchange rf —(q el )2 and v

and -(q_L T, )2. Also, it is interesting to notice the

2 __ V,Z.

The next step is to perform the dzﬂ and daz integrals. The d2!l_L integration

L
is easily carried out. The do'2 integration is done by integrating by parts (n-1)

times. The result of these two operations is

L/ﬂl(u’t) = M f (t) I(u, t) (3.26)
T (n) 2(2m)
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where
* n-1 | 2 ~2n
I(u,t) = dxdydadp 6(1-x-y-o-B) (Xy) [p —oth-—xyu:I
0
and

2 _ 2 2
pT=p" tyu

We have defined x = (1-y) Ogy @ = (l—y)al, and 8 = (1~y)a2. The y-integral
may be extended to «, since as long as @, §, and X are positive, the region
y > 1 cannot contribute because of the é-function.

To examine the leading behavior of .#, for large |u}, we can use a
Mellin transform technique. Actually, there are two problems to which we
must address ourselves. We need to consider both the limits |[u] — < with
t/u — 0, and |lul — « with t/u fixed. The latter is the asymptotic fixed angle
region. While we expect that the leading behavior in these limits will be simply
related, it is not a priori obvious what that relation is.

Let us proceed, then, by writing the integral in (3. 26) in terms of its

double Mellin transform in the variables -u and -t.

1 2 atiw s b+ie r
I(u,t) = (EH) ds ul dr|t] ~ G(s,r) (3.27)

a-ie b-ie
a (b) must be chosen so that the contour in the s (r) plane does not pass over any
singularities of G. It is easy to see that I(u,t) is finite if lul and/or It] —o,
and I — 0 if |u} and/or |t] — =, so we may choose both a and b just to the right
of zero in their respective complex planes. Equation (3.27) can be inverted to
obtain an expression for G(s,;-) according to the formula

G(s,r)=[ dlu] Jul 371 [ dltl]t]"? 1qu, ) (3.28)
0

0
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Because of the simple form of the integral in (3.26), the ju| and fel integrations

can be readily carried out, and we find

Gis,r) = HeLLB 0o [ | dxdydadp ("o
X s(1-x-y-a-g) (5T (3.29)

To get this form, it is necessary that (3.28) exist. This translates into the
conditions s <n and r <1, which is consistent with Re s and Re r being to the
right of zero, as we needed above, sincen > 1. |

To pick out the leading behavior of Jlfl, we need to find the singularities
of G in s and r. For simplicity, we shall set all the external masses equal to
zero, and let “2 = Mz. Then p:2 = uz, and it will be easy to examine the singu-
larities of G. H we generalize to arbitrary, stable external masses and unequal
internal masses, it becomes somewhat more complicated to analyze (3.28), but
the singularity structure will not change since p2 is always finite and non-zero.

If we introduce the representation for the &-function

, w ‘
o(x) = '2'17; f dw %
- — 00

into (3.28), we can carry out the integrals over x, y, @ and g. To do this, we
give w a small negative imaginary part, which will go to zero at the end of the

calculation. Using

f dx A1 HOEX | A
0
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we have

2, str-2n
Gs,r) = & e Leeen) r¥n-g iy

. foo deo (e + iw)_z[(n—s) + (1—r)]eiw

- OO

The last integral is easily done, 25 and the limit € — 0 presents no diffi-

culty. We finally have

str-2n  T2(n-s) T2(1-r) I(s) T(r) T(2n-s-r)
I'(2n) I'[2(n-s+1-1)]

G(s,r) = 23 (3. 30)

Now we would like to discuss the singularities of G in s for fixed r. The
gingularities at the smallest value of s will give the leading contribution to M,
at large |ul. We start off, therefore, with r near zero, and increase s along
the positive s-axis. Since n > 1, the first singularity we hit is evidently a pole
at n = s coming from I‘2(n—s). Let us expand G in s about s =n. Using the ex-

pansion,
T(z + €) = I'(z) [1+€zp(z)]+ @’(62); z# 0, -1, -2, ...
we find for s near n,

n  T(1-r)I(r)T(n)T(n-r)
T'(2n) I'{(2-27)

G(s,r) = 27r(u2)r_

* {9+ -9 [2000) + i) + piae) - 2922w - )}
(3.31)
There is therefore both‘a double pole and a single pole at s =n. To see
what this formula implies for the asymptotic behavior of I in jul » we need only

use (3.27) and perform the inverse Mellin transform in s.
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Now, for large jul, the s contour integral in (3.27) should be closed in

the right-half plane so that Ju] ™ = o-stulul

will provide convergence to the
integral. We can then let a go from zero to n + €, and we will explicitly pick up
the poles at s = n which are the left-most singularifies for s > 0. Now, it is

easy to show using the Cauchy formula that

m+1
57];1—. dsju|™® (n-s)—(m+l) = -(-—%—,——- ha] ™ ™ |ul (3.32)

It is clear then that the leading behavior for |u| — « comes from these
left-most singularities. The behavior of I(u,t) for large |u| may thus be written

as

Kty = Ryt )" mful + Ry ol ™5 Jul -

where the R's are obtained by performing the r-integral of (3.27). The leading

behavior of ./ﬂl then follows from (3.26) and can be written as

M@t = £ Ry (-0 m(-0) +£(5) Ry(t) (-w) (3.33)

The appearance of a term mlnlul is the major feature of interest here.
This term begins a sum of ever increasing powers of m|ul which Reggeizes the
large-angle Born term and turns the fixed pole in u into a moving pole that de-
pends on t. But more about that later. For the moment we return {o the expres-
sion (3.33) and note that, strictly speaking, we have only shown that this is the
correct asymptotic behavior of e/lll when |u| is the only parameter which goes
to infinity; that is, when [t] is fixed (but not necessarily small). We would now
like to examine the behavior of Jll when |t| is allowed to grow, also. To do
this we must go back to the exact expression for G (3. 30) and examining the singu-

larities of G in r as well as s. If we try to use (3. 33) and examine the singularities
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of the integrals which give the factors R(i} we will get the wrong numerical
factors, since the expansion above (3.31) is not valid at the poles of I'(z).

Examining (3.30), it is easy to see that the first singularities of G for
positive r are poles at r = 1. We can expand this expression simultaneously
about r = 1 and s =n. When we do this, we need to consider separately the two
casesn =1landn > 1, It is siraightforward to calculate the terms of interest
exactly, but for our purposes it is sufficient to notice what the form of the lead-
ing singularities is. Remembering that I'(x) ~x"! for small x, we can simply
count the order of the leading poles at r = 1 and s = n in the expression (3. 30)
for G. Using (3.26), (3.27) and (3.32), we can then translate this singularity
structure into the asymptotic behavior of ./lll. Doing this, we easily find that
for large |ul and |t],

2 ¢ :

Bt D o=
Mt = [Al fa(-u) m(-t) + Az[ﬂn(—u)+£n(—t)]+A3] ; n=1

1

.
4t
(—_:)f;(j [Bl[ﬂn(—u)+ﬂ.n(—t)] + 32] : n>1 (3.34)

where the Ai and Bi are independent of u and t. The fact that the expression in
large square brackets for the case n=1 is symmetric in u and t follows from the
symmetry of I(u, t) for n=1, and has been personally verified by explicit calcu-
lation. Notice also that for n > 1 the coefficients of f(-u) and fn{-t) are equal.
These expressions are valid asymptotic formulae when |u| and |t| are both
large. In particular, when |u| — «, (3.34) in valid for large |t|whether t/u—0
or not. We would also 1ike to point out that unlike the large lul behavior (3.33),
the large |t|, large |u| behavior (8.34) of «#, is not easily obtained by direct

inspection of (3. 26).thus underlining the utility of the Mellin transform technique.
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Now, f2 (t) is generally expected to fall for large lt| — at the worst,

f(t) = constant for a simple ladder graph with point couplings. Comparing the
{ferm ._/l{l with the Born term (3.22), we see that as |t| gets large, ‘/”1 falls
with respect to ./I{O by at least one power of it (mod logs). This is fortunate,
since the spirit of our approach is to assume that the Born term adequately de-
scribes the deep scattering region, and so the other graphs in the theory should
become negligible in this region. We shall return to (3.34) below when we dis-
cuss the definition of the deep region, and the asymptotic behavior of the tra-
jectory function a(t), but for now let us continue building and summing iadder-
like graphs.

To convincingly establish that our sum will Reggeize, we must examine
the leading behavior of ./ﬂz for |u] — =, Using (3.19b), (3.33) and the expres-
sion for our kernel, we can obtain an expression for "”2' In using (3. 33) for

'/”1’ we are of course assuming that the important region of integration in
(3.19b) is such that u is large so that the asymptotic formula for .//(1 is appli-
cable. In fact, it is also necessary that this condition be satisfied in generating

M 1 from the two iterated Born terms, since the Born terms are intended to
describe high energy (deep) scattering. We shall show below that this condition
is fulfilled, but for the time being let us assume tha'tv no swindle is being per-
petrated, and proceed.

Since we expect to need Jll(l-f) for large H, it will be convenient to exa.miz;e
only the leading term ~|u| on |ul. (The reader may assume for gimplicity that
we are not now in the fixed angle region, so that the term ~Ju] 2 pnlt| is not
important. In the fixed angle region ‘/{'{2 will be gmall with respect to the Born
term, anyhow.) The nonleading terms in -# 1 will generate important contribu-

tions to the sum; for instance, the term in J(l = |u] T will give a term in
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M 5 ~fu | ™ tnlu| which will change a(t) and 8(t) as || gets smaller and smaller.
However, the structure of the theory is most easily seen by considering only the
biggest term in each order of the iteration.

The easiest way to see what will happen is to use the identity

m ~m
L el ™™ = B 2y P (3.35)
m, m. apm

pP=n

We can then insert a term o« (u - uz) P for uﬂl into the iteration equation which
gives ‘/”2’ and at the end of the calculatiqn differentiate with respect to p to
reproduce the log factor. Before we differentiate, however, it will be convenient
to calculate the Mellin transform of our expression and differentiate that with
respect to p. We shall see that the left-most singularity is again a pole at s = n,
but now it is a third order pole. Inverting the transform, this gives rise to a
term « Ju] ™ tn® lul.

To see in detail how this comes about, let us use (3.19b) to calculate the

leading term of ./ftz. Using our well-known kernel and the first term on the

right hand side of (3. 33) for Jz’l, we find
TR, (8 £(t)(-1)"
= 1 -0 T'(n+p)
W = -8 _ . .
M, 3 (Bp) (g Xw.tiP) ! ;] (3. 36)

2]
2(4;71') b=n

with
I(u,t; p) = f dXdydadﬁ’yn—l xP1 6(1-x-y -0 -B) I:MZ ~apt - qu]—(mn)
0

In deriving this form, we have again assumed that the masses of all external

particles are zero, and the masses of all the internal particles are the same.

For simplicity we have also used (u - p:z) as the argument or ul{I instead of u,
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but this doesn't affect the calculation of the leading terms. Now we want to
double Mellin transform I as we did earlier in the calculation of ul(l (3.28).

