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Abstract: Due to the asymmetry of quantum errors, phase-shift errors are more likely to occur than
qubit-flip errors. Consequently, there is a need to develop asymmetric quantum error-correcting (QEC)
codes that can safeguard quantum information transmitted through asymmetric channels. Currently,
a significant body of literature has investigated the construction of asymmetric QEC codes. However,
the asymmetry of most QEC codes identified in the literature is limited by the dual-containing condi-
tion within the Calderbank-Shor-Steane (CSS) framework. This limitation restricts the exploration of
their full potential in terms of asymmetry. In order to enhance the asymmetry of asymmetric QEC
codes, we utilize entanglement-assisted technology and exploit the algebraic structure of cyclotomic
cosets of constacyclic codes to achieve this goal. In this paper, we generalize the decomposition
method of the defining set for constacyclic codes and apply it to count the number of pre-shared
entangled states in order to construct four new classes of asymmetric entanglement-assisted quantum
maximal-distance separable (EAQMDS) codes that satisfy the asymmetric entanglement-assisted
quantum Singleton bound. Compared with the codes existing in the literature, the lengths of the
constructed EAQMDS codes and the number of pre-shared entangled states are more general, and
the codes constructed in this paper have greater asymmetry.

Keywords: asymmetric entanglement-assisted quantum codes; constacyclic codes; maximal-distance
separable codes

1. Introduction

Quantum computing is a new computing paradigm that follows the laws of quantum
mechanics to manage the processing of quantum information units. Compared with
traditional computing, quantum computing offers exponential acceleration and significant
breakthroughs [1]. In recent years, various scientifically advanced countries have placed
great emphasis on quantum computing research and have launched their own quantum
information technology strategies. They aim to capture the leading edge of the next
wave of technological development and strive to achieve “quantum supremacy” as soon as
possible [1]. Among them, Google, Rigetti Computing, and other world-leading institutions
are engaged in quantum computing research. All of this indicates that quantum computing
research is a very important and worthwhile field of study. It is particularly noteworthy that
A.S. Holevo received the prestigious Claude E. Shannon Award from the IEEE Information
Theory Society in 2016, in recognition of his groundbreaking contributions to quantum
information theory. This honor marks the first time that research in the field of quantum
information theory has been recognized with the highest award in the field of information
theory. Additionally, quantum coding theory is an important research topic in quantum
Shannon theory.

One of the key technologies in quantum computing research is QEC codes [2], which
are essential for protecting quantum information from quantum decoherence caused by
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quantum noise during quantum computing and communication processes. Designing high-
performance QEC codes is crucial for the future realization of quantum computing and
communication. Classical computers can significantly enhance the reliability of computer
communication and approach the Shannon capacity of channels with the help of error-
correcting codes. However, due to the uncloneability of quantum states, the continuity
of quantum errors, and the destruction of quantum information upon measurement [2],
existing classical error-correcting code technology cannot be directly applied to protect
quantum information. Research studies have shown that QEC codes can protect stored
quantum information and also enable fault-tolerant quantum gate operations, fault-tolerant
quantum state preparation, and fault-tolerant quantum measurements, thereby making
quantum information processing reliable in noisy environments [2]. Currently, the research
on QEC codes has become one of the important topics in the field of quantum computing
and quantum information.

Similar to classical error-correcting codes theory, constructing and searching for QEC
codes with maximum minimum distance is a core problem in the study of quantum coding
theory. The quantum CSS code model, which transforms complex physical quantities
into mathematical models, provides a connection between QEC codes and classical error-
correcting codes [3]. Although a quantum CSS framework can be constructed from classical
codes that are dual-containing (self-orthogonal), constructing quantum maximal-distance
separable (MDS) codes with a relatively large minimum distance is not an easy task.
Except for some special lengths of quantum codes, the minimum distance of most known
g-ary quantum MDS codes is less than or equal to 7 + 1. Currently, the methods used
to construct quantum MDS codes mainly adopt cyclic codes, constacyclic codes (narrow
or non-narrow [4]) over finite fields, as well as generalized Reed—Solomon (RS) codes.
Compared to traditional cyclic codes over finite fields, constacyclic codes over finite fields
are a generalization of cyclic codes. They not only integrate the good performance of cyclic
codes but also exhibit several new characteristics and rich algebraic structures. Additionally,
compared to generalized Reed-Solomon codes over finite fields, constacyclic codes have
a simpler algebraic structure of cyclotomic cosets and demonstrate good error-correcting
capabilities. Although constacyclic dual-containing codes have better parameters and
can obtain a few quantum MDS codes with a minimum distance greater than  + 1, the
minimum distance of quantum MDS codes constructed by constacyclic codes is not always
greater than 4 + 1. Additionally, the minimum distance of traditional quantum MDS codes
still cannot exceed the g + 1 limit. Therefore, the dual-containing condition has posed an
obstacle to the development of quantum coding theory [5].

In recent years, a major breakthrough in the field of QEC codes has been the con-
struction system of entanglement-assisted stabilizer codes, which allows two parties to
share a certain number of maximally entangled pairs in advance. This removes the restric-
tion that the quantum stabilizer must be a subgroup of the Pauli group, thus allowing
the error correction properties of any non-Abelian group to be applied [2]. The proposal
of entanglement-assisted quantum error-correcting (EAQEC) codes breaks the limitation
of the dual-containing condition previously required by stabilizer codes, which allevi-
ates the challenges in determining the dual-containing condition necessary for modern
codes such as LDPC codes [6] and Turbo codes [7]. Due to the more extensive algebraic
structure of constacyclic codes over finite fields compared to cyclic codes, the synergy
of entanglement-assisted techniques and constacyclic codes provides a rich resource for
exploring the construction of entanglement-assisted quantum MDS (EAQMDS) codes.
However, entanglement-assisted techniques also require the consumption of additional
entanglement resources. Therefore, for EAQMDS codes, it is of significant research im-
portance and potential application value to construct more quantum MDS codes with
a minimum distance greater than { + 1 or even g + 1, while consuming entanglement
resources as little as possible.

QEC codes defined over quantum channels—where qubit-flip errors (qudit-flip errors
are primarily considered for high-dimensional systems) and phase-shift errors may have
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different probabilities—are called asymmetric QEC codes [8]. In many quantum mechani-
cal systems, the probabilities of occurrence of qubit-flip and phase-shift errors are quite
different [2]. Previous research on constructing entanglement-assisted quantum codes has
predominantly focused on code constructions for symmetric quantum channels [9-15].
Recently, Galindo et al. introduced the concept of asymmetric EAQEC codes and presented
an explicit computation of the parameters for asymmetric EAQEC codes derived from BCH
codes [16]. Moreover, the quantum Singleton bound for asymmetric EAQMDS codes has
been established in [16-19], along with the proposal of a general Euclidean construction
method based on cyclic codes. Although there has been some progress in the study of
asymmetric EAQMDS codes, several issues still need to be addressed.

e Although sharing a certain number of entangled states between the communicating
parties can enhance the error-correcting ability of quantum codes, it actually incurs
higher entanglement preparation costs. Exploring how to obtain asymmetric EAQMDS
codes with either good error-correcting capability or a high code rate, within the context
of lower-cost preparation of entangled resources, is a topic worth exploring.

e Although constacyclic codes inherit the good performance of cyclic codes, a pertinent
question is how we can utilize the decomposition method of the defining set of
constacyclic codes to achieve a general number of entangled states for the constructed
EAQMDS codes?

Therefore, asymmetric EAQMDS codes are constructed in this paper by using consta-
cyclic codes over finite fields. The main contributions are as follows:

*  The decomposition method of the defining set of constacyclic codes is re-characterized
and applied to construct asymmetric EAQMDS codes. Under the same code length
and fixed d, and dy, some asymmetric EAQMDS codes constructed in this paper
can achieve the same net rate (k — ¢) /n as the quantum codes in [18]. However, the
asymmetric EAQMDS codes in this paper require fewer entangled states, which means
that the preparation cost and cost of quantum entangled states required in this paper
are less. In addition, some quantum codes that do not exist in [18,20-29] are obtained
in this paper. Moreover, the minimum distance d, of some asymmetric EAQMDS
codes constructed in this paper is much greater than g, indicating that such quantum
codes have greater asymmetric error-correcting ability.

*  The number of entangled states in the constructed quantum codes exhibits generality.
The parameters of the constructed asymmetric EAQMDS codes in this paper are listed

as follows:
P41 g1 ) _
W) (5= 5 —2(61 + 02+ 1—-0),20, +2/261 +2;20]] o, where g = 2Bm + p+

is an odd prime power with a positive integer m and t > 2 is even, such that

F=r+1,0<8 < Tpt TEt <5 < T g5 4 og—Tand 0 < v < 4.

