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Abstract In this work, we take a short recap of a formal
framework of the Eddington-inspired Born–Infeld (EiBI)
theory of gravity and derive the point-like Lagrangian for
underlying theory based on the use of Noether gauge symme-
tries (NGS). We study a Hessian matrix and quantify Euler–
Lagrange equations of EiBI universe. We discuss the NGS
approach for the Eddington-inspired Born–Infeld theory and
show that there exists the de Sitter solution in this gravity
model.
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1 Introduction

Various cosmological observations make a strong evidence
that the expansion of the universe is presently accelerat-
ing. These experimental results include Type Ia Supernovae
[1,2], cosmic microwave background (CMB) radiation [3–
9], large scale structure [10,11], baryon acoustic oscillations
(BAO) [12] as well as weak lensing [13]. An expansion phase

a e-mail: thanyagamon1995@gmail.com
b e-mail: channuie@gmail.com
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can be basically explained by the simplest model: the so-
called Lambda cold dark matter (�CDM) [14]. However,
the �CDM model is plagued by the cosmological problem
[15] and the coincident problem [16]. There are at least two
promising explanations to date to describe the late-time cos-
mic acceleration. The first one assumes the introduction of the
so-called “dark energy (DE)” in the context of conventional
general relativity. Another convincing approach is to engi-
neer Einstein gravity on the large-scale methodology (see
for reviews on not only dark energy problem but also modi-
fied gravity theories, e.g., [17–21]). However, the DE sector
remains still unknown and possesses one of the unsolved
problems in physics.

Therefore, it opens opportunities to search for modified
theories of gravity to deal with such problems. By modify-
ing the geometrical part of Einstein field equations or adding
scalar field to the right-hand side of the Einstein field equa-
tions, both alternatives are able to explain effects of dark
ingredients with acceptable assertions [22]. One of the sim-
plest modifications to the standard general relativity is the
f (R) theories of gravity in which the Lagrangian density
f is an arbitrary function of the scalar curvature R [23,24].
Among numerous alternatives, these theories include higher
order curvature invariants, see rigorous reviews on f (R) the-
ories [25,26] as well as on Born–Infeld inspired modifica-
tions of gravity [27]. See also a recent review on modified
gravity theories on inflation, bounce and late-time Evolution
[28]. There have also been works regarding the inclusion on
EiBI on a larger class of theories named Ricci-based gravity
theories [29–31]. Additionally, there have been other works
in EiBI theories appeared to have rigid consequences, see
[32–36].

In cosmological framework, the Noether symmetry (NS)
approach has revealed a useful tool not only to fix physically
viable cosmological models with respect to the conserved
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quantities, but also to reduce dynamics and achieve exact
solutions [37,38]. Moreover, the existence of Noether syme-
tries plays crucial roles when studying quantum cosmology
[39]. The Noether symmetry approach has been employed
to various cosmological scenarios so far including the f (T )

gravity [40], the f (R) gravity [41], the alpha-attractors [42],
spherical and cylindrical solutions in f (T ) gravity [43],
f (G)gravity [44], non-local curvature and Gauss–Bonnet
cosmologies [45], and others cosmological scenarios, e.g.
[46–55]. The study of Palatini f (R) cosmology using the
NS approach for the matter-dominated universe was carried
out in Ref. [56,57]. Moreover, the exact solutions for poten-
tial functions, scalar field and the scale factors in the Bianchi
models have been investigated in [58,59].

Apart from the NS approach [37,38], the Noether Gauge
Symmetry (NGS) [60–62] is more generalized. In this work,
we examine a formal framework of Eddington-inspired
Born–Infeld (EiBI) gravity through the NGS approach and
present a detailed calculation of the point-like Lagrangian.
Notice that the point-like Lagrangian derived from the alter-
native form of the EiBI action was proposed by Delsate and
Steindoff [63] instead of using the original form of the EiBI
action suggested by Máximo Bañadoz [64].

