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Introduction

Elementary particle physics aims to describe the fundamental constituents of Nature and
their interactions. Experiments indicate that elementary particles fall into two classes:

leptons, containing among others the electron and the neutrino; and quarks, which form the
building blocks of protons and neutrons. The four known forces between these building
blocks of matter are the gravitational, the electromagnetic, the weak, and the strong interac-
tion.

At small length scales, the gravitational interaction is many orders of magnitude weaker
than all the other forces1, and it can therefore safely be neglected. The remaining three
interactions of elementary particles can be described by an elegant theory called the Standard
Model. This theory is a gauge theory: it has an internal local symmetry group in which each
interaction is described by the exchange of gauge fields. These gauge fields are called the
photon, the W-bosons and Z-boson, and the gluons for the electromagnetic, the weak, and
the strong interaction, respectively. Gauge fields are different from matter particles in several
aspects: the former fall into the class of bosons, particles with integer spin and commuting
statistics; the latter are called fermions, particles with half-integer spin and anti-commuting
statistics. It can be shown that internal symmetry groups, such as those of the Standard
Model, cannot mix bosons with fermions [1].

Microscopic physics is described by quantum mechanics, which can be seen as a deforma-
tion of classical dynamics. It has several non-intuitive properties: one cannot simultaneously
measure all observables with infinite accuracy, and many quantities can only be expressed in
terms of probabilities. The Standard Model is quantum mechanically completely consistent,
and the theory is in excellent agreement with experiments.

At macroscopic scales, the interactions of the Standard Model are virtually absent: the
strong interaction is confined to small distances; the weak interaction has an exponential
decay with distance; and although the electromagnetic force has an infinite range, all large
configurations of matter are approximately electrically neutral. Hence, the gravitational in-
teraction becomes the dominant force at large length scales.

Gravity is described by the theory of General Relativity. The basic ingredients of General
Relativity are that space and time merge into a spacetime, that matter induces a curved geom-

1The ratio of the gravitational and the electric force between a proton and an electron is 10−40.



2 Introduction

etry on spacetime, and that this geometry in turn determines the dynamics of matter. One can
also try to cast General Relativity in the form of a gauge theory: in this case a gauge theory
of spacetime symmetries, known as general coordinate transformations, rather than internal
symmetries. The corresponding gauge field in this case is called the graviton. General Rela-
tivity is a purely classical theory. It successfully explains physics in the range of terrestrial to
cosmological length scales.

However, this split of physics into the macroscopic theory of General Relativity and the
microscopic Standard Model is not without caveats, because General Relativity has some pe-
culiar properties. First of all, it turns out that certain solutions to the classical field equations,
known as black holes, have as a generic feature the occurrence of spacetime singularities [2]
around which the gravitational field becomes infinitely large. This undermines the reason for
ignoring gravitational interactions in elementary particle physics, and it becomes necessary
to treat the gravitational field quantum mechanically.

Most of these spacetime singularities are predicted not to be directly observable. Instead,
they are conjectured always to be hidden behind event horizons – surfaces from which not
even light can return. Singularities are therefore thought not to be directly observable. How-
ever, the quantum mechanical behavior of elementary particles around such event horizons
is problematic, since the one-way nature of event-horizons interferes with the probabilistic
interpretation of quantum mechanics. This gives rise to information paradoxes [3].

Although the energy scales necessary to probe microscopic gravitational effects are not
easily obtained in laboratory experiments, they did occur in the early universe. In order to
develop good cosmological models, it is therefore necessary to have a description of gravity
at small length scales. As a final remark, there is the related problem of the cosmological
constant, a parameter in General Relativity for which the Standard Model predicts a value
many orders of magnitude larger than the value inferred from astronomical observations [4].

To solve the problems sketched above, it is necessary to construct a theory of quantum
gravity. To see what problems can arise in quantizing gravity, it is instructive to compare
electromagnetism and gravity since at the classical and semi-classical level there are many
parallels between the two interactions, as we have summarized in table 1. They both share a
characteristic long range force, although gravity can never be repulsive. Both interactions also
fit into a relativistic framework, and covariant field equations for both theories were found by
Maxwell, and by Einstein, respectively. Both actions are invariant under local symmetries.
For electromagnetism, these symmetries form the group of phase transformations, known
as U(1); for General Relativity, they form the group of general coordinate transformations.
There is one particular classical effect of the gravitational interaction that has not yet been
observed directly: namely the radiation of gravitational waves2, the gravitational counterpart
of optics.

The quantum mechanical motion of particles in the background of classical force fields
is sometimes called first quantization. For the electromagnetic force, this was studied in
the first few decades of the twentieth century during which in particular the nature of black

2Indirect evidence for gravitational waves comes from the rotation time decay of binary star systems [5].
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Process Electromagnetism Gravity

Force Fel = q1q2
r2 Fgr = −Gm1m2

r2

Relativistic ∂νFνµ = Jµ Rµν − 1
2gµνR = 8πGTµν

Classical action Lem = − 1
4FµνF

µν LGR = 1
16πG

√
|g|R

Symmetry U(1) General coordinate transf.

Radiation Optics Gravitational waves

Spectrum Black body Hawking radiation

Phenomenology H-atom spectral lines Black hole entropy

Microscopic origin Energy levels Density of states

Table 1: (Semi-)classical electromagnetism versus gravity.

body radiation and the origin of the energy levels of the hydrogen atom were clarified. In
the last few decades of the last century, the quantum mechanical behavior of particles in
gravitational fields has been clarified: in particular, the process of Hawking radiation [6] and
the microscopic origin [7] of entropy [8,9] for certain classes of black holes were discovered.

To continue the discussion of quantum gravity, it is more useful to compare the grav-
itational with the weak or the strong interaction, as we have summarized in table 2, since
electromagnetism has no self-interactions at the quantum level, in contrast to the other three
interactions. For the electromagnetic interaction, one can apply quantization methods to the
classical action Lem given in table 1, but this procedure fails for the action of General Rel-
ativity since it has an energy-dependent coupling constant G – this makes the theory non-
renormalizable.

Some progress towards solving this non-renormalizability problem was obtained by the
discovery of supergravity in 1976 [10]. Supergravity is a modified version of General Relativ-
ity having spacetime symmetries as well as internal symmetries. A characteristic property of
this so-called supersymmetry is that it mixes bosons with fermions [11]. In chapter 5, we will
be more precise about the structure of supersymmetry and its cousin conformal supersymme-
try. Although supergravity is better behaved at high energies than General Relativity, it is still
non-renormalizable. The best one can hope for is that supergravity is a low-energy effective
description of a theory of quantum gravity. This is rather similar to the situation concerning
the weak interaction where Fermi’s theory of beta-decay is also a non-renormalizable theory,
but it can be seen to arise from the Standard Model.

In order to go beyond the low-energy effective description of a theory, a prescription
for calculating scattering amplitudes at higher energies is necessary. For the strong interac-
tion, this so-called S-matrix theory was developed during the nineteen sixties, and it uses
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Process Weak or strong interaction Gravity

Low-energy theory Fermi’s theory of beta-decay Supergravity

Scattering amplitudes S-matrix theory: Perturbative string theory:

Feynman graphs Riemann surfaces

Classical action Standard Model: String field theory:

LSM = − 1
4F

a
µνF

µν
a + . . . LSFT = 1

2Ψ ? QΨ + . . .

Symmetry SU(2) or SU(3) Unknown

Solitonic solutions Monopoles Branes

Duality Electric/magnetic charges Strong/weak coupling

Quantization method BRS-method BV-formalism

Table 2: Quantizing the weak or strong interaction versus gravity.

a perturbative expansion over Feynman graphs in order to calculate amplitudes. The precise
prescription is fixed by a Lagrangian formulation. In the case of the strong interaction, as well
as the electroweak interactions, all the Feynman rules can be derived from the Lagrangian of
the Standard Model.

A corresponding formalism yielding scattering amplitudes for gravity involves the con-
cept of strings: i.e. at small length scales, particles are postulated to be tiny vibrating strings.
The motivation is that the spectrum of a closed string contains the graviton, the gauge field
for gravity. Since strings sweep out worldsheets rather than worldlines, as particles do, the
idea of Feynman graphs has to be extended to surfaces. It was shown in the nineteen eighties
that a perturbative expansion over Riemann surfaces gives quantum mechanically consistent
scattering amplitudes.

The string theory analog of the Standard Model was developed in the nineteen eighties,
this goes under the name of string field theory. In this theory, one single string field describes
all string vibrations simultaneously. For the simplest models of perturbative string theory,
it can be shown that the corresponding string field theory yields the same answers for scat-
tering amplitudes, but for more complicated perturbative string theories, there are technical
complications in constructing the corresponding string field theories.

The fields in the Lagrangian of the Standard Model can be rotated by two- or three-
dimensional unitary matrices, in which case the gauge group is called SU(2) or SU(3),
respectively. Since matrices do not commute, such theories are called non-Abelian gauge
theories. The quantization of the classical action of an interaction is often called second
quantization, and for the weak and the strong interactions this can be consistently done using
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the methods of BRS-quantization [12, 13]. The symmetry groups of string field theories are
much larger and much more complicated than the gauge groups of the Standard Model, and
in many cases not known explicitly. This means that traditional methods of quantization fail,
and one needs to use more sophisticated methods such as the BV anti-field formalism [14].
Just as the quantization of the weak interaction required more sophisticated tools than the
quantization of electromagnetism, it seems also likely that the quantization of gravity will
require new methods in this area.

Gauge theories often have solitons – solutions of the classical field equations with fi-
nite energy. In modified theories of the weak interaction there are for example magnetic
monopoles. The presence of such magnetic monopoles can imply that there is a duality be-
tween electric and magnetic charges. Such dualities are powerful symmetries, since they
often relate separate regimes of a given theory. String theory has higher-dimensional soli-
tonic solutions called branes3. In string theory, there is also a number of dualities, such as
dualities between strongly and weakly coupled regimes of different versions of string theory.
In all of these dualities, branes play an essential role. The overall framework of string the-
ory and branes is called M-theory, where the M can mean anything ranging from Mystery to
Membrane, according to taste. It is not clear yet whether strings are the fundamental degrees
of freedom of quantum gravity, or if there is perhaps a formulation in terms of branes.

The organization of this thesis is as follows. We will start in chapter 1 with a more elabo-
rate treatment of the string theory framework, including the basic features of string theory and
supergravity, as well as the various dualities and brane solutions of these theories. In chap-
ter 2, we will describe the AdS/CFT correspondence – a recently discovered duality between
theories of gravity in Anti-de-Sitter spacetimes and conformal quantum field theories. This
is a remarkable duality, because several quantities within quantum gravity can be expressed
in terms of concepts known from quantum field theory. A central theme in the AdS/CFT
correspondence is a special brane solution of string theory: the D3-brane.

In chapter 3, we will present our results [15] that show how this duality can be extended
to a duality between gravity in more general curved spacetimes called domain-walls and
more general quantum field theories – the DW/QFT correspondence. In particular, we will
discuss a large class of brane solutions that includes the D3-brane. After choosing a suitable
coordinate frame, the so-called dual frame, we will study the near-horizon geometry of these
brane solutions of supergravity, and we will analyze what kinematical information can be
extracted from the dual field theories.

The domain-walls that appear in the analysis mentioned above describe spaces that are
separated into several domains by a boundary surface – the domain-wall. Across such domain-
walls, physical quantities can change their values in a discontinuous fashion. Domain-walls
that have such discontinuities are sometimes called “thin” domain-walls. On the other hand,
domain-walls that can be interpreted as smooth interpolations between different supergravity
vacua go under the name of “thick” domain-walls. At the end of chapter 3, we will explain
how these thick domain-walls have the interpretation of renormalization group flows in their

3Compare 0,1,2, . . . many with particle, string, membrane, . . . brane.
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dual quantum field theories.
Domain-wall spacetimes have attracted renewed attention recently: they are a member of

the class of brane world scenarios. In chapter 4, we will describe such brane world scenarios
in more detail: the basic idea is that our four-dimensional universe is actually a hypersurface
within a five-dimensional supergravity theory. The size of the extra fifth dimension trans-
verse to the so-called brane world can be used to gain insight in the origin of some unnatural
properties of four-dimensional physics. For instance, the so-called Randall-Sundrum sce-
narios were used to obtain a better understanding of the cosmological constant problem, as
well as the unnatural ratio of the strength of the gravitational force and the remaining three
interactions, the so-called hierarchy problem.

Supersymmetric versions of such theories have proven to be hard to find. The main ob-
stacle is realizing supersymmetry on the four-dimensional brane world solution: it is related
to finding the vacuum structure of the corresponding five-dimensional supergravity theory.
This, in turn, requires a detailed knowledge of all possible couplings of five-dimensional
matter models to supergravity. The scalar fields of these matter models can be interpreted as
coordinates on an abstract space. Many properties of the matter-coupled supergravity theory
can then be expressed in terms of the geometrical properties of the corresponding space of
scalar fields.

In particular, the scalar fields generate a potential that determines the vacuum structure
of the supergravity theory. For supersymmetric brane worlds to exist, this scalar potential
needs to possess two different, stable minima that need to satisfy some additional constraints.
Moreover, one needs to find a suitable solution that smoothly interpolates between two such
minima. Such an analysis, which had been started in the nineteen eighties (albeit for different
reasons), has recently been renewed, but still does not encompass the most general five-
dimensional matter-coupled supergravity theory.

We will take a systematic approach to construct these five-dimensional matter-couplings.
This so-called superconformal program starts from the most general spacetime symmetry
group, the group of superconformal transformations, which considerably simplifies the anal-
ysis of matter-couplings to supergravity. The different models possessing superconformal
symmetry are called multiplets. First of all, there is the so-called Weyl multiplet: this is the
smallest multiplet of the superconformal group that possess the graviton. On the other hand,
there are the matter multiplets: they interact with the Weyl multiplet that forms a fixed back-
ground of conformal supergravity. Matter-couplings to non-conformal supergravity can then
be obtained by breaking the conformal symmetries.

In chapter 5, we will present our results [16] on the five-dimensional Weyl multiplets.
We will see that there are two versions of this multiplet: the Standard Weyl multiplet and
the Dilaton Weyl multiplet. Multiplets similar to the Standard Weyl multiplet also exist in
four and six dimensions, but the Dilaton Weyl multiplet had so far only been found in six
dimensions. We will use a well-known method to deduce the transformation rules for the
different fields: the so-called Noether method. In particular, we will construct the multiplet
of conserved Noether currents for the various conformal symmetries. A remarkable detail
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is that the current multiplet that couples to the Standard Weyl multiplet contains currents
that satisfy differential equations, a mechanism that so far had only been known from ten-
dimensional conformal supergravity.

Our results [17] on five-dimensional superconformal matter multiplets will be presented
in chapter 6. We will discuss so-called vector multiplets: these are multiplets that contain
the gauge field of the gauge group under which the multiplet transforms. We will analyze
vector multiplets that transform under arbitrary transformations of the gauge group: the so-
called vector-tensor multiplets. In particular, we will consider representations of the gauge
group that are reducible but not completely reducible. This gives rise to previously unknown
interactions between vector fields and tensor fields. The conformal symmetries can only be
realized on the tensor fields if these satisfy their equations of motion. By dropping the usual
restriction that the equations of motion have to follow from an action principle, we can also
formulate vector-tensor multiplets with an odd number of tensor fields.

Apart from vector-tensor multiplets, we will also consider hypermultiplets in chapter 6.
These multiplets also possess scalar fields but not gauge fields. The scalar fields span a vector
space over the quaternions. Realizing the conformal algebra on the scalar fields will induce
a non-trivial geometry called hyper-complex geometry on the space of scalars. Similarly
as for tensor fields, the superconformal algebra can only be realized on the fields of the
hypermultiplet with the use of equations of motion. Also in this case, we will consider
equations of motion that do not follow from an action principle. The special cases for which
there is an action correspond to hyper-complex manifolds possessing a metric: the so-called
hyper-Kähler manifolds. Furthermore, we will analyze the interaction of hypermultiplets
with vector multiplets, and we will also make use of the scalar field geometry in this case. At
the end of chapter 6, we will give an overview of all the geometrical concepts that we will
make use of.

The matter-couplings to conformal supergravity that we will construct in this way can
be used as a starting point to construct matter-couplings to non-conformal supergravity. At
the end of chapter 6, we will sketch some ingredients of this procedure. Whether the five-
dimensional matter-couplings of supergravity that can be obtained in this way will actually
modify the vacuum structure in such a way that supersymmetric brane world scenarios can
be realized, remains an open question that will have to be answered by future research.
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Chapter 1

The string theory framework

In this chapter, we will give an overview of the string theory framework. We will start
with describing several basic features of string theory, after which we we will discuss

some aspects of supergravity, the low-energy effective description of string theory. In the last
two sections of this chapter, we will review some recent developments in string theory: in
particular, we will discuss string theory dualities and brane solutions of supergravity.

1.1 String theory

String theory was born out of attempts to explain the hadron resonance spectrum of the strong
interaction. Soon after the discovery of the Veneziano scattering amplitude [18], which ex-
pressed a duality between resonances coming from the so-called s-channel and t-channel, it
was realized that this amplitude described the dynamics of an open relativistic string.

Open strings have in their spectrum a massless spin-1 particle, which is reminiscent of a
gauge field. However, after new experimental results were shown to be in conflict with the
Veneziano amplitude, string theory as a model for the strong interaction was replaced by the
gauge theory QCD. Relativistic closed strings, however, have in their spectrum a massless
spin-2 particle, which corresponds precisely to the characteristic properties of a graviton. It
was then argued that closed string theory could be a theory of gravity [19].

We will first explain in some detail the geometrical and dynamical setup of classical
bosonic string theory. After that, we will be less detailed as we discuss the quantized and the
supersymmetric versions of string theory, since most of the research described in this thesis
has been performed at the level of supergravity. For more details and proper references, see
the classic textbooks of [20, 21], and the more modern approach of [22, 23]. We will finish
this section with a discussion of the Kaluza-Klein mechanism, and a description of interacting
strings in non-trivial backgrounds.
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Figure 1.1: A particle worldline and string worldsheets.

1.1.1 Free bosonic string theory

The mathematical formulation of string theory proceeds along similar ways as the relativistic
motion of particles, as we have indicated in figure 1.1. Consider a particle with mass m,
moving through a flat D-dimensional spacetime with coordinates Xµ. Here, one assigns a
parameter τ to the worldline Λ that the particle sweeps out in spacetime, and the action is
simply the length of the worldline

Sparticle = −m
∫

Λ

dτ
√
|∂τXµ∂τXµ| . (1.1)

The dynamics of a relativistic string with tension T can likewise be formulated by assigning
coordinates σa = (τ, σ) to the two-dimensional world-sheet Σ. The action is given by the
surface that the string worldsheet sweeps out in spacetime

Sstring = −T
∫

Σ

d2σ
√
|det(∂aXµ∂bXµ)| . (1.2)

For historical reasons, the tension of the string is often expressed in terms of the Regge-slope
parameter α′, which is related to the length of the string `s by

T =
1

2πα′
, α′ =

`2s
~
. (1.3)
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Figure 1.2: The periodic, Neumann, and Dirichlet boundary conditions for strings.

The equation of motion following from the action (1.2) is nothing else than the two-
dimensional wave equation for the embedding coordinates

∂

∂σ−

∂

∂σ+
Xµ(τ, σ) = 0 , σ± ≡ τ ± σ . (1.4)

As can be seen from the particular form in which we have written the wave equation, there
are two independent directions along which vibrations of the string can propagate, usually
called left and right.

To be able to solve the equations of motion, one has to supplement them by suitable
boundary conditions, as we have indicated in figure 1.2. For the closed string of length `s,
one has to impose periodic boundary conditions

Xµ(τ, 0) = Xµ(τ, `s) , (1.5)

but for open strings there are two different possibilities, depending on how the right-moving
vibrations turn into left-moving modes at the endpoints

∂

∂σ−
Xµ(τ, σ) = ± ∂

∂σ+
Xµ(τ, σ) , σ = 0, `s . (1.6)

The choice of the plus sign goes under the name of Neumann boundary conditions and cor-
responds to freely moving open strings. The case of the minus sign is known as Dirichlet
boundary conditions, where the endpoints of the strings are actually fixed at some hyper-
planes in spacetime. We will later see that these hyperplanes correspond to solitonic objects
called Dirichlet-branes, or D-branes [24] for short.

The final result is that the coordinatesXµ are given as linear superpositions of all possible
solutions of (1.4), subject to the boundary conditions (1.5), or (1.6). Each of the elementary
vibration modes of the string worldsheet corresponds to a particle in spacetime. In particular,
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the energies and the polarizations of the vibration modes are related to the masses and spins
of the corresponding elementary particles.

1.1.2 Quantization and superstrings

The string action (1.2) has many symmetries, including reparametrizations and rescalings
of the two-dimensional worldsheet, both of which are essential in order to solve the equa-
tions of motion in full generality. The symmetry group of the worldsheet is actually infinite-
dimensional [25] and goes under the name of the conformal or the Virasoro algebra.

If one tries to quantize the oscillators on the string worldsheet while retaining the confor-
mal structure, then the string can no longer move in spacetimes of arbitrary dimension, but
instead the spacetime in which the string propagates is restricted to be 26-dimensional. At
first sight, this seems to rule out string theory as a realistic description of four-dimensional
Quantum Gravity, but we will see in section 1.1.3 how the Kaluza-Klein mechanism solves
this apparent contradiction.

There is a more severe problem with the quantized bosonic string: namely the oscilla-
tor with the lowest energy actually has an imaginary mass, meaning that it is a tachyon.
The appearance of tachyons in field theory usually means that one is expanding around the
wrong vacuum and that by redefining the vacuum the tachyon will disappear. Recent devel-
opments [26] indicate that this may also be the case in string theory, but a complete under-
standing of this will require sophisticated string field theory methods [27].

Another problem of bosonic string theory is the absence of fermions in its spectrum: if
string theory is to provide a unification scheme of elementary particles and all their interac-
tions, then one would like to have matter included as well. A modification of bosonic string
theory, called superstring theory, addresses both the fermion and the tachyon problem.

There are two different approaches to superstring theory. In the Neveu-Schwarz-Ramond
formulation [28, 29], one adds worldsheet fermions to the action (1.2). These world-sheet
fermions have to satisfy appropriate boundary conditions. This divides the oscillators into
two classes: a Neveu-Schwarz or NS-sector and a Ramond or R-sector. On the other hand,
the Green-Schwarz formulation [30] starts from a spacetime supersymmetric action. These
two, a priori different, formulations turn out to be equivalent in the sense that they give the
same answers for scattering amplitudes.

Supersymmetry already restricts the dimension in which classical superstrings can live to
3, 4, 6 or 10 dimensions, but in order to obtain quantum mechanical consistency, the space-
time in which superstrings move has to be ten-dimensional. The quantization of the NSR-
formulation can be done in a manifestly covariant manner, but spacetime supersymmetry
can only be obtained by performing the so-called GSO-projection [31] that eliminates the
tachyon from the spectrum. In the GS-formulation, spacetime supersymmetry is manifest
from the outset but covariance is lost and one has to resort to light-cone gauge quantization.

There are five consistent superstring theories. The first two are called Type IIA and Type
IIB superstring theory. They are both theories of closed strings only, and they posses what
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is technically known as N = 2 supersymmetry: the difference being that Type IIA has two
spinors of opposite chirality, called (1, 1) supersymmetry; whereas Type IIB is a chiral theory
with (2, 0) supersymmetry.

Then there are three theories with N = 1 supersymmetry. First there is the Type I
superstring theory of open strings, which also has a closed string sector. This theory has
massless gauge fields in its spectrum that transform under the gauge group SO(32). Finally,
there are two Heterotic string theories [32]: these are rather exotic theories of closed strings in
which the right-moving and left-moving modes on the world-sheet are taken to be different.
These Heterotic theories also have a gauge symmetry, and the gauge group can be E8×E8

or SO(32) in this case.
All these five superstring theories were shown to be free of anomalies and to give consis-

tent quantum mechanical scattering amplitudes [33].

1.1.3 Dimensional reduction

We saw how bosonic strings and superstrings had to move in spacetimes of dimensions 26 or
10. This problem does not have to be fatal per se, since the extra dimensions of spacetime
can be taken care of by a well-defined mathematical procedure called Kaluza-Klein com-
pactification. We will illustrate this mechanism with the toy model example of a massless
two-dimensional scalar field satisfying the wave equation

(
− 1

c2
∂2

∂t2
+

∂2

∂x2

)
φ(t, x) = 0 . (1.7)

We now take the x-direction to be a circle of radiusR, and since the scalar field has to periodic
in the compact direction, we can Fourier expand the scalar field in this compact direction

φ(t, x) = φ(t, x+ 2πnR)→ φ(t, x) =
∑

n

φn(t)e
πinx/R . (1.8)

If we substitute the expansion (1.8) into the equation of motion (1.7), then we find

− 1

c2
∂2

∂t2
φn(t) = m2φn(t) , m2 =

(πn)2

R2
, (1.9)

from which one observes that each Fourier-mode describes a massive particle in the remaining
non-compact spacetime with a mass that is inversely proportional to the radius.

Taking the limit R → 0, we see that the zero-mode decouples from all the other modes,
since these become infinitely massive. The result is that, after dimensional reduction over
a circle of infinitesimal radius, a massless two-dimensional scalar field is effectively de-
scribed by a massless scalar field in one dimension. On the other hand, taking the limit
R→∞makes the spectrum in (1.9) continuous, and we will regain the uncompactified two-
dimensional theory. In string theory, the limits R → 0 and R → ∞ are equivalent to each
other, as we will see in section 1.3.1 when we discuss T-duality.



14 The string theory framework

The analog of (1.7) in supergravity is a set of ten-dimensional tensor fields satisfying non-
linear differential equations in a spacetime forming a product of four-dimensional Minkowski
spacetime times a compact six-dimensional manifold. After a Fourier-expansion of the ten-
sor fields in eigenfunctions of the differential operator on the compact manifold, the higher
Fourier-modes will decouple in the limit R → 0, and the higher-dimensional fields are de-
scribed by a set of lower-dimensional tensor fields1.

A closely related mechanism to Kaluza-Klein reduction is called spontaneous compacti-
fication: this occurs when the zero-modes on the compact manifold do not appear as sources
in the equations of motion for the higher Fourier-modes. In this rather special case, one can
consistently truncate these higher modes to zero. What this means is that the solutions of the
compactified lower-dimensional theory formed by the zero-modes are also solutions of the
original, uncompactified, higher-dimensional theory.

For the two-dimensional scalar field example, it is consistent to truncate to the zero-mode
φ0(t), since it satisfies not only the reduced equation of motion (1.9) but also the original
equation of motion (1.7). At the level of the linearized equations of motion or for compact-
ifications on manifolds as simple as tori or group manifolds, the consistency of such trunca-
tions is always guaranteed. But for compactification on more complicated manifolds such as
spheres, the zero-modes generically appear in the equations of motion of the higher Fourier-
modes, and a consistent truncation is generically no longer possible: the higher Fourier-
modes only decouple in the limit R→ 0.

1.1.4 Backgrounds and interactions

So far, we have discussed superstrings propagating in flat ten-dimensional spacetimes, and
we argued that since closed strings had massless spin-2 particles in their spectrum that string
theory could be a theory of gravity. General Relativity tells us that the geometry of spacetime
should actually be a dynamical variable, fixed by the equations of motion. We will now dis-
cuss how to generalize the action (1.2) to strings moving in more complicated backgrounds.

In addition to a massless symmetric traceless tensor Gµν , closed superstrings have two
more massless modes2: an anti-symmetric tensor Bµν and a massive scalar Φ called the
dilaton. The tensor Gµν will be identified with the spacetime metric, which in (1.2) was
given by the flat Minkowski spacetime metric ηµν . We will denote the metric on the string
worldsheet Σ by γab.

The tensor Bµν can be interpreted as a generalized gauge field: analogously to how par-
ticles can be charged under vector fields, higher-dimensional objects such as strings can be
charged under higher-rank tensor fields. Finally, the scalar Φ will couple to the string world-
sheet through its curvature R(γ). The generalization of the action (1.2) is given by a two-

1Tensor-components in compact directions behave as tensors of lower rank in the remaining dimensions.
2We will not discuss the massless fermions or Ramond-Ramond gauge fields in this section.
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Figure 1.3: The genus expansion of string theory interactions.

dimensional non-linear sigma-model with a ten-dimensional target space

S = −T
2

∫

Σ

d2σ
√
γ
[(
γabGµν(X) + εabBµν(X)

)
∂aX

µ∂bX
ν − α′Φ(X)R(γ)

]
. (1.10)

The discussion so far only involved freely propagating strings. Scattering amplitudes for
interacting particles can conveniently be calculated by the technique of Feynman diagrams
in which there is a one-to-one map from a graph to a contribution to an amplitude. In string
theory, the analog of this is given in terms of Riemann surfaces as we have indicated in
figure 1.3.

The most convenient way to obtain scattering amplitudes is through the same path-integral
methods that are used to quantize the free strings [34,35]. In particular, the partition function
corresponding to the action (1.10) is given by a series expansion over Riemann surfaces of
genus g

Zstring =

∞∑

g=0

∫
Dγ(g)DX e−S[γ(g),X] . (1.11)

Even though the specific contribution of a Riemann surface to a string theory scattering
amplitude is harder to calculate [36] than a corresponding Feynman diagram in field theory,
the number of diagrams at any given genus is exactly one, whereas in field theory the number
of diagrams per loop grows rapidly. The high-energy behavior of string theory scattering
amplitudes is also a lot better: this is intuitively clear from the observation that vertices in
Feynman diagrams are singular whereas Riemann surfaces are smooth everywhere.

In quantum electrodynamics, there is a dimensionless constant α that can be formed out
of the dimensionful parameters e2, ~, and c. The partition function can be calculated as a
series expansion in Feynman diagrams with L loops: after assigning every vertex a factor α,
this becomes a series expansion in α

α =
e2

~c
, ZQED =

∞∑

L=0

α2(L−1)ZL . (1.12)

In the expression (1.11) for the string theory partition function, we did not write any
dimensionless parameter. However, string theory has as dimensionful parameters the gravi-
tational coupling κ and the string length `s from which it is possible to form a dimensionless
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parameter gs. One should therefore expect that the genus-expansion will become a series
expansion in gs

g2
s =

4πκ2

(2π`s)D−2
, Zstring =

∞∑

g=0

g2(g−1)
s Zg . (1.13)

It would be disappointing if reconciling gravity with quantum mechanics involved the
introduction of a new fundamental dimensionless parameter. Happily, this is not the case.
What comes to rescue is that the power of gs in (1.13) is a topological quantity: it is minus
the Euler number χ of the corresponding Riemann surface. But the Euler number of a two-
dimensional surface Σ is also related to an integral over its curvature through the Gauss-
Bonnet theorem

χ =
1

4π

∫

Σ

d2σ
√
γ R(γ) , (1.14)

which is precisely the coupling to Φ in the action (1.10). This implies that we can define the
string coupling to be the expectation value of the dilaton exponential

gs =
〈
eΦ
〉
. (1.15)

Instead of being a one-parameter family of theories labeled by a fundamental dimensionless
parameter gs, string theory is a single theory with a one-parameter family of vacuum states
labeled by the expectation value of the dilaton exponential.

1.2 Supergravity

Historically, four-dimensional supergravity [10] was discovered as a gauge theory of super-
symmetry, a procedure that we shall mimic for conformal supergravity and conformal super-
symmetry in chapter 5. In this section, we will emphasize a different viewpoint: namely we
will show that supergravity is the low-energy effective description of string theory. For each
superstring theory mentioned in the previous section, we will give its supergravity action. We
will also make some remarks about eleven-dimensional supergravity. For more details and
an accurate historical account, we refer to [37, 38].

1.2.1 Low-energy effective actions

As we mentioned before, the worldsheet for a string propagating in a flat spacetime has an
infinite-dimensional symmetry group including a two-dimensional scaling symmetry which
allowed for the complete solution to the equations of motion as well as a consistent quantiza-
tion.

For strings propagating in non-trivial backgrounds, this is no longer guaranteed: the ac-
tion (1.10) describes a string as a non-linear sigma-model in which the spacetime fields appear
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as dimensionful coupling-constants on the string worldsheet. This means that the essential
scale-symmetry will be broken in general.

In order to obtain a consistent description, the coupling constants should not transform
under the scale-symmetry: in other words, the beta-functions of the corresponding coupling
constants should vanish. These beta-functions can be calculated as a perturbation series in α′

for which the lowest-order approximation yields

β(Gµν) = Rµν + 4∂µΦ∂νΦ− 1
4Hµ

λρHνλρ +O(α′) ,
β(Bµν) = ∇λ

(
e−2ΦHµνλ

)
+O(α′) ,

β(Φ) = 4∇µ∂µΦ− 4∂µΦ∂µΦ +R − 1
12H

µνλHµνλ +O(α′) ,
(1.16)

where we have defined the field-strength of the gauge field by

Hµνλ = 3∂[µBνλ] . (1.17)

So, we see that demanding quantum mechanical consistency through the vanishing of
the beta-functions (1.16) gives constraints on the massless modes. These constraints can be
interpreted as equations of motion, since they are equivalent to the Euler-Lagrange equations
for the familiar Einstein action of General Relativity in the presence of a generalized gauge
field and a scalar field

S =
1

2κ2
0

∫
dDx

√
|G| e−2Φ

(
R+ 4 (∂Φ)2 − 1

12
H2

)
. (1.18)

The constant κ0 is not fixed by the equations of motion, and in order to relate it to the
gravitational coupling κ, we redefine the dilaton in such a way that is has a vanishing expec-
tation value

eφ ≡ eΦ

gs
. (1.19)

The action then takes on the form

S =
1

2κ2

∫
dDx

√
|G| e−2φ

(
R+ 4 (∂φ)2 − 1

12
H2

)
. (1.20)

where the gravitational coupling is now defined using (1.13)

1

2κ2
≡ 2π

g2
s(2π`s)

D−2
. (1.21)

The force coming from the dilaton exchange breaks the equivalence principle of General
Relativity: free-falling frames are no longer equivalent to the absence of gravity. In particular,
the beta-functions (1.16) are derived in a frame called the string frame:

gS
µν ≡ Gµν . (1.22)
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It is often convenient to scale the metric in such a way that the curvature term in the action
has no dilatonic pre-factor. This metric is called the Einstein frame: it is related to the string
frame by the transformation

gE
µν = e−

4
D−2φgS

µν . (1.23)

In this frame the action (1.20) takes on the form

S =
1

2κ2

∫
dDx

√
|gE|

(
R − 4

D − 2
(∂φ)2 − 1

12
e−φH2

)
. (1.24)

To avoid cluttering actions with a lot of constants, we will often put factors of α′ and gs equal
to unity: the former can always be restored by dimensional analysis; and for each term, we
can find the correct factor of gs in any metric frame from the relative scaling between that
frame and the string frame, the factor of eΦ for the corresponding term in the string frame,
and the use of (1.19).

Any closed string theory with massless modesGµν , Bµν , and φ as described by the action
(1.10) has the spacetime action (1.20) as its low-energy description. We will now review how
the various massless modes of the different versions of superstring theory give rise to different
modifications of the action (1.20).

1.2.2 N = 2 supergravities

The Type II superstrings each have their own version of supergravity describing their massless
modes. Since closed strings have both left and right-moving modes, there are in total four
different sectors for the massless modes, depending on the boundary conditions. We will only
look at the bosonic sectors of the supergravity actions, since we will need their structures in
chapters 2 and 3. This corresponds to keeping the massless modes of the NSNS and RR-
sectors of the superstrings.

The massless modes of the NSNS-sector of all the superstrings are given by the familiar
metric gµν , the anti-symmetric tensor field Bµν , and the dilaton φ. To simplify the structure
of the supergravity actions, we will use differential form notation in this section. In this
language the tensor Bµν is written as the two-form B(2), and the volume element

√
|g| as

? . For more details on our notation, see appendix A. The RR-sector of Type IIA string
theory consists of a set of two gauge potentials {C(1), C(3)}. The bosonic part of the Type
IIA supergravity action is given by

LIIA = e−2φ

(
R ? + 4 ? dφ ∧ dφ− 1

2
? H(3) ∧H(3)

)
− 1

2
? G(2) ∧G(2)

−1

2
? G(4) ∧G(4) +

1

2
B(2) ∧ dC(3) ∧ dC(3) , (1.25)

where the field-strengths of the various gauge potentials are defined as

H(3) = dB(2) , G(2) = dC(1) , G(4) = dC(3) −H(3) ∧ C(1) . (1.26)



1.2 Supergravity 19

For the Type IIB superstring one finds in the RR-sector a set of three gauge potentials
{C(0), C(2), C(4)} which appear in the Type IIB supergravity action according to

LIIB = e−2φ

(
R ? + 4 ? dφ ∧ dφ− 1

2
? H(3) ∧H(3)

)
− 1

2
? G(1) ∧G(1)

−1

2
? G(3) ∧G(3) −

1

4
? G(5) ∧G(5) −

1

2
C(4) ∧ dC(2) ∧ dB(2) , (1.27)

where we have

H(3) = dB(2) , G(1) = dC(0) , G(3) = dC(2) −H(3) ∧ C(0) . (1.28)

The five-form field-strength G(5) satisfies a self-duality condition

G(5) = dC(4) −
1

2
C(2) ∧ dB(2) +

1

2
B(2) ∧ dC(2) , G(5) ≡ ?G(5) , (1.29)

which does not follow from the equation of motion [39] but which has to be imposed as an
extra constraint [40].

1.2.3 N = 1 supergravities

The N = 1 superstrings have N = 1 supergravities as their low-energy effective descrip-
tion. They share the NSNS-sector of the Type II strings, but none of the N = 1 superstrings
have RR-gauge potentials, although they do have ordinary gauge fields AI(1) for their respec-
tive E8×E8 and SO(32) symmetry groups. For the Heterotic string theories, one has the
following kinetic terms of the bosonic part of the supergravity actions

LHet = e−2φ

(
R ? + 4 ? dφ ∧ dφ− 1

2
? H(3) ∧H(3) −

1

2
Tr ? F(2) ∧ F(2)

)
, (1.30)

where the trace is taken over all gauge group generators and where the field-strengths are
given by

H(3) = dB(2) +
1

2
Tr A(1) ∧ dA(1) , F(2) = dA(1) +A(1) ∧A(1) . (1.31)

The Type I superstring has the same field content as the Heterotic strings but a slightly
different supergravity action

LI = e−2φ (R ? + 4 ? dφ ∧ dφ)− 1

2
? H(3) ∧H(3) −

1

2
e−φTr ? F(2) ∧ F(2) . (1.32)

We have left out some terms in the actions (1.30) and (1.32): they are necessary to can-
cel the gauge and gravitational anomalies [33]; we refer to the literature for the complete
expressions [21].
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1.2.4 D = 11 supergravity

Quantum versions of superstring theory can only live in ten dimensions, and we have shown
above that they all have a ten-dimensional low-energy limit. However, there also exists an
eleven-dimensional supergravity theory [41]. The field content consists of a metric gµν and a
three-form gauge potential C(3) described by the following bosonic Lagrangian

L11 = R ? − 1

2
? G(4) ∧G(4) +

1

6
C(3) ∧G(4) ∧G(4) , (1.33)

where as usual
G(4) = dC(3) . (1.34)

For a long time, it was not clear what the meaning of this eleven-dimensional theory was,
until it was discovered that if one generalizes the concept of superstrings to supermembranes,
then the spacetimes in which such supermembranes can consistently move are precisely those
satisfying the equations of motion of eleven-dimensional supergravity [42].

Attempts to quantize the supermembrane and to obtain its spectrum failed however, and
it was shown that the supermembrane has a continuous spectrum with no discrete non-zero
energy vibration modes [43]. However, the supermembrane and eleven-dimensional super-
gravity were a turning point in the development of string theory, since they provided many
insights in the relationships between the different versions of string theory, as we will now
discuss in the remainder of this chapter.

1.3 Dualities

The possibility of no less than five consistent superstring theories is an embarrassment of
riches. In this section, we will sketch how all string theories are related to each other by a
web of dualities.

1.3.1 T-duality

The first duality that we will discuss is a duality in which string theories compactified on
circles of different radii are mapped into each other. This is possible since the embedding
coordinates Xµ of a string are not ordinary scalar fields, satisfying periodic boundary condi-
tions as in (1.8), but instead they can wrap around the compact dimension according to

Xµ(τ, σ) = Xµ(τ, σ + `s) + 2πnR . (1.35)

This means that the solution to the wave equation for the coordinates Xµ has momentum
modes proportional to the inverse radius, but also winding terms proportional to the radius.
This is also reflected in the mass formula

Xµ
±(τ, σ) ∼

(m
R
± wR

)
σ± , M2 ∼

(
m2

R2
+ w2R2

)
. (1.36)
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The mass spectrum is symmetric under inversion of the radius with a simultaneous inter-
change of the momentum modes with the winding modes

R↔ 1

R
, m↔ w : M2 →M2 , Xµ

±(τ, σ)→ ±Xµ
±(τ, σ) . (1.37)

For the coordinates, the effect is equivalent to a parity transformation on the right-moving
modes. For the Type II superstrings this parity transformation changes the chirality of the
spinors and the overall result is that the (1,1) supersymmetric Type IIA superstring theory is
mapped into the (2,0) supersymmetric Type IIB superstring theory. This relation holds for
any value of the radius: in particular it relates the limits R→ 0 and R→∞.

This has no counterpart in field theories, since particles cannot wind around a compact
dimension. The effect of T-duality in supergravity is not that e.g. Type IIA supergravity and
Type IIB supergravity are T-dual to each other in the sense of the Type II string theories, but
rather that there is a discrete symmetry relating the two supergravity theories when both are
reduced to nine dimensions over a circle of zero radius [44].

The effect of T-duality for the Heterotic superstrings is more difficult to explain, but
it is related to the fact that one can see the right-moving modes as bosonic string theories
compactified on sixteen-dimensional lattices, which are precisely the root lattices of the cor-
responding gauge groups. Under the map (1.37), the lattices of the E8×E8 and SO(32) are
interchanged3 making the Heterotic superstrings T-dual to each other [45].

T-duality in Type I string theory is even more astonishing, since the effect of a parity
transformation on the right-moving modes interchanges the Neumann and Dirichlet boundary
conditions, as can be seen from (1.6). As we argued before, and as we will show in the
next section, the hyperplanes on which endpoints of open strings with Dirichlet boundary
conditions end are actually solitonic solutions of string theory. The effect of T-duality on
these D-branes is that it maps branes of different dimensions to each other.

The examples of T-duality which we have discussed here are only the tip of a mathemat-
ical iceberg: there are also dualities known as mirror-symmetries in which ten-dimensional
string theories compactified on different six-dimensional spacetimes, known as Calabi-Yau
manifolds, are related to each other. The perturbative expansions using sigma-model ac-
tions with mirror-related target spaces give the same quantum mechanical scattering ampli-
tudes [46].

1.3.2 S-duality

String theory also possesses non-perturbative dualities in which the strong coupling regime
of a string theory is related to the weak coupling regime of another theory. This class of
dualities is called S-duality. These dualities are non-trivial to prove, but substantial evidence

3This involves breaking the gauge group in both theories to an SO(16) × SO(16) subgroup by turning on
appropriate Wilson lines.
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from string theory compactifications has been obtained. For a good review see [47]. We will
now indicate how these dualities come about using the supergravity approximation.

