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Abstract
A simplemodel forQCDdynamics inwhich theDGLAP integro-differential equationmay be solved
analytically has been considered in our previous papers arXiv:1611.08787 [hep-ph] and arXiv:1906.
07924 [hep-ph].When such amodel contains only one term in the splitting function of the dominant
parton distribution, then Bessel function appears to be the solution to this simplifiedDGLAP
equation. To our knowledge, thismodel with only one term in the splitting function for thefirst time
has been proposed by Blümlein in arXiv:hep-ph/9506403. In arXiv:1906.07924 [hep-ph]wehave
shown that a dual integro-differential equation obtained from theDGLAP equation by a complexmap
in the plane of theMellinmoment in thismodelmay be considered as the BFKL equation. Then, in
arXiv:1906.07924we have applied a complex diffeomorphism to obtain a standard integral from
Gradshteyn andRyzhik tables starting from the contour integral for parton distribution functions that
is usually taken by calculus of residues. This standard integral from these tables appears to be the
Laplace transformation of Jacobian for this complex diffeomorphism.Herewewrite up all the
formulae behind this trick in detail andfind out certain important points for further development of
this strategy.We verify that the inverse Laplace transformation of the Laplace image of the Bessel
functionmay be represented in a formof Barnes contour integral.

1. Introduction

It often happens that a solution to an integro-differential equation is obtained in a formof contour integrals in
one ormore complex planes. Such integralsmay be taken via Cauchy integral formula by calculating residues.
Usually they are not the classical Barnes integrals which are a convenient representation for generalized
hypergeometric functions. The integrands of the Barnes integrals are ratios of certain products of several Euler
Gamma functions. A transformation of a contour integral representing a solution to an integro-differential
equation to this formof the Barnes integrals would be helpful because theymay be classified in terms of suitable
special functions. Tofind such a transformation is the aim of this paper. The intermediate stepwill be a
representation of these integrals as the Laplace transformations of the Jacobians of some complexmaps in the
complex variable plane of the contour integral.We have considered such a possibility in the previous paper [1] in
whichwe transformed the contour integral representing the solution to theDGLAP integro-differential
equation in a simplemodel ofQCDdynamics from this obtained formof a contour integral in the complex
plane of theMellinmoment to the Laplace transformation of the corresponding Jacobian. These Jacobiansmay
appear to bemultivalued functions of new complex variables and integration over cutsmay be required.Wemay
avoid integration over these cuts if represent the integrals withmultivalued Jacobians obtained by thefirst
complexmap in the formof the Barnes integrals by applying one complexmapmore. The holomorphicmaps
of variables in the complex domains of the contour integrals whichwe apply in the present paper are based
on the standard theory of complex variable whichmay be found in any textbook on this subject [2]. As to
manipulationswith closed contours in the complex plane of the integration variable, theywere already used in

OPEN ACCESS

RECEIVED

5May 2020

REVISED

15 June 2020

ACCEPTED FOR PUBLICATION

17 June 2020

PUBLISHED

3 July 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2399-6528/ab9dd8
https://orcid.org/0000-0001-9489-3134
https://orcid.org/0000-0001-9489-3134
mailto:igor.kondrashuk@gmail.com
http://arxiv.org/abs/1611.08787
http://arxiv.org/abs/1906.07924
http://arxiv.org/abs/1906.07924
http://arxiv.org/abs/hep-ph/9506403
http://arxiv.org/abs/1906.07924
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab9dd8&domain=pdf&date_stamp=2020-07-03
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab9dd8&domain=pdf&date_stamp=2020-07-03
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


quantumfield theory when integral transformations are involved in calculations [3].We rectify or curve the
integration contours toowhen it is necessary here.