This paper is organized as follows: we will start by mak-
ing a short recap of a formal framework of the Eddington-
inspired Born–Infeld theory of gravity in Sect. 2. Here we
derive the point-like Lagrangian for underlying theory. In
Sect. 3, we study a Hessian matrix and quantify Euler-
Lagrange equations of EiBI universe. In Sect. 4, the NGS
approach for the Eddington-inspired Born–Infeld theory is
discussed. We comment on exact cosmological solutions of
the EiBI theory based on the use of Noether symmetries of
point-like Lagrangians in Sect. 5. Finally, we conclude our
findings in the last section.

2 Eddington-inspired Born–Infeld gravity

In 2009, Máximo Bañadoz [64] proposed a new form of the
Born–Infeld action under Palatini formalism. This is the so-
called Eddington-inspired-Born–Infeld (EiBI) gravity. This
action is written as follows:

SEiBI(g, �) = 2

κ

∫
d4x

[√|gμν + κRμν(�)| − λ
√ |gμν |

]

+Sm(gμν,�) + Sφ(gμν, φ), (2.1)

where λ = 1+κ� is a dimensionless constant displaying the
relation between the EiBI free parameter κ (with a dimension
of M2

P ) and the cosmological constant � (with a dimension
of M−2

P ); whilst Sm(gμν,�) and Sφ(gμν, φ) represent the
matter field action and the scalar field action, respectively.
The authors of Refs. [65,66] have realised why these theo-
ries (including EiBI) do not propagate ghosts. This is due to
their projective symmetry, which is realised by taking into
account only the symmetric part of the Ricci tensor in the
EiBI action. Therefore, in order to avoid ghosts, the Ricci
scalar of Eq. (2.1) should actually be the symmetric part of
the Ricci tensor, otherwise the theory propagates ghosts.

Throughout this work, we set 8πGN
c4 = 1. After performing

variation of Eq. (2.1) with respect to �λ
μν , we obtain the rela-

tion between two metric tensors, i.e. qμν = gμν + κRμν(�).

Hence Eq. (2.1) can be written in the bi-metric form as

SEiBI(g, �) = 2

κ

∫
d4x

[√|qμν | − λ
√ |gμν |

]

+Sm(gμν,�) + Sφ(gμν, φ). (2.2)

With the help of two ansatz forms of a spatially flat FLRW
metric

ds2
g = gμνdx

μdxν = −N (t)2dt2 + a(t)2d �x2, (2.3)

ds2
q = qμνdx

μdxν = −M(t)2dt2 + b(t)2d �x2, (2.4)

the EiBI action (2.2) can be expressed in terms of the cos-
mological variables as follows:

SEiBI = 2

κ
υ0

∫
dtLEiBI = 2υ0

κ

∫
dt

⎡
⎣

√
a6

[
N 2 − 3κ

(
Ṁḃ

Mb
− b̈

b

)] [
1 + κ

a2M2

(
−b̈b + 2ḃ2 − bḃṀ

M

)]3

− Na3(1 + κ�)

⎤
⎦ − Na3

[
−ρm(a) + lφ̇2

N 2 − 2V (φ)

]
, (2.5)

where υ0 is the spatial volume obtaining after a proper com-
pactification for spatial flat section. l = +1 and l = −1
denote an ordinary scalar field and phantom scalar field,
respectively. It is probably impossible to get rid of all second
order derivative in Eq. (2.5) by performing an integration by
parts. Therefore we neglect to write an explicit form of the
point-like Lagrangian. In 2012, Delsate and Steindoff [63],
however, wisely proposed the bi-metric form of the EiBI
action under the metric formulation written as
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SEiBI(g, q) = λ

∫
d4x

√−q

[
R(q) − 2λ

κ
+ 1

κ

(
qαβgαβ − 2

√
g

q

)]

+Sφ(g, φ) + SM (g,�). (2.6)

Notice that only gμν interacts with matter and scalar fields
whereas qμν defines the background metric regarded as the
fundamental reference frame of the universe [67]. Because
the alternative action yields identical field equations as pro-
vided in the Bañadoz action, this indicates that two action
forms are equivalent. Using a relation, S = ν0

∫
dtL [68]

and the relation between two metric tensors, qμν = gμν +
κRμν(�), the point-like Lagrangian can be extracted from
equation (2.6) as follows

