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Abstract
The (twice-contracted) second Bianchi identity is a differential curvature iden-
tity that holds on any smooth manifold with a metric. In the case when such
a metric is Lorentzian and solves Einstein’s equations with an (in this case
inevitably smooth) energy–momentum–stress tensor of a ‘matter field’ as
the source of spacetime curvature, this identity implies the physical laws of
energy and momentum conservation for the ‘matter field’. The present work
inquires into whether such a Bianchi identity can still hold in a weak sense
for spacetimes with curvature singularities associated with timelike singular-
ities in the ‘matter field’. Sufficient conditions that establish a distributional
version of the twice-contracted second Bianchi identity are found. In our
main theorem, a large class of spherically symmetric static Lorentzian met-
rics with timelike one-dimensional singularities is identified, for which this
identity holds. As an important first application we show that the well-known
Reissner–Weyl–Nordström spacetime of a point charge does not belong to this
class, but that Hoffmann’s spacetime of a point charge with negative bare mass
in the Born–Infeld electromagnetic vacuum does.
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1. Introduction and main results

1.1. Motivation

Einstein’s equations for the spacetime metric3 g = (gμν) of a 3 + 1-dimensional Lorentzian
manifold (M, g) read

R − 1
2

Rg =
8πG
c4

T[F]; (1.1)

here, R = (Rμν) denotes the Ricci curvature tensor of the metric g, R = gμνRμν is its scalar
curvature, G is Newton’s constant of universal gravitation, and c is the speed of light in vacuum.
Moreover, T = (Tμν) is the energy–momentum–stress tensor of any ‘matter field’ F in (or
associated with) the spacetime. By using this hybrid terminology of ‘matter field’ to cover
models of continuum fluids, elastic solids, etc., as well as the electromagnetic field, we follow
common practice in the general relativity community; from now on, we will drop the scare
quotes. Einstein’s equation (1.1) often need to be complemented by evolution equations for
the matter field F.

For any sufficiently regular Lorentzian metric (classically, g ∈ C3), the (twice-contracted)
second Bianchi identity

∇μ

(
Rμ

ν −
1
2

Rgμ
ν

)
= 0 (1.2)

holds; here,∇ denotes the Levi-Civita connection associated with g. As a consequence, for any
solution (g, F) of (1.1) which is regular enough so that this equation, as well as the equation
obtained by differentiating both sides of (1.1), is satisfied pointwise, the identity (1.2) implies
the matter field’s local conservation laws of energy–momentum

∇μTμ
ν = 0. (1.3)

Matter field equations must be compatible with (1.3), therefore.
If F represents a perfect fluid with barotropic equation of state, then for sufficiently regu-

lar evolutions (e.g. prior to any shock formation) the space component of (1.3) is part of the
equations of the fluid evolution, to be complemented merely by the continuity equation for
the fluid; the time component of (1.3) is then redundant. On the other hand, if F represents a
source-free electromagnetic field, then (1.3) does not furnish field evolution equations; they
need to be stated separately, compatible with (1.3).

In a series of influential papers, [14–16], Einstein and Infeld (EI), originally joined by
Hoffmann (EIH), claimed that the field equations of general relativity theory, (1.1), coupled
with the Maxwell–Lorentz evolution equations for the electromagnetic fields, determine the
equations of motion of matter modeled atomistically as composed of charged point particles,
which they identified with point singularities in spacelike slices of a spacetime. They actually
discussed mostly the special case of uncharged particles; a follow-up paper by Infeld’s student
Wallace [45] supplied more details about their claim concerning charged point singularities.

3 The signature of a Lorentzian metric g is (−,+,+,+). Greek indices μ, ν etc denote the components 0, 1, 2, 3 of a
tensor defined on the spacetime, with respect to a local coordinate system (yμ)3

μ=0; however, Cartesian coordinates are
denoted (xμ)3

μ=0. The coordinate vector fields are written ∂μ = ∂
∂yμ . We use the Einstein summation convention. To

facilitate discerning the physical meaning of our results, we retain G and c.

2



Class. Quantum Grav. 38 (2021) 185001 A Burtscher et al

The idea that the world lines of point particles should be replaced by one-dimensional time-
like singularities of spacetime seems to go back to Weyl [46]. Already in Weyl’s writing, it is
clear that such singularities are not subsets of the spacetime4. Thus, in this setup the ‘world line
of a particle’ is not a path in spacetime but a timelike one-dimensional singularity of space-
time—or put differently: an interior boundary of the spacetime—which needs to be determined
along with the spacetime. If this setup can be consistently implemented into general relativ-
ity, it produces spacetimes with one-dimensional timelike curvature singularities that have the
appearance of world lines of charged point particles, which are the sources and sinks of the
electromagnetic fields living in this spacetime. This is different from the usual textbook story
of ‘test particle’ motion which, when uncharged, is given by a timelike geodesic in a spacetime
that is defined independently of the particle’s existence.

Although non-rigorous and full of questionable assumptions, and with conclusions which
cannot possibly be true in the sweeping generality in which they were stated, the EIH papers
have become the template for many formal follow-up calculations (for a survey see, e.g. [38]),
in particular the computation of gravitational wave signals and their feedback on the motion
of the sources (binary neutron stars or black holes) used for the interpretation of the LIGO
and VIRGO gravitational wave data [4]. As far as we can see, existing rigorous works on the
problem of motion for ‘small bodies’ in general relativity (we mention in particular [11, 17,
19–22, 39, 42]) do not yet allow a definitive assessment of the merits of some of the key ideas
of the papers by EIH, and by Wallace, on the motion of what nowadays would be called naked
singularities. The purpose of the present paper is to take one step further toward this goal.

A rigorous assessment would require one to consistently formulate an at least locally well-
posed joint evolution problem for spacelike slices of a spacetime, the electromagnetic field
defined on these slices, and the point singularities (in the spatial curvature tensor) that represent
the sources and sinks of that field. Moreover, if the EIH and EI claims have any merit, then the
equations of motion for the point singularities in the spacelike slices must be a consequence
of (1.1), coupled with Maxwell’s evolution equations for the electromagnetic fields F which,
however, need to be supplemented by a suitable law of the electromagnetic vacuum. It is clear
that such an electromagnetic law must be different from the usual Maxwell vacuum law, for the
latter leads to infinite electromagnetic field energy of the point singularity, i.e. non-integrable
singularities in the electromagnetic T that cause non-integrable curvature singularities of the
metric, as per Einstein’s field equation (1.1) (see section 3 for more details).

To get an idea of the mathematical subtleties that could be involved, suppose that such a
spacetime M with timelike one-dimensional singularities can be continuously extended (just
the manifold, not the metric) into the location of these singularities. In such a situation these
one-dimensional timelike singularities become proper particle world lines in this extended
spacetime, and it is then meaningful to express the energy–momentum–stress tensor T as a
sum of a regular and a singular part,

T = Treg + Tsing, (1.4)

with Treg sufficiently regular away from the world lines of the point-charges, and Tsing the
usual energy–momentum–stress tensor of a system of point particles which is supported only
on these world lines in a weak sense as a measure. Now, if (1.2 holds in a weak sense it then
follows that (1.3) must hold in a weak sense as well, and hence

∇ · Tsing = −∇ · Treg (1.5)

4 Some care is thus required when one talks about causal properties of singularities such as them being timelike,
spacelike, or null, since these notions can only be meaningful in a limiting sense.
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in the sense of distributions. In [29–31] it has been shown that in special-relativistic
electromagnetic spacetimes (i.e. Newton’s constant G → 0 in (1.1)) with suitable electro-
magnetic vacuum laws the total (electromagnetic) force on a charged point singularity,
and its classical equation of motion, can be extracted from (1.5). Furthermore, for the
Bopp–Landé–Thomas–Podolsky (BLTP) vacuum law, the special-relativistic joint initial
value problem for point charges coupled with the electromagnetic Maxwell–BLTP fields is
locally well-posed in time [31]. Hence it is reasonable to expect, possibly under further condi-
tions on the behavior of F, that at least some of the well-posed special-relativistic joint initial
value problems that can be extracted from (1.5) at G = 0, can be continuously extended to the
general-relativistic domain when G > 0. Which matter field models F qualify in this sense is
an important open problem; we offer some remarks in the last section.

Independent of the inquiry into suitable matter field models, the following is now clear: For
the establishment of the energy–momentum conservation law (1.5) when G > 0 that could
pave the ground toward a well-posed joint initial value problem for the spacelike slices of
spacetime, the electromagnetic and perhaps other matter fields in it, and their charged point
singularities, along similar lines as in the special-relativistic formulation mentioned above, it
is necessary that the second Bianchi identity (1.2) holds in a weak sense. Thus, the key question
is:

Under which conditions on the metric of the spacetime does the weak second Bianchi
identity

∫
M

(
Rμ

ν −
1
2

Rgμ
ν

)
∇μψ

ν dvolg = 0 (1.6)

hold for all smooth, compactly supported vector fields ψ defined on the spacetime?
Answering this question, in all its generality, is a big challenge, because a complete classi-

fication of singularities of solutions of Einstein’s equations seems currently out of reach. For
example, two timelike singularities in a given spacetime can be vastly different in terms of
strength, in the sense that a curvature invariant may blow up at two very different rates for
them.

Our strategy is to begin by restricting the key question to special families of space-
times, incrementally becoming more general. There are many explicit solutions of Einstein’s
equations where the causal structure is simple enough that everything can be worked out explic-
itly and the singular behavior can be fully analyzed; in particular, we mention distributional
approaches in [18, 23, 24, 32–34, 40, 41, 44]. Such model cases can give us clues as to what
the sufficient conditions are for a spacetime singularity to represent the world line of a par-
ticle, and which type of ‘atomic matter’ models can accommodate such singularities. We are
particularly interested in ‘electromagnetic matter’, whose electromagnetic field satisfies the
pre-metric Maxwell’s equations, complemented with a suitable electromagnetic vacuum law,
and with charged sources given by a finite number of one-dimensional timelike singularities
that are assigned an energy–momentum–stress tensor in the spirit of EIH, and Wallace.