The contour integral we consider in this paper is a solution to theDGLAP integro-differential equation in a
simplemodel ofQCDdynamics considered in [4]. TheDGLAP equationwaswritten in the seventies for the
structure functions of proton. Theymay bemeasured experimentally in the deep inelastic scattering processes
[5]. In [6–8]Gribov and Lipatov studied these processes inQED and found that these structure functions satisfy
certain integro-differential equations. The discovery ofQCDhas beenmarked by theNobel prize paper [9] in
which the renormalization group equations for theMellinmoments of the coefficient functions ofWilson
operator product expansion for thematrix element of two currents of the deep inelastic scattering process have
been obtained. Then, in [10]Altarelli and Parisi wrote these renormalization group equations for the coefficient
functions of the operator product expansion in an integro-differential form in the space of Bjorken x and
interpreted them as integro-differential equations for the parton distribution functions. In [11]Dokshitzer
developed to theQCD case theGribov and Lipatov approach used inQEDandwrote integro-differential
equations similar to Altarelli-Parisi equations. These integro-differential equations became known as
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation (also known asDGLAP equation).

The splitting functions are the input in theDGLAP equation. Theymay be found from anomalous
dimensions of operators inQCD [12, 13] and are some combinations of several terms [12, 13]. Residue calculus
via theCauchy integral formula for the contour integral in the complex plane of theMellinmoment which
represents a solution to theDGLAP equation is straightforward but this calculus is not simple in the real world
becausemany infinite sums are involved in the result and these sums should be classified [14, 15]. However, a
simplemodel with only one term in the splitting functionmay be considered and theDGLAP equation in this
casemay be solved in terms of the Bessel function. To our knowledge, this simplification to one Bessel function
of the solution to theDGLAP equation in the case of only one term in the splitting function for the first time has
beenmentioned in 1995 in [16].We have considered thismodel in detail in our papers [4] and [1]. In this paper
we transform this contour integral of the simplemodel of [1, 4, 16] via a complexmap to the formof the Laplace
transformation of the Jacobian of the corresponding complex diffeomorphism and then to the formof the
Barnes integrals via another complexmap. As the result the contour integral in the plane of theMellinmoment
transforms to another contour integral in some complex domain. The integrand after these consequent complex
maps transforms to a ratio of certainGamma functionswhich is a typical formof the Barnes integrals.

We should defend usefulness of the proposed strategy for theDGLAP community because there is already a
long history ofmany achievements related to this equation. Indeed, theDGLAP integro-differential equation
may be converted to a first-order differential equation by taking theMellinmoment of both the sides of the
DGLAP equationwith respect to Bjorken variable x [10]. The resulting differential equation is the
renormalization group equation for theMellinmoments [10]with respect to the scale ofmomentum transfer in
the process of deep inelastic scattering. These differential equationsmay be combinedwith the renormalization
group equation for the running coupling and solved. In the late nineties in [17, 18] the evolution operator in the
case of the running coupling has been constructed and fully analytical solutions of the non-singlet and singlet
evolution equations at the next-to-next to leading order with small x resummations includedwere found. The
recent developments of the solution for thesefirst order differential equationsmay be found in [19]. At the
NNLOMellin space solutions with the running coupling have beenworked out in several numerical codes, for
example [20], and various later numerical software packagesmay be found in the citations of [20].When these
first order differential equations for theMellinmoments are solved, the usual way is to convert thesemoments
back to the Bjorken x-space bymaking the inverseMellin transformationwhichmay be performed by evaluation
of residues on the complex plane of theMellinmoment [3, 21, 22]. At the lowest order in the running coupling
the calculationmay be done analytically, however even at this level a lot of work is requiredwhen the real QCD
case is considered instead of simplemodels. There are different software packages available to do all these steps
analytically, at least at the leading order. At higher orders new advanced analytical software tools exist. They are
based on using concepts from algebraic geometry like a shuffle product [14, 15]. Shuffle product is used in the
construction of single-valued harmonic polylogarithms.Harmonic polylogarithms are described in [23]. There
are numerical packages which solve integro-differential equations as they are writtenwithout taking theMellin
moments, solvingfirst order differential equations and then transforming themoments back to x space. For
example, a numerical software package ‘PartonEvolution’has been developed in [24]. Another numerical
packageQCDNUMhas been created later [25, 26].

In the shadowof all these achievements cited in the previous paragraphs our approach is an attempt to look
differently at the contour integrals arising in solutions to theDGLAP equation.Herewe propose an alternative
way inwhich evaluation of the inverseMellin transformation reduces to calculation of the inverse Laplace
transformation of the Jacobian of the corresponding complexmap. These diffeomorphismsmay be performed
in the complex plane of theMellinmoment. These complexmapsmake the structure of the integrands uniform
reducing it inmany of the cases to the standard tables like [27]. Then, wemay convert themby onemore
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transformation to the Barnes integrals. These would allow their systematic classification in the terms of
generalized hypergeometric functions. Any systematic classification is useful in construction of computer
algorithms.