This is easily done using the techniques described above, and we have

str-p-n  I(s) I'(r) I'(p+n-s-n) 1‘2(1—1') T'(n-s) I'(p-s)

B 2
Gls,t;p) = 27(u) I'(p+n) I'(2+n+p-28-2r)

(3.37)

which miraculously is the same as (3. 30) for p =n. Now, taking the derivative
of G with respect to p, and taking p—n, we seek the left-most singularities in
the s-plane in order to determine the asymptotic behavior of le for large lul.
Using the exciting properties of the well-known (! ?) poly-gamma functions, 26
it is easy to derive the formula for the leading singularities of the mth deriva-

tive of the gamma function evaluated near zero:

s

[m] m_,
I'(x) = %—’{L ; X =0 (3. 38)
X

With this formula, we easily find that the left-most singularity of (3.37) in s is
a sum of poles at s =n, the most singular of which is a third order pole. This
comes from the term we get when we take the derivative of I'(p-8).

We invert this singularity using (3.27) and (3.32), and we find for the lead-
ing behavior of le as ful — =,

o HO Rt m¥
My = (-v) 57 . (3. 39)

It is easy to see from (3.38), (3.35) and (3. 32), that if we continue this pro-

cess keeping only the leading terms in each order, we will have the sum

2. IR, () R,(t) -n
= 2 = A0 L%J- =K () L (3.40)

@0
j=0 (-0 =0
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And, as promised,the theory Reggeizes with a(t) = Rl(t) - n and B(t) = £(t)
in this approximation. There are of course other lower lying contributions in
each order and these will enter the sum to change the behavior of @ and 8. We
can see this already happening in (3. 33) where the second term on the right
"renormalizes' the residue, g(t}). In "”2’ this term gets promoted and has a
leading dependence < (-u) Hn In(-u). This new term is just what is needed to
allow the renormalized g(t) to be simply factored out of the term o« fn{-u) in the
sum as we did in (3.40). It is clear that the number of lower lying terms which
get promoted to modify o and g quickly prqliferates, and makes a detailed pre-
diction of the t-dependence of o and 8 for all t difficult. But it is equally clear
that the structure of the theory is as shown in (3.40). In fact, since there ig a
coupling constant, say g, associated with each appearance of the kernel, (3.40)
is exactly the perturbation result in the limit of small g — that is, to each order
in in(-u), (3.40) includes the minimum factors of g possible. It is also impor-

tant to realize that regardless of the size of g, o and g are well approximated by

a(t) = R () -n

(large It])
Bty = (1) [1 + RO(t)] , (3.41)
for large |tl. The reason is that as t increases Mj+1 << L/t(j, and so at large
[t] it is certainly sufficient to consider only ./ﬂfo and ul(l.

Let us now return fo (3.34). From this equation, we can see how the effec-
tive trajectory and residue approach their limits as t increases. For definite-
ness, we shall consider tha,;, case n > 1. If n=1, the discussion is simﬂar. To
examine the behavior of the trajectory we can expand (3.40) in powers of in(-u)

and compare with (3.34) (or, equivalently, use (3.41) and evaluate (3.34) for
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large [tl). Doing this we find

- n (large Itl) (3.42)

B_f(f)
o = L

)
We see then that a(t) rises (or falls, depending on f(t}) away from its asymptotic
value of -n at a rate given by the first term in (3.42). In the BBG parton ex-
change mOde1,21 n and the behavior of f(t) are related to the electromagnetic
form factors of the particles involved in the scattering, and so these form fac-
tors determine the rate at which the trajectory approaches its asymptote. Fur-
thermore, this model also predicts that f(t) has, at most a small imaginary
part, and so in this order at least, a(f) is mostly real.

Another important aspect of the large [t| behavior of our theory involves
the definition of the deep scattering region. The deep region should be the re-
gion where coherent effects which build Regge poles become unimportant with
respect to the Born term. Comparing (3.34) and the Rorn term, we see that the

value of t where the deep region sets in depends upon u in the following way:

~t
o 2

In the BBG model, f(t} ~ (-t)"b, where b is a small number (not necessarily an
integer) whose order of magnitude is one, and depends on the specific reaction.
The deep scattering region, therefore, is neither a fixed angle region (t «u)
nor a fixed t region, but sets in someplace in between. In the more complicated
coupled channel case, the relation which determines the deep region is generally
somewhat more complicated, but the essential characteristic remains the same.
We promised the reader a few pages ago we would justify the use of, for
example, the leading term of ufll in the ca.lculatidn of '/”2' To do this we must
show that the most important region in the calculation of ./f(z( M i +1)
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corresponds to large values of Jul, the argument of ./1{1( ‘/”j) as fu|—e,
From (3.17), we see that since 0 <y <1 andu <0, ful > lyul over the entire
range of the JZL integration, so it is sufficient to show that the important con-
tributions come from regions when lyul is large. Now, let us look at the ex~
pression for Iin (3.26). (We could just as well analyze (3. 36), and the argu-
ment would be the same.) We may ask, for what values of the variables x and
y is the integrand largest? By inspection (or differentiation with respect to

z =xy), we find that the integrand is largest when

sylul ~p2+ agltl (3.43)

Since x, ¥, @ and 8 are all between zero and one, the most stringent test of the
size of u will come when the right-hand side of this relation is finite. (It cannot
be zero because of the term p2.) The relation xylul = constant is a hyperbola
in the x - v plane. Remembering that x, y € [0, 1], we realize that over the
entire length of the curve, except near one end point, ylu{ — = as lul — =,
The one region where this is not true is, of course, the segment which is very
close to the point x = 1 where y ~ -]—ul—! . This segment shrinks to a point és

lul — «. Since the integrand does not diverge here, it is safe to say that lul is
large in the most important region of integration in the recursion relation. In-
deed, if the relation (3.43) is not satisfied, the integrand — 0 as lul — =, The
fact that derivatives with respect to p appear in higher order recursion relations
such as (3.36) need cause no worry once it is realized that those derivatives are
merely a convenient way of including the factors of logs which appear in the
integrand. It is clear that_' the presence of these logs does not affect the validity
of the argument presented here, Later in this section, we shall show that small

values of y(y ~ lul -1/ 2) provide the most important contribution to the integral
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as we approach the Regge regi;)n. In that case, it is a simple matter to show
that the magnitude of energy variable appropriate to the kernel, u’ = (p—ﬂ)z, is
also large in the region of interest. This is done by writing u' in terms of u, u
and y. This is, of course, required for a consistent theory. Finally, in section
C, when we discuss the Reggeization problem in the coupled channel case, we
shall refer again to our hyperbola, and show how the dominani region of integra-
tion determines how Reggeization takes place when the kernel dves not have the

same fall-off in u as the amplitude, aﬂj, with which it is convoluted.

4. Discussion of the Kernel

It is instructive at this point to discuss the nature of the kernel and Born
terms which appear in our integral equation_ . First, as we mentioned before,
the blobs in Fig. (10) are supposed to be irreducible insertions in the two parti-
cle propagator. This, of conrse, is to avoid the problem of double counting of
Feynman graphs. We would now like to examine a few simple examples of the
insertions that can contribute to the kernel. In doing so we shall gain some in-
sight into the role played by various s-channel and t-channel intermediate states
in the theory.

Tn our discussion so far we have used a u-channel dispersion representation
for K. Obviously, if we consider only simple ladder graphs (Fig.(14)) all of our
results go through without complication and Reggeization proceeds‘apace. We
can, of course, consider the same set of graphs by letting the kernel represent
two horizontal propagators. Then, if we use the sum of a single propagator plus
two simple propagators for the Born term we reproduce exactly the set of dia-
grams as represented in Fig. (14). (In the next subsection we shall use OFPT
directly to derive our equation for these simple ladders.) It is important to

realize that this can be done, since in the context of the parton interchange theory
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FIG. 14--Simple ladder graph.
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of Gunion, Brodsky and Bla.nkeilbec1:31""31 the kernels at large [t] are box (or
crossed box) diagrams with structure at the vertices, as in Fig. (15). The heavy
lines here are hadrons, and the lighter, internal lines are quarks or cores. A
proton, for example, may be thought of in this kinematic domain as a p quark
plus a (pn)} core or an n quark plus a (pp) core.

Motivated by these considerations, we want to look carefully in this section
at the diagrams of Figs. (16) and (17). It is of course, important to consider
these diagrams independent of any particular model, but if one subscribes to
the parton interchange theory these diagrams are especially germain. Figure
(16) is the type of graph which is expected to be important in building the vertex
structure as in Fig. (15). Figure (17) on the other hand, corresponds to the
insertion of an (su) graph into the kernel which is certainly present in some pro-
cegses, especially in backward scattering according to Gunion, Brodsky and
Blankenbecler. 21 Let us turn first to a discussion of the vertex corrections,
Fig. (16). |

We proceed to calculate this graph by interpreting it as a Feynman graph
(actually, a sum of Feynman graphs which include all relevant structures in the
amplitude, 7 ) and evaluating it in our now familiar infinite momentum frame.

If we label the momenta as in Fig. (16), we can write this amplitude as

M= L v [dzﬂl %}{ a® 7, (-7 @, t 12, e
2{2m
-1 17 -1
[(p-;ﬂ)2 - m2 + ie] [22 - m2 + ie] [(!Hq)z - m2 + ie] (3.44)

where the vertex function, F, is

-1 -1 -1
F(e2, (02 = 2(; i f dzki A dkz[kz—m2+i€] &k—ﬂ)z-mzﬁe] [(p-k)z—m2+ie]
T

(3. 45)
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FIG. 15--(tu) parton interchange diagram.
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G+r r

2319414

FIG. 16--Feynman diagram showing kernel which
includes a vertex correction.
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P p+q

2319a17

FIG. 17--Feynman diagram showing kernel which
has a non-zero third double spectral
function. (su-spectral function.)



ur choice of frame dictates

k2+ki ‘
k = zP+ —==,k , zP

and

2zP 1

]

Y
£ = (xP + “oyp ﬁl.' yP)
For convenience, we have taken all masses equal.

