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Known mappings that encode fermionic
modes into a bosonic qubit system are non-
local transformations. In this paper we estab-
lish that this must necessarily be the case, if
the locality graph is complex enough (for ex-
ample for regular 2d lattices). In particular
we show that, in case of exact encodings, a
fully local mapping is possible if and only if
the locality graph is a tree. If instead we al-
low ourselves to also consider operators that
only act fermionically on a subspace of the
qubit Hilbert space, then we show that this
subspace must be composed of long range en-
tangled states, if the locality graph contains at
least two overlapping cycles. This implies, for
instance, that on 2d lattices there exist states
that are simple from the fermionic point of
view, while in any encoding require a circuit
of depth at least proportional to the system
size to be prepared.

1 Introduction

Fermi statistics are one of the two fundamental types
of particle statistics. Despite their fundamental na-
ture, however, fermionic particles are often pictured
as intrinsically non-local objects. Indeed, creation
and annihilation operators of fermionic modes obey
canonical anticommutation relations, which are at
odds with standard definitions of locality. This ten-
sion can be resolved by postulating that the only
physical fermionic operators are the ones composed
of products of an even number of creation or annihi-
lation operators. These operators always commute if
they are associated to spatially separated modes, giv-
ing rise to a system that can be interpreted as a fully
local model of quantum computation [1, 2].
Nonetheless, the intuition of fermions as non-local
particles re-emerges when one tries to simulate this
model of computation with a model based on lo-
cal qubits (or in general on local finite-dimensional
Hilbert spaces). The most basic way to do this is
the Jordan-Wigner transformation [3], which for suffi-
ciently non-trivial systems, such as 2d lattices, will al-
ways encode some local fermionic operators into qubit
operators with a large non-local support (in fact a
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support growing with the system’s size). More so-
phisticated encodings exist which are able to circum-
vent this problem by introducing ancillary qubits (e.g.
the Bravyi-Kitaev superfast encoding [1], the auxil-
iary fermion encoding [4, 5] or other similar construc-
tions [6-17]): here the total dimension of the qubit
Hilbert space is larger that the one of the fermionic
space, but it is possible to define some local qubit
operators that implement the fermionic algebra on a
subspace of qubit states, which we intrepret as repre-
senting the physical fermionic states. While this re-
solves the locality issue at the operator level (all local
fermionic operators are mapped to local qubit opera-
tors), the same issue reappears now at the level of the
encoded states. The subspace that encodes fermionic
states is indeed in general composed of non-local qubit
states, with correlations extending across the whole
system.

These encodings are of great value as they prove the
equivalence of the models of computation based on
fermions and qubits, up to an overhead scaling poly-
nomially with the system size. But, at the same time,
they also highlight how this equivalence necessarily
involves some amount of non-locality. The main aim
of this paper is to provide a systematic understanding
of this non-locality within a simple framework, show-
ing when and how it emerges and providing bounds on
the minimal amount of it that is necessary to encode
fermionic modes correctly.

More precisely, we consider systems of an arbitrary
fixed geometry, represented by a graph (for instance
a 2d lattice or a 1d chain), and we try to encode some
local fermionic modes of this graph into qubit op-
erators that are as local as possible with respect to
the same geometry. Maintaining the same locality
graph for both the fermionic and qubit system allows
a fair comparison of the resources, in terms of local-
ity, that are necessary to implement both cases. This
approach allows us to include in our discussion most
existing encodings. It is however worthwhile to note
that there exist also encodings where the qubit opera-
tors live in a system with a completely different local-
ity structure compared to the fermions that they rep-
resent. In the most common of these, the qubits are
distributed on a Fenwick tree structure (initally intro-
duced by Bravyi and Kitaev [1] and further elaborated
in Refs. [10, 18]). While the latter approach may be
very practical in certain applications, it however im-
plies that the local structure of the fermions is vio-
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lated already from the onset when constructing these
encodings. Notice further that in these constructions
local fermionic operators are in general still mapped
to qubit operators with a support growing with the
systems size, albeit only logarithmically. We will not
analyse this case further.

In what follows, we provide instead a framework
to define encodings for a fixed geometry and assess
all the sources of non-locality that appear in their
construction. We will prove two main results which
establish that the minumum amount of non-locality
that an encoding needs is related to simple proper-
ties of the system’s geometry graph. In particular, we
will show that a fully local encoding is possible only
for tree graphs. If the graph contains cycles, the best
that can be achieved is to ensure that local fermionic
operators are mapped to local qubit operators. This
however may come at the price of encoded states con-
taining non-local correlations. The minimal extent of
these correlations is again related to certain properties
of the graph, which we identify. If the graph contains
at least two cycles that overlap, then no encoded state
can be a product state. Rather, all encoded states
have to be constructed by applying a circuit of local
gates to a product state, the minimal depth of which
circuit grows linearly with a quantity d, representing
a certain notion of dimension of the maximal overlap
between any two cycles in the graph.

These results have relevant consequences both at
the fundamental and the practical level. At the fun-
damental level they give us a new insight on the deep
distinction between fermionic and bosonic systems.
While the former may arise as excitations of the latter,
this can happen only after sufficiently non-local corre-
lations have spread across the system. At a more prac-
tical level, these results provide some bounds on the
possibility of simulating fermions using qubit-based
quantum computing platforms rather than natively
fermionic ones. We show that this necessarily re-
quires linear overheads which can be problematic in
near term devices, where noise can quickly propagate
across circuits of very modest depth [19, 20].