Due to the significant computational progress of the last decades (see for example [12, 13, 25, 26]) the
perturbative solution to theDGLAP equation is already computed up toN2LO for theMellinmoments of parton
distribution functionswith full inclusion of running coupling and then the corresponding particle distribution
functions (quark, gluon and some other combinations)were obtained numerically. However, approximate
solutions to theDGLAP equation corresponding to simplemodels still have a practical value because they
capture in a resumedway (in the sense of a compact expression) the behaviour of a given asymptotic regime. In
particular, in the present paper it captures the Bessel-like behaviourwith respect to square root of the product of
logarithmon the Bjorken variable and logarithmof themomentum transfer in the region of the small values of x
when themain contribution comes from the gluon part of thematrixDGLAP equation.On the other side, the
approximate solutions should not be discarded because they serve as a consistency check for the current
manipulations and formulas which lead us to the knownobtained results. Another reason in favor of viability of
such approximate solutions is that in the lowmomentum transfer regime of theDGLAP equations the
numerical solutions just start to showbad behaviour and onemay at leastmake some estimations in such limits
by using these solutions and then obtain novel relations and interpretations.

In the next sectionwe consider the necessary formulas whichmay be found in theGradshteyn andRyzhik
tables [27]. All the necessary formulas are related by integral transformationswhich are given explicitly.We pay
some attention to the relation between the Bessel function and the confluent function, and to different integral
representations of the generalized hypergeometric functions. In section 3we convert the contour integral
solution to theDGLAP equation to the Laplace transformation of the complex Jacobian. The Jacobian
corresponds to a complexmap selected for a given transformation. Finally, in section 4wemake a transparent
trickwith help of whichwe re-write the Laplace transformation of the complex Jacobians in a formof the Barnes
integrals.

2. Preliminary

The only purpose of this section is to collect together from [27] all the formulae necessary for use in the next
section. These formulae are not new, each of them is at least one hundred fifty years old, the same book of
integral tables [27] is quite old too.However, all the formulas that we have taken from [27]may be related by
integral transformations from each one to another.We do all these transformations explicitly in this section but
it is probable that we are notfirst who publish these intermediate steps taking into account the age of [27].

We start in section 2.1with the confluent function F .1 1 It is a particular case of generalized hypergeometric
functions andmay bewritten in terms of the Barnes integral.We start from this Barnes integral representation
for F1 1 and obtain the corresponding series, thenwe obtain another integral representation for F ,1 1 re-write this
second integral representation for F1 1 in terms of the same series again and finally prove one useful relation in
terms of the same integral representation for F .1 1 In section 2.2 two different integral representations of the
Bessel function I0 have been considered. Then, we show by a change of an integration variable that they are
equivalent. The Bessel function I0 is represented in terms of the confluent function F .1 1 In section 2.3we
consider the Barnes integral representation for theGauss hypergeometric function F2 1 and take this integral in
terms of a series. Another integral representation is obtained for this Gauss hypergeometric function later.With
help of this Euler integral representation for theGauss hypergeometric function F2 1 andwith help of the
established in section 2.2 integral representation for the confluent function F1 1we reproduce the Laplace
transformof the Bessel function I0 in section 2.4.

2.1. Integral representations of hypergeometric function F1 1

This subsection is dedicated to the generalized hypergeometric function F a c x, , .1 1( ) Sometimes this function is
called a confluent function. As a starting point toworkwith a hypergeometric functionwe use the Barnes
integral representation for it3

=
G
G

G + G -
G +

-F a c x
c

a
dz

a z z

c z
x, , ,

C

z
1 1 ∮( ) ( )

( )
( ) ( )

( )
( )

which is basically a contour integral in the complex plane z. The contour contains the vertical linewhich passes a
bit to the left of the imaginary axis and should be closed to the right complex infinity in order to guarantee the
vanishing of the contribution of the contourC at the complex infinity. Due to this vanishing the series which