1.2. Setting

While a number of ideas developed below are clearly adaptable to more general situations,
in the present paper we focus our efforts on static spherically symmetric spacetimes that fea-
ture a single timelike singularity, with special emphasis given to electrostatic spacetimes of a
single point charge at the center of symmetry. These are four-dimensional Lorentzian mani-
folds (M, g) on which there exists a global system of coordinates (t, r,ϑ,ϕ) such that the line
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element of the metric g can be written as

ds2
g = −e2α(r)c2 dt2 + e2β(r) dr2 + r2(dϑ2 + sin2 ϑ dϕ2). (1.7)

Thus ∂/∂t is a timelike Killing field, r > 0 is the area-radius coordinate, and (ϑ,ϕ) are
spherical coordinates on the standard sphere S2.

It is common knowledge that many of the known solutions of Einstein’s equation (1.1) have
analytical extensions that feature geometric singularities associated with geodesic incomplete-
ness and/or curvature blow-up. Famous examples are the Schwarzschild solution, both in the
positive mass (black hole) as well as in the negative mass (naked singularity) sector, and the
charged Reissner–Weyl–Nordström (RWN) solution in the superextremal (naked) as well as
extremal and subextremal sectors (black holes). It is in fact a theorem [43] that there are no
static, spherically symmetric, asymptotically RWN electrovacuum spacetimes whose maximal
extension is devoid of singularities.

The negative mass Schwarzschild (nmS) solution and, in the superextremal (naked) sector,
also the RWN spacetimes possess global coordinate systems in which their metric has the form
(1.7). In these coordinates, there is a severe curvature singularity on the timelike line r = 0, so
that M as a Lorentzian manifold is diffeomorphic to R

4 minus a line, or R× (R3\{0}). The
fact that the singular set of these and many other spacetimes is of codimension three creates
complications for the study of the geometry of these manifolds in the neighborhood of their
singularities, including the question of whether or not it is possible to formulate a weak version
of the second Bianchi identity for these singular spacetimes.

One approach taken by differential geometers that has been fruitful in this regard is the use of
a different coordinate system on these manifolds, one which ‘blows up’ a neighborhood of the
singular set in such a way that in the new coordinates, one has a manifold with a codimension-
one boundary, with its own intrinsic smooth geometry, thereby allowing for tools of geometric
analysis to be applied to it. Examples of this approach can be found in the Riemannian setting
in the works of Bray [8], Bray–Jauregui [9] and others. We describe this geometric approach
in section 1.3 and a corresponding notion of mass for these codimension one boundaries in
section 1.4. Finally, in section 1.5 of this introduction we state and discuss the main results of
this paper regarding the weak second Bianchi identity and applications, which makes use of
this geometric formulation.

1.3. Spatial conformally flat coordinates and zero-area singularities (ZAS)

Let (M, g) be a four-dimensional static, spherically symmetric Lorentzian manifold, diffeo-
morphic to R× (R3\{0}), which has a global spherical coordinate system (t, r,ϑ,ϕ) defined
on it in which the metric g has the form (1.7). Suppose we can transfer to a new coordinate
ρ ∈ (ρ0,∞), ρ0 > 0 such that

ds2
g = −e2γ(ρ)c2 dt2 + φ4(ρ)

[
dρ2 + ρ2(dϑ2 + sin2 ϑ dϕ2)

]
. (1.8)

We call the coordinate system (t, ρ,ϑ,ϕ) in (1.8) spatially conformally flat coordinates. Note
that the metric inside the brackets is simply the Euclidean metric onR3 in spherical coordinates.
Comparing to (1.7) we see that it is necessary that

φ2 =
r
ρ

, eβ dr = φ2 dρ. (1.9)

Solving the differential equation, we thus require

ρ(r) := ρ0 exp

(∫ r

0
eβ(r′) dr′

r′

)
, (1.10)
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assuming that the integral exists (we will see that it does for the manifolds of interest to us).
Clearly, ρ(0) = ρ0. Moreover, ρ as defined in (1.10) is an increasing function of r, and hence
invertible, which determines φ and γ as

φ(ρ) :=
√

r(ρ)/ρ, γ(ρ) :=α(r(ρ)). (1.11)

The manifold M in these coordinates is diffeomorphic to the exterior of the solid cylinder, i.e.
R× (R3\Bρ0(0)). We note thatφ(ρ0) = 0 and therefore by (1.8) the interior boundaryT = ∂M
is a singular boundary. In particular, the intrinsic area of the sphere ∂Bρ0 (0) (which can be
computed by a limiting process, see [8]) is zero. The constant-t slices of M are spacelike
hypersurfaces diffeomorphic to the exterior Σ of the open ball Bρ0 (0) in R

3. We can write
M = R× Σ, and S for the interior boundary ∂Σ. The surface S is therefore an example of a
zero area singularity (ZAS) for the Riemannian manifold Σ.

In his pioneering work [8] on ZAS, Bray defined a notion of mass for such singularities, and
studied its properties. In particular he showed that this mass is coordinate invariant and always
negative. In this work we will connect Bray’s notion of the mass of a ZAS with our notion of
the (negative) bare mass of the central singularity in the spacetimes discussed in this paper.

In the rest of this section we derive sufficient conditions for obtaining a coordinate trans-
formation of the form (1.8). Let us recall that for spherically symmetric spacetimes, with r
denoting the area-radius, one can define the cumulative mass function m(r) via the relation

1 − 2Gm(r)
c2 r

= gμν∂μr∂νr. (1.12)

Thus in terms of the metric coefficients in (1.7),

m(r) :=
c2

2G
r
(
1 − e−2β(r)

)
. (1.13)

Using the mass function we can rewrite (1.10) as

ρ(r) = ρ0 exp

⎛
⎝∫ r

0

dr′√
r′2 − 2G

c2 r′m(r′)

⎞
⎠ . (1.14)

Let us assume that m : (0,∞) → R is a C1 function, with the asymptotics

m(r) ∼

⎧⎪⎨
⎪⎩

m0 + m1r r → 0,

M − M1

r
r →∞,

(1.15)

for constants m0 < 0, M ∈ R, m1, M1 > 0. Thus m0 = limr→0 m(r) and M = limr→∞ m(r).
Moreover, for the denominator in (1.14) we have

r2 − 2G
c2

rm(r) ∼ Ar + Br2 as r → 0, (1.16)

with

6
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A :=
−2Gm0

c2
> 0, B := 1 − 2Gm1

c2
, (1.17)

where B ∈ (0, 1) if m1 is sufficiently small. Under these assumptions the integral in (1.14) is
seen to be finite and ρ is well-defined. We will mostly be interested in spacetimes where (1.15)
holds, with the stated range of the parameters.

1.4. Mass of a regular ZAS

Let (Σ,σ) be a three-dimensional Riemannian manifold with boundary, and let S0 ⊆ ∂Σ be a
ZAS for Σ. According to Bray, a ZAS is called regular if it can be conformally extended, i.e.
if there exists a smooth nonnegative function φ̄ defined in a neighborhood of S0 in Σ, and a
smooth metric σ̄ such that

(a) φ̄ = 0 on S0.
(b) n̄(φ̄) > 0 where n̄ is the unit normal of S0 with respect to σ̄.
(c) σ = φ̄4σ̄.

The prototype example of a regular ZAS is the singularity at the center of the spacelike
time-slices of the nmS spacetime, which is the unique static, spherically symmetric, asymp-
totically flat solution of vacuum Einstein equations whose central singularity is not shielded
by a horizon. For this manifold, m(r) ≡ m0 < 0, and it is easy to see that the coordinate ρ as
defined in section 1.3 above is a global coordinate: if we set

ρ0 :=
G|m0|

2c2
(1.18)

then the change of coordinate r ↔ ρ is given by

ρ =
1
2

(
r + 2ρ0 +

√
(r + 2ρ0)2 − 4ρ2

0

)
, r =

(ρ− ρ0)2

ρ
. (1.19)

Moreover, the function φ̄ in the definition of regular ZAS exists and is

φ̄(ρ) = 1 − ρ0

ρ
, (1.20)

while the metric σ̄ is the Euclidean metric on R
3\Bρ0(0).

For ZAS that are regular, Bray [8] defined a notion of mass by

mreg(S0) := − 1
4

(
1
π

∫
S0

n̄(φ̄)4/3 dSσ̄

)3/2

, (1.21)

where dSσ̄ denotes the surface element with respect to σ̄. Note that this mass is always negative.
Let (Sn)n be a sequence of closed C2 surfaces in Σ, each one being a graph over S0, that shrink
down to S0 as n →∞. It can be shown [8] that

mreg(S0) = lim
n→∞

mH(Sn), (1.22)

where mH denotes the Hawking mass

mH(S) :=

√
|S|σ
16π

(
1 − 1

16π

∫
S

H2 dSσ

)
. (1.23)

7
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Here H denotes the mean curvature of the surface S in Σ. Note that for the Hawking mass to
be well-defined the metric σ and the surface S need to be at least C2.

If the three-dimensional manifold Σ is spherically symmetric, it is not hard to see that the
Hawking mass of the sphere Sr of area-radius r > 0 in the manifold is equal to m(r) obtained
in (1.13). It thus follows that for the spacetimes (M, g) of interest in this paper, which admit a
metric of the form (1.8) such that the interior boundary S0 of the time-slices is a ZAS, the bare
mass of the singularity is equal to its Hawking mass and to its Bray mass, i.e.

m0 = lim
r→0

m(r) = lim
ρ→ρ0

mH(Sρ) = mreg(S0). (1.24)

Besides the nmS spacetime that contains such a ZAS singularity, we introduce in section 3.1
a particular asymptotically flat, electrovacuum spacetime. This prototype spacetime repre-
sents the vacuum outside a static point charge in a nonlinear electromagnetic theory with an
admissible reduced Hamiltonian as discussed in some detail also in section 1.5 below. Most
importantly, we will show that the central singularity of this electrovac spacetime is of the same
strength as the singularity of the nmS, i.e. it has finite negative bare mass, and is therefore a
regular ZAS.