We now want to do the dk2 and dﬂz integrals. By arguments analogous to
‘those presented in the derivation of our original equation we easily see that we
get a non-zero contribution only when z,y€[0,1] . (Remember that r2 and (q+r)2
are spacelike.) Now let us imagine that we have used a spectral representation
like (3.15) for .# in (3.44). As we discussed before, the weight function, W,
will not have any troublescme singularities in the 22 -plane. We may then analyze
the positions of the singularities in .ﬂz and kz by looking at the explicit propaga-
tors in (3.44). Then, at the end of the calculation we do the spectral integral
over W to get back A . With this procedure in rhind, let us first suppose that
Z <y. Then, it is convenient to do the dk2 integration by‘ closing the contour in
the lower half plane. Doing this we pick up a contribution from the pole at
kz = m2 - i€. (The other two polés are in the upper half plane.) We then per-
form the d@z integration closing the contour in the upper half Ez-pla.ne. This
picks up the pole at (p—!l)2 - m2 4+ i€ = (@, This contribution is shown in the time
ordered graph of Fig. 18a) where the dashed lines indicate which particles are
on the mass shell. Now, if z > y, we can close the k2 contour in the upper half
plane. For z > y there is only one pole in this half plane, and we obtain a con-
tribution from the pole at (p—k)2 - m2 4+ i€ = 0. This time, when we do the dﬂz

integral we find that we must consider contributions from two poles in the
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(a) (b) (¢c)

F1G. 18--Time orderings which contribute to the Feynman diagram
Fig. 16 in the infinite momentum frame. The dashed lines
show which intermediate state particles are on their mass
shells,
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!22 -plane. Closing the contour in the upper half plane, we get contributions from
the poles at (p—ﬁ)z—mz-i-ie = ( and (ﬂ—k)z-m2+i€ = 0. These contributions are
shown graphically in Figs. (18b) and (18c). (Remember, incidentally, that the
propagator from the spectral representation of M always has its pole in the
lower half Ez -plane, and so we never surround this pole with our contour.)

The first point we want to comment on here is that all these contributions
are contained in W in Eqg. (3.11) with the cut in the 02 plane restricted to the
positive real axis. Graphs (18a) and (18b) contribute to the pole at 0'2 = mz,
while (18c) gives the cut in W starting at 02 = 4m2. Since these singularities
are almost on the real axis, there is no reason to deform the doz contour from
its usual choice. Another way of understanding this is to realize that there is
no contribution like Fig. (18d) in this diagram. This means that the off mass
shell variable, 7\2, does not contribute any extra singularities oer in the 22—
plane which would introduce extra coniributions to our integral equation had we
not used the representation (3.11) for K. We emphasize again that these are
two complementary ways of looking at the situation. X we do not introduce the
digpersion representation (3.11) we, of course, need to calculate all the contri-
butions of a specific graph, and some of them will, in general, be like Fig. (18d)
(as we shall discuss shortly). However, once we introduce the dispersion rela-
tion (3.11) we can include all possible contribution from a general graph by keep-
ing an open mind about the specific location of the doz contour. The appearance
of extra off shell contributions like those in Fig. (18d) is equivalent to the re-
quirement that the dcr2 contour be deformed from the real axis to include complex
singularities .20 Therefore, as we stated before, our integral equation (3.20) or

(3.21) is perfectly general with the understanding that the specific form of the

drr2 contour depends upon W,
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We would now like to describe what this vertex correction can tell us about
the important s- and t-channel intermediate states in various kinematic regions.
In subsection 3, we showed that in the integral equation the biggest contribution
in the Regge limit came from a region near a hyperbola described by equation
(3.43). We argued before that over most of this region, [yul —« as |ul — =,
A glance at the expression for I in (3.26), however, also shows that the most
important part of this hyperbola is the domain in which x, y — 0 as lu] — .
This is because the expression for 1 involves an integral over o and g, and,
because of the é~function, the allowed range of these integrals is maximized
when x and y are both small. Therefore, the Regge region is dominated by the
exchange of particles with small y.

We may now ask which of the vertex correction orderings we expect to dom-
inate in the Regge region. Since small y is most important here, we expect the
time orderings with y <z will predominate. These are the graphs of Figs. (18b)
and (18c). The picture of Regge behavior and its relation to deep scattering
which emerges from these considerations is the following: the Regge region is
dominated by the exchange of (light) particles with relatively small longitudinal
momentum in the IMF (y near zero). If these particles are partons, we recover
Feynman's idea that Regge behavior arises from the exchange of wee partons. 21
Notice, however, that the exchanged particles need not have point-like form fac-
tors or weird quantum numbers — our formalism includes the possibility that
they are ordinary hadrons. Notice also that in generating Regge poles we only
need to exchange two wee particles. However, the more complicated j-plane
singularities that arise from s-channel iterations of simple poles will clearly
correspond to amplitudes in which there are more than two wee particles ex-

changed. As we move away from the Regge region [t| grows for fixed lul, and,
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as we see from (3.26), it becomes more and more important for « and g to be
small in order to get a sizable contribution to I. Since the 6-function must be
satisfied, regions of the y integration where y is not near zero become increas-
ingly important, and it is no longer justifiable to consider only contributions to I
coming from small y. As far as the vertex correction graphs are concerned
this means that the time ordering of Fig. (18a) becomes more and more impor-
tant. In addition, when |t| is large all the amplitudes, J{j, j > 0 are down by at
least a factor |tl -1 from the Born term, as we have shown. Hence, the picture
in the s-channel is that in each amplitude, J(J., the Regge region is dominated
by the many particle intermediate states as in Figs. (18b and c¢) — whatever
particles there are want to live as long as possible. In addition, amplitudes
J{j with increasingly large values of j become important in order to build up the
moving Regge trajectory. As lt| increases, each ./t{j gets larger and larger
contributions from diagrams like Fig. (18a) — that is, the particles in the inter-
mediate state pull back and live for shorter and shorter times.  Furthermore, as
Itl increases, all the amplitudes, :/t{j for j > 0 become small in comparison with
the Born term by at least a factor of ltl_l, until finally in the deep region only
the Born term is important. To complete the picture, we remark that a Born
term should probably have a small number of intermediate state particles in
order to be consistent with our interpretation. An example of such a Born term
is provided by the parton interchange theory. 21

Now let us turn to a brief discussion of the graph shown in Fig. (17). Our
purpose here is fo present an example of a kernel which, when used in our for-
mulae, has singularities in !Zz due to its dependence on Az, and which therefore

requires a deformation of the path of integration in the ozéplane. The specific

kernel which we shall discuss has a non-zero third double spectral function (su),
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and therefore is not really in the spirit of this section. This is because the on-
shell amplitude corresponding to this kernel has discontinuities not only for
positive u but for negative u also. Therefore, amplitudes built up from this
kernel will not necessarily be real, and this is a complication which we wish
to avoid for now, and relegate to section D. However, at the time of this writ-
ing, this reporter has not been able to think of a graph which has the disease
we require, but which also has the discontinuities only for u > 0; hence, the
present example. It is comforting to know, however, that for fixed {, u — =,
the leading term of this graph is not as big as the leading term of the graph with
the horizontal rungs uncrossed.28

We proceed, then, with our analysis by labeling the momenta as in Fig. (17).
Taking all masses equal, introducing a spectral representation for A , and
using the same frame as we used to discuss the vertex correction graph, we have

for this diagram:
2

L[, dydzkl dzd’ &’ [, 5 71 , 11
M = 5 CIREE dp [£ ~-m +i6:| [(,0_+q) -m"~ + ie:l
4(27) y :

-1 -1 -1 -1
[kz—m2+ie:| [:(Jl+q+p-k)2 —m2+i€:| [(p—k)z—mzﬂe] l:(k—ﬂ)z—m2+i€]

2

1
[(l—r)z— p2+i€] W (o2, t; A%, BY (3.46)

Examining the positions of the poles in 12 and kz, we discover that the only range
of y and z which contribute in our frame is 0 <y <z <1. With this range of y and
z, let us examine the clk2 integral. It is straight forward to see that two of the
four propagators which have poles in the kz—plane have their poles in the upper
half plane, while the other two have poles in the lower half plane. We choose to
close the contour in the lower half plane, and we thus pick up the poles from the

propagators [kz -m2+i€] L and [(k—ﬁ)z—m2+ ié] 1. We now carry out the d¢
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integral over the two contributions which result from these two poles. In the
first term (obtained from the pole atf kz = mz) there are five poles in the !22—
plane, four of which are in the lower half plane (including the one from the spec-
tral integral). Avoiding unnecessary emotional stress, we quietly close the d!z
contour in the upper half plane, picking up a contribution from the propagator
I:(k-ﬂ)z—m2 + ie]nl. This contribution is shown graphically in Fig. (19a), where
again the dashed lines denote which internal particles are on the mass shell. A
similar analysis for the second term again reveals that four of the five poles in
£2 are in the lower half plane. Closing the contour in the upper half Eznplane,
we pick up a contribution from the pole generated by the propagator
[(p~k)2—m2+i€]—1. This term is shown in Fig. (19b).

We can now clearly see the kinds of terms which require a deformation of
the spectral integral contour. Figure (19a) represents a contribution to the
amplitude in which ?\2 has gotten sufficiently time-like to decay freely into the
two particles which are on the mass shell, and therefore requires the existence
of complex singularities in the Gz—plane. Figure (19b), on the other hand, is
just an ordinary contribution of the type we have seen before, and by itself could

| be treated by a path integration running along the real Gz-axis. Notice that if
we were interested in only the imaginary part of this diagram (for instance, if
the top two external masses were photons and we were calculating W1 or sz},
only the contribution (19b) would be relevant. The reason is that all the inter-
mediate state particles are required to be on-shell for the imaginary part, and
this cannot be the case for Fig. (19a). To put it more graphically, only (20b)
and not (20a) contributes to the imaginary part of the full amplitude, since (20a)
represents a discontinuity in the mass (g + 1f')2 and not in 58 = (p+q+r)2. This

analysis successfully accounts for Polkinghorne's observation that in the
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(a) (b) 2019819

FIG. 19--Contributions to Fig. 17. The intermediate
state particles that are on mass-shell are
indicated by the dashed lines.
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(a ) (b) 23194720

FIG. 20--Possible contributions to the imaginary part
of the Feynman diagram, Fig. 17. Figure 20a
does not confribute for stable external particles.
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covariant parton model calculation of VW2 the off-shell parton leg is space-like.
However, our discussion shows that this would not, in general, be true if one
undertook a calculation of the complete Compton amplitude.

By carefully examining two Feynman graphs which can contribute to K, we
have tried in this subsection to gain a better understanding of the physical inter-
pretation, as well as the mathematical complexities, of our Reggeization proce-
dure. We now want to return to the simplest realization of our theory — the
basic ladder graphs. We present, in the next subsection, an alternate derivation

of our integral equation for this case.

5. Alternate Derivation Using OFPT

To conclude this rather lengthy section then, let us proceed to outline the
derivation of our basic integral equation, (3.20) or (3.21), using old-fashioned
perturbation theory in the infinite momentum frame directly. This derivation is
somewhat more cumbersome than the one presented in subsection 2, and the
extent to which the final equation is model independent is not readily apparent.
Nevertheless, it is interesting to see how the equation emerges from this ap-
proach. For simplicity, we shall only {reat the case of simple ladder graphs,
but it will be apparent that the procedure applies also to more complicated cases.