@ (T8 T3t —2(6y + 62+ 1—0),26, +2/261 +2;20]) 2, where g = 2pm + p — ¢
is an odd prime power with a positive integer m and t > 2 is even, such that

B=£+1,0<8 < T TEH <5 < T g5 4 og—Tand 0 < v < 4.

3) [[z(qi‘iﬂ), 2([’141) —2(61+ 62 +1—10),20, +2/261 + 2;20] o, where g = am + a +
t is an odd prime power with a positive integer m and ¢ > 3 is odd, such that

w=£41,0 <8 < ffand Tt <6y < C+_ g5 +0g—1,and0 < v < 5L,
4) [[z(q +1) 20+ —2(01 4 02 +1—10),20, +2/201 + 2;20]] o, where g = am +

o 44
& — tis an odd prime power with a positive integer m and t > 3 is odd, such that

2
a=141,0<8 < Tand 4 <5, < T g5 405 —1,and 0 < v < L.

The rest of this paper is organized as follows. In Section 2, we present some related
works about symmetric and asymmetric EAQEC codes. In Section 3, we present some defi-
nitions and basic results of constacyclic codes and asymmetric EAQEC codes. In Section 4,
four families of EAQMDS codes are constructed by using constacyclic codes with lengths
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[ 2(4*+1) .
of “5— and =", respectively, where the number of entangled states constructed for

asymmetric EAQMDS codes is universal. In Section 5, we mainly compare the parameters
of the asymmetric EAQMDS codes constructed in this paper with those of the quantum
codes in [18,25,27,28]. In Section 6, we present our conclusion and discussion.

2. Related Works

Since the works of Shor [30] and Steane [2,31], QEC codes have attracted a lot of
attention from experts and scholars. Constructing good quantum codes through classical
codes is particularly important in quantum information and quantum computing [32-36].
Some scholars utilize constacyclic codes (including both cyclic and negacyclic codes) to
construct quantum MDS codes with a minimum distance greater than 1 + 1 based on
Hermite construction. Kai et al. used negacyclic codes to construct two classes of quantum
MDS codes [37]. Since then, other types of negacyclic or constacyclic codes have also been
studied by scholars, as detailed in references [5,38—44]. Although quantum MDS codes can
be obtained through the construction of dual-containing (self-orthogonal) classical codes,
most known g-ary quantum MDS codes have a minimum distance that is less than or equal
to 7 + 1. Therefore, the dual-containing condition restricts the development of quantum
coding theory [5].

Recently, the discovery of EAQEC coding theory has played an important role in
the field of quantum information and quantum computing. Brun et al. proposed the
entanglement-assisted stabilizer framework in [45]. They showed that some EAQEC
codes can be constructed without the need for the dual-containing condition of classical
quaternary codes if a certain number of entangled states are pre-shared between the sender
and receiver. In [46], Li et al. proposed the decomposition method of the defining set
of cyclic codes and used this method to construct EAQEC codes with good parameters.
In [25], Fan et al. constructed EAQMDS codes with the help of a small number of pre-
shared maximally entangled states. Guenda et al. introduced the concept of the Hull of
classical codes in [47] and used it to construct some EAQMDS codes. In fact, the concept of
the decomposition method of the defining set is functionally equivalent to the concept of
the Hull of classical codes, both aimed at counting the entangled states of entanglement-
assisted quantum codes. In [48], we proposed the concept of the decomposition method of
the defining set for negacyclic codes over finite fields and employed it to construct several
classes of EAQMDS codes of varying lengths. In [5,49], Lii et al. constructed several classes
of EAQMDS by using negacyclic and constacyclic codes with the decomposition method of
the defining set, and some of the EAQMDS codes have minimum distances greater than

g + 1. In [50], constacyclic codes with a length of ‘72%1 were used to construct some new
EAQMDS codes, where ¥ = 3,5,7, and 4 = 1 mod 5. In fact, pre-shared entangled states can
improve the error correction ability of quantum codes. Quantum MDS codes that originally
have a minimum distance of less than  + 1 can have their minimum distance increased
to more than 4 + 1 or even g + 1 through the pre-shared entangled states. Therefore, it is
necessary to consider EAQMDS codes with a larger minimum distance, and it is worth
exploring how to count pre-shared entangled states to achieve a minimum distance greater
than 7 + 1 or even g + 1 for quantum MDS codes.

In quantum channels, the probabilities of qubit-flip (or qudit-flip) and phase-shift er-
rors can be significantly different, and QEC codes that take advantage of this asymmetry are
called asymmetric QEC codes. In 2007, Ioffe et al. [8] proposed asymmetric QEC schemes
based on BCH and LDPC codes. Since then, some good asymmetric QEC codes have been
constructed from families of known classical codes, such as BCH codes [51-53], constacyclic
codes [54-56], RS codes [57], and others. New families of non-binary asymmetric quan-
tum BCH codes and subsystem BCH codes were constructed by Leng and Ma [58]. The
bounds for asymmetric quantum stabilizer codes were provided by Sarvepalli et al. [59,60].
Tang et al. [61] constructed several classes of asymmetric QEC codes with unbounded
lengths from repeated-root cyclic codes and proposed asymmetric QEC codes that exceeded
the asymmetric quantum Gilbert-Varshamov bound [62]. In [63], a few of the good asym-
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metric QEC codes were obtained from quasi-cyclic codes over small fields, which cannot all
be deduced by the asymmetric quantum Gilbert-Varshamov bound in Matsumoto [62]. In
addition, there are other construction methods that have also promoted the development
of the theory of asymmetric QEC codes [64-66]. Recently, Galindo et al. [16] introduced
the concept of asymmetric EAQEC codes and provided a Gilbert—Varshamov bound for
asymmetric EAQEC codes. They then presented the explicit computation of the parameters
of asymmetric EAQEC codes derived from BCH codes. In [18], the authors established a
bound for pure asymmetric EAQEC codes similar to the quantum Singleton bound and
introduced the definition of pure asymmetric EAQMDS codes. They then constructed three
new families of asymmetric EAQEC codes. In [17], the authors determined the number of
maximal entangled states required for asymmetric EAQEC codes by constructing linear
[-intersection pairs for MDS codes. Compared to cyclic codes over finite fields, constacyclic
codes have significant algebraic structural advantages, but there are currently few refer-
ences on the use of constacyclic codes to construct asymmetric EAQEC codes, especially
asymmetric EAQMDS codes.

3. Preliminaries
3.1. Constacyclic Codes

In this subsection, we recall some basic results about constacyclic codes in [33,37,38,67-69].
Let F» be the finite field with 4> elements, where g is a power of p and p is an odd
prime number. F;z is the n-dimension row vector space over qu, in which n is a positive

integer. An [n,k, d] 42 linear code of length # over finite field F,» is a nonempty subspace of
F;z and its minimum distance is 4. Throughout this paper, we assume that # is a positive

integer relatively prime to g, i.e., gcd(n,q) = 1. Moreover, the Singleton bound of linear
codes is given as follows.

Proposition 1 ([67,70]). (Singleton bound) If an [n, k, d] linear code C over F» exists, then
k<n-—d-+1. 1)
Ifk =n—d+1,then C is called an MDS code.

Letal = (a},al,...,al ) denote the conjugation of the vector a = (a, a1, ...,a,-1).
For u = (ug,uq,...,uy_1) and v = (vg,v1,...,0,_1) € P;z, the Hermitian inner product

is defined as (u,v);, = uovg + ulvtll +...+ un_lvzfl. The Hermitian dual code of C can

be defined as C" = {u € F% | (u,v), = 0 forallv € C}.1f C C C'n, then C is called
q

Hermitian self-orthogonal code. If C** C C, then C is a Hermitian dual-containing code.
For a nonzero element A ¢ F;z, a linear code C of length n over Fp satisfies the

property that
(CO/ Clyeevy Ci’l—l) S C = (/\Cfl—ll C0,Clyev-y Cnfz) S Cl (2)

then C is called a g%-ary A-constacyclic code of length n over Fp. When A = —1,Cisa
negacyclic code. When A = 1, C is a cyclic code.

From [33,37], a g%-ary A-constacyclic code C over F,> of length n is precisely an ideal
in F»[x]/(x" — A) and C can be generated by a monic polynomial g(x) which divides
x" — A. Assume that A € F;‘Z is a primitive r-th root of unity, and then it exists a primitive
rn-th root of unity over some extension field of qu, denoted by #, such that #" = A. Let
¢ = 1, then ¢ is a primitive n-th root of unity, and the roots of x* — A are precisely the
elements & = '™, where 0 < i <n—1.Set O, = {1470 <i<n—-1}. IfCisa
A-constacyclic code over F» of length n with generator polynomial g(x), then the defining
set of the constacyclic code C = (g(x)) is the set Z = {i € O, | 1 is a root of g(x)}. For
eachi € Oy, theset C; = {i, iqz, iq4, cery iqZk’z} mod rn is called the qz-cyclotomic coset
modulo 71, where k is the smallest positive integer such that ig?* = i mod rn. The defining
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set Z of constacyclic C is the union of some g-cyclotomic cosets modulo rn. Constacyclic
BCH codes have some properties that are similar to BCH codes. The following result gives
the BCH bound of constacyclic codes.