3
Weomit the factor pi1 2 in front of each contour integral in the complex plane. The inverse factor is generatedwith the residues according

toCauchy integral formula.
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appears due to application of theCauchy integral formulawill be convergent and turns out to be a traditional
representation of the confluent function
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=
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where the Pochhammer symbol = G + Ga a k a .k( ) ( ) ( ) Equation (1) is formula 9.210.1 of [27]. In such a case
all the residues come form theGamma functionwith the negative sign of its argument andwe have the series (1)
above. The Barnes integrals are the contour integral representation of the generalized hypergeometric functions,
however it is a convenient but not a unique integral representation of the hypergeometric functions F .q p There
are several integral representationsmore. For example, in the case of F a c x, ,1 1( )wemaywrite
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andwemay recognize formula 9.211.2 of [27] for the confluent function.Of course, this representation turns
out to be the series (1) again,

ò

òå å

å å

t t t

t t t

=
G

G G -
-

=
G

G G -
- =

G
G G -

+ -

=
G
G

G +
G +

=

t- - -

=

¥
+ - - -

=

¥

=

¥

=

¥

F a c x
c

a c a
d e

c

a c a

x

k
d

c

a c a

x

k
a k c a

c

a

x

k

a k

c k

a

c

x

k

, , 1

1 B ,

.

a c a x

k

k
a k c a

k

k

k

k

k

k

k

k

1 1
0

1
1 1

0 0

1
1 1

0

0 0

( ) ( )
( ) ( )

( )

( )
( ) ( ) !

( ) ( )
( ) ( ) !

( )

( )
( ) !

( )
( )

( )
( ) !

This integral representationmay be useful in calculation. For example, the following propertymay be proven
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2.2. From theBessel function I0 to the hypergeometric function F1 1

The traditional integral representation for the Bessel function I0 turns out to be thewell-known series in terms of
the even powers of its argument,
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This integral representation is 8.431.1 of [27]. This integral representation for the Bessel function I0 is related to
another integral representationwhich is 9.211.2 of [27] by a change of the integration variable,
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This integral representation is 9.238.2 of [27]. Thus, the integral representation (3) allows us to re-write the
Bessel function I0 in terms of the confluent function F1 1 and it will bemore useful for us in section 2.4wherewe
calculate the Laplace transformof the Bessel function I .0

2.3. Integral representations of hypergeometric function F2 1

In order to study theGauss hypergeometric function F2 1we again use as the starting point the representation in
terms of the Barnes contour integral, whichmay be re-written in a formof thewell-known series for theGauss
hypergeometric function, equations 9.100 and of 9.113 [27].
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Again, we have to take this contour containing the vertical line situated a bit to the left from the imaginary axis
and close it in a suchway that the complex infinity does not contribute.Where to close it depends on the absolute
value of the variable x.We suppose that 0<x<1 and in this rangewe have to close it to the right hand side. The
residues come from theGamma functionwith the negative sign of its argument andwe obtain the series above.

The Barnes integrals are the contour integral representation of the hypergeometric functions, it is not a
unique integral representation of the hypergeometric functions F ,q p there are other integral representations. In
the case of F a b c x, ; ,2 1( )wemay transform
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This is formula 9.111 of [27] for F .2 1 In the next sectionwewill use the integral representation (4) of theGauss
hypergeometric function in order to calculate the Laplace transformof the Bessel function. In complete analogy
to equation (2)wemay prove identity 9.131 of [27]
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2.4. The Laplace transformof the Bessel function I0
In this sectionwe reproduce a result for the Laplace transformof the Bessel function I0. The result is written in
17.13.109 of [27].Whenwe do this transformation, we suppose that z is in the corresponding domain of the
complex plane, that is, on the right hand side of the critical exponent of the Bessel function [4].
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This inverse square root is very known result for the Laplace transformof the Bessel function I0 andmay be
found inmany tables of integrals.

