

Proc. 29th Int. Workshop on Vertex Detectors (VERTEX2020) JPS Conf. Proc. 34, 010018 (2021) https://doi.org/10.7566/JPSCP.34.010018

Particle Identification in Belle II Silicon Vertex Detector

S. Hazra¹², A. B. Kaliyar¹², G. B. Mohanty¹², K. Adamczyk²², H. Aihara¹⁹, T. Aziz¹²,

S. Bacher²², S. Bahinipati⁸, G. Batignani^{13,14}, J. Baudot⁶, P. K. Behera⁹, S. Bettarini^{13,14},

T. Bilka⁵, A. Bozek²², F. Buchsteiner², G. Casarosa^{13,14}, Y. Q. Chen⁴, L. Corona^{13,14}, T. Czank¹⁸, S. B. Das¹⁰, N. Dash⁹, G. Dujany⁶, F. Forti^{13,14}, M. Friedl², E. Ganiev^{15,16},

B. Gobbo¹⁶, S. Halder¹², K. Hara^{20,17}, T. Higuchi¹⁸, C. Irmler², A. Ishikawa^{20,17},

H. B. Jeon²¹, Y. Jin¹⁶, C. Joo¹⁸, M. Kaleta²², J. Kandra⁵, K. H. Kang²¹, P. Kapusta²²,

P. Kodyš⁵, T. Kohriki²⁰, M. Kumar¹⁰, R. Kumar¹¹, P. Kvasnička⁵, C. La Licata¹⁸,

K. Lalwani¹⁰, S. C. Lee²¹, Y. B. Li³, J. Libby⁹, S. N. Mayekar¹², T. Morii¹⁸,

K. R. Nakamura^{20,17}, Z. Natkaniec²², Y. Onuki¹⁹, W. Ostrowicz²², A. Paladino^{13,14}, E. Paoloni^{13,14}, H. Park²¹, G. Polat⁷ K. K. Rao¹², I. Ripp-Baudot⁶, G. Rizzo^{13,14}, N. Rout⁹,

D. Sahoo¹², C. Schwanda², J. Serrano⁷ J. Suzuki²⁰, S. Tanaka^{20,17}, H. Tanigawa¹⁹,

R. Thalmeier², T. Tsuboyama^{20,17}, Y. Uematsu¹⁹, O. Verbycka²², L. Vitale^{15,16}, K. Wan¹⁹,

J. Webb¹, J. Wiechczynski¹⁴, H. Yin², L. Zani⁷

(Belle-II SVD Collaboration)

¹School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia

²Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna, Austria

³Peking University, Department of Technical Physics, Beijing 100871, China

⁴University of Science and Technology of China, Department of Modern Physics, Hefei 230026, China

⁵Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic

⁶IPHC, UMR 7178, Université de Strasbourg, CNRS, 67037 Strasbourg, France

⁷Aix Marseille Université, CNRS/IN2P3, CPPM, 13288 Marseille, France

⁸Indian Institute of Technology Bhubaneswar, Satya Nagar, India

⁹Indian Institute of Technology Madras, Chennai 600036, India

¹⁰Malaviya National Institute of Technology Jaipur, Jaipur 302017, India

¹¹Punjab Agricultural University, Ludhiana 141004, India

¹²Tata Institute of Fundamental Research, Mumbai 400005, India

¹³Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy

¹⁴INFN Sezione di Pisa, I-56127 Pisa, Italy

¹⁵Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

¹⁶INFN Sezione di Trieste, I-34127 Trieste, Italy

¹⁷The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Japan

¹⁸Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583, Japan

¹⁹Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

²⁰High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

²¹Department of Physics, Kyungpook National University, Daegu 41566, Korea

²²H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342, Poland

E-mail: sagar.hazra@tifr.res.in

(Received December 6, 2020)

We report a particle identification (PID) tool developed using energy-loss information in the siliconstrip vertex detector (SVD) of Belle II for charged pions, kaons, and protons using $D^{*+} \rightarrow D^0[\rightarrow$ $K^{-}\pi^{+}]\pi^{+}$ and $\Lambda \to p\pi^{-}$ decay samples. The study is based on $e^{+}e^{-}$ collision data recorded at the $\Upsilon(4S)$ resonance by Belle II and the results are compared with that of a Monte Carlo sample. The introduction of additional information from the SVD is found to improve the overall PID performance in the low-momentum region.