The rest of the paper is structured as follows. In
Section 2, we introduce all the necessary notation and
define precisely what we mean by an encoding of local
fermionic modes into a qubit Hilbert space. In Sec-
tion 3, two theorems are presented which constitute
the main results of the paper. In Section 4 we discuss
and summarise the consequences of these results. In
Appendix A we provide the proofs of the theorems
stated above.

2 Notation and Definitions

A system of N fermionic modes is abstractly defined
by the creation annihilation operators a;rf, ay, for each
mode k =1,..., N. We can endow this system with a
notion of locality by considering an underlying graph

(V,E), where V is the set of verticesand E C V x V
the set of edges of the graph. If (j, k) € E for some
vertices j, k € V, it means that these two vertices are
“neighbouring” according to the locality defined by
the graph. We assume that the graph has exactly N
vertices and that each fermionic mode is associated
to one of these vertices. In this case we talk about
a system of local fermionic modes [1]. The space of
states on which these mode operators act is conven-
tionally called the fermionic Fock space F. It can be
constructed by considering a vacuum state |0) (satis-
fying ay [0) = 0 for all k) and all other states obtained
by acting on |0) with all possible combinations of az
and ay. It can be shown that this space has dimension
2NV (see for example Ref. [21] for more details).

The Fock space F can be equivalently described in
terms of the Majorana operators

cx = (af, + ax), (1)

CN+k:i(aL—ak) fork=1,...,N. (2)

The Majorana operators are Hermitian and satisfy the
canonical anticommutation relations {c;,c;} = 26;5,
which fully specify the structure of the group of even
Majorana monomials:

2N
My = {ch;“ a € {+,+i}, ne{0,1}2Y

i=1
s.t. an mod 2 = O} .
(3)

One of the main objects of interest is the algebra of
fermionic observables, which is defined as all complex
linear combinations of even Majorana monomials in
M.

The fermionic observables are endowed with a lo-
cal structure, in the sense that they can be gener-
ated by a set of local objects associated with the lo-
cal structures of the underlying graph. Indeed, if the
fermionic modes are associated to a connected graph
(V, E), then, following the notation of Ref. [1], a set of
generators of the group M is given by the operators

A = —Ap; = —icjcy, for every edge (j,k) € E, (4)

By = —ickenik for every vertex k € V. (5)

They are Hermitian and satisfy the following rela-
tions, which fully specify the group structure

[Bk, Bj] =0,  (6)

Ajp By — (—1)% M B Ay =0,  (7)

Ajp Ay — (=) 0mH om0k A A =0, (8)
A =Bi=1, (9

" Ajy o A s - Ajen =1 (10)

for every closed path ji, jo,. .., j, in the graph. Rela-
tions (7) and (8) imply that the operators Aj; and
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By, anticommute if they are associated to incident
edges/vertices and they commute otherwise. The op-
erators Bj, always commute among themselves. We
will refer to this set of generators as local fermionic
generators. Notice that local generators associated
to geometrically separated vertices/edges always com-
mute, compatibly with basic notions of locality”.
Consider now another system described by the
Hilbert space H (this could be, for example, a reg-
ister of qubits). We want to use the system H to rep-
resent the fermionic system. In other words we want
to encode F in H. Following Refs. [15, 1], an encod-
ing is an algebra isomorphism between the algebra of
fermionic observables and an algebra of operators in
L(H). To obtain this, it is sufficient to have a faithful
representation of the group M, on H, which can then
be extended to an algebra isomorphism by linearity~.
In other words, it is sufficient to have a representation
of the generators Aj; and By, as operators on H. We
indicate the corresponding representatives as Ajk and
By.
Definition 1 (Fermionic encoding). Consider the
Fock space F of N local fermionic modes on a con-
nected graph (V,E). An encoding of F in the Hilbert
space H is defined by providing the Hilbert space op-
erators By, € L(H) for each vertex k € V and Ay, €

L(H) for each edge (j, k) € E, such that fl;k = Ajk,
B,i = By, Ajp = —Ay; and the relations (6)-(10) are
satisfied.

Notice that having such an encoding of the operators
Ajk and By, implies that it is possible to construct
a subspace of H isomorphic to the Fock space F (or
at least its even/odd parity subspace). Any quantum
computation performed on this subspace will give the
same outcome as one performed on F, as this out-
come is ultimately determined by the group relations
satisfied by A & and Bk, which we assume to be the
correct ones.

Consider now the case in which also the Hilbert
space H has a locality structure given by the same
graph (V, E) as the fermionic modes. By this we mean
that H has a tensor product structure

H=Hi, @Hi, @ @ Hpy » (11)

IThis is the reason why we chose to only consider even Ma-
jorana monomials as observables. Generators with an odd num-
ber of Majorana would not commute even if localised far apart,
breaking basic locality assumptions. This is consistent with
the common ‘superselection rule’ that all physically relevant
observables and Hamiltonians should be even Majorana poly-
nomials [21]. Notice therefore that the non-locality of encodings
that we will discuss below is not just a trivial consequence of
having misguidedly included odd Majorana terms in our anal-
ysis.

®Note that any representation of My has to be faithful.
Indeed, for any non-trivial element g of M it is possible to
find another group element that anticommutes with it, so the
representative of g cannot be the identity. So the faithfulness
requirement is actually trivial.

where each Hj is a local Hilbert space associated to
each of the graph’s vertices k € V. For simplicity, we
will assume that Hj has a finite dimension dj, < +oc.
However the following results should hold similarly
also for infinite dimensional local spaces, which arise
for instance in systems of indistinguishable bosonic
particles. The structure (11) arises, for example, if we
attach a certain number of qubits to each vertex of the
graph (or in general any number of finite dimensional
systems — not just qubits — can be attached to each
vertex, as di, is arbitrary). This structure directly ap-
plies to many existing constructions: for example, the
Verstraete-Cirac encoding [4] attaches two qubits to
each fermionic vertex in a 2d geometry. Some encod-
ings attach qubits to edges rather than vertices (for
example the original Bravyi-Kitaev superfast encod-
ing [1]), but these can quite simply be reformulated
in a way that is compatible with our language (see
Ref. [8]), so their analysis is not fundamentally differ-
ent.