3. TheDGLAP contour integral solution as Laplace transformof the complex Jacobian

This is themain section. Everythingwe havewritten in the previous sectionswas a preparation for this section.
Herewe calculate the contour integrals of this type
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bymaking complexmaps in the plane of theMellinmoment.Here xä [0, 1] and Î ¥u 0,[ [ are external
variables. This contour integral represents solution to theDGLAP integro-differential equationwhich plays an
important role inQuantumChromodynamics.We commented on this equation in the Introduction. The
traditional way is to calculate this contour integral directly by evaluating residues according to theCauchy
integral formula,

ò òå

å

f =
+

=
+

=
-

=

d

d

d

d

- + - ¥

- + + ¥ -
+

=

¥

- + - ¥

- + + ¥ - -

+

=

¥

x u dN
x

N
u x

k
u dN

x

N

x
k

u
x

k
xI u

x

,
1

1
ln

1

1
ln

ln
2 ln ln

1
.

i

i N
N

k

k

i

i N

k

k

k
k

1

1
1 1

0 1

1 1

1

0
0

⎛
⎝⎜

⎞
⎠⎟

( )
!

( )
( )

!
( ) ( )

!

( )

In this example this is the shortest way of getting the result for this integral. However, wewould like to reproduce
this result by using complex geometry in order tomake amap in the complex plane of theMellinmoment. For
this purpose we re-write the previous integral
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and choose a new complex variableM of integration in such away that
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This relation definesM as a function of the initial complex variableN [1]. Introducing for the brevity a notation

ºw
uln

ln
,

x

1

wemaywrite

= +
+

M
N

w

w

N 1
,

fromwhich it follows that in the inversemapping fromM toN the initial variableNmust satisfy the quadratic
equation

+ - + - =N wM N w Mw1 0,2 2( ) ( )
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which has two roots
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If we do notwant to change the contour orientationwhilemapping fromN toM according to equation (9)we
should use a positive branch of themap (10). Thus, we have chosen themap
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Wecould choose the negative branch too, but in this case we should change the sign of the integral because the
contour orientationwould be changed under thismap.

Having the complexmap chosen in equation (11)wemay re-write the integrand in terms of the new
complex variableM. From equation (9)wehave
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Nowwemay proceed the line (8) in terms of the new integration variableC
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Under this sequence of themaps, the contour in the complex plane changes its shape from the vertical line
parallel to the imaginary axis to a very complicated form C at the end of this chain of transformations.We
wrote the last equality becausewe know that C may be transformed to the vertical line parallel to the imaginary
axis in the complex planeM. In such awaywemaywrite the last equality basing on the Laplace transformof the
Bessel function found in equation (6). The direct proof of the last equality will be given in the next section by
explicit calculation of the integral.

In general, our purpose is to obtain the result for the contour integrals that represent solution toDGLAP
integro-differential equation bymaking complex diffeomorphism in the plane of theMellinmomentN related
to the Bjorken variable x.Why dowe do complex diffeomorphisms and represent the contour integral of this
type (7) as a Laplace transformation of a Jacobian?Wefind this waymore systematic in order to classify the
obtained results in terms of special functions. One reason is that standard table integralsmay appear as it
happened in the case of equation (12). Another reason is that the Laplace transformationmay be represented in a
formof the Barnes integrals (we consider this second reason in detail in the next section). These two reasons are
fundamental in construction of computer algorithm [1] in the real world case ofQCD inwhich the functions of
anomalous dimension are highly complicated and containmany termsAt the three loop level these functions
can be found in [12, 13].

The suggested solution to theDGLAP equation given in equations (7) and (12) corresponds to the kinematic
region of small x inwhich this approximate solutionmakes a sense. Strictly speaking, we need to have as the
result a function singular at x=0. This corresponds to the singularity at a pointN=1 in the complexN plane.
The terms in thematrix of anomalous dimensions singular at this point correspond to the dominance of the
gluon distribution function in the small x region. Thematrix formmay be reduced to theDGLAP equation for
the dominant parton distribution in the region of the small x. This would be a quite good approximation to the
matrixDGLAP integro-differential equation. To have such a behaviourwewould do a smallmodification and
take anothermodel for the anomalous dimension γ(N)which is singular at the pointN=1. In general, the
kinematic region of theDGLAP equation is given by the Bjorken limit inwhich the ratio of themomentum
transfer to the Bjorken x is large. By increasing or decreasing themomentum transfer u one has to increase or
decrease thef(x, u) distribution by a double logarithm law found in equations (7) and (12) as a result of the pure
gluonicDGLAPdynamics.