LEiBI = λMb3
[

− 6ḃ2

M2b2 − 2λ

κ
+ 1

κ

(
N 2

M2 + 3
a2

b2

)]

+Na3
(
l
φ̇2

N 2 − 2V (φ) − 2ρm(a)

)
. (2.7)

Here the number of configuration space (or the minisu-
perspace) variables equal to five due to the appearance of
variables {a(t), b(t), M(t), N (t), φ(t)} in Eq. (2.7). Apart
from the kinetic part of the Lagrangian, we can set Veff =
λMb3

κ

[
2λ−

(
N2

M2 +3 a2

b2

)]
+2Na3

(
V (φ)+ρm(a)

)
as an effec-

tive potential in the gravity model. It also notes that Eq. (2.7)
is a singular Lagrangian due to the existence of two Lapse
functions, N (t) and M(t) as shown in the denominators of
Eq. (2.7).

3 Hessian matrix and Euler–Lagrange equations of
EiBI universe

In the absent of {ȧ, Ṁ, Ṅ } in the EiBI point-like Lagrangian,
the EiBI Hessian matrix can be written as

[Wi j ]EiBI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2L
∂ ȧ2

∂2L
∂ ȧ∂ ḃ

∂2L
∂ ȧ∂ Ṅ

∂2L
∂ ȧ∂ Ṁ

∂2L
∂ ȧ∂φ̇

∂2L
∂ ḃ∂ ȧ

∂2L
∂ ḃ2

∂2L
∂ ḃ∂ Ṅ

∂2L
∂ ḃ∂ Ṁ

∂2L
∂ ḃ∂φ̇

∂2L
∂ Ṅ∂ ȧ

∂2L
∂ Ṅ∂ ḃ

∂2L
∂ Ṅ2

∂2L
∂ Ṅ∂ Ṁ

∂2L
∂ Ṅ∂φ̇

∂2L
∂ Ṁ∂ ȧ

∂2L
∂ Ṁ∂ ḃ

∂2L
∂ Ṁ∂ Ṅ

∂2L
∂ Ṁ2

∂2L
∂ Ṁ∂φ̇

∂2L
∂φ̇∂ ȧ

∂2L
∂φ̇∂ ḃ

∂2L
∂φ̇∂ Ṅ

∂2L
∂φ̇∂ Ṁ

∂2L
∂φ̇2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 − 12λb

M 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 2a3l
N

⎤
⎥⎥⎥⎥⎦ . (3.1)

Clearly, the determinant of the Hessian matrix of the
EiBI point-like Lagrangian equals zero indicates again that
Eq. (2.7) is a singular Lagrangian. Accordingly, variables
{a, N , M} do not contribute to dynamics and have to be
considered as a further constraint equations. This tells us

that a(t), M(t) and N (t) are not independent variables any-
more then we can set them to an arbitrary functions of
time [69], i.e. F(t) = F(a, M, N ). Variables b(t) and φ(t)
however remain considered independently. With the defi-
nition of the Euler-Lagrange equations, we can show that
[70]

d

dt

∂L
∂q̇ i

− ∂L
∂qi

= ∂

∂q j

( ∂L
∂q̇ i

)dq j

dt
+ ∂

∂q̇ j

( ∂L
∂q̇ i

)dq̇ j

dt
− ∂L

∂qi
,

= q̈ j ∂2L
∂q̇ j∂q̇ i

+ q̇ j ∂2L
∂q j∂q̇ i

− ∂L
∂qi

= 0, (3.2)

q̈ j Wi j = q̈ j ∂2L
∂q̇ j∂q̇ i

= −q̇ j ∂2L
∂q j∂q̇ i

+ ∂L
∂qi

. (3.3)

Here the configuration space variables areqi = {a, b, M, N , φ}
and their time derivative on the tangent space are q̇i =
dqi
dt = {ȧ, ḃ, Ṁ, Ṅ , φ̇}. Because ∂2L

∂q̇ j ∂q̇i
= 0 and ∂2L

∂q j ∂q̇i
= 0

for variables {a, M, N } in EiBI gravity, the Euler–Lagrange
equations of these variables can be reduced to ∂L

