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Abstract

A simple model for QCD dynamics in which the DGLAP integro-differential equation may be solved
analytically has been considered in our previous papers arXiv:1611.08787 [hep-ph] and arXiv:1906.
07924 [hep-ph]. When such a model contains only one term in the splitting function of the dominant
parton distribution, then Bessel function appears to be the solution to this simplified DGLAP
equation. To our knowledge, this model with only one term in the splitting function for the first time
has been proposed by Bliimlein in arXiv:hep-ph/9506403. In arXiv:1906.07924 [hep-ph] we have
shown that a dual integro-differential equation obtained from the DGLAP equation by a complex map
in the plane of the Mellin moment in this model may be considered as the BFKL equation. Then, in
arXiv:1906.07924 we have applied a complex diffeomorphism to obtain a standard integral from
Gradshteyn and Ryzhik tables starting from the contour integral for parton distribution functions that
is usually taken by calculus of residues. This standard integral from these tables appears to be the
Laplace transformation of Jacobian for this complex diffeomorphism. Here we write up all the
formulae behind this trick in detail and find out certain important points for further development of
this strategy. We verify that the inverse Laplace transformation of the Laplace image of the Bessel
function may be represented in a form of Barnes contour integral.

1. Introduction

It often happens that a solution to an integro-differential equation is obtained in a form of contour integrals in
one or more complex planes. Such integrals may be taken via Cauchy integral formula by calculating residues.
Usually they are not the classical Barnes integrals which are a convenient representation for generalized
hypergeometric functions. The integrands of the Barnes integrals are ratios of certain products of several Euler
Gamma functions. A transformation of a contour integral representing a solution to an integro-differential
equation to this form of the Barnes integrals would be helpful because they may be classified in terms of suitable
special functions. To find such a transformation is the aim of this paper. The intermediate step will be a
representation of these integrals as the Laplace transformations of the Jacobians of some complex maps in the
complex variable plane of the contour integral. We have considered such a possibility in the previous paper [1] in
which we transformed the contour integral representing the solution to the DGLAP integro-differential
equation in a simple model of QCD dynamics from this obtained form of a contour integral in the complex
plane of the Mellin moment to the Laplace transformation of the corresponding Jacobian. These Jacobians may
appear to be multivalued functions of new complex variables and integration over cuts may be required. We may
avoid integration over these cuts if represent the integrals with multivalued Jacobians obtained by the first
complex map in the form of the Barnes integrals by applying one complex map more. The holomorphic maps

of variables in the complex domains of the contour integrals which we apply in the present paper are based

on the standard theory of complex variable which may be found in any textbook on this subject [2]. As to
manipulations with closed contours in the complex plane of the integration variable, they were already used in
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quantum field theory when integral transformations are involved in calculations [3]. We rectify or curve the
integration contours too when it is necessary here.

The contour integral we consider in this paper is a solution to the DGLAP integro-differential equationin a
simple model of QCD dynamics considered in [4]. The DGLAP equation was written in the seventies for the
structure functions of proton. They may be measured experimentally in the deep inelastic scattering processes
[5]. In [6-8] Gribov and Lipatov studied these processes in QED and found that these structure functions satisfy
certain integro-differential equations. The discovery of QCD has been marked by the Nobel prize paper [9]in
which the renormalization group equations for the Mellin moments of the coefficient functions of Wilson
operator product expansion for the matrix element of two currents of the deep inelastic scattering process have
been obtained. Then, in [10] Altarelli and Parisi wrote these renormalization group equations for the coefficient
functions of the operator product expansion in an integro-differential form in the space of Bjorken x and
interpreted them as integro-differential equations for the parton distribution functions. In [11] Dokshitzer
developed to the QCD case the Gribov and Lipatov approach used in QED and wrote integro-differential
equations similar to Altarelli-Parisi equations. These integro-differential equations became known as
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation (also known as DGLAP equation).