Proposition 2 (The BCH bound for constacyclic codes [33,38,68]). Assume that gcd(n, q) = 1.
Let C be a q*-ary A-constacyclic code of length n. If the generator polynomial g(x) of C has the
elements {57 | 0 < i < d — 2} as the roots, where 1 is a primitive rn-th root of unity, then the
minimum distance of C is at least d.

From [33,37], we can see that the Hermitian dual C# of a A-constacyclic code over qu
is a A~ 7-constacyclic code. If C is a constacyclic code over F» with defining set Z, then the

Hermitian dual C** has a defining set Z*# = {z € O,,| — gz mod rn ¢ Z}. Moreover, it
has the following result in [33,37].

Lemma 1 ([33,37]). Let C be a g*-ary constacyclic code of length n with defining set Z. Then C
contains its Hermitian dual code if and only if ZN —qZ = @, where —qZ = {—qzmodrn | z € Z}.

3.2. Asymmetric QEC Codes

In this subsection, we present some definitions and basic results of binary asymmetric
QEC codes, and then introduce the basic results of g-ary asymmetric QEC codes. Specific
details can be found [51,53,57,65,71,72].

3.2.1. Asymmetric QEC Codes for Qubit-Based Systems

In quantum information processing, a quantum bit (qubit) is a non-zero vector in the
two-dimensional complex vector space C2. Typically, a basis for C? is represented as |0)
and |1), so a qubit can be represented as

wiop 10 = ). @)

where &/, ' € Cand |a’|? +|f/|> = 1. A quantum state (1-qubit) is a non-zero vector in
the tensor product space C2’, assuming the basis vector of the tensor product space is
|a), where |a) = |a1a;...a,) and (a1, 4y, ...,a,) € F}'. Therefore, a quantum state can be
uniquely represented as [v) =}, By c(a) |a), where c(a) with a € F} is a complex number
that is not all zeros.

In quantum physics, a quantum state is a vector in C?, and each quantum error
is a unitary linear transformation in the complex vector space C2'. According to the
CSS stabilizer theory, only independent error operators acting on each qubit need to be
considered, and only three Pauli operators need to be considered for the error action on
each qubit: X = < (1) (1) ), Z = ( (1) _01 ) and Y = ( (1) Bl > These three unitary
operators act on the qubit |v) = &’ |0) + B’ |1) as follows:

X|v) =a'[1) +B'(0), )

Zlo) =a'|0) - p'[1), @)
and

Y o) =ia'[1) —ip'|0), (6)

where X>? =Y?=272=1,Y=iXZand I, = ((1) (1))

The form of each error operator on the complex space C?" is ¢ = i*w; @ wy @ ... wy,
where A € {0,1,2,3}, w; € {I, X,Y,Z} with1 <i < n, here w = I, indicates that the i-th
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qubit does not have an error. In fact, the Pauli operators and the phase factors {+1, i}
jointly constitute a Pauli group. For the basis vector |a) = |a1a; .. .4ay), it has

ela) = i*(wy |a1)) @ (w2]2)) @ ... ® (wn [an)). )

In addition, for a n-qubit [v) = Ycpy c(a) |a), it has

elo) =} c(a)(ela)). ®)

acF}

Let G; and H; be the parity check and generator matrices of a classical code C; with
parameters (1, k;, d;] for i € {1,2}. The stabilizer of a quantum code based on the parity
check matrices Hy and H, satisfies the following equation

HyH} + HyH] = 0(mod 2),

where H! denotes the transpose of the matrix H;. The normalizer of the quantum code
based on the generator matrices G; and G, satisfies the conditions Hy GlT = 0and H, GZT =0.

Therefore, the CSS construction of a binary AQEC code can be stated as Definition 1,
where one of the two classical codes controls phase-shift errors, while the other controls
qubit-flip errors.

Definition 1 ([51]). Given two classical codes C1 and C, such that C2L CC.IfG= < G 0 >,

0 G
_(H 0
and H = ( 0 H, ),then

HH] + HH = 0. )

Let dy = wt(C1\Cy ) and d, = wt(Co\Cy), such that d, > d and ky + ko > n. Assuming
that Cy corrects the qubit-flip errors and Cy corrects phase-shift errors, then there exist AQEC codes

with parameters
Hn/ kl + k2 - 7’1, dZ/dXHZ

3.2.2. Asymmetric QEC Codes for Qudit-Based Systems

Binary asymmetric QEC codes and g-ary asymmetric QEC codes are both designed
to protect quantum information from noise and decoherence. The extension of binary
asymmetric QEC codes to g-dimensional cases has practical significance, as in practical
quantum computing, we may need to handle more qudits and may want to use different
types of qudits to achieve more complex computations. Therefore, studying g-ary asym-
metric QEC codes can help us better understand and design error-correcting schemes in
practical quantum computing.

Let H be the Hilbert space H = C7' = C7®...® CI. Let |x) be the vectors of an
orthonormal basis of C7, where the notions x are elements of F;. Consider a,b € F,, the
unitary operators X(a) and Z(b) in C1 are defined by

X(a)[x) = |x+a) (10)

and
Z(b) |x) = ') |x) (11)

respectively, where w = exp(27i/p) is a p-th root of unity and tr is the trace map from F;
to F (p is a prime). Consider thata = (ay,ay,...,a,) € Fland b = (by,by,...,by) € Fy.
Let

X(a)=X(a1) @ X(a2) ® ... ® X(ay) (12)

and
Z(b)=Z(h) R Z(b) ®...0 Z(by) (13)
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be the tensor products of 1 error operators. The set
En ={X(a)Z(b) | a,b € F} (14)
is an error basis on the complex vector space C7" and the set
Gn = {wX(a)Z(b) | a,b € F},c € F,} (15)

is the error group associated with E,. For a quantum error e = w°X(a)Z(b) € G,, where
the quantum weight wg(e), the X-weight wx (e), and the Z-weight wy (e) of e are defined,
respectively, by

wole) = t{i 1< <, (anby) # (0,0)}, (16)
wx(e)=4{i:1<i<mn,a; #0}, (17)
wz(e) =t{i:1<i<nb; #0}. (18)

Definition 2 ([53]). A g-ary asymmetric QEC code Q, denoted by [[n,k,d./dy]],, is a q*-
dimensional subspace of the Hilbert space C1" , it can control all qudit-flip errors up to | (dy —1) /2]
and all phase-shift errors up to | (d, —1)/2].

3.3. Asymmetric EAQEC Codes

In this subsection, we present some definitions and some basic results about EAQEC
codes in [45,46,48,50].

A g-ary [[n,k,d;c]]; EAQEC code can encode k information qudits into n channel
qudits with the help of ¢ pairs of maximally entangled states and correct up to Ldz;lj €errors,
in which d is the minimum distance of the code. The performance of an entanglement-
assisted quantum code can be assessed through the metric of net rate % Let H be an
(n — k) x n parity check matrix of C over Fp>. Then C Li has an n x (n — k) generator matrix

H', where H' is the conjugate transpose matrix of H over Fp.

Definition 3 (Asymmetric EAQEC codes [16-18]). An [[n,k,d./dy; C”qz asymmetric EAQEC
code Q over Fz encodes k logical qudits into n physical qudits with the help of c copies of maximally

entangled states, which can correct all qudit-flip errors up to Ld’fT_lJ and all phase-flip errors up to
%7 ).

Theorem 1 ([16,73]). Let C1 and C, be two linear codes over qu with parameters [n, k;, d;] o
with the parity check matrices H;, respectively, for i = 1,2. Then there exists an asymmetric

QEC code with parameters [[n,ky + ko — n + ¢, d=/dx;c]] 2, where d- = wt(C1\(C1 N CZL")) and

dy = wt(C\(C2 N Cllh)), with d, and dy as the minimum Hamming weight of the elements in the
corresponding set, and

¢ = rank(HyHY) = dim(C{™) — dim(C;" N Cy) (19)
is the number of required maximally entangled states.

Proposition 3 (Quantum Singleton bound for asymmetric EAQEC codes [16,17]). If an
[[n,k,d;/dy; c]] 2 asymmetric EAQEC code C exists, then

do+dy <n—k+2+c (20)

If C satisfies the equality d, + dy = n — k 4+ 2+ c, then it is called an asymmetric EAQMDS code.
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4. Constructions of Asymmetric EAQMDS Codes

In [5,48,50,74], the authors defined the decomposition of the defining set of constacyclic
codes, including cyclic codes and negacyclic codes. The following Definition 4 further
extends the decomposition method for the defining set of constacyclic codes.