∂a = ∂L
∂M =

∂L
∂N = 0 where ȧ, Ṁ, Ṅ and ä, M̈, N̈ can be set arbitrar-
ily [70]. As expected, b̈ and φ̈ are determined from taking
variation Lagrangian with respect to the dynamical variables
and their time derivative as shown on the right-hand side
of Eq. (3.3). We have to keep in mind that a crucial con-
cept of a gauge theory is the general solution of the equa-
tions of motion which contains arbitrary functions of time
and the canonical variables are not all independent but relate
among each others via the constraint equations [70]. As the
results of the vanishing of { ∂2L

∂ ȧ2 = ∂2L
∂ Ṁ2 = ∂2L

∂ Ṅ2 = 0},
the canonical momenta associated to a, N , and M yield
pa = ∂L/∂ ȧ = 0, pN = ∂L/∂ Ṅ = 0, pM = ∂L/∂ Ṁ =
0, respectively. The Hamiltonian constraint equation can
be straightforwardly derived from the canonical momenta
via the Lagrangian and theirs Lagrange multipliers {λi =
λa(t), λM (t), λN (t)} as follows:

HEiBI = ∂LEiBI

∂ q̇i
q̇i − LEiBI = ∂LEiBI

∂ ḃ
ḃ + ∂LEiBI

∂φ̇
φ̇ − LEiBI,

(3.4)
HEiBI,tot = HEiBI + �λi pi ,

=
(

− 12λbḃ

M

)
ḃ +

(
2a3lφ̇

N

)
φ̇ − LEiBI + λa pa

+λN pN + λM pM = 0,

=
[

− 6λbḃ2

M
+ a3lφ̇2

N

]
+ 1

κ

[
2λ2Mb3 − λb3 N2

M
− 3λa2Mb

+2κNa3V (φ) + 2κρ(a)Na3
]

+ λa pa + λM pM

+λN pN = 0, (3.5)

where the Lagrange multipliers,λa(t), λM (t),and λN (t), re
arbitrary functions of time. The total EiBI Hamiltonian
(HEiBI) can be used to evaluate an evolution invoking the
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Hamiltonian equations of motion as follows:

ȧ = ∂HEiBI,tot

∂pa
= λa(t), Ṁ = ∂HEiBI,tot

∂pM
= λM (t),

Ṅ = ∂HEiBI,tot

∂pN
= λN (t),

ḃ = ∂HEiBI,tot

∂pb
= − pbM

12λb
, φ̇ = ∂HEiBI,tot

∂pφ

= pφN

2a3l
,

ṗb = −∂HEiBI,tot

∂b
= 6λḃ2

M
− 1

κ

[
6λ2Mb2

−3λb2N 2

M
− 3λa2M

]
�= 0,

ṗφ = −∂HEiBI,tot

∂φ
= − 1

κ

[
2κNa3V ′(φ)

]

= −2Na3V ′(φ) �= 0,

ṗa = −∂HEiBI,tot

∂a
= 3a2lφ̇2

N
+ 1

κ

[
6λabM − 6κa2NV (φ)

+6κa2 pm(a)N
]

= 0,

ṗN = −∂HEiBI,tot

∂N
= −a3lφ̇2

N 2 + 1

κ

[
2λb3N

M
− 2κa3V (φ)

−2κρm(a)a3
]

= 0,

ṗM = −∂HEiBI,tot

∂M
= −6λbḃ2

M2

+ 1

κ

[
− 2λ2b3 − λb3N 2

M2 + 3λa2b
]

= 0. (3.6)

For the EiBI Hamiltonian, it should be noted that ȧ =
λa, Ṅ = λN , Ṁ = λM are the primary constraints and
ṗa = ṗN = ṗM = 0 are the secondary constraints that must
be valid at all times [69] resulting in pa = pM = pN = 0. In
order to obtain the dynamic solutions, we have to calculate
the Euler-Lagrange equations for a(t), b(t), M(t), N (t), and
φ(t) as shown below:

3a2lφ̇2

N
+ 6λabM

κ
− 6Na2V (φ) + 6Na2 pm(a) = 0, (3.7)

b̈ − ḃṀ

M
+ ḃ2

2b
− λM2b

2κ
+ bN 2

4κ
+ a2M2

4κb
= 0, (3.8)

