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Abstract

This thesis presents the results of an original and independent research that aims
at assessing with software simulations the possibility of inferring the polarization
content of a transient gravitational wave (GW) within a Bayesian framework, given
the extended network of five ground-based interferometric detectors available in the
near future.

A theoretical review on the phenomenon of gravitational radiation in Metric
Theories of Gravity is provided and some characteristics of GWs in alternative
theories of gravity are reproduced. In particular, it is shown that each theory makes
di�erent predictions on the GW polarization modes: this is one of the reasons for
which GW polarization measurements are among the strongest fundamental tests
we can perform on gravity.

In the central part of the dissertation, we illustrate the working principles of GW
interferometers as well as the main data analysis techniques involved in processing
GW data. The response in amplitude of a single interferometer to each polarization
mode is shown to be determined by the geometry of the source-detector system (up
to an overall normalization).

In the last part of the thesis, the response of a network of GW interferometric
detectors is studied in order to discriminate among di�erent polarizations. The
methodology developed — on simulated data — provides a powerful check for one of
the fundamental predictions of General Relativity, and is thus of major significance
in both the fundamental physics of gravity and the astrophysics of GW sources.

We find that Bayesian inference can indeed accurately extract the polarization
content of transient GW signals, with precision limited by the signal-to-noise ratio
(SNR) in the response. As expected, the precision mostly improves with the total
network SNR, with some exceptions due either to an SNR distributed very unevenly
among the five detectors or to statistical fluctuations in the Bayesian sampler. Most
of the code was written from scratch by the author. It is very flexible, as it allows
for new ground-based interferometers with two or three arms to be easily added to
(or removed from) the network. Such studies are of crucial importance since they
can provide strong evidence in support of some particular configurations for future
detectors. A technical note on this phenomenological study is publicly available on
the LIGO Document Control Center [54].
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Introduction

«Und wir, die an steigendes Glück
denken, empfänden die Rührung,

die uns beinah bestürzt,
wenn ein Glückliches fällt.»

Rainer Maria Rilke, Duineser Elegien X

Even if we do not realize it, we are constantly surrounded by waves. Of any kind.
We can communicate through electromagnetic waves, we can surf on ocean waves,
we can dream thanks to brainwaves, we can see the night sky with light waves, we
can feel emotions listening to our favorite sound waves. Waves are everywhere, in
our everyday life.

The first to be understood and studied in their fundamental principles were
mechanical waves, periodical perturbations of a medium that can propagate for long
distances. The harmonic motion of each particle of the medium around its starting
point of equilibrium produces a perturbation that can be transmitted to another
particle thanks to the interaction between the two. Three directions are possible
in three-dimensional space for their oscillation, and depending on the nature and
state of the medium, only some particular directions are allowed. The possible
orientation along which the oscillation takes place is called polarization mode of
the wave. Transverse waves are perpendicular to the propagation direction; in
longitudinal waves, particles of the medium move parallel to the wave propagation
vector. Mechanical waves can be of both types: the waves we produce by plucking a
guitar string, or sea waves, are transverse, while sound waves are longitudinal.

Waves can also be oscillations of fields, physical quantities that can be represented
by scalar, spinors, vectors or tensors (according to their properties under rotations)
and take a specific value at each point of spacetime. Electromagnetic waves are
generated and powered by the self-interaction of variable electric and magnetic fields
and propagate all at the same constant velocity (in vacuum), in every system of
reference. When electromagnetic waves have some range of frequencies, they become
visible to the human eye, being commonly known as light. However, electromagnetic
waves are only transverse, and this can be seen as a consequence of their propagation
speed that does not allow for a longitudinal degree of freedom. In other words,
electromagnetic waves have only two polarization modes.
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The core of Quantum Physics can be summarized in the fact that particles,
which constitute the Universe that surrounds us, can be thought as quanta of these
fields, finite packets of energy that cannot be further subdivided into smaller ones.
This means that the magnitude of the physical property described by fields can take
on only discrete values consisting of integer multiples of one quantum. Hence, the
wave-particle duality. The electromagnetic wave can be described as the propagation
of photons, discrete quanta of energy, massless particles which ought to travel at the
speed of light to preserve their identity (or more formally, their status as irreducible
representation of the Lorentz group).

