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1. Introduction

In past decades, much effort has been put into solving the following Yang–Baxter-like
matrix equation

AXA = XAX, (1)

where A is a given square matrix, and X is the unknown complex matrix. Recent repre-
sentative articles relevant to this problem can be referenced from [1–22]. Regarding the
background, this equation has also been called a star–triangle-like equation in statistical
mechanics for many years, and, to the best of our knowledge, it originates from the classical
Yang–Baxter equation, which was proposed first by C.N. Yang in December 1967, in his
article on simple one-dimensional multi-body problems [21] and, subsequently, in 1972,
by R.J. Baxte, who independently discussed this equation when studying some classical
two-dimensional statistical mechanics problems [23]. Since then, the Yang–Baxter equation
has been transformed into the so-called (simpler) Yang–Baxter-like matrix equation through
the appropriate imposition of some restrictions. The Yang–Baxter-like matrix equation is
actually the nonparametric form of the classical Yang–Baxter equation in matrix theory.
Moreover, in terms of the matrix algebra, finding the relations between A and X turns out
to be interesting because it provides information about the commutability and idempotency
of matrices [24].

The Yang–Baxter-like matrix equation appears to be simple, but it is generally not easy
to find all of its solutions because of the nonlinearity of the equation. Even in the case of a
lower-order situation, all of the solutions found thus far have been only for very special
cases, and only basic and partial answers have been discovered.

A systematic study of the Yang–Baxter-like matrix equation from the perspective of
matrix theory has basically started in the last decade. Ding and Rhee first eastablished a
series of important results. For example, when A is nonsingular, and its inverse matrix is a
stochastic matrix, the existence of the solution is proven by using Brouwer’s fixed-point
theorem. They also obtained some numerical solutions to the equation by making use of
the mean ergodic theorem for matrices and the direct iterative method [6]. We then see that,
when using the spectral projection theorem in matrix analysis and the generalized eigen-
subspace technique, a finite number of spectral solutions to the equation are constructed
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in [7]. In the case that the eigenvalues of the coefficient matrix are semi-simple, and
their multiplicity is at least two, Ding and Zhang claimed that all spectral solutions to
the equation can be constructed [9], and, in [8], they discussed finding solutions that
satisfy AX = XA = X2. The above solutions are partial, special or commutative, that is,
the solutions X satisfy the commutative condition AX = XA. Some recent results on the
commutative solutions to the equation can be seen in [10,12,13,17,18], and more general
discussion in finding the general non-commutative solutions and all solutions of Yang–
Baxter like matrix equation are found in [1,2,4,5,16,19,20,22]. When A is an idempotent
matrix, all of its solutions were obtained in [4,16], where the idea is based on the property
of the diagonalization of A. When A has rank one or rank two, or if A−1 = A, A3 = A,
all solutions have been obtained (e.g., see [1,2,20,22]). The construction of all solutions
corresponding to diagonalizable matrices with a spectral set {1, α, 0} is discussed in [5],
and, in [19], the general expressions of X are established for the diagonalizable matrix A
with two different eigenvalues.

We notice that all previous discussions are under the assumptions that their coefficient
matrices A are either diagonalizable matrices whose number of distinct eigenvalues is no
more than three or that the matrices possess special kinds of Jordan blocks. For a more
general coefficient matrix, an approach to seek for all of its solutions has not been seen.
With this motivation, in this paper, we focus on constructing all of the solutions to the
equation when A is a diagonalizable matrix, thereby extending the existing results.

2. All Solutions to the Equation AX A = X AX for Any Diagonalizable Matrices A

Let A, T ∈ Cm×m and A = TJT−1, where J is the Jordan canonical form of A, and let
Z = T−1XT. Then, the matrix equation AXA = XAX is equivalent to JZJ = ZJZ, and, if
A is diagonalizable, the orders of all Jordan blocks for A are 1.

Recently, in [19], Equation (1) was discussed for the diagonalizable matrix A with
two distinct eigenvalues λ1 and λ2, that is, A = TJT−1, where J = diag(λ1 In, λ2 Im−n).
The main results of [19] are given as follows:

Theorem 1 ([19]). Suppose that A ∈ Cm×m is a diagonalizable matrix with two different
eigenvalues λ1 and λ2(λ1λ2 6= 0), that is, A = TJT−1, in which T is nonsingular, and
J = diag(λ1 In, λ2 Im−n). Then, all solutions of the Yang–Baxter-like matrix equation

AXA = XAX can be expressed as X = T
(

Y1 Y2
Y3 Y4

)
T−1 :

(I) when λ2
1 − λ1λ2 + λ2

2 = 0, Y1 and Y4 have the forms

Y1 = P
(

λ1 It1 0
0 0

)
P−1, Y4 = Q

(
λ2 It2 0

0 0

)
Q−1,

P,Q are invertible matrices of appropriate size. Y2 and Y3 have the forms

Y2 = P

(
Y(1)

2 0
0 0

)
Q−1, Y3 = Q

(
Y(1)

3 0
0 0

)
P−1,

in which 0 ≤ t1 ≤ n, 0 ≤ t2 ≤ m − n, Y(1)
2 is an arbitrary t1 × t2 matrix, and Y(1)