6λbḃ2

M2 − 2λ2b3

κ
+ 3λa2b

κ
− λb3

κ

N 2

M2 = 0, (3.9)

−a3lφ̇2

N 2 + 2λb3N

κM
− 2a3V (φ) − 2a3ρm(a) = 0,

(3.10)

φ̈ +
(

3
ȧ

a
+ Ṅ

N

)
φ̇ + V ′(φ)N 2

l
= 0,

(3.11)

where the conservation equation [68], dρm/da = −3(ρm +
pm)/a, has been used to yield Eq. (3.7).

4 Noether gauge symmetries in EiBI gravity

Noether vector (XNGS) and the first prolongation vector field
(X[1]

NGS) related to EiBI Lagrangian, as shown in Eq. (2.7),
can be constructed as follows:

XNGS = τ
∂

∂t
+ α

∂

∂a
+ β

∂

∂b
+ γ

∂

∂N
+ ξ

∂

∂M
+ ϕ

∂

∂φ
, (4.1)

X[1]
NGS = XNGS + α̇

∂

∂ ȧ
+ β̇

∂

∂ ḃ
+ γ̇

∂

∂ Ṅ
+ ξ̇

∂

∂ Ṁ
+ ϕ̇

∂

∂φ̇
, (4.2)

where the undetermined parameters {τ(t, qi ), α(t, qi ),
β(t, qi ), γ (t, qi ), ξ(t, qi ), ϕ(t, qi )} are possibly functioned
by {t, qi }={t, a, b, N , M, φ}. Their time derivative can be
defined as

α̇(t, a, b, N , M, φ) = Dtα − ȧDtτ, (4.3)

for variable α(t). This can be applied in the same way for
other undetermined variables. The operator of a total differ-
entiation (Dt ) with respect to t in EiBI gravity
can be defined as

Dt = ∂

∂t
+ ȧ

∂

∂a
+ ḃ

∂

∂b
+ Ṁ

∂

∂M
+ Ṅ

∂

∂N
+ φ̇

∂

∂φ
. (4.4)

It is worth noting that ∂LEiBI
∂t = 0 because there has no time

variable(t) expressed explicitly in LEiBI. The vector field
X[1]

NGS is a NGS of a Lagrangian L(t, a, b, φ, M, N , ḃ, φ̇),
if there exists a gauge function B(t, a, b, φ, M, N ) which
obeys the following NGS condition (see Ref. [71] for explicit
derivation):

X[1]
NGSL + LDtτ = DtB. (4.5)

For NSG without gauge term and the prolongation part of the
vector field, i.e. B(t, qi ) = 0, it requires that τ(t, qi ) = 0.

Accordingly, Eq. (4.5) can be reduced to £XNGSL = 0 that
is the condition for Noether symmetry [62]. After using the
Noether gauge symmetries condition with the EiBI point-like
Lagrangian, this provides us with eighty terms for X[1]

NGSL+
LDtτ = DtB as shown below:

6λabMα

κ
− 6λa2Nα

κ
− 6a2Nρ(a)α − 6a2NV (φ)α

+3λa2Mβ

κ
− 6λb2Mβ

κ
+ 3λb2N 2β

κM
− 2λa3γ

κ

+2λb3Nγ

κM
− 2a3ρ(a)γ

−2a3V (φ)γ + 3λa2bξ

κ
− 2λ2b3ξ

κ
− λb3N 2ξ

κM2

−6λβḃ2

M
+ 6λbξ ḃ2

M2 − 2a3Nαρ′(a)
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−2a3NϕV ′(φ) + 3la2αφ̇2