The splitting functions are the input in the DGLAP equation. They may be found from anomalous
dimensions of operators in QCD [12, 13] and are some combinations of several terms [12, 13]. Residue calculus
via the Cauchy integral formula for the contour integral in the complex plane of the Mellin moment which
represents a solution to the DGLAP equation is straightforward but this calculus is not simple in the real world
because many infinite sums are involved in the result and these sums should be classified [ 14, 15]. However, a
simple model with only one term in the splitting function may be considered and the DGLAP equation in this
case may be solved in terms of the Bessel function. To our knowledge, this simplification to one Bessel function
of the solution to the DGLAP equation in the case of only one term in the splitting function for the first time has
been mentioned in 1995 in [16]. We have considered this model in detail in our papers [4] and [1]. In this paper
we transform this contour integral of the simple model of [1, 4, 16] via a complex map to the form of the Laplace
transformation of the Jacobian of the corresponding complex diffeomorphism and then to the form of the
Barnes integrals via another complex map. As the result the contour integral in the plane of the Mellin moment
transforms to another contour integral in some complex domain. The integrand after these consequent complex
maps transforms to a ratio of certain Gamma functions which is a typical form of the Barnes integrals.

We should defend usefulness of the proposed strategy for the DGLAP community because there is already a
long history of many achievements related to this equation. Indeed, the DGLAP integro-differential equation
may be converted to a first-order differential equation by taking the Mellin moment of both the sides of the
DGLAP equation with respect to Bjorken variable x [10]. The resulting differential equation is the
renormalization group equation for the Mellin moments [10] with respect to the scale of momentum transfer in
the process of deep inelastic scattering. These differential equations may be combined with the renormalization
group equation for the running coupling and solved. In the late nineties in [17, 18] the evolution operator in the
case of the running coupling has been constructed and fully analytical solutions of the non-singlet and singlet
evolution equations at the next-to-next to leading order with small x resummations included were found. The
recent developments of the solution for these first order differential equations may be found in [19]. At the
NNLO Mellin space solutions with the running coupling have been worked out in several numerical codes, for
example [20], and various later numerical software packages may be found in the citations of [20]. When these
first order differential equations for the Mellin moments are solved, the usual way is to convert these moments
back to the Bjorken x-space by making the inverse Mellin transformation which may be performed by evaluation
of residues on the complex plane of the Mellin moment [3, 21, 22]. At the lowest order in the running coupling
the calculation may be done analytically, however even at this level a lot of work is required when the real QCD
case is considered instead of simple models. There are different software packages available to do all these steps
analytically, at least at the leading order. At higher orders new advanced analytical software tools exist. They are
based on using concepts from algebraic geometry like a shuffle product [14, 15]. Shuffle product is used in the
construction of single-valued harmonic polylogarithms. Harmonic polylogarithms are described in [23]. There
are numerical packages which solve integro-differential equations as they are written without taking the Mellin
moments, solving first order differential equations and then transforming the moments back to x space. For
example, a numerical software package ‘PartonEvolution” has been developed in [24]. Another numerical
package QCDNUM has been created later [25, 26].

In the shadow of all these achievements cited in the previous paragraphs our approach is an attempt to look
differently at the contour integrals arising in solutions to the DGLAP equation. Here we propose an alternative
way in which evaluation of the inverse Mellin transformation reduces to calculation of the inverse Laplace
transformation of the Jacobian of the corresponding complex map. These diffeomorphisms may be performed
in the complex plane of the Mellin moment. These complex maps make the structure of the integrands uniform
reducing it in many of the cases to the standard tables like [27]. Then, we may convert them by one more
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transformation to the Barnes integrals. These would allow their systematic classification in the terms of
generalized hypergeometric functions. Any systematic classification is useful in construction of computer
algorithms.

Due to the significant computational progress of the last decades (see for example [12, 13, 25, 26]) the
perturbative solution to the DGLAP equation is already computed up to N°LO for the Mellin moments of parton
distribution functions with full inclusion of running coupling and then the corresponding particle distribution
functions (quark, gluon and some other combinations) were obtained numerically. However, approximate
solutions to the DGLAP equation corresponding to simple models still have a practical value because they
capture in a resumed way (in the sense of a compact expression) the behaviour of a given asymptotic regime. In
particular, in the present paper it captures the Bessel-like behaviour with respect to square root of the product of
logarithm on the Bjorken variable and logarithm of the momentum transfer in the region of the small values of x
when the main contribution comes from the gluon part of the matrix DGLAP equation. On the other side, the
approximate solutions should not be discarded because they serve as a consistency check for the current
manipulations and formulas which lead us to the known obtained results. Another reason in favor of viability of
such approximate solutions is that in the low momentum transfer regime of the DGLAP equations the
numerical solutions just start to show bad behaviour and one may at least make some estimations in such limits
by using these solutions and then obtain novel relations and interpretations.