1.5. Main results

We are ready to state our results about the weak analogue of the twice-contracted second
Bianchi identity (1.2), which in a suitable weak sense also makes sense on certain spacetimes
with a single timelike singularity. In this paper, we prove the following result.

Theorem 1.1. Let M ∼= R× (R3\Bρ0(0)) be equipped with a static, spherically symmetric
Lorentzian metric g of the form

ds2
g = −e2γ(ρ)c2 dt2 + φ4(ρ)

[
dρ2 + ρ2(dϑ2 + sin2 ϑ dϕ2)

]
,

for spatially conformally flat coordinates (t, ρ,ϑ,ϕ). Assume furthermore that, as ρ ↓ ρ0,

(a) φ(ρ) = O(ρ− ρ0), φ′(ρ) = O(1),
(b) eγ(ρ) = O((ρ− ρ0)−1), γ ′(ρ) = O((ρ− ρ0)−1), and
(c) Gμ

ν(ρ) = O((ρ− ρ0)−5+κ), for some κ > 0.

Then the second Bianchi identity is satisfied weakly, in the sense that∫
M

Gμ
ν∇μψ

ν dvolg = 0, (1.25)

for any compactly supported vector field5 ψ ∈ Xc(M).

Theorem 1.1 is our starting point for an in-depth analysis of well-known static, spherically
symmetric solutions of the Einstein equations with singularities. Our condition (c) is a mild
condition suggested by our method of proof, but may seem a bit unnatural because it involves
the independent metric functions γ and φ and their first and second derivatives. In corollary
2.2 in section 2 we replace condition (c) in theorem 1.1 by stronger conditions (a′) on φ and its
first and second derivatives, and (b′) on γ and its first and second derivatives. In corollary 2.3 a
special result is also obtained for the simpler case when the metric exponents satisfy β = −α

5 Note that the vector field can have support on the inner boundary of the manifold.
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in (1.7) (cf [26]) and the cumulative mass function m has the Taylor expansion assumed in
(1.15) as r ↓ 0.

Interestingly, we find that the superextremal RWN solution, i.e. the well-known spherically
symmetric, asymptotically flat solution of the Einstein–Maxwell–Maxwell (EMM)6 system
with a timelike central singularity, does not satisfy the second Bianchi identity weakly at the
center. This is not surprising since the mass function of the RWN solution goes to −∞ as
r ↓ 0 (the conditions (1.15) are of course only sufficient and not necessary, but we will also
rigorously establish that (1.25) does not hold).

In section 3 of this paper we investigate which properties of the EMM system are problem-
atic by comparing RWN to spacetimes of a point charge in different electromagnetic vacua,
in particular the Hoffmann spacetime solution of the Einstein–Maxwell–Born–Infeld (EMBI)
system, for which we show that the second Bianchi identity is satisfied weakly at the singular-
ity. We next discuss an application of theorem 1.1 to suitable electromagnetic vacua informally
(full details are contained in section 3).

In [43] a particular subclass of admissible7 electromagnetic Lagrangians was identified with
the property that the corresponding spherically symmetric, asymptotically flat, electrostatic
spacetime metrics have the mildest possible singularity at their center, namely, a conical sin-
gularity on the time axis. In the setting of [43] this is the case only if the bare rest mass vanishes,
i.e. m0 = 0.

In the present work we drop this restriction and allow a nonvanishing bare mass m0. In fact,
since with EIH and Wallace we are interested in a timelike naked singularity at the center,
we need to admit negative m0. Note that in the special-relativistic electrodynamical setting of
[31] the problem is overdetermined when the bare mass of the particles vanishes, but is well-
posed with nonzero bare mass of either sign. In the general-relativistic setting we expect that
a naked singularity with strictly positive bare mass to be impossible, though (see section 3.2).
Put differently, we expect that a timelike singularity with strictly positive bare mass can only
exist inside a black hole. Although timelike singularities with negative bare mass can exist in
a black hole, too, they can also be naked.

This generalization opens the door to much more severe than conical, but nevertheless much
weaker singularities than the one at the center of superextremal RWN spacetime. One key
quantity to measure the different degrees of severity of singularities is the Kretschmann scalar.
We know that, as r → 0, the Kretschmann scalar is proportional to r−4 in the case of coni-
cal singularities studied in [43]. We will see that it is of order r−6 in the case of admissible
reduced Hamiltonians (as defined in section 3), and that it blows up like r−8 for the RWN solu-
tion. Due to the behavior of the cumulative mass function m(r) at the singularity obtained in
proposition 3.6 and confirming our assumption (1.15), the restrictions on the reduced Hamil-
tonian guarantee that the second Bianchi identity holds weakly everywhere, including at the
singularity.

Theorem 1.2. Suppose (M, g, F) is an electrostatic spherically symmetric spacetime for an
admissible reduced Hamiltonian8, and that the bare mass of the central singularity is negative.
Then the twice-contracted second Bianchi identity is satisfied weakly.

6 The first ‘Maxwell’ here stands for the pre-metric Maxwell field equations, the second ‘Maxwell’ for Maxwell’s
electromagnetic vacuum law (which he called ‘law of the pure ether’). In the same vein we will speak of EMBI
system, etc.
7 This particular notion of admissibility is fully laid out in section 3.
8 Rigorously defined and motivated in section 3, see definition 3.1 on page 14.
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This result is in stark contrast to the RWN solution for which not only the cumulative mass
function (and hence the energy inside a sphere of area 4πr2) diverges to minus infinity when
r ↓ 0, but even the weak version of the second Bianchi identity fails. As such, the nonlinear
electromagnetic theories obtained through a Lagrangian formulation are better suited to model
static spacetimes of a charged point particle. We expect that these results can be extended also
to non-symmetric, non-static solutions with several point charges, or ring singularities, etc.

1.6. Outline

The rest of this paper is organized as follows.
In section 2, we prove our main theorem 1.1. We derive our sufficient criterion for when

the twice-contracted second Bianchi identity holds weakly. The assumption of strictly negative
bare mass is required for corollary 2.3 of theorem 1.1, which leads the way to theorem 1.2.

In section 3, we investigate the Einstein–Maxwell system for a large family of (nonlinear)
electromagnetic vacuum laws. For that we give a precise formulation of the admissible reduced
Hamiltonians and their application to theorem 1.2. We will also prove rigorously that the weak
second Bianchi identity does not hold for the well-known RWN metric.

In section 4, we conclude with a summary and an outlook on possible extensions of our
results. We in particular show by direct computation that the weak second Bianchi identity
holds for a family of singular fluid solutions with vanishing bare mass, showing that our
conditions of our main theorem are not necessary.

2. The weak second Bianchi identity on a spacetime with timelike singularity

Throughout this section we assume that M is a manifold (with an interior boundary T ) that is
diffeomorphic to R

4, equipped with a Lorentzian metric g on a part of M that is diffeomorphic
to R× (R3\{0}). The part of M where we are given a Lorentzian metric is denoted by M.
In other words, we assume (M, g) to be extendible to a manifold M with an interior one-
dimensional timelike boundaryT that is diffeomorphic toR× {0} for 0 ∈ R

3, and assume that
g is a (sufficiently) smooth metric tensor on the interior M = M\T . In our cases of interest,
(M, g) will be generally inextendible to M as a sensible Lorentzian manifold (e.g. due to
curvature blow-up at a naked singularity) but our results in this section apply more broadly also
to scenarios where g is extendible in some low-regularity fashion (e.g. as continuous metric).

Recall that the classical second Bianchi identity holds on any smooth semi-Riemannian
manifold and thus implies the standard twice-contracted second Bianchi identity (1.2) for the
Einstein tensor pointwise away from the singularity T ∼= R× {0}. In this section we derive
a distributional Bianchi identity involving the behavior at the singularity/boundary T in a
manifold-with-boundarysetting following the coordinate blow-up approach introduced already
in section 1.3. In theorem 1.1 and corollaries 2.2 and 2.3 we provide conditions when this weak
second Bianchi identity, defined in definition 2.1, holds in the static spherically symmetric
setting of our interest.

As discussed in section 1.3 we assume that we can write a four-dimensional static, spheri-
cally symmetric Lorentzian manifold (M, g), which is diffeomorphic to R× (R3\{0}), using
coordinates that are spatially conformally flat. For ρ0 > 0 and the new coordinate ρ ∈ (ρ0,∞)
we obtain

ds2
g = −e2γ(ρ)c2 dt2 + φ4(ρ)[dρ2 + ρ2(dϑ2 + sin2 ϑ dϕ2)]. (2.1)

In particular, we view M as R× (R3\Bρ0(0)) and T as R× ∂Bρ0(0).

10
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To formulate the second Bianchi identity at the singularity {r = 0} ∼= {ρ = ρ0} in a mean-
ingful way, we first note that if G were a smooth tensor field defined on the manifold M ∼=
R× (R3\Bρ0(0)) including the interior boundary T ∼= R× ∂Bρ0(0), then (1.2), together with
integration by parts and Stokes’ theorem, implies that for any smooth compactly supported
vector field ψ we have

0 =

∫
M
ψν∇μGμ

ν dvolg =

∫
M
∇μ(ψνGμ

ν)dvolg −
∫
M

Gμ
ν∇μψ

νdvolg

=

∫
T

iψνGμ
ν (dvolg) −

∫
M

Gμ
ν∇μψ

νdvolg = −
∫
M

Gμ
ν∇μψ

νdvolg, (2.2)

where the last equality follows from the fact that ψ and G are smooth, hence constant on ∂Bρ0 ,
and ∂Bρ0 is a ZAS. Note that Stokes can be applied here, since the support of ψ is also bounded
in t. This motivates us to define the weak formulation of the twice contracted second Bianchi
identity in terms of spacetime integration against test vector fields.

In more singular situations where G and thus the interior boundary integral
∫
T in (2.2) may

not be well-defined (e.g. in the case of curvature blow-up) we thus seek an inhomogeneous
version of the identity, namely∫

M
Gμ

ν∇μψ
νdvolg = lim

ε→0

∫
Tε

iψνGμ
ν (dvolg),

that should furthermore equal zero in the case of a ZAS. Here, (Tε)ε>0 with Tε ∼= R×
∂Bρ0+ε(0) is the net converging to the singularity (compare this to the notation of the
Riemannian ZAS S0 ⊆ ∂Σ and its mass in section 1.4).