If we transform the Heterotic SO(32) action (1.30) to the Einstein frame (1.23), then we
find

LE
Het = R ? − 1

2
? dφ ∧ dφ− 1

2
e−φ ? H(3) ∧H(3) −

1

2
e−

1
2φ Tr ? F(2) ∧ F(2) , (1.38)

and for the rescaled Type I action (1.32) we obtain

LE
I = R ? − 1

2
? dφ ∧ dφ− 1

2
eφ ? H(3) ∧H(3) −

1

2
e

1
2φ Tr ? F(2) ∧ F(2) . (1.39)

It is clear upon inspection that the two actions (1.38) and (1.39) are transformed into each
other under the discrete mapping

φ→ −φ . (1.40)

Since the exponential of the dilaton corresponds to the string coupling constant, this suggests
that the strong and weak coupling regimes of the Heterotic SO(32) and Type I superstring
are mapped into each other [48]. This is a surprising result: it relates a theory of both closed
and open strings to a theory of only closed strings.

Transforming the IIB supergravity action to the Einstein frame yields

LE
IIB = R ? − 1

2
? dφ ∧ dφ− 1

2
e−φ ? H(3) ∧H(3) −

1

2
e2φ ? G(1) ∧G(1)

−1

2
eφ ? G(3) ∧G(3) −

1

4
? G(5) ∧G(5) −

1

2
C(4) ∧ dC(2) ∧ dB(2) . (1.41)

This action has a symmetry mixing the two scalars and two two-form potentials. In partic-
ular, it can be shown [40] that the action (1.41) remains invariant under so-called S `(2,R)
transformations of the form

τ → aτ + b

cτ + d
,

(
C(2)

B(2)

)
→
(
a b
c d

)(
C(2)

B(2)

)
, ad− bc = 1 , (1.42)

where we have grouped the two real scalars together into one complex scalar τ

τ = C(0) + i e−φ . (1.43)

For the special case a = d = C(0) = 0 and b = −c = 1, the transformation (1.42) is
equivalent to (1.40). This makes it plausible that the strong coupling regime of Type IIB
superstring theory4 is actually dual to its own weak coupling regime [49].

4The duality symmetry is restricted to S `(2,Z) in Type IIB string theory.
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1.3.3 M-theory

The strong coupling limit of Type IIA string theory is even more surprising. First we trans-
form (1.25) to the Einstein frame to obtain

LE
IIA = R ? − 1

2
? dφ ∧ dφ− 1

2
e−φ ? H(3) ∧H(3) −

1

2
e

3
2φ ? G(2) ∧G(2)

−1

2
e

1
2φ ? G(4) ∧G(4) +

1

2
B(2) ∧ dC(3) ∧ dC(3) . (1.44)

Then we group the various fields of this action together in the following way

ĝµν = e−
1
6φgµν + e

4
3φCµCν ,

ĝµz = e
4
3φCµ , ĝzz = e

4
3φ ,

Ĉ(3) = C(3) +B(2) ∧
(
dz + C(1)

)
. (1.45)

Note that this is precisely the field content ofD = 11 supergravity. In fact, substituting (1.45)
into the D = 11 supergravity action (1.33), we obtain

L11 = LE
IIA ∧ dz , (1.46)

meaning that Type IIA supergravity is a Kaluza-Klein reduction of D = 11 supergravity over
a circle.

From (1.45) and (1.15), we see that the exponential of the dilaton relates the string cou-
pling constant to the radius of the eleventh dimension in units of the eleven-dimensional
Planck length

R11 = g
2
3
s `p . (1.47)

The eleven-dimensional gravitational couplings constant has dimensions of `9p: using (1.46)
and (1.47), we can determine the ten-dimensional Newton’s constant

κ2
11 ≡ κ2

10R11 → κ2
10 =

`8p

g
2
3
s

. (1.48)

If we compare this with the previous expressions (1.3) and (1.13), then we obtain a relation
between the ten-dimensional string length, string coupling, and Planck length. We can then
express the eleven-dimensional radius in ten-dimensional quantities

`p = g
1
3
s `s → R11 = gs`s . (1.49)

This means that the strong coupling limit of ten-dimensional Type IIA string theory is
an eleven-dimensional theory [50]. This theory goes under the name of M-theory [51]: it is
defined to be the theory that has D = 11 supergravity as its low-energy limit. In a similar
way, there are reasons to believe that the strong coupling limit of the Heterotic E8×E8 string
theory is related to the same M-theory [52], but this time the extra dimension is not a circle
but an interval [53].
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Figure 1.4: The M-theory web of string theories and their dualities.

1.3.4 The duality web

We have summarized this web of dualities in figure 1.4, where S1 and S1/Z2 indicate a circle
and a line interval, respectively. There is also a duality between the Type IIB and Type I string
theories which we have not discussed, but a parity operator Ω can be applied to spectrum of
Type IIB string theory to obtain Type I string theory.

After this web of dualities emerged, the term M-theory was no longer used for the strong
coupling limit of Type IIA string theory but for the whole framework of string theories and
supergravities in ten and eleven dimensions. The overall picture is that all these theories
are different vacua of a single underlying theory around each of which one can perform
perturbation theory.

The various dualities interpolate between the different vacua and relate the various per-
turbative results. A detailed microscopic description of the full M-theory is still lacking,
although there have been some attempts in this direction [54].

1.4 Branes

In this section, we will consider some aspects of branes. We will start with looking at how
branes appear as solutions of the supergravity equations of motion. Then we will describe the
worldvolume actions describing the fluctuations around these solutions, and we will discuss
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the different metric frames in which one can work. We will finish with a discussion about the
tensions and charges related to the brane solutions. The geometrical aspects of these branes
will be discussed in chapter 3.

1.4.1 Two-block solutions

Our approach will be to first consider a general class of solutions called two-block solutions
to a genericD-dimensional supergravity action in the Einstein frame consisting of the kinetic
terms for the metric, the dilaton5 and a p+ 1-form gauge field

LE
(D, p) = R ? − 4

D − 2
? dφ ∧ dφ− 1

2
eaφg2k

s ? F(p+2) ∧ F(p+2) , (1.50)

where the exponent k of gs is the remnant of the dilaton coupling e2kΦ to the field-strength
in the string frame. Using (1.19) and (1.23), we find

k =
a

2
+

2d

D − 2
. (1.51)

Anticipating that this action will describe both an electric p-brane and a magnetic p̃-brane,
we will introduce

{
d = p+ 1 : worldvolume dimension of the electric p-brane
d̃ = p̃+ 1 : worldvolume dimension of the magnetic p̃-brane

(1.52)

The equations of motion for the action (1.50) in the electric formulation have as solution an

electric p-brane =





ds2E = H
−4d̃

(D−2)∆ dx2
(d) +H

4d
(D−2)∆ dy2

(d̃+2)
,

eΦ = gsH
(D−2)a

4∆ ,

F(p+2) = g−ks

√
4
∆ ddx ∧ dH−1 ,

H(y) = 1 +
(
R
y

)d̃
.

(1.53)

The parallel coordinates xa (a = 0, . . . , p) span the worldvolume of the brane, and the co-
ordinates ym (m = p + 1, . . . , D − 1) are transverse to the brane. The parameter ∆ of the
solution is given by

∆ =
(D − 2)a2

8
+

2dd̃

(D − 2)
. (1.54)

The function H is a harmonic function in the transverse dimensions, depending on the trans-
verse coordinates yi only

∆(d̃+2)H = 0→ H(y) = 1 +

(
R

y

)d̃
, y2 ≡

∑

m

(ym)2 , (1.55)

5In our conventions the scalar kinetic term has a nonstandard normalization in D < 10.
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where R is an integration parameter depending on the charge of the brane, as we will see
later.

Since the metric splits up into two diagonal pieces, and since the function H depends
only on the transverse coordinates, such solutions are called brane solutions. Furthermore,
the field strength is proportional to the worldvolume ddx of the brane which corresponds to
the fact that the brane couples to a gauge potential A(p+1).

Note that we do not consider solutions for which ∆ = 0: they correspond to the cases
a = d = 0, a = d̃ = 0, or a 6= 0 with d̃ < 0. These cases correspond to a −1-brane or
instanton, which is only a solution of the Wick-rotated action; the D−3-brane, for which the
harmonic function is logarithmic; the D − 2-brane, which falls under the class of domain-
walls; and the D − 1-brane, which is a spacetime-filling brane. We will not discuss these
exotic branes, since they do not have a regular near-horizon limit, except for the domain-
walls: they will be the subject of chapter 3.

We can transform the field strength to its magnetic dual

g2−k
s F(p̃+2) ≡ eaφgks ? F(p+2) , p̃ ≡ D − p− 4. (1.56)

This gives for the action

LE
(D, p̃) = R ? − 4

D − 2
? dφ ∧ dφ− 1

2
e−aφg2−4k

s ? F(p̃+2) ∧ F(p̃+2) . (1.57)

The magnetic dual formulation (1.57) supports a

magnetic p̃-brane =





ds2E = H
−4d

(D−2)∆ dx2
(d̃)

+H
4d̃

(D−2)∆ dy2
(d+2) ,

eΦ = gsH
−(D−2)a

4∆ ,

F(p̃+2) = gk−2
s

√
4
∆ dd̃x ∧ dH−1 ,

H(y) = 1 +
(
R
y

)d
,

(1.58)

where the function H is now harmonic on the d+ 2 transverse directions.
We will now give some explicit brane solutions of supergravities in ten and eleven di-

mensions. We will start with giving solutions of the Type IIA and Type IIB supergravity
equations of motion following from the actions (1.44) and (1.41), after which we will give
the eleven-dimensional two-block brane solutions.

Strings and five-branes

Since all D = 10 supergravities are low-energy limits of superstring theories, one expects
that they should have string-like solutions. We can obtain such solutions if we truncate the
actions (1.41) and (1.44) to only their first three terms. This gives the action (1.50) with
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D = 10, p = 1 and a = −1. If we substitute this into the general two-block solutions (1.53),
we obtain the fundamental string solution [55]

F1 =





ds2 = H− 3
4 dx2

(2) +H
1
4 dy2

(8) ,

eΦ = gsH
− 1

2 ,
H(3) = d2x ∧ dH−1 ,

H(y) = 1 +
(
R
y

)6

.

(1.59)

The magnetic dual of this is a magnetic five-brane, also known as the Neveu-Schwarz five-
brane [56, 57].

NS5 =





ds2 = H− 1
4 dx2

(6) +H
3
4 dy2

(4) ,

eΦ = gsH
1
2 ,

H̃(7) = d6x ∧ dH−1 ,

H(y) = 1 +
(
R
y

)2

.

(1.60)

Dp-branes

The Type II string theories have RR-potentials C(p) in their massless spectrum, where p =
1, 3 for Type IIA and p = 0, 2, 4 for Type IIB. We notice that the kinetic terms of the gauge
potentials have a factor of a = 3−p

2 in their dilaton exponential. The branes coupling to these
gauge potentials are called Dp-branes [58], with solutions given by

Dp =





ds2 = H
p−7
8 dx2

(p+1) +H
p+1
8 dy2

(D−p−1) ,

eΦ = gsH
3−p

2 ,
G(p+2) = g−1

s dp+1x ∧ dH−1 ,

H(y) = 1 +
(
R
y

)D−p−3

,

(1.61)

where for p > 3 the magnetic field strength has been given6. In Type IIA one finds D0 and
D2-branes as well as their magnetic duals, the D4 and D6-branes. Type IIB contains D1
and self-dual D3-branes as well as the magnetic D5-branes. The gauge field C(0) supports a
D(-1)-brane called the D-instanton and a D7-brane.

It was a major breakthrough in string theory when it was realized that these Dp-branes
could be identified as the hyperplanes on which open strings can end [24]. In chapter 2, we
will look in more detail at the implications of the different aspects of D-branes.

Membranes and five-branes

The action ofD = 11 supergravity given in (1.33) can be truncated to only its first two terms,
giving the form (1.50) with D = 11 and p = 2. This should come as no surprise since we

6The D3-brane solution will be given in (2.1).
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mentioned before that there exists an eleven-dimensional supermembrane. The solution of
this M2-brane is given by [59]

M2 =





ds2 = H− 2
3 dx2

(3) +H
1
3 dy2

(8) ,

G(4) = d3x ∧ dH−1 ,

H(y) = 1 +
(
R
y

)6

.

(1.62)

The magnetic dual of the M2-brane is the M5-brane which has as solution [60]

M5 =





ds2 = H− 1
3 dx2

(6) +H
2
3 dy2

(5) ,

G̃(7) = d6x ∧ dH−1 ,

H(y) = 1 +
(
R
y

)3

.

(1.63)

Dualities between branes

In the previous section, we have discussed dualities in string theory. In particular, we saw
how S-duality mixes the different scalar fields and gauge fields of Type IIB supergravity and
how T-duality changes the boundary condition of open strings. We also saw how D = 11
supergravity could be dimensionally reduced to Type IIA supergravity in ten dimensions.
Since branes couple to the various gauge fields, and since Dp-branes are also the hyperplanes
on which open strings can end, dualities will relate the various branes to one another. In
addition to that, the eleven-dimensional branes reduce to solutions of Type IIA supergravity.

In figure 1.5, we have indicated the various branes in ten and eleven dimensions and
the dualities between them. Dimensional reduction is given by arrows, T-duality by solid
lines, and S-duality by dashed lines. Electric/magnetic duality and some T-dualities are not
indicated. Also depicted are some branes which do not fall in our two-block solutions, such
as the waves (W) and Kaluza-Klein monopoles (KK), but which are related to ordinary branes
by duality or reduction. Another exotic brane, the D-instanton, is left out altogether. The 8-
branes and 9-branes on the right of figure 1.5 are special branes: they correspond to domain-
walls and spacetime-filling branes. For more details, see [61]. In chapters 3 and 4, we will
discuss domain-walls in more detail.

1.4.2 Worldvolume actions

Branes are not just static solutions but dynamical objects, since they couple to gravity and to
gauge potentials. The fluctuations around the static solutions are described by worldvolume
actions, which are generalizations of the actions for the particle and the string given in (1.1)
and (1.2). An additional remark is that some of the brane solutions we gave in (1.53) are
singular, which means that the target space action (1.50) needs to be supplemented with a
source term in these cases

Stotal =
1

2κ2

∫

M

dDxL(D,p) +

∫

Σ

ddσLp−brane . (1.64)
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Figure 1.5: The various branes in D = 10 and D = 11 and their dualities.

In order to obtain the worldvolume action, we first assign coordinates σa , a = 0 . . . p to the
brane. This gives as induced metric gab on the brane worldvolume Σ the pull-back of the
metric Gµν on the target spaceM

gab = Gµν∂aX
µ∂bX

ν . (1.65)

A general Ansatz for the action is then given by

Lp−brane = Lkinetic + LWZ

= −τp
√
|g|+ µpC(p+1) + . . . . (1.66)

Here, τp is the energy-density, or tension, and µp is the charge-density. The last term is the
generalization of the coupling of a particle to a gauge field called the Wess-Zumino action.
The kinetic term modifies the condition on the harmonic function

∆(d̃+2)H(ym) = κ2τp δ(y
m) . (1.67)

Generically, the embedding coordinates Xµ can be identified with the Goldstone modes
corresponding to the translational symmetries that are broken by the brane. This means that
the modes form a scalar multiplet; this is the case for the branes such as the M2-brane.
However, other branes, such as the D3-brane or the M5-brane, can have a vector multiplet [62]
or a tensor multiplet [63] as their massless modes. In chapter 2, we will look in more detail
at the worldvolume action of the D3-brane.
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1.4.3 Tensions and charges

For the general two-block solutions we gave before, we can actually calculate the tension and
charge-density. We first define the deviation of the flat metric hµν

gµν = ηµν + κhµν , (1.68)

and then we substitute the two-block solution (1.53) into the ADM-formula which expresses
the tension as a spatial surface integral over a sphere surrounding the brane

τp =
1

2κ2

∫

Sd̃+1

dd̃+1Σm (∂nhmn − ∂mhaa)

=
4

∆

d̃Rd̃Ω(d̃+1)

2κ2
, (1.69)

where the indices m,n run over the transverse coordinates, and where the index a runs over
all spatial coordinates 1 . . . D − 1. The surface area of the sphere is given by

Ω(d̃+1) =
2π

d̃+2
2

Γ
(
d̃+2
2

) . (1.70)

The charge of the brane is given by a generalized Gauss-law

µp =
1

2κ2

∫

Sd̃+1

eaφ ? F(p+2)

=

√
4

∆

d̃Rd̃Ω(d̃+1)

2κ2
. (1.71)

Comparing (1.69) with (1.71), we obtain what is known as the BPS-condition

τp =

√
4

∆
|µp| . (1.72)

The BPS-condition (1.72) is the limiting case of a more general condition called the
Bogomol’nyi bound

τp ≥
√

4

∆
|µp| . (1.73)

This bound is valid for solutions of supersymmetric theories such as the branes of supergrav-
ities we discussed. In eleven dimensions, the superalgebra is generated by 32-component
supercharges Qα

{Qα, Qβ} = (γµC)αβ Pµ +
1

2!
(γµνC)αβ Zµν +

1

5!

(
γµνλρσC

)
αβ
Zµνλρσ , (1.74)
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where γµ... are Dirac-matrices and where C is the charge conjugation matrix. For our con-
ventions on gamma-matrices see appendix A. The operator Pµ represents the generator of
translations, and the tensors Z(2) and Z(5) are called central charges, since they commute
with the supersymmetry charges.

All the operators in (1.74) can be thought of as charges: they can be expressed as inte-
grals over conserved currents which, using Noether’s theorem, correspond to the symmetries
of D = 11 supergravity such as supersymmetry, general coordinate invariance, and gauge
invariance. Since the left-hand side of (1.74) is a positive operator, the sum of the momentum
operator and the central charges are bounded from below. This bound is equivalent to (1.73),
and it has to be satisfied by every solution of a supersymmetric theory.

A generic solution of a supersymmetric theory will itself not be completely supersymmet-
ric, but when the BPS-bound (1.73) is exactly saturated, as it is in (1.72), then the correspond-
ing solution preserves some of the supersymmetries of the underlying theory. In particular,
for the branes in D = 10 and D = 11, we have ∆ = 4 which means that all these branes
preserve half of the 32 spacetime supersymmetries.

So far, we have neglected the fermions in the supergravity action, since their structure
is rather complicated in general. For the brane solutions that we have presented, only the
bosonic fields have a non-vanishing value. In order for this to be consistent with supersym-
metry, the fermions that are set to zero also need to have a vanishing supersymmetry variation.

For instance for the Dp-branes, the supersymmetry variations for the supersymmetric
partners of the graviton and the dilaton, the gravitino ψµ and the dilatino λ, are given by [64]

δψµ = ∂µε− 1
4ωµ

abγabε+
(−)p

8(p+ 2)!
eφ γ(p+2) · F(p+2)γµε

′
p ,

δλ = /∂φε+
3− p

4(p+ 2)!
eφ γ(p+2) · F(p+2)ε

′
p , (1.75)

where ωµab denotes the spin-connection corresponding to the metric of the Dp-brane solution
(1.61), and where we have used the notation of appendix A. The spinor ε′p is equal to ε up to
a chirality projection matrix, depending on the value of p [64]. Substituting the solutions for
the metric, dilaton, and field-strength of the Dp-brane solution (1.61), we find the following
condition on the spinor ε

ε+ γ01...pε
′
p = 0 . (1.76)

Spinors for which the supersymmetry variation of the gravitino vanishes are called Killing
spinors. The condition (1.76) implies that the Killing spinor ε is projected to only half of its
original degrees of freedom, in other words, only half of the supersymmetries of the Type IIA
and Type IIB supergravity actions are realized on the Dp-brane solutions.

There are also more general brane solutions, which can be thought of as intersections of
the elementary branes and which have different values for ∆. If ∆ = 4/n the corresponding
brane preserves 32/2n supersymmetries. The importance of the BPS-bound lies in the fact
that it is independent of any coupling constant, meaning that the brane tension is stable for
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quantum corrections. However, recent developments show that there are also stable objects
in string theory which are non-BPS [65].

The supersymmetry algebra (1.74) contains much more information than we have room to
discuss here. As an example, we remark that the complete spectrum of branes can be deduced
from it [66]. The spatial components of every central charge Z(p) correspond to a p-brane,
giving the wave, the M2-brane and M5-brane in D = 11. One can also dualize the timelike
component to a Z(D−p) charge7 which should correspond to a D − p-brane. In D = 11 this
gives a Kaluza-Klein monopole and a M9-brane. This explains the extra branes appearing in
figure 1.5.

1.4.4 Metric frames

We have seen that the dilaton can be used to rescale the metric: this enabled us to go from the
string frame, in which supergravities are derived, to the Einstein frame, where the curvature
term has no dilatonic pre-factor. In this section, we will discuss two other metric frames that
we will need later.

The dilaton dependence of the effective tension τp will in general depend on the frame
being used. We define the sigma-model frame gσµν as the frame in which a particular brane
tension is independent of the dilaton. We denote this intrinsic tension with Tp. The world-
volume action of a BPS p-brane in the sigma-model frame couples to the induced metric gσab
and is given by

Lσp−brane = −Tp
(√
|gσ|+ C(p+1)

)
. (1.77)

It scales homogeneously under the scale transformations

gσab → λ2gσab , C(p+1) → λp+1C(p+1) . (1.78)

This so-called trombone symmetry is a symmetry of the p-brane equations of motion [67],
which implies that the combined system (1.64) of the target space action and the worldvolume
action has to scale homogeneously as λp+1. For this to happen, we have to let the dilaton
scale as

eφ → λαeφ , α = − 2dd̃

(D − 2)a
. (1.79)

Using the expressions (1.52) for the worldvolume dimensions of the electric and magnetic
brane, we can relate the sigma-model frame to the Einstein frame by

gσµν = eωσφgE
µν , ωσ = −a

d
. (1.80)

7Except for p = 0 which has no timelike components and for Pµ which has the Hamiltonian as its timelike
component. Self-dual charges Z(D/2) also correspond to only a single brane.
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The target space action (1.50) in the sigma-model frame (1.80) has an overall dilaton factor
and a modified kinetic term for the dilaton

Lσ(D, p) = eδσφ

(
R ? + γσ ? dφ ∧ dφ− 1

2
? F(p+2) ∧ F(p+2)

)
. (1.81)

which are given by

δσ =
(D − 2)a

2d
, γσ =

D − 1

D − 2
δ2σ −

4

D − 2
. (1.82)

We have already seen an example of such a sigma-model frame: the string frame defined
in (1.23) which is in agreement with (1.80) if we substitute the string solution parameters
a = −1 and p = 1. The worldvolume action (1.10) has no dilaton dependence, and the target
space action (1.20) has an overall e−2φ factor. This guarantees that the combined action
transforms homogeneously as λ2 under

gS
µν → λ2gS

µν , Bµν → λ2Bµν , eφ → λ3eφ . (1.83)

Finally, there is another important frame – the dual frame. This frame is defined as the
sigma-model frame of the magnetically dual brane. The dual frame is related to the Einstein
frame by

gD
µν = eωDφgE

µν , ωD =
a

d̃
. (1.84)

In the dual frame, the magnetically dual brane’s tension is independent of the dilaton, and
the magnetic formulation of the target space action (1.57) has an overall dilaton factor and a
modified kinetic term for the dilaton

LD
(D, p̃) = eδDφ

(
R ? + γD ? dφ ∧ dφ− 1

2
? F(p̃+2) ∧ F(p̃+2)

)
, (1.85)

which are given by

δD = − (D − 2)a

2d̃
, γD =

D − 1

D − 2
δ2D −

4

D − 2
. (1.86)

In chapter 3, we will see that the near-horizon geometry of a brane takes on a simplified form
in the dual frame.

We can now calculate the dilaton-dependence of a p-brane in the string frame from

LS
p−brane = −τp

(√
|gS|+ C(p+1)

)
, (1.87)

and using the connections between the various frames given in (1.23) and (1.80) we find

τp = e−kφTp , k =
a

2
+

2d

D − 2
. (1.88)
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Comparing with (1.51), we see that the dilaton coupling for the p-brane worldvolume action
in the string frame is equal to the dilaton coupling for the electric field-strength in the string
frame.

Remembering that the exponential of the dilaton corresponds to the string coupling, we
can compute the coupling dependence of the various brane tensions in the string frame. For
the string, we take a = −1 and p = 1; for the Neveu-Schwarz five-brane, we take a = 1 and
p = 5; and finally for the Dp-branes, we have a = 3−p

2

τF1

TF1
= 1 ,

τDp
TDp

=
1

gs
,

τNS5

TNS5
=

1

g2
s

. (1.89)

So, we see that the NS5-brane and the Dp-branes are really solitonic objects: they become
massive compared to fundamental strings for small values of the string couplings.

In the next chapters, we will need expressions for the tension of Dp-branes. In [58] this
was calculated by comparing the worldsheet and the target space calculations of RR-field and
gravitational interactions. This gave the same `s-dependence as derived from dimensional
analysis, but the precise numerical factor can also be fixed by demanding that

τF1

τD1
= gs . (1.90)

Using (1.3) and (1.89) gives as the answer

TDp =
2π

(2π`s)p+1
. (1.91)



Chapter 2

The AdS/CFT correspondence

In chapter 1, we have seen that the search for a theory of Quantum Gravity has led to string
theory, and that string theory has a rich structure and many exotic features, some of which

do not appear in quantum field theories. Nevertheless, as we have argued in the introduction,
there are many connections between theories of gravity and field theories. In the last few
decades of the previous century, more, seemingly unrelated, conjectures and discoveries were
made in this direction, which we will briefly summarize now.

In the nineteen seventies, it was noted by ’t Hooft [68] that gauge theories like QCD be-
have as string theories when the gauge group becomes large: the Feynman diagram series
becomes dominated by planar diagrams. Such diagrams are in a one-to-one correspondence
with two-dimensional surfaces, a feature characteristic of string theories. However, the pre-
cise description of such a string theory in terms of a worldsheet action was never found.

On grounds of entropy considerations, it was argued by ’t Hooft [69] and by Susskind [70]
that any gravitational theory in a spacetime with length scales of the order of the Planck scale
should be described by a quantum field theory living on the boundary of that spacetime. This
idea is called the holographic principle; the gravitational theory is said to be holographically
dual to the quantum field theory. Again, specific examples proved to be hard to find.

In many ways, the discovery of D-branes was a breakthrough for string theory. D-branes
provide non-perturbative solutions to the theory. They also couple naturally to both open
strings, which have gauge fields in their spectrum; and to closed strings, which have gravitons
as vibration modes. We have displayed these two aspects in figure 2.1. This complementary
nature of D-branes makes for a powerful framework for calculating black hole entropies [71,
72].

The connections between gauge theory and gravity described above led Maldacena to his
conjecture [73] of the AdS/CFT correspondence. Inspired by the properties of D3-branes, he
conjectured that Type IIB string theory on an Anti-de-Sitter (AdS) spacetime is holograph-
ically dual to a conformal field theory (CFT), namely N = 4 supersymmetric, large N ,
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Figure 2.1: D-branes as open string boundary conditions and closed string sources.

SU(N) Yang-Mills theory in four dimensions. Specific proposals for quantitatively checking
this conjecture were soon put forward [74, 75].

In this chapter, we will start with describing the basic arguments leading to the Malda-
cena conjecture. After a description of some properties of Anti-de-Sitter spacetime, we will
indicate how one arrives at a scheme for computing correlation functions for both the gauge
theory and gravity. We will finish with a summary of the enormous body of evidence that has
accumulated over the years. For more details, we refer to the Physics Report [76] and to the
more elementary reviews [77–80].

2.1 The D3-brane

In this section, we will look in more detail into aspects of the D3-brane. We will start with
describing the interaction between a spacetime supergravity theory and a worldvolume gauge
theory. We will then take two particular limits of the system and argue that these limits
are equivalent. This is the reasoning that led Maldacena to his conjecture of the AdS/CFT
correspondence.

2.1.1 Interacting theories

The D3-brane is a four-dimensional BPS-solution of Type IIB string theory preserving half of
the 32 supersymmetries. The form of the solution is obtained by taking p = 3 in the expres-
sion for the general Dp-brane solution (1.61) and implementing the self-duality constraint
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(1.29)

D3-brane =





ds2 = H− 1
2 dx2

(4) +H
1
2

(
dy2 + y2dΩ2

(5)

)
,

eΦ = gs ,
G(5) = d4x ∧ dH−1 + ? d4x ∧ dH−1 ,

H(r) = 1 +
(
R
y

)4

.

(2.1)

The constant R can be determined from (1.69)

R4 = 4πgs`
4
s . (2.2)

The action describing (2.1) is given by the combined system

SD3 =
1

2κ2

∫

M

d10xLS
(10, 3) +

∫

Σ

d4σLS
D3 + Sint . (2.3)

For completeness, we have also indicated the action Sint which describes the interactions be-
tween the worldvolume and target space actions; it contains the higher-derivative and higher
order α′ corrections to the worldvolume and target-space actions. Hence, one can view Sint

as the action parameterizing all the string-theory corrections to the supergravity plus world-
volume action approximation.

The target space action is a truncation of the Type IIB supergravity pseudo-action in the
string frame (1.27) to the metric Gµν , the dilaton φ, and the self-dual RR-field G(5)

LS
(10, 3) = e−2φ

(
R ? − 1

2
? dφ ∧ dφ

)
− 1

4
? G(5) ∧G(5) . (2.4)

The worldvolume theory is given by a Dirac-Born-Infeld (DBI) action [22]

LS
D3 = −TD3 e

−φ
√

det(gS
ab + 2πα′Fab) + . . . . (2.5)

This DBI-theory can be seen as a non-linear generalization of electromagnetism: Fab is the
field-strength of a vector field living on the worldvolume of the D3-brane. The complete set
of degrees of freedom describing the fluctuations around the static solution (2.1) also contains
spinors and scalars; they can be seen as Goldstone modes corresponding to the broken ten-
dimensional supersymmetry and translational symmetry. For simplicity, we have not included
them in (2.5), and we have also omitted the Wess-Zumino terms and higher order corrections.

The solution describing N overlapping D3-branes is also given by (2.1), but where the
constant R in this case is given by

R4 = 4πgsN`
4
s . (2.6)

For the DBI-action (2.5), no such generalization to N > 1 is known, but instead one has to
expand (2.5) as a series in α′, and generalize each term individually1. The lowest order terms
are given by supersymmetric SU(N) Yang-Mills theory.

1For recent progress in finding higher-order terms in this expansion, see for instance [81].



38 The AdS/CFT correspondence

The target space action (2.4) in the Einstein frame is given by

LE
(10, 3) = R ? − 1

2
? dφ ∧ dφ− 1

4
? G(5) ∧G(5) . (2.7)

Comparing this with (1.81) and (1.85), we see that the Einstein frame, the sigma-model
frame, and the dual frame all coincide for the D3-brane . Since the dilaton vanishes for the
D3-brane, the form of the D3-brane solution is the same in any frame. When we will study
more general p-branes, we will see that the dual frame is the preferred frame for studying the
geometry.

2.1.2 Decoupling limits

In the solution (2.1), we can take the near-horizon limit

y

R
→ 0 . (2.8)

The metric then takes on the form

ds2 =
( y
R

)2

dx2
(4) +

(
R

y

)2

dy2 +R2dΩ2
(5) (2.9)

≡ AdS5(R)× S5(R) . (2.10)

This geometry is a five-dimensional Anti-de-Sitter spacetime times a five-dimensional sphere.
In section 2.2, we will be more detailed about the geometry of these spaces. On the other
hand, if we look at the asymptotic geometry by taking

y

R
→∞ , (2.11)

then the harmonic function becomes constant. The metric therefore describes Minkowski
space R1,9. We have sketched the D3-brane geometry2 in figure 2.2. In particular, the flat
ten-dimensional asymptotic limit is separated from the near-horizon region by an infinitely
long “throat”.

Both geometries are believed to be exact vacua of string theory, which solve the full
equations of motion of string theory to all orders in α′. Moreover, even though the com-
plete D3-brane solution breaks half the supersymmetry, both the near-horizon limit (2.8) and
the asymptotic limit (2.11) preserves all 32 supersymmetries of the Type IIB supergravity
action [82–84]. This can be seen from taking either the near-horizon limit (2.8) or the asymp-
totic (2.11) directly in the supersymmetry variations (1.75): in both cases one finds that the
supersymmetry variations vanish identically and that the projection condition (1.76) is not
needed anymore. Hence, we can view the D3-brane as a string theory soliton that interpo-
lates between two string theory vacua with unbroken supersymmetry.

2We have suppressed several extra dimensions, the figure only attempts to indicate the separation into two regions.
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y
R
→ ∞ R

1,9

y
R
→ 0 AdS5(R) × S5(R)

Figure 2.2: The interpolating D3-brane geometry.

The gravitational dynamics in the presence of a stack of N D3-branes separates into two
regimes. Far away from the branes, the dynamics is given in terms of fluctuations around
flat Minkowski spacetime, but near the branes, the dynamics is given in terms of fluctuations
around an Anti-de-Sitter spacetime times sphere geometry. These two regions decouple, since
a physical process of energy Eemitted near the brane is observed with an infinitely red-shifted
energy Eobserved far away from the brane

Eobserved =

√
g00| y

R
→0√

g00| y

R
→∞

Eemitted . (2.12)

At the level of the actions, there is also a limit in which the near-brane and asymptotic
regions decouple, namely the low-energy limit

E

Es
→ 0 , Es =

~c

`s
. (2.13)

Since the massive modes of strings have energies in the order of Es, the low-energy limit
is obtained by considering processes which involve only the massless modes, which is the
supergravity approximation to superstring theory.

The effect of the low-energy limit on the action (2.3) is that the interaction part of the
action Sint becomes negligible. Moreover, the DBI-action can be approximated by a SU(N)
Yang-Mills theory

LS
D3 = − 1

4g2
YM

TrFabF
ab + . . . . (2.14)
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N D3-branes D3-brane

Wµ

y

Figure 2.3: A stack of D3-branes probed by another D3-brane.

The Yang-Mills coupling constant can be obtained from the expression for the effective D3-
brane tension and expanding the action (2.5)

g2
YM = 2πgs . (2.15)

In the low-energy limit (2.13), the action (2.3) describes two decoupled systems. Far away
from the branes, it is given by the fluctuations of Type IIB string theory around Minkowski
spacetime, but the fluctuations are governed by a supersymmetric SU(N) Yang-Mills theory
near the branes. By calculating the absorption cross-sections of scalar fields by the D3-branes,
it was shown that the two systems indeed decouple in the low-energy limit [85, 86].

2.1.3 The Maldacena conjecture

From both the solution and the action perspective, the dynamics far away from the branes
coincides and is given by Type IIB string theory in a Minkowski spacetime. However, near
the branes, there are two different descriptions: a supersymmetric SU(N) gauge theory and
Type IIB string theory around an Anti-de-Sitter spacetime times a sphere, respectively

To relate these two descriptions, it is useful to connect the near-horizon limit with the
low-energy limit. Below the string scale Es, a natural energy scale is given by the energy of
an open string stretched between a stack of N D3-branes and a single D3-brane probe. We
have indicated this setup in figure 2.3. Such a string behaves as a W-boson in the Yang-Mills
theory on the D3-brane worldvolume, and its energy is given by

EW ≡ U =
y

`2s
. (2.16)

If we keep gs and N fixed and substitute the W-boson energy (2.16) into the low-energy
limit (2.13), we obtain the near-horizon limit (2.8). We can then write the near-horizon metric
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N D3-branes

ψy

Figure 2.4: A stack of D3-brane probed by a supergravity field ψ.

(2.9) in terms of this energy scale

ds2E
`2s

=

(
U

(4πgsN)
1
4

)2

dx2
(4) +

(
(4πgsN)

1
4

U

)2

dU2 + (4πgsN)
1
2 dΩ2

(5) . (2.17)

Another natural energy scale can be obtained by considering a supergravity field3 ψ prob-
ing a stack of N D3-branes. We have indicated this setup in figure 2.4. From an analysis of
the wave-equation for ψ in the background described by the metric (2.17), it was shown
in [87] that this field has the characteristic energy

Eψ ≡ u =
y

R2
. (2.18)

Such a relation where the energy of a gauge theory is proportional to a distance scale in
gravity is called a UV/IR-relation [87] since large energies (UV) in one theory map to low
energies (IR) in the other, and vice versa.

This energy scale is a holographic energy: for a certain class of black holes, it can be
shown [88] that this energy gives the same entropy as can be deduced from the holographic
principle [69, 70]. The near-horizon metric (2.9) in the so-called holographic coordinates is

ds2E
R2

= u2dx2
(4) +

du

u

2

+ dΩ2
(5) . (2.19)

We have seen that the near-horizon limit of the D3-brane geometry corresponds to the
low-energy limit in the action describing this D3-brane solution. Moreover, far away from
the brane, the system describes Type IIB string theory around flat Minkowski spacetime.

3We consider an s-wave: the field ψ has no angular momentum related to the sphere S5.
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This led Maldacena to his conjecture [73] that also the near-brane descriptions should be
equivalent. In other words, Type IIB string theory around AdS5 × S5 should be equivalent
to the SU(N) Yang-Mills theory on the four-dimensional worldvolume of the D3-branes.

This is not as absurd as it sounds. First of all, the precise worldvolume theory is N = 4
supersymmetric Yang-Mills theory. This is a special theory: its beta-function vanishes to
all orders, meaning that it is a superconformal field theory [89]. The extra superconformal
symmetries correspond to the supersymmetry enhancement found in the near-horizon limit.
The superconformal group in four dimensions is SU(2, 2|4). Its bosonic subgroup is the
conformal group SO(2, 4) times the SU(4) R-symmetry group. These groups are isomorphic
to the SO(2, 4) isometry group of AdS5 and to the SO(6) isometry group of S5.

Many more kinematic properties of both theories are in a one-to-one correspondence [76].
We saw in chapter 1 that Type IIB string theory has an S `(2,Z)-duality symmetry; N = 4
Yang-Mills theory also has such a duality. It is known as Montonen-Olive duality [90] in
which the θ-parameter of the gauge theory is mixed with the gauge coupling constant

τ ≡ θ

2π
+

2π i

g2
YM

. (2.20)

Furthermore, we can define the ’t Hooft coupling constant

λ = 2g2
YMN , (2.21)

after which the size of the Anti-de-Sitter spacetime and the sphere becomes

(
R

`s

)4

= λ . (2.22)

The string coupling constant can be expressed in terms of λ and N

gs =
λ

4πN
. (2.23)

The ratio of the two energy scales is also given by the ’t Hooft coupling constant

U

u
= λ

1
2 . (2.24)

Many computations in field theory can only be done in perturbation theory, where the
dimensionless coupling constant is small. Similarly, string theory on curved spacetimes such
as an AdS times sphere geometry is rather complicated, especially at the quantum level [91].
There are three regimes of the parameters N and λ for which one side of the correspondence
becomes computationally feasible, which we have displayed in table 2.1.

From the above, we see that gravity and gauge theory are valid in different regimes,
and if this were the whole story, the conjectured duality would be hard to verify. However,
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Regime Gravity Gauge theory

Perturbative gauge theory R
`s
� 1 λ� 1

Classical string theory eΦ = gs � 1 λ
N = g2

YM � 1

Supergravity R
`s
� 1 λ� 1

Table 2.1: Regimes of the AdS/CFT correspondence.

sinceN = 4 supersymmetric Yang-Mills theory is a conformal field theory, some correlation
functions are independent of the coupling.

The Maldacena conjecture relates large N and large λ Yang-Mills theory in four dimen-
sions to classical supergravity on a five-dimensional Anti-de-Sitter spacetime times a sphere.
Such a correspondence is an example of both holography and of the string-like behavior of
large N gauge theory, since the boundary of Anti-de-Sitter spacetime is Minkowski space-
time. In the following sections, we will make this more precise.

2.2 Anti-de-Sitter spacetime

In this section, we will discuss some elementary geometrical aspects of Anti-de-Sitter space-
time: we will derive several forms of its metric from an embedding equation, we will show
that it solves Einstein’s equations with a negative cosmological constant, and we will show
that it has a projective boundary given by Minkowski spacetime. For more details, we refer
to [92].

2.2.1 Embedding and metric

The (d+1)-dimensional Anti-Sitter spacetime4 AdSd+1 may be realized as the hypersurface

AdSd+1 : −X2
0 −X2

d+1 +X2
1 + . . .+X2

d = −L2 , (2.25)

in flat R
2,d, where L is a parameter with dimensions of length called the Anti-de-Sitter radius.

The minus sign on the right-hand side of (2.25) is essential: it ensures that AdSd+1 is a
spacetime of negative curvature. There are two closely related spacetimes: namely the (d+1)-
dimensional version of the sphere Sd+1, and of the de Sitter spacetime dSd+1; they have the
embeddings

Sd+1 : X2
0 + . . .+X2

d+1 = L2 ,
dSd+1 : −X2

0 +X2
1 + . . .+X2

d+1 = L2 .
(2.26)

4A subscript rather than a superscript denoting the dimension is conventional.
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X0

dSd+1 ' R
1
× SdAdSd+1 ' S1

× R
d

Xi , i = 1 . . . d + 1

Figure 2.5: AdSd+1 and dSd+1 as hyperboloids in R
2,d.

Both these spacetimes have positive curvatures, as can be inferred from the right-hand
side of (2.26). The relative sign between the X2

0 and L2 terms determines if the spacetime
has closed timelike curves. For Anti-de-Sitter spacetime, this is indeed the case: AdSd+1 has
topology S1×Rd; de Sitter spacetime has no such closed timelike curves, and the topology is
R

1×Sd. In figure 2.5, we have schematically indicated the difference between the hyperbolic
embeddings of AdSd+1 and dSd+1.

The metric of AdSd+1 can be written as

ds2 = −dX2
0 − dX2

d+1 + dX2
1 + . . .+ dX2

d , (2.27)

which is manifestly invariant under SO(2, d). Coordinate systems covering the entire hyper-
boloid (2.25) exactly once have a periodic timelike coordinate: in order to obtain a causal
spacetime it is necessary to go to the universal covering space by unwrapping the timelike
coordinate. Whenever we refer to AdSd+1 in the remainder of this thesis, we mean this
universal covering space.

A convenient coordinate system which solves the embedding equation (2.25) is given by
so-called horospherical coordinates

Xµ =

(
U

L

)
xµ , X± =

−1√
2

(
Xd ±Xd+1

)
: X− = U , X+ =

XµXµ + L2

X−
.

(2.28)
Calculating the differentials of (2.28), substituting them into the line element (2.27), and
using the embedding equation (2.25), one obtains the induced metric

ds2 =

(
U

L

)2

ηµνdx
µdxν +

(
L

U

)2

dU2 . (2.29)
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Different forms of the metric are used to emphasize different aspects of Anti-de-Sitter space:
a form of the metric convenient for studying correlation functions is [75]

ds2 =
ηµνdx

µdxν + dz2

z2
, z =

L

U
. (2.30)

We will frequently use another form of the metric where we take

ds2 = e−2r/Lηµνdx
µdxν + dr2 , e−r/L =

U

L
. (2.31)

This particular form of the metric is known as the Poincaré coordinate-system. In this case,
we can let the radial coordinate U take on only positive values: this means that the Poincaré-
coordinates cover only half of the hyperboloid (2.25).