Let us begin by turning to Fig. (21)., This figure represents the amplitude
J{j_,_l and consists of j + 2 rungs (one from the Born term). As in subsection 2,
we choose our frame and external momenta such that (q+r)2 and r2 are space-

like. We consider the limit P — « and parameterize the external momenta as
. - v2
p = (P t 5P s 0, P)
- (1 '
q ( P 3 q.L ? 0)
= (LR
r ( P rl , O)
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q+r r

XJ‘+|"'X| N 0|—r

ST Xjs*e Xy i +q

/ > \ j+2 rungs
o b A . \
xj+[;0j+| / Xj+1 (I-xj)’ QJ"*'_Qj \

Padl

p i"Xj+| ) _“Qj+l p+q

2319A21

FIG. 21--Only surviving time ordering for the old-fashioned per-
turbation theory calculation of simple ladder graphs.
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and we assume that the final state particle with momentum (p+q) has a mass v' 2
The parameterizations of the internal momenta are indicated in Fig. (21). The
factors of X represent the fraction of longitudinal momentum carried by that line,
and the Bi {or Ei + qlor El - ri) are the transverse momenta carried by the line.
According to the OFPT rules given in subsection 1, we conserve 3 momentum at
each vertex and place all the particles on their mass shells. The momentum
vectors of all the internal lines are then easily written down. For example, the

four-vector of the second from the bottom rung of the ladder is

2 2
m L, - )

(xj+1(1—xj) P+ 2xj+1(1—xj)P , £j+1__£j’ xj+1(1—xj) P)

For simplicity, we set the mass of each internal line equal to m.

With this parameterization of momenta, the only time ordering that survives
in the P — = limit is the one shown in Fig. (21) which we now read as a time-
ordered, rather than a Feynman diagram with time running from left to right.
The fractions X; are all between 0 and 1 so that the z-component of momentum is
positive for each internal line. To calculate the graph, we need expressions for
the energy demoninators according to the rules of subsection 1. On the left side
of the graph, we label the energy denominators by defining 2P times the energy
difference to be Di with i running from 1 to j+1. D, _ is calculated from the

J+1
intermediate state which appears after the first vertex and D1 refers to the inter-
mediate state just to the left of center (the so-called liberal state)., Similarly,
the energy denominators (times 2P) calculated from the right side of the graph

are labeled by Ei' 2P times the central energy denominator we shall call A.

If the coupling constant at the vertices is g, we can easily write down an
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expression for the amplitude. It is

: 2
2 \j+2 j+1 ( d“p.dx,
a2 ml g i -1
M, @ 6N R —( ) / 1 T ATl (3.47)

2(2m° 1 | (x) " (1-x)D.E,

It is convenient to represent the Di and Ei by a sum of energy differences across

each vertex. Doing this we easily find

2
Dy = #° = Sllyge Xy

_ 1 2 . R
D, = Dj+1*IT kZ=1 Wit [m 'S(f‘k—xkﬁ’kﬂ’xk)] Jz iz 1

2
—_— ' — —
E.,., =V S(lj 1+(1 Xj 1)q , xj 1)

1 2
E. = E, + Z; [m - S, -x 2 +(1—x)q,x)] i>i>1
i j+1 = Wi k “kKkt+l k’ 717k
(3.48)
where
'wk: xj+1lel-xk
and
2 2
_ L+ m
S ¥ = T-9

S is, of course, the same kind of variable that appears in (3.6) as well as subse-~

quent formulae. Finally,we can write A in the form

~ 2 2, 1 [,2_ _ 2
A—D1+u+rl—v +Wl [!Zl (£1 rL)] (3.49)
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Now, since the dzﬁ, integrations cover an entire plane we are free to shift

the origin of each integration. Therefore, define a new set of transverse vectors

by
=g, 4+ x A,
!ZJ JZJ xjﬁ]-fl
and
t 1 - -
L2 T4 - 5hy (3.50)
With this transformation, we can write
j-1
= 1 2
. . = D, + — - 1 1 s s
X3+1Dl j kz=:1 W1 [m S xkﬂlr:+1’ xk)] jziz1
(3.51)
where
D, = A% - s, x)
i it
with
.2 2
2 2 Ly T ERym
A= X, .pT —
i+l 1 - j+1
and
%41 Yk+1 T ket

7\2 as defined here is exactly the off -mass shell variable defined in (3.17) with
02 = mz and is the square of the four momentum flowing up the left side of the
ladder just after the first.vertex in Fig. {21). Now, notice that the right hand
side of (3.51) is exactly what we would get for Di if we were to calculate the

amplitude g/f(] {(instead of Jlj+ 1) with an incoming mass 7\2 rather than Vz. The

transformation (3.50) also allows us to rewrite x, +

; 1Ei in a way similar to (3.51)
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only with the replacement

2 2

_ }\,2 - x pi2 (£j+1 i (1_Xj+1)ql) +Xj+1 m
J+1 1-x,
il

V'z

As before, this is the same as 7\'2 as defined in (3. 17) (with 0'2 = rnz) and
has an interpretation similar to the interpretation of ?\2. Finally, using (3.50)

we can write for the central energy denominator

i _ - 2 .2 1 [,2 2 2
)‘j+1A Xj+1D1+u+r_L AT+ Wl !ll (!21 - rl)] (3.52)
where
2 2
- (£j+1+(1—xj+1)rl) - xj+1m
LS T R 1-x

and, again, with o2 = m2 is the variable defined in (3.17). Using (3.51), and
comparing (3.49) with the right hand side of (3.52}, we recognize this as the
central energy denominator calculated for the amplitude ./tlj with vz - 7\2 and

u —u. Therefore, if we define { = £3+ ,andy = Xj+1’ we may rewrite {3.47) as

1

2 2
A N R = B | O MG, 1 A7, B
2(2m) (19 Dy By

(3.53)
Using the definitions of Dj+1 and Ej+1 (3.48), we easily see that (3.53) is a

special case of (3.19b) with
W(O’z, t;N2 Az) = (S(m2 - 0'2)

ag befits a kernel which consists of a simple pole at mz. To complete the OFPT

-79 -



derivation of the integral equation, we need only sum both sides of (3.53) over
j, and we will have reproduced (3.21) for the case of the simple ladder graphs.

This procedure is clearly valid for a large class of kernels and in general
will reproduce the integral equation derived in subsection 2. An interesting
property of the OFPT derivation is that it provides yet another example of how
clever Feynman diagrams are. Consider, for example, an OFPT derivation in
which the kernel consists of the bottom two rungs of a ladder graph., In our
usual frame, only one time ordering of the four vertices of this kernel will con-
tribute (as in Fig. (21)). After calculating the diagram we are free to introduce
a dispersion representation for the kernel. Strictly speaking, however, the
weight function, W, which we should use for this kernel is not the weight function
for the entire covariant sub-amplitude (with off-shell masses), but is the weight
function appropriate to the single contributing time ordering. It is a testimony
to the ingenuity of our integral equation that it automatically projects out the
relevant piece of the weight function so that it is allowable to insert a spectral
representation for the complete covariant sub-amplitude. Of course, in the
context of the derivation of subsection 2, this property is obvious, so maybe the
lesson to be learned here is that there is often a great advantage in keeping ex-
pressions covariant as long as possible.

In this section we have tried to indicate by a simple example, the connection
between two alternate derivations of Egs. (3.20) and (3.21). While the present
derivation is not as simple and not as obviously general, it does cast the problem

in a slightly different way, and so is useful in that respect.

C. The Coupled Channel Case

In the last section, we discussed at some length the problem of Reggeizing

deep scattering in a world where there is only one kind of particle whose deep
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elastic amplitude has only a right hand cut in u. (This is almost equivalent, in
our case, to saying that there is only one nonzero double spectral function (t-u).)
While this discussion yielded much physical ingight, there are at least two addi-
tional layers of complexity that must be added in order to make reasonable con-
tact with the hadronic world. First, it is well known that there is more than one
kind of strongly interacting particle, and so a realistic theory must incorporate
this feature of high energy phenomonology. Second, it has long been suspected
that crossing symmetry and direct-channel unitarity may be important in hadron
physics, and that would seem to imply the necessity of at least considering the
existence of discontinuities at negative, as well as positive u. In this section we
shall deal with the first of these complications and in the next section we shall
discuss the second. (We shall, however, continue to work only with spinless
particles.)

The inclusion of more than one particle actually involves two kinds of gen-
eralizations. Consider, for example, a world of N particles. If we restrict our-
selves to a discussion only of elastic scattering in the s-channel, we need fo in-
corporate Nz coupled amplitudes into our formalism. Some sort of matrix
method suggests itself, and that is what we shall discuss later in this section.

In addition, however, we must now consider the probiem of how Reggeization
takes place when we convolute two sub-amplitudes which have different power
law behaviors in u, This is the problem to which we turn first. We shall, of
course, still continue to use kernels and Born terms which have discontinuities
for positive u only.

Suppose, therefore, that we wish to convolute an amplitude, M , whose

asymptotic behavior for large lul is given by
_ - g\k , 2 . -m
A= () @™ mSela) = b (5-%1) (u*-u) (3.54)
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K = ft) @ -w™® (3. 55)

in our integral equation (recursion relation) (3.19b). For convenience, we take

m, n and k to be integers. We may use (3.12) which is the imaginary part of K

in (3.19b), and we have

2 2

N 1 d’t do -1

A= thSIJJ_ht (%)k f dy ‘“il_ [VZ-S(EL.Y)}
2(2m)°(n-1)t 0 y (1-y)

-1 ‘
[v'z-suL +(13) ql,y] U 2 g (3.59

Using the identity above (3.25), as well as (3.17), we easily derive the analogue

of (3.25) for our present case:

1

- k

ya ft3ht (8—1_%) p— [ dy(1-yy ™ dz!zl 162
2(2m°(n-1)° 0

G[H—I] (;42—0-2) do 1da2doe3 6(1-o l-az—a3) agl—l

2] ~-(m+2)

2
x [p'2+£l + (1-y)2 alazqi - y(1-y) agu + yo (3.57)

with p'2 defined as in (3.25). The dzﬂ | and do'2 integrals are done just as they

were in section B, and we find for the present case

e EHRE 1 (;Q)k _Tsm) oy (3.58)

2(21r)3 am I'(n) ()

where

N _ ~(m+n)
u,t) = [ dxdydadg 6(1-x-y-a-f) xm-l yn 1 [pz-aﬁt—xyu]

0
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and, as before, we have defined x = (1-y) G, @ = (l-y)al, B =(1-v Qs and
p? = p'z + yuz-

We now want to examine the leading terms of .# for large ful. We do this,
not surprisingly, by again using Mellin transforms. The double Mellin trans-
form of I defined in (3.28) is easily calculated. In fact, we have already done
this in (3.37) when we were examining the behavior of the second iterated matrix
element, “”25 in the last section. For ease of calculation, we again set all the

external masses equal to zero and all the internal masses equal to u. Then, we

easily verify,

2
_ 2s+r-m-n I'(e) () T(m+n-s-r)I°(1-r)I'(n-s) M{m-s)
G(s, 1) = 27(u ) 1‘(m+n)r(2+m+n~2s-2£1l-) =

(3.59)

which is the same as (3.37) with p = m. With this formula, we can clearly
examine the asymptotic behavior of M i lul for all values of t, in particular
in both the limits l-lt- ~ 0 and ‘% fixed as lul — =, Since we have already done
this for the problem of the last section, we will only consider the f ~— 0 limit
here, That will be sufficient for the physical point we wish to make.