Definition 4. Let C1 and Cy be constacyclic codes of length n with defining sets Z, and Z,
respectively, where gcd(n, q) = 1. Assume that Zy1 = Z1 N (—qZy), Z1o = Z1 \ Z11, and Z1 =
ZyN(—qZy), Zyy = Zy \ Zy, where —qZy = {—qx|x € Z1} and —qZy = {—qx|x € Z}.
Then Z; = Ziy U Zj is called a decomposition of the defining set of C; with respect t0 C(;1.1) mod 2] +1
fori=1,2.

Lemma 2. Let Z; and Z, be two defining sets of constacyclic code Cy and C, with length n,
respectively, where gcd(n,q) = 1. Suppose that Z; = Z;j1 U Z is a decomposition of Z;. Then the
number of entangled states required is c = |Zy | fori =1,2.

Proof. Assume that the defining sets Z; and Z; can generate constacyclic codes C; and Cy,
respectively. Let the parity check matrices of C; and C; over F» be Hy and H), respectively.

Therefore,
_( Hn
m=( ), e

_ ( Hx
m=( ), @
where Hq; and Hjj are parity check matrices of constacyclic codes generated by defining

sets with Z17 and Z5, respectively, and Hp; and Hp; are parity check matrices of constacyclic
codes generated by defining sets with Z,; and Zyy, respectively.

and

Hence,
HyHE = ( HyH},  HiHj, ) (23)
2 HipHj,  HipHj,
From Definition 4, it has
HuHY 0
H H} = < 110 2 ) (24)

Hence, it has ¢ = rank(HyHY) = rank(Hy1HY,)) = |Zy|. O

From Lemma 2, if C; = C;, then the following Corollary 1 can be derived easily.

Corollary 1. Let Z be a defining set of constacyclic code C with length n, where gcd(n,q) = 1.
Suppose that Z = Zy U Zy is a decomposition of Z. Then the number of entangled states required is
c=|Zy|, where Zy = ZN(—qZ), Zy = Z\ Zy, and —qZ = {—qx|x € Z}.

2 2
Lemma 3 ([11]). Let n = % and s = qz—ﬂ, where q is an odd prime power of the form
2Bm + B+t or 2Bm + B — t, m is a positive integer, and t > 2 is even, such that B = > + 1.
+1 ‘ ‘

Then Cs = {s}, CH%n = {s+n}and C;_(g1)i = {s — (9 +1D)i,s + (9 + 1)i} for
1<i<3-1L

Lemma 4. Let n = g5 = '72%1 and r = q+ 1, where q is an odd prime power of the
form 2Bm + B+ t, m is a positive integer, and t > 2 is even, such that p = t> + 1. If C; and
C, are two q*-ary constacyclic codes whose defining sets are given by Z; = UfLOCS,(q 41)i and
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ZZ_U C -1,

then Cl hC (.

;» respectively, where 0 < §; < q%’?t and %’?{t <o <1

—(q+1)

m

Proof. If C; and C; are two g?-ary constacyclic codes whose defining sets are given by

Z1 = U‘s1 0Cs—(g+1)iand Zp = UinCs_(qH)i from Lemma 3, respectively, where 0 < §; <
1= ﬁﬁ nd H’Z f <9 < % —qé1 — 1, then C; and C; are two MDS constacyclic codes
with parameters [n,n — 261 — 1,251 + 2] 2 and [n,n — 26, — 1,26, + Z]qz, respectively, from

Propositions 1 and 2. For 0 < §; < q_ffg_t and %%_t <é < ‘722—73'1 —qd1 —1,ithas Cf” C Cs.
In fact, it only needs to show that Z, N —qZ; = @. If Z, N —qZ; # O, then there exist

two integers &) and &} such that s — 78y, = —q(s — r6})q%* mod rn for k € {0,1}, where
t +p—t 2+1
0 <o) < - andqu% <o <Ll g 1.
Ifk = 0 ithas s — r&é = —q(s —rd)) = —qs +qrdy mod rn, i.e., s = & + qd} mod n.

Since 1 2’?3 <&, +q8 <1 2;1 — 1, which is in contradiction with s = &} + gé] mod n.

Ifk=1,ithass —rdy = —(s — 10])g> = —qs + rq>6] mod rn, ie., s = & — qé} mod n.

o 2
If 5{ = 0, then it has (5§ = s mod n that is in contradiction with ’H% f < 5’ < 1 +1

q67 — 1. Now we consider that s 4+ g&] = &, mod n for1 < 8] < 1Pt and L1 < 5 <

26 26
‘722—;1 — g6} — 1. Since s + o} = & mod n is equivalent to ‘722—;1 + 8] = &, mod n, we have
qzzl +g<1 jgl +4q0) < 1 -gl 4 q(q_%_t) = Zqz—(g;t)q-i-l, which is in contradiction with

flJrzﬁﬁ b<d < M_q(s’ —-1< q;l —q—1 Therefore,ithascllh Cé. O

2 2
Theorem 2. Let n = % and s = T where g = 2pm + B+ t is an odd prime power

with a positive integer m, and t > 2 is even, such that f = 24+1. For0 < §; < q_Z%_t and

qzﬁﬂft <6 < q;—;l —qé1 +vq — 1, then there exist asymmetric EAQMDS codes with parameters
nn—2(0+d+1—-0v),200+2/251 + 2;20]| 2, where 0 < v < 4.
q

Proof. If C; and C; are two g?-ary constacyclic codes whose defining sets are given by

Z1 = UfIZOCS,(qH)i and Z, = UinCS,(qH)i, respectively, where 0 < §; < q}/?;t and

'7+2%_t < 9 < ‘722—;;1 — g1 +vq — 1, then C; and C, are two MDS constacyclic codes
with parameters [n,n — 261 — 1,261 4 2|2 and [n,n — 26, — 1,26, + 2] », respectively, from

Propositions 1 and 2. From Lemma 4, it has that ClL " C Cyfor0 < 6 < quﬁﬁ*t and
q+2[z;t < < % — gé1 — 1, which implies that v = 0. At this point, the asymmetric
EAQMDS codes degenerate into asymmetric quantum MDS codes.

Now, we will discuss the case 1 < v < J;. The range J, can be divided into some

intervals with Iy = [qzlf;t,qzz—;l —q61—1], [ = [1122721 - q51,q%l —qh+q—1], L =
2 2
[T~ 4{;1 q51+q,ﬁ—q51 +2q-1], = 2?;1 —q51+2q,%—q51+3q—1],...,IU =

[q 241 —q01 + (v — )q, T —qé1 +vq — 1], where 1 < v < §;. From Lemma 2, it only

needs to show that |Z11| = |Z1 N (—qZy)| = 2v (or |Zy| = |Za N (—qZ1)| = 2v).
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Since
- qu N Zz
Q( C —(q+1) z) N (U Cs (q+1)1)
—q(UILyCs —(g+1)i) N (UiZo Yjer, Cs—(g+1);)
EI( L0Cs—(g+1)i) N (U
qu al®

Cs— (g+1)i

(25)
]EIo s—(g+1)j U (U]'Ehcs—(q-i-l)j) u...u (UjEIst—(q+1)j))

1
= (- jel,C q+l)j)) U(—qUl, Cs—(g+1)i N (UfEIl Csf(q+1)f))u
(_q i:O sf(qul)i N (UjEIvCS*(q+1)j))
Here, we will discuss the above equation specifically for different cases, as follows:
(1)Ifo =1, then I; = [W —q01, Tt — g1 +q—1],

701))
7> +1
2p

=s—(q+1)s+(g?—1+g+1)

2
~qts— g+ (T -

—(g+1)s+s+4g(g+1)

— 7 (q+1)5

41

2
—s—(g+1)s+ (g+1) 1 (26)

2 2
+1 +1

(7 + 1)

s— (g+ 1)

s+ (g +1)6ymod(q+ 1)n,

and
7 +1
2B

=—(+1Ds+s—q(g+1)

)

7> +1

2p
s—(q+1)s—(g>—1+4g+1)

—q(s+ (9 +1)(

+q (g +1)4
g +1
2B
2
A @
7> +1
T 1)
2
Es—(q+1)(—(q +12>'8(ﬁ+1)+51)
=s—(q+1)6ymod(q+1)n,

which implies 7qcsf(q+l)(‘722—§17q§1) Cs—(g+1)6,

+ (P +1-1)(g+1)5

=s—(g+1)s—(g+1)

Z+1
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Moreover,

— (U 4Cs(g410) N (Ujen,Cs_(g41))

2
%—l](sl-l-q—l

—4(UiLoCor gy N (U 5 )