2.2.2 Curvature and cosmological constant

The physical significance of Anti-de-Sitter spacetime lies in the fact that it is a vacuum so-
lution to the gravitational field equations with a negative cosmological constant. In d + 1
dimensions and in the absence of matter, the Einstein-Hilbert action with a cosmological
constant Λ is given by

Sd+1 =
1

2κ2

∫
dd+1x

√
|g| (R− 2Λ) . (2.32)

The field equations that follow from the action (2.32) are

Rµν −
1

2
Rgµν + Λgµν = 0 . (2.33)

Taking the trace of this equation yields

Λ =
d− 1

2(d+ 1)
R , (2.34)

from which we deduce that the curvature scalar has the same sign as the cosmological con-
stant. Substituting (2.34) back into (2.33) yields

Rµν =
2Λ

d− 1
gµν . (2.35)

Spaces for which the Ricci tensor is proportional to the metric are called Einstein spaces.
The particular class of Einstein spaces called maximally symmetric spaces satisfies a stronger
constraint

Rµνλρ =
2Λ

d(d− 1)
(gµλgνρ − gµρgνλ) . (2.36)
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Taking the trace of (2.36) shows that any maximally symmetric space is indeed an Einstein
space.

We will now show that AdSd+1 is such a maximally symmetric space, and indeed a
solution to (2.33). We start with writing a slightly more general Ansatz than (2.31)

ds2 = e2A(r)ηµνdx
µdxν + dr2 , (2.37)

after which we rewrite this metric in terms of vielbeins

ds2 = gABdxAdxB , gAB = ηabeA
aeB

b . (2.38)

A convenient way of doing calculations in General Relativity is by working with differ-
ential forms: we introduce vielbein 1-forms

ea = eA
adxA →

{
em = eA(r)dxm , m = 0, . . . d− 1 ,
ed = dr ,

(2.39)

and from the Cartan structure equations we obtain the spin-connection 1-form and the curva-
ture 2-form

dea + ωab ∧ eb = 0
dωab + ωac ∧ ωcb = Rab

→





ωmd = A′(r)em ,
Rmn = −A′(r)2em ∧ en ,
Rmd = −

[
A′′(r) +A′(r)2

]
em ∧ ed .

(2.40)

We can now read off the components of the Riemann tensor in the vielbein basis, and trans-
form it into the standard form

Rab = 1
2R

a
bcde

c ∧ ed
RABCD = eAaR

a
bcdeB

beC
ceD

d →
{
Rµνµν = −A′(r)2gµµgνν ,
Rµrµr = −

[
A′′(r) +A′(r)2

]
gµµgrr .

(2.41)
For future reference, we also give the Ricci tensor and the Ricci scalar

RAB = gCDRCADB
R = gABRAB

→





Rµµ = −
[
A′′(r) + dA′(r)2

]
gµµ ,

Rrr = −d
[
A′′(r) +A′(r)2

]
grr ,

R = −2dA′′(r)− d(d+ 1)A′(r)2 .
(2.42)

Comparing (2.31) with our Ansatz (2.37) we see that if we take

A(r) = ± r
L
→ A′(r) = ± 1

L
, A′′(r) = 0 , (2.43)

then we regain Anti-de-Sitter spacetime in Poincaré coordinates. The choice of sign is ar-
bitrary: comparing with the Poincaré-coordinates (2.31), we choose the minus sign here.
Substituting (2.43) into the curvature expressions (2.41) and (2.42), and comparing this with
(2.36), we see that AdSd+1 is indeed a maximally symmetric space with a negative cosmo-
logical constant given by

Λ = −d(d− 1)

2L2
. (2.44)
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AdSd+1

∂AdSd+1 ' R1,d−1

Figure 2.6: The projective boundary of Anti-de-Sitter spacetime.

2.2.3 Boundary and conformal structure

Rescaling the embedding coordinates of AdSd+1 by a large factor

Xi → X ′
i = tXi , t� 1 , (2.45)

changes the hyperbolic embedding equation (2.25) to

−X2
0 −X2

d+1 +
(
X2

0 + . . .+X2
d

)
= 0 . (2.46)

The scaled embedding equation (2.46) describes a cone lying inside the Anti-de-Sitter space.
Since all coordinates have been scaled to large values, any additional scalings have no further
effect; this is expressed by the equivalence relation

Xi ' λXi . (2.47)

The cone-embedding (2.46) modulo the scale equivalence relation (2.47) describes the
two projective boundaries5 of AdSd+1, which are topologically equivalent to conformally
compactified Minkowski space R1,d−1. Minkowski space is conformally compactified by
adding a point at infinity, analogously to how the Riemann sphere S2 is obtained from the
complex plane C. We have indicated the projective boundary of AdSd+1 in figure 2.6.

5In order to consider only a single boundary, one should also mod out by a Z2-symmetry [75].
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The SO(2, d) isometry group of AdSd+1 is linearly realized on the coordinates of the
embedding space as

1
2 (d+ 2)(d+ 1) rotations : X i → ΛijX

j . (2.48)

On the projective boundary R1,d−1, the isometry group splits up into

1
2d(d− 1) Lorentz transformations : xµ → Λµνx

ν ,
d translations : xµ → xµ + aµ ,
1 dilatation : xµ → λxµ ,

d conformal transformations : xµ

x2 → xµ

x2 + kµ ,

(2.49)

which means that the isometry group of AdSd+1 acts as the conformal group on its boundary
R1,d−1. One therefore expects that if a SO(2, d) invariant gravitational theory in AdSd+1 is
to have any holographically dual description at all, then this dual theory should be given in
terms of a conformal field theory on the projective boundary R1,d−1. Moreover, since the
boundary corresponds to large radial coordinate, or large energy U in the language of the
previous section, the holographic dual is a conformal field theory in the UV limit.

Instead of giving the precise connection between the coordinate transformations (2.48)
and (2.49), we will give the connection between the generators of the AdSd+1 isometry
group and the d-dimensional conformal group

Mij =




Mµν
1
4 (Pµ −Kµ)

1
4 (Pµ +Kµ)

− 1
4 (Pµ −Kµ) 0 − 1

2D
− 1

4 (Pµ +Kµ)
1
2D 0


 . (2.50)

The commutation relations of Mij are given by

[
Mij ,M

kl
]

= −2δ[i
[kMj]

l] . (2.51)

In chapter 5, we will come back to the algebraic structure of the conformal group and its
supersymmetric extension. In particular, we will give the the commutation relations that
result when one substitutes (2.50) into (2.51).

2.3 Conformal field theory

In this section, we will make more precise how the AdS/CFT correspondence is realized.
We will analyze a toy model example and show that it has many of the qualitative features
of more realistic models. After that, we will describe the various approximations that have
to be made in practice. We will finish with a brief summary of the evidence in favor of the
AdS/CFT correspondence.
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2.3.1 A toy model example

In order to clarify how a conformal field theory can give a holographically dual description
to a gravitational theory, we will consider a toy model example of a d+ 1-dimensional scalar
field and its potential coupled to gravity

S =
1

2κ2

∫
dd+1x

√
|g|
(
R − 1

2
(∂φ)2 − V (φ)

)
. (2.52)

The equations of motion for the scalar and the metric in this model are given by

1√
|g|
∂µ

(√
|g|gµν∂νφ

)
= ∂V

∂φ ,

Rµν − 1
2Rgµν = 1

2∂µφ∂νφ−
(

1
4 (∂φ)2 + 1

2V (φ)
)
gµν .

(2.53)

For generic values of the scalar field, the equations of motion are complicated to solve: some
simplifications occur if we look for perturbations around certain critical points of the potential

ϕ = φ− φc ,
∂V

∂φ
|φ=φc

= 0 , V (φc) < 0 , (2.54)

and introduce new parameters Λ and M 2

Λ =
1

2
V (φc) , M2 =

∂2V

∂φ2
|φ=φc

. (2.55)

The equations of motion then take on the form

1√
|g|
∂µ

(√
|g|gµν∂νϕ

)
= M2ϕ , (2.56)

Rµν −
1

2
Rgµν + Λgµν = 0 . (2.57)

So, we see that each critical point of the scalar potential in (2.54) corresponds to an Anti-
de-Sitter spacetime with a negative cosmological constant given in terms of the value of the
potential; the masses of the fluctuations around such critical points are given in terms of the
Hessian matrix of the potential6. We can associate a length scale L to the Anti-de-Sitter
spacetime and express the mass in units of this length scale

Λ = −d(d− 1)

2L2
,

m

L
= M . (2.58)

Since we expect that the dynamics of a gravitational theory in Anti-de-Sitter spacetime
is described by a conformal field theory on its boundary, we are particularly interested in the

6A slightly negative m2 does not imply instability, as long as the bound m2 ≥ − d2

4
is satisfied [93] .
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boundary conditions of the scalar field. If we take the metric of the form (2.30) then scaling
arguments determine the behavior of solutions of the wave equation (2.56) near the boundary
z = 0

ϕ(~x, z) = zd−∆+

ϕ+(~x) + zd−∆−

ϕ−(~x) , ∆± =
d

2
±
√
d2 + 4m2

2
. (2.59)

In general, only one of the two solutions will give a finite-energy solution7: in particular, if
the mass does not saturate the Breitenlohner-Freedman bound [93], we can only select ∆+

m2 > 1− d2

4
, ∆ ≡ ∆+ , ϕ0(~x) ≡ ϕ+(~x) . (2.60)

The bound (2.60) corresponds to the unitarity bound on scaling dimensions of operators in a
conformal field theory

∆ ≥ d− 2

2
. (2.61)

Standard Green’s functions techniques then determine the complete solution to the equa-
tions of motion (2.56) in terms of the bulk-to-boundary propagator K∆(z, ~x, ~x′)

ϕ(~x, z) =

∫
ddx′K∆(z, ~x, ~x′)ϕ0(~x

′) , K∆(z, ~x, ~x′) ' z∆

(z2 + |~x− ~x′|2)∆
. (2.62)

Substituting the solution (2.62) into the Euclidean version of the action (2.52) and performing
the z-integral yields the on-shell action up to a constant factor

S[ϕ0] '
∫

d~x

∫
d~x′

ϕ0(~x)ϕ0(~x
′)

|~x− ~x′|2∆ . (2.63)

If we now view this action as a functional of the boundary data and differentiate its exponen-
tial with respect to the scalar fields

δ2

δϕ0(~x)δϕ0(~x′)
e−S[ϕ0] ' 1

|~x− ~x′|2∆ (2.64)

≡ 〈O∆(~x)O∆(~x′)〉CFT , (2.65)

then we observe that we have obtained the two-point correlation function for a conformal field
theory operator O∆ of scaling dimension ∆. Analogous formulae exist for the higher-point
correlation functions. One can view the scalar field φ0(~x) as a source term or generalized
coupling to the operator O∆

e−S[ϕ0] =
〈
e
∫

dd~xϕ0(~x)O∆(~x)
〉

CFT
. (2.66)

7For − d2

4
≤ m2 ≤ 1 − d2

4
, both ∆+ and ∆− are admissible [94].
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Figure 2.7: Witten diagrams of 2-, 3- and 4-point correlation functions.

The above equation can be made more precise: in particular, the precise regularizations
which need to be performed on both sides of (2.66) and the connection with the conformal
anomaly were discussed in [95].

There is also a diagrammatic way of displaying the equations involved, as we have indi-
cated in figure 2.7. The points in the Witten diagram labeled xi are positioned at the boundary
of AdS, whereas the points denoted by zi are located in the bulk of the Anti-de-Sitter space-
time. To each vertex one assigns a propagator for the corresponding field, and one integrates
the bulk coordinates zi over the entire Anti-de-Sitter spacetime, which can be quite compli-
cated in practice [96].

2.3.2 Approximations of the correspondence

In its strongest form, the AdS/CFT correspondence relates the partition function of a gravi-
tational theory on a manifoldM to the partition function for a conformal field theory on the
boundary ∂M

Zgravity(M) = ZCFT(∂M) , (2.67)

the canonical example being the equivalence of IIB string theory on AdS5 × S5 to N = 4
supersymmetric Yang-Mills theory in 3 + 1-dimensions

ZIIB(AdS5 × S5) = ZSYM(R1,3) . (2.68)

Since string theory on Anti-de-Sitter spaces is not well enough understood even at the
classical level, a weaker but more manageable form of the correspondence is to approximate
the full quantum string theory onAdS5×S5 in (2.68) with its effective classical supergravity
action which translates in the field theory to the regime of large gauge group and large ’t
Hooft coupling

e−SIIB(AdS5×S
5) = ZSYM(R1,3) , N, λ� 1 . (2.69)

Since the classical supergravity computations have to be compared with strong coupling re-
sults for the field theory, and since only for conformal field theory such calculations can be
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performed, the AdS/CFT correspondence has not yet been applied to theories without super-
conformal symmetry such as pure QCD in four dimensions.

Combining the original ten-dimensional equations of motion [39] with the complete
Kaluza-Klein mass-spectrum of Type IIB supergravity on S5 [97,98] would in principle give
the complete dynamics for fluctuations around the AdS5 × S5 background. Since the ex-
pansion in spherical harmonics on S5 is quite complicated, one would like to eliminate the
higher Kaluza-Klein modes.

Since the radius of the sphere is proportional to the Anti-de-Sitter radius, a normal Kaluza-
Klein reduction (i.e. taking the radius to zero) will not solve this problem: instead one needs
to make a consistent truncation to the zero-modes. However, finding the correct reduction
Ansatz is already complicated at the linearized level, and the non-linear interactions are even
more daunting: they have been worked out in only a few sectors of the theory [99].

On the other hand, there is a known complete non-linear five-dimensional supergravity
theory, the SO(6) gaugedN = 8 theory of [100,101], which has the same graviton multiplet
as Type IIB supergravity and is invariant under the same superalgebra. It is widely believed,
but nevertheless still unproven, that this D = 5, N = 8 theory is a consistent truncation of
Type IIB theory on AdS5 × S5, meaning that any classical solution of the five-dimensional
theory can be lifted to ten dimensions.

For practical calculations, the form of the AdS/CFT correspondence is therefore

e−S
N=8
D=5 (AdS5) = ZSYM(R1,3) , N, λ� 1 , (2.70)

which is similar to the relation (2.66) for our toy model example (2.52) if we keep in mind
that every fluctuating field on the Anti-de-Sitter side appears as a term in the Lagrangian on
the conformal field theory side as a coupling to some composite conformal operator.

2.3.3 Evidence for the AdS/CFT correspondence

We can summarize the kinematic evidence for the AdS/CFT correspondence with the dictio-
nary given in table 2.2.

There is also a large body of dynamical evidence in favor of the AdS/CFT correspon-
dence. Soon after Maldacena’s conjecture [73] and the concrete proposals [74, 75] for cal-
culating amplitudes, a whole class of correlators was calculated [102] from the supergravity
side. In most cases, perfect agreement with the known field theory results was found. In
other cases, computations from the supergravity point of view yielded new and unexpected
non-renormalization theorems for certain classes of field theory correlators [103, 104].

Many other calculations have been performed: instanton corrections to perturbative re-
sults [105, 106], relations between Wilson loops in gauge theory [107] and minimal surfaces
in string theory [108], and thermal properties of black holes [109] in relation with the field
theory free energy [110]. In chapter 3, we will discuss some of the generalizations of the
AdS/CFT correspondence.
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Concept Gravity Gauge theory

UV/IR length y energy U = y
`2s

Decoupling near-horizon low-energy

Regime curvature radius R
`s

’t Hooft coupling λ

Coupling constant gs g2
YM

Stringy corrections O(α′) O( 1
λ )

Quantum corrections O(gs) O( 1
N )

Isometry/symmetry SO(2, 4)× SO(6) SU(2, 2|4)
S `(2,Z)-duality τ = C(0) + i

gs
τ = θ

2π + 2π i
g2
YM

Scalar field ϕ(~x, z) coupling ϕ0(~x)

Dimension mass m scaling ∆

Bound m2 ≥ 1− d2

4 ∆ ≥ (d−2)
2

Table 2.2: A gravity/gauge theory dictionary.

We conclude by remarking that it is fair to say that the AdS/CFT correspondence is no
longer a mere conjecture, but that it is a firmly established gravity/gauge theory correspon-
dence. For more details, we refer to the review [76].
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Chapter 3

The DW/QFT correspondence

It has been known for some time that the geometry of a large class of p-branes interpo-
lates between the near-horizon geometry AdSp+2×SD−p−2 and the asymptotic geometry

R1,D−1 [82]. This interpolating structure becomes apparent when one studies the geometry
in the sigma-model frame of the magnetically dual brane – the so-called dual frame [83].

Soon after the discovery of the AdS/CFT correspondence, the connection between the
geometry and worldvolume theory was therefore also investigated for other Dp-branes [111].
In contrast to the D3-brane, Dp-branes generically have a non-vanishing dilaton; this breaks
the conformal invariance possessed by the AdS near-horizon geometry. The worldvolume
theory of generic Dp-branes is also not a conformal field theory, but rather a more general
quantum field theory (QFT).

It was shown in [112] that p-brane solutions having an AdSp+2 near-horizon geometry
and a non-vanishing dilaton fall in a specific class of domain-walls, which we will denote by
DWp+2. Anti-de-Sitter spacetime then becomes the special case that the dilaton vanishes.
Domain-wall spacetimes naturally occur in massive supergravities; theories with a mass pa-
rameter or a cosmological constant [113].

The developments above inspired the authors of [114] to conjecture a DW/QFT cor-
respondence for ten-dimensional Dp-branes. They conjectured that gravity on a domain-
wall spacetime should be holographically dual to a quantum field theory on a slice of that
spacetime. We have generalized this correspondence for general p-branes in arbitrary dimen-
sions [15]. The mapping between classical supergravity and a strongly coupled field theory
persists for more general Dp-branes. However, the lack of conformal invariance forms an
obstruction for making quantitative checks on the DW/QFT correspondence in this case.

Instead of considering the holographic duals of more general brane solutions, one can
also study the gravity duals of more general quantum field theories. In particular, relevant
deformations of conformal field theories turn out to be of interest. Such deformations induce
a renormalization group (RG) flow in the space of coupling constants. The gravity duals of
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RG-flows between fixed points of the field theory beta-function, can be seen as domain-walls
interpolating between Anti-de-Sitter vacua of the scalar potential of a supergravity theory.

We will start this chapter with describing the near-horizon geometry of a class of two-
block p-brane solutions. After that, we will present a class of domain-wall solutions that
contain Anti-de-Sitter spacetime as a special case. We will indicate how a sphere reduction
of the supergravity action supporting the original p-brane gives rise to a domain-wall solution
of a gauged supergravity. These results have been published in [15], and an abridged version
appeared as a proceedings in [115].

We will finish this chapter with indicating how RG-flows of conformal field theories are
related to supergravity solutions that interpolate between different Anti-de-Sitter vacua; this
will provide the transition to chapter 4, where we will describe brane world scenarios.

3.1 Near-horizon geometries of p-branes

In this section we will look in more detail into the geometrical properties of the class of
two-block p-brane solutions of section 1.4.1.

3.1.1 Two-block solutions

Our starting point is the magnetic formulation of the generic supergravity action in the Ein-
stein frame in (1.57)

LE
(D, p̃) = R ? − 4

D − 2
? dφ ∧ dφ− 1

2
e−aφg2−4k

s ? F(p̃+2) ∧ F(p̃+2) . (3.1)

We recall that this action supports an electric p-brane solution given by (1.53)

electric p-brane =





ds2E = H
−4d̃

(D−2)∆ dx2
(d) +H

4d
(D−2)∆ dy2

(d̃+2)
,

eΦ = gsH
(D−2)a

4∆ ,

F(p+2) = g−ks

√
4
∆ ddx ∧ dH−1 ,

H(y) = 1 +
(
R
y

)d̃
.

(3.2)

The parameter ∆ is defined as

∆ =
(D − 2)a2

8
+

2dd̃

(D − 2)
. (3.3)

We also recall that we restrict the worldvolume dimension of the dual brane to be strictly
positive. The case d̃ = 0 corresponds to (D− 3)-branes, which have a logarithmic harmonic
function. The case d̃ = −2 corresponds to spacetime filling branes. We will not consider
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such branes in our subsequent analysis. The branes with d̃ = −1 are (D − 2)-branes; their
asymptotic geometries are not given by flat spacetime. They can be viewed as domain-walls,
and we will discuss them in the next section.

For the D3-brane, the Einstein frame coincides with both the sigma-model frame and the
dual frame, but for more general branes this is not the case. The dual frame is the most useful
for our purposes. Recall that after the rescaling (1.84)

gD
µν = eωDφgE

µν , ωD =
a

d̃
, (3.4)

the action will simplify to the form (1.85)

LD
(D, p̃) = eδDφ

(
R ? + γD ? dφ ∧ dφ− 1

2
? F(p̃+2) ∧ F(p̃+2)

)
. (3.5)

The overall dilaton factor and the modified kinetic term are given by (1.86)

δD = − (D − 2)a

2d̃
, γD =

D − 1

D − 2
δ2D −

4

D − 2
. (3.6)

In this dual frame, the metric is given by

ds2D = H( 2

d̃
− 4

∆ )dx2
(d) +H

2

d̃

(
dy2 + y2dΩ2

(d̃+1)

)
. (3.7)

3.1.2 The near-horizon limit

If we now take the near-horizon limit

y

R
→ 0 , (3.8)

then we find for the near-horizon geometry and dilaton dependence of the electric p-brane in
the dual frame

ds2D =

(
R

y

)(2− 4d̃
∆

)

dx2
(d)+

(
R

y

)2

dy2+R2dΩ2
(d̃+1)

, eΦ(y) = gs

(
R

y

) (D−2)d̃a

4∆

. (3.9)

This looks similar to Anti-de-Sitter spacetime in Poincaré coordinates (2.31). Specifically,
we take

e−r/R =
y

R
. (3.10)

In these coordinates, the metric and the dilaton take on the form

ds2D = e(2−
4d̃
∆ )r/Rdx2

(d) + dr2 +R2dΩ2
(d̃+1)

, φ(r) =
(D − 2)d̃ar

4∆R
. (3.11)
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The analog of the horospherical coordinates (2.29) is given by

U

L
= e−r/L , L =

R(
2d̃
∆ − 1

) . (3.12)

In these coordinates, the metric takes on the form

ds2D =

(
U

L

)2

dx2
(d+1) +

(
L

U

)2

dU2 +R2dΩ2
(d̃+1)

≡ AdSd+1 (L)× S d̃+1(R) . (3.13)

3.1.3 Interpolating solitons

From this, we deduce that the near-horizon geometry for the two-block p-branes is given by
AdSp+2 × SD−p−3 in the background of a dilaton depending linearly on the radial AdS-
coordinate. Anticipating the discussion on domain-walls in the following section, we will
call such geometries DWp+2×SD−p−3. The size of the Anti-de-Sitter is proportional to the
size of the sphere, as can be seen from (3.12).

There are two special case to be considered: a = 0, and d̃ = ∆
2 . The first case corresponds

to branes having no dilaton. Examples of this case are the D3-brane in ten dimensions and
the eleven-dimensional M2-brane and M5-brane. These branes have a pure Anti-de-Sitter
spacetime in their near-horizon geometry. In [15], a table of all cases with a = 0 was given.

The second case corresponds to branes with an infinite AdS-radius. For such a radius,
the cosmological constant (2.44) vanishes, and the spacetime becomes conformally flat. The
near-horizon becomes R1,p+1 × SD−p−3. Examples of such spaces are five-branes in ten-
dimensions, which have R1,6 × S3 as their near-horizon geometry. For more details and
examples, we refer to [15].

On the other hand, taking
y

R
→∞ , (3.14)

the harmonic function becomes constant, and the metric describes Minkowski space R1,D−1.
This means that we can view a p-brane as a gravitational soliton with a geometry that inter-
polates between the near-horizon geometry DWp+2×SD−p−3 and the asymptotic geometry
R1,D−1.

3.2 Domain-walls

Domain-walls can be defined as topological defects of co-dimension one. They separate a
spacetime (or a phase space) into several domains along a single coordinate. In the presence
of domain-walls, physical parameters can generically taken to be piecewise smooth. How-
ever, on an intersection of two domains – the domain-wall – such a parameter is generically
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not differentiable or even continuous, and its derivatives can have delta-function singularities.
These properties make domain-walls useful for describing physical processes such as phase
transitions.

In this section, we will describe a class of such domain-walls that occur in supergrav-
ity theories. We will make a distinction between “thin” domain-walls and “thick” domain-
walls. The former class can be viewed as a single (D − 2)-brane placed in the origin of
the y-coordinate, separating the spacetime into two regions. In each region, a characteristic
magnetic field-strength can be defined that changes its sign across the brane. At y = 0, there
is a curvature singularity.

In section 3.3.3, we will describe “thick” domain-walls; they can be viewed as smoothly
interpolating solitons between different supergravity vacua, without having singularities. They
have no direct brane-interpretation, but they can sometimes be related to intersecting branes
in a higher-dimensional spacetime.

3.2.1 Solution Ansatz

We will now discuss domain-walls which support only a single scalar and a d-dimensional
gauge potential. The action in the Einstein frame is

LE
domain = R ? − 4

d− 1
? dϕ ∧ dϕ− 1

2
ebϕg2k̄

s ? F(d+1) ∧ F(d+1) , (3.15)

where the dilaton exponential factor is obtained from (1.88)

k̄ =
b

2
+

2d

d− 1
. (3.16)

The domain-wall solution is analogous to the general electric p-brane

domain-wall =





ds2E = H
−4ε

(d−1)∆dw dx2
(d) +H

−4dε

(d−1)∆dw
−2(ε+1)

dy2 ,

eϕ = H
−(d−1)bε

4∆dw ,

F(d+1) = g−k̄s

√
4

∆dw
ddx ∧ dHε ,

H(y) = 1 +Q|y| .

(3.17)

with the parameter ∆dw given by

∆dw =
(d− 1)b2

8
− 2d

d− 1
. (3.18)

If the dilaton vanishes, the parameter ∆dw reduces to

∆AdS = − 2d

d− 1
. (3.19)

This is a lower-bound on ∆dw, and we can classify the domain-wall solutions into four
classes, depending on whether
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1. ∆dw = ∆AdS,

2. ∆AdS < ∆dw < 0,

3. ∆dw = 0,

4. ∆dw > 0.

We will not consider the third category. It will turn out that domain-walls which are reduc-
tions of branes in higher dimensions fall into categories 1 or 2. Elementary domain-walls fall
into category 4.

The domain-wall (3.17) is a one-parameter class of solutions: the parameter ε cannot
be determined, in contrast with normal p-branes which have ε = −1. Even though there
exists no magnetically dual for the domain-wall, we can still define a magnetically dual field-
strength

F(0) ≡ ebϕgk̄s ? F(d+1) . (3.20)

We can eliminate ε if we define a mass parameter asm = Qε. Using the form of F(d+1) given
in (3.17), we see that the magnetic field-strength changes its sign across the point y = 0; this
is the position where the brane is located.

It is straightforward to check that the invariant volume form is given by

e2bϕH2(ε−1)ddx ∧ dy = ? . (3.21)

Using this, we can express the action in the magnetic formulation as

LE
domain = R ? − 4

d− 1
? dϕ ∧ dϕ− 2e−bϕΛ ? . (3.22)

The cosmological constant is given by

Λ =
m2

∆dw
. (3.23)

3.2.2 Asymptotic geometry

Even though domain-walls do not have a magnetically dual brane, it is again it useful to
transform to the dual frame. This frame is defined by (1.84), with d̃ = −1

gD
µν = e−bϕgE

µν . (3.24)

The action (3.22) now has an overall dilaton factor and a modified kinetic term

LD
domain = eδ̄Dϕ (R ? + γ̄D ? dϕ ∧ dϕ− 2Λ) , (3.25)
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with δ̄D and γ̄D given by

δ̄D =
(d− 1)b

2
, γ̄D =

d

d− 1
δ̄2D −

4

d− 1
(3.26)

The metric in the dual frame reads

ds2D = H
2(∆dw+2)ε

∆dw dx2
(d) +H−2dy2 . (3.27)

In the previous section, we have shown that generic p-branes could be interpreted as
solutions which interpolate between two different supergravity vacua: Minkowski spacetime
R1,D−1 asymptotically away from the brane andAdSd+1×Sd̃+1 near the brane. For domain-
walls, this is not the case: they are not asymptotically flat. To discover what asymptotic
geometry they have, we take the limit

Q|y| → ∞ . (3.28)

The metric and the dilaton then take the form

ds2D = (Qy)
2(∆dw+2)ε

∆dw dx2
(d) + (Qy)−2dy2 , eϕ(y) = (Qy)

−(d−1)bε

4∆dw . (3.29)

We can now exponentiate the y-coordinate

e−Qr = Qy , (3.30)

after which the metric has the form of Anti-de-Sitter spacetime in Poincaré coordinates, and
the dilaton now has a linear dependence on the radial AdS-coordinate

ds2D = e
−

2(∆dw+2)

∆dw
mr

dx2
(d) + dr2 , ϕ(r) =

(d− 1)mb

4∆dw
r . (3.31)

After going to horospherical coordinates

U

L
= e−r/L , L =

∆dw

(∆dw + 2)m
, (3.32)

we get for the metric

ds2D =

(
U

L

)2

dx2
(d+1) +

(
L

U

)2

dU2

≡ AdSd+1 (L) . (3.33)

From the above, we see that (D − 2)-branes are different from generic p-branes. They
do not interpolate between flat spacetime and a product of Anti-de-Sitter spacetime times
a sphere. Instead, they form an interpolation between two asymptotic Anti-de-Sitter space-
times, with a dilaton depending linearly on the radial AdS-coordinate.
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3.2.3 Sphere reductions

A p-brane in (p+2) dimensions can be seen as a domain-wall. Hence, if we reduce the action
(1.85) over the sphere S d̃+1, we expect to find a domain-wall described by the action

LD
(d+1, p) = eδDφ (R ? + γD ? dφ ∧ dφ− 2Λ ? ) . (3.34)

Up to a dilaton rescaling, this is of the same form as (3.25). We can determine the scale factor
from1

φ = cϕ→ c2 =
γ̄D

γD
=

(
δ̄D
δD

)2

. (3.35)

Combining (1.86) and (3.26) with either (1.54) or with (3.18), we can express the dilaton
rescaling in two ways

c2 =
2d̃2

∆ + (∆− 2)d̃
= −∆dw + (∆dw + 2)d̃

2
. (3.36)

This means that we can express the parameter ∆dw of the (d + 1)-dimensional domain-wall
in terms of the parameter ∆ of the original D-dimensional p-brane solution

∆dw =
−2d̃∆

∆ + (∆− 2)d̃
. (3.37)

The dilaton couplings a and b in the Einstein frame actions (1.50) and (3.15) are then related
by

b = −ac(D − 2)

d̃(d− 1)
. (3.38)

Furthermore, comparing the sizes of the Anti-de-Sitter spacetime given in (3.12) and (3.32),
we deduce

m =
d̃

R
. (3.39)

Finally, we can also relate the cosmological constant of the reduced brane solution in terms
of parameters of the original brane solution

Λ = − d̃

2R2

(
(d̃+ 1)− 2d̃

∆

)
. (3.40)

So far, we have shown that the near-horizon geometry of a generic p-brane is given by
AdSp+2 × SD−p−3, and that the reduction of this geometry over the sphere can be related

1This is a refinement w.r.t. [15] where the same scale factor was obtained by transforming the reduced action
(3.34) back to the Einstein frame, and comparing this with (3.15). However, such a rescaling is singular for d = 0.
We avoid this slight complication by the method sketched above.
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to a domain-wall in (p+ 2)-dimensions. Since the action (1.50) is a consistent truncation of
a more general supergravity action, this would suggest that a sphere-reduction of this more
general supergravity action leads to a lower-dimensional supergravity action, of which (3.15)
should be a consistent truncation.

In section 2.3.2, we saw that the AdS/CFT formulation was most conveniently formulated
as a duality between SO(6) gauged N = 8 supergravity in D = 5, and N = 4 Yang-Mills
theory in D = 4. The former theory is conjectured to be a consistent truncation of the S5-
reduction of Type IIB supergravity in D = 10. A natural form of the DW/QFT correspon-
dence would then be in terms of a duality between an SO(d̃+2) gauged supergravity in d+1
dimensions, and the worldvolume theory of the corresponding p-brane in d dimensions [114].

The underlying assumption of such a scheme is that it is possible to consistently truncate
the Sd̃+1-reduction of the higher-dimensional supergravity to only the massless Kaluza-Klein
modes. The Anti-de-Sitter spacetime and the sphere are of comparable radius, as we showed
in (3.12). This is fundamentally different from, say, Calabi-Yau compactifications of string
theory, where the consistency is at least approximately guaranteed by taking the compactifi-
cation radius to zero, thereby automatically decoupling all the higher Kaluza-Klein modes.
Consistent truncations of sphere reductions are in general hard to find. Until recently, only
the gauged maximally supersymmetric supergravities in D = 4 [116] and D = 7 [117] were
shown to be consistent truncations of the compactifications of eleven-dimensional supergrav-
ity on S7 [118] and S4 [119].

For sphere reductions, if one wants to keep the massless gauge fields generating the
SO(d̃+ 2) symmetry, one generically also needs to keep most, if not all, scalar fields coming
from the reduction Ansatz of the metric and the (p + 1)-form gauge potential. This compli-
cated matters enormously: e.g. the S5 reduction of Type IIB supergravity results in 42 scalars
in D = 5 which interact in a non-linear fashion. Moreover, the Killing vectors on the sphere
need to satisfy certain consistency conditions. These conditions turn out to be hard to satisfy,
precisely only for the examples mentioned above does a maximally supersymmetric gauged
supergravity form a consistent truncation of a sphere-compactification [120].

Nevertheless, many new results on consistent sphere reductions have been obtained in
recent years following the AdS/CFT correspondence. In particular, it is possible to con-
sider truncations of the complete massless Kaluza-Klein sector to only the subset of the
lower-dimensional scalars that transform in the Cartan-subalgebra of the gauge group. These
truncated gauged supergravities have solutions that can be lifted to solutions of the original
supergravity theory. There, they correspond to an infinite stack of overlapping branes [121].

3.3 Quantum field theory

In this section, we will explore what field theory information can be extracted from the
DW/QFT correspondence. In particular for the class of Dp-branes and intersections thereof,
we will derive the scaling dependence of the corresponding worldvolume theory coupling
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constants. The end of this section will review how the renormalization-group flow induced
by relevant deformations of conformal theories give rise to domain-wall solutions that inter-
polate between different supergravity vacua.

3.3.1 Dual worldvolume theories

The geometrical structure of a large class of p-branes in the dual frame is rather similar.
However, the worldvolume theories of these branes are much more diverse, as we saw in
section 1.4.2. We will parameterize the worldvolume action to first approximation as a theory
described by a q-form gauge field. The cases q = 0, q = 1, and q = 2 then correspond to a
an action describing a scalar, a vector, and a tensor multiplet, respectively.

Sbrane = −τp
∫

dp+1σ (`q+1
s F(q+1))

2 + . . . (3.41)

≡ − 1

g2
gauge

∫
dp+1σ F 2

(q+1) . (3.42)

The mass-dimension of the field-theory coupling constant can be obtained from the general
expression for a p-brane tension

g2
gauge = gks `

α
s , α = p− 2q − 1 . (3.43)

At a given energy scale E, a dimensionless coupling constant is defined as

λ(E) ≡ g2
gaugeE

α . (3.44)

In the case of the D3-brane, we saw that there were two natural energy scales: the energy
EW of open strings stretching between the stack of N D3-branes and a single D3-brane
probe, and the energy Eψ of a supergravity field ψ probing the N D3-branes.

For general p-branes, the holographic energy scale can be obtained from an analysis of
the wave equation for a supergravity scalar field ψ. The analog of (2.18) for a general p-brane
is

Eψ ≡ u =
yβ

Rβ+1
, β =

2d̃

∆
− 1 . (3.45)

Of all the brane solutions in string theory, Dp-branes have been studied most. In partic-
ular, they have a exact description in conformal field theory as boundary states [122]. Other
branes, such as the NS5-brane, are also believed to form coherent states in the conformal field
theory description of string theory, but a precise understanding is lacking. This suggests that
we should consider p-branes which are closely related to Dp-branes.

If we also consider Dp-brane probes of the p-brane, then we have an additional energy
scale equivalent to (2.16)

EW ≡ U =
y

`2s
. (3.46)
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For general p-branes, it is not possible to choose a Dp-brane as a sensible probe. The
reason is that we would like the dimensionless coupling constants of both energy scales to be
related independently of the near-horizon limit. In particular, looking at the y-dependence of
the dimensionless coupling constants constructed from the two energy scales we expect that

λ(u) = λ(U)β . (3.47)

For this to happen, the gs and N dependence on both sides will also have to match. This
gives two restrictions

k = 1 , α = ∆− d̃ . (3.48)

The first constraint has an obvious interpretation; it says that the dilaton dependence of the
p-brane tension is the same as for a Dp-brane, namely τp = 1

gs
. The second constraint is more

surprising, it gives the mass dimension of the coupling constant on the p-brane worldvolume.
If we combine the constraint (3.48) with the expression for ∆ (1.54), then we find

a =
2(D − 2(2 + p))

D − 2
, ∆ =

D − 2

2
, α = −aD − 2

4
. (3.49)

This means that the scale dependence of the worldvolume coupling constant is proportional
to the dilaton dependence of the gauge field kinetic term in the action. In particular, p-
branes that do not couple to the dilaton have a scale-independent coupling constant in their
worldvolume theory.

The supergravity approximation is valid as long as the string tension in the dual frame
is large. We can calculate this with the same scaling arguments as we used in deriving the
effective brane tension in the string frame

τD
s =

λ(U)
2
∆

`2s
. (3.50)

Quantum corrections in string theory are controlled through the dilaton which is now not a
constant gs, as in (2.23), but is instead given by

eΦ =
λ(U)

d̃
∆

N
. (3.51)

The ratio of the two different energy scales can be expressed in a similar form as (2.24)

U

u
= λ(U)

2
∆ . (3.52)

The generalization of table 2.1 is given in table 3.1. It gives the relations between the
ranges of the various parameters on both sides of the theory for which one side becomes
computationally feasible.

In the remainder of this section, we will discuss some specific examples of worldvolume
theories of the p-branes discussed in this chapter. For more details see [15].
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Regime Gravity Gauge theory

Perturbative field theory τD
s `

2
s � 1 λ(U)� 1

Classical string theory eΦ � 1 λ(U)
d̃
∆

N � 1

Supergravity τD
s `

2
s � 1 λ(U)

2
∆ � 1

Table 3.1: Regimes of the DW/QFT correspondence.

Ten-dimensional Dp-branes

The first class of examples is formed by the ten-dimensional Dp-branes. They have a = 3−p
2

and ∆ = 4, in accordance with (3.49), from which we also deduce that α = p−3. Comparing
this with (3.43), we deduce that q = 1. In other words, the coupling constant on the Dp-brane
worldvolume scales consistently with the vector multiplet description of the worldvolume
theory.

The regime where perturbative field theory is possible is when λ(U)� 1. The sign of α
is positive for p > 3 and negative for p < 3. This means that, for the Dp-branes with p < 3,
the perturbative field theory description is valid for large U – the gauge theory is UV-free.
The field theories of Dp-branes with p > 3 can be treated perturbatively for small U – the IR
regime.

Since the conformal symmetry of the D3-brane worldvolume theory does not extend to the
Dp-brane worldvolume theories, there are hardly any quantitative tests available. However,
the qualitative structure of the phase diagram of these theories as a function of N,U and
λ has been investigated in [111], and the relation to gauged supergravities has been studied
in [114].

Six-dimensional dp-branes

Intersections of a Dp-brane with a D(p + 4)-brane in which the smaller brane lies entirely
inside the larger brane, are denoted as (p|Dp,D(p + 4)). These intersections preserve half
the supersymmetries of the constituent D-branes and this means that they have ∆ = 2.

Generically, a Dp-brane has an N = 4 vector-multiplet on its worldvolume. In the pres-
ence of D(p + 4)-branes, one can split these degrees of freedom into an N = 2 vector
multiplet parallel to the D(p + 4)-brane and an N = 2 hypermultiplet transverse to both
D-branes [123]. The strings stretching between branes of different dimension have the in-
terpretation of quarks on the worldvolume of the Dp-branes, whereas the strings starting and
ending on Dp-branes have the usual interpretation of gauge fields.

If there are Nc Dp-branes and Nf D(p + 4)-branes, then U(Nc) acts as the color group
and U(Nf) as the flavor group [123]. After a dimensional reduction of the four transverse
coordinates of both branes, they form a stack of N = Nc + Nf six-dimensional p-branes
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called dp-branes [15]. Comparing with (3.49), we see that such branes indeed have ∆ = 2 as
well as a = 1 − p and α = p − 1. From (3.43), we deduce that q = 0 for such branes; their
worldvolume theory should consist of a hypermultiplet.

This result is not too surprising. First of all, the vector multiplet corresponding to the fluc-
tuations parallel to the D(p+4)-brane is lost in the dimensional reduction process. Moreover,
scalar multiplets have spins in a range which is twice as small as that of vector multiplets.
This is consistent with the ratio of the amounts of supersymmetries preserved by dp-branes
and Dp-branes.

For p = 1, the worldvolume is a two-dimensional conformal field theory and the near-
horizon geometry is AdS3 × S3 without a dilaton background. This is the most studied
example [124]; it corresponds to the (1|D1,D5) system in ten dimensions compactified on a
four-dimensional torus [125]. In this case, there is also some progress in the area of treating
string theory on the curved AdS3 spacetime [126].

3.3.2 Deformations and renormalization

Up to now, we have discussed the most obvious deformation of the D3-brane system: Dp-
branes, and intersections thereof. However, the worldvolume theories of these branes do not
lend themselves for a computationally feasible extension of the AdS/CFT correspondence, as
we have seen in the previous section.

Another way of generalizing the AdS/CFT correspondence is to look at deformations of
the conformal field theory that is a dual description of gravity around an AdS spacetime. In
general, such deformations will break the conformal invariance and not much information can
be obtained. However, as will be made precise below, for so-called relevant deformations,
the theory can flow to another conformal theory.

The AdS/CFT correspondence provides the field theory with two natural energy scales:
the Dp-brane probe energy U , and the holographic energy u. The formalism which deals
most efficiently with field theories having an energy scale is called effective field theory. For
a good review, we refer to [127].

In a field theory with an energy scale Λ, one can make a distinction between the momen-
tum modes of a field into high-frequency and low-frequency modes

{φ(ω)} = {φ(ω)L}+ {φ(ω)H} . (3.53)

The obvious definitions are given by

{φ(ω)L} = {φ(ω) : ω < Λ} ,
{φ(ω)H} = {φ(ω) : ω > Λ} . (3.54)

An effective field theory is obtained by integrating out the high-frequency modes in the
(Euclidean) path integral

∫
DφL

∫
DφHe

−S(φL,φH) ≡
∫
DφLe

−SΛ(φL) . (3.55)
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This defines the low-energy effective action as

e−SΛ(φL) ≡
∫
DφHe

−S(φL,φH) . (3.56)

The effective action can be expanded in a complete set of local operators O∆i
which

consist of powers of the low-energy fields and their derivatives

SΛ = SCFT(Λ, g∗) +
∑

i

∫
ddx giO∆i

. (3.57)

The action SCFT(Λ, g∗) is the free action around a fixed point of the beta-function (see be-
low). Normally one takes this fixed point to be the trivial one {g∗ = 0} which implies that
free action is just the kinetic part of the low-energy effective action. For non-trivial fixed
points, SCFT can describe an interacting conformal field theory.