3 =

(I − (Y(1)
2 )†Y(1)

2 )W(I −Y(1)
2 (Y(1)

2 )†), W is an arbitrary t2 × t1 matrix.
(II) when λ2

1 − λ1λ2 + λ2
2 6= 0, for suitable invertible matrices P,Q with appropriate sizes

and the given integer r, 0 ≤ r ≤ min{n, m− n}, Y1, Y2 and Y3, Y4 have the forms

Y1 = P

 λ̃1 Ir 0 0
0 λ1 Iµ 0
0 0 0

P−1, Y4 = Q

 λ̃2 Ir 0 0
0 λ2 Iν 0
0 0 0

Q−1,
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Y2 = P

 Y(1)
2 0 0
0 0 0
0 0 0

Q−1, Y3 = Q

 Y(1)
4 0 0
0 0 0
0 0 0

P−1,

in which 0 ≤ µ ≤ n− r, 0 ≤ ν ≤ m− n− r, λ̃1 =
λ2

2
λ2−λ1

, λ̃2 =
λ2

1
λ1−λ2

.

Furthermore, Y(1)
2 is an arbitrary r× r invertible matrix, and

Y(1)
3 =

−λ1λ2(λ
2
1 − λ1λ2 + λ2

2)

(λ1 − λ2)2 (Y(1)
2 )−1.

From the result above, it is readily seen that the structure of the solutions is complicated.
When we continue to look for the solutions under the condition that A is diagonalizable
and has three different nonzero eigenvalues, it can be seen that the method will appear
to be invalid. However, for a general diagonalizable matrix A, by extending the idea and
technique introduced in our previous work, we find that setting up the general expression
of the solutions turns out to be possible.

Lemma 1. Suppose that ZJZ = JZJ and J = diag(λ1 In1 , λ2 In2 , · · · , λt Int), with λ1λ2 · · · λt 6=
0, n1 + n2 + · · ·+ nt = m. Then, (I) Z is diagonalizable; (I I) any nonzero eigenvalue σ of Z
satisfies σ ∈ {λ1, λ2, · · · , λt}, and, if σ = λi, i ∈ {1, · · · , t}, the algebraic multiplicity of σ is no
more than ni.

Proof. Let Rank(Z) = s, 0 ≤ s ≤ m, and let Zpi , i = 1, · · · , s be the linearly independent
column vectors of Z. From

ZJZpi = ZJZepi = JZJepi = λqi JZpi ,

where λqi belongs to the set {λ1, λ2, · · · , λt}. We see that JZpi , i = 1, · · · , s are the linearly
independent eigenvectors of Z corresponding to the eigenvalues λqi , i = 1, · · · , s. If we
write the Jordan decomposition of Z as

J1(σ1)
J2(σ2)

. . .
Jj(σj)

Jj+1(0)
. . .

Jk(0)


where σi 6= 0, i = 1, · · · , j, then Z has at most j linearly independent eigenvectors cor-
responding to the nonzero eigenvalues, i.e., s ≤ j. On the other hand, s = rank(Z) ≥ j.
Therefore, there must be s = j, and every Jordan block of Z has an order of one. Meanwhile,
{σi 6= 0, i = 1, · · · , s} = {λqi , i = 1, · · · , s}, and the algebraic multiplicity of σi = λqj is no
more than nqj .

Theorem 2. Given A ∈ Cl×l , if A = Tdiag(Jm, 0)T−1 for some nonsingular matrices, T and
Jm = diag(λ1 In1 , λ2 In2 , · · · , λt Int), then the general solution X to the Yang–Baxter-like matrix
equation XAX = AXA is given by

X = T
(

Z1 Z2
Z3 Z4

)
T−1, Z4 ∈ C(l−m)×(l−m) is arbitrary,
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where Z1 = P
(

0 0
0 Λ

)
P−1 ∈ Cm×m for a nonsingular matrix P, Λ is a diagonal matrix.

Z2 = 0, and Z3 = 0 when Z1 is nonsingular. Otherwise, Z2 = J−1
m P

(
Q
0

)
, Z3 = (W, 0)P−1 J−1

m ,

and Q ∈ C(m−s)×(l−m) is arbitrary. W ∈ C(l−m)×(m−s) is any matrix satisfying WP̃Q = 0 where
P̃ is the m− s order leading principle submatrix of P−1 J−1

m P.

Proof. Suppose Z, J ∈ Cl×l satisfies JZJ = ZJZ, in which J = diag(Jm, 0) (m ≤ l). Let Z
be partitioned conformally with J as

Z =

(
Z1 Z2
Z3 Z4

)
, Z1 ∈ Cm×m, Z2 ∈ Cm×(l−m). (2)

Then, comparing the two sides of the 2× 2 block matrix equation(
Z1 Z2
Z3 Z4

)(
Jm 0
0 0

)(
Z1 Z2
Z3 Z4

)
=

(
Jm 0
0 0

)(
Z1 Z2
Z3 Z4

)(
Jm 0
0 0

)
yields the following system of four equations

Z1 JmZ1 = JmZ1 Jm, Z1 JmZ2 = 0, Z3 JmZ1 = 0, Z3 JmZ2 = 0. (3)

Notice that Z4 ∈ C(l−m)×(l−m) can be any matrix.
Therefore, if Z1, Z2, and Z3 are solved, then the solutions X to Equation (1) will be

given by the equation X = T
(

Z1 Z2
Z3 Z4

)
T−1, where Z1 ∈ Cm×m, and Z2 ∈ Cm×(l−m).

