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Abstract. The phase point operator ∆(q, p) is the quantum mechanical counterpart of the
classical phase point (q, p). The discrete form of ∆(q, p) was formulated for an odd number of
lattice points by Cohendet et al. and for an even number of lattice points by Leonhardt. Both
versions have symplectic covariance, which is of fundamental importance in quantum mechanics.
However, an explicit form of the projective unitary representation of the symplectic group that
appears in the covariance relation is not yet known. We show in this paper the existence and
uniqueness of the representation, and describe a method to construct it using the Euclidean
algorithm.

1. Introduction
The Wigner function was introduced by Wigner and utilized to study the quantum correction for
thermodynamics in 1932 [1]. In recent years, its range of applications has extended to quantum
optics, quantum chaos, quantum computing, and other fields, and it has again become a focus
of interest for research in which quantum-classical correspondence is essential. The history of
the Wigner function on discrete phase space is relatively young and marked in particular by its
application to discrete phase space composed of a prime number of lattice points (prime-lattice
phase space), formalized by Wootters in 1987 [2], and to discrete phase space composed of an
odd number of lattice points (odd-lattice phase space) corresponding to integer spin, formalized
by Cohendet et al. in the same year [3]. However, it was pointed out that its behavior on discrete
phase space composed of an even number lattice points (even-lattice phase space) was found to
differ substantially from that on odd-lattice phase space. In 1995, Leonhardt formulated the
Wigner function on even-lattice phase space corresponding to half-integral spin, but found it
necessary to incorporate a virtual degree of freedom (so-called ghost variable) [4, 5].

Symplectic transformation yields an invariant canonical commutation relation and is therefore
an important symmetry in quantum mechanics. It is known that on continuous or odd-lattice
phase space, if the phase point operator is sandwiched between a Fourier operator and its
Hermitian conjugate, the argument of the operator rotates 90 degrees. It represents the simplest
symplectic covariance (Fourier covariance) among linear canonical transformations. In the
present article, we show that on odd- and even-lattice phase spaces the phase point operator
derived from the Wigner function by Cohendet et al. and Leonhardt has symplectic covariance
and that a projective unitary representation of such a symplectic transformation group exists
and is unique.
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2. Wigner function on continuous phase space
2.1. Definition and marginal property
The Wigner function, which was originally a function on classical continuous phase space, is
defined as

W(q, p) =
1

2πℏ

∫ ∞

−∞
dreipr/ℏψ∗(q +

r

2
)ψ(q − r

2
). (1)

Integration over momentum and position gives∫ ∞

−∞
W(q, p)dp = |ψ(q)|2, (2)∫ ∞

−∞
W(q, p)dq = |ψ̃(p)|2, (3)

respectively. It thus becomes a position distribution when integrated over momentum and a
momentum distribution when integrated over position. The two wave functions ψ(q) and ψ̃(p)
are interconvertible via Fourier transformation. As evident from this marginal property (we refer
to it as marginality), the Wigner function is a kind of quantum-mechanical distribution function,
but it yields negative values and is therefore referred to as a quasi-distribution function.

2.2. The phase point operator
The phase point operator ∆(q, p) is defined as the state independent part of the Wigner function,

W(q, p) =
1

2πℏ
Tr[ρ∆(q, p)] , ρ = |ψ⟩⟨ψ|. (4)

In the position representation it is given by

∆(q, p) =

∫ ∞

−∞
dreipr/ℏ|q + r

2
⟩⟨q − r

2
|, (5)

and in the momentum representation by

∆(q, p) =

∫ ∞

−∞
dse−iqs/ℏ|p+ s

2
⟩⟨p− s

2
|. (6)

With the phase point operator, a classical Hamiltonian can be transformed to a quantized one
Ĥ with Weyl ordering:

ĤWeyl(q̂, p̂) =
1

2πℏ

∫ ∞

−∞

∫ ∞

−∞
dq dp H(q, p)∆(q, p). (7)

The phase point operator ∆(q, p) can therefore be regarded as a quantum operator corresponding
to the classical phase point (q, p). From the marginality of the Wigner function, it has the
following properties,

1

2πℏ

∫ ∞

−∞
dp∆(q, p) = |q⟩⟨q|, (8)