Simple dimensional analysis gives for the scaling dimensions

[O∆i
] = ∆i ,[

gi
]

= d−∆i .
(3.58)

It is important to note that these scaling dimensions are defined relative to the fixed point of
the couplings {g∗}, and that the value of this dimension can be changed by the interactions.
One can then introduce dimensionless couplings by defining

λi = giΛ∆i−d . (3.59)

Around energy scales E, we have the following order of magnitude for a typical operator
∫

ddxO∆i
' E∆i−d . (3.60)

This means that the i-th term in the action is of the size

λi
(
E

Λ

)∆i−d

. (3.61)

The sign of the exponent will determine the relevance of an operator at a given energy
scale E compared to the natural energy scale Λ, as we have indicated in table 3.3.2. If
the exponent is negative, then for energies much smaller than Λ, the term in the action will
become large, and the operator is called relevant. For positive exponents, the term in the
action will vanish at low energies – the operator is irrelevant for the low-energy theory. The
case of vanishing exponent corresponds to a marginal operator.

A familiar example of theories with an energy scale Λ appears in the orthodox renormal-
ization of quantum field theory. There, Λ is introduced as a regulator, or cut-off, to calculate a
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∆i − d Size as E → 0 Type Theory

< 0 Grows Relevant Super-renormalizable

= 0 Constant Marginal Strictly renormalizable

> 0 Decays Irrelevant Non-renormalizable

Table 3.2: Classification of operators in effective field theory.

divergent path-integral. After obtaining a finite answer and renormalizing certain quantities,
the cut-off is send to infinity. This is precisely the opposite limit considered in effective field
theories.

It therefore follows that irrelevant operators correspond to non-renormalizable theories
since they yield infinite terms at high energies. One can nevertheless still make sense of
non-renormalizable theories, such as General Relativity, by considering them as low-energy
effective theories and only using them at energies far below the cut-off Λ. The dependence
of a low-energy effective theory on the high energy physics is only through the marginal and
relevant operators.

The scaling derived from simple power counting is modified by interactions in the effec-
tive theory; these effects are controlled by the beta-functions. They are defined as follows

βi(g) ≡ E∂g
i(E)

∂E
. (3.62)

The beta-functions can be calculated in perturbation theory around the fixed point {g∗}

βi(g) = ηigi + Cjk
igjgk + . . . . (3.63)

The constants ηi are called the anomalous scaling dimensions, they measure the deviation
from the canonical scaling dimension derived from the free action. The coefficients Cjki

appear in operator product expansion of local operators O∆i

〈
O∆i

(xi)O∆j
(xj)

〉
CFT

= Cij
k(xi − xj) 〈O∆k

〉CFT . (3.64)

Of particular interest are the points for which the beta-function vanishes; for these values
of the coupling constants, the theory is invariant under a change in scale, and such points are
therefore called fixed points. The sign of the derivative of the beta-function at the fixed-points
determines whether the fixed-point will be reached for increasing or decreasing energy scale.

We have plotted a typical example of a beta-function in figure 3.1. The arrows on the
g-axis indicate in which direction the couplings will flow for increasing energy. The fixed-
points at which the slope of the graph is negative are called UV-fixed points since the beta-
function will drive the couplings to these values for increasing energies. On the other hand,
the fixed-point having a positive slope is reached in the IR.
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gIR

β(g)

UVUV
0

Figure 3.1: A beta-function with UV and IR fixed points.

In coupling space, one can raise and lower indices with the Zamolodchikov metric [128]

Gij = |xi − xj |2d−ηi−ηj
〈
O∆i

(xi)O∆j
(xj)

〉
Λ
, (3.65)

where the expectation value is now computed with the full effective action SΛ. The beta-
functions are related to a gradient-flow in coupling space [128] also known as a renormaliza-
tion group flow, or RG-flow

∂C(g)

∂gi
= −Gijβj(g) . (3.66)

The C-function is invariant under a change of scale. In particular, in two-dimensions, the
C-function is related to the central charge c of the conformal field theory [128], which is
proportional to the trace of the energy-momentum tensor

C ' 〈Tµµ〉 . (3.67)

The scale-invariance of C(g) implies that

E
dC(g)

dE
= 0→ E

∂C(g)

∂E
= −E∂C(g)

∂gi

∂gi(E)

∂E
= Gijβ

i(g)βj(g) ≥ 0 . (3.68)

The last inequality has been proven in two dimensions [128], but no such proof is available in
higher-dimensions [129]. The interpretation is that the C-function decreases monotonically
form the UV to the IR.

The formalism described above can be applied to the AdS/CFT correspondence in the
following way. We saw that, at the boundary of the AdS spacetime at large U , there was a
dual description in terms of the UV regime of a conformal field theory. Moreover, fluctuations



3.3 Quantum field theory 71

around the AdS solution corresponded to a correlation function in the conformal field theory
of the form 〈

e
∫

dd~xϕ0(~x)O∆(~x)
〉

CFT
. (3.69)

This implies that the conformal field theory action is modified with a local operator
∫

dd~xϕ0(~x)O∆(~x) . (3.70)

The coupling φ0(~x) correspond to a scalar field φ0(z, ~x) which has two eigenmodes under
rescalings with eigenvalues ∆+ and ∆−. The eigenvalue ∆+ correspond to a relevant per-
turbation of the conformal field theory inducing a UV-IR flow in the CFT. On the other hand,
the ∆− eigenvalue has the interpretation of deforming the conformal field theory with the
vacuum expectation value [130] 〈

O∆−

〉
CFT

. (3.71)

Following the AdS/CFT correspondence, the possible deformations of N = 4 Yang-
Mills theory gained new interest [131]. As we will now see, the possible RG-flows that
these deformations induce will correspond to interpolating domain-walls in the dual gravity
theory [132, 133].

3.3.3 Domain-walls as RG-flows

This section follows to a large extent the treatment of the papers [80, 134]. Recall the toy
model from section 2.3.1 of a scalar field with a potential coupled to gravity

S =
1

2κ2

∫
dd+1x

√
|g|
(
R− 1

2
(∂φ)2 − V (φ)

)
. (3.72)

We will be particularly interested in potentials of the form

V (φ) =
(d− 1)2

2

(
∂W

∂φ

)2

− d(d− 1)

4
W (φ)2 . (3.73)

The function W (φ) will be called the superpotential since supergravity theories generi-
cally have a scalar potential of the above form. Moreover, it can be shown [135] that potentials
of the form (3.73) have stable minima. These minima are related to the following conditions
on the superpotential

∂V

∂φ
= 0→ ∂W

∂φ
= 0 , or

∂2W

∂φ2
=

d

2(d− 1)
W (φ) . (3.74)

For more realistic models, such as N = 8 gauged supergravity in D = 5 which has a
potential for no less than 42 scalars, finding the minima of the superpotential is non-trivial.
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Nevertheless, for truncations of the total set of scalars, several exact minima have been found
for this theory [136].

We saw in chapter 2 that minima of the scalar potential corresponds to Anti-de-Sitter
spacetimes. Since gravity in an AdS spacetime should have a holographically dual CFT
description, and since deformations of conformal field theories induce RG-flows, we will
consider a class of solutions that can be thought of as deformations of Anti-de-Sitter space-
time.

Specifically, we generalize the metric (2.31) to the following form

ds2 = e2A(r)ηµνdx
µdxν + dr2 , φ = φ(r) . (3.75)

In the case A(r) = − r
L we regain Anti-de-Sitter space. The analog of the horospherical

coordinates (2.29) is given by

ds2 = U2ηµνdx
µdxν +

(
U

A′(r)

)2

dU2 , U = eA(r) . (3.76)

For the Ansatz (3.75), the equations of motion (2.53) take on the form

φ′′(r) + dA′(r)φ′(r) = ∂V
∂φ ,

(d− 1)A′′(r) + d(d−1)
2 A′(r)2 = − 1

4φ
′(r)2 − 1

2V (φ) ,
d(d−1)

2 A′(r)2 = 1
4φ

′(r)2 − 1
2V (φ) .

(3.77)

The equations of motion (3.77) are the Euler-Lagrange equations for the functional

E =

∫ ∞

−∞

dr
edA(r)

d− 1

(
−d(d− 1)A′(r)2 +

1

2
φ′(r)2 + V (φ)

)
. (3.78)

If the scalar potential is of the form (3.73), then we can use the Bogomol’nyi trick

E =

∫ ∞

−∞

dr
edA(r)

d− 1

(
1

2

[
φ′(r)∓ (d− 1)

∂W

∂φ

]2
− d(d− 1)

[
A′(r)± 1

2
W (φ)

]2)

±
[
edA(r)W (φ)

]∞
−∞

. (3.79)

The extrema of this functional are given by

φ′(r) = ∓(d− 1)
∂W

∂φ
,

A′(r) = ±1

2
W (φ) . (3.80)

This means that for scalar potentials of the form (3.73), the second order differential
equations (3.77) reduce to a pair gradient flow equations that can be solved by successive
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quadrature. The equations (3.80) are the same as the ones one would obtain from demanding
that the supersymmetry variations of the fermions in the theory vanish. In particular, the
supersymmetry variations of the gravitino and the dilatino will take on a schematic form that
is similar to (1.75)

δψµ = ∂µε− 1
4ωµ

abγab +W (φ)γµε ,

δλ = /∂φ− (d− 1)
∂W

∂φ
ε . (3.81)

Substituting the spin-connection ωµab for the metric Ansatz (3.75) into the supersymmetry
transformations (3.81), and demanding that these transformations vanish, gives the same pair
of first-order equations (3.80) as was derived from the action (2.52). In other words, the flow
equations (3.80) actually describe supersymmetric flows.

The scalar field φ(r) has the dual interpretation of a coupling in the CFT, and from (3.76)
we see that A(r) corresponds to the logarithmic energy scale in the field theory. We can then
define the analog of the beta-function as

β(φ) ≡ U
∂φ

∂U

=
φ′(r)

A′r

= −2(d− 1)

W (φ)

∂W

∂φ
. (3.82)

From (3.76), we also deduce that

A′′(r) = − 1

2(d− 1)
φ′(r)2 . (3.83)

We can then define a C-function [132]

C(U) =
C0

A′(r)2(d−1)
, (3.84)

that satisfies monotonicity, something that is not possible to prove from field theory alone [129]

U
∂C

∂U
= −2(d− 1)C

A′′(r)

A′(r)2

= C

(
φ′(r)

A′(r)

)2

≥ 0 . (3.85)

To summarize, the minima of the superpotential, corresponding to AdS spacetimes, are
in correspondence with the fixed points of the beta-function. These fixed points are related to
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Concept Domain-wall RG-flow

Scale U E

Log-scale A(r) logE

Coupling constant φ(r) g(E)

Beta-function β(φ) = φ′(r)
A′r β(g) = E ∂g(E)

∂E

Fixed point AdS spacetime CFT

C-function C ' A′(r)−2(d−1) C ' 〈Tµµ〉
C-theorem U ∂C

∂U ≥ 0 only in d = 2

Table 3.3: A domain-wall/RG-flow dictionary.

conformal field theories. The induced RG-flow from the UV to the IR between two conformal
field theories corresponds in this picture to a domain-wall that interpolates between two AdS
spacetimes. We have summarized this domain-wall/RG-flow dictionary in table 3.3.

Using the newly found vacua of N = 8 gauged supergravity in D = 5 [136], several
interpolating domain-wall solutions were found [137]. These supersymmetric domain-walls
correspond to deformations of N = 4 supersymmetric Yang-Mills theory by relevant oper-
ators. The induced RG-flows generically have IR fixed-points preserving a smaller amount
of supersymmetry, creating hope that also non-supersymmetric gauge theories such as QCD
might be described by a dual gravitational theory.



Chapter 4

Brane world scenarios

In the previous two chapters, we described various aspects of the correspondence between
gravity and gauge theories. The material in the final two chapters concerns the structure of

conformal supergravity and its couplings to matter. This chapter aims to provide the connec-
tion between these two, at first sight, rather different subjects.

We will start with giving a short review of two old problems, the hierarchy problem and
the cosmological constant problem, and we will indicate how recent developments have shed
some new light on these subjects. In particular, we will show how brane world scenarios, such
as those of Randall and Sundrum [138,139], provide a new framework in which various phe-
nomenological aspects of elementary particle physics can be treated. The various techniques
which were introduced in the previous chapters, in particular the geometrical properties of
supergravity brane solutions, can be re-used in this description.

Attempts to supersymmetrize the brane world scenarios and to embed them in a natural
way into string theory have so far met with many obstacles. In order to be able to address this
in detail, the structure of five-dimensional supergravity and the various possible couplings to
supersymmetric matter need to be taken into account. These problems will be the topic of the
following two chapters where they will be studied in a superconformal context.

4.1 Fine-tuning problems

Two longstanding problems in theoretical physics, the hierarchy problem and the cosmolog-
ical constant problem, are fine-tuning problems. In both cases, there are two fundamental
scales, an experimentally observed scale and a theoretically expected scale, which are many
orders of magnitude apart. We will first briefly review these problems.
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4.1.1 The hierarchy problem

The electroweak scale is defined to be the energy scale in the Standard Model description of
elementary particle physics at which the electromagnetic interaction unifies with the weak
interaction. Since the Higgs-particle hypothesized to be responsible for the breaking of the
electroweak U(1)Y ×SU(2)L gauge symmetry into the the electromagnetic gauge symmetry
U(1)em has not been observed yet, an accurate number for this energy scale is not available.
Instead, we will take the upper-limit1 of 103 GeV, or 10−19 m.

The Planck energy scale is theoretically calculated to lie at λPlanck =
√

~c
G = 1019

GeV or at 10−35 m. At the Planck scale, a theory of Quantum Gravity should be revealed,
and it is hoped that the gravitational interaction unifies with the remaining three interactions
described by the Standard Model. The hierarchy of sixteen orders of magnitude between these
two scales, and in particular the difficulty in explaining the radiative stability of electroweak
scale masses in a theory with the Planck scale as the fundamental scale is called the hierarchy
problem.

There is a sharp distinction between the two scales: the electroweak interactions have
been (or will be in the near future) accurately probed up to scales of λweak, but the gravita-
tional interaction has only been probed for distances up to the sub-millimeter range [140].
This opens up the possibility for a qualitatively different picture of gravity already far below
the Planck scale. In particular, it is possible that new gravitational effects might appear al-
ready just above the electroweak scale. Indeed, in recent years, there was speculation on the
existence of TeV scale strings [141].

A related direction that explored was the possible relation between the hierarchy prob-
lem and the existence of n extra compact dimensions [142–144]. The essential feature of
these models is that in the higher-dimensional theory there is only a single scale: the four-
dimensional weak scale λweak. The size of the extra dimensions generates the hierarchy
between the weak scale and the Planck scale in four dimensions: from the standard relation
(1.48) between the gravitational couplings in theories related by dimensional reduction, we
find

λ2
Planck = λn+2

weak

(
R

~c

)n
. (4.1)

The characteristic radius R of such extra dimensions is then given by

R =
~c

λweak

(
λPlanck

λweak

) 2
n

. (4.2)

Taking n = 2, we find R ≈ 2 mm, whereas n = 3 yields R ≈ 9.3 nm. However, recent
measurements have verified that the gravitational interactions follows Newton’s law for dis-
tances down to 0.2 mm [140]. In order to explain the hierarchy problem, one needs at least

1This is one order of magnitude larger than the expected Higgs-mass of around 102 GeV, for our discussion this
will not make a difference
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three nanometer-sized, or more and even smaller, extra dimensions: this will make it harder
to measure possible deviations from standard gravitational physics at such distances.

Another problem of these models is that the hierarchy between the Planck and the weak
scale is replaced by the hierarchy between the weak scale and the compactification scale.
Even for n = 6, representing a ten-dimensional compactification scheme suitable for string
theory, this ratio of the weak scale and the compactification scale is still about five orders of
magnitude. In the next section, we will see how a specific brane world setup might solve this
subtlety in terms of only a single compact dimension.

4.1.2 The cosmological constant problem

The cosmological constant problem is the puzzle that the bound on a cosmological energy
scale coming from Hubble’s constant is of much smaller value than can be explained by any
effective field theory [4].

The cosmological constant can be attributed to a fluid form of matter with a negative
pressure that equals minus its density. The associated energy is usually called the vacuum
energy density

Λ ' 8πG4 〈ρvac〉 . (4.3)

On the other hand, the Friedman equations – describing the cosmological evolution of a
Robertson-Walker like universe – give a bound on the cosmological constant Λ in terms of
the Hubble parameter H0

Λ ≤ 3H2
0 . (4.4)

Hubble’s constant measures the relative rate of expansion of the universe; recent astronomical
data [145] give the value

H0 ' 71 km s−1Mpc−1 . (4.5)

This gives an upper-bound on the energy density of the vacuum

〈ρvac〉 ≤ 4.0 · 10−47 GeV4 . (4.6)

A naive quantum field theory calculation of summing the zero-point energies of all normal
modes of some field of mass m up to a cut-off λcut−off � m yields a vacuum energy [4]

〈ρvac〉 '
∫ λcut−off

0

4πk2dk

(2π)3
· 1
2

√
k2 +m2

≈ λ4
cut−off

16π2
. (4.7)

Depending on one’s confidence in field theory, one can take the cut-off at either the weak
scale or at the Planck scale. In these cases, the value of the vacuum energy-density would be
56, respectively 121 orders of magnitude above any reasonable cosmological value

〈ρvac〉weak ≈ 6.3 · 109 GeV4 , 〈ρvac〉Planck ≈ 1.3 · 1074 GeV4 . (4.8)
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The only viable field theory reason for why the cosmological constant is very small, is
that it should be exactly zero through some sort of cancellation mechanism. Supersymmetry
is a candidate for such a mechanism since there are fermionic and bosonic contributions to the
zero-point energies which can cancel each other. However, since supersymmetry is broken
at low-energy scales, the cosmological constant problem is shifted to the problem of finding
a mechanism for breaking supersymmetry that protects a vanishing energy from blowing up.
At present, no such mechanism has been found. In the next section, we will see how this
might nevertheless be circumvented.

4.2 The Randall-Sundrum scenarios

In 1999, Randall and Sundrum published two papers in which they studied three-brane solu-
tions in a five-dimensional Anti-de-Sitter space [138, 139]. We will now briefly review these
papers. The Randall-Sundrum (RS) scenarios are by no means the only brane world models:
we refer to the reviews [146, 147] for more information on this subject.

4.2.1 Two-brane setup

The first paper of Randall and Sundrum [138] discusses a two-brane setup also known as the
RS1-scenario. They discussed two three-branes in a five-dimensional Anti-de-Sitter space-
time for which the radial coordinate first compactified to a circumference of 2rc, and then
was acted upon by a S1/Z2 orbifold projection.

r ≡ r + 2rc , r ≡ −r . (4.9)

The two three-branes are located at the two fixed-points r = 0 and r = rc of the Z2-reflection.
The brane located at the origin r = 0 is called the Planck brane (or hidden brane in [138]),
the brane located at the edge r = rc is called the Standard Model (SM) brane (or visible
brane in [138]). It is at this latter brane where our four-dimensional physics takes place. We
have displayed this setup (including the mirror-brane at r = −rc) in figure 4.1.

An action which has this setup as a solution is given by

S =
1

2κ2

∫
d5x

√
|g(5)|

(
R(5) − 2Λ

)
+ SPlanck + SSM . (4.10)

The actions for the Planck and the Standard Model brane consist of a tension part and higher
order corrections that will not be specified further

SPlanck =

∫
d4x

√
|g(4)| (LPlanck − TPlanck) , (4.11)

SSM =

∫
d4x

√
|g(4)| (LSM − TSM) . (4.12)
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A(r) = − |r|
L

r = 0 r = rc
r = −rc

TPlanck = 6

κ2L

Λ = − 6

L2

TSM = − 6

κ2L

Figure 4.1: The two-brane Randall-Sundrum setup.

We will try the following Ansatz for the solution

ds2 = e2A(r)ηµνdx
µdxν + dr2 . (4.13)

The equations of motion for this Ansatz are given by a generalization of (1.67) and (2.53)

3A′′(r) = −κ2 (TPlanck δ(r) + TSM δ(r − rc)) ,
6A′(r)2 = −Λ .

(4.14)

In order to generate the appropriate delta-functions, A(r) has to depend on the absolute value
of the radial coordinate. Using (4.9), this gives the following expressions

A(r) = −|r|
L
, Λ = − 6

L2
, TPlanck = −TSM =

6

κ2L
. (4.15)

We will now look at the fluctuations around this solution. First, we note that the off-
diagonal fluctuations of the metric correspond to those isometries of the five-dimensional
space that are broken by the three-branes. Hence, these Kaluza-Klein vectors Aµ(xµ) are
massive and can be ignored in a linearized analysis.

The remaining fluctuations are described by a symmetric tensor hµν(xµ) and a scalar
field T (xµ). The tensor hµν(xµ) generates four-dimensional gravity, and the effective gravi-
tational action can be obtained from substituting (4.13) and (4.15) into the action (4.10) and
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integrating out the radial coordinate

1

16πG5

∫
d5x

√
|g(5)|R(5) =

1

16πG5

∫ rc

−rc

dr e−2|r|/L

∫
d4x

√
|g(4)|R(4)

≡ 1

16πG4

∫
d4x

√
|g(4)|R(4) . (4.16)

From this, we deduce that the effective four-dimensional gravitational constant depends only
weakly on rc

G4 =
G5

L

(
1− e−2rc/L

)

≈ G5

L
, rc � L . (4.17)

The second observation is that the effective four-dimensional metric, describing the gravita-
tional fluctuations, is given by the metric localized on the Planck brane

g(4)
µν (xµ) = gPlanck

µν (xµ)

≡ g(5)
µν (xµ, r = 0)

= ηµν + hµν(x
µ) . (4.18)

It is with respect to this metric that physical quantities will have to be measured with. If we
postulate that the Standard Model matter content is located on the brane at r = rc, then all
terms, in particular the mass terms, in the Lagrangian LSM will couple to the metric

gSM
µν (xµ) ≡ g(5)

µν (xµ, r = rc)

= e−2rc/LgPlanck
µν (xµ) . (4.19)

From this we deduce that a mass m0 in LSM corresponds to a physical mass m which is
shifted by an exponential factor

m = m0 e
−rc/L . (4.20)

So we see that the energy scales on both branes are related by an exponential factor which
gives a method of solving the hierarchy problem. In particular, if rc ≈ 35L then we can
obtain TeV scale masses on the Standard Model brane from Planck scale masses on the hidden
Planck brane.

Some problems with the above model are that the fine-tuning between the weak scale
and the Planck scale is replaced by the fine-tuning between the Anti-de-Sitter radius L and
the brane separation rc. This is related to the problem of treating the scalar field T (xµ)
that describes the relative motion between the branes. For consistency reasons, this so-called
radion has to be a massive field with the correct expectation value in order to maintain stability
of the solution.

Another problem is that the Standard Model brane has a negative tension which makes
it quite hard to embed the whole setup into string theory in a natural way. We refer to the
literature [146, 147] for a more thorough discussion of these subtleties.
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A(r) = − |r|
L

r = 0

Λ = − 6

L2

Tbrane = 6

κ2L

r = ∞r = −∞

Figure 4.2: The single-brane Randall-Sundrum setup.

4.2.2 Single-brane setup

In the previous section, we made the observation that the four-dimensional Newton’s constant
(4.17) does not depend on the brane separation if rc is large compared to the Anti-de-Sitter
radius L. We also noted that the relevant four-dimensional metric was equal to the metric
located on the brane in the origin, the Planck brane. This suggests that gravity might be
effectively localized on the Planck brane.

This reasoning led Randall and Sundrum to consider a modified scenario in which the
Standard Model brane was pushed to infinity [139]. The resulting one-brane scenario (or
RS2-scenario2) is shown in figure 4.2.

The action supporting this configuration is given by

S =
1

2κ2

∫
d5x

√
|g(5)|

(
R(5) − 2Λ

)
− Tbrane

∫
d4x

√
|g(4)| . (4.21)

We will again look for solutions which preserve four-dimensional Poincaré invariance

ds2 = e2A(r)ηµνdx
µdxν + dr2 . (4.22)

2The number here indicates chronology, not the number of branes.
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The equations of motion for this Ansatz are analogous to (4.14)

3A′′(r) = −κ2Tbrane δ(r) ,
6A′(r)2 = −Λ .

(4.23)

We find the following solution

A(r) = −|r|
L
, Λ = − 6

L2
, Tbrane =

6

κ2L
. (4.24)

Next, we want to analyze the effective gravitational dynamics for this solution. A standard
Kaluza-Klein reduction over a compact fifth dimension of size R5 relates Newton’s constant
G5 in five dimensions to the four-dimensional gravitational constant G4 through the volume
of the compact dimension (c.f. (1.48))

G4 =
G5

R5
. (4.25)

For the RS2 scenario, where the fifth dimension is infinite, such a mechanism would im-
ply that the effective gravitational interaction would have a vanishing strength on the brane.
However, when we compare (4.25) with (4.17), then we see that something remarkable has
happened: the warp-factor in the metric ensures that the infinite fifth dimension effectively
behaves as a region of finite size L.

In order to determine the effective four-dimensional action, we substitute the solution
given in (4.22) and (4.24) into the action (4.21) and integrate out the radial coordinate to find
for the effective four-dimensional action

S =
1

16πG4

∫
d4x

√
|g(4)|

(
R(4) − 2Λeff

)
, (4.26)

where the effective cosmological constant Λeff on the brane actually vanishes

Λeff ≡ Λ +
κ2Tbrane

L
= 0 . (4.27)

In the last equality we made once again use of (4.24). This is a nice result: the cosmological
constant in the bulk and the tension on the brane cancel each other, and observers on the brane
experience a vanishing effective cosmological constant.

However, recent astronomical observations [148,149] indicate that the universe is not only
expanding, but that it is actually accelerating. This implies that the cosmological constant is
not only very small, but also positive which undermines the relevance of the RS2 model. For
more details concerning these problems, we refer to the literature [150].
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4.2.3 Localization of gravity on the brane

The most remarkable feature of the Randall-Sundrum brane world is that gravity in the five-
dimensional bulk is effectively localized on the four-dimensional brane. This is surprising
since no elementary branes have gravitational degrees of freedom on their worldvolume.
Instead, the fluctuations around the static solutions are described by scalar, vector or tensor
multiplets.

Randall and Sundrum calculated the effective Schrödinger-like equation which the four-
dimensional graviton modes have to satisfy and showed that the graviton is indeed localized
near the brane. Another check is to calculate the corrections to Newton’s law on the brane.
In general, one-loop corrections to the graviton propagator induce 1/r3 corrections to the
gravitational potential [151, 152]

V (r) =
G4m1m2

r

(
1 +

αG4

r2

)
. (4.28)

If only spins ≤ 1 contribute, then the coefficient α is given by the following expression in
terms of the numbers Ns of particles of spin s

45πα = 12N1 + 3N 1
2

+N0 . (4.29)

In order to calculate these coefficients, we first clarify the interpretation of the RS2 sce-
nario in the AdS/CFT correspondence. Recall that in the Poincaré coordinates for Anti-de-
Sitter spacetime the dual CFT is located at r = −∞. The RS2 scenario has a three-brane
located in the origin which acts as an UV cutoff in the dual CFT. Moving the brane to r = −∞
removes the cutoff and gives back the Anti-de-Sitter solution without the absolute value func-
tion in the exponential.

Hence, from the analogy with the AdS/CFT correspondence, we expect that the theory on
the brane is given by N = 4 supersymmetric SU(N) Yang-Mills theory. This theory has a
single vector, four spinors, and six scalars that all transform in the N 2-dimensional3 adjoint
representation

(N1, N 1
2
, N0) = (N2, 4N2, 6N2) . (4.30)

Substituting this into (4.28), we obtain

V (r) =
G4m1m2

r

(
1 +

2N2G4

3πr2

)
. (4.31)

In order to eliminate N , we recall the relations

4πgsN =

(
L

`s

)4

,
1

16πG10
=

2π

g2
s(2π`s)

8
. (4.32)

3The adjoint representation of SU(N) has dimension N2 − 1, which scales as N2 for large N .
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The gravitational coupling constants in ten and five dimensions are related to each other by
the volume of the five sphere S5

G5 =
G10

Ω(5)L5

=
G10

π3L5
. (4.33)

Substituting this into (4.31), we finally obtain

V (r) =
G4m1m2

r

(
1 +

2L2

3r2

)
. (4.34)

This is the same result as was found in [153] from a canonical one-loop calculation. With this
illustrative example, we conclude this section. More discussion on this topic can be found
in [139].

4.3 Supersymmetric brane worlds

The brane world scenarios described in the previous section have a very rich structure, and
one would like to embed them in a natural way into string theory. As a first step, one would
like to have a supersymmetric version of a brane world scenario. It turns out that finding such
a simple extension is nontrivial. In this section, we will summarize the current status of the
search for a supersymmetric brane world scenario.

4.3.1 Conditions on the scalar potential

As we remarked in the previous chapter, one can make a distinction between “thin” branes
and “thick” branes. The “thin” brane approach has as an advantage that it is more similar
to the original RS scenario. In [154] a method was developed to formulate supersymmetric
theories in the presence of delta function singularities in general, and in the presence of brane
sources in particular. A possible embedding of such a supersymmetric RS2 scenario with
singular sources into string theory might be a suitable Calabi-Yau compactification of the
eleven-dimensional Hořava-Witten model [53].

The “thick” brane approach would be to search for supersymmetric interpolating soliton
solutions of five-dimensional supergravity, in much the same way as was described in the
previous chapter. For such supersymmetric branes, the amount of supersymmetry preserved
on the brane is generically half of the supersymmetry of the bulk theory. In particular, in
order to have N = 1 supergravity on the four-dimensional brane, one would have to start
with N = 2 supergravity in the five-dimensional bulk.

As we saw in the previous chapter, in order to find interpolating soliton solutions, the
critical points of the scalar potential need to be analyzed. The toy model example that we
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discussed in chapter 3 only had a single scalar field, but the matter multiplets that can couple
to five-dimensional models have a set of scalars φi.

The structure of such supergravity matter-couplings is complicated. A useful tool in
studying matter-couplings is the geometry induced by the scalar fields present in the various
matter multiplets. These scalars can be viewed as coordinates on a manifold. The extensive
mathematical literature on the various manifolds can then be used to analyze the structure of
the various matter-couplings. In particular, the generalization of (3.73) in the case of multiple
scalar fields φi is given by

V (φi) =
(d− 1)2

2
gij

∂W

∂φi
∂W

∂φj
− d(d− 1)

4
W (φ)2 , (4.35)

where gij is the metric on the manifold spanned by the scalars. The flow equations (3.80) are
then given by

φi′(r) = ∓(d− 1)gij
∂W

∂φj
,

A′(r) = ±1

2
W (φi) . (4.36)

For a supersymmetric brane world scenario exhibiting localization of gravity to exist, the
following conditions need to be fulfilled.

1. The scalar potential V (φi) needs to have two different stable4 critical points, φi1 and
φi2 corresponding to fixed points of the holographically dual beta-function

V ′(φi1) = V ′(φi2) = 0 , β(φi1) = β(φi2) = 0 . (4.37)

2. At these critical points, the value of the scalar potential needs to be equal and negative
in order to have an Anti-de-Sitter background with the same cosmological constant on
both sides of the brane

V (φi1) = V (φi2) < 0 . (4.38)

3. In order to have a decreasing warp factor on both sides of the brane, the holographically
dual beta-function needs to have two IR fixed points: i.e its derivative at the critical
points needs to be positive

β′(φi1) = β′(φi2) > 0 . (4.39)

4. Finally, one needs to find an explicit solution that interpolates between the two critical
points of the scalar potential.

4Stable in the sense of satisfying the Breitenlohner-Freedman bound [93] defined in section 2.3.1.
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4.3.2 Overview of N = 2 supergravity in D = 5

We will now review the status of the search for supersymmetric brane world scenarios in the
context sketched above by giving a short overview of the literature onN = 2 supergravity in
five dimensions.

The pure, ungauged, N = 2 supergravity in five dimensions was developed in 1981
by Cremmer [155]. A few years later, Günaydin, Sierra and Townsend [156–158] used the
N = 2 vector multiplets to construct the gauged N = 2 supergravity. In recent years, the
couplings to other matter multiplets have also been constructed. In particular, Günaydin and
Zagermann [159–161] constructed the couplings of N = 2 tensor multiplets to supergravity,
and Ceresole and Dall’Agata [162–164] did the same for N = 2 hypermultiplets. The total
Lagrangian of five-dimensionalN = 2 supergravity coupled to an arbitrary number of vector
multiplets, tensor multiplets and hypermultiplets was given in [162].

It was shown in [165] that five-dimensional N = 2 supergravity coupled only to vector
multiplets could not fulfill the above criteria, since all critical points of the scalar potential
were UV fixed points. Shortly thereafter, it was also shown that adding tensor multiplets
did not improve the situation [162]. Adding hypermultiplets yields more possibilities: it was
even shown that IR fixed points could exist [166]. For vacua having the same value of the
cosmological constant, only UV-IR flows have been found so far.

As a final remark, we mention that if a supersymmetric RS scenario will be found, it is
still not directly related to string theory. A possible embedding into a higher-dimensional
theory might be given by the compactification of eleven-dimensional supergravity on a three-
dimensional Calabi-Yau manifold5 to five-dimensional supergravity coupled to matter. In
particular, the number of vector multiplets and hypermultiplets in five-dimensional super-
gravity realizing a supersymmetric brane world should be related to the Hodge numbers of
the Calabi-Yau manifold.

In four dimensions, conformal supergravity has turned out to be a very effective tool in
analyzing matter-couplings to ordinary supergravity. The next two chapters will describe the
conformal approach to five-dimensional supergravity matter-couplings. In chapter 5, we will
introduce conformal supersymmetry and construct the so-called Weyl multiplet: the smallest
irreducible supermultiplet containing the graviton. In chapter 6, we will couple vector, tensor
and hypermultiplets in a superconformal manner to this Weyl multiplet.

5Such complex manifolds have six real dimensions.



Chapter 5

Weyl multiplets of conformal
supergravity

Superconformal methods are an elegant way to construct general couplings of Poincaré
supergravities to matter [167, 168]. This so-called superconformal tensor calculus uses

the basic superconformal multiplets as a starting point for a gauge-fixing procedure in which
the superconformal symmetry is broken down to Poincaré supersymmetry.

Conformal supergravities have been constructed in various dimensions (for a review,
see [38]), but not yet in five dimensions. In the five-dimensional case, these matter cou-
pled supergravities have recently attracted renewed attention due to the important role they
play in the Randall–Sundrum (RS) scenarios [138, 139] and the AdS6/CFT5 [169, 170] and
AdS5/CFT4 [171] correspondences.

Moreover, it has turned out in the past that superconformal constructions lead to new
insights and results in the structure of matter-couplings. A recent example is the insight
in relations between hyper-Kähler cones and quaternionic manifolds, based on the study of
superconformal invariant matter-couplings with hypermultiplets [172]. For all these reasons,
a superconformal construction of general matter-couplings of N = 2 , D = 5 supergravity is
useful.

The superconformal multiplet that contains all the (independent) gauge fields of the su-
perconformal algebra is called the Weyl multiplet. In this chapter, we take the first step
in the superconformal program by constructing the Weyl multiplets of N = 2 , D = 5
conformal supersymmetry. In our construction, we use the methods developed first for
N = 1 , D = 4 [173, 174]. They are based on gauging the conformal superalgebra [175],
which in our case is F2(4).

In general, one needs to include matter fields to have an equal number of bosons and
fermions. We will see that in five dimensions there are two possible sets of matter fields one
can add, yielding two versions of the Weyl multiplet: the Standard Weyl multiplet and the
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Dilaton Weyl multiplet. This result is similar to what was found for the (1, 0) , D = 6 Weyl
multiplet [176].

In [169], the field content and transformation rules for the Standard Weyl multiplet were
constructed from the F(4)-gauged six-dimensional supergravity [177] using theAdS6/CFT5

correspondence. Another attempt was undertaken in [178] by reducing the six-dimensional
result [176] to five dimensions. However, by gauge-fixing some symmetries of the super-
conformal algebra during the reduction process, they found a multiplet that is larger than the
Weyl multiplet that we will construct.

We will start this chapter by giving an introduction to the algebraic structure of rigid
conformal (super)symmetry. In section 5.2, we will discuss local conformal supersymmetry
and the gauging of the superconformal algebra. In section 5.3, we will construct the super-
current as well as the improved supercurrent in order to determine the field content and the
linearized transformation rules of the two Weyl multiplets. The linearized results will be used
in section 5.4 to construct the fully non-linear transformation rules of the two Weyl multiplets
as well as the modified superconformal algebra. Finally, in section 5.5, we will clarify the
connection between the Weyl multiplets by showing that the coupling of an off-shell vector
multiplet to the Standard Weyl multiplet gives rise to the Dilaton Weyl multiplet.

This chapter is based on the work published in [16]. A similar paper with overlapping
results appeared somewhat later [179]. For a more extensive background on conformal su-
pergravity, we refer to the reviews [180, 181].

5.1 Rigid superconformal symmetry

In this section, we will start with deriving the rigid superconformal transformations. After
that, we will clarify the algebraic structure of the superconformal transformations by giving
the (anti-)commutation relations of the superconformal algebra. Finally, we discuss some
aspects of the corresponding representation theory.

5.1.1 Conformal Killing vectors

We will first introduce conformal symmetry, and in a second step we will extend this to
conformal supersymmetry. Given a spacetime with a metric tensor gµν(x), the conformal
transformations are defined as the class of general coordinate transformations that leaves
“angles” invariant. The parameters of these coordinate transformations define a conformal
Killing vector kµ(x)

δgctx
µ = −kµ(x) . (5.1)

The defining equation for this conformal Killing vector is given by

δgct(k)gµν(x) ≡ ∇µkν(x) +∇νkµ(x) = ω(x)gµν(x) , (5.2)
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where ω(x) is an arbitrary function, kµ = gµνk
ν , and the covariant derivative is given by

∇µkν = ∂µkν − Γρµνkρ. Taking the trace of (5.2), and making the restriction to flat D-
dimensional Minkowski spacetime yields

∂(µkν)(x)− 1
Dηµν∂

ρkρ(x) = 0 . (5.3)

Taking the derivative of (5.3), we obtain

�kµ(x) +
(
1− 2

D

)
∂µ∂

ρkρ(x) = 0 . (5.4)

In D = 2, the solutions to this are given by the infinite-dimensional group of analytic co-
ordinate transformations1. In dimensions D > 2, the group of conformal transformations is
finite-dimensional, and the most general solution to (5.3) is given by

kµ(x) = ξµ + ΛµνM xν + ΛDx
µ + (x2ΛµK − 2xµx · ΛK) . (5.5)

Corresponding to the parameters ξµ are the translations Pµ, the parameters ΛµνM correspond
to Lorentz rotations Mµν , to ΛD are associated the dilatations D, and ΛµK are the parameters
of ‘special conformal transformations’ Kµ. Thus, the full set of conformal transformations
δC can be expressed as follows:

δC = ξµPµ + ΛµνMMµν + ΛDD + ΛµKKµ . (5.6)

5.1.2 Conformal Killing spinors

We next consider the extension to conformal supersymmetry. In D-dimensional Minkowski
spacetime, the conformal supersymmetry transformations are defined as the supersymmetry
transformations that satisfy

∂µε
i(x)− 1

Dγµ/∂ε
i(x) = 0 . (5.7)

The solution to this equation is given by

εi(x) = εi + ixµγµη
i , (5.8)

where the (constant) parameters εi correspond to “ordinary” supersymmetry transformations
Qiα and the parameters ηi define special conformal supersymmetries generated by S iα.

The conformal transformations (5.5) and the supersymmetries (5.8) do not form a closed
algebra. To obtain closure, one must introduce additional R-symmetry generators. In partic-
ular, in the case of 8 supercharges Qiα in D = 5, there is an additional SU(2) R-symmetry

1Recall that the Cauchy-Riemann equations for a complex function reduce to the wave equation for the real and
imaginary part of that function.
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Generators Pa M[ab] D Ka U(ij) Qαi Sαi

Parameters ξa Λ
[ab]
M ΛD ΛaK Λ

(ij)
U εi ηi

# symmetries 5 10 1 5 3 8 8

Table 5.1: The generators of the superconformal algebra F2(4).

with generators Uij = Uji(i = 1, 2). Thus, the full set of superconformal transformations
δC is given by:

δC = ξµPµ + ΛµνMMµν + ΛDD + ΛµKKµ + ΛijUUij + i ε̄Q+ i η̄S . (5.9)

The extra factor of i in the last two terms is necessary because of the reality properties of
five-dimensional spinors.

We have summarized the generators and parameters of the five-dimensional superconfor-
mal algebra F2(4) in table 5.1. Also indicated here are number symmetries associated to each
generator: in total, there are 24+16 bosonic plus fermionic symmetries.

5.1.3 The superconformal algebra F2(4)

When one allows for central charges, there exist many varieties of superconformal alge-
bras [182, 183]. However, so far a suitable superconformal Weyl multiplet has only been
constructed from those superconformal algebras2 that appear in Nahm’s classification [185].
The particular real form that we need here is the five-dimensional algebra denoted by F2(4),
see tables 5 and 6 in [186].

The commutation relations defining the F2(4) algebra are given by

[Mbc, Pa] = −ηa[bPc] , [D,Pa] = Pa ,
[Mbc,Ka] = −ηa[bKc] , [D,Ka] = −Ka ,[
Mab,M

cd
]

= −2δ[a
[cMb]

d] ,
[
Uij , U

kl
]

= 2δ(i
(kUj)

l) ,
[Pa,Kb] = 2(ηabD + 2Mab) ,

[Mab, Qiα] = − 1
4 (γabQi)α , [D,Qiα] = 1

2Qiα ,
[Mab, Siα] = − 1

4 (γabSi)α , [D,Siα] = − 1
2Siα ,

[Ukl, Qiα] = −εi(kQl)α , [Ka, Qiα] = i (γaSi)α ,
[Ukl, Siα] = −εi(kSl)α , [Pa, Siα] = − i (γaQi)α ,

{Qiα, Qjβ} = − 1
2εij(γ

a)αβPa , {Siα, Sjβ} = − 1
2εij(γ

a)αβKa ,
{Qiα, Sjβ} = − 1

2 i
(
εijCαβD + εij(γ

ab)αβMab + 3CαβUij
)
.

(5.10)

2An exception is the ten-dimensional Weyl multiplet [184], which is not based on a known algebra.
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The first seven commutation relations between the bosonic generators form the bosonic
subalgebra SO(2, 5) × SU(2): the conformal algebra times the R-symmetry group. In par-
ticular, as we referred to in chapter 2, the SO(2, 5) commutation relations are obtained by
substituting (2.50) into (2.51). The commutation relations of the (conformal) supercharges
with the bosonic generators indicates that the supercharges are spinorial SU(2)-doublets with
dilatational weight of ± 1

2 , respectively.
We will also give the form of the anti-commutators in terms of commutators of infinites-

imal transformations on the fields. We can write the algebra (5.10) as

[TA, TB ] = fAB
CTC , {TA, TB} = −fABCTC , (5.11)

where the minus sign in the second equation is due to the factor of i in the last two terms of
(5.9). We then have for all commutators of infinitesimal transformations

[
δA(ΛA1 ), δB(ΛB2 )

]
= δC(ΛC3 ) , ΛC3 = ΛB2 ΛA1 fAB

C . (5.12)

In particular, the anti-commutation relations for the conformal supercharges translate into the
following infinitesimal commutators

[δQ(ε1), δQ(ε2)] = δP
(

1
2 ε̄2γµε1

)
, (5.13)

[δS(η), δQ(ε)] = δD( 1
2 i ε̄η) + δM ( 1

2 i ε̄γabη) + δU (− 3
2 i ε̄(iηj)) , (5.14)

[δS(η1), δS(η2)] = δK( 1
2 η̄2γ

aη1) . (5.15)

As a final note, we remark that the superconformal algebra is equipped with two gradings.
First of all, there is a Z2-grading that separates the generators into bosonic and fermionic
operators: this dictates the kind of bracket (commutator or anti-commutator) that has to be
specified for two particular generators. There is also a Z5-grading given by the dilatational
weights of the various generators (the numbers on the right-hand side of the commutator
with the dilatational generator D): this determines what specific operators can appear on
the right-hand side given the left-hand side of an algebraic relation. The coefficients in the
superconformal algebra are fixed (up to an overall normalization) by imposing the generalized
Jacobi-identities.