In this setting an operator on H is local if it has
support only on local Hilbert spaces associated to
“neighbouring” vertices according to the graph’s con-
nectivity. To make this more precise, consider a basis
{Okaa}azl,...,di of the space L(H}) of linear operators
on the local Hilbert space Hy, for each vertex k. The
operators oy, , can be chosen to be Hermitian. In the
case that Hjy, is a single qubit Hilbert space they could
be, for example, the Pauli matrices together with the
identity. We can now define the spaces of local opera-
tors associated to each vertex k or edge (j, k) respec-
tively as

le(H) =span{l ® - ®0op,® -1,

fora=1,...,d7} (12)

E]]{)(,H) — Span {IL ®.® Uj,a ®...® Ukb®.®17
&, b=1,...,dp}.

fora=1,...,d;,
(13)

A local encoding of F in H is an encoding where the
representatives fljk and By of local fermionic oper-
ators are local also according to this tensor product
structure of H.

Definition 2 (Local fermionic encoding). Consider
the Fock space F of N local fermionic modes on a
connected graph (V, E) and a Hilbert space H with lo-
cality structure also given by (V, E) according to (11).
An encoding of F into H, defined as in Definition 1,
is local if By € (x(H) for each vertez k € V and
Aji, € L (H) for each edge (j,k) € E.

In some situations, it may be sufficient to consider
local operators Ajk and Bk that generate a repre-
sentation of M, only restricted to a subspace C of
‘H. Only states in this subspace would then represent
physical fermionic states. This would be relevant, for
example, in the case of digital quantum computation
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if it is possible to generate initial states in C, which
would then remain in C throughout the computation.
It would also be relevant in the case of analog quan-
tum simulation if it is possible to engineer the system
Hamiltonian to restrict evolutions within C, for ex-
ample by adding terms that penalise in energy states
outside C. Let us call this type of encoding a local
block encoding.

Definition 3 (Local fermionic block encoding). Con-
sider the Fock space F of N local fermionic modes
on a connected graph (V,E) and a Hilbert space H
with locality structure also given by (V, E) according
to (11). A local block encoding of F into H is defined
by providing the Hilbert space operators B e L (H)
for each vertex k € V and A;, € €;,(H) for each
edge (4, k) € E such that there exists a subspace C,
closed under the actions of Ajk and By, where for
every ) € C

[By, Bj][¢) =0 (14)

[AjeBy — (-1 B Ay o) =0 (15)
(A= ()85 00 A )= 0 (10
(AL, = Aj) [0) = (BL = Bi) [v) =0 (17)

Ay lv) = BE ) =[v) (18)

" Aj o Ajy e A, gy [0) =l0) (19)

for every closed path ji,jo,...,jn in the graph.This
essentially means that only the subblock of the local
operators fljk and By, corresponding to the subspace
C acts as a fermionic encoding.

Let us conclude this section by stressing that we
have introduced here two distinct notions of local-
ity. In the Fock space setting, we consider opera-
tors such as A;; and By, to be local because they can
be associated to local objects (vertices, edges etc.)
and they commute if the corresponding local objects
are geometrically separated. Local operators of this
type arise naturally in systems that contain physical
fermionic particles. In the Hilbert space setting, we
have defined a stronger notion of locality which re-
quires the Hilbert space to decompose into a tensor
product structure. This structure arises naturally in
systems built by assembling several local subsystems
(e.g. qubits). Notice that the latter definition of lo-
cality implies the former. On the other hand, we will
show below that the converse is not true, that is lo-
cal systems in the first sense do not always admit the
structure of the second.

3 Results

In the previous section we have introduced the defi-
nitions of some relevant types of fermionic encodings.

We will now discuss some results about the feasibil-
ity and complexity of constructing and implementing
these types of encodings.

First of all, if one talks only generically of en-
codings, such as the ones of Definition 1, with no
further constraints, then it is well established that
the fermionic Fock space can be encoded into other
non-fermionic Hilbert spaces. For instance, the well-
known Jordan-Wigner transformation encodes F into
the Hilbert space of N qubits, for any locality struc-
ture that one may wish to impose on the fermionic
modes. For simple geometries, such as, for exam-
ple, if the graph (V, E) represents a chain with open
boundaries, then it turns out that the Jordan-Wigner
transformation is even a local encoding, according to
Definition 2.

However, as soon as one considers slightly less triv-
ial geometries (e.g. closed rings), it is clear that
the Jordan-Wigner encoding becomes highly non-
local, with some local fermionic operators A, being
mapped to non-local operators with support poten-
tially on the whole system. In fact, for non-trivial
enough geometries it is impossible to encode fermions
locally. This turns out to be related to the presence
of closed loops in the locality graph:

Theorem 1 (No local encodings for cyclic graphs).
A set of local fermionic modes admits a local encod-
ing according to the Definitions 2 if and only if their
locality graph (V, E) is a tree graph. A tree graph is
a connected graph that contains no cycles, that is no
sequences of edges {(j1, j2), (42, Ja), - - -, (Jp, J1)} start-
ing and ending in the same verter without any edge
appearing more than once.