~(g+1) Y E,

]:W_q‘sl'f‘l s—(q+1) (T35 zﬁ —q61)
5 ﬁ —q01+4—1 (28)
= (—q(ULoCo—(g+1)i) N (U]:%_q(lerl s—(g+1)j))
UL Cotr) V€, )
From Lemma 4, we can see that
(UL Coni) N, (B )~ Comtgan (B g @)

Hence, Formula (28) is equivalent to

1
- q(Uilzocs—(q+l)i) N (Uj611 Cs—(q+1)j)

—a(U% . ﬁ .
q(Uzzocs—(q-i-l)l) n (U] qzﬁ oy 41 CS—(‘H‘l)]) U CS,(q+1)(‘7227E1,q51)'

zﬂ —q01+q-1

. . 12
Next, we will prove that if —q(U;L;C;s_(541)i) N (U]:Lﬂ, .
2 991

C (q+l) ) @hOldS,

then the equation

5
—4(UiLoCs—(g+1)i) N (Yjen Cs—(g11)j) = C s—(g+1) (5 2/5 —q61) G

is true.
ge+1 +1

s 25 —901+4—1
Assume that —g(U:L,C._ JN (U
q( i=0*s (qul)l) ( ]:1727;1 7@(514»1

two integers, &/ and &}, such that s — (9 +1)85 = —q(s — (9 + 1)8})g* mod (q + 1)n for
k€ {0,1}, where 0 < §] < %tandq+1—q(5’+1<5’<u—q(5’+q
Ifk=0,ithass — (g + 1) =—q(s—(q+ 1)5’) = —gqs+q(q+1)d] mod (q +1)n,ie.,
s = &) + q6} mod n. Since 1 ﬁ lyi<ah+ gy < 1 El + g — 1, which is in contradiction
with s = & + g6} mod n.
Ifk=1,ithass — (g+ 1), = —(s— (g +1)8))q°> = —qs + (9 + 1)4°8] mod (g9 + 1)n,
ie,s = 6, —qd) mod n. If §; = 0, then it has 8, = s mod n that is in contradiction with

ngl +1<6, <1 El +q — 1. Now we consider that s + g6; = &) mod n for1 < ¢} < quﬁﬁft

and 1 El -6 +1 <0, < % — g0} +q — 1. Since s + gd] = &, mod n is equivalent to
40} + Tt = 8 mod n, ithas T 4 < T4 gsf < T 4 g(fty = 2B rtat
which is in contradiction with % —q0] + 1 <8< ;1 q8; + g — 1. Therefore, it has

Co_(g41)j) # O, then there exist

1
Tt 40141

2
& B —
_q(UilzoCsf(tﬁl)i) N (Ui:qzz—;l—q&l—&-l Csf(q+1)i) = Q.

From the above discussion, we can see that Formula (31) holds. Hence, the number of
entangled states required is 2 when v = 1.
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[q 241

(2) Here, we prove the case for I, = — g0+ (v—1)g, '422—;1 — 01 +vg — 1], and

the same way can be proven for other cases as well. If I, = [‘122—;1 — g1+ (v—1)q, 2 221 —

q61 +vg — 1], then

P +1
2p

=—(+1)s+s+4g(g+1)

—q(s = (g +1)( +q(v—1)))

7 +1
2B

s—(q+1)s+(q —1+g+1)——

—q*(q+1)(6 —v+1)

P+ 1
2p
2

q2;1+(q+1)((51—v+1) ©2)
P+l P +1
A RR AR
2 2
=5 (g DE ;ﬁl)t

=s+(q+1)(61 —v+1)mod(q+1)n,

—(PP4+1-1)(g+1)(01 —v+1)

=s—(g+1)s+(g+1)

s—(g+1)(

—(51—1—0—1)

and

g +1

2B
=—(g+Ds+s—q(g+1)

—q(s+ (g +1)( —q61+4(v—1)))

7> +1
2p

=s—(g+1)s—(*—1+qg+1)1—=

+q%(g+1)(6 —v+1)

7 +1
2p
2

”’2;1 (gD (@E -+ 1) (33)

g +1
2p

2
=5 g+ BT “Z)ﬁ(ﬁ“)

=s—(q+1)(61 —v+1)mod(q+1)n,

+ (P +1-1)(g+1)(6 —v+1)

=s—(g+1)s—(g+1)

=s— @+ 15—+

+(51*U+1)

+(51—U+1)

S*(q+1)(q22%1*q51+q(v71)) = Co—(g+1)(61-0+1)-

which implies —gC

Moreover,

o
—qUl, Cs—(g+1)i N (Ujelvc 7(q+1) )

o1 ﬂ —40toq—1
—g(U% C._ i) MU Cs- '
9(UiLoCs—(gn)i) N ( ]:%fqoﬁ(vfl)q (a1
o1 5 —aotog-1
—g(U% C._ i) MU
9(UioCs—(g+1)i) ( ]:L;lfqoﬁ(vfl)qﬂ

Cs—(g+1)j Y Cs_( ) (34)

2
g+1) (T —q81+(0-1)q)

P2+
5 —7qz51+vq 1
= (_q(Uj]:()Cs—(q+l)i) n (U ﬁ

j= T o+ (0-1)q+1 s=(g+1)7)

U (=9(U70Co(qimi) NC, )

(q+1)('7 L g61+q(0-1))
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From Lemma 4, we can see that

01
—q(ULCo_(s1yi) N C = C, .3
TVizCo-qrn) Vo B gsiagom1) T o)ty O

Hence, Formula (34) is equivalent to

- q(Uflzocsf(q+1)i) N (Ujelgc —(g+1)j)
36)
B 5 2/3 —qo1+vq—1 (
—q(U Co_(papyi) N (U C,_ e )
9(UiZoCo—(g+1i) N ( = g6, 4 (o-1)g 41 ) 9 C gt g (o)

ngl —qd1+vq—1

, A , ) =
Next, we will prove that if —g(U;LoCs_(541)i) N (U]:%7q6]+(071)q+1CS_(q+1)]) =0

holds, then the equation

_q(uflzocsf(qqtl)i) n (Ujelvcsf(q+1)j) = (37)

2
s—(q+1) (L5 —qd1+q(v-1))
is true.

T2 g6 +vg—1
Assume that —q(U?IZOCS_(qH)i) N (U ﬁ q e
=1 ﬁ —4o1+(v=1)g+1

exist two integers ] and &} such that s — (q 4+ 1)8, = —q(s — (q + 1)8])¢* mod (q + 1)n for
ke {01}, where0 < &) < Tf~ and 551 — 8] + (v - 1)g+1 < 8 < T — 48] +0g — 1.
Ifk=0,ithass — (g + 1)2(5§ =—q(s—(q+1)d]) = —gqs + q(q +1)6] mod (g +1)n,

P+1

Le., s =0y +qd) mod n. Since T35~ + (v~ 1) +1 < 5, +¢4; < ‘72;1 +vg — 1, which is in

Cs—(g+1)]) # O, then there

contradiction with s = &, + g6} mod n.
Ifk=1,ithass — (¢ +1)0y = —(s — (3 +1)6))q> = —gqs + (9 + 1)¢°5] mod (g + 1)n,
ie,s =06, —qd) modn.If 6] = 0, thenithas ) = s mod n that is in contradiction with 0722—;;1 +

(v—-1)g+1<9 < ‘72;1 + vq — 1. Now we consider that s + ] = &5 mod n for 1 < ] <

2% andng1 g0, + (U—l)q+1<5’<M—q(5’+vq—1.51nces+q(5’:(S’modn

25
is equivalent to ngl + 67 = 6, mod n, it has T~ 241 +q9< T H +g6) < L= H + (5 t) -

25
%, which is in contradiction with % - q(SI (U —1)g+1< 5/ <1 Jﬁrl ‘7‘51 +
_ 21

C,_ ) =0.
j= —ah+(v-1)9+1 ° (q+1)])

According to the above discussion, the number of entangled states is 2v, where
0 < v < 4;. Therefore, we can see that asymmetric EAQMDS codes with parameters [[1, n —
2(61 + 62 +1—10),20, +2/261 + 2;20]] > exist from Theorem 1 and Proposition 3. [

61+ 1
vq — 1. Therefore, it has —q(Ufl:OCS_(qH)Z.) N (U 2ﬁ —go1+oq—

Example 1. Let t =2and g =17, thenn =58,0 <61 < 1,2 <6, <29 —1761 +17v — 1 and
0 < v < 61. Some asymmetric EAQMDS codes with ¢ = 2 derived from Theorem 2 are listed in
Table 1.
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Table 1. Sample parameters of asymmetric EAQMDS codes constructed from Theorem 2.
q n [[n, K, dzldy; c]]
17 58 [[58,2,56/4;2]]17
17 58 [[58,4,54/4;2]]12
17 58 [[58,6,52/4;2]]17
17 58 [[58,8,50/4;2]]17
17 58 ([58,10,48/4;2]]17
17 58 ([58,12,46/4;2]]17
17 58 ([58,14,44/4; 2))17
17 58 ([58,16,42/4;2]]172
17 58 ([58,18,40/4;2]]17
17 58 ([58, 40, 14/4 2]}
17 58 ([58,42,12/4;2))17
17 58 ([58,44,10/4;2]]172
17 58 [[58,48,8/4;2]]12
17 58 [[58,52,6/4;2]]17

Similar to Lemma 4 and Theorem 2, we can also obtain the following Lemma 5 and
Theorem 3.