KEYWORDS: *dE/dx*, SVD, PID

1. Introduction

Particle identification (PID) plays an important role in the physics program of the Belle II experiment [1]. Low-momentum charged particles having a transverse momentum $p_T \leq 65 \text{ MeV}/c$ are unable to reach the central drift chamber (CDC), the main tracking system of the experiment, owing to their highly curved trajectories. Our goal is to exploit specific ionization (dE/dx) by these low-momentum particles in the silicon-strip vertex detector (SVD) [2] towards identifying them. Even if the particles have a p_T greater than 65 MeV/c and reach the CDC, the dE/dx values measured in the SVD can provide complementary information to that obtained from the main PID subdetectors of Belle II, namely CDC, time-of-propagation counter, and aerogel ring-imaging Cherenkov counter.

We use clean samples of $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ and $\Lambda \rightarrow p\pi$ decays to first obtain the SVD dE/dx calibration for charged pions, kaons, and protons. Towards that end, we extract the dE/dx value from each SVD hit for these particles. In order to combine the hit-level dE/dx information for reconstructing the track-level dE/dx value, we find a simple arithmetic mean to be insufficient since the hit-level distribution follows a Landau function [3] for which the mean is undefined. Thus, a truncation is applied while combining the individual hit-level dE/dx measurements; basically the energy of all clusters except for the two highest ones are used in the calculation. Later we check the impact of dE/dx information on overall PID performance using the above two decay channels. We have also verified the dE/dx values to be independent of the mass of traversing particles, depending only on their $\beta\gamma$ values [4].

The study is based on e^+e^- collision data recorded at the $\Upsilon(4S)$ peak by Belle II and the results are compared with that of a Monte Carlo (MC) sample. To assess the impact of SVD dE/dx information on the overall PID performance, we plot the identification efficiency and fake rate as a function of momentum applying a requirement on the binary PID likelihood $\mathcal{L}(i/j) > 0.5$. The efficiency is defined as:

 $\epsilon_i = \frac{\text{# charged particle tracks identified kinematically as well as with PID requirement under the hypothesis$ *i* $}{\text{# charged particle tracks identified kinematically under the hypothesis$ *i* $}}$

and the fake rate is given by:

 $f_{j \rightarrow i} = \frac{\text{\# charged particle tracks identified kinematically as well as with PID requirement under the hypothesis$ *i* $}{\text{\# charged particle tracks identified kinematically under the hypothesis$ *j* $}}$

2. SVD *dE/dx* calibration

The $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ decay is used to calibrate the pion and kaon PID based on dE/dxinformation in SVD. We require the charged particle tracks to have a transverse (longitudinal) impact parameter less than 0.5 cm (2.0 cm). These tracks must have at least one SVD hit and a track-fit χ^2 probability value greater than 10^{-5} . To further purify the sample, we require the reconstructed D^0 mass to lie between 1.85 and 1.88 GeV/ c^2 , corresponding to a $\pm 3\sigma$ window around the nominal D^0 mass. The reconstructed D^* mass must be within 1.95 and 2.05 GeV/ c^2 . We apply a loose criterion on kaon and pion PID likelihoods, calculated without SVD information, to remove low-momentum secondary pions and kaons produced due to hadronic interaction in the detector material. We model the signal and background shape in the D^*-D^0 mass difference (Δm) by a sum of two Gaussian functions with a common mean and a threshold function, respectively. Results of the fit are presented in Fig. 1. The ${}_{s}\mathcal{Plot}$ [5] technique is used to subtract the residual background contributions.

Fig. 1. Fitted distributions of Δm from the D^* sample in data (left) and MC (right) events.

The $\Lambda \to p\pi$ decay is used to calibrate the proton PID based on dE/dx information in SVD. We require the reconstructed $p\pi$ invariant mass of Λ candidates to be in the range [1.10, 1.13] GeV/ c^2 , and they are further subjected to a vertex fit. The distance between the interaction point and the vertex of the Λ candidates is required to be greater than 1.0 cm and the vertex-fit χ^2 probability must be greater than 10^{-3} to remove the random combination of two tracks. We also require at least one SVD hit for both daughter tracks of Λ candidates. We suppress the contamination of charged pions coming from the K_s^0 decay by rejecting events that have the $M_{\pi^+\pi^-}$ value in the range [488, 508] MeV/ c^2 , corresponding to a $\pm 3\sigma$ window around the nominal K_s^0 mass. Similarly, events with electrons from converted photons are suppressed by excluding $M_{e^+e^-} < 50 \text{ MeV}/c^2$. We impose an additional requirement of at least one CDC hit and a loose criterion on the proton PID calculated without SVD information to remove low-momentum secondary pions produced due to hadronic interaction with the detector material. We model the signal shape in $M_{p\pi}$ with the sum of a Gaussian and two asymmetric Gaussian functions of a common mean and the background shape with a second-order Chebyshev polynomial (see Fig. 2). Again the $s\mathcal{P}lot$ [5] technique is used to subtract the residual background contributions.