This theorem formalises the fact, already stated
above, that the notion of locality inherent to local
fermionic modes is strictly weaker than the one com-
ing from a tensor product Hilbert space as in (11). In
other words, the result gives a more precise formula-
tion of the statement that “fermionic Fock space does
not admit a tensor product structure”, which is some-
times encountered. A proof of the theorem is given in
Appendix A.1: it essentially relies on the fact that it
is always possible to construct locally anti-commuting
operators, however such operators can never satisfy
condition (10), if they are local in the tensor product
sense.

Next to the Jordan-Wigner transformation, there
exist in the literature several further attempts at
defining local encodings of fermionic modes, the most
famous of which are the Bravyi-Kitaev superfast en-
coding [1, 8] or the Verstraete-Cirac encoding [4].
These encodings all avoid the constraints represented
by Theorem 1 by not constructing a local encoding
according to Definition 2 but rather a local block en-
coding, as introduced in Definition 3. We recall that
this means that the local operators fljk and Ek in-
troduced in these encodings do not satisfy the rela-
tions (6)—(10) on the full Hilbert space #, but rather
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only on a specific subspace C. It follows from The-
orem 1 however that this subspace C cannot have a
local structure, in particular it cannot admit a ten-
sor product decomposition into local subspaces. So it
may seem that these block encodings are effectively
just shifting the non-locality of the encoding from the
operators fljk and By to the states in the subspace
C. To verify to what extent this is the case, it would
be helpful to understand how non-local exactly these
states in C are. In what follows we will introduce a
result that quantifies this.

It is again the case that the non-locality of the en-
coding ultimately depends on the geometry of the lo-
cality graph (V, E). However, unlike the case of the
previous theorem, the complexity here is not directly
related to the presence of individual cycles in the
graph. Indeed, for graphs containing a single loop,
such as a ring graph, it is possible to define a block
encoding where C contains sufficiently local states: for
instance, where the fermionic vacuum is encoded into
a product state with respect to the local structure (11)
of H (see Appendix B for an explicit construction of
this). But the states in C do actually start to be-
come progressively more distant from product states
as soon as the graph contains at least two overlap-
ping cycles. The larger these overlapping cycles are,
the deeper the circuits will be which are needed to
produce any state in C out of a product state. This
concept of overlapping loops, as well as the one of
their size, are made more precise in the following def-
initions.

Definition 4 (8-shaped subgraph). Consider a con-
nected graph (V, E). If it is possible to identify in the
graph three disjoint sequences of edges

{(i0,%1), (41,72)5 - -, (in—1,1n)}, (20)
{(jovjl)’(jlan)v"'7(jm—1ajm)}’ (21)
{(k07k1)7(klka)w”a(klfhkl)} (22)

such that 19 = jo = ko and i, = jm = ki then we
say the graph has an 8-shaped subgraph. This means
that it is possible to find a subgraph with the structure
shown in Figure 1, i.e. containing two overlapping
loops. For any integer D < n,m,l we indicate the
sets of the first D edges of each sequence as

Ip :{(iouil)v(i17i2)7""(iD*17iD)}7 (23)
Jp :{(j(bjl)a(jlij)?"'?(jD—th)}, (24)
Kp = {(ko, k1), (k1,k2),...,(kp-1,kp)}.  (25)

The set of the remaining edges of the subgraph not
included in Ip, Jp or Kp we indicate as

Rp ={(ip,ip+1)s- -+ (In—1,1n),
(jD7jD+1)7 R (jm—lajm);
(kp,kpt1)y- -5 (ki—1, ki) } - (26)

in=jm=ki

Figure 1: Structure of an 8-shaped graph. The sequences
{io,ig, N ,in}, {jo,jg, N 7]'m} and {ko, k‘z, ey kl} share
an initial point ioc = jo = ko and a final point i, = jn,, =
k;. This graph contains two independent overlapping cycles
with base point ig: L1 follows first the i vertices then the k
vertices; Lo first the j vertices and then the k vertices.

Definition 5 (Size of 8-shaped subgraphs). Given an
8-shaped subgraph embedded in a graph (V, E), we say
that it has size d if d is the largest integer for which
it is possible to find D € N such that no vertex in the
whole graph V' is simultaneously within distance d of
Rp and within distance d of more than one of Ip,
Jp or Kp. Here distance is to be understood as the
graph distance, that is the minimum number of edges
that are necessary to connect two given vertices.

This definition of size of the §8-shaped subgraphs
may seem a bit contrived, but it measures in a sense
the degree of bidimensionality of the given subgraph.
Indeed to maximise this measure it is necessary for
the three sequences that compose the subgraph to be
long and to be ‘far from each other’. So the graph
needs to extend into at least two dimensions to allow
these sequences to grow both long and apart from
each other at the same time. For example, if the
graph is a two-dimensional square lattice of side L,
see Figure 2(a), then the largest 8-shaped subgraph
has size d = | (L — 2)/4| which grows with the linear
size of the system. In general, also for most other
truly two-dimensional lattices it is possible to find
8-shaped subgraphs of size growing with the linear
extent of the system. On the other hand, in a ladder-
type graph like the one represented in Figure 2(b),
any 8-shaped subgraph will always have size upper
bounded by a constant, reflecting the fundamentally
one-dimensional nature of the graph.

In any case, the size of the maximal 8-shaped sub-
graph that a graph can accommodate is directly re-
lated to the complexity of the states of any local block
encoding of the fermionic modes on the graph. This
is specified by the following theorem:

Theorem 2 (Complexity of local block encodings).
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Figure 2: Examples of 8-shaped subgraphs within two different graphs: in panel a) an L X L square lattice, in panel b) a
ladder-type graph (that is a square lattice with a fixed width of 3 edges and an arbitrary length L). In both graphs the 8-shaped
subgraph of largest size is depicted by a black line, it is of size d = 2 in example a) and size d = 1 in example b). In both
graphs a choice of Ip, Jp and Kp that achieves this maximal d is indicated in red, blue and green colour. The shaded region
represents the vertices that are within distance d of Rp, which can be seen to all be within distance d of at most one of Ip,
Jp or Kp. In example a) the maximal 8-shaped subgraph has size that grows with L, while in example b) the represented

subgraph of size d = 1 is maximal for any L > 6.