5.1.4 Representation theory

We wish to consider representations of the conformal algebra on fields φα(x) where α stands
for a collection of internal indices referring to the stability subalgebra of xµ = 0. From the
expression for the conformal Killing vector (5.5), we deduce that this algebra is isomorphic
to the algebra generated by Mµν , D and Kµ.

We denote this stability subalgebra by H , and the generators of H by Σµν ,∆ and κµ.
Denoting the complete conformal algebra byG, we can write rigid conformal transformations
as

Grigid = (P ⊗H)rigid . (5.16)
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Applying the theory of induced representations, it follows that any representation (Σ ,∆ , κ)
of the stability subalgebra H will induce a representation (P ,M ,D ,K) of the full confor-
mal algebra G with the following transformation rules (we suppress any internal indices)

δP (ξ)φ(x) = ξµ∂µφ(x) ,

δM (ΛM )φ(x) = 1
2ΛµνM (xν∂µ − xµ∂ν)φ(x) + δΣ(ΛM )φ(x) ,

δD(ΛD)φ(x) = ΛDx
λ∂λφ(x) + δ∆(ΛD)φ(x) , (5.17)

δK(ΛK)φ(x) = ΛµK(x2∂µ − 2xµx
λ∂λ)φ(x) +(

δδ(−2x · ΛK) + δΣ(−4x[µΛKν]) + δκ(ΛK)
)
φ(x) .

Lorentz-transformations

We now look at the non-trivial representation (Σ,∆, κ) that we use in this thesis. Concern-
ing the Lorentz representations, we will encounter anti-symmetric tensors φa1···an

(x)(n =
0, 1, 2, · · · ), and spinors ψα(x):

δΣ(ΛM )φa1···an
(x) = −n (ΛM)[a1

bφ|b|a2···an](x) , (5.18)

δΣ(ΛM )ψα(x) = − 1
4ΛabM (γab)α

βψβ(x) . (5.19)

Dilatations

Secondly, we consider the dilatations. For most fields, the ∆-transformation is determined
by a single number w, which is called the Weyl weight of φα

δ∆(ΛD)φα(x) = wΛDφ
α(x) . (5.20)

For scalar fields, it is often convenient to consider the set of fields φα(x) as the coordinates
of a scalar manifold with affine connection Γγαβ . With this understanding, the transformation
of φα under dilatations can be characterized by

δ∆(ΛD)φα = ΛDk
α(φ) , (5.21)

for some arbitrary function kα(φ).

Special conformal transformations

All3 fields that we will discuss in this thesis are invariant under the internal special conformal
transformations

δκ(ΛK)φα(x) = 0 . (5.22)

3An exception is formed by some of the gauge fields in the Weyl multiplet.
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However, this does not mean that special conformal transformations do not play a role in con-
structing superconformal theories. Indeed, the derivative of a scalar field φα(x) that trans-
forms under ∆- and κ-transformations according to (5.21) and (5.22), will transform under
special conformal transformations according to

δκ(ΛK)∂µφ
α(x) = −2ΛKµk

α(φ) . (5.23)

Scalar manifold geometry

In the next chapter, we will construct superconformal field theories. In particular, we will
also construct superconformal actions. Constructing an action for a set of scalar fields φα(x)
corresponds to taking a scalar manifold with a metric gαβ(φ)

L = − 1
2gαβ(φ)∂µφα(x)∂µφ

β(x) . (5.24)

Such a Lagrangian describes a sigma model with the D-dimensional spacetime as “world-
sheet” and the scalar manifold as target space. Requiring dilatational invariance of this ki-
netic term yields that the vector kα(φ) should be a homothetic Killing vector: namely it
should satisfy the conformal Killing equation (5.3) for constant ω(x):

Dαkβ + Dβkα = (D − 2)gαβ , (5.25)

where D is the dimension of the “worldsheet”, and where the covariant derivative on the
scalar manifold is given by Dαkβ = ∂αkβ − Γγαβkγ .

Demanding invariance of (5.24) under the special conformal transformations (5.23) re-
stricts kα(φ) even further to be an exact homothetic Killing vector

kα = ∂αχ , (5.26)

for some function χ(φ). One can show that the restrictions (5.25) and (5.26) are equivalent
to

Dαk
β ≡ ∂αkβ + Γβαγk

γ = wδβα . (5.27)

The Weyl weight w of φα has to be w = 1
2 (D − 2), or w = 3

2 in D = 5. The proof of
the necessity of (5.27) can be extracted from [187], see also [188, 189]. In these papers the
conditions for conformal invariance of a sigma model with gravity are investigated. Note that
the condition (5.27) can be formulated independently of a metric. Only an affine connection
is necessary.

For the special case of a zero affine connection, the solution to (5.27) is given by

kα(φ) = wφα , (5.28)

and the transformation rule (5.21) reduces to the form (5.20). Note that the homothetic Killing
vector (5.28) is indeed exact with χ given by

χ = 1
(D−2)gαβk

αkβ . (5.29)
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Supersymmetric generalization

To construct field representations of the superconformal algebra, one can again apply the
method of induced representations. In this case, one must use superfields Φα(xµ, θiα), where
α stands for a collection of internal indices referring to the stability subalgebra of xµ = θiα =
0. This algebra is isomorphic to the algebra generated by Mµν , D ,Kµ , Uij and Siα.

An additional complication, not encountered in the bosonic case, is that the representation
one obtains is reducible. To obtain an irreducible representation, one must impose constraints
on the superfield. It is at this point that the transformation rules become nonlinear in the fields.
In this thesis, we will follow a different approach. Instead of working with superfields, we
will work with the component fields. The nonlinear transformation rules are obtained by
imposing the superconformal algebra.

SU(2)-transformations

In the supersymmetric case, we must specify the SU(2)-properties of the different fields as
well as the behavior under S-supersymmetry. Concerning the SU(2), we will only encounter
scalars φ, doublets ψi and triplets φ(ij) whose transformations are given by

δSU(2)(Λ
ij
U )φ = 0 ,

δSU(2)(Λ
ij
U )ψi(x) = −ΛU

i
jψ

j(x) , (5.30)

δSU(2)(Λ
ij
U )φij(x) = −2ΛU

(i
kφ

j)k(x) .

S-transformations

This leaves us with specifying how a given field transforms under the special supersymme-
tries generated by Siα. In superfield language the full S-transformation is given by a combi-
nation of an x-dependent translation in superspace, with parameter εi(x) = ixµγµη

i, and an
internal S-transformation. This is in perfect analogy to the bosonic case. In terms of com-
ponent fields, the same holds true. The x-dependent contribution is obtained by making the
substitution

εi → i /xηi (5.31)

in the Q-supersymmetry rules. The internal S-transformations can be deduced by imposing
the superconformal algebra.

5.2 Local superconformal symmetry

In this section, we will discuss local superconformal symmetry. We will first introduce the
various gauge fields, their transformation rules and their covariant curvatures. After that, we
will discuss the emergence of curvature constraints.
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Generators Pa M[ab] D Ka U(ij) Qαi Sαi

Gauge fields eµ
a ωµ

[ab] bµ fµ
a V

(ij)
µ ψiµ φiµ

# d.o.f. 9 50 0 25 12 24 40

Table 5.2: The gauge fields of the superconformal algebra F2(4).

5.2.1 Gauge fields and curvatures

The procedure for gauging the superconformal algebra proceeds along similar ways as for
any other local symmetry algebra. We assign to every generator of the superconformal al-
gebra TA a gauge field hµA. We have indicated in table 5.2 the various gauge fields for the
superconformal algebra F2(4). Since every gauge field has an extra spacetime index µ, the
gauge fields have 120+80 bosonic plus fermionic field components: five times as large as the
number of gauge symmetries. The number of degrees of freedom is the difference of these
two numbers: there are only 96+64 independent gauge field components.

For example, the gauge field eµa can be acted upon by local Lorentz transformations,
translations and dilatations to reduce its 25 field components to 9 degrees of freedom. Similar
considerations apply to the gauge fields bµ , V ijµ and ψiµ. The three gauge fields ωµab , fµa

and φiµ do not have such a restriction on their field components, and they also have their
degrees of freedom underlined, since they will become dependent gauge fields, as we will
explain in more detail in the next section.

Gauge fields transformation rules

We can determine the transformation rules for the gauge fields using the general rules for
gauge theories

δhµ
A = ∂µε

A + εChµ
BfBC

A . (5.32)

From the algebra (5.10), we read off

δeµ
a = Dµξa − ΛabMeµb − ΛDeµ

a + 1
2 ε̄γ

aψµ ,

δfµ
a = DµΛaK − ΛabMfµb + ΛDfµ

a+ 1
2 η̄γ

aφµ ,

δωµ
ab = DµΛabM − 4ξ[afµ

b] − 4Λ
[a
Keµ

b]+ 1
2 i ε̄γabφµ− 1

2 i η̄γabψµ ,

δbµ = ∂µΛD − 2ξafµa + 2ΛaKeµa+
1
2 i ε̄φµ + 1

2 i η̄ψµ , (5.33)

δV ijµ = ∂µΛ
ij
U − 2ΛU

(i
`V

j)`
µ − 3

2 i ε̄(iφj)µ + 3
2 i η̄(iψj)µ ,

δψiµ = Dµεi − 1
4ΛabMγabψ

i
µ − 1

2ΛDψ
i
µ − ΛU

i
jψ

j
µ+ i ξaγaφ

i
µ− i eaµγaη

i ,

δφiµ = Dµηi − 1
4ΛabMγabφ

i
µ + 1

2ΛDφ
i
µ − ΛU

i
jφ
j
µ − i ΛaKγaψ

i
µ + i faµγaε

i ,
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whereDµ is the covariant derivative with respect to Lorentz rotations, dilatations, and SU(2)-
transformations:

Dµξa = ∂µξ
a + ωµ

abξb + bµξ
a ,

DµΛaK = ∂µΛ
a
K + ωµ

abΛKb − bµΛaK ,
DµΛabM = ∂µΛ

ab
M + 2ωµc

[aΛ
b]c
M , (5.34)

Dµεi = ∂µε
i + 1

4ωµ
abγabε

i + 1
2bµε

i − V ijµ εj ,
Dµηi = ∂µη

i + 1
4ωµ

abγabη
i − 1

2bµη
i − V ijµ ηj .

In addition to these local superconformal transformations, the gauge fields also transform as
vectors under general coordinate transformations

δgct(ξ)hµ
A = ξν(x)∂νhµ

A + ∂µξ
ν(x)hν

A . (5.35)

Covariant curvatures

The gauge fields introduced above transform to derivatives on the parameters of the super-
conformal algebra. A curvature for each gauge field is defined by

Rµν
A(TA) = 2∂[µhν]

A + hν
Chµ

BfBC
A . (5.36)

Such curvatures transform covariantly according to

δRµν
A(TA) = εCRµν

B(TB)fBC
A . (5.37)

Using the commutator expressions (5.10) we obtain the following expressions for the curva-
tures

Rµν
a(P ) = 2∂[µeν]

a + 2ω[µ
abeν]b + 2b[µeν]

a− 1
2 ψ̄[µγ

aψν] ,

Rµν
a(K) = 2∂[µfν]

a + 2ω[µ
abfν]b − 2b[µfν]

a− 1
2 φ̄[µγ

aφν] ,

Rµν
ab(M) = 2∂[µων]

ab + 2ω[µ
acων]c

b + 8f[µ
[aeν]

b] + i φ̄[µγ
abψν] ,

Rµν(D) = 2∂[µbν] − 4f[µ
aeν]a− i φ̄[µψν] , (5.38)

Rµν
ij(V ) = 2∂[µVν]

ij − 2V[µ
k(iVν]k

j)−3 i φ̄
(i
[µψ

j)
ν] ,

Rµν
i(Q) = 2∂[µψ

i
ν] + 1

2ω[µ
abγabψ

i
ν] + b[µψ

i
ν] − 2V[µ

ijψν] j + 2 i γaφ
i
[µeν]

a ,

Rµν
i(S) = 2∂[µφ

i
ν] + 1

2ω[µ
abγabφ

i
ν] − b[µφiν] − 2V[µ

ijφν] j − 2 i γaψ
i
[µfν]

a .

We have underlined all terms proportional to vielbeins for purposes to be explained shortly.
In addition to curvatures, we can also define a covariant derivative as the partial derivative

minus the sum over all transformations with as parameter the corresponding gauge field

∇µ ≡ ∂µ − δA(hµ
A) . (5.39)
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This definition can also be applied to the curvatures to derive the Bianchi identities

∇[µRνλ]
A(TA) = 0 . (5.40)

5.2.2 Curvature constraints

Making the superconformal algebra G a local symmetry algebra is a subtle procedure. Tak-
ing spacetime dependent parameters in (5.5) makes it impossible to distinguish translations,
Lorentz transformations, dilatations, and special conformal transformations, since they are
all included in the general coordinate transformations (5.1).

Moreover, in section 5.1, we saw that global conformal transformations on fields φα(x)
could be split up as a product of translations and global transformations of φα(0) generated
by the stability sub-algebra H . The local analog of (5.16) is a product of general coordinate
transformations and local transformations at x = 0 generated by H

Glocal = (GCT⊗H)local . (5.41)

However, we have so far only considered a gauge theory of general coordinate transforma-
tions and local SO(2, 5)-transformations (and its supersymmetric extension F2(4)). Some-
how, we should be able to make the truncation

(GCT⊗ SO(2, 5))local → (GCT⊗H)local . (5.42)

Covariant general coordinate transformations

In particular, we would like to identify the field eµa as the fünfbein field and not just as the
gauge field for translations. To see how this can be resolved, let us rewrite (5.35) on eµa as

δgct(ξ)eµ
a = ξν(x)∂νeµ

a + (∂µξ
ν(x)) eν

a

= ∂µ (ξν(x)eν
a) + ξν(x) (∂νeµ

a − ∂µeνa)
=

(
δP (ξa) + δM (ξµωµ

ab) + δQ(ξµψiµ)
)
eµ
a − ξνRµνa(P ) . (5.43)

So, the local translations can be expressed as general coordinate transformations covari-
antized with respect to all symmetries except translations

δP (ξ)→ δcgct ≡ δgct(ξ)− δI(ξµhµI) (I 6= Pa) , (5.44)

if we impose the following curvature constraint

Rµν
a(P ) = 0 . (5.45)

The curvature constraint (5.45) has as an additional effect that the gauge field ωµab can be
identified with the spin-connection since it can be solved for from (5.45). This is the reason
why we underlined the second term in the first line of (5.38): it contains the spin-connection
multiplied with the invertible fünfbein.
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Conventional constraints

Constraints from which a gauge field can be solved are called conventional constraints, and
they have been applied previously in the formulations of conformal supergravity in four di-
mensions for the N = 1 [173, 175], N = 2 [190] and N = 4 [191], as well as in six
dimensions for the (1, 0) [176] and (2, 0) [192] Weyl multiplets.

A comparison with the underlined lines in (5.38) suggests that we constrain the curva-
tures Rµνa(P ) , Rµν

ab(M) , Rµν(D) and Rµνi(Q). However, they are not all independent:
applying the Bianchi identity (5.40) to the constraint (5.45) gives

e[µ
aRνλ](D) = R[µνλ]

a(M) . (5.46)

We choose to impose the following constraints4

Rµν
a(P ) = 0 (50) ,

eνbR̂µν
ab(M) = 0 (25) , (5.47)

γµR̂µν
i(Q) = 0 (40) .

Matter fields

Before analyzing these constraints any further, we note that (5.47) contains 75+40 bosonic
plus fermionic restrictions which leaves us with 21+24 degrees of freedom in the independent
gauge fields. So even though we solved the problem of distinguishing local superconformal
transformations from general coordinate transformations, the independent gauge fields do not
form a supermultiplet with an equal number of bosonic and fermionic degrees of freedom.

The solution is to add matter fields (i.e. fields that do not gauge a superconformal sym-
metry) to supplement this mismatch. Which matter fields to add, and to determine their
transformation rules is the subject of the next section. The effect of these extra fields will
be that the transformation rules for the gauge fields (5.33) will be modified (we ignore the
translations from all indices ranging over I , J)

δJ(εJ )hIµ = ∂µε
I + εJhµ

AfAJ
I + εJMµJ

I . (5.48)

The last term in (5.48) also modifies the definition of the curvatures (5.38) to

R̂µν
I = 2∂[µhν]

I + hν
Bhµ

AfAB
I − 2h[µ

JMν]J
I . (5.49)

This is the origin of the hats on the curvatures in the last two equations of (5.47): it anticipates
the corrections that will come from matter terms.

In general, one can add extra matter terms to the constraints (5.47), which just amounts
to redefinitions of the composite fields. By choosing suitable terms simplifications were

4Note that the third constraint implies that γ[µνR̂ρσ]
i(Q) = 0.
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obtained in four and six dimensions. In these cases, one could add a term to the second
constraint which rendered all the constraints invariant under S-supersymmetry, but in five
dimensions this turns out to be impossible. Therefore we keep the constraints as written
above.

Dependent gauge fields

We underlined the number of restrictions each constraint imposes, and a comparison with
table 5.2 and with the underlined lines in (5.38) shows that they have the same number of
restrictions as the degrees of freedom of the gauge fields ωµab, fµa and φiµ. Therefore, these
fields are no longer independent.

In order to write down the explicit solutions of these constraints, it is useful to extract the
terms which have been underlined in (5.38). We define R̂′ as the curvatures without these
terms. Formally,

R̂′
µν
I = R̂µν

I + 2h[µ
Jeν]

afaJ
I , (5.50)

where faJ I are the structure constants in the F2(4) algebra that define commutators of trans-
lations with other gauge transformations. Then, an explicit solution for them is given by

ωµ
ab = 2eν[a∂[µe

b]
ν] − eν[aeb]σeµc∂νe cσ + 2e [a

µ bb] − 1
2 ψ̄

[bγa]ψµ − 1
4 ψ̄

bγµψ
a ,

φiµ = − 1
12 i

(
γabγµ − 1

2γµγ
ab
)
R̂′
ab
i(Q) , (5.51)

fµ
a = − 1

6Rµa + 1
48eµ

aR , Rµν ≡ R̂′ ab
λµ (M)ea

λeνb , R ≡ Rµµ .

The non-invariance of the constraints under Q- and S-supersymmetry has to be compen-
sated by extra Q- and S-supersymmetry transformations of the dependent gauge fields. In
section 5.4, we will give these extra supersymmetry transformation rules.

5.3 The supercurrent method

We will now present an elegant method to derive the field content and transformation rules
for the matter fields that have to be added to the independent gauge fields to obtain a super-
multiplet.

The Noether method

Consider a Lagrangian consisting of the kinetic term for a set of N spinor fields ~ψ

Lmatter = ~̄ψ · /∂ ~ψ . (5.52)

This action is invariant under global U(N)-rotations of the form

δG(Λ)~ψ = ΛA(TA) · ~ψ , δG(Λ)Lmatter = 0 . (5.53)
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However, under local transformations the kinetic term transforms to the derivative on the
gauge parameters

δG(Λ(x))Lmatter = − 1
2

(
∂µΛA(x)

) ~̄ψγµTA ~ψ
≡ −

(
∂µΛ

A(x)
)
JµA , (5.54)

where JµA is the set of Noether currents corresponding to the global symmetries. These
currents are divergence-less (using the equations of motion) and transform covariantly

∂µJµ
A = 0 , δG(Λ(x))Jµ

A = ΛC(x)JBµ fBC
A . (5.55)

The standard procedure is then to introduce a gauge field hµA in a Noether-action that com-
pensates this extra variation

δ(Λ)hµ
A = ∂µΛ

A(x) + ΛC(x)hµ
BfBC

A , LNoether ≡ hµAJµA , (5.56)

such that the combined action is invariant under local gauge transformations

L = Lmatter + LNoether , δG(Λ(x))L = 0 . (5.57)

The total action can also be rewritten as a manifestly invariant action in terms of a covariant
derivative

L = ~̄ψ · /D ~ψ , Dµ ≡ ∂µ − δA(hµ
A) . (5.58)

Writing out the definition of the covariant derivative, we regain (5.57).

Superconformal currents

We will now mimic this procedure for the superconformal algebra F2(4). Also in this case,
the currents for superconformal symmetry will themselves not be invariant under the su-
perconformal algebra, instead they form a complete supermultiplet. To each current in this
current multiplet, we can then assign a field of the Weyl multiplet. From the precise index
structure and comparing with the independent gauge fields of the superconformal algebra, we
derive which matter fields have to be added as well as their transformation rules.

The multiplet of currents in a superconformal context has been discussed before in the
literature: the current multiplet corresponding to the vector multiplet in four dimensions for
N = 1 [174], N = 2 [193, 194], and N = 4 [191]; and the current multiplet of the six-
dimensional (2, 0) self-dual tensor multiplet [192]5. In addition to these cases, the N =
4 , D = 5 supercurrent [195] has also been constructed before but not in a superconformal
context. Moreover, for N = 2, the five-dimensional current found by the authors of [195]
becomes reducible, as we have shown in the appendix of [16].

5The Weyl multiplets of (1, 0) in D = 6 [176] were derived without the use of a current multiplet.
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In all these cases, after adding local improvement terms, one obtains a supercurrent mul-
tiplet containing an energy-momentum tensor θµν = θνµ and a supercurrent J iµ which are
both conserved and (gamma-)traceless

∂µθµν = θ µµ = ∂µJ iµ = γµJ iµ = 0. (5.59)

These improved and conserved currents correspond to the invariance under rigid supercon-
formal symmetry for the various vector and tensor multiplets in four and six dimensions, the
analog of the globally invariant Lmatter discussed previously.

However, the standard kinetic term of the D = 5 vector field

L = − 1
4FµνF

µν (5.60)

is not scale invariant, i.e. the energy–momentum tensor is not traceless:

θµν = −FµλFνλ + 1
4ηµνFρσF

ρσ , θµ
µ = 1

4FµνF
µν 6= 0 . (5.61)

Moreover, there do not exist gauge-invariant local improvement terms.
Fortunately, there is a remedy for this problem. Whenever there is a compensating scalar

field present, i.e. a scalar with mass dimension zero but non-zero Weyl weight, then the
kinetic term (5.60) can be made scale invariant by introducing a scalar coupling of the form

L = − 1
4e
φFµνF

µν . (5.62)

This compensating scalar is called the dilaton. In general, there are three possible origins for
a dilaton coupling to a non-conformal matter multiplet: the dilaton is part of

1. the matter multiplet itself (the multiplet is then called an “improved” multiplet);

2. the conformal supergravity multiplet;

3. another matter multiplet.

The N = 2 vector multiplet in five dimensions contains precisely such a scalar. We could
therefore use it to compensate the broken scale invariance of the kinetic terms. This leads
to the so-called improved vector multiplet. This is the first possibility, which will be further
discussed in section 5.5.

The second possibility will be considered here (the third possibility is included for com-
pleteness). This possibility thus occurs when the Weyl multiplet itself contains a dilaton. We
will see that there indeed exists a version of the Weyl multiplet containing a dilaton. This
version is called the Dilaton Weyl multiplet. It turns out that there exists another version
of the Weyl multiplet without a dilaton. This other version is very similar to the four- and
six-dimensional Weyl multiplet and will be called the Standard Weyl multiplet.

When coupling to the Standard Weyl multiplet, one needs to add non-local improvement
terms to the current multiplet, a feature that was first implemented for the current multiplet
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Field Equation of motion SU(2) w # d.o.f.

Aµ ∂µF
µν = 0 1 0 3

σ �σ = 0 1 1 1

ψi /∂ψi = 0 2 3
2 4

Table 5.3: The on-shell Maxwell multiplet.

coming from the D = 10 vector multiplet [196]. In that case, the non-local improvement
terms that were added required the use of auxiliary fields satisfying differential constraints in
order to make the transformation rules local6.

The current multiplet needs to be improved only when coupled to the Standard Weyl
multiplet. In the case of the Dilaton Weyl multiplet, it is not necessary to do so, since in
that case the dilaton of the Weyl multiplet can be used to compensate for the lack of scale
invariance. In particular, the dilaton will couple directly to the trace of the energy-momentum
tensor. We will present both the conventional and the improved current multiplet correspond-
ing to the N = 2 vector multiplet and in this way determine the field content and linearized
transformation rules of the Dilaton and the Standard Weyl multiplet.

For matter multiplets having a traceless energy–momentum tensor, no compensating scalar
is needed. To see the difference between the various cases, it is instructive to consider
(1, 0) , D = 6 conformal supergravity theory [176]. In that case, also a Standard and a
Dilaton Weyl multiplet were found. Even though neither of those Weyl multiplets were de-
rived using the current multiplet method, we expect that both versions can be constructed
in that way: the Standard Weyl multiplet starting from the conformal (1, 0) tensor multiplet
(being a truncation of the (2, 0) case [192]), and the Dilaton Weyl multiplet by starting from
the non-conformal D = 6 vector multiplet (which upon reduction should produce our results
in D = 5).

5.3.1 The supercurrent of the Maxwell multiplet

Our starting point is the on-shellD = 5 Abelian vector multiplet, also known as the Maxwell
multiplet. Its field content is given by a massless vector Aµ, a symplectic Majorana spinor
ψi in the fundamental of SU(2) and a real scalar σ. See table 5.3 for additional information.
Our conventions are given in appendix A.

The action for the D = 5 Maxwell multiplet is given by

Lmatter = − 1
4FµνF

µν − 1
2 ψ̄ /∂ψ − 1

2 (∂σ)2 . (5.63)

6Note also that in D = 10 the trace-part and the traceless part of the energy-momentum tensor are not contained
in the same multiplet which necessitates the addition of the non-local improvement terms to project out the trace-part.
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Current Noether SU(2) w # d.of.

θ(µν) ∂µθµν = 0 1 2 9

v
(ij)
µ ∂µvijµ = 0 3 2 12

b[µν] ∂µbµν = 0 1 2 6

aµ ∂µaµ = 0 1 3 4

θµ
µ – 1 4 1

J iµ ∂µJ iµ = 0 2 5
2 24

γµJ iµ – 2 7
2 8

Table 5.4: The current multiplet: θµµ and γµJ iµ form separate currents.

This action is invariant under the following global supersymmetries

δAµ = 1
2 ε̄γµψ ,

δψi = − 1
4γ · Fεi − 1

2 i /∂σεi , (5.64)

δσ = 1
2 i ε̄ψ ,

as well as under the standard gauge transformation

δΛAµ = ∂µΛ . (5.65)

Under local supersymmetry transformations, the action (5.63) transforms to the supercurrent
J iµ

δ(ε(x))Lmatter = i (∂µε̄(x))Jµ , (5.66)

where the explicit form of the supercurrent is given in (5.67).

The various global symmetries of the Lagrangian (5.63) lead to a number of other Noether
currents: the energy–momentum tensor θµν and the SU(2)-current vijµ . The supersymmetry
variations of these currents lead to a closed multiplet of 32 + 32 degrees of freedom (see
table 5.4). It is convenient to include these trace parts as separate currents since, as it turns
out, they couple to independent fields of the Weyl multiplet.

We find the following expressions for the Noether currents and their supersymmetric
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partners in terms of bilinears of the vector multiplet fields:

θµν = −FµλFνλ + 1
4ηµνF

2 − ∂µσ∂νσ + 1
2ηµν (∂σ)2 − 1

2 ψ̄γ(µ∂ν)ψ ,

J iµ = − 1
4 i γ · Fγµψi − 1

2 (/∂σ)γµψ
i ,

vijµ = 1
2 ψ̄

iγµψ
j ,

aµ = 1
8εµνλρσF

νλF ρσ + (∂νσ)Fνµ , (5.67)

bµν = 1
2εµνλρσ(∂

λσ)F ρσ + 1
2 ψ̄γ[µ∂ν]ψ ,

γµJ iµ = − 1
4 i γ · Fψi + 3

2
/∂σψi ,

θ µµ = 1
4F

2 + 3
2 (∂σ)2 .

Applying the supersymmetry transformation rules (5.64) to the currents (5.67), using the
Bianchi identities and equations of motion of the vector multiplet fields, one can calculate the
supersymmetry transformations of the currents. A straightforward calculation yields

δθµν = 1
2 i ε̄γλ(µ∂

λJν) ,

δJ iµ = − 1
2 i γνθµνε

i − i γ[λ∂
λvijµ]εj − 1

2aµε
i + 1

2 i γνbµνε
i ,

δvijµ = i ε̄(iJj)µ ,

δaµ = −ε̄∂λγ[λJµ] − 1
4 ε̄γµνγ

λ∂νJλ + 1
4 ε̄γµν∂

ν
(
γλJ iλ

)
, (5.68)

δbµν = 3
4 i ε̄γ[λµ∂

λJν] − 1
8 i ε̄γµνλγ

ρ∂λJρ + 1
8 i ε̄γµνλ∂

λ
(
γρJ iρ

)
,

δ
(
γµJ iµ

)
= − 1

2 i θµ
µεi + 1

2 i /∂/v
ijεj − 1

2/aε
i + 1

2 i γ · bεi ,
δθµ

µ = 1
2 i ε̄/∂ (γµJµ) .

Note that we have added to the transformation rules for aµ and bµν terms that are identi-
cally zero: the first term at the r.h.s. contains the divergence of the supercurrent and the last
two terms are identical, but we have chosen not to explicitly evaluate the gamma-trace. Sim-
ilarly, the second term in the variation of the supercurrent contains a term that is proportional
to the divergence of the SU(2) current.

The reason why we added these terms is that in this way we obtain below the linearized
Weyl multiplet in a conventional form. Alternatively, we could not have added these terms
and later have brought the Weyl multiplet into the same conventional form by redefining the
Q-transformations via a field-dependent S- and SU(2)-transformation.

5.3.2 The improved supercurrent

We now add terms to θµν and J iµ such that they become (gamma-)traceless while remaining
divergence-less. This requires the introduction of non-local projection operators. First of all,
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we add the following term to the energy-momentum tensor

θ̂µν = θµν − 1
4

(
ηµν −

∂µ∂ν
�

)
θµ
µ

≡ θµν − 1
16 (�ηµν − ∂µ∂ν) d , (5.69)

where the current d has to satisfy the differential constraint

�d = 4θµ
µ . (5.70)

Similarly, we can add the following term to the supercurrent

Ĵ iµ = J iµ − 1
4

(
γµ −

∂µ /∂

�

)
γ · J i

≡ J iµ + 1
32γµν∂

νλ , (5.71)

where the current λi satisfies the differential constraint

/∂λi = −8γ · J i . (5.72)

For the supercurrent coming from a vector multiplet in D 6= 4, there are no local gauge-
invariant improvement terms. However, the improved energy-momentum tensor transforms
to the improved supercurrent, and by varying the improved supercurrent we find a new con-
strained current tab. This current satisfies the following constraint in terms of the previously
found currents aµ and bµν

� tab = −8∂[aab] − 4εabcde∂
ebdc . (5.73)

The currents tab , λi and d do not generate any more currents, and we have summarized the
improved current multiplet and the differential constraints in table 5.5.

We then find for the improved current multiplet the following transformation rules

δθ̂µν = 1
2 i ε̄∂λγλ(µĴν) ,

δĴ iµ = − 1
2 i γν θ̂µνε

i − 1
4 i
(
γλγµν − 1

2γµνγ
λ
)
∂νvijλ εj ,

− 3
16∂

ν
(
tµν − 1

12γµνγ · t+ 2
3γ[µγ

btν]b
)
εi ,

δvijµ = i ε̄(iĴj)µ − 1
32 i ε̄(iγµν∂

νλj) , (5.74)

δtab = −ε̄γµγabĴµ + 3
32 ε̄ /∂γabλ+ 1

32 ε̄γab /∂λ ,

δλi = i /∂dεi − 4 i /vijεj − 1
2γ · tεi ,

δd = − 1
4 i ε̄λ .

Note that these transformations rules are perfectly well-defined, all non-localities have been
absorbed in the differentially constrained currents.
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Current Restrictions SU(2) w # d.of.

θ̂(µν) ∂µθ̂µν = 0 , θ̂µ
µ = 0 1 2 9

v
(ij)
µ ∂µvijµ = 0 3 2 12

t[ab] � tab = −8∂[aab] − 4εabcde∂
ebdc 1 2 10

d �d = 4θµ
µ 2 2 1

Ĵ iµ ∂µĴ iµ = 0 , γµĴ iµ = 0 2 5
2 24

λi /∂λi = −8γµJ iµ 2 5
2 8

Table 5.5: The improved current multiplet with constrained currents.

5.3.3 The linearized Weyl multiplets

From the field content of the two current multiplets, we can immediately read off the field
content of the two Weyl multiplets. They both have the same 21+24 independent gauge fields,
which we have displayed in table 5.6. The dependent gauge fields do not couple to any current
but are also displayed. The linearized form of the fünfbein eµa is denoted by hµν .

For both Weyl multiplets, the total number of degrees of freedom becomes 32+32 bosonic
plus fermionic fields. The difference between the two Weyl multiplets lies in the set of matter
fields. The Standard Weyl multiplet couples to the improved current multiplet and has matter
fields Tab , χi and D.

The Dilaton multiplet couples to the conventional current multiplet and has matter fields
Bµν , Aµ , ψ

i and ϕ. This scalar field ϕ is the linearized form of the dilaton σ ≡ eϕ. There
are also two extra gauge symmetries: a U(1) gauge symmetry and a two-form tensor gauge
symmetry, the explicit form of which we have also indicated in table 5.6.

Note that some of the matter fields of the Dilaton Weyl multiplet have the same names as
the fields of the vector multiplet. The reason for doing so will become clear in section 5.5
where we explain the connection between the two Weyl multiplets. From now on, until
section 5.5, we will be only dealing with the Weyl multiplets and not with the vector multiplet.

The Standard Weyl multiplet

To derive the linearized transformation rules of the Standard Weyl multiplet, we introduce
the following Noether term in the action

LNoether = 1
2hµν θ̂

µν + i ψ̄µĴ
µ + V ijµ v

µ
ij + Tabt

ab + i χ̄λ+Dd . (5.75)

Demanding that the combined action of (5.63) and (5.75) is invariant under the supersym-
metry transformations (5.64) and (5.74) results in the following linearized supersymmetry
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Field # Gauge SU(2) w Field # Gauge SU(2) w

Elementary gauge fields Dependent gauge fields

eµ
a 9 P a 1 −1 ω

[ab]
µ − M [ab] 1 0

bµ 0 D 1 0 fµ
a − Ka 1 1

V
(ij)
µ 12 SU(2) 3 0

ψiµ 24 Qiα 2 − 1
2 φiµ − Siα 2 1

2

Dilaton Weyl multiplet Standard Weyl multiplet

B[µν] 6 δBµν = 2∂[µΛν] 1 0 T[ab] 10 1 1

Aµ 4 δAµ = ∂µΛ 1 0

σ 1 1 1 D 1 1 2

ψi 8 2 3
2 χi 8 2 3

2

Table 5.6: Gauge fields and matter field of the Weyl multiplets.

transformation rules for the Standard Weyl multiplet

δhµν = ε̄γ(µψν) ,

δψiµ = ∂µε
i + 1

4ωµ
abγab − V ijµ εj + i γ · Tγµεi ,

δVµ
ij = − 3

2 i ε̄(iφj)µ + 4ε̄(iγµχ
j) , (5.76)

δTab = 1
2 i ε̄γabχ− 3

32 i ε̄Rab(Q) ,

δχi = 1
4Dε

i − 1

64
γ ·R(V )ijεj + 3

32 i γ · T
←−
/∂ εi + 1

32 i /∂γ · Tεi ,
δD = ε̄ /∂χ ,

where we have used the linearized form of the expressions for the curvatures (5.38) and the
dependent gauge fields (5.51)

ωµ
ab = −∂[ahb]µ + . . . ,

φiµ = − 1
12 i

(
γabγµ − 1

2γµγ
ab
)
ψ
j)
ab + . . . ,

Rµν
ij(V ) = 2∂[µV

ij
ν] + . . . , (5.77)

Rab(Q) =
(
ψab − 1

12γabγ
cdψcd + 2

3γ[aγ
cψb]c

)
+ . . . ,

ψab = 2∂[aψ
i
b] .
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Note that the transformation rules for ψiµ and Vµij differ from the original transformation
rules (5.33) by matter fields as was explained in (5.48).

The Dilaton Weyl multiplet

To derive the linearized transformation rules of the Dilaton Weyl multiplet, we introduce
the following Noether term in the action (note that in particular the trace of the energy-
momentum tensor couples to the dilaton ϕ)

LNoether = 1
2hµνθ

µν + i ψ̄µJ
µ+V ijµ v

µ
ij +Bµνb

µν +Aµa
µ+ i ψ̄ ( i γµJµ)+ϕ θ µµ . (5.78)

Demanding that the combined action of (5.63) and (5.75) is invariant under supersym-
metry transformations (5.64) and (5.68) results in the following linearized supersymmetry
transformation rules for the Dilaton Weyl multiplet

δhµν = ε̄γ(µψν) ,

δψiµ = ∂µε
i + 1

4ωµ
abγab − V ijµ εj + i γ · Tγµεi ,

δVµ
ij = − 3

2 i ε̄(iφj)µ + 4ε̄(iγµχ
j) ,

δBµν = 1
2 i ε̄γµνψ + 1

2 ε̄γ[µψν] , (5.79)

δAµ = 1
2 ε̄γµψ − 1

2 i ε̄ψµ ,

δψi = − 1
4γ · Fεi − 1

2 i /∂ϕεi + γ · Tεi ,
δϕ = 1

2 i ε̄ψ ,

where we have again used the expressions (5.77). The underlined fields in (5.79) are not
independent fields here, but are used as a shorthand notation for the following expressions in
terms of fields of the Dilaton Weyl multiplet

Tab = 1
8

(
Fab − 1

6εabcdeH
edc
)
,

χi = 1
8 i /∂ψi +

1

64
γabψab , (5.80)

D = 1
4�ϕ− 1

32∂
µ∂νhµν + 1

32�hµµ .

The justification for using the expressions (5.80) is that they transform exactly as the fields
Tab , χ

i andD in the Standard Weyl multiplet. Finally, we have defined the curvatures for the
gauge fields Bµν and Aµ to be

Fµν = 2∂[µAν], Hµνλ = 3∂[µBνλ] . (5.81)

Note that the last three lines in (5.79) are similar to the transformation rules of the Maxwell
multiplet (5.64). In section 5.5, we will clarify this similarity in more detail.
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5.4 The Weyl multiplets

In this section, we will present the full nonlinear supersymmetry transformations rules of the
two Weyl multiplets as well as the modifications to the superconformal algebra. We will first
briefly outline the iterative algorithm for obtaining the complete transformation rules for the
two Weyl multiplets. For more details see [176].

Covariantization

The procedure to obtain these results is straightforward. Starting from the transformation
rules of the linearized Weyl multiplets (5.76) and (5.79), the first step is to replace curva-
tures by hatted curvatures as defined in (5.49). In the transformation rules of Tab and χi for
instance, we will need

R̂µν
i(Q) = Rµν

i(Q) + 2 i γ · Tγ[µψ
i
ν] ,

R̂µν
ij(V ) = Rµν

ij(V )− 8ψ̄
(i
[µγν]χ

j) − i ψ̄
(i
[µγ · Tψ

j)
ν] , (5.82)

Similarly, we use the bosonic transformation rules given in table 5.6 as well as the su-
persymmetry transformations to replace derivatives on fields by derivatives which are covari-
antized with respect to all symmetries except translations

∂µ → Dµ ≡ ∂µ − δI(hµI) . (5.83)

Using these new transformation rules, the superconformal algebra (5.10) is imposed on all
fields. This will enable us to determine the S-supersymmetry rules for all the fields. An addi-
tional effect is that the transformation rules for some fields will need nonlinear modifications
in order to satisfy the algebra.

These new nonlinear transformation rules, as well as the S-supersymmetry transforma-
tions, will have to be accounted for in the curvatures and covariant derivatives, and the algebra
will have to be imposed again with these modified transformation rules, until no new modifi-
cations are necessary.

Dependent gauge fields

The dependent gauge fields defined in (5.51) depend on the covariant curvatures (5.49). The
non-invariance of the constraints (5.47) and the modifications to the curvatures will induce
extra transformations for the dependent gauge fields. We find the following extra transforma-
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tions for ωµab and φiµ

δextraωµ
ab = − i ε̄γ[aγ · Tγb]ψµ − 1

2 ε̄γ
[aR̂µ

b](Q)

− 1
4 ε̄γµR̂

ab(Q)− 4eµ
[aε̄γb]χ . (5.84)

δextraφ
i
µ = 1

12 i
(
γabγµ − 1

2γµγ
ab
)
R̂ab

ij(V )εj

− 1
6

(
/Dγµγ · T − 2 /Dγ · Tγµ + 1

2γµ /Dγ · T + 1
2γµγ · T

←−
/D
)
εi

+ i
(
−γµ(γ · T )2 + 4γcTµ

cγ · T + 16γcT
cdTµd − 4γµT

2
)
εi

− 2
3 i
(
γabγµ − 1

2γµγ
ab
)
Tabη

i . (5.85)

We will not need the transformations for the field fµa, except the extra transformations of
fµ
µ under S-supersymmetry

δextra,Sfµ
µ = −5 i η̄χ . (5.86)

5.4.1 The modified superconformal algebra

It turns out that the commutators of the various transformation rules of the nonlinear Weyl
multiplets do not lead to the original algebra (5.10). Instead, the algebra closes modulo terms
that can be reorganized in terms of field dependent superconformal transformations.

For instance, the full commutator of two supersymmetry transformations acquires the
following terms with respect to (5.13)

[δQ(ε1), δQ(ε2)] = δcgct(ξ
µ
3 ) + δM (ΛM

ab
3 ) + δS(η3) + δU (ΛU

ij
3 )

+δK(ΛaK3) + δU(1)(Λ3) + δB(Λ3µ) , (5.87)

where the covariant general coordinate transformations have been defined in (5.44). The last
two terms appear only in the Dilaton Weyl multiplet formulation, where we use the notation
δB for the two-form tensor gauge symmetry. The parameters appearing in (5.87) are

ξµ3 = 1
2 ε̄2γµε1 ,

ΛM
ab
3 = − i ε̄2γ

[aγ · Tγb]ε1 ,
ΛU

ij
3 = i ε̄

(i
2 γ · Tε

j)
1 ,

ηi3 = − 9
4 i ε̄2ε1χ

i + 7
4 i ε̄2γcε1γ

cχi

+ 1
4 i ε̄

(i
2 γcdε

j)
1

(
γcdχj + 1

4 R̂
cd
j(Q)

)
, (5.88)

ΛaK3 = − 1
2 ε̄2γ

aε1D + 1
96 ε̄

i
2γ
abcεj1R̂bcij(V )

+ 1
12 i ε̄2

(
−5γabcdDbTcd + 9DbT

ba
)
ε1

+ε̄2
(
γabcdeTbcTde − 4γcTcdT

ad + 2
3γ

aT 2
)
ε1 ,

Λ3 = − 1
2 iσε̄2ε1 ,

Λ3µ = − 1
2σ

2ξ3µ − 1
2AµΛ3 .
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The commutator between Q- and S-supersymmetry also gains modifications with respect to
(5.14)

[δS(η), δQ(ε)] = δD( 1
2 i ε̄η) + δM ( 1

2 i ε̄γabη) + δU (− 3
2 i ε̄(iηj))

+δK(Λa3K) , (5.89)

with the field-dependent special conformal transformation given by

Λa3K = 1
6 ε̄
(
γ · Tγa − 1

2γaγ · T
)
η . (5.90)

The commutator of Q- and U(1)-transformations is given by

[
δQ(ε), δU(1)(Λ)

]
= δB

(
− 1

2Λδ(ε)Aµ
)
. (5.91)

In the next chapter, we will discuss matter fields coupled to conformal supergravity.
These matter multiplets will have to obey the modified superconformal algebra given above
in (5.87), (5.89) and (5.91), apart from possible additional transformations under which the
fields of the Weyl multiplets do not transform, and possibly field equations if these matter
multiplets are on-shell.