To examine the large lul behavior of (3.58), in this limit, we put r near
zero (but positive) and look in the s-plane, analyzing the singularities of G for
positive s. The three cases to consider aren =m, n > m, and n <m. For the
physical reasons discussed in the last section, we assume thatn, m > 1. Now,
if n = m we have exactly the situation of section B. To review, in this case
the first singularity which we run across in s is a pole at s = m. By applying the
derivative % to I'(m-s) k times, we generate a (k+1)th order pole at s = m.
But, since n = m the factor I'(n-s) contributes another order to this pole, and we

end up with a pole at s = m =n of order k+2. Mellin inverting this singularity
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tells us that the leading behavior of # is

m ﬂnk+1

M~ () (-u); (n=m) (3.60)

and the theory Reggeizes, as discussed in detail in the last section.
It is easy to see what happens if n # m. For n <m, the first singularity in

s is a simple pole at 8 = n, and the leading behavior of M is given by

M~ (-u)_n; (n <m) . (3.61)

On the other hand, if m <n, we have, after applying the derivatives (ﬁ)k to
I'(m-s) a pole of order (k+1) at s = m. Since this is now the first singularity of

G in the s-plane for positive s, we have the asymptotic dependence,
~ -m, k
A ~(-u) T In(-u); (m <n) ., (3.62)

Of course, in both the cases with n # m there are lower lying terms of the form
(3.61) or (3.62), and the sum of these terms must approach (3.60) asn ~~ m.
What is the physical interpretation of this result? Evidently, when n # m,
the amplitude # does not seem to know that it is supposed to represent the con-
volution of two sub-amplitudes, at 1e.ast as far as the leading term is concerned.
Ifn>m (n<m), the asymptotic behavior of A is the same as the asymptotic
behavior of A (K). Physically, the reason is that the faster the fall-off of the
sub-amplitude, the more the z-component of momentum wants to flow through
the other sub-amplitude. The momentum, therefore does not sample this sub-
amplitude, and the leading behavior of # does not reflect its behavior. As the
sub-amplitude falls off faster and faster it behaves more and more like an open

circuit and shunts the momentum through the other rung.
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We can understand this result from the following point of view. In the last
section, we showed that the major contribution to our integral in the {uj — «
limit comes for the region near a hyperbola xylul = const. Looking at the ex-
pression for I in (3.58), it is easy to see how the delicate balance in the flow of
momentum which produces a log by allowing y to sample both amplitudes is up-
set when m # n. Whenn > m (n <m), the integral prefers larger (smaller) values
of y, thus destroying the symmetry in x and y and shifting the dominant region of
integration away from the symmetry point of the hyperbola (x,y ~ lul -/ 2) to-
ward larger (smaller) values of y. (Remember, that because of the form of the

[u["l/z

integral, when y samples both sub-amplitudes it is small ~ , and not

— % ')

Although we do not gain extra log factors when n # m, we must include such
graphs in the calculation of the final Reggeized amplitude. Since, in a realistic
case we will continue to generate amplitudes, J{j, ad infinitum, with all pos-
sible combinations of kernels, the terms generated in a situation where n # m
will eventually Reggeize, and will contribute to a(t) and g(t) higher order terms
in the couplings associated with the kernels.

Fortified by this discussion, we now face the task of developing the formalism
necessary to handle problems with more than one kind of particle. The most con-
venient way to do this is to discuss in detail an example with two particles. Our
example will be of complexity sufficient to reveal all the salient physical features,
and the extension to the most general éase will be obvious,

Consider then, a world with two kinds of particles, 1 and 2. Since we limit
our discussion to s-channel elastic amplitudes, we need to consider a total of
four amplitudes, @B . The superscripts refer to the particles in the t-channel.

The first superscript refers to the type of particle coming our of the bottom of the
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amplitude, and the second superscript refers to the Iﬁarticles coming out of the
top. Thus, # 2113 the amplitude for the s-channel process 1+2 — 1+2, etc.
Notice that ,//{aﬁ is symmetric. For simplicity, we shall not discuss backward
scattering in this section, but our formalism could easily be generalized to in-
clude it.

The particular example we want to consider is defined by specifying the

Born terms which we also choose to be the kernels. They will be given by:

K% = 8% - Py + 0%y wlg) ™ (3. 63)

With the definition of the weight function as in (3.11), we have

By [n-1] By [m-1
Waﬁ = f_(i): & (0'2_“2) + Hz o] (0'2~[J.2) (3. 64)

22_ 12_ 21

One particular case of physical interest corresponds to the choice f““=h~“=h
=h11=0. The rest of the Born matrix elements are non-zero, and m>n, If
particle 1 is a k" and 2 is a p, this example corresponds in the parton interchange
theory to the case of k+~p coupled channels. The reason why we choose k+—p is
that all four s-channel aﬁplimdes are exotic, and we expect only (tu) graphs to
contribute, leading to purely real amplitudes. Of course, in the real world, we
must include other intermediate states, also, such as pions. This will have the
effect of introducing imaginary parts to the purely real amplitudes which we will
generate in present problem, and should help to build up a pomeron pole. This
will be discussed further in the next section.

Using the kernel given in (3.63), let us calculate the second order matrix
element, - # ;x'g . For a given set of external particles, we must include contribu-

tions when the t-channel intermediate state contains particles either of type 1 or



of type 2. Using our standard recursion relation ( 3,19a), we may therefore

write,
ap 2 2 1 [1 dyd’ do” [2 2 ]"1[ 2 2 ]'1
MU (WG NT,RY) = i; - AT -m_+ie XN -m_ +i€
1 a2m® =1 Jo (19 Y o
w2B(o2, t; N2, A% J{gﬁ(ﬁ, t; A% RY (3. 65)

Where m,y is the mass of the 'yth particle. Since we have two kinds of Born
terms, we have a total of four contributions coming from (3. 65), each one of
which, in general, contributes to each of the four amplitudes under discussion.
From the previous discussions of the section, and from (3.58), it is clear that

each of these four terms can be written

Z r{(-1)7 T(a+b)
Y 3
2(2m)°T'(a) T(b)

g2t g%t Ku, t; a,b, ) (3. 66)

with

(2]

Ku,t; a,b,7) = f drdydadg o(1x-y-a-p) x 137 [o"-arptosyu |+
0

p2 is as defined below (3.58), but with rn2 - mi. Furthermore, it is understood

that at the end of the calculation, one continues the external masses vz,
2
2, m_, and rz, (q+r)2 — mz. With the Born terms and kernel given by

p

(3.63), a and b can take on the values m or n, and g, = f and Bm = h.

v

We first wish to examine the term « [f(t)] 2 (a =b =n). Therefore, let us
now consider a problem with only one variety of Born term, and set n®b= o,
The u-dependence arising from .4 1 for such a problem has been discussed in
exhausting detail in the last section. We know that for large lul, # & (-0 Mon( -u).

In this limit we may therefore write the matrix elements to second order in the
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couplings as
I e CTE ) D S O OF T My Y SR CR 1)
Y

where H(t;7v) is the coefficient of f2( -u) - In(-u) with t-channel intermediate state
particles of mass my. H may be exactly calculated from (3.66) using Mellin
transform techniques or, may be evaluated using the formulae following (3.36).
In any case, it is useful to recall that (mod logs) H(t) ~ 7L for large Itl.

Now, can we make anything simple out of (3.67)? Before answering that
question, we should remember that whatever solution we finally reach for our
problem, it should incorporate tﬁe property of factorization of the Regge residues.
This factorization is to be contrasted with the lack of factorization in the Born
terms. There is no feason to suppose that just because, say f22=0, f12=0 also.
(In fact, the example we referred to earlier had f22=0, flz# 0.) Now, if we tried
to represent (3.67) with a single Regge pole, we would not be able to achieve the
factorization property, in the residue since ﬁaB (t) — faﬁ (t) for large Itl. It is
therefore necessary to introduce at least two trajectories which have a(t) — -n
as |t| — . If we write

o, (t)

a_(t)
A~ gy ()

+ P T, (3. 68)

we can expand

-n e(oH-n)!&n( -u) =

(- = () —w) (1 -+ (@+n)n( -u))

for « near -n, and identify terms in like powers of fn(-u) in (3. 67) and (3. 68).

Doing this we find

1% = g% + Py (3. 69)
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and

Y EOH1P0 = (o0 +m % + @+ 2P

where we now consider the scalar function H to be a diagonal matrix, and matrix
multiplication is implied on the left of the second equation. In addition to these

equations, we have the factorization conditions on each of the residues:

g 822 = Brw)’ (3.70)

which in our simple case of only two coupled channels can be written as

Det[g,(t)] = 0.

Expressions (3. 69) and (3.70) comprise a set of ten bilinear equations in the ten
unknowns, « i(t) and ﬁiﬁ (t). (Because of the symmetry requirements of the
matrices, however, there are really only eight independent equations and eight
unknowns.) Since the equations are symmetric under the interchange (+ = -),
these equations uniquely determine the unknowns up to the arbitrary assignment
of the (x) labels.

To solve these equations conveniently, one can rewrite the second of Egs.
(3.69) by subtracting (@ +n)g_ from both sides. Pulling the term (o +F n)p, to

the left side, and then taking the determinant of both sides we find
Det [fHf - (a,(t) +n)] = 0 (3.71)

where we have used the first of Egs. (3.69), as well as (3.70). Notice that
(3.71) holds for o _(t) as well as & _(t) because of the (+) symmetry of the problem
Hence, (3.71) is a second degree equation in the a's and determines the
eigen trajectories of our problem to this order in the couplings. The solutions
are easily found, and can be conveniently expressed in the following form:

a,(ty+n = % (Tr[fH] + [(Tr[fH])2~ 4Det[fH]] 1/ 2) . (3.72)
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Furthermore, from (3.69) we easily find

B(t) = = [a+(t) - oz_(t)]—l[fo —ﬂa;n)] (3.73)

and using (3.72) we have a sclution for the residues.
There are a couple of interesting aspects to this solution. First, notice

that since H ~ | t{ -1

. ai(t)-—' -n as It gets large. This, of course, is necessary
to reproduce the Born terms. Second, if by chance we are dealing with a situa-

tion where the Born term factorizes, that is, if

2 _ o -
£ qfpg ~ 15 =0=> Detft] = 0

then one of the trajectories decouples from the system. In the notation of (3.72)
and (3. 73) it is the (-) trajectory that decouples. Solving for a+(t) in this case

and using (3. 73), we find

B (Y = T_;][E{] [fo - fTr[fH]]

where we have used Det [AB] = Det[}%] Det[B] . Using the fact that H is a diagonal
matrix, we easily find that if Det[f] = 0, then all the elements of B_(t} = 0, and
so this trajectory decouples from the system. We see then that it is the simultan-
eous requirements of factorization in the Regge residues and nonfactorization in
the Born terms that forces us to have more than one trajectory.