Consider the local fermionic modes on a connected
graph (V, E) containing an 8-shaped subgraph of size
d. Consider any local block encoding of these modes
into a Hilbert space H according to Definition 3. Then
the subspace C does not contain any state that can be
produced by acting on a product state with a circuit of
local two-body gates of depth lower or equal to d.

Here, the product states and the local gates should
be understood as defined with respect to the local ten-
sor product structure (11) of the Hilbert space H. A
proof of the theorem is presented in Appendix A.2.
The intuitive idea is that if the encoded states are
too local, then at the bifurcation point ig = jo = ko
of the three cycles of the 8-shaped subgraph there
exist three operators that all anticommute and have
a shared localised eigenstate, which is impossible.
There must exist correlations with the other anal-
ogous point i, = j, = k; such that this does not
have to be the case. This theorem clarifies where the
non-locality of local fermionic block encodings lies and
what graph structures it is related to.

The results that have been derived so far in this
paper can be summarised as in the Table 1 below. If
the graph (V, E') contains no cycles, then there always
exist a local encoding (according to Definition 2) of
the corresponding fermionic modes. If the graph in-
stead contains cycles, but these do not overlap, then
it is possible to construct local block encodings (ac-
cording to Definition 3), where the vacuum state is

however still mapped to a local product state (as dis-
cussed in Appendix B). Finally, if overlapping loops
are present in the graph, then in any local block en-
coding any encoded state will have correlations on a
length scale determined by the size of the largest over-
lapping loops, as made precise in Theorem 2.

4 Discussion

It is indisputable that fermionic observables can be
considered as fully local objects, following their own
consistent notion of locality. However, an element of
non-locality necessarily emerges when one tries to rep-
resent them in a natively bosonic system. The re-
sults above prove that non-locality is an essentially
inevitable feature of this type of mappings: it must
appear to bridge between the fundamentally incom-
patible notions of fermionic locality (based on commu-
tation relations) and bosonic locality (based on tensor
products of local Hilbert spaces).

A consequence of the results of this paper is that, in
certain geometries, there exist simple fermionic states
(for instance that can be created out of the vacuum
with a constant depth circuit of fermionic gates) which
in any encoding require a circuit of (V) depth to be
represented. Consider, for instance, a geometry like
the one represented in Figure 1, where each branch of
the graph is of equal length. On this system consider
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Local Local block | Vacuum
Graph type encoding | encoding state
No cycles Yes Yes Product
Separate cycles No Yes Product
Overlapping cycles No Yes Entangled

Table 1: Summary of the encodings that can be constructed for different types of graphs: tree graphs with no cycles, graphs
with individual non-overlapping cycles and graphs with at least two overlapping cycles.

the state

0) =TI Ui 10) with Ugny = exp(iad; ),

(4,k)EE

(27)
for a real constant «, where |0) is the fermionic vac-
uum state. The ordering of the product of non-
commuting fermionic gates U; 1) is chosen such that
they form a circuit of constant depth (for this graph
an ordering exists with circuit depth 3). So |¢) can
be considered a very simple state from the fermionic
point of view. However, if we now look at the states
that it would get mapped to by a fermion to boson
encoding, we find the following. If we assume that
the encoding preserves the locality of the operators,
then by Theorem 2 any fermionic state, including |¢),
needs a circuit of depth proportional to IV to be pro-
duced out of a product state. If, on the other hand, we
enforce that |0) is mapped to a product state, giving
up if necessary the locality of the AM operators, then
by a reasoning analogous to the proof of Theorem 2
it is clear that at least some of the operators Aj)k
must have support of size proportional to N. Thus
the circuit (27) producing |¢) from the product vac-
uum state will have, in terms of local gates, a depth
proportional to N.

In the analysis above we have only considered the
case in which one constructs the encoded fermionic
states out of product states using unitary quantum
circuits. It is possible that the conclusions would
change if one also allows measurements and adap-
tive applications of gates based on the outcomes of
these measurements. It is indeed known that long
range entanglement can be created by a finite depth
circuit augmented by local measurements and feedfor-
ward [22]. This type of protocols have been shown to
efficiently prepare long range correlated states such
as the GHZ state [23, 24] or topologically ordered
states [25-27]. Tt should be straightforward to ex-
tend them to efficiently prepare the encoded states
of a local fermionic block encoding. If this is pos-
sible, it would mean that encoded fermionic states
are non-trivial with respect to local unitary circuits,
but actually live in the trivial phase with respect to
local circuits plus local operations and classical com-
munications (LOCC) [27]. As a sketch of how this
could be done, consider for instance that it is al-
ways possible to construct encodings that satisfy rela-

tions (14-18) with respect to some local operators fljk
and By and a product state [¢)). On suitable graphs,
it may be further possible to measure all operators
i"fljl,ﬁfljma e Ajn,jl for all cycles of the graph us-
ing only constant depth circuits and local measure-
ments, thus projecting |¢)) onto a state that also satis-
fies relations (19) up to some signs given by the mea-
surement outcomes. Then it would be sufficient to
find a way to correct these signs by appropriately re-
assigning some encoded operators fljk — f/ijk.