Lemma 5. Letn = 1 ;1 and s = 1= + , where q is an odd prime power of the form 2m + ,B —t,
m is a positive integer, and t > 2 is even, such that B = t> + 1. If C and Cy are two q*-ary
constacyclic codes whose deﬁning sets are given by Z1 = U‘s1 0Cs—(g1)i and Zp = Ufi 0Cs—(g+1)ir

respectively, where 0 < §; < %H and qﬂf;t <5< 2 ﬂ —qd1 — 1, then 01 " CCy.

_ P4l ! o . .
Theorem 3. Let n = 5 and s = 15—, where ¢ = 2Bpm + B — t is an odd prime power

with a positive integer m, and t > 2 is even, such that f = 241. For0 < 6 < 5 '?t and

%ﬁ;t <5 < % — qé1 +vq — 1, then there exist asymmetric EAQMDS codes with parameters

[[n,n —2(1 + 62 +1—0),20p +2/261 + 2;20]] o, where 0 < v < 4.

Example 2. Lett =2and g =13, thenn =34,0 <61 < 1,2 <6 <17 —-1361 + 13v — 1 and
0 < v < 1. Some asymmetric EAQMDS codes derived from Theorem 3 are listed in Table 2.

Table 2. Sample parameters of asymmetric EAQMDS codes constructed from Theorem 3.

q n [[11, k,d; C]]qz
13 34 [[34 2,32/4; 2]]132
13 34 [[34 4,30/4; 2]]132
13 34 [[34 6,28/4; 2]]132
13 34 [[34 8,26/4; 2]]132
13 34 [[ 4,10,24/4; 2“1
13 34 [[34. 12,22/4; 2“132
13 34 [[34, 20,14/4; 2“132
13 34 [[34, 22,12/4; 2“132
13 34 [[34, 24,10/4; 2“132
13 34 [[34, 26,8/4; 2]]132
13 34 [[34, 28,6/4; 2]]132

_ AP+ o Pl — _ _ '
Lemma6. Letn = =——~,s = *5-andr = q+1, whereq = am+a+torqg=am+a—tis
an odd prime power and m is a positive integer, t > 3 is odd, such that & = t> + 1. Then Cs = {s},

1 . . .
Cs+#n = {s+ T-n}and Coqri={5s—(q+1is+(@+1)i}for1 <i<j—1
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Proof. Since s=1+(q+ 1)% and s + #n =1+ (q+ 1)(q2;1 + %), which implies

5,5+ 15~ 'n € Op. Since sg? = s(4?+1—1) = s mod (q+ 1)n and (s + %111)(12

sq> + (E’Jrl > +1-1)=s+ #n mod (g +1)n, it follows that Cs = {s} and C__ 411,
2

{s+ ‘7;—171}. For1<i<7—1ithasC,_(,11) = {s— (9 +1)i,;s+ (9 +1)i} from (s — (7 +
1)i)g? = sq* — (q—i—l)'q =s+(qg+1)i—(g+1)i(g*>+1) =5+ (g+1)imod(q + 1)n and

(s+(q+1)i)g> =s¢*+ (g+1)ig? =s— (g+1)i+ (g +1)i(¢> +1) =s — (g + 1)i mod(q +
1)n.

Moreover, we show that C;_ ;. 1); = {s — (9 + 1)i,s + (¢ + 1)i} is disjoint for 1 <i <
5 — 1. In fact, we assume that two integers exist, i and j, 1 < i # j < 5 — 1, such that
Cs—(g+1)i = Cs—(g+1)j and then we haves — (7 +1)i = (s — (9 + 1)j)¢% mod (g + 1)n for
ke {0,1}.

If k =0,wehaves — (g +1)i =s— (g +1)j mod (g + 1)n, which is equivalent to i = j.
It is in contradiction with 1 <i # j < 5 — 1.

Ifk =1, wehaves — (g +1)i = s+ (g+1)j mod (g + 1)n, which is equivalent to
i+j = nmod n. Itisin contradiction with 0 < i+ j < n — 2. Therefore, the result
follows. [

2

Lemma 7. Let n = w,s = £+ + andr = q+ 1, where q = zxm—i—zx—l—tlsanoddprzme
power with a positive integer m, and t 2 3 is odd, such that & = t2 + 1. If Cy and C, are two q*-ary
constacyclic codes whose defining sets are given by Z1 = uf;ocs (q+1)i and Zp = Ufi 0Cs—(g+1)ir

_ _ 2
respectively, where 0 < & < th and %"t <6 < % —qd1 — 1, then C1 " C C,.

Proof. If C; and C; are two g2-ary constacyclic codes whose defining sets are given by
Z1 = uflzocs_(qﬂ)i and Z, = UinCs_(qH)i from Lemma 6, respectively, where 0 <
0 < '%t and %H <6 < Lﬁ%l — gd1 — 1, then C; and C; are two MDS constacyclic
codes with parameters [n,n — 267 — 1,261 + 2] 2 and [n,n — 25, — 1,20, + 2] », respectively,
from Propositions 1 and 2. For 0 < §; < 1— ! and 'H“ <, < qzljl —gd1 — 1, it has
Cf‘h C C;. In fact, it only needs to show that Zo N qu =Qfor0 < 4§ < qT_t and
%H < b < f%l —qé — 1. If ZyN —qZ; # @, then there exist two integers ] and
o such that s — 8y, = —q(s — r8])q?* mod rn for k € {0,1}, where 0 < & < '%t and
T <oy < T - gop -1

If k =0,ithass —rd), = —q(s — rd}) = —qs +qrd]y mod rn, i.e., s = & + qd} mod n.
Since q+2‘7t < &b +qd) < q2;1 — 1, which is in contradiction with s = & + g6} mod n.

Ifk=1,ithass — 16y = —(s — r8})q> = —qs + rq>5] mod rn, i.e., s = & — q6] mod n.
If & = 0, then it has & = s mod n that is in contradiction with 7%= < < ”72+1 -1

q+txt<5/<q+1
®

Now we consider that s +¢d] = &) mod n for1 < 6] < 1= and
q +1

g8y — 1. Since s + g = & mod n is equivalent to

2 2 2 _ —
has T 4 < TH P T (T = qo‘i“, which is in contradiction with

Lff_t <o <= +1 —q6) —1< f%l — g — 1. Therefore, it has Cllh CC. O

1 = 0% mod n; moreover, it

2 2
Theorem 4. Let n = %7“) and s = qz—ﬂ, where g = am + « + t is an odd prime power with

a positive integer m, t > 3 is odd, such that « = t> + 1. For 0 < &; < q;t and L’H <d <

1= H — qé1 +vq — 1, then there exist asymmetric EAQMDS codes with parameters [[n n—2(6; +

(52+1—v) 26, +2/261 +2; 20]]qz,wher60 <v< i 1,

Proof. If C; and C; are two g2-ary constacyclic codes whose defining sets are given by Z; =
UflzoCs_(,Hl)i and Z; = uf;ocs_(q+1)i, respectively, where 0 < §; < qT_t and %H <o <
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= H —gd1 +vq — 1, then C; and C; are two MDS constacyclic codes with parameters |1, n —

2(51 1,261 + 2} 2 and [n,n— 26, — 1,26, + 2] 2, respectively, from Propositions 1 and 2.

From Lemma 7, we can see that Cf‘h CCyfor0<4 < %t and %H <4 < ﬁ%l —q61—1,
which implies that v = 0. At this point, the asymmetric EAQMDS codes degenerates into
asymmetric quantum MDS codes.

Now, we consider the case v > 1, and the range 52 can be divided into some intervals

2 2
with [p = [0 5 g5 1), [w L b= [T5 -
2
q(Sl—i—q,q: —1],...,IU—[
1<o<
In order to obtain the number of entangled states, it only needs to show that |Z11| =
|Z1 N (—qZy)| = 2v (or |Zy1| = |Za N (—qZ1)| = 20v) from Lemma 2. Hence,

q+1

— 1], where

—qo1 + ( 1)!1,

—qZ1N Z2

‘7( —(g+1)i ) N ( —(g+1)j )
= 11( —(g+1)i) N (UZg Yjer, Co—(g41);) (38)
= <—q ui ~ g1 N Uen, Co—(gan))) U (=3 Uity Co—(gnyi N (Ujer, Coo(ga1)) )Y

U(—q Ui:O Cs—(g+1)i N (UjEIstf(q+l)j))

Here, we only discuss the case I,(v > 1) as follows; other cases can be discussed in a
similar manner.