In the present problem of two coupled particles, we have used the first two
terms in fn(-u) to determine the trajectories and residues of the two leading
trajectories to this order in the couplings. As we continue the iteration scheme
in this example it will not be necessary to introduce more trajectories with
o — -n. 1have explicitly verified that this is true in the lnz(—u) term. Of course,

when we include terms which are of higher order in the couplings, they change
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the expressions for + and g_ just as they did in the single channel case discussed
in the last section.

Suppose now that we want to treat a coupled channel problem with three 'parf
ticles and one type of Born term. In that case, we would use a 3 X 3 matrix to
describe the scattering amplitudes, and it would, in general, be necessary to
introduce three trajectories. The fotal number of_ unknowns in that case would
be 30: three residue functions each of which is 2 3 X 3 matrix, and 3 scalar
trajectories. However, since we require each residue to be a symmetric matrix,
there are really only 21 unknowns. In addition, each residue function has three
factorization conditions associated with it, which further reduces the number of
unknowns to 12, Now, we also require the amplitudes .4 ?ﬁ to be symmetric
matrices. That means that although each amplitude J{j represents nine equa-
tions, only six of them are independent. Therefore, even in the case of three
coupled particles all the required trajectories once again appear as distinct
entities by the first iteration. This is easily seen to be a general feature of our
system and applies to cases with any number of particles (including one). Of
course, it may happen that some trajectories accidentally coincide even after the
first iteration. In that case, higher order terms are required to separate them,
but this is a situation familiar from degenerate perturbation theory in nonrelativ-
istic quantum mechanics. In fact, this entire discussion is quite reminiscent of
many problems encountered there, for instance the Zeeman splitting of energy
levels in a weak magnetic field.

An amusing way to see why two Regge trajectories are natural in a two
particle coupled channel problem is to congider the following (classical) problem.
Suppose I have a chain with N+1 links. The links can be of two types, A and B.

The probability that at a given junction the two adjacent links will be of different
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types is P. If the first link in the chain is of type A, what is the probability that
the last link will also be of type A? We want to know, therefore, the probability
that the links will change types an even number of times. The probability that
they will change { times regardless of order is

N! N-¢
T (ND)! Pla-pNt.

To get our answer, we want to sum over even values of £ from zero to N. This
is equivalent to performing the following sum over all £:

N

1 N. N-¢ 4 N-{
5 ﬂzzo m,‘ [PQ(I—P) + (-P)(1-P) ]
= % [l + (1-2P)N]

Now, suppose the probability of having a chain with N+2 links is proportional to

N, N
g g (W

(_u)n N!

as in our case. (The Born term has two links and one junction.) Then, the total
probability of having a link of type A at the far end of the chain if there is such a
link at the near end, regardless of the number of links is

N, N
1 N
_s_ g - g fll:}!(-u) : [1+(1—2P) +1]

)g(1-2P)—n

- % g(-u)f P+ % g(1-2P)(-u (3.74)

and we see the emergence of two terms which look like Regge trajectories.
Notice that the second trajectory decouples if P = —;— , which in this example is
1

the factorization condition for the Born term. Furthermore, if P = 30 the
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trajectory associated with the decoupled residue is independent of g and retains
its asymptotic value of -n. This is exactly what happens in the two particle
case we discussed earlier: from (3.72) we see that @ (t) = -n if Det f = 0.

This simple example, then, clearly illustrates the basic structure of the coupled
channel equations.

Let us now turn to the more general problem in which the Born terms do
not all have the same power fall-off in |u| . There are several new features to
consider here. First, we will want to see how the trajectories whose asymp-
totic limit is -n contribute to processes whose Born term oc( -u) ~m' It is es-~
pecially important to consider such contributions in the deep region when
m >n. Second, we must examine the nature of the cross terms in the iteration
scheme and see how they modify the deep scattering behavior of the amplitudes.

A problem of sufficient complexity to illustrate these points is the example
of the coupled k+—p system described above. Let us consider, then, the contri-
butions of the first iteration to the p-p elastic amplitude. With the choice of
Born elements that are zero given below (3.64), we find that no cross terms
o« fh contribute to # 22 in this order. - Adding the two diagonal terms which
contribute to 4 22 to the p-p Born term, we find that as far as its dependenée

1

on t and u are concerned, 44 22 has the following asymptotic form to this order:

29 22 12, 12
422 _h ® [1 . h(_tg)tz m(-u)} + [f__i_tﬂ;ml(]"_u) : (3.75)
(-u) {-t) (~w
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where we have used the fact that H(t) — (—t)-1 for large [t]. (We have not kept

track of the numerical factors in H(t) in (3.75), but they are of no consequence

for this discussion.) In the first term we see the beginning of the Regge trajec-

tory which goes to -m at large |t]. Notice that there is only one trajectory here

since in the present example there is only one non-zero element in the matrix h.
To understand the second term, we refer to (3.73). Remembering that

f22=0, the second term in the numerator is seen to be zero in the expression for

ﬁiz, and we have (asymptotically)

B (—t)'1 [flz(t)]2 .

Therefore, the second term on the right of (3.75) may be expressed asympftotically

620 - - 820 = (o, - a_]

as,

29 o o

2 v P = w6 L et - 1 - (@) ()|

2] 2w
(-ty(-w)"

as advertised in (3.75). The terms proportional to !Zno(—u) in the expansions of
the two trajectories which approach -n therefore cancel in the amplitude M 22.
This cancellation can be traced to the vanishing of the second term in the numer-
ator of (3.73) for [323, and is therefore due to the fact that f22 = (.

Another interesting aspect of {3.75) is that it indicates the existence of a
consistency condition on our theory. Since the Born terms are, by definition,
those terms which dominate in the deep region, all the terms generated in .# 1]%.2’
must be smaller than # (2)2 in this region. In the last section we used this

criterion to define the onset of the deep region. However, one's intuition would

certainly consider large fixed angles and lul — « as sufficient criteria for at

- 94 -



least part of the deep region. Suppose that for large Itl flz(t) ~ (nt)-A,

hzz(t) ~(—t)_B. Then, for the Born term to dominate (3.75) in this region we

require
B+m< 2A+n+ 1. (3.76)

Stated somewhat more clearly, the situation is this: suppose you give me a set
of amplitudes which you claim describe large angle, high energy scattering.

If your theory allows me to iterate these amplitudes in the t-channel and if your
large angle scattering amplitudes do not satisfy a condition like (3.76), then
your theory is probably inconsistent. Of course, this reasoning does not apply
to theories that do not allow t-channel iterations, for example, a field theory in
which deep scattering is described by an infinite t-channel sum of some ir-
reducible kernel. In that case, t-channel iterations of the deep amplitude would
introduce double counting of graphs and would not be allowed. In the parton
interchange theory, a two channel system involving particles whose electro-
magnetic form factors behave differently at large (—q2) always gives Born
matrices which have a structure like that described below (3. 64) for the k+-p
system. If the form factors of the two particles fall off asymptotically as

(_qZ) C and (—q2) D with ¢ » D, the consistancy condition (3.76) becomes
D<C<2D+1 (3.77)

If the k" form factor is a monopole and the nucleon form factor a dipole, this
condition is satisfied. However, (3.77) could easily be violated if one attempted
to describe the deep scattering of particles which have D <.5 and/or C > 2.5;
then somebody would be in trouble. The most reasonable conclusion in that case
is simply that consitutent interchange does not describe the deep scattering of

such systems., Inequalities similar to (3.76) can also be extracted from higher
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order matrix elements, but in general they will be less tight because of the
accumulation of factors of (—t)"1 from the H matrix.

Let us now briefly examine how the cross terms affect the amplitudes in
the coupled channel case. In the present example, there will be cross terms
contributing in second order to the transition amplitude, 12. On the basis
of the previous discussions in this section, we easily find that to second order

in the couplings the transition amplitude has terms of the form (mod constant

factors, as in (3.75)}

12 £12 f12 fn(-u) ‘f12h22 f121122
R E Sl + = + —  (3.78)
(-u) (-t)(-u) (-t)(-u)
All the terms generated by .4 12 » except the last, are obviously smaller than

the Born term in the fixed angle region. For this to be true also for the lasgt

term, we require

n<m+B+1 (3.79)

with B defined above (3.76). It is noteworthy that this is automatically satisfied
in the parton interchange theory, since in ofder to get Born matrices with the
appropriate zero elements it is necessary that m > n. Finally, we note that the
second term in (3.78) is (-u) “® {imes a second order contribution to the residues
which couple the trajectories that asymptotically approach (-n) to the transition
amplitude. Similarly, the last term displays the lowest order contribution to the
residues which couples the trajectory that goes to (-m) as [t| gets large with the
transition amplitude, .4 12.

We have tried in this section to illustrate some of the new features which

arise in the Reggeization of coupled channel problems. In general, it is clear
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that in a problem with N particles, the number of trajectories generated is NM
where M is the number of distinct types of Born terms. Of course, some of
these trajectories may decouple from the system if some of the Born terms
satisfy factorization. In what we have done so far, we have allowed Born ampli-
tudes and kernels which have only right hand discontinuities in u. These generate
purely real s-channel amplitudes. In the next section, we want to generalize
these considerations to include sub—amplituées with left hand discontinuities in

u gso that we can build up the imaginary parts of the scattering amplitudes re-

quired by s-channel unitarity as well as high energy phenomenology.

D. Signature, Duality Diagrams, and the Pomeron

All the results which wé have derived so far in this chapter have assumed
that the Born term and kernel (and therefore the amplitudes built up by t-channel
iteration) have had singularities in u only for positive u. In general, of course,
this is an unrealistic assumption when dealing with high energy scattering pro-
cesses. In this section, we wish to remedy this situation, and enlarge our for-
malism to include singularities for u <0 (s > 0). In doing so, we shall develop
all the tools necessary in order to correctly include signature factors in Regge
trajectories. We will also gain some ingight into the natu.re of exchange de-
generacy and the Pomeron pole, and we will discuss a possible relationship
between the quarks used in the parton interchange 1:}1eory21 (current quarks) and
the quarks used in the Harari-Rosner duality diagrams, 30 A specific, realistic
example of coupled 2 — 2 hadron-hadron amplitu.des using the ideas developed
in this section will be discussed in detail elsewhere. >

Before deriving the results we need, it is useful to review the basic proper-
21

ties of duality diagram530 as well as some aspects of the interchange theory.

To begin, let us turn to Fig. (22), where we exhibit some duality diagrams for
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FIG. 22--Seme examples of the Harari-Rosner duality diagrams.
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meson-meson, meson-baryon and baryon-antibaryon scattering. The external
mesons are composed of quark-antiquark, and the external baryons (antibaryons)
are composed of 3 quarks (antiquarks). These combinations are termed "non-
exotic". This implies that the non-exotic mesons must belong to the 1 or 8 re-
presentations of SU(3), while the baryons must belong to the 1, 8 or 10 repre-
sentations. Any other combinations of quarks and antiquarks are termed "exotic".
Notice that this means, for example, that a particle constructed from qqqq is
exotic even though it belongs, say, to an SU(3) octet. The same rules of exoti-
city apply to the intermediate states in the duality diagrams. Therefore, for
instance, both the s and t channels of Fig. (22b) are non-exotic, but only the t-
channel of Fig. (22¢) is non-exotic.