5.4.2 The Standard Weyl multiplet

Applying the rules of covariantization and the extra transformations of the dependent gauge
fields and imposing the modified superconformal algebra, we find the following Q- and S-
supersymmetry and K-transformation rules for the independent fields of the Standard Weyl
multiplet

δeµ
a = 1

2 ε̄γ
aψµ ,

δψiµ = Dµεi + i γ · Tγµεi − i γµη
i ,

δVµ
ij = − 3

2 i ε̄(iφj)µ + 4ε̄(iγµχ
j) + i ε̄(iγ · Tψj)µ + 3

2 i η̄(iψj)µ ,

δbµ = 1
2 i ε̄φµ − 2ε̄γµχ+ 1

2 i η̄ψµ + 2ΛKµ , (5.92)

δTab = 1
2 i ε̄γabχ− 3

32 i ε̄R̂ab(Q) ,

δχi = 1
4Dε

i − 1
64γ · R̂ij(V )εj + 3

32 i γ · T
←−
/Dεi + 1

32 i /Dγ · Tεi

+ 1
24T

2εi − 1
4 (γ · T )

2
εi + 1

4γ · Tηi ,
δD = ε̄ /Dχ− 5

3 i ε̄γ · Tχ− i η̄χ .

The covariant derivative Dµε is given in (5.34). For other covariant derivatives, see the gen-
eral rule (5.83). The covariant curvatures R̂(Q) and R̂(V ) are given explicitly in (5.82). We
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also used the following transformations for these curvatures:

δR̂ab
i(Q) = − 1

6

(
γab

cd − γcdγab − 1
2γabγ

cd
)
R̂cd

ij(V )εj + 1
4 R̂ab

cd(M)γcdε
i

+2 i
(
D[aγ · Tγb] − 1

3D[aγb]γ · T

− 1
3γ[a /Dγ · Tγb] − 1

3γabDcγdT
cd
)
εi , (5.93)

δR̂ab
ij(V ) = − 3

2 i ε̄(iR̂ab
j)(S)− 8ε̄(iγ[aDb]χ

j) + 8 i ε̄(iγ[aγ · Tγb]χj)

+ i ε̄(iγ · TR̂abj)(Q) + 3
2 i η̄(iR̂ab

j)(Q) + 8 i η̄(iγabχ
j) .

Note that we also have given the transformation rules for the gauge field of dilatations bµ,
which did not appear in the linearized Weyl multiplet. In the nonlinear Weyl multiplet it is
hidden in the covariant derivatives and curvatures.

5.4.3 The Dilaton Weyl multiplet

To obtain the complete Dilaton Weyl multiplet, we first replace the scalar ϕ by the dilaton
σ = eϕ. We then introduce appropriate powers of the dilaton in the various terms of (5.79)
such that all terms have the same Weyl weight. This will make the Dilaton Weyl multiplet
much more nonlinear than the Standard Weyl multiplet.

The Dilaton Weyl multiplet also contains two extra gauge transformations: the gauge
transformations of Aµ with parameter Λ and those of Bµν with parameter Λµ. The transfor-
mation of the fields are given by

δeµ
a = 1

2 ε̄γ
aψµ ,

δψiµ = Dµεi + i γ · Tγµεi − i γµη
i ,

δVµ
ij = − 3

2 i ε̄(iφj)µ + 4ε̄(iγµχ
j) + i ε̄(iγ · Tψj)µ + 3

2 i η̄(iψj)µ ,

δbµ = 1
2 i ε̄φµ − 2ε̄γµχ+ 1

2 i η̄ψµ + 2ΛKµ , (5.94)

δBµν = 1
2 iσε̄γµνψ + 1

2σ
2ε̄γ[µψν] +A[µδ(ε)Aν] + 2∂[µΛν] − 1

2ΛFµν ,

δAµ = 1
2 ε̄γµψ − 1

2 iσε̄ψµ + ∂µΛ ,

δψi = − 1
4γ · F̂ εi − 1

2 i /Dσεi + σγ · Tεi − 1
4 iσ−1ψ̄iψjεj + σηi ,

δσ = 1
2 i ε̄ψ .

We have again underlined some fields to indicate that they are not independent fields but
merely short-hand notations. The explicit expression for these fields in terms of fields of the
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Dilaton Weyl multiplet are

Tab = 1
8σ

−2
(
σF̂ab − 1

6εabcdeĤ
edc + 1

4 i ψ̄γabψ
)
,

χi = 1
8 iσ−1 /Dψi + 1

16 iσ−2 /Dσψi − 1
32σ

−2γ · F̂ψi

+ 1
4σ

−1γ · Tψi + 1
32 iσ−3ψjψ̄

iψj , (5.95)

D = 1
4σ

−1
�
cσ + 1

8σ
−2(Daσ)(Daσ)− 1

16σ
−2F̂ 2

− 1
8σ

−2ψ̄ /Dψ − 1
64σ

−4ψ̄iψjψ̄iψj − 4 iσ−1ψ̄χ

+
(
2σ−1F̂ab − 26

3 Tab + 1
4 iσ−2ψ̄γabψ

)
T ab ,

The conformal D’Alembertian �
c is defined by

�
cσ ≡ DaDaσ =

(
∂a − 2ba + ω ba

b

)
Daσ − 1

2 i ψ̄aD
aψ − 2σψ̄aγ

aχ

+ 1
2 ψ̄aγ

aγ · Tψ + 1
2 φ̄aγ

aψ + 2fa
aσ . (5.96)

The justification for using the expressions (5.95) is that they transform exactly as the fields
Tab , χ

i andD in the Standard Weyl multiplet. Finally, we have defined the curvatures for the
gauge fields Bµν and Aµ to be

F̂µν = 2∂[µAν] − ψ̄[µγν]ψ + 1
2 iσψ̄[µψν] ,

Ĥµνρ = 3∂[µBνρ] − 3
2 iσψ̄[µγνρ]ψ − 3

4σ
2ψ̄[µγνψρ] + 3

2A[µFνρ] . (5.97)

For the convenience of the reader we give their transformation rules

δF̂ab = −ε̄γ[aDb]ψ − 1
2 iσε̄R̂ab(Q) + i ε̄γ[aγ · Tγb]ψ + i η̄γabψ ,

δĤabc = 3
2 iσε̄γ[abDc]ψ + 3

2 iD[aσε̄γbc]ψ − 3
4σ

2ε̄γ[aR̂bc](Q) (5.98)

− 3
2σε̄γ[aγ · Tγbc]ψ − 3

2 ε̄γ[aF̂bc]ψ − 3
2ση̄γabcψ .

Finally, we give the Bianchi identities for these two curvatures

D[aF̂bc] = 1
2 ψ̄γ[aR̂bc](Q) ,

D[aĤbcd] = 3
4 F̂[abF̂cd]. (5.99)

5.5 Connection between the Weyl multiplets

In the previous section, we have shown that the Standard and Dilaton Weyl multiplets can be
related to each other by expressing the fields of the Standard Weyl multiplet in terms of those
of the Dilaton Weyl multiplet (see (5.95)). It is known that in six dimensions the coupling of
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an on-shell self-dual tensor multiplet to the Standard Weyl multiplet leads to a Dilaton Weyl
multiplet [176].

Since in five dimensions a tensor multiplet is dual to a vector multiplet, it is natural to
consider the coupling of a vector multiplet to the Standard Weyl multiplet. Since the Standard
Weyl multiplet has no dilaton, we must consider the improved vector multiplet. We will take
the vector multiplet off-shell to simplify the higher-order fermion terms.

5.5.1 The improved Maxwell multiplet

We will first consider the improved vector multiplet in a flat background, i.e. no coupling to
conformal supergravity. Our starting point is the Lagrangian corresponding to an off-shell
vector multiplet:

L = −1

4
FµνF

µν − 1

2
ψ̄ /∂ψ − 1

2
(∂σ)2 + Y ijYij . (5.100)

The action corresponding to this Lagrangian is invariant under the off-shell supersymmetries

δAµ = 1
2 ε̄γµψ ,

δY ij = − 1
2 ε̄

(i /∂ψj) , (5.101)

δψi = − 1
4γ · Fεi − 1

2 i /∂σεi − Y ijεj ,
δσ = 1

2 i ε̄ψ .

The action has the wrong Weyl weight to be scale invariant. We therefore improve it by
multiplying all terms with the dilaton. This requires additional cubic terms in the action
to keep it invariant under supersymmetry. We thus obtain the Lagrangian for the improved
vector multiplet:

L =
(
− 1

4FµνF
µν − 1

2 ψ̄ /∂ψ − 1
2 (∂σ)2 + Y ijYij

)
σ

− 1
24ε

µνλρσAµFνλFρσ − 1
8 i ψ̄γ · Fψ − 1

2 i ψ̄iψjYij . (5.102)

The equations of motion and the Bianchi identity corresponding to this Lagrangian are given
by

0 = Lij = ϕi = Ea = N = Gabc . (5.103)

where we have defined

Lij ≡ 2σY ij − 1
2 i ψ̄iψj ,

ϕi ≡ iσ/∂ψi + 1
2 i /∂σψi − 1

4γ · Fψi + Y ijψj ,

Ea ≡ ∂b
(
σFba + 1

4 i ψ̄γbaψ
)
− 1

8εabcdeF
bcF de , (5.104)

N ≡ − 1
4FµνF

µν − 1
2 ψ̄ /∂ψ + σ�σ + 1

2 (∂σ)2 + Y ijYij ,

Gabc ≡ ∂[aFbc] .
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5.5.2 Coupling to the Standard Weyl multiplet

Next, we consider the coupling of the improved vector multiplet to the Standard Weyl multi-
plet. The transformation rules for the fields of the off-shell vector multiplet can be found
by imposing the superconformal algebra (5.87). We thus find the following Q- and S-
transformation rules:

δAµ = 1
2 ε̄γµψ − 1

2 iσε̄ψµ ,

δY ij = − 1
2 ε̄

(i /Dψj) + 1
2 i ε̄(iγ · Tψj) − 4 iσε̄(iχj) + 1

2 i η̄(iψj) ,

δψi = − 1
4γ · F̂ εi − 1

2 i /Dσεi + σγ · Tεi − Y ijεj + σηi ,

δσ = 1
2 i ε̄ψ , (5.105)

where the covariant curvature is

F̂µν = 2∂[µAν] − ψ̄[µγν]ψ + 1
2 iσψ̄[µψν] . (5.106)

The supercovariant extension of the Bianchi identity reads

0 = Gabc = D[aF̂bc] − 1
2 ψ̄γ[aR̂bc](Q) . (5.107)

The second term in the transformation of Aµ, reflected also in the curvature, signals a
modification of the supersymmetry algebra, as can be seen by comparing with the general
rule (5.87)

[δ(ε1), δ(ε2)] = . . .+ δU(1)

(
Λ3 = − 1

2 iσε̄2ε1
)
, (5.108)

where the dots indicate all the terms present for the fields of the Standard Weyl multiplet and
where the last term is the gauge transformation of Aµ.

Our next goal is to find the equations of motion for the vector multiplet coupled to con-
formal supergravity. These equations of motion should be an extension of the flat spacetime
results given in (5.105). One way to proceed is to first find the curved background extension
of the flat spacetime action defined by (5.102) and next derive the equations of motion from
this action. However, for our present purposes, it is sufficient to find the equations of motion
only.

We want to identify the spinor ψi of the vector multiplet with the spinor ψi of the Dilaton
Weyl multiplet. This is why we have given these two spinors the same name in the first place.
Comparing the SU(2) triplet term in the supersymmetry transformations of the two spinors,
see (5.94) and (5.105), we deduce that the constraint Lij does not get any corrections, and
we must have

Lij = 2σY ij − 1
2 i ψ̄iψj . (5.109)

There are now two ways to proceed. One way is to make the transition to an on-shell vec-
tor multiplet by using (5.109) to eliminate the auxiliary field Y ij from the transformation



116 Weyl multiplets of conformal supergravity

rules (5.105). The commutator of two supersymmetry transformations would then only close
modulo the equations of motion.

A more elegant way is to note that the equations of motion must transform into each other.
By varying (5.109) under (5.105) we find

δLij = i ε̄(iϕj) , (5.110)

where the supercovariant extension of ϕi is now given by

ϕi = iσ /Dψi + 1
2 i /Dσψi − 1

4γ · F̂ψi + Y ijψj

+2σγ · Tψi − 8σ2χi . (5.111)

Varying this expression under (5.105) and using (5.107) leads to the other equations of mo-
tion. We find

δϕi = − 1
2 i /DLijεj − 1

2 i γaEaε
i + 1

2Nε
i − γ · TLijεj . (5.112)

The supercovariant generalizations of (5.105) are given by

Ea = Db
(
σF̂ba − 8σ2Tba + 1

4 i ψ̄γbaψ
)
− 1

8εabcdeF̂
bcF̂ de ,

N = − 1
4 F̂abF̂

ab − 1
2 ψ̄ /Dψ + σ�

cσ + 1
2D

aσDaσ + Y ijYij (5.113)

+ i ψ̄γ · Tψ − 16 iσψ̄χ− 104
3 σ2TabT

ab + 8σF̂abT
ab − 4σ2D ,

where we have used the expression for the conformal D’Alembertian given in (5.96). The
supercovariant equations of motion and Bianchi identity are then given by

0 = Lij = ϕi = Ea = N = Gabc . (5.114)

5.5.3 Solving the equations of motion

In six dimensions, the equations of motion for an on-shell tensor multiplet coupled to the
Standard Weyl multiplet can be used to eliminate the matter fields of the latter in terms of the
matter fields of the Dilaton Weyl multiplet.

Precisely the same happens here. First of all, the equations of motion for Y ij can be used
to eliminate this auxiliary field. Next, the equations of motion for ψi and σ can be used to
solve for the fields χi and D, respectively. The expressions for these fields exactly coincide
with the ones we found in (5.95).

The solution for the matter field Tab in terms of the fields of the Dilaton Weyl multiplet
is more subtle. It requires that we first reinterpret the equation of motion for the vector field
as the Bianchi identity for a two-form antisymmetric tensor gauge field Bµν . To be precise,
we rewrite Ea = 0 from (5.113) as a Bianchi identity

D[aĤbcd] = 3
4 F̂[abF̂cd], (5.115)
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where the three-form curvature Ĥabc is defined by

− 1
6εabcdeĤ

edc = 8σ2Tab − σF̂ab − 1
4 i ψ̄γabψ . (5.116)

Note that the latter equation is just a rewriting of the relation (5.95).
The Bianchi identity (5.115) can be solved in terms of an antisymmetric two-form gauge

field Bµν . The superconformal algebra (5.87) imposes that such a field transforms under
supersymmetry as follows:

δQBµν = 1
2 iσε̄γµνψ + 1

2σ
2ε̄γ[µψν] +A[µδ(ε)Aν] . (5.117)

In addition, one finds that the field Bµν transforms under a U(1) and a vector gauge transfor-
mation as follows

δBµν = 2∂[µΛν] − 1
2ΛFµν . (5.118)

Furthermore, the commutator of two Q-transformations picks up a vector gauge transforma-
tion δB for the field Bµν :

[δ(ε1), δ(ε2)] = . . .+ δU(1) (Λ3) + δB (Λ3µ) ,

Λ3 = − 1
2 iσε̄2ε1 , Λ3µ = − 1

4σ
2ε̄2γµε1 − 1

2AµΛ3 . (5.119)

From the transformation rules (5.118) for Bµν it follows that the supercovariant field
strength Ĥµνρ is given by

Ĥµνρ = 3∂[µBνρ] − 3
2 iσψ̄[µγνρ]ψ − 3

4σ
2ψ̄[µγνψρ] + 3

2A[µFνρ] . (5.120)

This field strength indeed satisfies the Bianchi identity (5.115).
We conclude that the connection between the Standard and Dilaton Weyl multiplets can

be obtained by first coupling an improved vector multiplet to the Standard Weyl multiplet
and, next, solving the equations of motion. To solve the equation of motion for the vector
field in terms of the matter field Tab, one must first reinterpret this equation of motion as the
Bianchi identity for an antisymmetric two-form gauge field.
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Chapter 6

Matter-couplings of conformal
supergravity

The basic supergravities in ten and and eleven dimensions are the low energy limits of
string theory and M-theory, as we have seen in the introduction and in chapter 1. Matter-

coupled supergravity theories in lower dimensions [38] have played an important role in our
understanding of the low-energy limit of string theory compactifications.

For phenomenological reasons, much work has been done related to compactifications to
four dimensions and the corresponding four-dimensional matter-coupled supergravities [197,
198]. The supergravities in the intermediate dimensions have also played a role in the un-
derstanding of string theory. For instance, the structure of nine-dimensional supergravity
is important for the understanding of T-duality [40], whereas six-dimensional supergravity
plays a crucial role in the understanding of string-string duality [199].

As we have discussed in chapter 4, a lot of attention has recently been given to five-
dimensional matter-coupled supergravity theories [159,162], thereby generalizing the earlier
results of [156–158]. In this chapter, we will take the superconformal approach [167, 173–
175] to construct a framework from which one can independently derive and study the possi-
ble five-dimensional matter-couplings to Poincaré supergravity.

An advantage of the superconformal construction is that, by past experience, it leads
to insights into the kinematical and geometrical structure of matter-coupled Poincaré super-
gravity. For instance, the vector fields of superconformal vector multiplets split into the
graviphoton of the Poincaré supergravity multiplet and the photons of ordinary vector multi-
plets by gauge-fixing the superconformal symmetries. A more recent example is the insight
in relations between hyper-Kähler cones and quaternionic manifolds, based on the study of
superconformal hypermultiplets [172, 200].

There is a more general interest in theN = 2 , D = 5 matter-coupled supergravities: they
belong to the class of theories with eight supersymmetries [201]. Such theories are especially
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interesting since the geometry, determined by the kinetic terms of the scalars, contains un-
determined functions. Theories with thirty-two supersymmetries have no matter multiplets,
whereas the geometry of those with sixteen supersymmetries is completely determined by
the number of matter multiplets. Theories with four supersymmetries allow for even more
general geometries: continuous deformations of the manifold are allowed. Theories with
eight supersymmetries have a more restricted class of geometries, which makes them more
manageable.

The geometry related to supersymmetric theories with eight real supercharges is called
“special geometry”. Special geometry was first found in [202, 203] for local supersymme-
try and in [204, 205] for rigid supersymmetry. It occurs in Calabi-Yau compactifications as
the moduli space of these manifolds [206–211]. Special geometry was also a very useful
tool in the investigation of supersymmetric black holes [212, 213], the work of Seiberg and
Witten [214, 215], and the AdS/CFT correspondence [76].

So far, special geometry had been mainly investigated in the context of four dimensions.
With the advent of the brane-world scenarios [138, 139], also the D = 5 variant of special
geometry [156], called “very special geometry”, received a lot of attention. The connection to
special geometry was made in [216]. Finally, there is a connection between special geometry
and and another class of geometries called “quaternionic geometry” [207], which has lead to
new results on the classification of homogeneous quaternionic spaces [217, 218].

Superconformal matter multiplets with eight supersymmetries have already been intro-
duced in [178, 179, 219]. However, there are still some ingredients missing. For instance, we
will not only introduce vector multiplets in the adjoint representation but in arbitrary repre-
sentations. The resulting multiplet in this case is called the “vector-tensor” multiplet. We will
also construct vector-tensor multiplets in reducible, but not completely reducible representa-
tions: they are related to non-compact, non-semi-simple gaugings of Poincaré supergravity, a
class of gauged supergravities that have not been considered for N = 2 supersymmetry.

Some of the superconformal matter multiplets are on-shell: the algebra closes only mod-
ulo equations of motion. However, this does not imply that these equations of motion have to
follow from an action. Indeed, this is a familiar feature of e.g. IIB supergravity and other the-
ories with self-dual antisymmetric tensor fields. In particular for the vector-tensor multiplet,
the absence of an action allows for couplings with an odd number of tensor multiplets, which
generalizes the analysis made in [220]. For the hypermultiplets, we will introduce more gen-
eral geometries than hyper-Kähler for rigid supersymmetry, or quaternionic-Kähler for local
supersymmetry: we will consider hyper-Kähler manifolds without a metric: such manifolds
are called “hyper-complex” manifolds.

We will start this chapter with constructing and discussing the possible matter-couplings
in the absence of a Lagrangian by giving the rigid transformation rules for the vector-tensor
multiplet and the hypermultiplet. We will emphasize the geometrical interpretation of the
emerging algebraic structure. Next, in section 6.3, we construct the rigid superconformal
Lagrangians for each of the superconformal matter multiplets. We discuss the restrictions
on the possible geometries that follow from the requirement of a Lagrangian. Finally, in
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section 6.4, we extend the rigid superconformal symmetry to local superconformal symmetry,
making use of the Weyl multiplet constructed in chapter 5.

This chapter is based on the work to be published in [17].

6.1 The vector-tensor multiplet

In this section, we will discuss superconformal vector multiplets that transform in arbitrary
representations of the gauge group. From work on N = 2 , D = 5 Poincaré matter-
couplings [159], it is known that vector multiplets transforming in representations other than
the adjoint have to be dualized to tensor fields. We define a vector-tensor multiplet to be a
vector multiplet transforming in a reducible representation that contains the adjoint represen-
tation as well as another, arbitrary, representation.

We will show that the analysis of [159] can be extended to superconformal vector mul-
tiplets. Moreover, we will generalize the gauge transformations for the tensor fields given
in [159] by allowing them to transform into the field-strengths of the adjoint gauge fields.
These more general gauge transformations are consistent with supersymmetry, even after
breaking the conformal symmetry.

The vector-tensor multiplet contains a priori an arbitrary number of tensor fields. The
restriction to an even number of tensor fields is not imposed by the closure of the algebra.
However, one can only construct an action for an even number of tensor multiplets as we will
see in section 6.3.

To make contact with other results in the literature, we will break the rigid conformal
symmetry by using a vector multiplet as a compensating multiplet for the superconformal
symmetry. The adjoint fields of the vector-tensor multiplet are given constant expectation
values, and the scalar expectation values will play the role of a mass parameter. If one de-
mands that the field equations do not contain tachyonic modes, an even number of tensor
multiplet is required. For the case of two tensor multiplets, this will reduce the superconfor-
mal vector-tensor multiplet to the massive self-dual complex tensor multiplet of [221].

6.1.1 Adjoint representation

We will start with giving the transformation rules for a vector multiplet in the adjoint repre-
sentation [179]. Such an off-shell vector multiplet has 8 + 8 real degrees of freedom whose
SU(2) labels and Weyl weights we have indicated in table 6.1. If the rank of the gauge
group is nV, then we have I = 1, . . . , nV, and the scalars of the vector multiplet span a
nV-dimensional real vector space which is isomorphic to the manifold R

nV .
We consider gauge fields AIµ and general matter fields of the vector multiplet XI that

transform under gauge transformations with parameters ΛI according to

δG(ΛJ )AIµ = ∂µΛ
I + gAJµfJK

IΛK , δG(ΛJ)XI = −gΛJfJKIXK , (6.1)
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Field SU(2) w # d.o.f.

AIµ 1 0 4nV

Y ijI 3 2 3nV

σI 1 1 1nV

ψiI 2 3/2 8nV

Table 6.1: The off-shell Yang-Mills multiplet.

where g is the coupling constant of the gauge group. The gauge transformations that we
consider satisfy the commutation relations

[δG(ΛI1), δG(ΛJ2 )] = δG(ΛK3 ) , ΛK3 = gΛI1Λ
J
2 fIJ

K . (6.2)

The expression for the gauge-covariant derivative of XI and the field-strengths are given by

DµXI = ∂µX
I + gAJµfJK

IXK , F Iµν = 2∂[µA
I
ν] + gfJK

IAJµA
K
ν . (6.3)

The field-strength satisfies the Bianchi identity

D[µF
I
νλ] = 0 . (6.4)

The rigidQ- and S-supersymmetry transformation rules for the off-shell Yang-Mills mul-
tiplet are given by [179]

δAIµ = 1
2 ε̄γµψ

I ,

δY ijI = − 1
2 ε̄

(i /Dψj)I − 1
2 i gε̄(ifJK

IσJψj)K + 1
2 i η̄(iψj)I ,

δψiI = − 1
4γ · F Iεi − 1

2 i /DσIεi − Y ijIεj + σIηi ,

δσI = 1
2 i ε̄ψI . (6.5)

The field-strength transforms according to

δF Iµν = −ε̄γ[µDν]ψI + i η̄γµνψ
I . (6.6)

The commutator of two Q-supersymmetry transformations yields a translation with an extra
G-transformation

[δ(ε1), δ(ε2)] = δP
(

1
2 ε̄2γµε1

)
+ δG

(
− 1

2 iσε̄2ε1
)
. (6.7)

Note that even though we are considering rigid superconformal symmetry, the algebra (6.7)
contains a field-dependent term on the right hand side. Such soft terms are commonplace in
local superconformal symmetry, but here they already appear at the rigid level. In Hamilto-
nian language, it means that the algebra is satisfied modulo constraints.
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Field SU(2) w # d.o.f.

BMµν 1 0 3nT

φM 1 1 1nT

λiM 2 3/2 4nT

Table 6.2: The on-shell tensor multiplet.

6.1.2 Reducible representations

Instead of the set of field-strengths F Iµν , we will now consider a more general set of tensor

fields HĨµν = {F Iµν , BMµν} with Ĩ = (I,M) (I = 1, · · · , nV;M = nV + 1, · · ·nV + nT).
The set of nT tensor fields BMµν are accompanied by spinors λiM and scalars φM as we have
indicated in table 6.2.

The representation matrices take on the form

(tI)J̃
K̃ =

(
(tI)J

K (tI)J
N

(tI)M
K (tI)M

N

)
,

{
I, J,K = 1, . . . , nV

M,N = nV + 1, . . . , nV + nT .
(6.8)

It is understood that the (tI)J
K are in the adjoint representation, i.e.

(tI)J
K = fIJ

K . (6.9)

If nT 6= 0, then the representation is reducible. We will see that this representation can be
more general than assumed so far in treatments of vector-tensor multiplet couplings. The
requirement that nT is even will only appear when we demand the existence of an action in
section 6.3.2, or if we require absence of tachyonic modes. The matrices tI satisfy commu-
tation relations

[tI , tJ ] = −fIJKtK , or t
IÑ

M̃ t
JM̃

L̃ − t
JÑ

M̃ t
IM̃

L̃ = −fIJKtKÑ
L̃ . (6.10)

If the index L̃ is a vector index, then this relation is satisfied using the matrices as in (6.9).

Requiring the closure of the superconformal algebra, we find Q- and S-supersymmetry
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transformation rules for the vector-tensor multiplet

δAIµ = 1
2 ε̄γµψ

I ,

δHĨµν = −ε̄γ[µDν]ψĨ + i gε̄γµνt(J̃K̃)
ĨσJ̃ψK̃ + i η̄γµνψ

Ĩ ,

δY ijĨ = − 1
2 ε̄

(i /Dψj)Ĩ − 1
2 i gε̄(i

(
t
[J̃K̃]

Ĩ − 3t
(J̃K̃)

Ĩ
)
σJ̃ψj)K̃ + 1

2 i η̄(iψj)Ĩ ,

δψiĨ = − 1
4γ · HĨεi − 1

2 i /DσĨεi − Y ijĨεj + 1
2gt(J̃K̃)

ĨσJ̃σK̃εi + σĨηi ,

δσĨ = 1
2 i ε̄ψĨ . (6.11)

Note that (6.11) differs from (6.5) and (6.6) only in terms at O(g) in the gauge coupling

constant, and that the difference is always proportional to the tensor t
(J̃K̃)

Ĩ .
The curly derivatives denote gauge-covariant derivatives as in (6.3) with the replacement

of structure constants by general matrices tI according to (6.9). We have extended the range
of the generators from I to Ĩ in order to simplify the transformation rules with the under-
standing that

(tM )
J̃
K̃ = 0 . (6.12)

We find that the supersymmetry algebra (6.7) is satisfied provided the representation matrices
are restricted to

t
(J̃K̃)

I = 0 . (6.13)

If nT 6= 0, then the algebra only closes provided the following two equations of motion
on the fields are satisfied

LijĨ ≡ t
(J̃K̃)

Ĩ
(
2σJ̃Y ijK̃ − 1

2 i ψ̄iJ̃ψjK̃
)

(6.14)

= 0 ,

E Ĩµνλ ≡ 3

g
D[µHνλ]

Ĩ − εµνλρσt(J̃K̃)
Ĩ
(
σJ̃HρσK̃ + 1

4 i ψ̄J̃γρσψK̃
)

(6.15)

= 0 .

For Ĩ = I , we can use (6.13) to satisfy (6.14) and to reduce (6.15) to the Bianchi identity
(6.4). The tensor F Iµν can therefore be seen as the curl of a gauge vectorAIµ. We conclude that

the fields with indices Ĩ = I form an off-shell vector multiplet in the adjoint representation
of the gauge group. In particular, this means that for nT = 0 we find back the transformation
rules for the vector multiplet.

The constraints (6.14) and (6.15), with Ĩ = M , do not form a supersymmetric set: they
are invariant under S-supersymmetry, but under Q-supersymmetry they lead to a constraint
on the spinors ψiM which we will call ϕiM :

δLijM = i ε̄(iϕj)M , δEMµνρ = ε̄γµνρϕ
M . (6.16)
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The expression for this constraint is given by

ϕiM ≡ t
(J̃K̃)

M
[
iσJ̃ /DψiK̃ + 1

2 i ( /DσJ̃)ψiK̃ + Y ikJ̃ψK̃k − 1
4γ · HJ̃ψiK̃

]

−g
([
t
[J̃K̃]

L̃ − 3t
(J̃K̃)

L̃
]
t
(ĨL̃)

M + 1
2 tĨJ̃

L̃t
(K̃L̃)

M
)
σĨσJ̃ψiK̃ (6.17)

= 0 .

Varying the new constraint ϕiM under Q-and S-supersymmetry, one finds at first sight
two more constraints, EMa and NM , of which the first one turns out to be dependent (see
below):

δϕiM = − 1
2 i /DLij M εj − 1

2 i γaEMa εi + 1
2N

M εi − 1
2gtJ̃K̃

MσJ̃Lij K̃εj

− 1
12 i gt

(J̃K̃)
MγabcσJ̃EK̃abcε

i + 3LijMηj . (6.18)

The constraint NM is given by

NM ≡ t
(J̃K̃)

M
(
σJ̃�σK̃ + 1

2DaσJ̃DaσK̃ − 1
4HJ̃abHabK̃ − 1

2 ψ̄
J̃ /DψK̃ + Y ijJ̃Yij

K̃
)

− i g
[
− 1

2 t[J̃K̃]
L̃t

(ĨL̃)
M + 2 t

(ĨJ̃)
L̃t

(K̃L̃)
M
]
σĨ ψ̄J̃ψK̃

+ 1
2g

2 (tItJ tK)
L̃
MσIσJσKσL̃

= 0 , (6.19)

and for EMa we find

EMa ≡ t
(J̃K̃)

M
(
Db
(
σJ̃HbaK̃ + 1

4 i ψ̄J̃γbaψ
K
)
− 1

8εabcdeHbcJ̃HdeK̃
)

= 0 . (6.20)

This last constraint is not an independent condition, but it is related to EM
abc

EMa = − 1
12εabcdeDbEcdeM . (6.21)

Subsequent supersymmetry variations do not lead to any new constraints. On a technical
note, we made use of identities as

t
KĨ

L̃t
(J̃L̃)

M + t
KJ̃

L̃t
(ĨL̃)

M − t
(ĨJ̃)

L̃t
KL̃

M = 0 , (6.22)

which follow from the commutator relation (6.10), and the restrictions (6.12) and (6.13).
To summarize, the superconformal algebra closes on the vector-tensor multiplet modulo

the set of constraints (6.14), (6.14), (6.17) and (6.19). Under Q– and S–supersymmetry, they
transform to each other, but they do not form a multiplet by themselves.
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6.1.3 Completely reducible representations

Using (6.13), we have reduced the representation matrices tI to the following block-upper-
triangular form:

(tI)J̃
K̃ =

(
fIJ

K (tI)J
N

0 (tI)M
N

)
. (6.23)

In the case that (tI)J
N = 0, the representation is called completely reducible: the field-

strengths F Iµν and the tensor fields BMµν do not mix under gauge transformations.
Recall that every unitary reducible representation of a Lie group is also completely re-

ducible, and that every representation of a compact Lie group is equivalent to a unitary
representation. Hence, every reducible representation of a compact Lie group is also com-
pletely reducible. Non-compact Lie groups, on the other hand, have no non-trivial and finite-
dimensional unitary representations. However, every reducible representation of a connected,
semi-simple, non-compact Lie group or a semi-simple, non-compact Lie algebra is also com-
pletely reducible. See [222] for an exposition of these theorems.

Hence, we need to consider the class of non-compact Lie algebras that contain an Abelian
invariant subalgebra. InN = 8 gauged supergravity inD = 5 [223], the algebras CSO(p, q, r)
were studied: they are defined as the set of matrices that leave invariant the metric

ηIJ = ( p,− q, 0r) . (6.24)

These algebras contain the following subalgebra

SO(p, q)⊕ SO(1, 1)
r(r−1)

2 ⊂ CSO(p, q, r) . (6.25)

In [220], a classification of possible compact gaugings of N = 2 supergravity in five di-
mensions was given, but the class of non-compact gaugings was not investigated. An addi-
tional remark is that, for non-semi-simple Lie groups, we need to take the vector fields in the
co-adjoint representation, rather than the adjoint representation [224]. For semi-simple Lie
groups these two representations coincide.

Reducible but not completely reducible representations are then given by nV Abelian
vector multiplets and nT tensor multiplets transforming in the following representation

(tI)J̃
K̃ =

(
0 (tI)J

N

0 0

)
. (6.26)

The literature on five-dimensional tensor multiplets [159] states that, to write down an
action, one must assume that the representation is completely reducible, meaning that gauge
transformations do not mix the pure Yang–Mills field-strengths and the tensor fields. We,
however, find that off-diagonal generators are allowed, both when requiring closure of the
superconformal algebra and when writing down an action. Thus, we have found more general
vector-tensor multiplets.
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6.1.4 The massive self-dual tensor multiplet

To obtain the massive self-dual tensor multiplet of [221], we consider a vector-tensor mul-
tiplet for general nV and nT. Our purpose is to use the vector multiplet as a compensating
multiplet for the superconformal symmetry. Thus, we impose conditions on the fields that
break the conformal symmetry and preserve Q–supersymmetry. We give the fields of the
vector multiplets the following vacuum expectation values

F Iµν = Y ijI = ψiI = 0 , σI =
2mI

g
, (6.27)

wheremI are constants. Note that these conditions break the conformal group to the Poincaré
group, and break S-supersymmetry (η = 0). This is an example of a compensating multiplet
in rigid supersymmetry. The breaking of conformal symmetry is characterized by the mass
parameters mI in (6.27). If we substitute (6.27) into the expression (6.14) for LijM , then we
find that we can eliminate the field Y ijM

Y ijM = 0 . (6.28)

Moreover, we can also substitute (6.27) into the constraints EM
µνλ, ϕiM and NM to obtain

3∂[µB
M
νλ] = 1

2εµνλρσMN
MBρσN ,

/∂ψiM = iMN
MψiN ,

�σM = −
(
M2

)
N
MσN − 4

g tIJ
NmImJMN

M . (6.29)

The mass-matrixMN
M is defined as

MN
M ≡ g σI(tI)NM = 2mI(tI)N

M . (6.30)

The last term of (6.29) can be eliminated by redefining σM with a constant shift. In order for
the tensor fields to have no tachyonic modes, the mass-matrix needs to satisfy a symplectic
condition which can only be satisfied if the number of tensor fields is even [221]. We denote
the number of tensor multiplets by nT = 2k.

The exception is when the representation matrices are purely upper-diagonal: i.e when
they take on the form (6.26). For that specific representation, the mass matrix vanishes iden-
tically and no tachyonic modes are present. However, in that case the self-duality condition
reduces to the Bianchi identity so that we are dealing with nT extra vector multiplets in
disguise.

To obtain the massive self-dual tensor multiplet of [221] we consider the case of nV =
1 , nT = 2, i.e. two (real) tensor multiplets {BMµν , λiM , φM} (M,N = 2, 3) in the back-
ground of one (Abelian) vector multiplet {Fµν ψi, σ} that has been given the vacuum expec-
tation value (6.27). In what follows we will use a complex notation

Bµν = B2
µν + iB3

µν , Bµν = B2
µν − iB3

µν . (6.31)
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The generators (t1)Ĩ
J̃ must form a representation of U(1) ' SO(2). Under a U(1) transfor-

mation the field-strength Fµν is invariant and the complex tensor field gets a phase

B′
µν = e i θBµν →

(
B2
µν

B3
µν

)′

=

(
cos θ − sin θ
sin θ cos θ

)
·
(
B2
µν

B3
µν

)
. (6.32)

From this, we obtain the generator

(t1)Ĩ
J̃ =




0 0 0
0 0 −1
0 1 0


 . (6.33)

After substituting the conditions (6.27) into the transformation rules, we obtain

δBµν = −ε̄γ[µ∂ν]λ−mε̄γµνλ ,
δλi = − 1

4γ ·Bεi − 1
2 i /∂φεi − imφεi ,

δφ = 1
2 i ε̄λ , (6.34)

and
3∂[µBνλ] = imεµνλρσB

ρσ . (6.35)

This reproduces the massive self-dual tensor multiplet of [221]. Note that the commutator of
two Q-supersymmetries yields a translation plus a (rigid) U(1)-transformation whose param-
eter can be obtained from the general G-transformation in the superconformal algebra, see
(6.7), by making the substitution (6.27).

From a six-dimensional point of view, the interpretation of the mass parameter m is that
it is the label of the m-th Kaluza-Klein mode in the reduction of the D = 6 self-dual tensor
multiplet. The zero-mode of the reduced tensor multiplet corresponds to a vector multiplet as
can be seen from (6.35) which becomes a Bianchi identity for a field-strength when m = 0.

6.2 The hypermultiplet

In this section, we will discuss superconformal hypermultiplets in five dimensions. We will
follow the approach of [225], which discussed four-dimensional superconformal hypermulti-
plets, but we will extend it to the case where an action is not needed, in the spirit explained
in [201]. As for the tensor multiplets, there is no off-shell formulation with a finite number
of auxiliary fields, and the supersymmetry algebra closes modulo equations of motion.

A single hypermultiplet contains four real scalars and two spinors subject to a symplectic
Majorana reality condition. We take the number of hypermultiplets nH equal to r, which
means that we introduce 4r real scalars qX , with X = 1, . . . , 4r, and 2r spinors ζA with
A = 1, . . . , 2r. We have indicated these fields and their relevant properties in table 6.2.
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Field SU(2) w # d.o.f.

qX 2 3
2 4r

ζA 1 2 4r

Table 6.3: The on-shell hypermultiplet.

Analogous to the equivalence of the real vector space R2n to the complex vector space
Cn, the real vector space R4r spanned by the scalars qX is isomorphic to the quaternionic
vector space Hr. Recall that the field of quaternions H is defined as all four-tuples of the
form a+ b i + c j + d k , with {a, b, c, d} ∈ R and i 2 = j 2 = k 2 = i j k = −1.

To formulate the symplectic Majorana condition, we introduce two matrices ρAB and
Ei

j , with
ρρ∗ = − 2r , EE∗ = − 2 . (6.36)

This defines symplectic Majorana conditions for the fermions and the supersymmetry trans-
formation parameters [226]:

αCγ0ζ
BρB

A =
(
ζA
)∗
, αCγ0ε

jEj
i = (εi)∗ , (6.37)

where C is the charge conjugation matrix, and α is an irrelevant number of modulus 1. We
can always adopt the basis where Eij = εij , and we will further restrict to that.

We will start this section with describing the rigid supersymmetry transformation rules
and their geometrical interpretation. After that, we will realize the superconformal symme-
tries on the hypermultiplet. Finally, we will discuss how to gauge the isometries of the scalar
manifold by coupling the hypermultiplet to a vector multiplet.

6.2.1 Rigid supersymmetry

We will show how the closure of the supersymmetry transformation rules on the scalars leads
to equations defining a “hyper-complex” manifold. The scalars can then be regarded as
coordinates on this hyper-complex manifold, whereas the fermions take their values in the
tangent-space of the manifold. Furthermore, the closure of the algebra on the fermions leads
to equations of motion.

Hyper-complex geometry

The rigid supersymmetry transformation rules for the hypermultiplet are given by

δ(ε)qX = − i ε̄iζAfXiA ,

δ(ε)ζA = 1
2 i /∂qXf iAX εi − ζBωXBA

(
δ(ε)qX

)
. (6.38)
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The functions f iAX and ωXAB satisfy reality properties consistent with reality of qX and the
symplectic Majorana conditions

(
f iAX
)∗

= f jBX Ej
iρB

A ,
(
ωXA

B
)∗

=
(
ρ−1ωXρ

)
A
B . (6.39)

A priori, the functions fXiA and f iAX are independent, but the commutator of two supersym-
metries on the scalars only gives a translation if one imposes

f iAY fXiA = δXY , f iAX fXjB = δijδ
A
B ,

DXf
iA
Y ≡ ∂Xf

iA
Y − ΓZXY f

iA
Z +

(
ωXj

iδAB + ωXB
Aδij
)
f jBY = 0 , (6.40)

where ΓZXY is symmetric its lower indices.
The tensors given above have the following geometrical interpretation: fXiA and f iAX are

invertible vielbeins on the scalar manifold, ΓZXY can be interpreted as an affine torsionless
connection, and ωXji and ωXBA are the SU(2)-valued and G `(r,H)-valued spin-connection
one-forms, respectively. The constraint (6.40) then expresses that the vielbeins are covari-
antly constant with respect to these connections.

The scalar manifold is also endowed with a triplet of complex structures called the hyper-
complex, which are constructed from the vielbeins and the Pauli-matrices σα

JX
Y α ≡ − i f iAX (σα)i

jfYjA . (6.41)

For these complex structures, and other SU(2)-valued quantities, we also use a doublet nota-
tion, for which

JX
Y
i
j ≡ iJX

Y α(σα)i
j = 2f jAX fYiA − δji δYX . (6.42)

Using (6.40), the complex structures are covariantly constant and satisfy the quaternion alge-
bra

JαJβ = − 4rδ
αβ + εαβγJγ . (6.43)

The resulting geometry defined by the connections and complex structure goes under the
name of hyper-complex geometry. The notion of a hyper-complex manifold appeared in the
mathematics literature in [227], and various aspects have been treated in two workshops [228,
229].