An open question raised by the observations
above is whether the fundamental difference between
fermions and bosons can be tested or verified in an ex-
perimental setting, at least in principle. If we build a
fermionic state through some local actions, and we
somehow verify its fermionic nature, can we claim
that it must be composed of genuine fermions, and
not fermionic excitations of some ultimately bosonic
system? This should be the case because creating
fermionic excitations out of a bosonic medium would
require some non-local operations which we have in
principle excluded in our preparation.

Another open question is whether one can build
on examples like state (27) to show some polyno-
mial advantage of natively fermionic systems over
bosonic ones. In other words, can we find some use-
ful fermionic algorithm that would necessarily require
polynomially deeper local circuits to simulate on a
qubit platform? If this is the case, the present re-
sults would make a case in favour of using natively
fermionic platforms for addressing fermionic quantum
computation and simulation problems.
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A Proof of the results

A.1 Proof of Theorem 1

Theorem 1 (Repeated). A set of local fermionic modes admits a local encoding according to the Definitions 2 if
and only if their locality graph (V, E) is a tree graph. A tree graph is a connected graph that contains no cycles,
that is no sequences of edges {(j1,J2), (j2,73),-- -, (Jp,J1)} starting and ending in the same vertex without any
edge appearing more than once.

We are assuming, in our definitions of encodings, that the considered graph is connected. So, to prove the
only if part, it is sufficient to show that a graph containing a cycle cannot admit a local encoding. To do this,
notice that if the graph contains a cycle, then the operators A]’k have to satisfy at least one non-trivial relation
of the form (10). We will now show that this cannot be satisfied by operators /Aljk which are local according to
the tensor product structure (11) of the Hilbert space (that is, A;;, € £;5,(H)) and which anticommute according
to condition (8).

Consider indeed the operator Ajk for any edge (j,k) € E. Due to the locality condition this has to be an
operator acting only on H; ® H;, which can therefore be represented as a tensor with 4 indices, an ingoing and
an outgoing index for the Hilbert space H; and an ingoing and outgoing index for the Hilbert space H;. If we
perform a singular value decomposition separating the two indices acting on Hj from the two indices acting on
H; we can write

s
A]k = Z )\’E]k) A’E]]W])@ Agjk?; k) for all (,]a k) cE. (28)
i=1
Here, )\Ej ") are positive numbers and r is the rank of the singular value decomposition. For every i =1,...,r,

A(jk;j

7

) and flgj k) are operators acting on H,; and Hj, respectively, which satisfy the orthonormality conditions

Tr (Agjk”))TAg?’“j) = Tr (Agjk;’“)TAg?’“’“) = 5.4 for all i,d' = 1,...,r (29)
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Consider now two adjacent edges (j, k) and (k,). According to relation (8) the corresponding operators Ajk
and Ay, should anticommute. Taking into account the expression (28) derived above, this means

0= {Ajlwfikl} _ Z )\Z(jk))\l(llcl) Agjk?j)Q@ {Agjk;k)7Al(llcl;k)} ® Al(llcl;l) ) (30)

i,i’

If we now multiply this expression by Ag,j,k;] ) and fll(-,]ff:’l) and take the trace over sites j and [, due to the
orthonormality conditions (29) we find {flg] ks k), Ag,k E k)} = 0 for every i, ¢’ and for every pair of adjacent edges
(4, k) and (k,1).

Finally, assuming that the graph contains at least one cycle, let us consider the corresponding operator
1" A 5aAjs s - Aj, iy, which according to condition (10) should be equal to the identity. Substituting expres-
sion (28), this loop operator can also be written as

Z )\(Jh]z) . Jm]l) [AE{I;J%]I)A(]H:JI7]1):| ® {Agil,h»]z) A (J2, Jzyjz)}} Q- ® [Agiv:lvjn;J'n)AZ(_imjnjn)

(31)
This expression however cannot be equal to the identity, as it is actually orthogonal to it with respect to the
Hilbert-Schmidt product. The trace of expression (31) indeed vanishes, because the individual traces of the
factors between square brackets vanish. Each factor is the product of two operators which we have shown above
to anticommute and, due to cyclicity, the trace of two anticommuting operators must be equal to zero. We
conclude that the graph cannot contain any cycle if the operators fljk have to satisfy all the relevant conditions
of a local encoding according to Definition 2.

To prove the if part of the theorem, we have to show that it is possible to construct a local encoding for any
tree graph. This can be done, for instance, with a version of the Bravyi-Kitaev encoding [8]. Although this
encoding is well know, we will for completeness give here a sketch of the construction, which is quite simple and
instructive.

Consider a tree graph (V, E). Let us denote by my, the degree of each vertex k in the graph, that is the number
of edges incident on that vertex. Let us then construct the Hilbert space (11) by choosing Hj, = (C?)®(@/2),
with dp = 2[my/2]. That is, we construct the local Hilbert spaces by attaching to each vertex a qubit for each
pair of incident edges, rounding up by one in case of vertices of odd degree. On each local Hilbert space Hy,
we now define dj Hermitian operators which all anticommute with each other and which square to 1. We label

them as yx.1,...,7k,d,- This can be done, for example, by taking
Vi=2® - ®ZIXR1®---®1 for odd ¢ (32)
—_———

(i—1)/2 times

Vi =Z2@ - QZRJAYR1®---®1 foreveni. (33)
—_—
(i—2)/2 times

Here, the tensor product refers to the qubits that make up the space Hj and the operators X, Y and Z are the
Pauli operators acting on each such qubit.