The duality diagrams are generally interpreted in the spirit of two compo-
nent duality as applying only fo the non-pomeron part. of the amplitude. A dia-
gram which is planar and non-exotic in two channels is taken as a graphical re-
presentation of the Regge-resonance duality between those two channels. More
specifically, the rules for drawing the Harari-Rosner duality diagrams are:

(i) Quarks do not change their identity in the graph and are represented by
continuous lines.

(ii) External baryons{gqq) are represented by three lines running in the
same direction, and external mesons (qa) are represented by two lines running
in opposite directions.

(iii) Both ends of a single line cannot belong to the same external particle.

A "legal' duality diagram also obeys the rule

(iv) Any B = 1 intermediate state (B in Baryon number) can be cut by
slicing through only three lines, and any B = 0 intermediate state can be cut by

slicing through two lines.
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There seems to be no obvious problem with these rules for M-M and M-B
scattering, since, in general, we can draw legal, planar diagrams for non-exotic
reactions as in Figs. (22a and b). For B-B scattering, we do not expect to be
able to draw legal diagrams with non-exotic intermediate states since B = 2
is exotic. We run into trouble, however, with B - B scattering, Fig (22c). Here,
the s and t channels may not have exotic quantum numbers, but there seems to be
no way to draw a legal diagram for this process which has non-exotic quantum
numbers in both channels. This would appear to indicate the existence of im-
portant exotic contributions to the imaginary part of the scattering amplitude,
contrary to the first order assumption of absencé of exotics and EXD (exchange
degeneracy). We shall not directly deal with the B-B problem here, but the
interested reader can refer to the literature for extensive discussions.32

The duality property of the diagrams which are planar and non-exotic in two
channels is, like most duality arguments, applicable only to the imaginary part
of the amplitude. In Fig. (22d), we have drawn a diagram which is planar and
non-exotic in the u and t channels. This represents the duality between the u-
channel resonances and t-channel exchange contributions to the imaginary part
- of the amplitude at large u and small |t!, but according to our rules is not a
legal diagram in the s-t plane. This means that it does not represent any con-
tributions to the imaginary part of the amplitude at large s and small {tl. We
therefore expect this diagram to be real at large s and small !tl. Furthermore,
it is a useful observation that s-t and u-t diagrams are the most important dia-
grams for forward elastic scattering, while u-t and s-u diagrams are most im-
portant for backward elastic scattering.

The correlation of the inability to draw a legal, planar duality diagram with

a vanishing non-diffractive imaginary part leads very simply to many predictions.
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For instance, k+n — kop andk p — po A are predicted to be purely real at
small |tl. k+p - k+p, on the other hand has an imaginary part near t = 0, but
this is supposed to come from Pomeron exchange. The imaginary parts of the
ordinary Regge exchanges are predicted to cancel in this reaction. Many more
similar prediction may be found in Refs. 30.

The reader has undoubtedly noticed that we have been qualitatively discuss-
ing duality diagrams, but have not described any specific calculational scheme
associated with them. The interpretation of duality diagrams is not unambig-
uous, and so it is not clear how to calculate them. This ambiguity is illustrated
by the fact that the two authors who independently introduced duality diagrams
take different approaches to them.30 Harari does not present any rules of cal-
culation for the diagrams, while Rosner does. In Rosner's scheme, one adepts
a Regge discription for the amplitude with factorizable residues. The couplings
are then calculated by taking SU(3) traces, and duality conditions become con-
straints on'trajectories and couplings. While this scheme involves more as-
sumptions than the approach taken by Harari, it should yield a wider class of
predictions. However, for our purposes, it is appropriate to adopt Harari's
philosophy, and consider duality diagrams as a simple visual mnemonic for
keeping track of quarks.

Before leaving this topic, we want to emphasize what is, for us, the most
important aspect of duality diagrams. If you can't draw a planar (st) duality
diagram for a 2 — 2 hadronic amplitude, the normal Regge poles, excluding the
Pomeron, which contribute to high energy, small |t| scattering are predicted to
be exchange degenerate.

Now let us briefly review the parton interchange theory of deep hadron-

hadron scattering. 21 In this theory, deep scattering is supposed to take place
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by the interchange of constituents' of the scattering hadfons. No direct scatter-
ing between constituents is required. Only the "simplest” part of the hadrons'
wave functions are supposed to be important in the deep region, and this part is
taken to be the amplitude for finding the smallest possible number of constituents
in the hadron. These constituents are assumed to carry quark quantum numbers.
More specifically, the interchange picture assumes a wave function for a hadron
to be a quark and a '"core", the core representing the collective effects of the
other constituents. A typical interchange diagram is shown in Fig. (15). The
heavy lines are hadrons, the jagged lines are cores, and the light internal lines
are quarks. The blobs at the vertices represent the wave function for finding

the hadron in the state represented by the internal lines. This diagram happens
to be a (tu) graph, since it is planar in the t and u channels. To get the complete
amplitude, one must add together all allowed interchange diagrams. There are
only a few such diagrams, however, since it is assumed that the amplitude for

a hadron to be a quark and a core in this kinematic region is non-negligible only
if the quark happens to be of a {ype given by the naive quark model. (Actually,
these are current, rather than constituent quarks, but the statement about quark
type is still correct.)

The similarity between Fig. (15) and Fig. (22d) is clear. The exchanged
objects in the two figures are not a priori the same, but the topologies of the
graphs are the same. This is a general feature of the interchange theory - the
topologies of the contributing interchange graphs for deep scattering are the
same as the topologies of the duality diagrams which one can draw for the given
reaction (according to the rules given on p. 99), and which are supposed to
describe the non-diffractive part of the scattering in the Regge region. After
we develop the tools we need, we will return to the question of the relationship

between these two sets of diagrams.
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To develop these tools, we turn now to the problem of generalizing our
recursion relations, (3.19a) or (3.19b), fo cases where the kernel or the Born
term has discontinuities in u for u <0 — or more exactly, where there are singu-
larities in s for s > 0. In the context of the interchange theory, (st) graphs like
Fig. (23) have singularities in s for s > 0, but no singularities in u for u > 0,
while (su) graphs as shown in Fig. (24) have singularities both for s > 0 and u > 0.
Of course, any theory of deep scattering may have terms with these singularities,
so in general, it is important to consider this problem. Naturally, our results
are not limited to the parton-interchange model, but are as general as our
original recursion relations (3.19a) and (3.19b) are.

Let us first consider convoluting an amplitude, 'ﬂj ,which has only u-channel
discontinuities (u > 0) with a kernel which has only s-channel singularities.

Using the frame and parameterization of (3.14) and the labelings shown in Fig.
(11), we can introduce a dispersion relation for K in the variable s'=(p+£+q)2,

which is the s of the subamplitude, K. We can write

2., .2 2
K(s', t; N2, &) =fdaz W(a ; Nz’A) i (2.80)
(pti+q) -0 +i€

Of course, the comments we made in section B about the path of integra-
tion in the complex a-z—plane and the Az -dependence of K apply here also.

Using (3. 15) and (3.80) in (3.10), we have

2 .2
o dyd“e de -1 -1
_ 1 Y 2.21(2 .2 2
M = el d%dp [ﬁ -M+ie (4+ _MP+
. q +1i€
J+1 2(2704 f_oo Ziyl )

-1

-1
[(ﬂ—r)z—pzﬂc—.‘] [(p+!l+q)2 —02+i€:| Wj(pz) W( crz) (3.81)
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FIG. 23-—(st) parton-interchange graph.
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FIG. 24--(su) parton-interchange graph.
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where we have used the trangformation below (3. 15)
important dependences in the arguments of ./f{J +1and the W's. As before, we now
wish to perform the dﬂz integration. Using (3.14), we find after some algebra
that if 1 + %r > 0, all four propagators have poles in the lower half Ezwplane and
so we can close the d£2 contour in the upper-half plane and we get zero. If,
however, 1+ Slf <Q = -1 <y <0, then the propagator from the dispersion rela-

tion (3.80) has its pole in the upper-haif Ez—pla.ne. Closing the contour around

this pole (3. 81) becomes,

. j'l dxda‘zdpzdzﬂl . 1p -1
M = [V - 81 +q ,x)] [v' - S, +xq ,x]
#1 pemd Jo 10 179 L X,

[-s'£+ -(1-9r ]_lwzwz 3.82
S-S +xq, - (191, ] W) W) (3.82)

where we have set X = -y. 8 is defined in (3.17), and S' is defined below (3. 18).
Now, since dzﬁ L is integrated over the entire plane, we can shift EJ._’ ) L xq L
Doing this and redefining x = y, and we can rewrite (3.82) as

[ 4 ] dyd ﬂ [ 9 ]"l
(stN R)“ do p vt -8 ,y)
i 2(2m)° y(1m L

[\ s, ~ama,y] [s-56, -0 rl,y]—l W, ;N

% 2BW e’ 6 4%, )
(3.83)
Comparing (3.83) with (3.18), we see that they are the same with the substitutions
u-— s, v2 — '2. In terms of momenta this is just the well-known substitution
formula for s-u crossing: p — -(p+q). Therefore uf{] in (3.83) is gotten from

A in (3. 18) by s - u crossing.

i+l
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It is easy to understand this result by considering an example in which the
sub-amplitudes are simple poles in the appropriate variable. In Fig. (25a), we
show the kernel with a simple pole at positive u, while (25b) shows the kernel
with a pole for positive s. The arrows on the lines indicate which particles are
entering and which are leaving the graph. We form an amplitude composed of
two u-channel poles as in Fig. (26a) by simply joining two terms of type (25a) to
each other. Similarly in Fig. (26b) we illustrate the result of combining an
amplitude like (25b) with an amplitude like (25a). The topology is, of course,
dictated by the fact that we must join lines together so that the quantum number
and momentum flow is continuous. The equality in Fig. (26b) follows by simply
redrawing the graph and switching the positions of the top two vertices. We
now clearly see that (26b) is related to {(26a) by s < u crossing, and so we can
understand the result (3.83).

For our purposes it is convenient to categorize amplitudes according to
whether they have discontinuities for positive u or positive s. Such amplitudes
will be referred to as u amplitudes and s amplitudes, respectively. Amplitudes
possessing singularities both for positive s and positive u will be called su
amplitudes. (In another language, these are the graphs with non-zero Mandelstam
third double spectral functions.) For example, the (ut) parton interchange graph
of Fig. (15) is a u amplitude, while Fig. (23) is an s amplitude and Fig. (24) an
su amplitude.