We thus rigorously define a weak version of the second Bianchi identity (for G) as follows
using an approximation of T . While in this work we only focus on the situation where T
consists of a singular one-dimensional timelike singularity in the center, it is clear that an
analogous definition can be used for multiple such singularities, or other more general types
of interior boundaries.

Definition 2.1. Let (M, g) be a smooth four-dimensional static, spherically symmetric
Lorentzian manifold, which is diffeomorphic to R× (R3\Bρ0(0)) with spatially conformally
flat coordinates (t, ρ,ϑ,ϕ) (see section 1.3). We say that the inhomogeneous twice-contracted
second Bianchi identity holds weakly on M if for the Einstein tensor G = (Gμ

ν) of g and for
any compactly supported vector field ψ ∈ Xc(M) the integral∫

M
Gμ

ν∇μψ
ν dvolg (2.3)

exists, and equals

lim
ε→0

∫
Tε

iψνGμ
ν (dvolg), (2.4)

where Tε ∼= R× ∂Bρ0+ε(0). We say that the twice-contracted second Bianchi identity holds
weakly if (2.3) = (2.4) = 0.

We can now prove the main result of this paper.

Theorem 1.1. Let M ∼= R× (R3\Bρ0(0)) be equipped with a static, spherically symmetric
Lorentzian metric g of the form (2.1), i.e. for spatially conformally flat coordinates (t, ρ,ϑ,ϕ)

11
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the metric tensor g is given by

ds2
g = −e2γ(ρ)c2 dt2 + φ4(ρ)

[
dρ2 + ρ2(dϑ2 + sin2 ϑ dϕ2)

]
.

Assume furthermore that, as ρ ↓ ρ0,

(a) φ(ρ) = O(ρ− ρ0), φ′(ρ) = O(1),
(b) eγ(ρ) = O((ρ− ρ0)−1), γ ′(ρ) = O((ρ− ρ0)−1), and
(c) Gμ

ν(ρ) = O((ρ− ρ0)−5+κ) for some κ > 0.

Then∫
M

Gμ
ν∇μψ

ν dvolg = −4πρ2
0c
∫ ∞

−∞
ψρ(t, ρ0)dt · lim

ε→0
Gρ

ρ(ρ0 + ε)eγ(ρ0+ε) φ(ρ0 + ε)6 = 0,

(2.5)

for all vector fields ψ ∈ Xc(M) with ψ(t, ρ0) being independent9 of angular components
(ϑ,ϕ), and thus the second Bianchi identity is satisfied weakly in the sense of definition 2.1.

Proof. We first show that for any compactly supported vector field ψ ∈ Xc(M) the integral∫
M

Gμ
ν∇μψ

ν dvolg (2.6)

exists. Note that in spatially conformally flat coordinates (t, ρ,ϑ,ϕ), the volume element reads

dvolg = c eγφ6ρ2 sin ϑdt ∧ dρ ∧ dϑ ∧ dϕ = c eγφ6 dV4,

where dVn denotes the Euclidean volume form on R
n. The nonvanishing Christoffel symbols

are

Γt
ρt = γ ′ Γρ

tt =
c2 e2γγ ′

φ4
Γρ
ρρ =

2φ′

φ
Γϑ
ϑρ = Γϕ

ϕρ =
1
ρ
+ Γρ

ρρ

Γρ
ϑϑ = −ρ2Γϑ

ϑρ Γρ
ϕϕ = sin2 ϑΓρ

ϑϑ Γϕ
ϕϑ = − cot ϑ Γϑ

ϕϕ = −sin2 ϑΓϕ
ϕρ.

(2.7)

For proving the existence of the integral (2.6) consider each of the summands in φ6Gμ
ν∇μψ

ν

separately. Since ψ is smooth on M̄, all derivatives are bounded, and it remains to consider
the contributions of the Christoffel symbols in ∇μψ

ν . Now,

Gμ
ν∇μψ

ν = Gt
t∇tψ

t + Gρ
ρ∇ρψ

ρ + Gϑ
ϑ∇ϑψ

ϑ + Gϕ
ϕ∇ϕψ

ϕ

with φ6Gμ
ν = O((ρ− ρ0)1+κ) by assumption (c), and by assumptions (a) and (b) furthermore

∇tψ
t = ∂tψ

t + ψαΓt
tα = ∂tψ

t + γ ′ψρ = O((ρ− ρ0)−1),

∇ρψ
ρ = ∂ρψ

ρ +
2φ′

φ
ψρ = O((ρ− ρ0)−1),

∇ϑψ
ϑ = ∂ϑψ

ϑ +

(
1
ρ
+

2φ′

φ

)
ψρ = O((ρ− ρ0)−1),

9 While this restriction is not necessary, it makes sense because we are just artificially blowing up the one-dimensional
singularity T ∼= R× {0}.

12



Class. Quantum Grav. 38 (2021) 185001 A Burtscher et al

∇ϕψ
ϕ = ∂ϕψ

ϕ +

(
1
ρ
+

2φ′

φ

)
ψρ + cot ϑψϑ = O((ρ− ρ0)−1).

Hence c eγφ6Gμ
ν∇μψ

ν = O((ρ− ρ0)−1+κ) and (2.6) exists.
Next we show that the integral is the same as the limit of the boundary integral on Tε ⊆

∂Mε as defined in (2.5), where by Mε we denote the interior that is diffeomorphic to R×
(R3\Bρ0+ε(0)). Since the integral exists,

∫
M

Gμ
ν∇μψ

ν dvolg = lim
ε→0

∫
Mε

Gμ
ν∇μψ

ν dvolg.

Because g is smooth on Mε, the classical second Bianchi identity immediately implies, as
in (2.2), that for the vector field X = Xμ∂μ, defined by Xμ = Gμ

νψ
ν , we obtain by Stokes’

theorem ∫
Mε

Gμ
ν∇μψ

ν dvolg =

∫
Mε

(div X)dvolg

=

∫
∂Mε

iX(dvolg)

=

∫
Tε

iX(dvolg).

Here, iX(dvolg) denotes the interior product of the volume form with X. Recall that only
the component of X normal to Tε = R× ∂Bρ0+ε(0) contributes. In coordinates (t, ρ,ϑ,ϕ) the

outward-pointing10 unit normal to Tε is N = −(gρρ)−
1
2 ∂ρ. Since Tε is Lorentzian,

iX(dvolg)|Tε = g(X, N)iN(dvolg)

= gρρ(gρρ)−
1
2 Xρi

(gρρ)−
1
2 ∂ρ

(dvolg)

= Xρi∂ρ (dvolg).

Since Xρ = Gρ
ρψ

ρ does not contain off-diagonal terms, this implies

iX(dvolg)|Tε = Gρ
ρψ

ρi∂ρ (dvolg),

with

i∂ρ (dvolg)|Tε = −c eγ(ρ0+ε) φ(ρ0 + ε)6(ρ0 + ε)2 sin ϑ dt ∧ dϑ ∧ dϕ.

Hence the integrand of the boundary integral reduces to

iX(dvolg)|Tε = −Gρ
ρ(ρ0 + ε)ψρ(t, ρ,ϑ,ϕ)c eγ(ρ0+ε)φ(ρ0 + ε)6

× (ρ0 + ε)2 sin ϑ dt ∧ dϑ ∧ dϕ,

10 Recall that for a unit normal vector N to ∂Ω we have iXω|∂Ω = iX⊥ω = X0iNω with X⊥ = ±g(X, N)N. Thus, if
N is spacelike (and ∂Ω Lorentzian) it must be chosen outward-pointing and if N is timelike (and ∂Ω Riemannian)
inward-pointing.

13
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so that ∫
Mε

Gμ
ν∇μψ

ν dvolg = −cGρ
ρ(ρ0 + ε)eγ(ρ0+ε)φ(ρ0 + ε)6

∫
Tε
ψρ dS,

where dS = (ρ0 + ε)2 sin ϑ dt ∧ dϑ ∧ dϕ. Since ψρ is smooth (and compactly supported)

lim
ε→0

∫
Tε
ψρ dS = lim

ε→0
4π(ρ0 + ε)2

∫
−∂Bρ0+ε(0)

∫ ∞

−∞
ψρ dt dS̃,

where dS̃ = dS∂Bρ0+ε(0) denotes the surface element of ∂Bρ0+ε(0) in flat R3. Sinceψρ and there-

fore Ψρ :=
∫∞
−∞ψρ dt is smooth, we observe that limε→0

∫
−Ψρ dS̃ = Ψρ(ρ0). We thus obtain that

∫
M

Gμ
ν∇μψ

ν dvolg = lim
ε→0

∫
Mε

Gμ
ν∇μψ

ν dvolg

= −4πρ2
0cΨρ(ρ0) lim

ε→0
Gρ

ρ(ρ0 + ε)eγ(ρ0+ε)φ(ρ0 + ε)6.

Due to the assumptions (a)–(c) it follows that

Gρ
ρ(ρ0 + ε)eγ(ρ0+ε)φ(ρ0 + ε)6 ∼ |ρ− ρ0|−5+κ−1+6 → 0 as ε→ 0

�
Even though condition (c) of theorem 1.1 is close to being optimal for the conclusion of

that theorem to hold, the condition may seem somewhat unnatural in view of the fact that
the components of Gμ

ν generally involve both metric coefficients φ(ρ) and γ(ρ) together with
their first and second derivatives. We now show that it is possible to eliminate condition (c)
entirely by strengthening conditions (a) and (b) to include suitable assumptions on the second
derivatives of the independent metric coefficients φ(ρ) and γ(ρ).