IfIz;:[q+1 01 4—(0—1)qq+1 g1 + vq — 1], then

7> +1
14

—qd1+ (v —1)q))
7> +1
) [

—q(s = (9 +1)(

— @+ 1) (0 —v+1)
Es—(q+1)s+(q2—1+q+l)f7+1—(qz—i—l—l)(q—i—l)(él—v—i—l)

2
1 +1+(q+1)(51—v+1) (39)

=—(g+1Ds+s+q(g+1

s—(q+1)s+(g+1)

241 g2 +1
Es—(q+1)(%—%—§1+v—l)
24 1) (-2
ES—(q—i—l)(%—&—l—v—l)

=s+(q+1)(61 —v+1)mod(q+ 1)n,

and
2

g+ g+ DT — g5 +q(0 - 1))

2
= (g Vs +s g+ DT L P -0 +1)
7 +1
=s—(g+1)s—(g+1) " —(g+1)(6—v+1) (40)
2 2
Es—(q+1)(¥+u+5l—v+1)
2
Es—(q—l—l)(%om—l—él—v—b—l)

=s—(q+1)(61 —v+1)mod(qg+1)n,

which implies _quf(qul)(qza—quéﬁ»q(vfl)) = Cs—(441) (61 —v+1)-
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Moreover,
1
—qULo Co—(g+1)i N (Yjer,Co—(g41)7)
(Lt C )N, & C )
= —qWMi=%s—(g+1)i i wfqépt(v 1) s—(q+1)j
2
— a1 ) )
= Q(UZ:OCS—(q—«—l)z)m(U] wiqol+(v 1)q+lC —(q—i—l)]UCs_(q_'_l)(m_q& +o-1)g ) (41)
2
1
= (—g(Ul C,_ )Ny _ ;
(—q( i—=0%s (q—l—l)z) ( i qﬂiq(ler(v D1 Cs (q+1)]))
—a(U% .
A2 G ) NC 2 g g0-1))
From Lemma 7, we can see that
_a(U% . —
q(Ui:OCsf(qul)z) n CS—(q—I—l)(qzai—q&l-&-q(v—l))) Csf(qul)(élvarl)‘ (42)
Hence, Formula (41) is equivalent to
)
—-q Ujlz() Cs—(q+1)i N (UjEIvC —(q+1)j)
(U214 gen) MU Juc w
= —q(U; _ )Ny UC,_ _ .
J\Vi—p“s—(g+1)i = q+1 g+ (o—1)q+1 s—(q+1)(6,—v+1)
5 2
Next, we will prove that if —g(U:! C._ )N (U = @ holds,
p v q( i=0"s (l]+1)l) ( m_qél_‘r(?} 1)q+1)
then the equation
o
—q UL Co—(g+1)i N (UjetyCo—(g+1)j) = Co—(g+1)(61—0+1) (44)

is true.
—q151+vq—1 C
—qé1+(v—1)q+1
exist two integers ] and &} such thats — (g + 1)(52 = —q(s — (9 +1)8))g% mod (q+ 1)n for
k € {0,1}, where 0 < & < =t and T+ +(o-1)g+1 <8< T _gs 4 og—1.

Ifk =0,ithass — (g +1)8, = —q(s — (9 +1)0]) = —gs+ qrd}; mod (q+ 1)n, ie.,
s = ) +qd} mod n. Since q+ +(w—-1)g+1 < 8 +q6) < f%l+vq—1, which is in
contrad1ct10n with s = &) + q(5’ mod n.

Ifk =1,ithass — (q +1)0y = —(s— (q+1)0})¢® = —qs + rq>5] mod (g9 + 1)n, ie.,
s = 8y, —qdy mod n. If 8 = 0, then it has 65 = s mod n that is in contradiction with
Tl (o-T)g+1< 8 < £

2 2
& <Tland T g 4+ (v—1)g+1 <8, < TH
q-i-l

2
o —
Assume that —q(U;L,C,_(541)i) N (U o

—(g+1)j) # ©, then there

— 1. Now we consider that s 4 qd] = & mod n for 1 <

1+ovg—1 Sinces+q5’ = ¢, mod n

is equivalent to q +1

+ qd} = 6} mod n, moreover, it has q;ﬂ +g< T +1 +q0; <
—t 202 —tg+1 241 74“1
(=) = %, which is in contradiction with -~ — qéi +(v—-1)g-1<8, <L —

)

—gqé1+vq—1
== “ —gé1+(v— 1)q+1
According to the above discussion, the number of entangled states is 20, where 0 < v <
. Therefore, we can see that asymmetric EAQMDS codes with parameters [[n,n — 2(d1 +
+1-10),20, +2/261 +2;20]] » exist from Theorem 1 and Proposition 3. [

2
. 5 =+l
q(07 — v) — 1. Therefore, it has —q(U;L,Cs_ (441)i) N (U s—(g+1)i) = D.

o
L

o

N

Example 3. Let t = 3and q = 23, thenn = 106,0 < 9y < 2,3 < <53 —-236; +23v—1
and 0 < v < 1. Some asymmetric EAQMDS codes derived from Theorem 4 are listed in Table 3.
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Table 3. Sample parameters of asymmetric EAQMDS codes constructed from Theorem 4.

q n [[n, K, dzldy; c]]

23 106 ([106,98,8/4;2]]53:
23 106 [[106,96,10/4; 2]} 52
23 106 [[106,94,12/4; 2] 52
23 106 [[106,92,14/4;2]] 52
23 106 [[106,14,92/4;2] 5
23 106 1106, 12,94/4;2] |52
23 106 [[106,10,96/4;2]] 52
23 106 ([106,8,98/4;2]] 3
23 106 [[106,6,100/4; 2] |52
23 106 [[106,4,102/4;2]] 52
23 106 [[106,2,104/4;2] 5

Similar to Lemma 7 and Theorem 4, we can also obtain the following Lemma 8 and
Theorem 5.
2 2
Lemma 8. Letn = 2(‘7%1) and s = %, where g = am + « — t is an odd prime power with a
positive integer m, and t > 3 is odd, such that a = t*> + 1. If C1 and C, are two q*-ary constacyclic
codes whose defining sets are given by Z1 = UfLOCS,(q 41y and Zp = UinCS,(q +1)i, respectively,

2
where 0 < 61 < ‘%tund%ﬁ't <6 < % —q01 —1,thenC1L“ C Co.
2 2
Theorem 5. Let n = z(qaﬂ) and s = 1 ;rl, where q = am + « — t is an odd prime power
with a positive integer m, and t > 3 is odd, such that « = t> +1. For 0 < §; < q%t and

THA < 5, < THL g5y 4 0g — 1, then there exi ic EAQMDS codes with
T S0 s qd1 +vq — 1, then there exist asymmetric EAQ codes with parameters

o

[[n,n—2(61 + 62 +1—10),20, +2/261 +2;20]] 2, where 0 < v < £1

Example 4. Let t =3 and q = 27, thenn = 146,0 < 9y < 3,4 < 6 <73 -2761+27v -1
and 0 < v < 1. Some asymmetric EAQMDS codes derived from Theorem 5 are listed in Table 4.

Table 4. Sample parameters of asymmetric EAQMDS codes constructed from Theorem 5.

q n [[n, k,dzldy; C]]qz
27 146 ([146,136,10/4; 2]} 572
27 146 [[146,134,12/4;2]] 572
27 146 [[146,132,14/4;2]] 5
27 146 (146,130, 16/4; 2]} 572
27 146 [[146,12,134/4;2]]5
27 146 [[146,10,136/4;2]] 572
27 146 [[146,8,138/4;2]] 72
27 146 ([146,6,140/4;2]] 2
27 146 ([146,4,142/4;2]] 72
27 146 ([146,2,144/4;2]] 72

5. Codes Comparison

I . . . 7?41 2(4?+1) i
n this paper, the constacyclic codes with lengths and = are utilized to
construct some classes of asymmetric EAQMDS codes. Current studies [75-77] indicate
that the energy relaxation time is much larger than the phase coherence time, indicating
that phase-shift errors occur more frequently than qubit-flip (or qudit-flip) errors. From
Tables 5-8, the distances of some codes constructed in this paper are far beyond g + 1,
which indicates that asymmetric EAQMDS codes constructed in this paper have greater

asymmetry and stronger capabilities for detecting and correcting phase-shift errors.
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Table 5. Comparison of asymmetric EAQMDS codes derived from Theorem 2 with those found in [18].