1

2πℏ

∫ ∞

−∞
dq∆(q, p) = |p⟩⟨p|, (9)

which are called the operator form of the marginality. An important advantage of considering
the phase point operator is its capability for quantization of various geometrical objects [6-8]
especially discrete systems [2-20]. We refer to Ref. [21-24] for quantum mechanics on finite
abelian or Lie groups.
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3. Wigner function by Cohendet et al. and the phase point/Weyl operators on
odd-lattice phase space
Beginning this section with the Weyl operator formulated by Cohendet et al., we briefly overview
the phase point operator on discrete phase space composed of an odd number of lattice points
(odd-lattice phase space).

3.1. Definition of the Weyl operator in odd-lattice case
Cohendet et al., in composing the Wigner function on odd-lattice phase space, first defined the
Weyl operator as

(WC
m,nψ)(k) = exp

(
−4πimn

N
+

4πink

N

)
× ψ(k − 2m), (10)

where m,n, k ∈ I = {−N−1
2 ,−N−3

2 , · · · , N−3
2 , N−1

2 } and N is an odd integer. The integer N is
regarded as the modulus in I.

The phase Q, shift P , and inversion T operators are defined as follows for convenience in
calculation,

Q =
∑
k

|k⟩ωk⟨k|, (11)

P =
∑
k

|k − 1⟩⟨k|, (12)

T =
∑
k

| − k⟩⟨k|, (13)

where ω is the primitive N -th root of unity:

ω = exp

(
2πi

N

)
. (14)

The commutation relation of Q and P is obtained as

PQ = ωQP. (15)

When the above Weyl operator is expressed using the phase and shift operators in I indexing,
it is given by

WC
m,n = ω−2mnQ2nP−2m. (16)

3.2. Definition of phase point operator in odd-lattice case
Cohendet et al. define the phase point operator as the T transformation of the Weyl operator,

∆C
m,n =WC

m,nT = ω−2mnQ2nP−2mT , (17)

with the following properties:

∆C†
m,n = ∆C

m,n, (18)
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Tr(∆C
m,n) = 1, (19)

Tr(∆C†
m,n∆

C
m′,n′) = Nδm,m′δn,n′ , (20)

WC†
m′,n′∆C

m,nW
C
m′,n′ = ∆C

m−2m′,n−2n′ . (21)

The Hermiticity Eq. (18), normalization Eq. (19), traciality Eq. (20) and covariance Eq. (21)
are properties of the Stratonovich-Weyl kernel, which show the eligibility of the definition.

Using the phase point operator defined in Eq. (17), the Wigner function on odd-lattice phase
space is defined in the same way as in the continuous case Eq. (4), i.e., as

Wm,n =
1

N
Tr

[
ρ∆C

m,n

]
=

1

N
⟨ψ|∆C

m,n|ψ⟩. (22)

The marginality of this Wigner function (discrete form of Eqs. (2) and (3)) and its operator
form (discrete form of Eqs. (8) and (9)) can be confirmed in the same way as on continuous
space.

4. Wigner function by Leonhardt and the phase point/Weyl operators on
even-lattice phase space
In this section,we review the Wigner function on discrete phase space composed of an even
number of lattice points (even-lattice phase space), as described by Leonhardt [4].

4.1. Definition of the Weyl operator in even-lattice case
The Wigner function composed by Leonhardt is established on both odd- and even-lattice phase
space, but with incorporation of a virtual degree of freedom (ghost variable) between integral
points for even-lattice phase space.

The ’characteristic function’ is defined as

W̃L
m,n ≡

N−1∑
k=0

exp

[
−2πi

N
2m(k + n)

]
⟨k|ρ|k + 2n⟩. (23)

Leonhardt defines the discrete Wigner function as a double-inverse Fourier transformation:

Wµ,ν ≡ 1

D2

∑
m,n

exp

[
2πi

N
2(mν + nν)

]
W̃L

m,n. (24)

Substitution of Eq. (23) into Eq. (24) then yields

Wµ,ν =
1

D

∑
m

exp

(
2πi

N
2mν

)
⟨µ−m|ρ|µ+m⟩. (25)

