BERALES £

High Power Laser and Particle Beams

Mot R LR BRI B LA A A AR R Y L
WK SRE H4gER
Comparison of different improvements to mainstream model of nonlinear Compton scattering

Zhang Bo, Zhang Zhimeng, Zhou Weimin

FIHARSLC:

I, SRR, R AR LS. XoF AR L BRI AL S LA B ) AR L A F AR SRIBOL SR T, 2023, 35: 012007. doi:
10.11884/HPLPB202335.220204

Zhang Bo, Zhang Zhimeng, Zhou Weimin. Comparison of different improvements to mainstream model of nonlinear Compton

scattering[J]. High Power Laser and Particle Beams, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204

TELR I View online: https://doi.org/10.11884/HPLPB202335.220204

FETT ARG HoA S EE

Articles you may be interested in

R 1 A P A SR I A
Background noise in Compton radiography diagnostic

RO RIT R, 2017, 29: 112001 hitps://doi.org/10.11884/HPLPB201729.170257
AT HLPHHIRT 0 AR 2 1 s A R

Nonlinear enhancement and saturation of stimulated Brillouin scattering

SO SR TR, 2020, 32: 092009-1-092009-7  hitps://doi.org/10.11884/HPLPB202032.200122
HOCIRAE IR S B OGO Tk S A= [l Je B2

Beam coherence and control of laser fusion driver: Retrospect and prospect

RO SRR, 2020, 32: 121007-1-121007-11  https:/doi.org/10.11884/HPLPB202032.200203
SRS U AL RE I = AR LM,

Three—waves nonlinear effect of radio wave propagation in plasma

SRIOG SRR, 2017, 29: 053201  hitps://doi.org/10.11884/HPLPB201729.170011
AL AT AL T 1R R AR S Bk

A harmonic coefficient algorithm for nonlinear—load harmonic conduction with experimental verification

FREOESRIT R, 2019, 31: 040005  hitps:/doi.org/10.11884/HPLPB201931.180361
M 25 A TP R OGS A AL R

Approximate analytical expression for intensity of hot image of intensity laser beam in media with gain saturation region

SR IOE SR TR, 2021, 33: 111015-1-111015-7  https://doi.org/10.11884/HPLPB202133.210156



5535 %55 10 o OOt 5 kK OF K Vol. 35, No. I

20234F 1 H HIGH POWER LASER AND PARTICLE BEAMS Jan., 2023

w;

SR BOL I A BB R TR B 15

S 4E £ o B A LR B M AR R B L

KO, RER, RA4K
CHp [ T RE Y BRATF 52 Bt WO R AR R 55 o0 263 F R B TR 5 S50 22, U )1 4 FH 621900)

BOE: AR RE BIECE SOA BRI B EEOC S WM EA NP EetY R~ B
R 2 BORR SR W TR AL T — T 2 U A Al 2 e L T A PR B, 32 B M A S A B R A X ) A AR
A AR ERAM, IFZAM T S 5N REOOE TS Tk, AT TR R 2 £ A )
P, B Y A e 3 A P R A A X X A T U IR B AR L T LR TE R o LB A R R
IS 3 AL Ay BEASE R BE AT A LA i RVE IR, A T BTG IS L, 0B TR AT A S A T T 0] G AN

17T M Had it .
KR AR RS WU R R AT RO TR EEsh s M TR E; B i
FESES: TN241 X iR EE: A doi: 10.11884/HPLPB202335.220204

Comparison of different improvements to mainstream model of
nonlinear Compton scattering

Zhang Bo,  Zhang Zhimeng, = Zhou Weimin
(Laser Fusion Research Center, CAEP, Mianyang 621900, China)

Abstract: Nonlinear Compton scattering is one of the dominant processes in future ultra-short ultra-intense
laser-matter interactions. Today, most related researches are based on the mainstream model of nonlinear Compton
scattering, which assumes short radiation formation interval, ignores effects of involved laser photon energy and is not
spin-resolved. To depict nonlinear Compton scattering more precisely in wider parameter space, improved theories
beyond these assumptions have been proposed in recent years. In this paper, we reviewe the major recent
improvements, analyze their applicability, discusse their basic characteristics and physical effects on nonlinear
Compton scatterings.

Key words:  nonlinear Compton scattering, polarization, energy and momentum of coherent laser photons,

coherence interval, quantum acceleration
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Fig.2 Effects of involved laser photons in nonlinear Compton scattering on the emission angle of gamma photon
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Fig. 4 Linear polarization rate of gamma photons emitted through NCS of linearly polarized laser with un-polarized electrons
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