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Development of a ferrite-silicon carbide hybrid high-order
mode damper for accelerators

Chen Xin, LiChen, Zhao Wei, Huang Gang, XiangJun, Li Tiantao,
Yang Jie, LiuPing, Qin Zhen
(Institute of Fluid Physics, CAEP, Mianyang 621900, China)

Abstract: In large current accelerator beam tubes, high-frequency fields are generated when charged particles
circulate within the beam pipe. To mitigate the impact on beam current, it is essential to use high-order mode damper
to convert the high field energy into heat, which can then be dissipated by a cooling system. This paper presents the
research, fabrication, and key performance characteristics of a hybrid high-order mode damper. The absorbing
materials utilized in the damper include ferrite and silicon carbide, which can be welded to metal substrates through
metallization and welding techniques. Microwave performance simulations and thermal simulations were conducted
using CST and COMSOL software, respectively, leading to an optimized damper structure. Test results demonstrate
that the absorption efficiency of the hybrid damper aligns closely with the calculated values in the frequency range
below 1.7 GHz. However, the simulated absorption efficiency exceeds the measured results significantly above
1.7 GHz. Additionally, the vacuum leak rates, ultimate vacuum, and water resistance meet the design requirements for
superconducting high-frequency cavities.
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Fig. 1 Schematic of the hybrid high-order mode damper
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Fig. 3 Simulation and measurement of absorption efficiency of hybrid Fig. 4 Simulation results of water temperature distribution for the
high-order mode damper (no short piston) hybrid high-order mode damper with an absorbed power of 10 kW
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Fig. 5 Simulation results of absorbing materials temperature distribution for the hybrid high-order mode damper with an absorbed power of 10kW
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Table 1 Simulation and measurement results of temperature distribution for the hybrid high-order

mode damper with an absorbed power of 10 kW

temperature difference between the inlet and outlet cooling water/C

simulation result 2.3

measurement result 1.1
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Table 2 Performance test results of the hybrid high-order mode damper
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Table 3 Design requirements and performance test results of the hybrid high-order mode damper
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