Eq. (25) is the Wigner function that has the marginality on both odd- and even-lattice phase
space, provided that for odd dimensions (µ, ν) is an integer phase space composed with D = N
and summed in the range I = {−N−1

2 ,−N−3
2 , · · · , N−3

2 , N−1
2 } and that for even dimensions the

phase space is composed withD = 2N together with (µ, ν) integers and half-integers, summation
is performed in the range I ′ = {0, 12 , 1, · · · ,

2N−1
2 } (mod N). State vectors are set to zero on

half-integer points. The Wigner function is real and normalized to unity, i.e.,
∑

µ,ν Wµ,ν = 1.
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As the characteristic function can be transformed to

W̃L
m,n =

N−1∑
k=0

ω−2m(k+n)⟨ψ|k + 2n⟩⟨k|ψ⟩

= ⟨ψ|ω2mnQ−2mP−2n|ψ⟩, (26)

and thus with W̃L
m,n = Tr[ρWL

m,n] the Weyl operator is then defined as

WL
m,n = ω2mnQ−2mP−2n. (27)

4.2. Definition of phase point operator in even-lattice case
The Leonhardt phase point operator is defined by the double-inverse Fourier transformation of
WL

m,n,

∆L
m,n =

1

N

∑
m′,n′∈I′

exp

[
2πi

N
2(mm′ + nn′)

]
WL

m′,n′ . (28)

With the phase, shift, and inversion operator defined by Eqs. (11), (12), and (13) indexed by
I ′′ = {0, 1, · · · , N − 1}, Eq. (28) can then be expressed as

∆L
m,n = ω−2mnQ2nP−2mT , (m,n ∈ I ′). (29)

Eq. (29) reduce to Eq. (17) for odd N (m,n ∈ I).

5. Group of symplectic transformations
In previous studies, it was shown that the continuous phase point operator is uniquely determined
under certain symplectic covariance [25-27]. On the discrete phase space, the covariance is
defined in a similar way.

5.1. Definition and its generator
We define the group SpN of symplectic transformations S on the discrete phase space ZN ×ZN

by analogy with the continuous case,

SpN =

{
S =

(
a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ ZN , det S = 1 ∈ ZN

}
, (30)

where ZN is a residue ring modulo N and its representatives are chosen from {0, · · · , N − 1}.
The covariance relation becomes

U(S)∆m,nU
†(S) = ∆S·(m,n), (31)

in this discrete case.
Here we show that the group SpN is generated from the two elements h+ and h−, which are

defined as

h+≡
(

1 1
0 1

)
∈SpN , h−≡

(
1 0
1 1

)
∈SpN . (32)

We denote the group generated by h+, h− as Sp′ and have h−1
+ = hN−1

+ , h−1
− = hN−1

− , as

hN+ = hN− = I.



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012112

IOP Publishing

doi:10.1088/1742-6596/1194/1/012112

6

Let S be an arbitrary element in SpN . Multiplying S by h+ and h−, we obtain

hn+S =

(
a+ nc b+ nd
c d

)
, (33)

Shn+ =

(
a na+ b
c nc+ d

)
, (34)

hn−S =

(
a b

na+ c nb+ d

)
, (35)

Shn− =

(
a+ nb b
c+ nd d

)
, (36)

in which we perform the operation of multiplying a row (column) by an element in ZN and then
adding the result to the other row (column). We next define ht as

ht≡
(

0 1
N − 1 0

)
∈SpN , (37)

which can be represented in a form having h+ on both sides of hN−1
− ,

ht = h+h
N−1
− h+. (38)

Multiplying S by ht, we then have

htS =

(
c d

N − a N − b

)
, (39)

Sht =

(
N − b a
N − d c

)
. (40)

We have thus performed the operation of interchanging rows and columns. Hence multiplying
S by h+ and h− on the left and right appropriately, a given symplectic transformation S ∈ SpN
can be transformed into ht. This means that S can be represented by h+ and h−, i.e.,

S =
∏
i

hsi , si ∈ {+,−} (41)

and

SpN = Sp′N . (42)

The explicit procedure is given as follows. We denote the Euclidean algorithm for b and d as

r0 = max(b, d), r1 = min(b, d), (43)

ri = kiri+1 + ri+2 (ri+2 < ri+1; i = 0, · · · , l − 2; l ≥ 2), (44)

rl = 0. (45)