N
− la3γ φ̇2

N 2 − 12λbḃβt

M

+3λa2bMτt

κ
− 2λ2b3Mτt

κ
− 2λa3Nτt

κ
+ λb3N 2τt

κM
−2a3Nρ(a)τt − 2a3NV (φ)τt

+6λbḃ2τt

M
− la3φ̇2τt

N
+ 2la3φ̇ϕt

N

−24λbḃφ̇βφ

M
+ 6λa2bM φ̇τφ

κ

−4λ2b3M φ̇τφ

κ
− 4λa3N φ̇τφ

κ

+2λb3N 2φ̇τφ

κM
− 4a3Nρ(a)φ̇τφ − 4a3NV (φ)φ̇τφ

+12λbḃ2φ̇τφ

M
− 2la3φ̇3τφ

N
+ 4la3φ̇2ϕφ

N

−24λbḃṀβM

M
+ 6λa2bMṀτM

κ

−4λ2b3MṀτM

κ
− 4λa3N ṀτM

κ
+ 2λb3N 2ṀτM

κM

−4a3Nρ(a)ṀτM − 4a3NV (φ)ṀτM + 12λbḃ2ṀτM

M

−2la3Ṁφ̇2τM

N
+ 4la3Ṁφ̇ϕM

N
− 24λbḃṄβN

M

+6λa2bM ṄτN

κ
− 4λ2b3MṄτN

κ
− 4λa3N ṄτN

κ

+2λb3N 2 ṄτN

κM
− 4a3Nρ(a)ṄτN − 4a3NV (φ)ṄτN

+12λbḃ2 ṄτN

M
− 2la3 Ṅ φ̇2τN

N
+ 4la3 Ṅ φ̇ϕN

N

−24λbḃ2βb

M
+ 6λa2bMḃτb

κ
− 4λ2b3Mḃτb

κ

−4λa3Nḃτb
κ

+ 2λb3N 2ḃτb
κM

− 4a3Nρ(a)ḃτb

−4a3NV (φ)ḃτb + 12λbḃ3τb

M
− 2la3ḃφ̇2τb

N

+4la3ḃφ̇ϕb

N
− 24λbȧḃβa

M
+ 6λa2bMȧτa

κ

−4λ2b3Mȧτa

κ
− 4λa3Nȧτa

κ
+ 2λb3N 2ȧτa

κM

−4a3Nρ(a)ȧτa − 4a3NV (φ)ȧτa + 12λbȧḃ2τa

M

−2la3ȧφ̇2τa

N
+ 4la3ȧφ̇ϕa

N
= Bt + ȧBa + ḃBb

+Ṁ BM + Ṅ BN + φ̇Bφ.

If the Noether symmetry condition £XNGSLEiBI = 0 is satis-
fied, then the function �0 = αi ∂L

∂q̇i
is a constant of motion

[72]. This gives

�0,EiBI = αi ∂L
∂ q̇i

= β
∂L
∂ ḃ

+ ϕ
∂L
∂φ̇

= β
[

− 12λbḃ

M

]

+ϕ
[2a3lφ̇

N

]
, (4.6)

where two unknown functions β and ϕ will be studied in
the next section. Up to this point, it is worth mentioning a
dimension analysis of each variable, i.e. [dimensionless] =
[λ] = [l] = [a] = [b] = [φ] = [N ] = [M]; [α] = [β] =
[γ ] = [ξ ] = [ϕ] = [τ ] = [M−1

P ]; [κ] = [M−2
P ]; [ȧ] =

[ḃ] = [φ̇] = [Mp]; [ϕt ] = [βt ] = [τt ] = [M−2
P ].

5 Remarks on exact cosmological solutions

After a separation of monomials, we can quantify the system
equations to yield

τa = τb = τM = τN = τφ = 0, (5.1)

βa = βM = βN = 0, (5.2)

ϕa = ϕM = ϕN = 0, (5.3)

0 = −6λbβφ

M
+ la3ϕb

N
, (5.4)

0 = 3α − aγ

N
− aτt + 4aϕφ, (5.5)

0 = −β + bξ

M
+ bτt − 4bβb, (5.6)

Ba = BM = BN = 0 (5.7)

Bb = −12λbβt
M

, (5.8)

Bφ = 2la3ϕt

N
, (5.9)

Bt = α

[
6λabM

κ
− 6λa2N

κ
− 6a2Nρ(a) − 6a2NV (φ)

−2a3Nρ′(a)

]
+ β

[
3λa2M

κ
− 6λ2b2M

κ
+ 3λb2N2

κM

]

+γ

[
− 2λa3

κ
+ 2λb3N

κM
− 2a3ρ(a) − 2a3V (φ)

