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GALAXY MERGER ESTIMATION BY MACHINE LEARNING: A NEW METHOD TO
CONSTRAIN BLACK HOLE MERGER DETECTION WITH LISA
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Abstract. Understanding the mass assembly history of massive black holes (MBH) in the early universe
is a key to constraining their birth and growing processes. The LISA mission is expected to provide key in-
sights through the detection of MBH binaries via gravitational waves (GWs). However, current cosmological
simulations face challenges in predicting the growth of intermediate-mass black holes in low-mass galaxies,
limiting the accuracy of MBH merger rate estimates. To address this, we present a machine-learning frame-
work using the Illustris-TNG simulation to model galaxy mergers in groups and clusters. By combining
these simulated merger histories with VLT/MUSE spectroscopic data up to z ≈ 7, we improve MBH merger
rate predictions. Our model achieves an accuracy of approximately 80%, with an average galaxy merger
timescale of ∆T ≈ 130 Myr . Misclassifications, particularly in the non-merger category (33%), are at-
tributed to galaxy’s redshift degeneracy and uneven snapshot intervals. This approach enhances predictions
for LISA’s observational capabilities and advances our understanding of MBH evolution.
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1 Introduction

The existence of Supermassive Black Holes (SMBHs) at the center of massive galaxies is now well-established,
supported by stellar velocity dispersion measurements within galactic bulges Kormendy & Ho (2013), the
detection of jets from quasars, and direct observations made possible by the Event Horizon Telescope (e.g. M87
observation, Collaboration et al. 2019 or Sagitarius A∗, Collaboration et al. 2022). However, the role of SMBHs
in galaxy evolution, particularly during the early universe, remains an open question. Recent discoveries of
massive high-redshift galaxies by the James Webb Space Telescope, coupled with mass estimates of their SMBHs
(Mezcua et al. 2024), underscore the need for further investigation. The ubiquity of SMBHs across all galaxies,
especially in dwarf low-mass galaxies, is still debated, as is the question of when these black holes begin to grow
and how they influence the co-evolution of their host galaxies.

The first detection of Gravitational Waves (GWs) by the Advanced LIGO detectors (Abbott et al. 2016)
marked a pivotal moment in the study of compact binary systems. The upcoming Laser Interferometer Space
Antenna (LISA) promises to extend these studies to the regime of intermediate and supermassive black hole
mergers. To maximize the scientific return of the LISA mission, robust estimates of the GW population are
essential to inform the development of event disentanglement algorithms. Several cosmological and semi-analytic
models have been constructed in an attempt to replicate observed galaxy populations. However, the vast
disparity in scale between galaxies and SMBHs introduces significant computational challenges, leading to wide
variability in predictions of SMBH merger rates (Habouzit et al. 2022).

Large-scale galaxy surveys typically yield photometric redshifts, which are inherently uncertain. Spectro-
scopic redshifts, however, have been obtained using the Multi Unit Spectroscopic Explorer (MUSE) (Bacon
et al. 2015) mounted on the Very Large Telescope (VLT), enabling deep-field observations of galaxies in various
environments up to z ≈ 7 (e.g. Richard et al. 2021, Bacon et al. 2023, Epinat et al. 2024). These data have
provided valuable estimates of galaxy merger fractions (Ventou, E. et al. 2017, 2019), though comprehensive
merger studies accounting for the full galaxy population remain limited. A preliminary framework for predicting
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SMBH merger detection rates for LISA was introduced recently (Contini et al. 2022), but this approach relies
on simplified selection criteria based on projected galaxy separations and relative velocities, excluding mergers
involving more than two galaxies, thus introducing significant biases in the estimated merger rates.

Recent cosmological simulations now achieve sufficient resolution to model galaxy populations with increasing
accuracy, though SMBH dynamics remain an area of improvement. In this work, we propose a machine-learning
framework designed to predict galaxy mergers in groups using data from the Illustris TNG-300 (TNG-300) simu-
lation (see next section). By leveraging the detailed merger trees and hierarchical structure of galaxy formation,
our model estimates the timescales over which galaxy groups undergo mergers, offering a new approach to pre-
dicting SMBH merger rates in preparation for LISA observations.

2 Methodology

The Illustris TNG simulation (Nelson et al. 2021, 2017; Pillepich et al. 2017; Springel et al. 2017; Marinacci
et al. 2018; Naiman et al. 2018), is a cosmological, gravo-magneto-hydro-dynamical simulation, divided in 100
snapshots from z = 20 up to z = 0. Galaxies are identified by a unique index (ID) at each snapshot and a
merger tree is provided to determine if a merger occurs between different bodies. The TNG-300 simulation that
we use has a comoving width of 205 cMpc.