Since Jm = diag(λ1 In1 , λ2 In2 , · · · , λt Int), the matrix Z1 in the equation Z1 JmZ1 =
JmZ1 Jm of (3) can be determined from Lemma 1.

Below, we discuss solving the matrices Z2 and Z3 in (3). Obviously, Z2 = 0, and Z3 = 0
when Z1 is nonsingular. Otherwise, if Z1 is singular, there exists a nonsingular matrix P

such that Z1 = P
(

0 0
0 Λ

)
P−1, Λ ∈ Cs×s, 0 ≤ s < m, where Λ is a nonsingular diagonal

matrix. By the second equation of (3), we obtain Z2 = J−1
m P

(
Q
0

)
, and Q ∈ C(m−s)×(l−m)

is arbitrary. By the third equation of (3), Z3 = (W, 0)P−1 J−1
m where W ∈ C(l−m)×(m−s) is

arbitrary. However, because of the last equation of (3), we find (W, 0)P−1 J−1
m P

(
Q
0

)
= 0.

If P̃ represents the m − s order leading principle submatrix of P−1 J−1
m P, we may have

WP̃Q = 0. This means that for ∀Q ∈ C(m−s)×(l−m), we can derive W ∈ C(l−m)×(m−s)

with it.

Next, we present one numerical example to illustrate our results.

Example 1. Find the general solution X to the equation AXA = XAX, where A = TJT−1, and
J = diag(3, 3, 2, 5, 0, 0).

By Theorem 2, l = 6, m = 4, J4 = diag(3, 3, 2, 5), Z1 is the solution of Z1 J4Z1 = J4Z1 J4.
From Lemma 1, there exists a nonsingular matrix P such that P−1Z1P = Λ, in which Λ is
one of the following:

3
3

2
5

,


0

3
2

5

,


0

3
3

2

,


0

3
3

5

,
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
0

0
3

2

,


0

0
3

5

,


0

0
2

5

,


0

0
3

3

,


0

0
0

3

,


0

0
0

2

,


0

0
0

5

,


0

0
0

0

.

when Λ =


3

3
2

5

, Z1 is nonsingular, and hence, Z2 = 0, Z3 = 0. Other-

wise, Z2 = diag( 1
3 , 1

3 , 1
2 , 1

5 )P
(

Q
0

)
, Z3 = (W, 0)P−1diag( 1

3 , 1
3 , 1

2 , 1
5 ), where Q ∈ C(4−s)×2,

W ∈ C2×(4−s) (s = Rank(Λ)) are any matrices satisfying WP̃Q = 0, and P̃ is the 4− s
order leading principle submatrix of P−1diag( 1

3 , 1
3 , 1

2 , 1
5 )P. Therefore, for ∀Q ∈ C(4−s)×2, we

can obtain W ∈ C2×(4−s) by solving the homogeneous equation WP̃Q = 0, and vice versa.
We obtain all solutions to (1).

By direct calculation, it can be verified that, when Λ is singular,

XAX =T
(

Z1 Z2
Z3 Z4

)
· T−1 AT ·

(
Z1 Z2
Z3 Z4

)
T−1

=T
(

Z1 Z2
Z3 Z4

)(
J4

0

)(
Z1 Z2
Z3 Z4

)
T−1

=T

 Z1 J−1
4 P

(
Q
0

)
(W, 0)P−1 J−1

4 Z4

( J4
0

) Z1 J−1
4 P

(
Q
0

)
(W, 0)P−1 J−1

4 Z4

T−1

=T
(

Z1 J4 0
(W, 0)P−1 0

) Z1 J−1
4 P

(
Q
0

)
(W, 0)P−1 J−1

4 Z4

T−1

=T

 Z1 J4Z1 PΛ
(

Q
0

)
(W, 0)ΛP−1 (W, 0)P−1 J−1

4 P
(

Q
0

)
T−1

=T
(

Z1 J4Z1 0
0 0

)
T−1 = T

(
J4Z1 J4 0

0 0

)
T−1

=T
(

J4
0

)
T−1 · T

(
Z1 Z2
Z3 Z4

)
T−1 · T

(
J4

0

)
T−1 = AXA

When Λ is nonsingular, we also have XAX = AXA.

3. Conclusions

In this paper, we have discussed finding all of the solutions to the Yang–Baxter-like
matrix equation AXA = XAX when the orders of all Jordan blocks for A are one. Research
on the non-commuting solutions is interesting, but it seems to be hard to find. In the future,
we hope to be able to attack the non-commuting solutions to AXA = XAX when the order
of Jordan blocks of A is more general.
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