Codes from

Codes in [18] (k—¢)n Theorem 2 (k—c)ln
([58,6,54/4;4]] 12 0.035 ([58,4,54/4;2]] 12 0.035
([58,12,52/4; 8] ]2 0.069 [[58,6,52/4;2]] 17 0.069

([58,18,50/4;12]] 2 0.103 [[58,8,50/4;2]] 172 0.103
([58,24,48/4;16]] 2 0.138 ([58,10,48/4; 2] |2 0.138
[[58,30,46/4;20]] 72 0.172 (158,12, 46/4;2] |2 0.172
([58,36,44/4;24]) 2 0.207 ([58,14,44/4;2) |2 0.207
([58,42,42/4;28]] 12 0.241 ([58,16,42/4;2] |12 0.241
[[58,48,40/4;32]) 172 0.276 ([58,18,40/4;2]] 12 0.276
([58, 54,38/4;36]] 172 0.310 [[58,20,38/4;2] ]2 0.310
— — ([58,22,36/4;2] |72 0.345
— — ([58,24,34/4;2] )2 0.379
— — ([58,26,32/4;2]] 12 0.414
— — ([58,28,30/4;2] 1,2 0.448
— — [[58,30,28/4;2]] 12 0.483
— — ([58,32,26/4;2) |72 0.517
— — ([58,34,24/4;2] |2 0.552
— — ([58,36,22/4;2] |12 0.586
— — ([58,38,20/4;2] ]2 0.621
— — ([58,40,18/4;2] 2 0.655
— — (158,42, 16/4;2]] 1 0.690
— — ([58,44,14/4; 2] 2 0.724
— — ([58,46,12/4;2] 2 0.759
— — ([58,48,10/4;2]],2 0.793
— — [[58,50,8/4;2]] 172 0.828
— — [[58,52,6/4;2]] 172 0.862

Table 6. Comparison of asymmetric EAQMDS codes derived from Theorem 3 with those found in [18].

: Codes from
Codes in [18] (k—c)n Theorem 3 (k—c)n

([34,6,30/4;4]]13 0.059 [[34,4,30/4;2]]13 0.059
([34,12,28/4;8]] 152 0.118 [[34,6,28/4; 2] 132 0.118
[34,18,26/4;12]] 52 0.177 ([34,8,24/4;2]] 132 0.177
([34,24,24/4;16]] 132 0.235 (34,10,24/4;2]] 52 0.235
([34,30,22/4;20]] ;52 0.294 ([34,12,22/4; 2] 0.294
— — ([34,14,20/4;2]] 132 0.353

— — ([34,16,18/4;2]] 13 0412

— — ([34,18,16/4; 2] 13 0.471

— — [34,20,14/4;2]] 13 0.529

— — ([34,22,12/4;2]] 132 0.588

— — ([34,24,10/4; 2] 13 0.647

— — [[34,26,8/4;2] 12 0.706

— — [[34,28,6/4;2]]13 0.765

In addition, we compare the asymmetric EAQMDS codes constructed in this paper with
respect to the ones constructed in [18], because the codes constructed in that paper have better
parameters than the symmetric EAQMDS codes in the other current references [25,27,28].
In Tables 5-8, we compare the asymmetric EAQMDS codes constructed in this paper with
respect to the ones in [18]. Although some asymmetric EAQMDS codes constructed in this
paper have the same net rate (k — c)/n as those constructed in [18], it can be found that
the ones in [18] require the use of a larger number of entangled states, which also implies
that preparing entangled states for asymmetric EAQMDS codes in [18] require more effort
and cost. Furthermore, it can be found from Tables 5-8 that under the same conditions of
code length, d, and dy, this paper can construct some asymmetric EAQMDS codes with
higher net rates that are not achieved in [18]. Finally, the parameters of the asymmetric
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EAQMDS codes constructed in this paper are more general than the quantum asymmetric
codes constructed in [20-24,26], and some quantum codes have better parameters than the
quantum asymmetric codes constructed using generalized RS codes in [29]. For example, the
quantum codes [[96;1,93/4]],3 and [[140;2,136/4]],, constructed in [29] are compared to
the ones [[106;12,94/4]],5 and [[146, 10, 136/4; 2], constructed in this paper. The code rate
of the quantum codes constructed in this paper is higher than the code rate of the quantum
codes constructed in [29]. Here, we only consider the case where ¢ = 2. The same situation
applies to other quantum codes with the parameters where c = 2vand v > 2.

Table 7. Comparison of asymmetric EAQMDS codes derived from Theorem 4 with those found in [18].

Codes from

Codes in [18] (k—¢c)n Theorem 4 (k—c)n

[[106,6,102/4; 4] 5 0.019 [[106,4,102/4; 2] |52 0.019
[[106,12,100/4; 8]]»3 0.038 [[106,6,100/4;2]] 52 0.038
[[106,18,98/4;12]] 55 0.057 ([106,8,98/4;2]] 3 0.057
[[106,24,96/4;16]] 3 0.076 [[106,10,96/4; 2] 52 0.076
[[106,30,94/4; 20]] 32 0.094 [[106,12,94/4;2]] 5 0.094
[[106,36,92/4;24]] 532 0113 [[106,14,92/4; 2] 52 0.113
[[106,42,90/4;28]] 32 0.132 [[106,16,90/4; 2] |52 0.132
(106,48, 88/4; 32]] 32 0.151 (106,18, 88/4;2]] 5 0.151
(106,54, 86,/4; 36] |32 0.151 [[106,18,86/4;2]] 5 0.151
(106,90, 74/4; 60]] 532 0.283 (106,32, 74/4;2]] 52 0.283
[[106,96,72/4; 64|32 0.302 [[106,34,72/4; 2] 32 0.302
(106,102, 70/4; 68] ]2 0.321 [[106,36,70/4; 2] |52 0.321
— — (106,38, 68/4;2]] 52 0.340

— - (106, 88,18/4; 2] |52 0.811

— — [[106,90,16/4; 2]] 52 0.830

— — [[106,92,14/4;2]] 52 0.849

— — [[106,94,12/4;2]] 50 0.868

— — [[106,96,10/4; 2] 52 0.887

— — [[106,98,8/4;2)] 3 0.906

Table 8. Comparison of asymmetric EAQMDS codes derived from Theorem 5 with those found in [18].

Codes from

Codes in [18] (k—¢c)n Theorem 5 (k—c)ln

([146,6,142/4; 4]] 2 0.014 (146, 4,142/4;2]] 2 0.014
[[146,12,140/4; 8] ]2 0.027 [[146,6,140/4; 2] 72 0.027
([146,18,138/4; 12] |72 0.041 [[146,8,138/4;2]] 172 0.041
(146,24, 136/4;16] |2 0.055 [[146,10,136/4;2) ] 0.055
[[146,30,134/4;20] |2 0.069 [[146,12,134/4;2]] 5 0.069
(146, 36,132/4; 24] | 2 0.082 [[146,14,132/4;2]| 2 0.822
[[146,42,130/4; 28] |2 0.096 [[146,16,130/4;2]] 5 0.096
[[146,126,102/4; 84]] 0.288 [[146,44,102/4;2]] 572 0.288
[[146,132,100/4; 88]] 72 0.301 [[146,46,100/4;2]] 57 0.301
[[146,138,98/4;92] |- 0.315 ([146,48,98/4;2)] 12 0.315
(146,144, 96,/4; 96] | o 0.329 [[146,50,96/4;2]] 172 0.329
— — ([146,52,94/4;2]] 2 0.343

— — ([146,54,92/4;2]] 2 0.356

— — [[146,138,12/4;2]] 5 0.932

— — [[146,140,10/4;2]] 57 0.945

— — (146,142, 8/4;2] |2 0.959

[ ]

[146,144,6/4;2]],7 0.973
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6. Conclusions and Discussions

In this paper, we construct four families of asymmetric EAQMDS codes from con-
stacyclic codes. We find that pre-sharing a certain number of entangled states between
communicating parties allows asymmetric QEC codes to be no longer constrained by the
Hermitian dual-containing condition. As a result, this can enhance the error correction
capabilities of asymmetric EAQMDS codes from Theorems 2-5. Although the finite fields
used to construct asymmetric EAQMDS codes in this paper are larger than the ones used
in [18], this paper obtains some asymmetric EAQMDS codes with a small number of en-
tangled states that cannot be constructed in [18]. How to construct asymmetric EAQMDS
codes with good performance on small finite fields is the next important issue that we need
to explore. Although the Hull of generalized RS codes has been used to construct EAQMDS
codes [47], the method of the decomposition of the defining set is more intuitive and clearer.
If one wants to obtain more asymmetric EAQMDS codes with other entanglements, one
can use the same method in this paper to obtain them. Finally, exploring how to use
combinatorial methods to obtain asymmetric EAQMDS codes with flexible entangled states
presents an intriguing area for future work.
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