2.1 Dataset preparation

In order to ensure consistency between our dataset and the galaxy population observed in the MUSE/VLT
deep fields, we impose a lower stellar mass limit of 107 M⊙. This threshold allows us to focus on a statistically
significant subset of galaxies while maintaining observational relevance. For each simulation snapshot where the
redshift is z < 7.5, we randomly select a position within the TNG-300 cosmological simulation, confining this
selection to cubic volumes (hereafter referred to as ”mini-boxes”) of dimensions 1.5, 5, or 10 Mpc. For every
mini-box, we generate 15 random viewing angles to simulate diverse observational perspectives. From each of
these projections, we subsequently extract the key observational parameters: right ascension (RA), declination
(DEC), stellar mass (M), and redshift (z) for every galaxy present within the mini-box. This methodological
approach ensures a robust statistical sampling and mitigates orientation-based selection effects. To accurately
identify galaxy mergers, we trace the unique galaxy indices across consecutive snapshots. A merger event is
identified when two or more galaxies share the same index in the subsequent snapshot, signaling a physical
merger process. However, in certain cases, galaxies may undergo a ”Fly-By” event, wherein they pass near each
other but do not merge. In these scenarios, the galaxy IDs will differ between snapshots, introducing potential
biases. To address this, we cross-verify galaxy IDs across two consecutive snapshots, thus reducing the likelihood
of misidentifying non-mergers as mergers. To balance the dataset and prevent the perceptron model from being
skewed towards the dominant non-merger cases during training, we ensure an equal representation of merger and
non-merger populations. This stratified sampling approach enhances the model’s ability to distinguish between
merger and non-merger scenarios. Moreover, to prevent gradient divergence during the training process, we
normalize each feature in the dataset to the range [−1, 1], with the exception of the merger status, which is
binary encoded as 0 for non-mergers and 1 for mergers. The timescale for mergers, corresponding to the 1 label,
is observed to vary between 30 Myr and 225 Myr, with a mean merging timescale of approximately 130 Myr.
This normalization ensures stable convergence during training and allows for a more interpretable classification
task. The dataset employed in this study is restricted to cases where pairs of galaxies were identified within the
mini-boxes, resulting in a selection of 867 030 galaxy pairs.

2.2 Machine Learning

The architecture employed in this work is a multi-layer perceptron (MLP) implemented using the Python library
PyTorch. The model consists of four fully connected layers, with 32, 64, 128, and 2 neurons, respectively. Each
hidden layer is activated using a Rectified Linear Unit (ReLU) function, while the output layer utilizes a Sigmoid
activation function to facilitate binary classification. To optimize model performance, we adopt an adaptive
batch size strategy, starting from 8 and increasing to 2048, alongside a dynamic learning rate, initially set at
10−3 and gradually reduced to 10−5 over 2500 training epochs. The loss function used is Cross-Entropy, which
serves as the validation metric during training. The dataset is split into 70% for training and 30% for testing,
ensuring robust model evaluation and minimizing overfitting.
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3 Results and Discussion

The perceptron is capable of identifying galaxy mergers with an accuracy of approximately 80%. A confusion
matrix, presented in Fig.1, illustrates the classification performance. The training loss and validation loss (Fig.2)
exhibit a consistent decline as the number of epochs increases, indicating that the model progressively improves
in fitting the data. Initially, the training loss decreases more rapidly, while the validation loss follows a more
gradual decline, suggesting a convergence towards generalization. Both losses stabilize as the model approaches
2500 epochs, indicating diminishing returns in further optimization. In parallel, the accuracy of the model
shows a steady increase, with early epochs marked by rapid improvement, followed by a more gradual rise as
the model approaches its optimal performance, reaching a plateau at approximately 80%. This trend signifies
the model’s growing capacity to correctly classify data while mitigating overfitting

Most misclassifications occur within the non-merger category, with around 33% incorrectly labeled, compared
to approximately 7% for recent mergers. The underlying cause remains unclear; potential explanations include
redshift degeneracy induced by the galaxies’s proper velocities or the uneven time intervals between snapshots,
which can vary by up to a factor of two.
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Fig. 1. Confusion matrix: Predicted versus real values with their relative fractions. 0 for the non-merger case and 1 for

the merger case.

Since in this training method the amount of epochs is fixed, the algorithm does not manage to reach the
learning limit which might cause the remaining error. Improvements can still be made by adjusting the learning
rate when the loss reaches a plateau and with a regular increase in the batch size. We are still working on
improving the merging timescale estimate to a higher value.

4 Conclusions and perspectives

In this study, we developed a machine-learning framework using a multi-layer perceptron (MLP) to predict
galaxy mergers based on data from the Illustris TNG-300 simulation. The model achieved an accuracy of
approximately 80%, effectively distinguishing between merger and non-merger events. Our evaluation metrics
revealed that both training and validation losses steadily decreased over the 2500 training epochs, with dimin-
ishing returns in optimization observed towards the later epochs. The model accurately captured merger events
occurring on timescales ranging from 30 Myr to 225 Myr, with an average merger timescale of around 130 Myr.
This result suggests that the model is nearing optimal performance for this task, although further improvements
are possible through refinements in the learning rate schedule and batch size increments. Notably, the majority
of misclassifications occurred within the non-merger category, with around 33% incorrectly classified, compared
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Fig. 2. The training and validation loss (orange and blue curves, respectively) and the model accuracy (red) over 2500

epochs.For clarity, only one dot out of every twenty is shown.

to only 7% for recent mergers. This discrepancy may be attributed to redshift degeneracy induced by the
galaxies’ proper velocities or to the varying time intervals between simulation snapshots, which can differ by up
to a factor of two. While the current model demonstrates robust performance, there is room for enhancement.
Adjusting the learning rate when the loss plateaus could potentially reduce the residual error. Additionally,
expanding the model to account for mergers within galaxy groups, rather than just pairs, represents a promising
avenue for future work. Incorporating group interactions would offer a more comprehensive understanding of
hierarchical galaxy evolution and provide a more accurate estimation of supermassive black hole merger rates.
Overall, our approach lays the groundwork for improving the prediction of galaxy mergers and advancing our
understanding in preparation for upcoming LISA observations.
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