Corollary 2.2. With the same setup as in theorem 1.1, assume that the metric coefficients φ
and γ satisfy the following stronger assumptions as ρ0 ↓ ρ:

(i′) Assumptions on φ:

(a) φ(ρ) = O(ρ− ρ0)
(b) φ′

φ
(ρ) = (ρ− ρ0)−1 − ρ+ρ0

2ρρ0
+ O(ρ− ρ0)

(c) φ′′
φ

(ρ) = −2
ρ

(ρ− ρ0)−1 + O(1)

(ii′) Assumptions on γ:

(a) eγ(ρ) = O((ρ− ρ0)−1),
(b) γ ′(ρ) = −(ρ− ρ0)−1 + 1

2ρ0
+ O(ρ− ρ0),

(c) γ ′′(ρ) = (ρ− ρ0)−2 + O(1).

Then the same conclusion as theorem 1.1 holds, namely, the twice contracted second
Bianchi identity is satisfied weakly in the sense of definition 2.1.

Proof. A computation shows that for the metric g of theorem 1.1, the Einstein tensor G is
diagonal, and we have

Gρ
ρ =

2
ρφ4

(
γ ′ + (1 + ργ ′)

2φ′

φ
+ 2ρ

(
φ′

φ

)2
)
. (2.8)
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Hence, by (i′b) and (ii′b), Gρ
ρ = O((ρ− ρ0)−4) as ρ ↓ ρ0, while by (i′b) and (i′c) we have

Gt
t =

4
ρφ4

(
2φ′

φ
+

ρφ′′

φ

)
= O((ρ− ρ0)−4). (2.9)

Finally, the above two, together with (i′b), (ii′b) and (ii′c) imply that

Gϑ
ϑ = Gϕ

ϕ =
1
2

(Gt
t − Gρ

ρ) +
1

ρφ4

(
γ ′
(

2 + ρ

(
γ ′ +

2φ′

φ

))
+ ργ ′′

)

= O((ρ− ρ0)−4), (2.10)

so that hypothesis (c) of theorem 1.1 holds with κ = 1. �
Sufficient conditions in the usual spherically symmetric coordinates can also be derived:

Corollary 2.3. Consider (M, g) as in theorem 1.1. Suppose g in area-radius coordinates
(t, r,ϑ,ϕ) is of the form

ds2
g = −e2α(r)c2 dt2 + e−2α(r) dr2 + r2(dϑ2 + sin2 ϑ dϕ2),

with

e2α(r) = 1 − 2Gm(r)
c2 r

(2.11)

and such that the cumulative mass function has an absolutely converging power series
expansion

m(r) = m0 + m1r + m2r2 + O(r3), as r ↓ 0, (2.12)

with m0 < 0. Then the second Bianchi identity holds weakly in the sense of definition 2.1.

Proof. By the discussion in section 1.3 the transformation to spatially conformally flat coor-
dinates (t, ρ,ϑ,ϕ) is possible. It remains to be checked that the assumptions (i′) and (ii′) in
corollary 2.2 are also satisfied.

By assumption (2.12) we have

r2 − 2G
c2

rm(r) = O1(r), r ↓ 0,

hence the new coordinate ρ(r) given by (1.14) is well-defined for small r > 0 and satisfies

ρ(r) = ρ0

⎛
⎜⎜⎝1 +

√
− 2c2

Gm0
r

1
2 − c2

Gm0
r − 3c2 + Gm1

6

(
Gm0

√
− 2Gm0

c2

) r
3
2 +

c2m1

3Gm2
0

r2 + O
(

r
5
2

)⎞⎟⎟⎠
= ρ0 + O2(

√
r).

Hence the inverse function r = r(ρ) has an expansion of the form
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r(ρ) =
Gm0

2c2ρ2
0

(ρ− ρ0)2

(
−1 +

1
ρ0

(ρ− ρ0)

+

(
− 1

4ρ2
0

+
2Gm1 − 9c2

12c2ρ2
0

)
(ρ− ρ0)2 + O((ρ− ρ0)3)

)

= O2((ρ− ρ0)2),

and thus

φ(ρ)2 =
r(ρ)
ρ

= O2(|ρ− ρ0|2), ρ ↓ ρ0,

with

φ′

φ
= − 1

2ρ
+

r′(ρ)
2r(ρ)

= (ρ− ρ0)−1 − 1
2

(
1
ρ0

+
1
ρ

)
+ O(ρ− ρ0), (2.13)

which establishes (i′a) and (i′b) of corollary 2.2. Moreover, (ii′a) holds since (2.12) implies

e2γ(ρ) = e2α(r(ρ))

= 1 − 2Gm(r(ρ))
r(ρ)

= 4c2ρ2
0(ρ− ρ0)−2 + 4c2ρ0(ρ− ρ0)−1 + 1 − 2Gm1 + O(ρ− ρ0)

= O2((ρ− ρ0)−2),

and, in particular, using (2.13),

γ ′(ρ) =
1
2

(e2γ(ρ))′e−2γ(ρ)

= G e−2γ(ρ) r(ρ)′

r(ρ)

(
−m′(r(ρ)) +

m(r(ρ))
r(ρ)

)

= −1
2

(
1 − 1

ρ0
(ρ− ρ0) + · · ·

)(
2
φ′

φ
+

1
ρ

)(
1 +

1
ρ0

(ρ− ρ0) + · · ·
)

= −
(
φ′

φ
+

1
2ρ

)(
1 + O((ρ− ρ0)2)

)
= −(ρ− ρ0)−1 + (2ρ0)−1 + O(ρ− ρ0)

which establishes (ii′b), and upon differentiation, (ii′c) of corollary 2.2. Finally, using (2.13)
we have

φ′′

φ
=

(
φ′

φ

)′
+

(
φ′

φ

)2

= −
(

1
ρ
+

1
ρ0

)
(ρ− ρ0)−1 + O(1)

=
−2
ρ

(ρ− ρ0)−1 + O(1)
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which establishes (i′c) of corollary 2.2, and thus the second twice-contracted Bianchi identity
holds weakly. �
Remark 2.4. The condition that β = −α for the coordinate coefficients in corollary 2.3 is
not necessary for the coordinate transformation. If β �= −α then the cumulative mass function
is given as usual by m(r) := c2

2G r
(
1 − e−2β(r)

)
and m needs to define the same conditions in

order for the coordinate transformation to spatially conformally flat coordinates to go through.
However, whether the conditions (b) and (c) in theorem 1.1 hold then not only depends on the
behavior of m but also on the asymptotic behavior on α as r ↓ 0 since γ(ρ) :=α(r(ρ)).

3. Spherically symmetric electrostatic spacetimes

The Einstein–Maxwell equations, i.e. (1.1) together with

dF = 0, dM = 0, (3.1)

valid pointwise away from any singularities of spacetime, are part of any field theory of electro-
magnetism in general relativity. The electromagnetic field is represented by the Faraday tensor
F and the Maxwell tensor M. To arrive at a field theory of electromagnetism the tensors F and
M need to be related by a ‘law of the electromagnetic vacuum’ (‘ether law’ for short), which
also fixes the corresponding electromagnetic energy-momentum-stress tensor T.

Using Eiesland’s theorem [12, 13], which is a generalized and, in fact, preceding version
of the well-known Birkhoff theorem, one of us [43, theorem 6.2] showed that the metric g
of any electrostatic, spherically symmetric spacetime with an electromagnetic vacuum law
determined by a field Lagrangian which depends only on the two invariants of F, viz 1

4 FμνFμν

and 1
4 Fμν � Fμν , must, in spherical coordinates (t, r,ϑ,ϕ), be given by

ds2
g = −e2α(r)c2dt2 + e−2α(r) dr2 + r2(dϑ2 + sin2 ϑdϕ2). (3.2)

The function α(r) is smooth for r > 0 and depends on the ether law.
The simplest law of the electromagnetic vacuum is Maxwell’s ‘law of the pure ether’,

M = − � F, (3.3)

where � is the Hodge star operator11 with respect to g. In this case the set of coupled
equations (1.1), (3.1) and (3.3) is called the EMM system. The unique static, spherically
symmetric, asymptotically flat EMM spacetime is the RWN solution with metric component

e2α(r) = 1 − 2G
c4 r

(
Mc2 − Q2

2r

)
. (3.4)

One can show that M is the ADM mass of the spacetime, while Q is its charge. The ratio12

GM2

Q2 determines the causal structure of the RWN spacetime ( GM2

Q2 > 1: subextremal with black

11 The Hodge � dual of a k-form is a (n − k)-form, where n is the number of dimensions. In our setting, � takes a
two-form to the dual two-form.
12 In a Newtonian theory, the fraction GM1M2

|Q1Q2 |
is the ratio of the coupling constants of the gravitational and electrical

pair interaction energies of any two interacting point charges. Inserting empirical values, for two interacting electrons
one finds the tiny value Gm2

e
e2
e

≈ 2.4 × 10−43. If one has only one point charge, it is tempting to think of GM2

Q2 as the ratio
of the gravitational and electrical self-energy coupling constants, but in a Newtonian theory there is no such thing, and
in special-relativistic electromagnetic Maxwell–Lorentz field theory of point charges, the self energies are infinite.
This does not improve in general relativity, so the meaning of GM2

Q2 lies elsewhere.
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hole region; GM2

Q2 = 1: extremal with black hole region; GM2

Q2 < 1: superextremal with a naked

singularity). While one would expect the superextremal RWN spacetime to represent the sim-
plest realistic charged-particle spacetime, some troubling divergence behaviors occur. More
precisely, the cumulative mass function

m(r) =
c2

2G
r
(
1 − e2α(r)

)
,

(cf (1.13)) which for RWN reads

mRWN(r) = M − Q2

2c2r
, (3.5)

diverges when r ↓ 0, together with the Kretschmann scalar for RWN (see the discussion in
[43, section 1] and section 3.2 below).

One way to overcome the divergence of the cumulative mass function is to consider a non-
linear electromagnetic theory, for instance the Born–Infeld theory [6, 7] (for more historical
context in a modern language, see [27, 28]). This is done by choosing a Lorentz- and (Weyl)
gauge-invariant Lagrangian density L for the electromagnetic action

S[A] =
∫
M

L(dA)

such that in the weak field limit it reduces to the Lagrangian of the Maxwell–Maxwell system
(3.1) and (3.3), and has finite total energy for a point charge.