In the next section we consider the necessary formulas which may be found in the Gradshteyn and Ryzhik
tables [27]. All the necessary formulas are related by integral transformations which are given explicitly. We pay
some attention to the relation between the Bessel function and the confluent function, and to different integral
representations of the generalized hypergeometric functions. In section 3 we convert the contour integral
solution to the DGLAP equation to the Laplace transformation of the complex Jacobian. The Jacobian
corresponds to a complex map selected for a given transformation. Finally, in section 4 we make a transparent
trick with help of which we re-write the Laplace transformation of the complex Jacobians in a form of the Barnes
integrals.

2. Preliminary

The only purpose of this section is to collect together from [27] all the formulae necessary for use in the next
section. These formulae are not new, each of them is at least one hundred fifty years old, the same book of
integral tables [27] is quite old too. However, all the formulas that we have taken from [27] may be related by
integral transformations from each one to another. We do all these transformations explicitly in this section but
itis probable that we are not first who publish these intermediate steps taking into account the age of [27].

Wesstart in section 2.1 with the confluent function F). Itis a particular case of generalized hypergeometric
functions and may be written in terms of the Barnes integral. We start from this Barnes integral representation
for |F; and obtain the corresponding series, then we obtain another integral representation for ,Fj, re-write this
second integral representation for |F in terms of the same series again and finally prove one useful relation in
terms of the same integral representation for 1 Fy. In section 2.2 two different integral representations of the
Bessel function Iy have been considered. Then, we show by a change of an integration variable that they are
equivalent. The Bessel function I, is represented in terms of the confluent function |F,. In section 2.3 we
consider the Barnes integral representation for the Gauss hypergeometric function ,F; and take this integral in
terms of a series. Another integral representation is obtained for this Gauss hypergeometric function later. With
help of this Euler integral representation for the Gauss hypergeometric function ,F, and with help of the
established in section 2.2 integral representation for the confluent function |F; we reproduce the Laplace
transform of the Bessel function I in section 2.4.

2.1.Integral representations of hypergeometric function |F

This subsection is dedicated to the generalized hypergeometric function |F, (4, ¢, x). Sometimes this function is
called a confluent function. As a starting point to work with a hypergeometric function we use the Barnes
integral representation for it’

WFia, ¢, x) = (—x)7,

T'(c) yg dz I'(a+ 2)I'(-2)
I'(a) Jc I'(c + 2)
which is basically a contour integral in the complex plane z. The contour contains the vertical line which passes a

bit to the left of the imaginary axis and should be closed to the right complex infinity in order to guarantee the
vanishing of the contribution of the contour Cat the complex infinity. Due to this vanishing the series which

We omit the factor 1/27i in front of each contour integral in the complex plane. The inverse factor is generated with the residues according
to Cauchy integral formula.
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appears due to application of the Cauchy integral formula will be convergent and turns out to be a traditional
representation of the confluent function

L (a) x*
F y by - = L. 1
1Fi(a, ¢, x) kz:%) O K (D

where the Pochhammer symbol (a), = I'(a + k) /T"(a). Equation (1) is formula9.210.1 of [27]. In such a case
all the residues come form the Gamma function with the negative sign of its argument and we have the series (1)
above. The Barnes integrals are the contour integral representation of the generalized hypergeometric functions,
however it is a convenient but not a unique integral representation of the hypergeometric functions 4F,. There
are several integral representations more. For example, in the case of F| (4, ¢, x) we may write

Fi(a, ¢, x) = ?EC; ¢ dz F(arJ(cmf()_Z) (—x)F = % . dzB(a + 2, ¢ — AT(~2)(—x)°
F(a)lgi? i de [} dr s oy
- —r(a)gi?— 5 fo dr 79 (1 — Ty el (—2) (—xr)?
- F(a)?ii)f 2) fol drrt e,

and we may recognize formula 9.211.2 of [27] for the confluent function. Of course, this representation turns
out to be the series (1) again,

I'(c)
T'(@I'(c — a)
I'(c)
I‘(a)I‘(c —a) k o k!
T & x*T(a + k) (@) x*
F(a) ,;) k! T'(c + k) ,;) (o k

1
f dr 77711 — 1) le¥

lFl(a) [ x) =

[© i —B(a+ k, c — a)

f dar Ta+k 1(1 T)C a—1 _
F'@I'(c—a) = k!