If b = d the procedure stops at the first step with l = 2. Multiplying S by H defined as

H = h
−kl−1
+ · · ·h−k1

− h−k0
+ , for b > d, l : odd, (46)
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H = hth
−kl−1
− · · ·h−k1

− h−k0
+ , for b > d, l : even, (47)

H = h
−kl−1
+ · · ·h−k1

− h−k0
+ ht, for b < d, l : odd, (48)

H = hth
−kl−1
− · · ·h−k1

− h−k0
+ ht, for b < d, l : even, (49)

from left, S can be transformed into

HS =

(
α 0
γ β

)
, αβ = 1 mod N. (50)

Multiplying the left-hand side of Eq. (50) by hβ+h
−α
− from the right and by h−β−βγ

− from the
left, we have

h−β−βγ
− HS hβ+h

−α
− = ht. (51)

This proves Eq. (42).

6. Uniqueness and explicit form of the projective unitary representation
Let us now show that the unitary representation U(S) of SpN having the covariance Eq. (31) is
determined up to a phase factor, hence its projective representation is unique. We also derive
its explicit form using the Euclidean algorithm in this section.

6.1. Uniqueness and explicit form of the representation
Multiplying the both sides in Eq. (31) by a new U(S′) and its Hermitian conjugate from the
left and right, respectively, we have

U(S′)(U(S)∆m,nU
†(S))U †(S′) = ∆S′·(S·(m,n)). (52)

Taking S′S = S′′, we have by definition

U(S”)∆m,nU
†(S”) = ∆S”·(m,n), (53)

hence,

(U(S′)U(S))∆m,n(U(S′)U(S))† = U(S”)∆m,nU
†(S”). (54)

From the traciality Eq. (20), the operators that commute with all phase point operators are
phase factor multiples of unit operator, and we therefore have

U(SS′) = eiθU(S)U(S′), (55)

thus showing that U(S) satisfying Eq. (31) is a projective unitary representation of SpN .
Let U ′(S) be another such representation. In Eq. (31), if we multiply the both sides by

U ′†(S) from the left and by U ′(S) from the right, we get

(U ′†(S)U(S))∆m,n(U
†(S)U ′(S)) = ∆S−1·(S·(m,n)) = ∆m,n. (56)

Hence, using the traciality again, we have

U ′(S) = eiθU(S). (57)
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Thus, the projective unitary representation is unique.
Considering in conjunction with the uniqueness that a given symplectic transformation S is

represented by h+ and h−, we find that a given U(S) can be represented by U(h+) and U(h−)
as

U(S) =
∏
i

U(hsi), si ∈ {+,−}. (58)

The sign factor si is determined from the Euclidean algorithm. One of such examples is given
by

U(S) = U−1(H)U−β−βγ(h−)U(ht)U
α(h−)U

−β(h+), (59)

using Eqs. (50), (51), where U(H) is the product of U(h+) and U(h−) according to Eqs. (46)-
(49) in the previous section, and U(ht) = U(h+)U

−1(h−)U(h+) using Eq. (38).
In Secs.VIII and IX, we consider U(h+) and U(h−) in more detail.

7. U(h+) and U(h−) on odd-lattice phase space
7.1. Derivation of the explicit form U(h+) and U(h−)
Multiplying both sides of Eq. (31) by U(S) from the right with S = h± , we have

U(h±)∆
C
m,n = ∆C

h±·(m,n)U(h±). (60)

We use the phase point operators described earlier in Eq. (17) to find an explicit form of U(h+)
and U(h−). We performed the actual calculation for lower dimensions (e.g. N = 3, 5, 7). For
example, we have for N = 7

U(h+) =
1√
7



1 ω4 ω2 ω ω ω2 ω4

ω4 1 ω4 ω2 ω ω ω2

ω2 ω4 1 ω4 ω2 ω ω
ω ω2 ω4 1 ω4 ω2 ω
ω ω ω2 ω4 1 ω4 ω2

ω2 ω ω ω2 ω4 1 ω4

ω4 ω2 ω ω ω2 ω4 1


, (61)