On the basis of the discussion in section B, and (3.83), we can construct

the following rules which express the topology of amplitudes obtained by
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FI1G. 25--Simple amplitudes with (a) u-channel and (b) s—channel
singularities (in this case poles).
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(b) 2319A26

FIG. 26--Feynman diagrams resulting from the convolution of
subamplitudes as in Fig. 25; (a) is the result of uxXu
and (b) is the result of s X u.
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convoluting various sub-amplitudes in our iteration scheme:

uxu=u
sXu=sg
uxs=s
sXsg=1u {3.84)

The first equation in (3.84) follows from the discussion of section B, and the
second is the result expressed in (3.83). The last two can be proved by deriving
appropriate fermulae similar to (3.83), or the reader may simply convince him-
self of their correctness by drawing diagrams as in Fig. (26).

We now must discuss how to handle sub-amplitudes with non-zero third
double speciral functions — the su amplitudes. We will briefly describe the
method for coping with such graphs here. Suppose, then, that we wish to use
an su amplitude for the lower blob in, say, Fig. (11). An example of such an in-
sertion is the parton-interchange (su) diagram of Fig. (24). Such a graph has
singularities for both positive s and positive u. It is convenient to introduce

a double dispersion relation for this kind of amplitude:

do?dar? wio?, 1%

K(s,u) = .
[s--o'2 + ie] [u- 7'2 + ie]

(3.85)

If, for instance,

K = (@2 -u)Ppl-gy™

then
5[n -1 wi-r3 5[111—1] 2%

W= @1 (m-1)? '
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Inserting this expression in our convolution formula, for example, (3.10) we

have
% d* 2 22,2 ¢ 2 .2 2 2 771
1= [ do™dr [ﬂ -M +ie] [(£+q) -M +iEJ [(p+ﬂ+q} - +i€]
(27)
2 2 o2 2
[o-07- Prie] Wt (3.86)

where the u and s of the kernel are u' = (p—li.)2 and s' = (p+!l+q)2. On the basis of
the discussions in this section and section B, we note the following: when we

do the af? integration (after performing the transformation following (3. 15)), we
find that there are two contributions to 1//{3 +1
[(p+!2+q)2 - 0_2 + ie]—l is the only singularity in the upper half ﬁz—plane for

The pole from the propagator

-1 <y <0, while for 0 <y <1, the pole from the propagator [(p-ﬁ)z— 7'2+ ie] -1

is the only one in the upper-half plane. Hence, after doing the dﬂ2 integral there
1 The first, coming from the
region -1<y< 0 bhas the same bopologica} character as if we had used only an

are two pieces that add together to make up ./{{j N

s amplitude for the kernel, while the second (0 <y < 1) behaves as if the kernel
were a u amplitude. Therefore, for the purposes of our convolution scheme,

the su amplitude can be considered to be the sum of an s plus a u amplitude, or

symbolically,

suxu=gXut+tuxXu=sg+nu
suXs=gXsg+uxXg=u+s

suXsu=sgXg+sXutuXs+uxu = sg+u. (3.87)

Naturally, the coefficients of the various contributions depend on the specific

case, but their topological character is represented in (3.87).
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In order to gain some insight into the significance of the topology of the
amplitudes (as expressed in the rules (3.84) and (3.87), let us compare two
simple examples of ladder graphs. In both examples, we use a perturbation
approximation, keeping the minimum possible factors of the coupling constant,
g to each order in fn s (or fnu). First, suppose that the kernel and Born term
are simple u-channel poles. For small g, the jth iteration of this pole has a

leading contribution

o~ B B

i i

Summing one n, we have

=]

M= Z M ~g (-w)B L,
o !

We have neglected the t-dependence here since it is not important for this
argument.

This is a special case of (3.40) for simple ladders (neglecting t-dependence),
and will be recognized, as we have emphasized before, as a sum of exchange

degenerate trajectories:

swE ! = & [ewf s (B Y & [(wE - (9]
(3.88)
This strong exchange degeneracy is, of course, due to the fact that the convolu-
tion of two u amplitudes always gives a u amplitude (see (3.84)).
Now consider a case in which we again iterate simple poles, but this time

the poles are s-channel poles; i.e., the Born term and kernel is



Following the previous discussion of this section, working in a perturbation

approximation, and neglecting t-dependences, we find that the leading contribu-

tion to the jth iteration is

Iy
J{j ~
£ gelty  odd
(w37 o

This behavior is also given by the equations (3.84). We can sum . i over j

to get the full amplitude as follows:

M = =y, A Enes Y g gl
=0 J j,even (-8) I j,odd (-u) 1

I

2(-8)

__g_[zgi@_gzml@ﬂ_g]
j i ] 1.
Jondi S PEN P

= E{of e a e (wf - (T

- & [(__u)g—1+(_s)g-1] - E [(- )'g'l-(—s)'g'l} (3.89)

This amplitude is therefore given by a sum of two non-exchange degenerate

Regge poles, one of positive signature and one of negative signature. In the

simple case we have been considering, the two trajectories are displaced from

each other by an amount 2g (att = 0). Of course, this is only because we have

ignored many of the features which are important in a realistic case, and the
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exact dependence of the trajectories on t is much more complicated, Nonethe-
less, the basic feature of (3.89), namely, the lack of exchange degeneracy, will
clearly be unaffected by these complications.

What is the significance of this in view of the parton interchange theory?

In this theory, the (tu) graphs (Fig. (15)) have the topology associated with u
amplitudes while the (st) graphs (Fig. (23)) are like s amplitudes. In a world
with only one kind of sub-amplitude, the character of the full amplitude, .# , is
the same as the character of the Born term. A (tu) Born term gives rise to a
pair of exchange degenerate Regge trajectories, while an (st) Born term gene-
rates non-exchange degenerate poles. Duality diagrams, on the other hand, tell
us whether in the Regge region the non-diffractive Regge poles are exchange de-
generate, or not. With a given pair of initial state particles, the topology of the
Born term and duality diagram is the same, and so we have a simple one-to-one
correspondence between the predictions of duality diagrams, and the predictions
of our iteration scheme.

While it is interesting to see the close relationship between the topology of
the Born term and the duality diagram in these simple, single channel cases,
the real hadronic world is significantly more complicated. The most glaring
shortcoming of the single channel case is that we evidently do not generate any-
thing that corresponds to a Pomeron pole since a single channel freatment of,
for example, proton-proton elastic scattering gives a purely real amplitude,
even at t = 0. The way to cure this disease is to consider the more realistic
coupled channel case.

Let us look for a moment at p-p elastic scattering. In the first iterated
amplitude, the intermediate t-channel state may consist of a p;E pair, hut it

may also be a 7-7 pair or a k-k pair, etc. The p-p state will only contribute a
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real piece to the total amplitude, but many of the other intermediate states will

generate imaginary parts. The way in which these different channels mix to-
gether to break the exact exchange degeneracy and to generate other poles is
guite complicated, but we can gain some insight into the general nature of the
process by the following considerations: as we approach the Regge region (say,
fixed t, lul — =), our formulae show that the higher order iterations become
more and more important, In the coupled channel case, this means that it is
more and more likely that the original hadrons coming in at the bottom of the
graph will forget what they are, since they have more chances of changing their
identity. From the probability argument in section C, (above (3.74)), we see
that for very large N, the probability that after N rungs ‘Ehe first link is of the
same type as the last link — % , regardless of the value of P. This indicates
that in the kinematic region where large numbers of iterations are important
(the Regge region), all the hadronic amplitudes will behave roughly the same.
Qualitatively, this is what is expected from diffractive scattering. As lu] — =,
the graphs with more rungs become more important and the hadrons tend to
forget what they were. Similarly, when ]ul — «, the Pomeron pole becomes
more important relative to the non-diffractive trajectories. Therefore, we
propose that the extent to which the Pomeron dominates the bulk of hadronic high
energy scattering, is a rough measure of how much the original hadrons forgot
what they were on their way up the t-channel ladder.

A few remarks are certainly in order about this discussion. First, the
relationship we have outlined between parton-interchange diagrams and duality
diagrams may be interpreted as a relationship between current quarks and
duality diagram quarks. The duality diagram quarks really contain contributions

not only from the current quarks appearing in the interchange Born terms, but
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also contain contributions from the quarks which cbmprise the numerous t-
channel intermedijate states that contribute to the entire amplitude in the Regge
region. Second, we cannot (at this point, anyhow) claim to have explained many
of the interesting properties of the Pomeron, for instance the nature of its tra-
jectory near t = 0. This is because a detailed determination of trajectories at
small It is, from this point of view extremely complicated. Third, even if we
could calculate the Pomeron, that would not be the whole story, since for such

a high lying pole (@(0) = 1) j-plane cuts arising from the iteration of the pole in
the s-channel may be important and are presumably not contained in the set of
graphs which we calculate. Finally, for a compietely consistent interpretation,
we must also examine backward scattering, and show that the intermediate states
are such that the leading trajectory is significantly different from the leading
trajectory in the forward direction — in particular, that it is not the Pomeron .33
Work on these points and speculations is in progress, and will be reported

elsewhere. 31
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CHAPTER IV
SUMMARY AND CONCLUSIONS

In this work, we have examined some aspects of the deep hadron-hadron
scattering region. To conclude, we briefly list the major results which have
been obtained:

1. A simple and natural extension of the ideas of the Feynman parton
model result in an asymptotic formula for the average multiplicities in inclusive
or semi-inclusive hadron-hadron scattering experiments in which at least one
particle is detected with a large transverse momentum. Furthermore, we have
shown that it is possible to relate these multiplicities to the multiplicities ob-
served in other high energy reactions, specifically e'e” annihilation, deep in-
elastic lepto-production, and ordinary (not associated with large transverse
momenta) hadron-hadron collisions.

2. An integral equation for hadron-hadron scattering amplitudes is derived.
The kernel for the equation is taken to be a (2-particle irreducible) deep scatter-
ing amplitude for a 2 — 2 hadron-hadron scattering process. The integral equa-
tion is then used to show how the deep scattering region is connected to the Regge
region and how Regge poles are built up by t-channel iteration of the kernel,

3. A number of simple cases are analyzed with the help of a Mellin trans-
form technique. A few examples of possible kernels for the integral equation
are discussed. They help to show more clearly how the deep and Regge regions
are connected, and what the important s-channel and t-channel intermediate
states are in the two domains. The connection of our approach with Feynman's
notions about wee partons is also elucidated.

4. Our equation is generalized to allow us to discuss coupled channel scat-

tering problems, and a two-channel problem is described in detail. The Regge
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trajectories generated by the t-channel iteration scheme turn out to be the eigen-
vaiues of a matrix equation.

5. The integral equation is further generalized to include the effects of
signature, since all the previous discussions were presented for amplitudes
which are purely real. Simple rules are derived which express the phase of
the amplitude obtained by tying two sub-amplitudes together in our iteration
scheme.

6. We apply our Reggeization scheme to the parton-interchange model of
deep scattering, and find an interesting correlation between parton-interchange
diagrams and the Harari-Rosner duality diagrams. This correlation leads us
to some interesting speculations on the nature and dynamical origin of the
Pomeron pole.

Aside from this summary, the only appropriate comment to make here
about deep hadron-hadron scattering is that although this kinematic domain has
not yet been extensively studied, early indications are that such studies will give
us a much deeper understanding of the nature of hadronic interactions than we

have now.
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