Note that we do not require the existence of a metric: hyper-complex manifolds possess-
ing a metric are called hyper-Kähler manifolds, and we will encounter them in section 6.3
when we discuss superconformal actions. Examples of (homogeneous) hyper-complex man-
ifolds that are not hyper-Kähler were constructed in [230–232].

As a final remark, the associated curvature tensor for the SU(2)-valued spin-connection
one-form ωXj

i vanishes for all hyper-complex and hyper-Kähler manifolds

RXY ij ≡ 2∂[XωY ]i
j + 2ω[X|k|

jωY ]i
k = 0 . (6.44)

The connection is therefore always pure gauge and can be set to zero. Manifolds for which
this curvature does not vanish are called quaternionic manifolds and quaternionic-Kähler
manifolds, respectively. Quaternionic geometry generically arises after gauge-fixing super-
conformal hypermultiplets.
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Reparametrizations

The supersymmetry transformation rules (6.38) are covariant with respect to two different
kinds of reparametrizations. The first ones are the target space diffeomorphisms, qX →
q̃X(q), under which fXiA transforms as a vector, ωXAB as a one-form, and ΓZXY as a connec-
tion. We can then define a variation δ̂ which is covariantized with respect to these diffeomor-
phisms: e.g. for a quantity ∆X we define

δ̂∆X = δ∆X + ∆Y ΓZY
X δqZ . (6.45)

Furthermore, there are reparametrizations of the tangent space, under which f iAX (q) trans-
forms as a vector, ωXAB as a connection,

ωXA
B → ω̃XA

B =
[(
∂XU

−1
)
U + U−1ωXU

]
A
B , (6.46)

and the fermions as
ζA → ζ̃A(q) = ζBUB

A(q) , (6.47)

where U(q)A
B is any invertible matrix.

In general, such a transformation brings us into a basis where the fermions depend on the
scalars qX . In this sense, the hypermultiplet is written in a special basis where qX and ζA

are independent fields. These considerations lead us to define the covariant variation of the
fermions

δ̂ζA ≡ δζA + ζBωXB
A δqX , (6.48)

Two models related by either target space diffeomorphisms or fermion reparametrizations
of the form (6.47) are equivalent: they are different coordinate descriptions of the same sys-
tem. Thus, in a covariant formalism, the fermions can be functions of the scalars. However,
the expression ∂XζA makes only sense if one compares different bases. But in the same
way also the expression ζBωXBA makes only sense if one compares different bases, as the
connection has no absolute value. The only invariant object is the covariant derivative

DXζA ≡ ∂XζA + ζBωXB
A . (6.49)

Holonomy

Recall that the holonomy group of a manifold is defined as the group of transformations by
which a vector can be rotated after parallel transport along a closed curve on the manifold.
The holonomy group of a hyper-complex manifold is contained in G `(r,H) = SU∗(2r) ×
U(1), the group of transformations acting on the tangent-space.

This follows from the integrability conditions on the covariantly constant vielbeins f iAX ,
which relates the curvatures of the affine connection ΓZXY and the spin-connection ωXAB

RXY Z
W = fWiAf

iB
Z RXYBA , δijRXYBA = f iAW fZjB RXY Z

W , (6.50)
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no metric Hermitian metric
no SU(2) hyper-complex hyper-Kähler
curvature G `(r,H) USp(2r)

non-zero SU(2) quaternionic quaternionic-Kähler
curvature SU(2) ·G `(r,H) SU(2) ·USp(2r)

Table 6.4: The holonomy groups of the family of quaternionic-like manifolds.

where the curvatures are defined by

RWZXY ≡ 2∂[XΓWY ]Z + 2ΓWV [XΓVY ]Z

RXY BA ≡ 2∂[XωY ]B
A + 2ω[X|C|

AωY ]B
C . (6.51)

A consequence of (6.50) is that the Riemann curvature is purely G `(r,H)-valued. More-
over, from the cyclicity properties of the Riemann tensor, it follows that

fXCif
Y
jDRXYBA = − 1

2εijWCDB
A ,

WCDB
A ≡ f iXC fYiDRXY BA

= 1
2f

iX
C fYiDf

Z
jBf

Aj
W RXY Z

W , (6.52)

where W is symmetric in all its three lower indices.
There are two possible modifications for the holonomy group of a hyper-complex mani-

fold: when there is a metric (i.e. for hyper-Kähler manifolds), the holonomy group is reduced
to USp(2r); and when the SU(2)-valued curvature RXY ij is non-zero(i.e. for quaternionic
manifolds), the holonomy group has an extra factor of SU(2). We have displayed these pos-
sibilities in table 6.2.1

As an additional remark, the Ricci tensor for hyper-complex manifolds with vanishing
SU(2)-curvature is anti-symmetric, whereas it is symmetric for hyper-complex manifolds
equipped with a metric. In particular, hyper-Kähler manifolds (which fall in both classes)
have a vanishing Ricci tensor. However, the Ricci-tensor for a hyper-complex manifold de-
fines a non-vanishing but closed two-form. For a more detailed discussion on hyper-complex
manifolds and their curvature relations, we refer to [17].

Nijenhuis condition

The covariant constancy condition (6.40) of the vielbein contains the affine connection ΓZXY
and the G `(r,H)-valued spin-connection one-form ωXA

B . We will now indicate how these
two objects can be determined from the vielbeins if and only if the (“diagonal”) Nijenhuis
condition

NXY
Z ≡ JαX

W∂[WJ
α
Y ]
Z − (X ↔ Y ) = 0 , (6.53)
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is satisfied. In this case, the affine connection ΓZXY is given by the Obata connection [233]

ΓZXY = − 1
6ε
αβγJαW

ZJβ(X
U∂|U |J

γ
Y )
W − 1

3J
β
W
Z∂(Y J

β
X)

W , (6.54)

which leads to covariantly constant complex structures. Moreover, one can show that any
torsionless connection that leaves the complex structures invariant is equal to this Obata con-
nection. This is similar to the way that a connection that leaves a metric invariant is the
Levi-Civita connection.

With this connection one can then construct the G `(r,H) valued spin-connection

ωXA
B = 1

2f
iB
Y

(
∂Xf

Y
iA + ΓYXZf

Z
iA

)
, (6.55)

such that the vielbeins are covariantly constant.

Equations of motion

Using (6.40), (6.50) and (6.52), we compute the commutator of two supersymmetry transfor-
mations on the fermions, and find

[δ(ε1), δ(ε2)]ζ
A = 1

2 ε̄2γ
aε1∂aζ

A + 1
4ΓAε̄2ε1 − 1

4γaΓ
Aε̄2γ

aε1 . (6.56)

The algebra only closes if we set the ΓA to zero: this defines the equations of motion for
the fermions,

ΓA ≡ /DζA + 1
2WCDB

AζB ζ̄DζC

= 0 , (6.57)

where we have introduced the covariant derivative, consistent with (6.48)

Dµζ
A ≡ ∂µζA + (∂µq

X)ζBωXB
A . (6.58)

By varying the fermion equation of motion under supersymmetry, we derive the corre-
sponding equation of motion for the scalar fields

δ̂(ε)ΓA = 1
2 i f iAX εi∆

X , (6.59)

where

∆X ≡ �qX − 1
2 ζ̄
Bγaζ

D∂aqY f iCY fXiAWBCD
A

− 1
4DYWBCD

Aζ̄EζD ζ̄CζBf iYE fXiA

= 0 , (6.60)

and the covariant D’Alembertian is given by

�qX = ∂a∂
aqX +

(
∂aq

Y
) (
∂aqZ

)
ΓY Z

X . (6.61)
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There are no more constraints since ΓA and ∆X form a closed set under supersymmetry

δ̂(ε)∆X = − i ε̄i /DΓAfXiA + 2 i ε̄iΓB ζ̄CζDfYBiRXY CD , (6.62)

where the covariant derivative of ΓA is defined similar to (6.58).
To summarize, the supersymmetry algebra imposes the hyper-complex constraints (6.40)

and the equations of motion (6.57) and (6.60).

6.2.2 Superconformal symmetry

We will now derive further constraints on the target space geometry from requiring the pres-
ence of superconformal symmetry. The scalars do not transform under special conformal
transformations and special supersymmetry, but under dilatations and SU(2) transformations,
we parameterize

δD(ΛD)qX = ΛDk
X(q) ,

δSU(2)(Λ
ij)qX = ΛijkXij (q) , (6.63)

for some unknown functions kX(q) and kXij (q).
To derive the appropriate transformation rules for the fermions, we first note that the hy-

perinos should be invariant under special conformal symmetry. This is due to the fact that
this symmetry changes the Weyl weight with one. The special supersymmetry transforma-
tions of the fermions are determined by calculating the commutator of special conformal and
supersymmetry transformations

δS(ηi)ζA = −kXf iAX ηi . (6.64)

Next, we consider the commutator of regular and special supersymmetry (5.14). Realizing
this on the scalars, we determine the expression for the generator of SU(2) transformations
in terms of the dilatations and complex structures,

kXij = 1
3k

Y JY
X
ij . (6.65)

Realizing (5.14) on the hyperinos, we determine the covariant variations

δ̂D(ΛD)ζA = 2ΛDζ
A ,

δ̂SU(2)(Λ
ij)ζA = 0 . (6.66)

Furthermore, the commutator (5.14) only closes if we impose

DY k
X = 3

2δY
X , (6.67)

which also implies
DY k

X
ij = 1

2JY
X
ij . (6.68)
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We note that (6.67) determines the Weyl weight of the scalars to be 3
2 , as indicated in table 6.2.

Note that (6.67) is imposed by supersymmetry and not, as in the usual derivations, from the
dilatation invariance of an action, as we have explained in chapter 6.

The relations (6.67) and (6.65) further restrict the geometry of the target space, and it is
easy to derive that the Riemann tensor has four zero eigenvectors,

kXRXY Z
W = 0 , kXijRXY Z

W = 0 . (6.69)

Under dilatations and SU(2) transformations, the hyper-complex structure is scale invariant
and rotated into itself,

ΛD
(
kZ∂ZJ

αY
X − ∂ZkY JαZX + ∂Xk

ZJαYZ
)

= 0 ,

Λβ
(
kZβ ∂ZJ

αY
X − ∂ZkYβ JαZX + ∂Xk

Z
β J

αY
Z

)
= −εαβγΛβJγYX . (6.70)

All these properties are similar to those derived from superconformal hypermultiplets in
four dimensions [225,234]. There, the Sp(1)×G `(r,H) sections, or simply, hyper-complex
sections, were introduced

AiB(q) ≡ kXf iBX , (AiB)∗ = AjCEj
iρC

B , (6.71)

which allow for a coordinate independent description of the target space. This means that all
equations and transformation rules for the sections can be written without the occurrence of
the qX fields. For example, the hyper-complex sections are zero eigenvectors of the G `(r,H)
curvature

AiBWBCD
E = 0 , (6.72)

and have supersymmetry, dilatation and SU(2) transformation laws given by

δ̂AiB = 3
2f

iB
X δqX = − 3

2 i ε̄iζB + 3
2ΛDAi

B − ΛijA
jB , (6.73)

where δ̂ is understood as a covariant variation, in the sense of (6.48).

6.2.3 Gauging symmetries

We will now discuss how to gauge a symmetry group G of the scalar manifold by coupling
the hypermultiplet to a vector multiplet. The symmetry algebra must commute with the
(conformal) supersymmetry algebra. The symmetries are parametrized by

δGq
X = −gΛIGkXI (q) , (6.74)

δ̂Gζ
A = −gΛIGtIBA(q)ζB . (6.75)

The vectors kXI depend on the scalars and their Poisson brackets generate the algebra of G
with structure constants fIJK ,

kY[I|∂Y k
X
|J] = − 1

2fIJ
KkXK . (6.76)
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The commutator of two gauge transformations (6.2) on the fermions requires the following
constraint on the field-dependent matrices tI(q),

[tI , tJ ]B
A = −fIJKtKBA − 2kX[I|DXt|J]B

A + kXI k
Y
J RXYBA . (6.77)

Requiring the gauge transformations to commute with supersymmetry leads to further
relations between the quantities kXI and tIBA. In particular, the representation matrices tIBA

are determined by the vielbeins f iAX and the vectors kXI

tIA
B = 1

2f
Y
iADY k

X
I f

iB
X (6.78)

if the following constraint on the vectors kXI holds

f
Y (i
A f

j)B
X DY k

X
I = 0 . (6.79)

Equation (6.79) can be expressed as the vanishing of the commutator of DY k
X
I with the

complex structures
(DXk

Y
I )JαY

Z = JαX
Y (DY k

Z
I ) . (6.80)

This says that all the symmetries are embedded in G `(r,H). Equivalently, (6.80) can be
written as the Lie derivative of the complex structure in the direction of the vector kI

(LkI
Jα)X

Y ≡ kZI ∂ZJαYX − ∂ZkYI JαZX + ∂Xk
Z
I J

αY
Z = 0 . (6.81)

Thus, this is the statement that the gauge transformations act tri-holomorphic, i.e. they leave
the hyper-complex structure invariant.

Vanishing of the gauge-supersymmetry commutator on the fermions requires a new con-
straint

DXDY k
Z
I = RXWY

ZkWI . (6.82)

Note that this equation is in general true for any Killing vector of a metric. As we are only
considering hyper-complex manifolds without a metric so far, we could not rely on this fact,
but the superconformal algebra alone imposes this equation. A consequence of (6.82) is that

DY tIA
B = kXI RY XAB , (6.83)

which in turn allows for a simplification of (6.77)

[tI , tJ ]B
A = −fIJKtKBA − kXI kYJ RXYBA . (6.84)

The group of gauge symmetries should also commute with the superconformal algebra,
in particular with dilatations and SU(2)-transformations. This leads to

kY DY k
X
I = 3

2k
X
I ,

kYαDY k
X
I = 1

2k
Y
I JY

X
α , (6.85)
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and there are no new constraints from the fermions or from other commutators. Since DY k
X
I

commutes with JY Xα, the second equation in (6.85) is a consequence of the first one.
In the above analysis, we have taken the parameters ΛI to be constants. In the following,

we also allow for local gauge transformations. The gauge coupling is done by introducing
vector multiplets and defining the covariant derivatives

Dµq
X ≡ ∂µq

X + gAIµk
X
I ,

Dµζ
A ≡ ∂µζ

A + ∂µq
XωXB

AζB + gAIµtIB
AζB . (6.86)

The commutator of two supersymmetries should now also contain a local gauge transforma-
tion, in the same way as for the multiplets of the previous sections, see (6.7). This requires
an extra term in the supersymmetry transformation law of the fermions,

δ̂(ε)ζA = 1
2 i /DqXf iAX εi + 1

2gσ
IkXI f

A
iXε

i . (6.87)

With this additional term, the commutator on the scalars closes. However, the fermion equa-
tion of motion ΓA is modified with terms at O(g) in the gauge coupling constant

ΓA ≡ /DζA + 1
2WBCD

Aζ̄CζDζB − i g(kXI f
A
iXψ

iI + ζBσItIB
A)

= 0 , (6.88)

with the same conventions as in (6.56). The subsequent variation of ΓA under supersymmetry
determines the modified equation of motion for the scalars: it receives modifications at both
O(g) and O(g2)

∆X = �qX − 1
2 ζ̄
Bγaζ

D
D
aqY f iCY fXiAWBCD

A

− 1
4DYWBCD

Aζ̄EζD ζ̄CζBf iYE fXiA

−g
(
2 i ψ̄iIζBtIB

AfXiA − kYI JY XijY ijI
)

+g2σIσJDY k
X
I k

Y
J . (6.89)

The gauge-covariant D’Alembertian is given by

�qX = ∂aD
aqX + gDaq

Y ∂Y k
X
I A

aI + Daq
Y

D
aqZΓXY Z . (6.90)

The equations of motions ΓA and ∆X still transform into each other according to (6.59) and
(6.62).

6.3 Superconformal actions

In this section, we will present rigid superconformal actions for the multiplets discussed in the
previous sections. We will see that demanding the existence of an action is more restrictive
than only considering equations of motion. For the different multiplets, we find that new
geometric objects have to be introduced.
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6.3.1 The Yang-Mills multiplet

The rigid superconformal invariant action describing nV Abelian vector multiplets can be
obtained by taking the cubic action of the improved vector multiplet (5.102), adding indices
I, J,K on the fields, and multiplying this with a completely symmetric tensor CIJK . The ex-
istence of the tensor CIJK has the geometrical significance that it endows the scalar manifold
RnV with a metric gIJ

gIJ ≡ −
1

3

∂2 lnN

∂σI∂σJ
, N ≡ CIJKσIσJσK . (6.91)

At leading order in the gauge coupling constant, multiplying (5.102) withCIJK also gives
the action for nV non-Abelian vector multiplets. However, because the rigid transformation
rules for the non-Abelian vector multiplet (6.5) differ from the transformation rules (5.102)
and (5.105) of the Abelian vector multiplet atO(g) in the gauge coupling constant, the tensor
CIJK has to satisfy the following constraint

fI(J
HCKL)H = 0 . (6.92)

Furthermore, the A ∧ F ∧ F Chern-Simons (CS) term has to be modified at O(g) and
O(g2). To obtain this Yang-Mills CS term, it is convenient to rewrite the CS term as an
integral over a six-dimensional manifold which has a boundary given by the five-dimensional
Minkowski spacetime. The six-form appearing in the integral is (in differential form notation)
given by

IV = CIJKF
I ∧ F J ∧ FK . (6.93)

This six-form is both gauge-invariant and closed, by virtue of (6.92) and the Bianchi
identities (6.4). It can therefore be written as the exterior derivative of a five-form which
is gauge-invariant up to a total derivative. The spacetime integral over this five-form is the
Yang-Mills CS-term.

Finally, there is also an extra fermion bilinear at O(g) in the action called the Yukawa
term. This leads to the action obtained in [219] using an intermediate linear multiplet

LV =
[(
− 1

4F
I
µνF

µνJ − 1
2 ψ̄

I /DψJ − 1
2DaσIDaσJ + Y IijY

ijJ
)
σK

− 1
24e

−1εµνλρσAIµ
(
F JνλF

K
ρσ + 1

2g[Aν , Aλ]
JFKρσ + 1

10g
2[Aν , Aλ]

J [Aρ, Aσ]
K
)

− 1
8 i ψ̄Iγ · F JψK − 1

2 i ψ̄iIψjJY Kij + 1
4 i gψ̄LψHσIσJfLH

K
]
CIJK . (6.94)

The equations of motion for the fields of the vector multiplet following from the action
(6.94) are

0 = LijI = ϕiI = EaI = N , (6.95)
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where we have defined

LijI ≡ CIJK
(
2σJY ijK − 1

2 i ψ̄iJψjK
)
,

ϕiI ≡ CIJK
(
iσJ /DψiK + 1

2 i ( /DσJ )ψiK + Y ikJψKk − 1
4γ · F JψiK

)

−g CIJK fLHKσJσLψiH ,
EaI ≡ CIJK

(
Db
(
σJFba

K + 1
4 i ψ̄Jγbaψ

K
)
− 1

8εabcdeF
bcJF deK

)

− 1
2g CJKLfIH

JσKψ̄Lγaψ
H − g CJKHfILJσKσLDaσ

H ,

NI ≡ CIJK
(
σJ�σK + 1

2DaσJDaσK − 1
4F

J
abF

abK − 1
2 ψ̄

J /DψK + Y ijJYij
K
)

+ 1
2 i g CIJK fLH

KσJ ψ̄LψH . (6.96)

We have given these equations of motion the names LijI , φ
i
I , EaI , NI since they form a linear

multiplet in the adjoint representation of the gauge group for which the transformation rules
have been given in [17].

6.3.2 The vector-tensor multiplet

We will now generalize the vector action (6.94) to an action for the vector-tensor multiplets
(with nV vector multiplets and nT tensor multiplets) discussed in section 6.1.2.

The supersymmetry transformation rules for the vector-tensor multiplet (6.11) were ob-
tained from those for the vector multiplet (6.5) by replacing all contracted indices by the
extended range of tilde indices. In addition, extra terms of O(g) had to be added to the trans-
formation rules. Similar considerations apply to the generalization of the action, as we will
see below.

We will first generalize the CS term (6.93) to the case of vector-tensor multiplets. It turns
out that this generalization is somewhat surprising: it will involve the inclusion of derivative
terms. We find the following expression for the unique closed and gauge-invariant six-form

IVT = C
ĨJ̃K̃
HĨ ∧HJ̃ ∧HK̃ − 3

gΩMNDBM ∧ DBN , (6.97)

The tensor ΩMN is antisymmetric and invertible, and it will restrict the number of tensor
multiplets to be even: nT = 2k and

ΩMN = −ΩNM , ΩMPΩMR = δP
R , (6.98)

The covariant derivative DBM is given by

DλBMρσ = ∂λB
M
ρσ + g AIλtIJ̃

MHJ̃ρσ
= ∂λB

M
ρσ + g AIλtIJ

MF Jρσ + g AIλtIN
MBNρσ . (6.99)

To see why the first term of (6.97) is not a closed six-form by itself, we write it out
explicitly as

C
ĨJ̃K̃
HĨHJ̃HK̃ = CIJKF

IF JFK + 3CIJMF
IF JBM + 3CIMNF

IBMBN . (6.100)
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Since the BM tensors in (6.100) do not satisfy a Bianchi identity, we also need the second
term in (6.97) to obtain a closed six-form. This leads to the following relations between the
C and Ω tensors:

CIJM = t(IJ)
NΩNM , CIMN = 1

2 tIM
PΩPN . (6.101)

As additional remark, the components ofC can have only three different forms: CIJK ,CIJM
and CIMN (and permutations). The reason is that when the first term of (6.97) is reduced to

five dimensions, one of the HĨ factors should correspond to a vector field strength F I . Only

then can the corresponding five-form be written as AI ∧HJ̃ ∧HK̃ .
Gauge invariance of the first term of (6.97) requires that the tensor C satisfies a modified

version of (6.92)

fI(J
HCKL)H = tI(J

M tKL)
NΩMN . (6.102)

In addition to this, the second term of (6.97) is only gauge invariant if the tensor Ω satisfies

tI[M
PΩN ]P = 0 , (6.103)

such that the last one of (6.101) is consistent with the symmetry (MN).
Finally, there are extra Yukawa couplings at O(g) and there is a scalar potential term at

O(g2) in the vector-tensor multiplet action. The superconformal action for the combined
system of nT = 2k tensor multiplets in the background of nV vector multiplets is given by

LVT =
(
− 1

4HĨµνHµνJ̃ − 1
2 ψ̄

Ĩ /DψJ̃ − 1
2DaσĨDaσJ̃ + Y ĨijY

ijJ̃
)
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ĨJ̃K̃

+ 1
16g e

−1εµνλρσΩMNB
M
µν

(
∂λB

N
ρσ + 2g tIJ

NAIλF
J
ρσ + g tIP

NAIλB
P
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)

− 1
24e

−1εµνλρσCIJKA
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µ

(
F JνλF

K
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JAFν A
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λ

(
− 1

2g F
K
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10g
2fHL

KAHρ A
L
σ

))

− 1
8e

−1εµνλρσΩMN tIK
M tFG

NAIµA
F
ν A

G
λ

(
− 1

2g F
K
ρσ + 1

10g
2fHL

KAHρ A
L
σ

)

+
(
− 1

8 i ψ̄Ĩγ · HJ̃ψK̃ − 1
2 i ψ̄iĨψjJ̃Y K̃ij

)
C
ĨJ̃K̃

+ 1
4 i gψ̄ĨψJ̃σK̃σL̃

(
t
[ĨJ̃ ]

M̃C
M̃K̃L̃

− 4t
(ĨK̃)

M̃C
M̃J̃L̃

)

− 1
2g

2σKσIσL̃σJσP̃CKMN tIL̃
M t

JP̃
N , (6.104)

We stress that the tensor C
ĨJ̃K̃

is not a fundamental object: the essential data for the

vector-tensor multiplet are the representation matrices t
IJ̃
K̃ , the Yang-Mills components

CIJK , and the symplectic matrix ΩMN . The tensor components of the C tensor are derived
quantities, and we can summarize (6.101) as

C
MJ̃K̃

= t
(J̃K̃)

PΩPM . (6.105)
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The two conditions (6.102) and (6.103) combined with the definition (6.105) imply the fol-
lowing generalization of (6.92)

t
I(J̃

M̃C
K̃L̃)M̃

= 0 . (6.106)

To check the supersymmetry of the action (6.104), one needs all the relations between the
various tensors given above. Another useful identity implied by the previous definitions is

t
(ĨJ̃)

MC
K̃L̃M

= −t
(K̃L̃)

MC
ĨJ̃M

. (6.107)

The action with fields of the tensor multiplets can also be obtained from the field equations
(6.17). They are now related to the action by

δLVT

δψ̄iM
= iϕNi ΩNM , (6.108)

and the remaining bosonic terms can be obtained from a comparison withNM in (6.19). One
may then further check that also the field equations (6.15) and (6.17) follow from this action.

Note, however, that the equations of motion for the vector multiplet fields, obtained from
this action, are similar to those given in (6.96), but with the contracted indices running over
the extended range of vector and tensor components. Furthermore, theAIµ equation of motion
gets corrected by a term proportional to the self-duality equation for BM

µν

δLVT

δAIa
= EaI + 1

12gε
abcdeAJbE

M
cdetJI

NΩMN . (6.109)

To summarize: in order to write down a rigid superconformal action for the vector-tensor
multiplet, we need to introduce a gauge-invariant, anti-symmetric, invertible tensor ΩMN ,
which restricts the number of tensor multiplets to be even. We can still allow the transforma-
tions to have off-diagonal terms between vector and tensor multiplets, if we adapt (6.92) to
(6.102).

In this way, we have constructed more general matter-couplings than were known so far:
with our extension to allow for the off-diagonal term in (6.23), we also get CS-terms induced
by the CIJM components, which were not present in [159]. In particular, in [159] it was
found that such A∧F ∧B terms “appear impossible to supersymmetrize (except possibly in
very special cases)”. However, we see that such terms appear generically in our Lagrangian
by allowing for off-diagonal gauge transformations that mix the tensor fields with the Yang-
Mills field-strengths.

6.3.3 The hypermultiplet

Let us recapitulate the geometrical setting for the hypermultiplet: the scalar manifold was
seen to be a hyper-complex manifold possessing a triplet of complex structures that satisfied
the Nijenhuis conditions (6.53). From this integrability condition, it was possible to construct
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an affine torsionless Obata connection ΓZXY and the G `(r,H)-valued spin-connection one-
form ωXA

B . Furthermore, the SU(2)-valued spin-connection one-form ωXi
j had a vanishing

curvature.
Using this algebraic description of the hyper-complex geometry, the constraints that were

needed to close the superconformal algebra on the on-shell hypermultiplet were seen to be
equations of motion. These equations of motion, ΓA and ∆X , transformed covariantly with
respect to diffeomorphisms on the scalar manifold and to transformations on its tangent space.
However, these equations of motion were not derived from an action.

When we introduce an action, the kinetic term takes on the following generic form

LH = − 1
2gXY (φ)∂µφ

X∂µφY , (6.110)

where the tensor gXY is interpreted as the metric on the scalar manifold. The field equations
for the scalars should now also be covariant with respect to coordinate transformations on
the target manifold. This implies that the connection on the tangent bundle should be the
Levi-Civita connection. Only in that particular case, the field equations for the scalars will be
covariant.

We will now see what the consequences are of introducing the extra input of a metric on
the geometry of the scalar manifold.

Hyper-Kähler geometry

We take the fermion equation of motion ΓA to be proportional to the field equations following
from an action

δS

δζ̄A
= 2CABΓB . (6.111)

In general, the tensor CAB could be a function of the scalars and bilinears of the fermions.
If we try to construct an action with the above Ansatz, it turns out that the tensor has to be
anti-symmetric in AB and

δCAB
δζC

= 0 , (6.112)

DXCAB = 0 . (6.113)

In other words, the tensor does not depend on the fermions and is covariantly constant1.
This tensor CAB will be used to raise and lower tangent space indices according to the

NW–SE convention similar to εij :

AA = ABCBA , AA = CABAB , (6.114)

where εij and CAB are defined for consistency by

εikε
jk = δi

j , CACC
BC = δA

B . (6.115)

1This can be derived using the Batalin-Vilkovisky formalism.
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From the integrability condition for (6.113) we find

[DX ,DY ]CAB = 0 = −2RXY [A
CCB]C , (6.116)

which implies that the anti-symmetric part of the connection ωXAB ≡ ωXA
CCCB is pure

gauge, and can be chosen to be zero. If we do so, the covariant constancy condition for CAB
reduces to the equation that CAB is just constant.

We can construct the metric gXY on the scalar manifold by multiplying the metric on the
tangent space with the vielbeins

gXY = f iAX f jBY CABεij . (6.117)

Since the connection ωXAB is symmetric, the original holonomy group G `(r,H) is reduced
to USp(2r − 2p, 2p): its signature is the signature of dCB . The tensor dAB is defined as
CAB = ρA

CdCB where ρAC was given in (6.36). These restrictions on the hyper-complex
geometry reduce the scalar manifold to a hyper-Kähler manifold.

Furthermore, the affine connection used in the covariant derivative in (6.113) is now given
by the Levi-Civita connection constructed from the metric gXY . Indeed, this guarantees that
the metric is covariantly constant. On the other hand, we have already seen already that, to
have covariantly constant complex structures, we have to use the Obata connection. Hence,
the Levi-Civita and Obata connection coincide for hyper-Kähler manifolds.

The action for rigid hypermultiplet takes on the form

LH = − 1
2gXY ∂aq

X∂aqY + ζ̄A /Dζ
A − 1

4WABCD ζ̄
AζB ζ̄CζD . (6.118)

where the tensorWABCD can be proven to be completely symmetric in all of its indices [17].
The field equations derived from this action are

δS

δζ̄A
= 2CABΓB ,

δS

δqX
= gXY ∆Y − 2ζ̄AΓBωXB

A , (6.119)

Also remark that due to the introduction of the metric, the expression of ∆X simplifies to

∆X = �qX − ζ̄A /∂qY ζBRXYAB − 1
4D

XWABCD ζ̄
AζBζCζD . (6.120)

Superconformal symmetry

Due to the presence of the metric, the condition for the homothetic Killing vector (6.67)
implies that kX is the derivative of a scalar function as in (5.26). This scalar function χ(q) is
called the hyper-Kähler potential [188, 225, 235]. It determines the metric

DXDY χ = 3
2gXY , (6.121)
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as well as the homothetic Killing vector

kX = ∂Xχ , χ = 1
3kXk

X . (6.122)

Note that this implies that, when χ and the complex structures are known, one can compute
the metric with (6.121), using the formula for the Obata connection (6.54).

Gauging isometries

In the presence of a metric, the symmetries of section 6.2.3 should also be symmetries of
the metric, i.e they should be isometries. This means that the vectors kIX are now Killing
vectors of the metric gXY

DXkY I + DY kXI = 0 . (6.123)

This makes the requirement (6.82) superfluous, but we will still have to impose the tri-
holomorphicity expressed by either (6.79), (6.80) or (6.81).

From the tri-holomorphicity condition (6.81) we find that, in order to integrate the equa-
tions of motion to an action, we have to define (locally) triplets of “moment maps” P αX that
satisfy

∂XP
α
I = JXY

αkYI . (6.124)

The field equations have the same form as in (6.119), except that all derivatives are now
covariantized with respect to the new transformations. The same covariantization takes place
in the action but here there are now modifications at O(g) and O(g2) in the gauge coupling
constant

LH = − 1
2gXY Daq

X
D
aqY + ζ̄A /Dζ

A − 1
4WABCD ζ̄

AζB ζ̄CζD

−g
(
PIijY

Iij + 2 i kXI f
A
iX ζ̄Aψ

iI + iσItIB
Aζ̄Aζ

B
)

− 1
2g

2σIσJkXI kJX . (6.125)

Supersymmetry of the action leads to the constraint

kXI J
α
XY k

Y
J = −fIJKPαK . (6.126)

As only the derivative of P appears in the defining equation (6.124), one may add an arbitrary
constant to P . However, this changes the right-hand side of (6.126). One should then con-
sider whether there is a choice of these coefficients such that (6.126) is satisfied [236]. For
simple groups there is always a solution2, whereas for Abelian theories the constant remains
undetermined. This free constant is the so-called Fayet–Iliopoulos term [237].

In a superconformally invariant theory, the Fayet–Iliopoulos term is not possible. Indeed,
dilatation invariance of the action needs

3PαI = kX∂XP
α
I . (6.127)

2We thank Gary Gibbons for a discussion on this subject.
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Using (6.124) or (6.85), PIij is completely determined to be

3PαI = kXJXY
αkYI = − 2

3k
XkZJZ

Y α
DY kIX . (6.128)

The proof of the invariance of the action under the complete superconformal group, uses the
equation obtained from (6.85) and (6.124)

kXαDXk
Y
I = − 1

2∂
Y PαI . (6.129)

If the moment map PαI has the value that it takes in the conformal theory, then (6.126) is
satisfied due to (6.76). Indeed, one can multiply that equation with kXkZJαZWDW and
use (6.69), (6.80) and (6.82). Thus, in the superconformal theory, the moment maps are
completely determined, and there is no further relation to be obeyed: i.e. the Fayet–Iliopoulos
terms of the rigid theories are absent in this case.

6.4 Coupling to the Weyl multiplet

We are now ready to perform the last step in our program, i.e. make the extension to local
superconformal supersymmetry. We will make use here of the off-shell 32 + 32 Standard
Weyl multiplet constructed in chapter 5. Since in the previous sections we have explained
most of the subtleties concerning the possible geometrical structures, we can be brief here.

We will obtain our results in two steps. First, we require that the local superconformal
commutator algebra (5.87) - (5.91) of the Weyl multiplet is also realized on the matter mul-
tiplets, keeping in mind possible additional transformations under which the fields of the
standard Weyl multiplet do not transform, and possibly field equations if the matter multiplet
is on-shell. Next, we apply a standard Noether procedure to extend the rigid superconformal
actions to local superconformal actions.

It is important to note that we do not construct an action for conformal supergravity itself:
there will be no kinetic terms for the fields of the Weyl multiplets. Instead, the Weyl multiplet
is seen as a fixed background of conformal supergravity to which the various matter multi-
plets couple. In section 6.5.2, we will indicate how local superconformal matter multiplets
nevertheless lead to dynamical theories of Poincaré supergravity coupled to matter.

6.4.1 Vector-tensor multiplet

For brevity, we will present the transformation rules for nT tensor multiplets in the back-
ground of nV vector multiplets. The transformation rules for the vector multiplet itself can
be obtained from it by making the restriction to nT = 0. The local superconformal transfor-
mations rules for the vector-tensor multiplet are the following generalization of the transfor-
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mation rules (5.105) of an Abelian vector multiplet coupled to the Weyl multiplet

δAIµ = 1
2 ε̄γµψ

I − 1
2 iσI ε̄ψµ ,

δBMab = −ε̄γ[aDb]ψ
M + i gε̄γabt(J̃K̃)

MσJ̃ψK̃ + i η̄γabψ
M ,

δY ijĨ = − 1
2 ε̄

(i /Dψj)Ĩ + 1
2 i ε̄(iγ · Tψj)Ĩ − 4 iσĨ ε̄(iχj)

− 1
2 i gε̄(i

(
t
[J̃K̃]

Ĩ − 3t
(J̃K̃)

Ĩ
)
σJ̃ψj)K̃ + 1

2 i η̄(iψj)Ĩ ,

δψiĨ = − 1
4γ · ĤĨεi − 1

2 i /DσĨεi − Y ijĨεj + σĨγ · Tεi + 1
2gt(J̃K̃)

ĨσJ̃σK̃εi + σĨηi ,

δσĨ = 1
2 i ε̄ψĨ . (6.130)

The covariant derivatives are defined by

Dµσ
Ĩ = DµσĨ − 1

2 i ψ̄µψ
Ĩ ,

DµσĨ = (∂µ − bµ)σĨ + gt
JK̃

ĨAJµσ
K̃ ,

Dµψ
iĨ = DµψiĨ + 1

4γ · ĤĨψiµ + 1
2 i /DσĨψiµ + Y ijĨψµ j − σĨγ · Tψiµ

− 1
2gt(J̃K̃)
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DµψiĨ = (∂µ − 3
2 bµ + 1

4 γab ωµ
ab)ψiĨ − V ijµ ψĨj + gt

JK̃
ĨAJµψ

iK̃ . (6.131)

The covariant curvature ĤĨµν should be understood as having components (F̂ Iµν , B
M
µν), where

the covariantized Yang-Mills field-strength is given by

F̂ Iµν = 2∂[µA
I
ν] + gfJK

IAJµA
K
ν − ψ̄[µγν]ψ

I + 1
2 iσI ψ̄[µψν] . (6.132)

In order to close the superconformal algebra on the vector-tensor multiplet, the fields of
the tensor multiplet need to satisfy equations of motion. The extensions of (6.14) and (6.15)
(which are non-zero only for Ĩ in the tensor multiplet range) are given by

LijM ≡ t
(J̃K̃)

M
(
2σJ̃Y ijK̃ − 1

2 i ψ̄iJ̃ψjK̃
)

= 0 ,

EMµνλ ≡ 3

g
D[µBνλ]

M − εµνλρσt(J̃K̃)
M
(
σJ̃ĤρσK̃ − 8σJ̃σK̃T ρσ + 1

4 i ψ̄J̃γρσψK̃
)

− 3
2 ψ̄

Mγ[aR̂bc](Q)

= 0 . (6.133)

Analogously to section 6.1.2, subsequent variation of these constraints gives the superconfor-
mal extensions of the equations of motion for the rest of the fields of the tensor multiplet. We
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will not give them here explicitly, since they can be derived from the action which we will
give below.

The local generalization of the action (6.104) for the vector-tensor multiplet is rather
involved. A long but straightforward calculation leads us to the following expression

e−1LVT =
[(
− 1
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− 1
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4 i gψ̄ĨψJ̃σK̃σL̃

(
t
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, (6.134)

where the superconformal D’Alembertian is defined as

�
cσĨ = DaDaσ

Ĩ

=
(
∂a − 2ba + ω ba

b

)
Daσ

Ĩ + gt
J̃K̃

ĨAJaD
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ĨψJ̃σK̃ . (6.135)

Varying this action with respect to the fields of the tensor multiplet and the vector multi-
plet, we can obtain their covariant equations of motion.
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6.4.2 The hypermultiplet

The local superconformal transformation rules for the hypermultiplet with gauged isometries
is given by

δqX = − i ε̄iζAfXiA ,

δ̂ζA = 1
2 i /DqXf iAX εi − 1

3γ · TkXfAiXεi − 1
2gσ

IkXI f
A
iXε

i + kXfAiXη
i . (6.136)

The covariant derivatives are defined by

Dµq
X = DµqX + i ψ̄iµζ

AfXiA ,

DµqX = ∂µq
X − bµkX − V jkµ kXjk + gAIµk

X
I ,

Dµζ
A = DµζA − kXfAiXφiµ + 1

2 i /DqXfAiXψ
i
µ + 1

3γ · TkXfAiXψiµ ,
+g 1

2σ
IkXI f

A
iXψ

i
µ (6.137)

DµζA = ∂µζ
A + ∂µq

XωXB
AζB + 1

4ωµ
bcγbcζ

A − 2bµζ
A + gAIµtIB

AζB .

Similar to section 6.2, requiring closure of the commutator algebra on these transforma-
tion rules yields the equation of motion for the fermions

ΓA = /DζA + 1
2WCDB

AζB ζ̄DζC − 8
3 i kXfAiXχ

i + 2 i γ · TζA

−g( i kXI f
A
iXψ

iI + iσItIB
AζB) . (6.138)

The scalar equation of motion can be obtained from varying (6.138)

δ̂QΓA = 1
2 i f iAX ∆Xεi + 1

4γ
µΓAε̄ψµ − 1

4γ
µγνΓAε̄γνψµ , (6.139)

from which we obtain
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)

+g2σIσJDY k
X
I k

Y
J , (6.140)

The superconformal D’Alembertian acting on the hyper-scalars is given by

�
cqX ≡ DaD

aqX

= ∂aD
aqX − 5

2baD
aqX − 1

2V
jk
a JY

X
jkD

aqY + i ψ̄iaD
aζAfXiA

+2fa
akX − 2ψ̄aγ

aχkX + 4ψ̄(j
a γ

aχk)kXjk − ψ̄iaγaγ · TζAfXiA
−φ̄iaγaζAfXiA + ωa

abDbq
X − 1

2gψ̄
aγaψ

IkXI −Daq
Y ∂Y k

X
I A

aI

+Daq
YDaqZΓXY Z . (6.141)
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The generalization of (6.125) to the case of local superconformal symmetry is given by

e−1LH = − 1
2gXYDaqXDaqY + ζ̄A /Dζ

A + 2
3fa

ak2 + 4
9Dk

2 + 8
27T

2k2

+2 i ζ̄Aγ · TζA − 16
3 i ζ̄Aχ

ikXfAiX − 1
4WABCD ζ̄

AζB ζ̄CζD

− 2
9 ψ̄aγ

aχk2 + 1
3 ζ̄Aγ

aγ · TψiakXfAiX + 1
2 i ζ̄Aγ

aγbψiaDbqXfAiX
− 1

6 i ψ̄aγ
abφbk

2 − ζ̄AγaφiakXfAiX
+ 1

12 ψ̄
i
aγ
abcψjbDcqY JY XijkX − 1

9 i ψ̄aψbTabk
2 + 1

18 i ψ̄aγ
abcdψbTcdk

2

−g
(
P IijY

ij
I + 2 i kXI f

A
iX ζ̄Aψ

iI + iσItIB
Aζ̄Aζ

B

+ 1
2σ

IkXI f
A
iX ζ̄Aγ

aψia − 1
2 ψ̄

i
aγ
aψjIPIij + 1

4 i ψ̄iaγ
abψjbσ

IPIij

)

− 1
2g

2σIσJkXI kJX . (6.142)

The field equations can be obtained from this action according to

δS
δζ̄A

= 2CABΓB ,

δS
δqX

= gXY
(
∆Y − 2ζ̄AΓBωY B

A − i ψ̄iaγ
aΓAfYiA

)
. (6.143)

6.5 Discussion and outlook

We will conclude this chapter with an overview of the results that we obtained, and a discus-
sion of possible future research based on these results.

6.5.1 Summary of geometrical objects

In table 6.5, we have collected the essential geometrical data that is needed to construct
superconformal matter multiplets. We indicate which are the essential geometrical objects
that determine the theory and the independent constraints imposed on them. The symmetries
of the objects are indicated by brackets on their indices. All equations are also valid for the
theories in the columns next to and rows below its entry, apart from the entries “hyper +
gauging” and “hyper + conformal” entry, which are mutually independent.