This integral representation may be useful in calculation. For example, the following property may be proven

__T@© e yeas i
1hi(a, ¢, x) = @ — o f dr 7711 — 1) e
F(C) a—1 c—a—l,x(1—7) _ ,x B 7
F(Q)F(C — a) f dr (1 ) T (4 e 1F1(C a, ¢, X). (2)

2.2.From the Bessel function I, to the hypergeometric function |F,
The traditional integral representation for the Bessel function I, turns out to be the well-known series in terms of
the even powers of its argument,

— 1 ! ot 1 Oc 12k
Io(x)frz(l/z)j: dr (1 — 72 ke S (2k)'f dr (1 — 7247

o o0

_ 27— 2k i ,% k*%
F2<1/2>k 0<2k>'f T =TT F2<1/2>k 0<2k)'f = o

o0

S d-mm S et
r2(1/2 ) 2kt \27 2)  T(1/2) & @)k 2

00 X2k (Zk)' (l)_ 0 B (Z)k
1“(1/2)2 (2k)1k! 4’<ka 2 _kzo(szz;k Z(k')2 '

This integral representation is 8.431.1 of [27]. This integral representation for the Bessel function I, is related to
another integral representation which is 9.211.2 of [27] by a change of the integration variable,
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1 1
Io(x) = —— f dr (1 — ) te = — 2 [ dr (- (= 2n) et
0

I%(1/2) CT(1/2)
_ 2 —2tx _ X l _ ): —X (l )
r2(1/z)f dt (t(1 — 1) te elFl(z,l, 2| = e 2, 1, 2x
R (L RN G G
= 1“2(1/2)1; drt72(1 — t) ze2™, (3)

This integral representation is 9.238.2 of [27]. Thus, the integral representation (3) allows us to re-write the
Bessel function I, in terms of the confluent function ;F; and it will be more useful for us in section 2.4 where we
calculate the Laplace transform of the Bessel function I.

2.3. Integral representations of hypergeometric function ,F,

In order to study the Gauss hypergeometric function ,F; we again use as the starting point the representation in
terms of the Barnes contour integral, which may be re-written in a form of the well-known series for the Gauss
hypergeometric function, equations 9.100 and 0f9.113 [27].

ZFl(ar b) [ x) =

I'(c) 55 dz I'(a+ 2)I'(b + 2)['(— Z) Z (@) (b) x
L'(a)I'(b) I'c+2) im0 (O K’

Again, we have to take this contour containing the vertical line situated a bit to the left from the imaginary axis
and close it in a such way that the complex infinity does not contribute. Where to close it depends on the absolute
value of the variable x. We suppose that 0 < x < 1and in this range we have to close it to the right hand side. The
residues come from the Gamma function with the negative sign of its argument and we obtain the series above.

The Barnes integrals are the contour integral representation of the hypergeometric functions, it is not a
unique integral representation of the hypergeometric functions F,, there are other integral representations. In
the case of ,F\(a, b; ¢, x) we may transform

2Fl(a> b: [ x) =

NG 55 gz I'(a+ 2)I'(b + 2)I'(—2) (—x)?

L(a)T(b) I'(c+ 2)

I'(c) B ]
F(a)F(b)F(C — b f dzBb + z,c — b)['(a + 2)I'(—2)(—x)

— P(C) ! b+z—1 _ c—b—lr (= )2
@I OIC D) 56c dz fo dr v (1 —171) (a+ 2)I'(—2)(—x)
— F(C) ! b—1 _ c—b—1 T (= _ z
@I OIC D) fo dr 7711 — 1) 51% dzlI'(a + 2)T'(—z)(—xT1)
_ F(C) ! b—1 _ c—b—1 _ —a
ST j; dr b1 — Pl — xr) e, (4)

This is formula 9.111 of [27] for ,F). In the next section we will use the integral representation (4) of the Gauss
hypergeometric function in order to calculate the Laplace transform of the Bessel function. In complete analogy
to equation (2) we may prove identity 9.131 of [27]