]

+ξ

[
3λa2b

κ
− 2λ2b3

κ
− λb3N2

κM2

]
+ ϕ

[
− 2a3NV ′(φ)

]

+τt

[
3λa2bM

κ
− 2λ2b3M

κ
− 2λa3N

κ
+ λb3N2

κM

−2a3Nρ(a) − 2a3NV (φ)

]
. (5.10)

From Eqs. (5.2), (5.3 ) and (5.4), one found that β = β(b)
and ϕ(φ). If we choose

β(b) = c1b, (5.11)

ϕ(φ) = c2φ. (5.12)

From Eq. (5.1), there is only one possibility left with τt �= 0.

Therefore the polynomial of α, β, ϕ, γ , and ξ no longer have
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hold in τ(t). Proposing the linearity of the relations expressed
in Eqs. (5.5) and (5.6), we have to set

α(a) = c3a, (5.13)

γ (N ) = c4N , (5.14)

ξ(M) = c5M. (5.15)

With this setting, we can solve Eqs. (5.5) and (5.6) to get

τ(t) = (3c3 − c4 + 4c2)t + c6, (5.16)

τ(t) = (5c1 − c5)t + c7. (5.17)

In order to write τ(t) in a single form, we have to set c6 = c7
and 3c3 − c4 + 4c2 = 5c1 − c5. There are three equations
contributed of gauge function,

Bb = −12λbβt

M
= −12c1λbḃ

M
, (5.18)

Bφ = 2la3ϕt

N
= 2c2la3φ̇

N
, (5.19)

Bt = c3

[
6λa2bM

κ
− 6λa3N

κ
− 6a3Nρ(a) − 6a3NV (φ)

−2a3Nρ′(a)

]
+ c1

[
3λa2bM

κ
− 6λ2b3M

κ
+ 3λb3N 2

κM

]

+c4

[
− 2λa3N

κ
+ 2λb3N 2

κM
− 2a3Nρ(a) − 2a3NV (φ)

]

+c5

[
3λa2bM

κ
− 2λ2b3M

κ
− λb3N 2

κM

]

+(3c3 − c4 + 4c2)

[
3λa2bM

κ
− 2λ2b3M

κ
− 2λa3N

κ

+λb3N 2

κM
− 2a3Nρ(a) − 2a3NV (φ)

]
− 2c2a

3NφV ′(φ),

(5.20)

where we use βt = ∂β
∂b

db
dt = c1ḃ and ϕt = ∂ϕ

∂φ
dφ
dt = c2φ̇ to

get Eqs. (5.18) and (5.19). From Eqs. (5.4), (5.9) and (5.8),
it is easy to see that

6λb

M
= − Bb

2βt
,

la3

N
= Bφ

2ϕt
. (5.21)

This gives the following relation,

6λbβφ

M
= la3ϕb

N
, (5.22)

− Bb

2βt
βφ = Bφ

2ϕt
ϕb, (5.23)

This confirms again that βφ = ϕb = 0, but keeps βt �= 0
and ϕt �= 0. That also means that Bb �= 0 and Bφ �= 0. The
boundary term can be also partly derived from Eqs. (5.18)
and (5.19), that is

B(b,φ) = −6c1λb2ḃ

M
+ 2c2a3lφφ̇

N
. (5.24)

It is worth noting that c1 is just an arbitrary constant and we
can redefine it by replacing c1 → 2c1. Interestingly, this is

exactly matched with the constant of motions of EiBI gravity
by this setting.

�0,EiBI = −12c1λb2ḃ

M
+ 2c2a3lφφ̇

N
. (5.25)

We hence expect that the rest of the expression for boundary

term, i.e. − 12c1λbḃ
M , may relate with Bt . The relation between

the the constant of motion and the boundary term has shown
in [71]. Clearly, Eq. (5.20) can be rewritten as

Bt = λa3N

κ

[
− 12c3 − 8c2

]
+ a3Nρ(a)

[
− 12c3 − 8c2

]

+a2NV (φ)

[
− 12c3 − 8c2

]

+λa2bM

κ

[
3c1 + 12c2 + 15c3 − 3c4 + 3c5

]

+λ2b3M

κ

[
− 6c1 − 8c2 − 6c3 + 2c4 − 2c5

]

+λb3N 2

κM

[
3c1 + 4c2 + 3c3 + c4 − c5

]

−2a3N

[
c3ρ

′(a) + c2V
′(φ)

]
, (5.26)

where it is very plausible to set c4 = c5 and c3 = − 2
3c2.