U(h−) =



ω
ω2

ω4

1
ω4

ω2

ω


. (62)

The obtained results suggest that the general form can be thus given for odd dimensions as

U(h+) =
1√
N

∑
i,k∈I

|i⟩ω
1
2
(i−k)(i−k+N)⟨k|, (63)

U(h−) =
∑
i∈I

|i⟩ω
1
2
i(i+N)⟨i|. (64)
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Let us now confirm the symplectic covariance of the predicted U(h+) and U(h−) for a given
phase point operator ∆C

m,n. In bra-ket notation, the phase point operator in Eq. (17) ∆C
m,n is

∆C
m,n =

∑
i

ω2n(−m+i)|i⟩⟨−i+ 2m|. (65)

Accordingly,

U(h+)∆
C
m,nU

†(h+) =
∑
i

ω2n(−(m+n)+i)|i⟩⟨−i+ 2(m+ n)| = ∆C
m+n,n = ∆C

h+·(m,n), (66)

thus confirming the symplectic covariance. The general form of U(h+) for odd dimensions can
therefore be regarded as Eq. (63). For U(h−), the symplectic covariance of Eq. (64) is similarly
confirmed.

8. U(h+) and U(h−) on even-lattice phase space
8.1. Extension of the dimension of symplectic group
We derive U(h+) and U(h−) on even-lattice phase space in the same manner as the above
derivation on odd-lattice phase space. More specifically, using Leonhardt’s phase point operator
with N = 2, U(h+) and U(h−) having symplectic covariance are

U(h+) =
1√
2

(
1 i
i 1

)
, (67)

U(h−) =

(
1 0
0 i

)
. (68)

However, these two explicit forms are not a representation of the symplectic group as defined
by Eq. (30). To compose the Wigner function on discrete phase space in even dimensions,
Leonhardt incorporated a virtual degree of freedom (ghost variable) and multiplied the number
of variables by two. It is therefore also necessary to reconsider operation of the symplectic
groups on even-lattice phase space.

In the following, we redefine the symplectic group in even dimensions. An even-lattice phase
space is a Z2N × Z2N space taking into the ghost degree of freedom into account, and the
symplectic group in this case is defined as

Sp2N =

{(
a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ Z2N , det S = 1 ∈ Z2N

}
(69)

We consider the projective unitary representation based on this definition.

8.2. Derivation of the explicit form U(h+) and U(h−)
From Eq. (67), we now have

{U(h+)}4 =
1

4

(
−4 0
0 −4

)
.
=

(
1 0
0 1

)
(up to a phase factor)

= U(E) = U(h+
4) (70)

where E is the unit element of Sp2N , thereby confirming at least one projective unitary
representation of h+ ∈ Sp2N . From U(h+) and U(h−) at N = 2 and from other lower
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dimensional examples, we predict

U(h+) =
1√
N

∑
i,k∈I′′

|i⟩ω̃(i−k)2⟨k|, (71)

U(h−) =
∑
i∈I′′

|i⟩ω̃i2⟨i|, (72)

where ω̃ = ω
1
2 = +exp

(
2πi
2N

)
and I ′′ = {0, 1, · · · , N − 1}.

In the same manner as for odd dimensions, we next confirm the symplectic covariance by the
predicted U(h+) and U(h−):

U(h±)∆
L
m,nU

†(h±) = ∆L
h±·(m,n), (73)

for the phase point operator ∆L
m,n defined by Leonhardt (Eq. (29)):

∆L
m,n = ω̃−4mnQ2nP−2mT =

∑
i∈I′′

ω̃4n(i−m)|i⟩⟨−i+ 2m|. (74)

Note that m,n ∈ I ′. For U(h−), we obtain

U(h−)∆
L
m,nU

†(h−) =
∑
i∈I′′

ω̃4(m+n)(i−m)|i⟩⟨−i+ 2m| = ∆L
m,m+n = ∆L

h−·(m,n), (75)

thereby confirming symplectic covariance for Sp2N as the group of symplectic transformations
S. Accordingly, the form of U(h−) in even dimensions in general can be regarded as in Eq.
(72). For U(h+), we can similarly confirm that Eq. (71) has symplectic covariance with the
Leonhardt’s phase point operator.
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