. _ F(C) ! b—1 _ c—b—1 _ —a
2B, by 6 ) = o S fo dr 7011 — T b1 — x7)
_ F(C) ! _ b—1,c—b—1 _ —a
= 71“(17)1“@ s j(; dr (1 — 7)1 (1 —x+ x7)
N A C) oy g e b—l( X )‘“
T (e b)(l x) j; dr v a1-r7 1 o 17'
=(1 - x)*“zFl(a, c— b X ) (5)
x—1

2.4. The Laplace transform of the Bessel function I

In this section we reproduce a result for the Laplace transform of the Bessel function I,. The result is written in
17.13.109 of [27]. When we do this transformation, we suppose that zis in the corresponding domain of the
complex plane, that is, on the right hand side of the critical exponent of the Bessel function [4].
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> —Xxz — 1 ! -1 A OO —X,2tX ,—XZ
L In(x)e dx_l"z(l/z)fo drt72(1 — t) . e *e’™e dx

1
__ f dr2(1 — t)—%—1
T2(1/2) Jo 1—-2t+4z

1 1 ! , , 2\
— | dttz(0 -ty 7|1 — t
z+1F2(1/2)fo ( ) ( z+1)

1 F(l 1,2 ) L1 gy, F(1+z)F(§+z)F(—z)( 5 )
= >y —5 1, = Z —
10N\ 27 7 2+1) z+1r(/2)%C T+ 2) z+1
- 1 ¢dzr(l+z)r(—z)(——2 )
Z+1F(1/2) [® 2 z+1
_ 1 (1_ 2 )2: 1 (z+1)f: 1 ©
z+1 z+1 z4+1\z—-1 z2 -1

This inverse square root is very known result for the Laplace transform of the Bessel function I and may be
found in many tables of integrals.

3. The DGLAP contour integral solution as Laplace transform of the complex Jacobian

This is the main section. Everything we have written in the previous sections was a preparation for this section.
Here we calculate the contour integrals of this type

—1+6+ic0 x—N
(x, u) = f AN ———y!/(N+D (7)
—1+6—ioco N+1
by making complex maps in the plane of the Mellin moment. Here x € [0, 1]and u € [0, oo[ are external
variables. This contour integral represents solution to the DGLAP integro-differential equation which plays an
important role in Quantum Chromodynamics. We commented on this equation in the Introduction. The
traditional way is to calculate this contour integral directly by evaluating residues according to the Cauchy
integral formula,

—1+6+ioc0 -N )
o (x, u) = f AN/ N+D) — x> i(ln u)k f

AN—————
—1+46—ico N+1 o k! —1+46—ico (N + 1)k+1

o0 _ k
:xz L(lnu)kﬂ = xly| 2 flnulnl .
o k! k! X

In this example this is the shortest way of getting the result for this integral. However, we would like to reproduce
this result by using complex geometry in order to make a map in the complex plane of the Mellin moment. For
this purpose we re-write the previous integral

—1+6+i0c0 x N —1+6+ioco 1
¢(x’ Ll) — f AN ul/(N+1) — f AN elenx+lnu/(N+1) (8)
—1+6—ico N+1 —1+6—ico N+1

—146+ioco x—N-1

and choose a new complex variable M of integration in such a way that

M lnulnl = —Nlnx + Inu . 9
X N+1

This relation defines M as a function of the initial complex variable N [1]. Introducing for the brevity a notation
_|Inu
w = 1
In-
X

N w

w N+1

we may write

from which it follows that in the inverse mapping from M to N the initial variable N must satisfy the quadratic
equation

N2+ (1 — wM)N + (w? — Mw) =0,
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which has two roots
Mw — 1 Mw + 1)? — 4w? Mw — 1 — J(Mw + 1)? — 4w?
N = t \/( > +1 , NO = \/( 5 +D . (10)

If we do not want to change the contour orientation while mapping from N to M according to equation (9) we
should use a positive branch of the map (10). Thus, we have chosen the map

Mw — 1+ \/(Mer 1)? — 4w?
> )

We could choose the negative branch too, but in this case we should change the sign of the integral because the
contour orientation would be changed under this map.