In the spherically symmetric electrostatic case the above formulation boils down to finding a
suitable reduced Hamiltonian13 ζ that yields a solution to (1.1) and (3.1) having an ADM mass
M = limr→∞ m(r), and a charge Q. Such a reduced Hamiltonian is subject to the following
admissibility criteria.

Definition 3.1. A function ζ : R+
0 → R is called an admissible reduced Hamiltonian if it

satisfies

(R1) limμ→0
ζ(μ)
μ

= 1.
(R2) ζ

′
(μ) > 0 and ζ(μ) − μζ ′(μ) � 0 for all μ > 0.

(R3) ζ ′(μ) + 2μζ ′′(μ) � 0 for all μ > 0.
(R4) Iζ = 2− 11

4
∫∞

0 y−
7
4 ζ(y)dy < ∞.

(R5) There exist constants Jζ , Kζ , Lζ > 0 such that

Jζ
√
μ− Kζ � ζ(μ) � Jζ

√
μ, and Jζ

√
μ− 2Lζ � 2ζ ′(μ)μ � Jζ

√
μ.

These admissibility criteria are derived and motivated in detail in section 3.2 below. Note
that in terms of the reduced Hamiltonian ζ the cumulative mass function is

m(r) = M − 1
c2

∫ ∞

r
ζ

(
Q2

2s4

)
s2 ds, (3.6)

and the electric potential is A = ϕ(r)c dt with

ϕ(r) = Q
∫ ∞

r
ζ ′
(

Q2

2s4

)
1
s2

ds. (3.7)

13 We now largely follow the notation of [43], with only smaller deviations.
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One can easily check that the Born–Infeld reduced Hamiltonian

ζBI(μ) =
√

1 + 2μ− 1

is an admissible Hamiltonian, and it leads to the Hoffmann solution [25]. Here, μ is a
dimensionless |D|2, where D is Maxwell’s displacement field (w.r.t. a Lorentz frame).

In section 3.1 we give another prototype example with a ZAS (with asymptotic behavior as
discussed in section 1.3) which is obtained from a particular admissible reduced Hamiltonian
and hence satisfies the second twice-contracted Bianchi identity weakly.

In section 3.2 we study reduced Hamiltonians ζ more systematically. In particular, we dis-
cuss the admissibility conditions (R1)–(R5) from definition 3.1 and its consequences. One such
important consequence is that given an electrostatic spacetime solution with charge Q ∈ R\{0},
by rescaling the reduced Hamiltonian ζ we can find another electrostatic spacetime solution
that corresponds to the new, rescaled vacuum law, has the same charge Q, and has any desired
bare rest mass m0 � 0 and ADM mass M > m0. We prove this in proposition 3.2 in section 3.2.
Subsequently we revisit the second Bianchi identity and show that an admissible reduced
Hamiltonian implies that the second Bianchi identity is satisfied weakly (cf theorem 1.2 in
the introduction) based on our general results in section 2.

3.1. A prototype electrovac spacetime with finite negative bare mass

Let m0 < 0, M > 0 and Q ∈ R\{0} be given, and assume that

ξ2 :=
G(M − m0)2

Q2
< 1. (3.8)

Let (M0, g0) denote the static, spherically symmetric, asymptotically flat, electromagnetic
spacetime that corresponds to the following reduced Hamiltonian

ζ(μ) = min{μ,
√
μ0μ}, μ0 :=

(M − m0)4c8

2Q6
. (3.9)

It is not hard to see that the mass function of this spacetime will be

m(r) = m0 +
M − m0

2

⎧⎪⎨
⎪⎩

r
r0

r < r0

2 − r0

r
r > r0,

r0 :=
Q2

(M − m0)c2
. (3.10)

Thus m(0) = m0 < 0, m(∞) = M > 0. One can also verify that the total charge of the
spacetime is Q, and that the singularity at r = 0 is not shielded by a horizon.

We observe that on this three-parameter family of electrovac spacetimes, indexed by
m0, M, Q, the asymptotic behavior (3.10) together with corollary 2.3 immediately implies that
the twice-contracted second Bianchi identity is satisfied weakly.

3.2. Nonlinear electrostatic spacetimes with naked singularities

We defined admissible reduced Hamiltonians in definition 3.1 via the properties (R1)–(R5).
The reason for these requirements are discussed extensively in [43, section 4]. Let us briefly
mention that (R1) implies that the weak field limit is the same as for classical linear electro-
magnetics, (R2) implies the dominant energy condition is satisfied, and (R3) guarantees that ζ
is the Legendre–Fenchel transform of a Lagrangian density. Note that (R3) together with (R1)
implies the strong energy condition.
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If m denotes the cumulative mass function (3.6), then limr→∞ m(r) = M, and the metric
components in coordinates (t, r,ϑ,ϕ) in (3.2) are given by e2α(r) = 1 − 2Gm(r)

c2r
as in (2.11).

If limr↓0 m(r)=: m0 is finite and nonzero, the Kretschmann scalar

K: = RμνληRμνλη

=
4G2

c4r6

(
12m2 + 4rm(−4m′ + rm′′) + r2(8m′2 − rm′m′′ + r2m′′2)

)
(3.11)

blows up at least like r−6 as r ↓ 0, indicating the presence of a true singularity as opposed
to a mere coordinate singularity. In the case of the negative-mass Schwarzschild metric the
Kretschmann scalar K = 48G2M2

c4r6 is moreover proportional to the square of the mass M. For the
RWN metric (3.4) with ADM mass M and charge Q (the Maxwell law ζ(μ) = μ satisfies the
criteria (R1)–(R3) but not more), the Kretschmann scalar

KRWN(r) =
48G2M2

c4r6

(
1 +

2Q2

c2Mr
+ 7

Q4

48c4M2r2

)
(3.12)

blows up like r−8 as r ↓ 0.
Thus the above conditions alone already imply that the center at r = 0 must be nonregular.

In [43] the mildest possible naked singularity was studied and found to be a conical singularity
with m0 = 0 and blow-up rate r−4 of the Kretschmann scalar. More generally naked singular-
ities require m0 � 0; otherwise black holes will occur. In other words, there are two cases to
consider:

Case 1: m0 > 0. We show that, so long as M < ∞, the spacetime will have a horizon. In this
vein, assume to the contrary that there is no horizon, so that the coordinate chart (t, r,ϑ,ϕ) ∈
R× R+ × S

2 is global, with r spacelike and t timelike throughout. Set

f (r) := c2r − 2Gm(r).

Then, since m0 > 0 by assumption, f (0) = −2Gm0 < 0, while M < ∞ clearly implies
f (∞) > 0. Since m(r) is a continuous function for r > 0, it now follows that there exists an
r0 > 0 such that f (r0) = 0. But this implies that e2α(r0) = 1

c2
f (r0)
r0

= 0. In fact the metric coef-
ficient g00 generally changes sign across r = r0, which means that the area-radius coordinate r
becomes timelike for r < r0, in contradiction to the hypothesis that r is spacelike throughout.
Therefore r = r0 is a Killing horizon, and the coordinate chart only covers the region r > r0

of the spacetime.
Case 2: m0 � 0. In the superextremal RWN spacetime one has limr↓0 m(r) = −∞ and

a severe curvature singularity at r = 0. This is due to a non-integrable electrostatic field
energy density about r = 0. However, for admissible Hamiltonians with finite electrostatic
field energy, one can compute the total field energy to be∫ ∞

0
ζ

(
Q2

2s4

)
s2 ds = |Q| 3

2 Iζ , Iζ := 2− 11
4

∫ ∞

0
y−

7
4 ζ(y) dy < ∞,

as demanded in (R4), and we therefore have M − m0 =
|Q|

3
2 Iζ

c2 ; i.e. the difference between the
accumulated mass of the spacetime and the bare rest mass is entirely due to the electrostatic
field. For the ADM mass M we then have, in general,

M = m0 +
|Q| 3

2 Iζ
c2

. (3.13)
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Thus we have limr↓0 m(r)=: m0 ∈ (−∞, 0], yielding a less singular behavior at r = 0.
From now on we assume that m0 � 0 is finite and consider the behavior of the spacetime

near the center. If we assume that there exists a positive constant Jζ such that

(R5′) ζ(μ) � Jζ
√
μ,

then the integral term of the cumulative mass function m(r) in (3.6) can be estimated using∫ r

0
ζ

(
Q2

2s4

)
s2 ds � Jζ |Q| r√

2
,

which implies that in a neighborhood of the center, m(r) is bounded from above by

m(r) � m0 + Jζ |Q| r√
2c2

. (3.14)

Since by assumption m0 � 0, this shows that the metric coefficient g00 is bounded away from
zero,

e2α(r) = 1 − 2Gm(r)
c2r

� 1 − 2Gm0

c2r
−
√

2Jζ |Q|G
c4

> 1 −
√

2Jζ |Q|G
c4

> 0,

as long as

|Q|GJζ
c4

<
1√
2
. (3.15)

(Note that the left-hand-side is dimensionless.) Thus, (3.15) implies the absence of a horizon,
which means that a naked singularity occurs whenever the charge is sufficiently small. Of
course, (3.15) is only a sufficient condition for absence of a horizon.

We now show that if an electrostatic spacetime solution exists for prescribed total charge
Q, then for the same charge Q one can generate such a spacetime with any bare rest mass
m0 � 0 and ADM mass M > m0. This is achieved by a rescaling of the associated reduced
Hamiltonian.

Proposition 3.2. Let ζ be an admissible Hamiltonian that satisfies (R1)–(R3). We addi-
tionally assume that ζ satisfies

(R4) Iζ = 2− 11
4
∫∞

0 y−
7
4 ζ(y)dy < ∞.