Aswe havementioned in the Introduction, the practical value of this simplemodel is that its solution to the
DGLAP equationmay be used to estimate qualitatively the behaviour of the dominant distribution function
nearby x=0, that is for the very small x. However, thismodelmay appear to be evenmore useful than a simple
approximation for the dominant distribution or a consistency check for the numerical or analytical calculation
based on a powerful software are. As it is known, there are several groups in theworldwhichmake global analysis
of the parton distribution functions taking into account recent data from the LHC [28–32]. These analysis allows
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them tofixmany parameters of initial parton distribution functions fromdata only because they cannot be
computed from first principles. Despite such afitting procedure is rather arbitrary on how to choose the formof
parton distribution function aswell as number of free parameters, they tend to be some combination of Euler
beta functions, which parametrize the parton distribution at some scale [33–36] and than evolve according to the
DGLAP integro-differential equation. Due to big amount of data the software for the fitting of the PDF
parameters and for the PDF evolution is created on the principles of neural networks [30, 31]. This simplemodel
may be used to train the neural networks4.We also note that it is not a unique simplemodel whichmay be used
for this purpose.Wemay create several simplemodels that solve theDGLAP integro-differential equationwith
different splitting functions by adjusting the shape functions at some given scale in order to combine themwith
Jacobians of complex diffeomorphisms in the plane of theMellinmoment variable in easily integrable factors.

4. From inverse Laplace transformations of Jacobians to the Barnes integrals

In the previous sectionwe have done complex diffeomorphisms in order to represent the initial form (7) of the
solution to theDGLAP equation in terms of contour integral to the Jacobian form (12) of this solution. This
Jacobian formmay be a standard integral from thewell-known integral tables [27], for example the Bessel
function I0 in the case of ourmodel.We have proved that this is Bessel function by the direct Laplace
transformation in section 2.4.Nowwe evaluate the inverse Laplace transformation,
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In such awaywemay say that we haveHankel contour C .Nowwemay proceed line (13)
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By comparing this equation and equation (12)wemaywrite this identity
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inwhich on the left hand sidewe have the Jacobian form (12) of the contour integral (7) and on the right hand
sidewe have the Barnes integral.Wemay compare these two different forms and observe that the Barnes integral
form ismore useful in order to classify the result in terms of the special functions. Roughly speaking, in order to
write the Bessel function on the left hand side it is better to keepGradshteyn andRyzhik tables in hands and on
the right hand sidewe do not need them. The second reason to represent the initial contour integral (7) in terms
of the Barnes integrals is to have a uniformwell-studied representation for all the contour integrals involved in
the calculation. The third reason is that the Jacobian formon the left hand sidewill frequently contain
multivalued functions, in our case it is a square root in the denominator.We avoid the integration over cuts
which is necessary in the complex plane of the integration variableM in the Jacobian form.We do not have any
cuts in the Barnes integral representation on the right hand side. The fourth reason to prefer the result written in
the formof the Barnes integrals is that the Jacobians will bemore andmore complicated in higher orders while
the contour integrals of ratios of some products of several Gamma functions arewell-studied, their structure is

4
IK is grateful toAndrei Arbuzov for attracting attention to this point.
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more uniform and better analyzable. Ratios of Gamma functions in the integrands of the contour integrals
appear frequently in quantum field theory calculation [37–44].

5. Conclusion

In the previous paper [1]we have communicated that the BFKL equation [45–49]may be obtained from the
DGLAP equation via a complexmap in the domain of the contour integral (7) that represents the solution to this
DGLAP integro-differential equation. This is why the BFKL integro-differential equationmay be considered as a
dual equation to theDGLAP integro-differential equation. The question of duality between the BFKL equation
and theDGLAP equation has been arisen in [21]. Also, in [1]we have proposed that a complexmap in the plane
of theMellinmomentmay be used to transform the solution to theDGLAP integro-differential equation
obtained in the formof contour integral of the type (7) to the formwhich represents the Laplacian
transformation of the Jacobian of this complexmap. In the present paper we have shown that the Jacobian form
of the contour integralmay be further transformed to the Barnes contour integrals. The Barnes integrals are
contour integrals inwhich the integrand is a ratio of products of several Gamma functions and the result of their
integrationmay bewritten in terms of special functions in a traditional well-studiedway. The representation in
terms of the Barnes integrals is useful in construction of computational algorithms [1].
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