NM) = NOM) =

(1

Having the complex map chosen in equation (11) we may re-write the integrand in terms of the new
complex variable M. From equation (9) we have

(1 w ) AN 1 (N+1 w )‘1 1
iM=|— - —— = — = - = .
w (N + 1) dM N + 1 w N+1 JM + 1/w)? — 4

Now we may proceed the line (8) in terms of the new integration variable C

—14+6+ioc0 x— N —146+ic0 1
¢(x) u) = f dN—ul/(N+1) = f dN—eleanLlnu/(Nle)

—1+§—ico N+1 —146—ico N+ 1
1 1
:¢ M eM(lnulnX _ e*\/mﬂm% dMeM/lnulnX
C JM+1/w)? — 4 ¢ M?— 4

. M Inulnk 1
= e’lnyyg,, AM——— = xIH| 2, /Inuln— |. (12)
¢ M?2—1 x

Under this sequence of the maps, the contour in the complex plane changes its shape from the vertical line
parallel to the imaginary axis to a very complicated form C” at the end of this chain of transformations. We
wrote the last equality because we know that C” may be transformed to the vertical line parallel to the imaginary
axis in the complex plane M. In such a way we may write the last equality basing on the Laplace transform of the
Bessel function found in equation (6). The direct proof of the last equality will be given in the next section by
explicit calculation of the integral.

In general, our purpose is to obtain the result for the contour integrals that represent solution to DGLAP
integro-differential equation by making complex diffeomorphism in the plane of the Mellin moment N related
to the Bjorken variable x. Why do we do complex diffeomorphisms and represent the contour integral of this
type (7) as a Laplace transformation of a Jacobian? We find this way more systematic in order to classify the
obtained results in terms of special functions. One reason is that standard table integrals may appear as it
happened in the case of equation (12). Another reason is that the Laplace transformation may be represented in a
form of the Barnes integrals (we consider this second reason in detail in the next section). These two reasons are
fundamental in construction of computer algorithm [1] in the real world case of QCD in which the functions of
anomalous dimension are highly complicated and contain many terms At the three loop level these functions
canbefoundin[12,13].

The suggested solution to the DGLAP equation given in equations (7) and (12) corresponds to the kinematic
region of small x in which this approximate solution makes a sense. Strictly speaking, we need to have as the
result a function singular atx = 0. This corresponds to the singularity at a point N = 1 in the complex N plane.
The terms in the matrix of anomalous dimensions singular at this point correspond to the dominance of the
gluon distribution function in the small x region. The matrix form may be reduced to the DGLAP equation for
the dominant parton distribution in the region of the small x. This would be a quite good approximation to the
matrix DGLAP integro-differential equation. To have such a behaviour we would do a small modification and
take another model for the anomalous dimension v(N) which is singular at the point N = 1.In general, the
kinematic region of the DGLAP equation is given by the Bjorken limit in which the ratio of the momentum
transfer to the Bjorken x is large. By increasing or decreasing the momentum transfer 1 one has to increase or
decrease the ¢(x, u) distribution by a double logarithm law found in equations (7) and (12) as a result of the pure
gluonic DGLAP dynamics.

As we have mentioned in the Introduction, the practical value of this simple model is that its solution to the
DGLAP equation may be used to estimate qualitatively the behaviour of the dominant distribution function
nearby x = 0, that is for the very small x. However, this model may appear to be even more useful than a simple
approximation for the dominant distribution or a consistency check for the numerical or analytical calculation
based on a powerful software are. As it is known, there are several groups in the world which make global analysis
of the parton distribution functions taking into account recent data from the LHC [28—32]. These analysis allows
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them to fix many parameters of initial parton distribution functions from data only because they cannot be
computed from first principles. Despite such a fitting procedure is rather arbitrary on how to choose the form of
parton distribution function as well as number of free parameters, they tend to be some combination of Euler
beta functions, which parametrize the parton distribution at some scale [33-36] and than evolve according to the
DGLAP integro-differential equation. Due to big amount of data the software for the fitting of the PDF
parameters and for the PDF evolution is created on the principles of neural networks [30, 31]. This simple model
may be used to train the neural networks®. We also note that it is not a unique simple model which may be used
for this purpose. We may create several simple models that solve the DGLAP integro-differential equation with
different splitting functions by adjusting the shape functions at some given scale in order to combine them with
Jacobians of complex diffeomorphisms in the plane of the Mellin moment variable in easily integrable factors.