Let us now introduce an ordering of the edges incident on a given vertex k: for every vertex j which is
connected to k by an edge of the graph, we assign to j an integer Ng(j), in such a way that all the vertices
directly connected to k will be assigned different integers ranging from 1 to myj. We do this for all vertices.
Finally let us also assign an arbitrary orientation to each edge: the number €;;, equals +1 if j is the tail of the
edge (7, k) and —1 if k is the tail. We are now ready to construct a local encoding into # of the fermionic modes
associated to the graph (V, E). For each edge (j, k) € E and for each vertex k € V we define

Ajk = €6 Vi p Teog with p = N; (k) and g = Ni(j) , (34)

Bk — ;dr(d—1)/2 Vi1 Ve Vheody - (35)
Tt is easy to see that these are local Hermitian operators which satisfy relations (6)—(9). As the graph is a tree,
there are no non-trivial cycles, so condition (10) is also trivially satisfied.

A.2  Proof of Theorem 2

Theorem 2 (Repeated). Consider the local fermionic modes on a connected graph (V,E) containing an 8-
shaped subgraph of size d. Consider any local block encoding of these modes into a Hilbert space H according to
Definition 3. Then the subspace C does not contain any state that can be produced by acting on a product state
with a circuit of local two-body gates of depth lower or equal to d.
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We consider a local block encoding on a graph (V, E) which contains an 8-shaped subgraph of size d. Let
{(i0,%1), (41,12), -}, {(Jo,d1)s (J1,J2), .-} and {(ko, k1), (k1,k2), ...} be the sequences of edges that make up
this subgraph, as in Definition 4, where ig = jo = k¢ and i,, = j, = k;. Let D be the integer that satisfies
Definition 5 and let Ip, Jp and Kp be defined as in equations (23)—(25).

Let us assume now that there exists a state in the subspace C that can be written as U [¢)), where |¢)) is a
product state and U is a circuit of local two-body unitaries of depth at most d. We will show that this leads
to a contradiction. Here, the product state condition means that we can write [¢)) = @),y [¢;), where each
|¢;) is a normalised local state in ;. The local two-body nature of the circuit U, on the other hand, means
that the circuit exhibits a light cone whose spatial size grows proportionally to the circuit depth. Given that
the depth is at most d, this means that a local operator, if evolved under U, will acquire support only on sites
that are at most at distance d from the support of the original local operator.

We can in particular consider the operators A]k =U TAij and By, = UTBU, which will satisfy all re-
lations (14)—(19) with respect to the product state |¢)), but will have support potentially on all sites within
distance d of the edge (j, k) or the vertex k respectively. In a similar spirit of enlarging the support of operators
by a distance d, let us define I Ip as the subset of all vertices of the graph which are within distance d of any
edge in Ip, and similarly for Jp and Kp. We further define Q p as the set of all vertices that belong to more
than one of ID, Jp or Kp.

Consider now the following two operators, corresponding to the loops labelled L; and Ly in Figure 1:

L, = in—H gioil T Avinfﬂn Avk?l,kl—l T Avklko (36)
Ly =i Ajojo - Aj o Ay Ak - (37)

As discussed above and considering relation (19), we have Ly [¢)) = L2 |[¢)) = [+). By taking a partial trace over
Q $, that is over the local Hilbert spaces associated to all vertices of the graph that are not in Q D, this implies

& 193) (W] = Trg, ¥}l (38)
j€Qp

= Trg. Ln [9)(¢| L] (39)

i i
=Trg. 14 T 4w | 1) (] T Aew 14 (40)
(i,;i")elp (k,k")eKD (k,k")eKD (i,;i")€lp
i T
= Tipoiong, | 14w || A | & kel | TTAw || []4u ) (1)

(i,i")Elp (kK)EEKD ) jeTpURn (k,k")EKD (4,i")eIp

Here the product symbols should be understood as a shorthand notation for products of A operators in the
same order as they appear in equations (36) and (37) In step (40) we have used the cyclicity of the partial trace
with respect to operators with support only on Q ¢ and the relations (16) and (18) to eliminate all operators A
associated to edges not in Ip or Kp. Indeed, by the assumptions of Definition 5, these edge operators cannot
have support in @p, as this would imply that there are vertices in the graph that are within distance d of Rp
but also within @p and therefore within distance d of at least two of Ip, Jp and Kp. In the last step we have
used the product nature of |¢) and the fact that the remaining operators all have support only in Ip U Kp to
reduce the trace to the sites of @CD which are also in I~D U IN(D.

Let us now introduce a less cluttered notation to simplify the following analysis. Let us identify four relevant
disjoint subsets of vertices of the graph, which we denote as:

Q=Qp (42)
A=1Ip\Qp (43)
B=Jp\Qp (44)
C=Kp\Qp. (45)

In other words A, B, C are the vertices which belong to exclusively one of I, D, Jp or Kp respectively, and @
are the vertices which belong to more than one of them. We indicate with |@) the part of the product state
) within @, that is |Q) = @;c[;) and analogously for [4), [B), |C). Finally, let us rename the following
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operators as

Uga = ng ; Vop = H Ay, Waoe = H A - (46)

(i,i")€lp (4,5")€JD (k,k")€KD

Notice that Uga, Vop and Wgc have support only on Q U A, Q U B and Q U C respectively. Notice also that
they all anticommute when applied to |¢). This follows from relation (16) observing that they are defined on
edges that overlap on a single vertex ig = jo = kog.

With this notation, equation (41) can be expressed as

Q)(Q] = Trac UgaWoc |QACYQAC| WhoUL, . (47)

where we simplify the tensor product notation by listing all the states inside the same ket. This relation implies
that the state UgaWoc |QAC) is not entangled with respect to the partition Q|AC, as the corresponding
reduced density matrix is a pure state. It must thus be a product state. A completely analogous analysis of
expression (38) using Lo [¢) = |¢) allows us to conclude the same for VopWgoc |QBC). That is, in summary,
we must have

UgaWqc |QAC) = |Q)|pac) (48)
VasWac |@BC) = |Q)|¢sc) (49)

for some suitable normalised states |pac) and |¢pc). The fact that these states are normalised follows from (18).
We will now show that these last two equations cannot both hold, given the relations (16) and (18).