Suppose there exists an electrostatic spacetime metric g with charge Q ∈ R\{0} satisfying the
Einstein–Maxwell equations for the ether law generated by ζ. Let m0 � 0 and M > m0 be
given. Then for the dimensionless number

λ :=
|Q| 3

2 Iζ
(M − m0)c2

the λ-scaled version of ζ, defined by

ζλ(μ) = λ−4ζ(λ4μ), (3.16)

is itself an admissible reduced Hamiltonian, and there exists a corresponding electrostatic
spacetime metric gλ which has charge Q, ADM mass M = limr→∞ m(r), and bare rest mass

m0 := lim
r ↓ 0

m(r). (3.17)
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Proof. Note that ζλ satisfies (R1)–(R4) because ζ does. Furthermore, (3.16) implies that Iζλ
as defined in (R4) transforms as

Iζλ = 2− 11
4

∫ ∞

0
y−

7
4 λ−4ζ(λ4y)dy = λ−1Iζ . (3.18)

Therefore, by (3.13),

M = m0 +
|Q| 3

2 Iζλ
c2

as desired. �

Remark 3.3. The borderline case m0 = 0 was treated already in [43]. In this case there is no
bare mass at the center, and the geometric ADM mass M is entirely due to the electrostatic field

energy |Q| 3
2 Iζ , more precisely, M =

|Q|
3
2 Iζ

c2 . In [43] it was also shown that given any charge Q,
also any positive ADM mass M > 0 can be achieved in this case via an appropriate choice of a
scaling parameter: For ζλ(μ) = λ−4ζ(λ4μ) we have Iζλ = λ−1Iζ , and the ADM mass becomes

M = 1
λ

|Q|
3
2 Iζ

c2 , with Q still the charge of the spacetime. By a suitable choice of λ, any value of
M > 0 can be generated. Clearly, this is a special case of our proposition 3.2. These solutions
are asymptotically flat with a conical singularity at the center if the ratio GM2

Q2 is sufficiently
small; see [43, section 5.1].

The sufficient condition (3.15) for obtaining a naked singularity can be reformulated in the
λ-scaled setting. Note that Jζλ = λ−2Jζ . Hence (3.15) translates to

G(M − m0)2

|Q|2 <
I2
ζ√
2Jζ

. (3.19)

From now on we always assume that (3.19) is satisfied.
Together with m0 � 0, condition (3.19) guarantees that there is no horizon and r is a

spacelike coordinate on (0,∞). In fact, we have

Proposition 3.4. Suppose ζ is an admissible reduced Hamiltonian satisfying (R1)–(R5′)
and λ etc. is given as in proposition 3.2. If the dimensionless ratio

ε2 :=
G(M − m0)2

|Q|2

is sufficiently small (as in (3.19)), then gλ features a naked singularity at the center. �

Note that ε2 is a dimensionless quantity in Gaussian units (see also [3, p 5] for a discussion).

Example 3.5 (Born–Infeld model). In the setting of the Born–Infeld theory, where
ζ(μ) =

√
1 + 2μ− 1, we can choose Jζ =

√
2 in (R5′). Moreover,

Iζ = −Γ
(
− 3

4

)
Γ
(

5
4

)
2
√
π

≈ 1.236 0498,

and thus

I2
ζ√
2Jζ

≈ 0.763 90954.
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If we consider the mass and charge of an electron, i.e.

Me = 9.109 383 56 × 10−31 (kg), Qe = 1.6021765× 10−19 (C) ·
√

ke,

where ke = 8.987 551 79 × 109 (kg m3 s−2 C−2) is the Coulomb constant, then for m0 = 0, and
gravitational constant G = 6.674 08 × 10−11 (m3 kg−1 s−2), we have

ε2 =
GM2

|Q|2 ≈ 2.400 53 × 10−43,

so we are far in the naked singularity regime due to (3.19) being satisfied. Since gravita-
tional effects (∝G) are small, for m0 < 0 we are guaranteed a naked singularity so long as
m0 > −ςM, where ς is a large positive constant.

Next, let us consider the behavior of the spacetime near the center of the symmetry, for
m0 < 0. The singularity at r = 0 will no longer be conical, but exhibit a stronger blow-up
behavior. If, in addition to (R5′) we assume that there is also Jζ , Kζ > 0 such that

(R5′′)3.1) Jζ
√
μ− Kζ � ζ(μ),

then we also obtain an estimate of m(r) from below. More precisely,

m(r) = m0 +
1
c2

∫ r

0
ζ

(
Q2

2s4

)
s2 ds � m0 + Jζ |Q| r√

2c2
− Kζ

r3

3c2
,

(3.20)

which together with the upper bound (3.14) implies that

m(r) = m0 + Jζ |Q| r√
2c2

+ O(r3)

as r ↓ 0.
If we in addition assume that there is a positive constant Lζ > 0 such that

(R5′′)3.2) Jζ
√
μ− 2Lζ � 2ζ ′(μ)μ � Jζ

√
μ,

then we can also infer something about the decay of the derivatives of m(r). We
combine all properties (R5′)–(R5′′′) in (R5).

Proposition 3.6. If ζ : R+
0 → R is an admissible reduced Hamiltonian, that is, it satisfies

the properties (R1)–(R4) as well as

(R5) There exist positive constants Jζ , Kζ , Lζ such that

Jζ
√
μ− Kζ � ζ(μ) � Jζ

√
μ, and Jζ

√
μ− 2Lζ � 2ζ ′(μ)μ � Jζ

√
μ,

then the cumulative mass function is of the form

m(r) = m0 +
1

2c2

∫ r

0
ζ

(
Q2

2s4

)
s2 ds

= m0 +
Jζ |Q|√

2c2
r − Kζ

3c2
r3 + O2(r3), as r ↓ 0,

where we say that f (r) = Ok(rα) as r ↓ 0 if r j−α d j f
dr j is bounded for j = 0, . . . , k as r ↓ 0.
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Remark 3.7. By the first part of (R2), in particular, ζ ′(μ) � 0 and thus also ζ(μ) � 0 by the
second part for all μ � 0. Next, consider f (μ) = log ζ(μ)

μ
. Then f (0) = log 1 = 0 by (R1) and

by (R2)

f ′(μ) =
μζ ′(μ) − ζ(μ)

μζ(μ)
� 0.

Hence by integration also f (μ) � 0 and therefore ζ(μ) � μ for all μ � 0. Together with the
first part of (R5) we thus obtain for μ � 0 that

max{0, Jζ
√
μ− Kζ} � ζ(μ) � min{μ, Jζ

√
μ}. (3.21)

Similarly, (R2) implies that 0 � ζ ′(μ)μ � ζ(μ) so that together with the second part of (R5)
we have for μ � 0 that

max{0, Jζ
√
μ− 2Lζ} � 2ζ ′(μ)μ � min{2μ, Jζ

√
μ}. (3.22)

We will use these inequalities in our proof of proposition 3.6 below.

Proof. As we have already seen in (3.14)–(3.20) the first part of (R5) implies that

m0 +
Jζ |Q|√

2c2
r − Kζ

3c2
r3 � m(r) � m0 +

Jζ |Q|√
2c2

r,

and thus shows that

0 � r−3

[
m(r) −

(
m0 +

Jζ |Q|√
2c2

r − Kζ

3c2
r3

)]
� Kζ

3c2
,

remains bounded. Since m′(r) = ζ
(

Q2

2r4c2

)
r2, using the first part of (R5) we again obtain that

Jζ |Q|√
2c2 − Kζ r2

c2 � m′(r) � Jζ |Q|√
2c2 , hence

0 � r−2 d
dr

[
m(r) −

(
m0 +

Jζ |Q|√
2c2

r − Kζ

3c2
r3

)]
� Kζ

c2
.

The second derivative of m(r) satisfies

−2rKζ

c2
� m′′(r) =

2r
c2
ζ

(
Q2

2r4

)
− 4ζ ′

(
Q2

2r4

)
Q2

2r4

r
c2

�
√

2Jζ |Q|
rc2

−
√

2Jζ |Q|
rc2

+
4Lζr

c2
=

4Lζr
c2

,

and thus

0 � r−1 d2

dr2

[
m(r) −

(
m0 +

Jζ |Q|√
2c2

r − Kζ

3c2
r3

)]
= r−1

[
m′′(r) +

2Kζ

c2
r

]

� 4Lζ + 2Kζ

c2

is bounded as well. Therefore, by definition of O2(r3),

m(r) = m0 +
Jζ |Q|√

2c2
r − Kζ

3c2
r3 + O2(r3), as r ↓ 0.

�
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With the results obtained for admissible nonlinear theories we are now in a position to
show that the weak second Bianchi identity does hold for spherically symmetric electrostatic
spacetimes where the reduced Hamiltonian ζ satisfies (R1)–(R5).

Theorem 1.2. Suppose (M, g, F) is an electrostatic spherically symmetric spacetime con-
sidered in proposition 3.6 such that m0 < 0 and there is a naked singularity at the center. Then
the twice-contracted second Bianchi identity holds weakly on M.

Proof. By proposition 3.6, m(r) = m0 +
Jζ |Q|√

2c2 r − Kζ

3c2 r3 + O2(r3), as r ↓ 0. Hence the second
Bianchi identity is satisfied weakly also at the singularity due to corollary 2.3. �

Remark 3.8. Note that even though the value of m0 is not relevant for whether the Bianchi
identity holds or does not hold weakly, its sign does matter, since we use the radial variable r
all the way down to r = 0, which is not possible in the presence of a horizon.

3.3. The RWN spacetime does not satisfy the weak second Bianchi identity

In the previous subsection we identified a whole class of electrostatic spacetimes for which
the second Bianchi identity does hold weakly. Using spatially conformally flat coordinates
we now show that the RWN spacetime does not satisfy the weak second Bianchi identity.
Since this coordinate transformation is rather involved in practice, we also include a heuristic
explanation of this ‘too singular’ behavior of the RWN spacetime in terms of the blow-up rate
of the Kretschmann scalar.

We recall that the RWN metric is of the form

ds2
g = −e2α(r)c2 dt2 + e−2α(r) dr2 + r2(dϑ2 + sin2 ϑ dϕ2),

where

e2α(r) = 1 − 2GM
c2 r

+
GQ2

c4r2
=: 1 − 2

r
A +

1
r2

B2

with ADM mass M and charge Q. We are interested in the superextremal case A2

B2 = GM2

Q2 < 1
which has a naked singularity in the center, and will show that in this case the second Bianchi
identity does not hold weakly.