4. From inverse Laplace transformations of Jacobians to the Barnes integrals

In the previous section we have done complex diffeomorphisms in order to represent the initial form (7) of the
solution to the DGLAP equation in terms of contour integral to the Jacobian form (12) of this solution. This
Jacobian form may be a standard integral from the well-known integral tables [27], for example the Bessel
function I, in the case of our model. We have proved that this is Bessel function by the direct Laplace
transformation in section 2.4. Now we evaluate the inverse Laplace transformation,

e 1 1 1
dz = ¢ dz ezxyg du F(u + —)1" —u)(—zH". 13
o JzZ—1 (~D2r/2) Jor c ) e >
At this moment we change the order of integration and we have
00 x—2u—1
f x72M ey = 22T (—2u) = 55 dz e¥z? = ———— (14)
0 fold I'(—2u)

In such a way we may say that we have Hankel contour C”. Now we may proceed line (13)

¢ dz X _ 1 1 -¢ du F(u_’_l)r(_u)w
21 (=DYrr@/2)’c 2 I'(—2u)

1 1 1 x4 (— 12424 (1 /2)
Cortam ko (H 2) O T Cu T 1/2)
1 1 1 x*Zu—l(_l)u21+2ul'\(1/2)
= - T iy | prges
(—DY2T(1/2) 550 du (u * 2) = T(—w)T(—u + 1/2)

-1 (2 M(_i)":(g)z mw)(_i)u
(—1)1/2(x)¢cd” e Gy Bl (o) B S R (e
) w2 - S )
7()6) §£C2du I'(u) ( 4 Z((k—l)')2 4

2\
z;)(k')Z( ):W)'

By comparing this equation and equation (12) we may write this identity

§ov e = () ()

" M2 _—1 x C, I'(u) 4

in which on the left hand side we have the Jacobian form (12) of the contour integral (7) and on the right hand
side we have the Barnes integral. We may compare these two different forms and observe that the Barnes integral
form is more useful in order to classify the result in terms of the special functions. Roughly speaking, in order to
write the Bessel function on the left hand side it is better to keep Gradshteyn and Ryzhik tables in hands and on
the right hand side we do not need them. The second reason to represent the initial contour integral (7) in terms
of the Barnes integrals is to have a uniform well-studied representation for all the contour integrals involved in
the calculation. The third reason is that the Jacobian form on the left hand side will frequently contain
multivalued functions, in our case it is a square root in the denominator. We avoid the integration over cuts
which is necessary in the complex plane of the integration variable M in the Jacobian form. We do not have any
cuts in the Barnes integral representation on the right hand side. The fourth reason to prefer the result written in
the form of the Barnes integrals is that the Jacobians will be more and more complicated in higher orders while
the contour integrals of ratios of some products of several Gamma functions are well-studied, their structure is

4 . . . . . .
IK is grateful to Andrei Arbuzov for attracting attention to this point.
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more uniform and better analyzable. Ratios of Gamma functions in the integrands of the contour integrals
appear frequently in quantum field theory calculation [37-44].

5. Conclusion

In the previous paper [1] we have communicated that the BEKL equation [45-49] may be obtained from the
DGLAP equation via a complex map in the domain of the contour integral (7) that represents the solution to this
DGLAP integro-differential equation. This is why the BFKL integro-differential equation may be considered as a
dual equation to the DGLAP integro-differential equation. The question of duality between the BFKL equation
and the DGLAP equation has been arisen in [21]. Also, in [ 1] we have proposed that a complex map in the plane
of the Mellin moment may be used to transform the solution to the DGLAP integro-differential equation
obtained in the form of contour integral of the type (7) to the form which represents the Laplacian
transformation of the Jacobian of this complex map. In the present paper we have shown that the Jacobian form
of the contour integral may be further transformed to the Barnes contour integrals. The Barnes integrals are
contour integrals in which the integrand is a ratio of products of several Gamma functions and the result of their
integration may be written in terms of special functions in a traditional well-studied way. The representation in
terms of the Barnes integrals is useful in construction of computational algorithms [1].
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