These latter relations indeed imply that UgaVoeWoc |QABC) = —VopUgaWgoc |QABC).  Substitut-
ing (48) and (49) we would find

(Uea 1) oo} = = (Vor QB) ) lpac) - (50)

This can only be true if Uga |QA), Vor |@B), |¢sc) and |pac) are all product states. For instance, taking the
partial trace of the last equation with respect to the subsystems AC we find that (Tr aUga |QA) (QA| U(E A) ®

<Trc leBe) (<p30|) must be a pure state: this implies that the reduced density matrices of Uga |QA) and

|opc) must both be pure states. The same can be said of Vo |@QB) and |pac) by tracing over BC.
So, summarising we have

Uga|QA) = 0) ) (51)
Vor |@QB) = 10) |B) (52)
o) = 18) 1) (53)
lpac) = @) [7) (54)

for some suitable normalised states |a), |@) living in subsystem A, |3), [B) living in subsystem B, |y), [7) living
in subsystem C' and [6), [0) living in subsystem Q. The fact that they can be chosen to be normalised is again
a consequence of (18). Substituting this in (50) we further have | o 8+v) = — | @ §7), which implies

[@) =Xala), [B)=x518), W =xy17, 10)=x0l0), (55)

for some phases x«, X3, Xy, Xo satisfying xaXxgx~yXe = —1.
Consider now again relation (48), rewriting it as —WocUga |QABC) = |@B)|pac). Substituting the results
above, this becomes

_WQC |9aBC> = |Q§Bﬁ> = XaXy |QO‘B'7> ) (56)

which implies Wgc [0C) = —xaXxy |QY). Similarly, rewriting (49) as —WocVop |QABC) = |QA)|¢sc), we
conclude that

|QABY) = —Wqce |0 ABC) = —xoxsWac |0 ABC) | (57)

which implies Wgc [0C) = —(xaxs) "' |Q7). Combining these results leads us to xaXx~ |Q7) = (xexs) ' Q%)
which can only be true if xoXxsxyXe = 1, contradicting our previous conclusion that this product must be
negative.

We are therefore forced to abandon our initial assumption, i.e. that U |¢) € C, which proves the theorem.
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Figure 3: A graphical depiction of the system considered in Appendix B. N fermionic modes (blue circles) are positioned on
a closed ring. To each mode is associated a single qubit (black circles), except for the first mode, to which two qubits are
associated.

B Graph with a single cycle

In this section, we provide an example to clarify how the assumptions of Theorem 2 are strictly necessary. That
is, block encodings with a non-local encoding space C are really needed only if the graph contains at least two
overlapping cycles. Graphs with a single loop indeed admit an encoding where encoded states can be product
states, independently of the loop’s size.

Let us show this by constructing an encoding for the simple system of N fermionic modes living on a single
ring. That is, consider the graph given by N vertices labelled 1,..., N connected in a closed ring geometry,
as represented in Figure 3. We associate a fermionic mode to each vertex of the graph. We will now encode
this fermionic system in the Hilbert space H constructed in the following way. We associate one qubit to each
vertex except for the first vertex. To the first vertex we associate two qubits, which we label 1 and 1. So in
total H is composed of N + 1 qubits, attached to the N vertices of our graph. We shall denote by Xy, Y, Zx
the Pauli operators acting on the qubit k.

Consider now the following local operators associated to each vertex and edge of the graph

B, =2, Vk=1,...,N, (58)
Appir = XiYepr VE=1,...,N—1, (59)
Ay = XyV17; . (60)

We immediately see that they satisfy relations (14)—(18) for any state |¢)) € H. Relation (19) on the other hand
is satisfied only on a non-trivial subset of states. In particular equation (19) reduces to

Z1Z7\Zy - ZN ) = ) (61)

which is satisfied for any |¢) in the subspace

C = span <{|Zl7zl, o Zn), V2 e {01}V st Zzz mod 2 = O}) ) (62)

where |27, 21, . .., zn) are computational basis states. We therefore see that the encoding defined by the operators
fljk, By, and the subspace C above is a local fermionic block encoding according to Definition 3.

Now let us first observe that this encoding is indeed a block encoding, as we are encoding the fermionic Fock
space into the 2VV-dimensional subspace C of the larger 2V 1-dimensional Hilbert space . This is consistent with
Theorem 1, which forbids a full encoding for graphs that contain a cycle. Second, it is clear from definition (62)
that the subspace C contains product states, in fact a whole basis composed of product states. This is compatible
with Theorem 2, as the graph does not contain any overlapping loops. In particular, the the fermionic vacuum
state |0) is represented by the product state |0,0,...,0), which is the +1 eigenstate of all the operators By =
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1-— QaLak. It is also possible to rewrite C as

N
C = span <{ 0, 21,...,2), Vz € {0, 1}V s.t. Zzl mod 2 :0}

=1

N
u { 11,21, 20), V2 € {0,1}" s.t. Z’Zi mod 2 = 1}) . (63)

i=1

This makes it explicit that C decomposes into two subspaces corresponding to different total fermion number
parity, that is different parities of the observable Z,Jj:l By,. The role of the additional qubit 1 is essentially to
label these two subspaces.

The construction above can be easily generalised to graphs with multiple loops as long as these loops do not
overlap, meaning that the ensuing conditions (19) can be addressed independently.
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