Fig. 2. Fitted distributions of $M_{p\pi}$ from the A sample in data (left) and MC (right) events.

The two-dimensional distributions of dE/dx vs. momentum (see Figs. 3 and 4) show a clear separation between different particles in the low momentum region, and are uploaded to the calibration database.

Fig. 3. Scatter plot of dE/dx values of charged pions and kaons as a function of their momentum for data (left) and MC (right) events from the D^* sample.

Fig. 4. Scatter plot of dE/dx of proton and pion as a function of their momentum in data (left) and MC (right) events from the Λ sample.

As the specific ionisation depends only on the velocity (β) of traversing particles, we check the $\beta\gamma$ universality of dE/dx values (Fig. 5) obtained from D^* and Λ samples. The minimum energy loss occurs at $\beta\gamma \approx 3$ regardless of the particle type. We get a flat curve beyond that threshold, as the relativistic rise of energy loss is suppressed by the density effect in silicon.

Fig. 5. $\beta \gamma$ universality curve obtained in data for pions, kaons and protons obtained with D^* and Λ samples.

3. PID performance

We also use $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ and $\Lambda \rightarrow p\pi$ decays for performance studies. To assess the impact of the SVD dE/dx information to the overall PID, we plot the efficiency and fake rate (see Figs. 6 and 7) as a function of momentum applying a requirement on the PID likelihood $\mathcal{L}(K/\pi) > 0.5$ and $\mathcal{L}(p/\pi) > 0.6$. The study shows an improvement in kaon and proton identification efficiency after adding SVD dE/dx information.

Fig. 6. K efficiency and π fake rate vs. momentum without (left) and with (right) SVD dE/dx information.

Fig. 7. *p* efficiency and π fake rate vs. momentum without (left) and with (right) SVD dE/dx information.

We plot the efficiency vs. fake rate (see Figs. 8 and 9) to better appreciate the improvement in

PID performance by adding the SVD dE/dx information. The PID likelihood criterion is varied from 0 to 1 in order to produce these plots. Our study confirms that for a given fake rate the addition of dE/dx information improves the efficiency in the low momentum region. For example, if we fix the π fake rate at 4%, we get an overall 4% improvement in the kaon efficiency. We find some data-MC difference in performance, which arises due to imperfect simulation of the cluster energy distribution.

Fig. 8. π efficiency vs. *K* fake rate (left) and *K* efficiency vs. π fake rate (right) with and without SVD for p < 1 GeV/c.

Fig. 9. *p* efficiency vs. π fake rate (left) and *p* efficiency vs. *K* fake rate (right) with and without SVD for p < 1 GeV/c.

4. Conclusion

We have developed an SVD dE/dx based PID tool for charged pions, kaons, and proton using $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+)\pi^+$ and $\Lambda \rightarrow p\pi^-$ decay samples. The study shows that by adding the SVD information we can improve the overall PID performance in the low momentum region.

5. Acknowledgment

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements No 644294 and 822070. This work is supported by MEXT, WPI, and JSPS (Japan); ARC (Australia); BMWFW (Austria); MSMT (Czechia); CNRS/IN2P3 (France); AIDA-2020 (Germany); DAE and DST (India); INFN (Italy); NRF-2016K1A3A7A09005605 and RSRI (Korea); and MNiSW (Poland).

References

- [1] E. Kou et al., Prog. Theor. Exp. Phys. 2019, 123C01 (2019).
- [2] T. Abe et al., Belle II Technical Design Report (2010), arXiv:1011.0352 [physics.ins-det].
- [3] L. Landau, J. Phys. (USSR) 8 (1944) 201.
- [4] W. R. Leo, "Techniques for Nuclear and Particle Physics Experiments", Springer-Verlag (1994).
- [5] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).