However, the symbol H indicates that these equations or symbols are not to be taken over
below. E.g. the moment map PαI itself is completely determined in the superconformal the-
ory, and it should thus not be given as an independent quantity anymore. For the rigid theory
without conformal invariance, only constant pieces can be undetermined by the given equa-
tions, and are the Fayet–Iliopoulos terms. Furthermore, the equations and symbols indicated
by I are not to be taken over for the theories with an action, as they are then satisfied due to
the Killing equation or are defined by χ.
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conform
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ALGEBRA (no action) ACTION

Multiplet Object Restriction Object Restriction

Vector f[IJ]
K Jacobi identities C(IJK) fI(J

HCKL)H
H
= 0

Vector-

tensor

(tI)J̃
K̃

Ĩ = (I,M)

[tI , tJ ] = −fIJKtK

tIJ
K = fIJ

K

tIM
J = 0

Ω[MN ]

invertible

fI(J
HCKL)H = tI(J

M tKL)
NΩMN

tI[M
PΩN ]P = 0

Hyper f iAX

invertible and real

Nijenhuis tensor NXY Z = 0
C[AB] DXCAB = 0

Hyper +

conformal
kX I DY k

X I
= 3

2δY
X χ DXDY χ = 3

2gXY

Hyper +

gauging
kXI

kY[I|∂Y k
X
|J] = − 1

2fIJ
KkXK

DXDY k
Z
I

I
= RXWY

ZkWI

LkI
Jα

I
= 0

PαI H

DXkY I + DY kXI = 0

∂XP
α
I

H
= JαXY k

Y
I

kXI J
α
XY k

Y
J

H
= −fIJKPαK

Hyper +

conformal +

gauging

kY DY k
X
I = 3

2k
X
I

Table 6.5: The superconformal matter multiplets and their essential geometrical data.
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6.5.2 Gauge-fixing the conformal symmetry

In this chapter, we have discussed superconformal matter multiplets coupled to the Weyl
multiplet. As mentioned in the introduction of this chapter, as well as at the end of chap-
ter 4, the main motivation for this lengthy program was to construct matter-coupled Poincaré
supergravities. We have not performed the complete gauge-fixing procedure to obtain such
theories. Nevertheless, we will now briefly indicate how locally superconformal matter mul-
tiplets can lead to matter-coupled Poincaré supergravity theories.

The key observation is that the gauge field for special conformal transformations fµa is
related to the Ricci tensor Rµa of the spacetime manifold. From the constraint (5.47) and its
explicit solution (5.51), we find that the trace of the special conformal gauge field is related
to the Ricci scalar

fa
a = − 1

16R+ gravitino terms . (6.144)

This gauge field appears in the conformal D’Alembertian of scalar fields, e.g. for a
five-dimensional scalar field φ of Weyl weight 3

2 , we have

�
cφ =

(
∂a − 5

2b
a + ωb

ba
) (
∂a − 3

2ba
)
φ+ 3fa

aφ . (6.145)

With this definition, an action that is invariant under local conformal transformations is given
by

e−1L = − 1
2φ�

cφ . (6.146)

We now fix the special conformal and the dilatational symmetry by imposing the Poincaré-
gauge

bµ = 0 , φ2 =
16

3κ2
. (6.147)

In this gauge, we can partially integrate (6.146) and use the solution for the spin-connection
(5.51) to obtain

e−1L =
1

2κ2
R . (6.148)

So, we see that, in the Poincaré-gauge (6.147), the action for a local conformal scalar field
(6.146) reduces to the Einstein-Hilbert action for ordinary gravity. In particular, the scale
invariance of the action (6.146) is broken by the length-scale of the gravitational coupling
constant κ in the dilatational gauge (6.147). Note also that the scalar field action (6.146) has
the wrong sign for its kinetic term (we are using the mostly plus convention): the scalar field
is therefore not a physical degree of freedom. Instead, it is a compensating scalar field for the
broken conformal symmetry.

The above mechanism can also be applied to the local superconformal action for the nH =
r hypermultiplets, nT tensor multiplets coupled to nV vector multiplets in the background
of the Standard Weyl multiplet. An additional subtlety here is that one also needs to solve
the equation of motion for the scalar field D of the Weyl multiplet. In particular, we demand
that all terms multiplying the gauge field faa yield a canonical Einstein-Hilbert term, and we
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impose the equation of motion for the scalar field D. Collecting all the relevant terms from
(6.134) and (6.142), we impose the following gauge for the dilatation symmetry

− 1
24

(
C
ĨJ̃K̃

σĨσJ̃σK̃ + gXY k
XkY

)
R =

1

2κ2
R , (6.149)

− 4
3CĨJ̃K̃σ

ĨσJ̃σK̃ + 4
9gXY k

XkY = 0 (6.150)

These equations can be rewritten as

C
ĨJ̃K̃

σĨσJ̃σK̃ = − 3

κ2
, (6.151)

gXY k
XkY = − 9

κ2
. (6.152)

We can interpret the dilatational gauge (6.152) on the scalars of the hypermultiplet as the
definition of a hypersurface within the hyper-complex scalar manifold. In particular, a metric
of signature (1, r) on the hyper-complex manifold induces a metric of signature (0, r) on the
hypersurface (6.152). This follows from the resemblance of (6.152) to the embedding equa-
tion (2.25) of (d+ 1)-dimensional Anti-de-Sitter space, which is a hypersurface of signature
(1, d− 1) in an ambient space of signature (2, d).

The analysis of the dilatational gauge (6.151) on the scalars of the vector-tensor multiplets
goes along similar ways. It induces a metric g

ĨJ̃
on the vector space RnV+nT spanned by the

scalars

g
ĨJ̃
≡ −1

3

∂2 lnC

∂σĨ∂σJ̃
|C=− 3

κ2
, C ≡ C

ĨJ̃K̃
σĨσJ̃σK̃ . (6.153)

If we define scalars φx (with x = 1, . . . , nV + nT − 1), then the metric gIJ induces a metric
gxy on the hypersurface (6.151) according to

gxy ≡ gĨJ̃
∂σĨ

∂φx
∂σJ̃

∂φy
(6.154)

The metric gxy on the manifold spanned by the scalars φx, defines the D = 5 variant of
special geometry [156], called “very special geometry”.

It will be interesting to see in what way the future analysis of the metrics g
ĨJ̃

and
gxy in the case when there are non-vanishing CIJM components will modify the analysis
from [156]. The expected result is that, together with one hypermultiplet, one vector multi-
plet plays the role of a compensating multiplet for the broken conformal symmetries.

The additional conformal symmetries will also have to be gauge-fixed. The special
conformal transformation can again be gauge-fixed by imposing bµ = 0, and the SU(2)-
transformations will be gauge-fixed by three of the remaining scalars of the compensating
hypermultiplet. Gauge-fixing the S-supersymmetry and imposing the equation of motion
for the spinor χi of the Weyl multiplet eliminates the spinors of the compensating vector
multiplet and the hypermultiplet.
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The remaining gauge field of the compensating vector multiplet will play the role of
the graviphoton of the Poincaré multiplet. The equation of motion for the SU(2) gauge
field Vµij introduces a non-zero SU(2)-valued curvature on the manifold: this promotes the
hyper-complex or hyper-Kähler manifold to a quaternionic of quaternionic-Kähler manifold,
respectively. Finally, the equation of motion for the tensor Tab of the Weyl multiplet can be
used to express Tab in terms of the Yang-Mills field-strengths.

The overall result is that gauge-fixing the conformal symmetries of n + 1 superconfor-
mal vector-tensor multiplets and r + 1 superconformal hypermultiplets coupled to the Weyl
multiplet of conformal supergravity leads to the theory of n vector-tensor multiplets and r
hypermultiplets coupled to Poincaré supergravity.

6.5.3 The scalar potential

We will now present the scalar potential of the combined action for nT on-shell tensor multi-
plets and nH = r on-shell hypermultiplets in the background of nV off-shell vector multiplets
coupled to the Standard Weyl multiplet.

First, we collect all terms of O(g2) in (6.134) and (6.142). However, this is not the final
answer since the auxiliary field Y ijI has an algebraic equation of the form

2C
IJ̃K̃

σJ̃Y ijK̃ = gP ij + fermion bilinears . (6.155)

Solving this equation and substituting the result into the term −gP IijY ijI of (6.142) will gen-
erate an additional term of O(g2).

The gauge-fixing of the superconformal symmetries has an additional effect: the corre-
sponding parameters can be expressed in terms of the non-conformal parameters. In partic-
ular, the parameter ηi of S-transformations will be expressed in terms of the parameter εi

of Q-supersymmetry. This will make the resulting Poincaré-supersymmetry transformation
rules much more complicated: a complication that the conformal approach avoids until the
final step in the calculations.

The expression for ηi will also involve the auxiliary field Y ij of the vector multiplet,
and by using (6.155) we see that e.g. the Poincaré-supersymmetry transformation for the
gravitino will contain a term proportional to P ijI , and the scalar potential contains the square
of that term. The other terms of the scalar potential can also be written in terms of squares of
these so-called “fermion-shifts”: they are defined as the terms of O(g) in the supersymmetry

transformations of ζA and ψiĨ , respectively

δζA ∼ − 1
2gσ

IkXI f
A
iXε

i ≡ NA
i ε

i ,

δψiĨ ∼ 1
2gt(J̃K̃)

ĨσJ̃σK̃εi ≡ P Ĩεi , (6.156)

Finally, we find for the scalar potential

V (σĨ , qX) = g2C−1

IJK̃
P ijIP Jij + 2N iANiA + 2σIPPPQCIPQ , (6.157)



154 Matter-couplings of conformal supergravity

where there will be some small modifications due to the constraints on CIJK by the dilata-
tional gauge-fixing. After the gauge-fixing program will have been performed, the analysis
of the critical points of this potential, and the Hessian matrix of the corresponding superpo-
tential will give more insight in its possible applications. We stress that, even though this
analysis has not been performed yet, the potential (6.157) contains new ingredients which
have not been discussed in the literature before.

First of all, we have also considered reducible, but not completely reducible, representa-
tions for the vector-tensor multiplet. This opens the possibility of non-compact gauge groups
and the existence of new Chern-Simons terms in the action of the form A ∧B ∧ F that were
not constructed before. Algebraically, this is reflected in the non-zero components of the
tensor CIMN that appears in the potential (6.157).

Furthermore, without an action, we also allow an odd number of tensor multiplets, which
is more general than all analyses so far, which all started from an action. For the hypermulti-
plets, the same argument applies: here, we have considered hyper-Kähler manifold without a
metric, the so-called hyper-complex manifolds.

To conclude, we expect that these new results on superconformal matter multiplets will
also lead to more general matter-couplings to Poincaré supergravity. Whether such new
matter-couplings will drastically modify the structure of the scalar potential in such a way
that supersymmetric Randall-Sundrum scenarios become possible, remains an open question.
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[164] K. Behrndt and M. Cvetič, Gauging of N = 2 supergravity hypermultiplet and novel
renormalization group flows, Nucl. Phys. B609 (2001) 183–192,
hep-th/0101007.

[165] R. Kallosh and A. D. Linde, Supersymmetry and the brane world, JHEP 02 (2000)
005, hep-th/0001071.

[166] A. Ceresole, G. Dall’Agata, R. Kallosh, and A. Van Proeyen, Hypermultiplets,
domain walls and supersymmetric attractors, Phys. Rev. D64 (2001) 104006,
hep-th/0104056.

[167] M. Kaku and P. K. Townsend, Poincaré supergravity as broken superconformal
gravity, Phys. Lett. B76 (1978) 54.

[168] S. Ferrara, M. T. Grisaru, and P. van Nieuwenhuizen, Poincaré and conformal
supergravity models with closed algebras, Nucl. Phys. B138 (1978) 430.

[169] M. Nishimura, Conformal supergravity from the AdS/CFT correspondence, Nucl.
Phys. B588 (2000) 471–482, hep-th/0004179.

[170] R. D’Auria, S. Ferrara, and S. Vaula, Matter coupled F (4) supergravity and the
AdS6/CFT5 correspondence, JHEP 10 (2000) 013, hep-th/0006107.

[171] V. Balasubramanian, E. Gimon, D. Minic, and J. Rahmfeld, Four dimensional
conformal supergravity from AdS space, hep-th/0007211.
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Appendix A

Conventions

In this appendix, we will summarize our conventions. Furthermore, we will give some
useful identities that have been used in the previous chapters.

A.1 Indices

The last two chapters have used a large amount of different indices. Below we will summarize
the different ranges and meanings of these indices. First of all, the metric that we use is mostly
plus: i.e. in five dimensions, we have gµν = (− + + + +). In chapter 5, we have used the
following notations

µ, ν 0, 1, . . . , 4 spacetime ,

a, b 0, 1, . . . , 4 tangent space ,

α, β 1, . . . , 4 spinor ,

i, j 1, 2 SU(2) , (A.1)

In chapter 6, we have furthermore used indices labelling the components of matter multi-
plet. In particular, we have used

Ĩ , J̃ 1, 2, . . . nV + nT vector-tensor multiplet ,

I, J 1, 2, . . . , nV vector multiplet ,

M,N 1, 2, . . . , nT tensor multiplet ,

X, Y 1, 2, . . . , 4nH hypermultiplet target space ,

A,B 1, 2, . . . , 2nH hypermultiplet tangent space ,

i, j 1, 2 SU(2) . (A.2)
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In all cases, we denote symmetrizations with parentheses around the indices, and anti-
symmetrizations with brackets around the indices. Furthermore, we (anti-)symmetrize with
weight one

X(ab) ≡ 1
2 (Xab +Xba) , X[ab] ≡ 1

2 (Xab −Xba) . (A.3)

A.2 Tensors

Our conventions for the D-dimensional Levi–Civita tensor are

εa1...aD
= −εa1...aD = 1 . (A.4)

The Levi-Civita tensor with spacetime indices can be obtained from (A.4 by using vielbeins
to convert the tangent space indices to spacetime indices, and multiplying the result with the
vielbein determinant gives

εµ1...µD
= e−1eµ1

a1 · · · eµd

aDεa1...aD
, εµ1...µD = e eµ1

a1
· · · eµD

aD
εa1...aD , (A.5)

where we have used the Einstein summation convention in which repeated indices are summed
over.

Note that raising and lowering the indices of the Levi-Civita tensor with spacetime indices
is done with the metric, which for the Levi-Civita tensor with tangent space indices is done
by using the definition (A.4). Contractions of the Levi-Civita tensor give products of delta-
functions which are normalized as

εa1...apb1...bq
εa1...apc1...cq = −p!q!δ[c1[b1

. . . δ
cq ]

bq ] , (A.6)

We have defined the dual of five-dimensional tensors as

Ãa1...a5−n = 1
n! i εa1...a5−nb1...bn

Abn...b1 . (A.7)

Using (A.6), one finds the following identities

˜̃
A = A ,

1

n!
Aa1...anBa1...an

=
1

n!
A ·B =

1

(n− 5)!
Ã · B̃ , (A.8)

where we have introduced the generalized inner product notationA·B that we use throughout
this thesis.

We use the same conventions for the Riemann tensor and its contractions as [92]. In
particular, we define the Riemann tensor as

Rµνλρ = ∂λΓ
µ
ρν − ∂ρΓµλν + ΓµσλΓ

σ
ρν − ΓµσρΓ

σ
λν . (A.9)

The Ricci tensor and Ricci scalar in this thesis are given by

Rµν = Rλµλν , R = gµνRµν . (A.10)

With these conventions, the Einstein-Hilbert action has a positive sign.
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A.3 Differential forms

In chapter 1, we have used differential form notation to simplify the supergravity actions. A
p-form is related to a rank-p anti-symmetric tensor according to

F(p) =
1

p!
dxµ1 . . .dxµpFµ1...µp

. (A.11)

The analog of the dual of an anti-symmetric tensor (A.7), is given by the Hodge-dual: i.e a
differential p-form A has a D − p-form B = ?A as its dual with components

Bµ1...µq
=

1

p!
e εµ1...µq

ν1...νpAν1...νp
, q = D − p . (A.12)

Note in particular the different order in which the indices in (A.12) are contracted with respect
to (A.7). With this definition, we have the usual identity

? ? A(p) = (−)pq+1A(p) , q = D − p . (A.13)

Furthermore, the D-dimensional invariant volume element can then be written as the star of
the unit number

? ≡ dDx
√
|g| . (A.14)

A.4 Spinors

Our five-dimensional spinors are symplectic-Majorana spinors that transform in the (4, 2)
of SO(5) ⊗ SU(2). The generators Uij of the R-symmetry group SU(2) are defined to be
anti-Hermitian and symmetric, i.e.

(Ui
j)∗ = −Uji , Uij = Uji . (A.15)

A symmetric traceless Uij corresponds to a symmetric U ij since we lower or raise SU(2)
indices using the ε-symbol contracting the indices in a northwest-southeast (NW–SE) con-
vention

Xi = εijXj , Xi = Xjεji , ε12 = −ε21 = ε12 = 1 . (A.16)

The actual value of ε is here given as an example. It is in fact arbitrary as long as it is
antisymmetric, εij = (εij)

∗ and εjkε
ik = δj

i. When the SU(2) indices on spinors are
omitted, NW-SE contraction is understood

λ̄ψ = λ̄iψi , (A.17)

The charge conjugation matrix C and Cγa are antisymmetric. The matrix C is unitary and
γa is Hermitian apart from the timelike one, which is anti-Hermitian. The bar is the Majorana
bar

λ̄i = (λi)TC . (A.18)
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We define the charge conjugation operation on spinors as

(λi)C ≡ α−1B−1εij(λj)∗ , λ̄iC ≡ (λi)C = α−1
(
λ̄k
)∗
Bεki , (A.19)

where B = Cγ0, and α = ±1 when one uses the convention that complex conjugation does
not interchange the order of spinors, or α = ± i when it does. Symplectic Majorana spinors
satisfy λ = λC . Charge conjugation acts on gamma-matrices as (γa)

C = −γa, does not
change the order of matrices, and works on matrices in SU(2) space as MC = σ2M

∗σ2.
Complex conjugation can then be replaced by charge conjugation, if for every bi-spinor one
inserts a factor −1. Then, e.g., the expressions

λ̄iγµλ
j , i λ̄iλi (A.20)

are real for symplectic Majorana spinors. For more details, see [186].

A.5 Gamma-matrices

The gamma-matrices γa are defined as matrices that satisfy the Clifford-algebra

{γa, γb} ≡ γaγb + γbγa = 2ηab (A.21)

Completely anti-symmetrized products of gamma-matrices are denoted in three different
ways

γ(n) = γa1···an
= γ[a1

· · · γan] . (A.22)

The product of all gamma-matrices is proportional to the unit matrix in odd dimensions.
We use

γabcde = i εabcde . (A.23)

This implies that the dual of a (5 − n)-antisymmetric gamma-matrix is the n-antisymmetric
gamma-matrix given by

γa1...an
= 1

(5−n)! i εa1...anb1...b5−n
γb5−n...b1 . (A.24)

For convenience, we will give the values of gamma-contractions like

γ(m)γ(n)γ(m) = cn,mγ(n) , (A.25)

where the constants cn,m are given in table A.1. The constants for n,m > 2 can easily be
obtained from (A.24) and table A.1.

Changing the order of spinors in a bilinear leads to the following signs

ψ̄(1)γ(n)χ
(2) = tn χ̄

(2)γ(n)ψ
(1)

{
tn = +1 for n = 0, 1
tn = −1 for n = 2, 3

(A.26)

where the labels (1) and (2) denote any SU(2) representation.
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cn,m m = 1 m = 2
n = 0 5 −20
n = 1 −3 −4
n = 2 1 4

Table A.1: Coefficients used in contractions of gamma-matrices.

A.6 Fierz-identities

The sixteen different gamma-matrices γ(n) for n = 0, 1, 2 form a complete basis for four-
dimensional matrices. Similarly, the identity matrix 2 and the three Pauli-matrices σi for
i = 1, 2, 3 form a basis for two-dimensional matrices. A change of basis in a product of two
pseudo-Majorana spinors will give rise to so-called Fierz-rearrangement formulae, which in
their simplest form are given by

ψj λ̄
i = − 1

4 λ̄
iψj − 1

4 λ̄
iγaψjγa + 1

8 λ̄
iγabψjγab , ψ̄[iλj] = − 1

2 ψ̄λε
ij . (A.27)

Using such Fierz-rearrangements, other useful identities can be deduced for working with
cubic fermion terms

λj λ̄
jλi = γaλj λ̄

jγaλ
i = 1

8γ
abλiλ̄γabλ ,

γcdγabλ
iλ̄γcdλ = 4λiλ̄γabλ ,

γaλλ̄γ
abλ = 0 . (A.28)

When one multiplies three spinor doublets, one should be able to write the result in terms
of
(
8
3

)
= 56 independent structures. From analyzing the representations, one can obtain that

these are in the (4, 2) + (4, 4) + (16, 2) representations of SO(5)× SU(2). They are

λj λ̄
jλi = γaλj λ̄

jγaλ
i = 1

8γ
abλiλ̄γabλ ,

λ(kλ̄iλj) ,

λj λ̄
jγaλ

i . (A.29)

As a final Fierz-identity, we give a three-spinor identity which is needed to prove the
invariance under supersymmetry of the action for a vector multiplet

ψi[I ψ̄JψK] = γaψi[I ψ̄JγaψK] . (A.30)
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Samenvatting

De elementaire-deeltjesfysica probeert de fundamentele bouwstenen van de Natuur en hun
onderlinge wisselwerkingen te beschrijven. Uit experimenten is gebleken dat de ele-

mentaire deeltjes in twee klassen zijn onder te brengen: de leptonen, waaronder het elektron
en het neutrino; en de quarks, de bouwstenen van protonen en neutronen. De vier bekende
wisselwerkingen tussen deze bouwstenen zijn de zwaartekracht, de elektromagnetische, de
zwakke, en de sterke wisselwerking.

Op kleine lengteschalen is de zwaartekracht vele orden van grootte zwakker dan alle
andere krachten1, en zij kan dan ook rustig verwaarloosd worden. De resterende drie wis-
selwerkingen kunnen beschreven worden door een elegante theorie die het Standaard Model
wordt genoemd. Deze theorie is een ijktheorie – zij heeft een interne lokale symmetriegroep
waardoor elke wisselwerking beschreven kan worden als een uitwisseling van ijkdeeltjes.
Deze ijkdeeltjes worden het foton, de W-bosonen en het Z-boson, en de gluonen genoemd
voor respectievelijk de elektromagnetische, de zwakke, en de sterke wisselwerking. IJkdeel-
tjes verschillen in meerdere opzichten van materiedeeltjes: de ijkdeeltjes vallen in de klasse
van bosonen, deeltjes met heeltallige spin en commuterende statistiek; de materiedeeltjes
daarentegen vallen in de klasse van fermionen, deeltjes met halftallige spin en anticommute-
rende statistiek. De interne symmetriegroepen van het Standaard Model beelden bosonen op
bosonen en fermionen op fermionen af.

De natuurkunde wordt op microscopisch niveau beschreven door de quantummechanica,
die kan worden gezien als een verfijning van de klassieke mechanica. Zij heeft verscheidene
tegen-intuïtieve eigenschappen: zo kan men niet tegelijkertijd alle waarneembare grootheden
met oneindige nauwkeurigheid meten, en veel grootheden kunnen slechts worden uitgedrukt
in waarschijnlijkheden. Het Standaard Model is volledig in overeenstemming met de quan-
tummechanica, en alle experimenten tot nu toe hebben de theorie tot op grote nauwkeurigheid
bevestigd.

Op grote lengteschalen worden de wisselwerkingen van het Standaard Model vrijwel ver-
waarloosbaar: de sterke kracht is beperkt tot heel kleine afstanden; de zwakke kracht neemt
exponentieel af met de afstand; en hoewel de elektromagnetische kracht een oneindig be-
reik heeft, is alle materie ruwweg elektrisch neutraal. Hierdoor wordt de zwaartekracht de

1De verhouding tussen de zwaartekracht en de elektrische kracht tussen een proton en een elektron is 10−40.
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overheersende kracht op grote afstanden.
De zwaartekracht wordt beschreven door de Algemene Relativiteitstheorie. De Alge-

mene Relativiteitstheorie is erop gebaseerd dat ruimte en tijd samengaan in de zogenaamde
ruimte-tijd, dat materie een gekromde meetkunde geeft aan de ruimte-tijd, en dat deze krom-
mingen op hun beurt bepalen hoe materie zich door de ruimte-tijd voortbeweegt. Men kan
ook proberen de Algemene Relativiteitstheorie te formuleren als een ijktheorie: in dit geval
een ijktheorie van ruimte-tijdsymmetrieën, algemene coördinatentransformaties geheten, in
plaats van interne symmetrieën. Het bijbehorende ijkveld heet in dit geval het graviton. De
Algemene Relativiteitstheorie is een volledig klassieke theorie, en zij is tot nu toe goed in
overeenstemming gebleken met alle experimentele waarnemingen, van planetaire tot en met
kosmologische lengteschalen.

Aan de hierboven geschetste tweedeling van de natuurkunde in de macroscopische Al-
gemene Relativiteitstheorie en het microscopische Standaard Model zit een aantal haken en
ogen. Zo heeft de Algemene Relativiteitstheorie enkele merkwaardige eigenschappen. Al-
lereerst zijn er oplossingen van de klassieke veldvergelijkingen die zwarte gaten worden ge-
noemd. Deze zwarte gaten hebben als generieke eigenschap dat de ruimte-tijd singulariteiten
bevat in de buurt waarvan het zwaartekrachtsveld oneindig sterk wordt. Dit ondergraaft de
aanname dat de zwaartekracht verwaarloosd zou kunnen worden op kleine lengteschalen:
hierdoor wordt het noodzakelijk om de zwaartekracht quantummechanisch te beschrijven.

Men veronderstelt dat de meeste van de ruimte-tijdsingulariteiten verborgen zijn achter
zogenaamde gebeurtenishorizonnen: dit zijn oppervlakken van waarachter het zelfs voor licht
onmogelijk is om terug te keren. Er wordt dan ook vermoed dat singulariteiten niet direct
waarneembaar zijn. Het gedrag van deeltjes in de buurt van zulke gebeurtenishorizonnen is
quantummechanisch gezien echter problematisch, aangezien het eenrichtingskarakter van een
gebeurtenishorizon de waarschijnlijkheidsinterpretatie van de quantummechanica verstoort.
Een karakteristiek gevolg hiervan zijn de zogenaamde informatieparadoxen.

Hoewel de energieschalen die noodzakelijk zijn om het microscopische gedrag van de
zwaartekracht te kunnen onderzoeken niet in laboratoriumexperimenten gerealiseerd wor-
den, traden zulke energieschalen in het vroege universum wel degelijk op . Voor een goed
begrip van de kosmologie is dan ook een betere beschrijving van de zwaartekracht op kleine
lengteschalen noodzakelijk. Hieraan gerelateerd is het probleem van de kosmologische con-
stante, een parameter van de Algemene Relativiteitstheorie waarvoor het Standaard Model
een waarde voorspelt die vele orden van grootte hoger ligt dan de experimenteel vastgestelde
waarde.

Om bovengenoemde problemen op te kunnen lossen is het noodzakelijk om een theorie
voor de quantumzwaartekracht te ontwikkelen. Het quantiseren van een klassieke wissel-
werkingstheorie is echter een ingewikkelde zaak. Een eerste stap in de goede richting is
de quantummechanische beschrijving van deeltjes in een klassiek krachtenveld. Dit wordt
vaak de eerste quantisatie genoemd. Voor de elektromagnetische kracht ontstond zo’n semi-
klassieke theorie in de jaren twintig van de vorige eeuw toen onder andere de aard van zwarte-
lichamenstraling en de oorsprong van de energieniveaus van het waterstofatoom werden ont-
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dekt. In de laatste decennia van de vorige eeuw werd de quantummechanische beschrijving
van deeltjes in een zwaartekrachtsveld beschreven. In het bijzonder werd het proces van
Hawking-straling en de microscopische verklaring van de wanorde van zwarte gaten ontdekt.

De volgende stap is om het krachtenveld zélf op een quantummechanische manier te
beschrijven: dit wordt ook wel de tweede quantisatie genoemd. Dit behelst een ingewikkel-
de procedure waarbij in tussenberekeningen allerlei oneindigheden opduiken. Halverwege
de vorige eeuw lukte het met de formulering van de quantumelektrodynamica om een een-
duidige manier te vinden om zinvolle antwoorden te verkrijgen uit de berekeningen. Deze
procedure wordt ook wel renormalisatie genoemd. De zwaartekracht blijkt niet op dezelfde
manier te kunnen worden gequantiseerd als de elektromagnetische kracht: de oorsprong ligt
uiteindelijk in de energieafhankelijkheid van de zwaartekrachtsconstante. Hierdoor wordt de
zwaartekracht zeer sterk bij hoge energieën, en kunnen de oneindigheden niet meer worden
weggewerkt.

In de jaren zeventig van de vorige eeuw werd er een verfijning van de Algemene Rela-
tiviteitstheorie ontdekt die zich bij hoge energieën beter gedroeg. Deze theorie wordt ook
wel superzwaartekracht genoemd omdat zij een symmetrie heeft die bosonen en fermionen
met elkaar weet te verbinden, een zogenaamde supersymmetrie. Supersymmetrische the-
orieën geven normaliter aanleiding tot minder oneindigheden en zijn makkelijker te renor-
maliseren. Helaas is superzwaartekracht uiteindelijk ook niet renormeerbaar gebleken. De
huidige inzichten zijn dat superzwaartekracht een lage-energielimiet zou kunnen zijn van de
quantumzwaartekracht, net zoals bijvoorbeeld Fermi’s theorie van het beta-verval een lage-
energielimiet is van het Standaard Model.

Om voorspellingen buiten het lage-energiegebied te kunnen doen, is er een methode ver-
eist om botsingen bij hogere energieën te beschrijven. Voor de sterke wisselwerking werd
deze zogenaamde S-matrixtheorie in de jaren zestig van de vorige eeuw ontwikkeld. Zij ge-
bruikt een storingsreeks van zogenaamde Feynman-diagrammen om botsingsamplitudes te
berekenen. Uiteindelijk bleken de heuristische Feynman-regels te volgen uit een actieprinci-
pe: de Lagrangiaan van het Standaard Model. Omdat de zwakke en sterke wisselwerkingen
gebaseerd zijn op grotere symmetriegroepen is de tweede quantisatie aanzienlijk ingewik-
kelder dan die voor de elektromagnetische kracht: de noodzakelijke wiskundige technieken
werden pas in de jaren zeventig van de vorige eeuw ontwikkeld.

Een soortgelijk raamwerk voor de zwaartekracht blijkt een veralgemening van het con-
cept van een elementair deeltje te behelzen. De gedachte is dat elementaire deeltjes zich op
hele kleine lengteschalen2 gedragen als snaren: het spectrum van trillingstoestanden dient
dan de bekende elementaire deeltjes te bevatten. In het bijzonder bevat het spectrum van
gesloten snaren een deeltje dat veel lijkt op het graviton. Omdat snaren een ruimtelijke di-
mensie hebben, worden de Feynman-diagrammen uit de deeltjesfysica nu vervangen door
zogenaamde Riemann-oppervlakken. In de jaren tachtig van de vorige eeuw werd aange-
toond dat een storingsreeks van zulke oppervlakken eindige antwoorden geeft voor botsingen
van snaren bij hoge energieën. Dit kan intuïtief begrepen worden uit het feit dat de wissel-

2De karakteristieke schaal voor snaren ligt in de buurt van 10−33 cm.
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werking tussen snaren zich niet op een gelokaliseerd punt afspeelt, maar verdeeld is over een
glad oppervlak. De snaartheorie doet een aantal verrassende voorspellingen: de natuur is
supersymmetrisch, en naast de bekende drie ruimterichtingen en één tijdrichting bestaan er
nog zes andere ruimtelijke dimensies.

Een Lagrangiaan waaruit de botsingsregels voor snaren kunnen worden afgeleid wordt
ook wel een snaarveldentheorie genoemd. Voor de eenvoudigste snaarmodellen geven de bij-
behorende snaarveldentheorieën de correcte botsingsamplitudes, maar voor meer ingewikkel-
de snaarmodellen zijn er technische complicaties bij het formuleren van zulke Lagrangianen.
Bovendien hebben dergelijke snaarveldentheorieën een veel grotere symmetriegroep dan de
tot nu toe bekende quantumveldentheorieën voor elementaire deeltjes: dit leidt tot aanzienlijk
grotere wiskundige complicaties bij het quantiseren van snaarveldentheorieën. Het ligt dan
ook in de lijn der verwachting dat de huidige quantisatiemethoden nog verder verfijnd zullen
moeten worden om tot een theorie van de quantumzwaartekracht te komen.

De klassieke veldvergelijkingen van ijktheorieën hebben veelal een aantal eindige-energie-
oplossingen, ook wel solitonen genoemd. Zo hebben enigszins aangepaste versies van de
zwakke wisselwerking oplossingen die magnetische monopolen worden genoemd. De aan-
wezigheid van zulke magnetische monopolen geeft aanleiding tot een nieuwe klasse van
symmetrieën, de zogenaamde dualiteiten: deze geven vaak verrassende verbanden tussen
ogenschijnlijk ongerelateerde grootheden binnen een theorie, of zelfs verbanden tussen ver-
schillende theorieën. In het laatste decennium is ook in de snaartheorie een groot aantal
soliton-oplossingen gevonden. Deze oplossingen beschrijven een soort zwarte gaten met ex-
tra ruimtelijke dimensies: zo zijn er behalve solitondeeltjes ook nog snaren, membranen, en
objecten van nog hogere dimensionaliteit, branen genaamd. Deze branen vormen het middel-
punt van een enorm web aan dualiteiten die allerlei aspecten van snaartheorie met elkaar in
verband brengen.

Tot begin jaren negentig waren er vijf snaartheorieën in omloop die op een aantal subtiele
punten van elkaar verschillen. De vondst van braanoplossingen en de bijbehorende duali-
teiten hebben laten zien dat deze snaartheorieën naar alle waarschijnlijkheid verschillende
aspecten zijn van een allesomvattende theorie. Het totale raamwerk van snaartheorie, super-
zwaartekracht, alle solitonen en dualiteiten wordt ook wel M-theorie genoemd. Deze theorie
staat nog in de kinderschoenen: zelfs over de betekenis van de letter M wordt nog gedebat-
teerd3. Veel van het huidige onderzoek naar een theorie van de quantumzwaartekracht speelt
zich dan ook af rond de vraag hoe dit geschetste raamwerk verder onderbouwd zou kunnen
worden.

In dit proefschrift hebben we in hoofdstuk 1 het huidige raamwerk van de snaartheorie
verder uitgelegd. Vervolgens hebben we in hoofdstuk 2 een recent ontdekte dualiteit bespro-
ken: het Anti-de-Sitter/conforme veldentheorie verband. Dit is een verband tussen theorieën
van de zwaartekracht binnen een bepaalde klasse van gekromde ruimten enerzijds en een
speciale klasse van quantumveldentheorieën anderzijds. Dit is een zeer opmerkelijke duali-
teit omdat allerlei grootheden binnen de quantumzwaartekracht kunnen worden uitgerekend

3Een veel-gemaakte grap is dat de M zowel Membraan, Mysterie als Magie kan betekenen.
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met methoden die bekend zijn vanuit de elementaire-deeltjesfysica. Centraal in dit verband
staat een speciale braanoplossing van snaartheorie: de zogenaamde D3-braan.

In hoofdstuk 3 hebben we ons eigen werk besproken, dat het bovengenoemde verband
veralgemeniseert. We hebben laten zien dat er een soortgelijk verband bestaat tussen zwaar-
tekrachtstheorieën in een meer algemene klasse van gekromde ruimten enerzijds en meer
algemene quantumveldentheorieën anderzijds. In het bijzonder hebben we een grotere klas-
se van braanoplossingen bestudeerd die de D3-braan als speciaal geval bevat. Door in een
geschikt gekozen coördinatenstelsel, het zogenaamde duale stelsel, de meetkunde van deze
braanoplossingen in de buurt van hun gebeurtenishorizon te bestuderen, hebben we informa-
tie over het gedrag van de duale veldentheorie weten te verkrijgen.

De gekromde ruimten die bij de bovengenoemde analyse tevoorschijn komen, worden
ook wel domeinvlakken genoemd: zij beschrijven ruimten die bestaan uit verschillende do-
meinen die gescheiden zijn door een grensvlak waarop bepaalde grootheden op een disconti-
nue manier van grootte veranderen. Worden de bovengenoemde discontinue oplossingen ook
wel dunne domeinvlakken genoemd, oplossingen die op een continue manier interpoleren
tussen verschillende grondtoestanden van de onderliggende zwaartekrachtstheorie worden
dikke domeinvlakken genoemd. Aan het einde van hoofdstuk 3 hebben we uitgelegd wat de
interpretatie van deze dikke domeinvlakken is binnen de duale quantumveldentheorie.

Domeinvlakken hebben zeer recentelijk nog een andere toepassing gekregen: zij maken
deel uit van de in hoofdstuk 4 besproken klasse van modellen die zogenaamde braanwerel-
den beschrijft. De kerngedachte van deze modellen is dat ons vierdimensionale universum
met zijn drie ruimterichtingen en één tijdrichting in werkelijkheid een hypervlak binnen een
vijfdimensionale ruimte is. De grootte van de vijfde ruimterichting die loodrecht op deze zo-
genaamde braanwereld staat, kan worden gebruikt om een aantal onnatuurlijke verhoudingen
binnen de vierdimensionale natuurkunde beter te begrijpen: zo is er meer inzicht gekomen in
de oorsprong van de grootte van de kosmologische constante en in de onnatuurlijk grote ver-
houding tussen de sterktes van de zwaartekracht enerzijds en de resterende wisselwerkingen
anderzijds, het zogenaamde hiërarchieprobleem.

Het is tot nu toe niet gelukt om deze braanwereldmodellen op een goede manier in een
snaartheoriekader te plaatsen. Het voornaamste obstakel dat hierbij optreedt, is het realise-
ren van supersymmetrie in de vierdimensionale braanoplossing: dit is gerelateerd aan het
vinden van de stabiele grondtoestanden van de onderliggende vijfdimensionale superzwaar-
tekrachtstheorie. Hiervoor moeten echter eerst alle wisselwerkingen van vijfdimensionale
materiemodellen met superzwaartekracht worden geclassificeerd. De scalaire velden van de
verschillende materiemodellen kunnen worden geïnterpreteerd als coördinaten van een ab-
stracte ruimte. Veel eigenschappen van deze modellen kunnen dan worden uitgedrukt in
meetkundige eigenschappen van de bijbehorende ruimten van velden.

In het bijzonder geven de scalaire velden aanleiding tot een potentiaal die de vacuümstruc-
tuur bepaalt. Om supersymmetrische braanwerelden mogelijk te maken, moet deze scalaire
potentiaal over een tweetal stabiele minima beschikken dat aan een aantal verdere randvoor-
waarden moet voldoen. Daarnaast moet er een geschikte braanoplossing gevonden worden
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die op een continue manier interpoleert tussen de twee minima. Een dergelijke analyse waar-
mee men (overigens vanwege andere redenen) reeds was begonnen in de jaren tachtig van
de vorige eeuw, is recentelijk nog verder uitgediept, maar omvat nog steeds niet de meest
algemene gevallen.

We hebben een systematische methode gebruikt om tot een startpunt te komen van waar-
uit de meest algemene vijfdimensionale materiekoppelingen aan superzwaartekracht kun-
nen worden afgeleid. Dit zogenaamde superconforme programma neemt als uitgangspunt
de meest algemene groep van ruimte-tijdsymmetrieën, de superconforme groep, wat de con-
structie van materiekoppelingen aan superzwaartekracht aanzienlijk vereenvoudigt. De ver-
schillende modellen die superconforme symmetrie bezitten, worden ook wel multipletten ge-
noemd. Enerzijds is er het Weyl-multiplet: dit is het kleinste multiplet van de superconforme
groep dat het graviton bevat. Anderzijds zijn er de materiemultipletten: zij wisselwerken met
het Weyl-multiplet dat een vaste achtergrond van conforme superzwaartekracht realiseert.
Materiekoppelingen met niet-conforme superzwaartekracht kunnen worden verkregen door
de conforme symmetrieën te breken.

In hoofdstuk 5 hebben we onze resultaten omtrent de structuur van de vijfdimensionale
Weyl-multipletten besproken. Het blijkt dat er twee versies van het Weyl-multiplet bestaan:
het standaard Weyl-multiplet en het dilaton Weyl-multiplet. Multipletten als het standaard
Weyl-multiplet komen ook in vier en zes dimensies voor, maar het dilaton Weyl-multiplet
was tot nog toe alleen bekend in zes dimensies. We gebruiken een klassieke methode om
de transformatieregels voor de verschillende velden af te leiden: de zogenaamde Noether-
methode. In het bijzonder hebben we de multipletten van behouden Noether-stromen voor
de corresponderende conforme symmetrieën geconstrueerd. Een opmerkelijk detail is dat
het stromenmultiplet dat koppelt aan het standaard Weyl-multiplet stromen bevat die aan
differentiaalvergelijkingen voldoen, een mechanisme dat tot nu toe alleen in tiendimensionale
conforme superzwaartekracht bekend was.

Tot slot hebben we in hoofdstuk 6 onze bevindingen met betrekking tot vijfdimensionale
superconforme materiemultipletten gepresenteerd. Zo hebben we zogenaamde vectormulti-
pletten besproken: dit zijn multipletten die transformeren onder een ijkgroep en het bijbeho-
rende ijkdeeltje bevatten. We hebben vectormultipletten geanalyseerd die op de meest alge-
mene manier transformeren onder hun ijkgroep: de zogenaamde vector-tensormultipletten.
In het bijzonder hebben we reducibele representaties beschouwd die niet volledig reducibel
zijn. Deze geven aanleiding tot nog niet eerder gevonden koppelingen tussen ijkvelden en
tensorvelden. De conforme symmetrieën kunnen alleen gerealiseerd worden op tensorvel-
den als deze voldoen aan bewegingsvergelijkingen. Door de gebruikelijke eis te laten val-
len dat zulke vergelijkingen uit een actieprincipe behoren te volgen, hebben we ook vector-
tensormultipletten met een oneven aantal tensorvelden kunnen formuleren.

Naast vector-tensormultipletten hebben we in hoofdstuk 6 ook hypermultipletten beschre-
ven. Deze multipletten bevatten geen ijkdeeltjes maar wel scalaire velden. De scalaire velden
spannen een vectorruimte over de quaternionen4 op die door het realiseren van de super-

4Een uitbreiding van de complexe getallen.
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conforme algebra een niet-triviale meetkunde krijgt, een zogenaamde hypercomplexe meet-
kunde. Evenals op de tensorvelden kan de superconforme algebra alleen met behulp van
bewegingsvergelijkingen op de velden van een hypermultiplet gerealiseerd worden. We heb-
ben ook hier de gevallen beschouwd waarin deze bewegingsvergelijkingen niet volgen uit een
actieprincipe. De speciale gevallen waarin er wel een actie is komen overeen met een ruim-
te van scalaire velden waarop een afstandsfunctie (ook wel metriek genoemd) gedefinieerd
is. Hypercomplexe ruimten die een metriek bezitten worden ook wel hyper-Kähler-ruimten
genoemd. Daarnaast hebben we ook de wisselwerking van hypermultipletten met de al eer-
der genoemde vectormultipletten geanalyseerd, waarbij ook hier gebruik is gemaakt van de
meetkundige eigenschappen van de ruimte van scalaire velden. Bovendien hebben we een
overzicht gegeven van de veelheid aan meetkundige grootheden die in het laatste hoofdstuk
gebruikt zijn.

De door ons geconstrueerde materiekoppelingen aan conforme superzwaartekracht kun-
nen worden gebruikt als een startpunt om nieuwe materiekoppelingen aan niet-conforme su-
perzwaartekracht af te leiden. Aan het einde van hoofdstuk 6 hebben we geschetst hoe dat
in zijn werk gaat. Of de zo te verkrijgen nieuwe versies van vijfdimensionale superzwaar-
tekracht ook daadwerkelijk zodanig gewijzigde scalaire potentialen bezitten dat supersym-
metrische braanoplossingen gevonden kunnen worden, blijft een vraag die door toekomstig
onderzoek beantwoord zal moeten worden.
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