Notice that some terms of Bt become zero using simple alge-
bra, i.e.

Bt = λa2bM

κ

[
3c1 + 2c2

]
+ λ2b3M

κ

[
3c1 + 2c2

]

+λb3N 2

κM

[
3c1 + 2c2

]

−2c2a
3N

[
− 2

3
ρ′(a) + V ′(φ)

]
. (5.27)

If we further set c1 = − 2
3c2 = − 2

3 (− 3
2 )c3 = c3, it is worth

seeing that

Bt = c1a
2N

[
− 2ρ′(a) + 3V ′(φ)

]
,

= 6c1a
2N

[
ρm(a) + Pm(a)

a
+ V ′(φ)

]
, (5.28)

where the continuity equation, ρ′(a) = −3(
(ρm+Pm )

a ), has
been used to obtain an expression in Eq. (5.28). Due to the
appearance of c1 on the right-hand side of Eq. (5.28), it is

reasonable to set Bt ≡ − 12c1λbḃ
M . This gives the relation

between two scale factors, b(t) and a(t), as shown below

bḃ = −3a2N (t)M(t)

1 + κ�

[
ρm(a) + Pm(a)

a
+ V ′(φ)

]
. (5.29)

To explain the expanding phase of the universe at late time,
the exponential potential, i.e. V (φ) = V0e−φ is more suitable
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for the model of gravity than the power law potential, V (φ) =
V0φ

2. For the exponential potential, this gives

bḃ = −3a2N (t)M(t)

1 + κ�

[
ρm(a) + Pm(a)

a
− V0e

−φ

]
> 0. (5.30)

whereas

bḃ = −3a2N (t)M(t)

1 + κ�

[
ρm(a) + Pm(a)

a
+ 2V0φ(t)

]
< 0. (5.31)

for the power laws potential. Here we are interested studying
a case when V0e−φ � V0(1 − φ(t)) as an example where
φ(t) 	 1 and using the limit ranged of κ� as 1.12×10−4 �
κ� � 2.10 × 10−3 and M = √

1 + κ�, N (t) = 1, a2

b2 =
1

1+κ�
as given in [73]. It was noticed that the constraints on

the free parameter of EiBI theories leading to the strongest
constraints available in Refs. [74,75]. In the present work,
this gives the de Sitter solution in EiBI gravity model based
on the Noether gauge symmetry,

ḃ

b
� 3V0√

1 + κ�
, b(t) = e

3V0 t√
1+κ� . (5.32)

Clearly from Eq. (5.30), if there is no contribution from the
matter fields, i.e. ρm = 0, the scalar field φ(t) → 0, yielding
Hb = ḃ

b → const. This is the de Sitter phase of EiBI Uni-
verse. There were previous works by Avelino with weaker
constraints from astrophysical and nuclear physics scenarios
as well [76,77].

6 Conclusion

We revisited a formal framework of the Eddington-inspired
Born–Infeld (EiBI) theory of gravity and derived the point-
like Lagrangian for underlying theory based on the use
of Noether gauge symmetries (NGS). A Hessian matrix
and quantify Euler-Lagrange equations of EiBI universe
have been explicitly quantified. We also discussed the NGS
approach for the Eddington-inspired Born–Infeld theory and
comment on exact cosmological solutions.

We end this work by providing some remarks. As
expected, the NGS method can simplify the complication
of constraint equations and also helps us to simplify fur-
ther the gauge function equations with the linear forms of
β(b), ϕ(φ), α(a), γ (N ), ξ(M) and τ(t). By assuming the
equality of Bt and the constant of motion, the two scale fac-
tors a(t) and b(t) are correlated through the matter fields and
the scalar field. Interestingly, we show that there exists the
de Sitter solution in this gravity model.
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