Note that the cumulative mass function

m(r) = M − Q2

2c2r

blows up at the center and hence does not have the required asymptotics (1.15) discussed
earlier. However, the integral appearing in the definition of ρ in (1.14), i.e.∫ r

0

dr′√
r′2 − 2G

c2 r′m(r′)
=

∫ r

0

dr′√
r′2 − 2Ar′ + B2

does converge for r < B =
√

G|Q|
c2 since the denominator satisfies

0 < (r′ − B)2 < r′2 − 2Ar′ + B2 < (r′ − A)2
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due to superextremality. Hence a coordinate transformation to spatially conformally flat
coordinates (t, ρ,ϑ,ϕ) is possible near the singularity.

If we set

ρ0 :=B − A =

√
G|Q| − GM

c2
> 0

then the change of coordinates (1.14) is given by (compare to the calculation of the nmS case
in section 1.4)

ρ(r) = (r − A) +
√

(r − A)2 + (B2 − A2), r =
(ρ+ A)2 − B2

2ρ
.

The conformal factor, φ, is then

φ(ρ)2 =
r
ρ
=

(ρ+ A)2 − B2

2ρ2
= O(ρ− ρ0),

and

e2γ(ρ) = e2α(r(ρ))

= 1 − 2
ρφ2

A +
1

ρ2φ4
B2

=
ρ2φ4 − 2ρφA + B2

ρ2φ4

= O((ρ− ρ0)−2).

where the blow-up rate follows from the above since A < B. Note that some of these
decay/blow-up rates already differ from the requirement in theorem 1.1 (a) and (b). Without
looking into all the requirements of theorem 1.1 separately, we directly jump to investigate the
critical quantity Gρ

ρeγφ6 appearing in (2.5). To this end we observe that

γ ′ =
(e2γ)′

2 e2γ
= (e−2γ − 1)

(
1
ρ
+ 2

φ′

φ

)
= O((ρ− ρ0)−1),

since

φ′

φ
=

(φ2)′

2φ2
=

(B2 − A2) − 2Aρ
2ρ((ρ+ A)2 − B2)

= O((ρ− ρ0)−1).

Thus by (2.8)

Gρ
ρ =

1
ρ2φ4 − 2ρφA + B2

(
2 + 8ρ

φ′

φ
+ 8ρ2

(
φ′

φ

)2
)

− 1
ρ2φ4

− 4
φ4

(
φ′

φ

)2

,

hence Gρ
ρ = O((ρ− ρ0)−4) and Gρ

ρeγφ6 = O((ρ− ρ0)−2). Therefore, the second term in (2.5)
does not converge to zero, and the second Bianchi identity does not hold weakly. In fact, even
the inhomogeneous second Bianchi identity does not hold weakly.
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4. Summary and outlook

In this paper we have considered the following question: under what conditions is the twice-
contracted second Bianchi identity satisfied in a weak sense in a neighborhood of a singular
line of a spacetime M with the metric g? We were able to answer this question in case (M, g)
is both static and spherically symmetric, by finding sufficient conditions on the metric that, if
satisfied, guarantee that the weak second Bianchi identity holds everywhere, the location of a
timelike singularity included.

The main application of this result is to electrovacuum spacetimes with timelike singu-
larities. We have shown that the Einstein–Maxwell equations, complemented with a nonlinear
vacuum law which satisfies certain admissibility conditions, have spherically symmetric, static
solutions describing the electrostatic spacetime of a point charge with weakly satisfied twice-
contracted second Bianchi identity. We also found that the Bianchi identity is not weakly
satisfied by the RWN solution, which is obtained when complementing the Einstein–Maxwell
equations with the standard linear vacuum law of Maxwell. The favorable electrostatic space-
times turn out to be less singular than RWN, a fact that is evident from the blow-up behavior
of their curvature invariants. In our setting, for example, the Kretschmann scalar of an elec-
trostatic spacetime with weakly satisfied twice-contracted second Bianchi identity blows up at
most like r−6 as r ↓ 0, while it blows up as r−8 in the RWN solution. In the case of a vanishing
bare rest mass, i.e. m0 = 0, the blow-up rate is only r−4 as r ↓ 0, leading to the mildest possible
(a conical) singularity.

Our findings add another argument to the many that have already been offered for why
Maxwell’s linear vacuum law (3.3) should be replaced by a nonlinear law that reduces to (3.3)
in the weak-field limit (for in this limit the Maxwell–Maxwell electromagnetic field equations
are indisputably successful), see [36], and which furnishes finite field energies of point charges
(unlike Maxwell’s law of the vacuum), see [6, 7] for the most prominent earliest voices in this
regard. The family of possible laws that allow for a weak twice-contracted second Bianchi
identity is huge, so that one has to look elsewhere for arguments that could help narrowing down
the list of potential candidates. The Born–Infeld law [7] stands out in this regard because it
follows from a handful of compelling principles, see [6, 37], each of which seemingly capturing
some aspect of nature. Since all these models depend on at least one extra parameter, and reduce
to Maxwell’s law in the limit where this parameter vanishes, experimental results can restrict
the realm of possible parameter values for each model, and possibly rule out specific models,
but it is difficult to see how empirical results alone could hint at the ‘right’ nonlinear model. To
find the right one—if this is indeed the message—one needs to argue based on deeper plausible
principles, as Born and Infeld tried, and Plebanski [37] and Boillat [5] did.

The conditions that yield a weak second Bianchi identity, which we derived in theorem
1.1 and several corollaries, can be applied more generally, to static spherically symmetric
Lorentzian manifolds with a singularity in the center. We note that the proof of our corollary
2.3 does, in general, not extend to the case m0 = 0, because the coordinate transformation
from r to ρ would involve the infinite integral

∫ r
0

dr′
r′ . However, we believe a result similar to

corollary 2.3 can be obtained as long as m0 � 0 and m(r) = O(rκ), 0 � κ < 1, as r ↓ 0. More-
over, there are cases with zero bare mass m0 = 0 and conical singularities that do admit a
transformation to spatially conformally flat coordinates (2.1) if we allow ρ0 = 0 and possibly
interpret the Bray mass using the more general definition of [9, section 3.2] via approximation
of regular ones. Examples are an explicit singular solution of the astrophysically important Tol-
mann–Oppenheimer–Volkoff equation, studied already by Chandrasekhar [10] and others [1,
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35] in view of its asymptotics and discussed below, and also the Hoffmann spacetime discussed
in [25, 43].

Example 4.1 (A singular static spherically symmetric fluid with vanishing bare mass
that satisfies the weak second Bianchi identity). For solutions of the Einstein–Euler
equations with linear equation of state p = (kc)2μ, k ∈ (0, 1), with conical singularity described
in [1, section 3.2.1] the cumulative mass function is of the form

m(r) =
Kc2

2G
r, K :=

4k2

4k2 + (1 + k2)2
, r ∈ (0,∞),

and hence goes to zero when r ↓ 0. Thus e−2β = 1 − 2Gm
c2 = 1 − K < 1. Hence the transfor-

mation to spatially conformally flat coordinates (2.1) is given by ρ = r
1√

1−K and φ2 = ρ
√

1−K−1

if we allow ρ0 = 0. In this case the weak version of the second Bianchi identity can be
obtained directly in the (t, r,ϑ,φ) coordinates since r2 eβ(r) dr = ρ2φ6 dρ and α(r) = γ(ρ) etc.
In particular, the limit in (2.5) translates to

lim
ε→0

ε2Gr
r(ε)eα(ε)+β(ε) = lim

ε→0
eα(ε)−β(ε)

(
1 − e2β(ε) +

4k2

1 + k2

)

= Ck lim
ε→0

ε
2k2

1+k2 = 0,

where Ck is a constant depending on k. This ends our example.

Furthermore, it is clear that the main ideas developed in this paper are not restricted to
static spherically symmetric spacetimes and are adaptable to more general situations. In par-
ticular, we expect that our results can be extended to non-static, non-symmetric spacetimes
with finitely many timelike singularities, which appear as point-type, or perhaps (st)ring-type
singularities in the spacelike leaves of any foliation of the spacetime into ‘evolving spaces’;
for a study of the equation of motion of singularities of the latter type, see [2]. We expect that
the less severe blow-up behavior demanded by the weak Bianchi identity will point the way
to the formulation of a well-posed dynamical theory for charged timelike singularities and the
electromagnetic spacetime structures around them. By requiring compatible singularities in the
electromagnetic energy–momentum–stress tensor this in turn should lead to the identification
of an admissible class of electromagnetic vacuum laws. Our preliminary inquiry in this direc-
tion also indicates that the admixture of a scalar field that modulates the gravitational coupling
of the electromagnetic field energy–momentum–stress tensor to the spacetime curvature may
be needed. Moreover, due to the occurrence of off-diagonal components in the Einstein tensor,
it is reasonable to expect that more restrictions on the metric may be required in order to obtain
a broadly applicable result analogous to theorem 1.1.

In all these cases we also expect the bare mass of the singularity to be strictly negative. We
recall that it had to be strictly negative in the spacetimes studied in the present paper for the
weak twice-contracted second Bianchi identity to hold with a rigorous geometric interpreta-
tion of the bare rest mass as Bray’s ZAS mass. Moreover, in the general-relativistic setting we
expect positive bare mass to imply a black hole (cf the discussion in [19]), not a naked singu-
larity, and as such could not serve as a suitable point-charge model of physical ‘particles’ like
nuclei, or electrons.

To this we add the following thought: given the spectacular high precision agreement of
quantum-mechanical computations of atomic spectra with the empirical ones, modifications of
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Maxwell’s vacuum law would have to be significant only in the immediate vicinity of a point
charge. This in turn suggests that the electromagnetic self-field energies, though finite, will still
be huge, and this in turn implies that the bare mass would have to be negative, so that the total
mass agrees with the empirical mass as obtained in scattering experiments. This is an argument
for why even in special relativity a consistent electrodynamical theory of fields and their point
charge sources that also agrees with observations would have to be formulated with negative
bare mass. Our finding that we were able to establish the weak second twice-contracted Bianchi
identity only for naked singularities with negative bare mass seems fitting.
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