In light of the discussion above, after having understood that spacetime itself
can be thought of as a field mediating the gravitational interaction, it does not seem
absurd to think about gravitational waves (GWs), perturbations that propagate at
the speed of light and locally deform spacetime. Indeed, in 1916 Albert Einstein, one
year after the formulation the theory of General Relativity (GR), showed that, in the
weak-field limit, his linearized field equations for gravity admit a wave-like solution.
However, the expected e�ect was so small that many physicists, including Einstein
himself, cast doubts about the possibility to ever be able to detect them. Some
even questioned whether those waves were actually real or an artifact of the gauge
freedom of the theory. Almost a century later, on the September 14, 2015, LIGO
(the Laser Interferometer Gravitational-Wave Observatory) achieved the very first
direct detection of a GW signal emitted by two black holes merging. This milestone
in experimental gravitational physics started a new era in physics, kick-starting GW
astronomy and astrophysics.

Thanks to GWs, not only will we be able to study the most exotic objects of
the Universe (such as black holes and neutron stars) and its most extreme events,
but also to test GR at unprecedented precision. Currently, all attempts to quantize
Gravity, unifying Quantum Field theories with GR, have failed, and consequently
led to the development of alternative theories of gravity. Many of these theories
diverge from GR in their predictions, and GWs could be of help not only to test GR
in the strong field regime, but also to place constraints on alternative theories.

In this thesis, we focus on one characteristic of GWs, their polarization content.
As any other waves, GWs deform spacetime in some specific direction relatively to
their direction of propagation. GR allows for two tensor polarizations only, both
transverse to the direction of propagation (similar to the electromagnetic case).
However, modification of the field equations introduced by alternative theories of
gravity can lead to the existence of additional degrees of freedom of the wave, the so-
called vector or scalar modes. This is the reason why the study of GW polarizations
provides one of the strongest GR tests we can perform.

In Chapter 1, we analyze in detail the foundations of any metric theory of
gravity, developing a theoretical framework, the Parametrized Post-Newtonian (ppN)
Framework, that allows for a classification of alternative theories of gravity and that
can be used to make predictions in the weak-field regime.
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In Chapter 2, we investigate the phenomenon of Gravitational Radiation within
the frame of metric theories, reproducing some important results concerning the
most distinctive features of these waves. Particular attention is devoted to the
polarization degrees: we show, first using the ppN formalism, then with more general
arguments within the Newman-Penrose formulation of the theory, that a total of six
propagating degrees of freedom are allowed for a wave in the most generic metric
theory.

In Chapter 3, we study the response of GW interferometers to the perturbation
of the metric. We show that the measured amplitude of each polarization depends
only on the relative geometry between source and detector, and we present some first
original results on the sensitivity of the five-detector network that will be operating
in the near future.

In Chapter 4, we review the most updated GW data analysis techniques. We
describe filtering techniques to isolate the GW signal from the background noise, and
we develop a complete Bayesian framework to statistically infer the characteristic of
the wave from the measured data.

In Chapter 5, we present the results of an original and independent research
that aims at assessing with software simulations the possibility of inferring the
polarization content of a transient GW within a Bayesian framework, given the
extended network of five ground-based interferometric detectors. We use a toy
model to carry out a model-independent study of the network response, and we
show that Bayesian inference can indeed accurately extract the polarization content
of transient GW signals, with precision limited by the signal-to-noise ratio (SNR)
in the response. Most of the analysis code is written from scratch by the author,
and it is very flexible: new ground-based interferometers with two or three arms
can be easily added to (or removed from) the network. Such studies are of crucial
importance since they can provide strong evidence in support of some particular
configurations for future detectors. A technical note on this phenomenological study
is publicly available on the LIGO Document Control Center [54].

At the end of the thesis, we provide a short survey of the results obtained and
some suggestions on the possible extension of this work that could be carried out in
the future.
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Chapter 1

Metric Theories of Gravity and
the Parametrized
Post-Newtonian Formalism

In this first chapter, we will introduce the foundations of any viable Theory of
Gravitation. After a brief historical introduction, we will provide a description of
what is a generic Metric Theory of Gravity. Then, we will develop the parametrized
post-Newtonian (ppN) framework, useful to study and classify the variety of Metric
Theories in a weak-field regime. In the last section, some examples of Metric Theories
will be provided.
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1.1 Early Concepts and Newton’s Theory of Gravity

Although Gravity is by far the weakest fundamental interaction of our Universe
and it does not play any role in the composition of everyday matter, its long range
and universal action dominates the motion of planets, stars and galaxies, allowing
humans and scientists to wonder about nature, safely anchored to Earth, one of the
many spinning celestial bodies in our Cosmos.

At the dawn of Science (known as PhilosophiæNaturalis), Greek philosophers
such as Aristotle (384 - 322 BC) did not realize that the force responsible for the
downwards attraction to the soil was the same that a�ects celestial bodies in their
movements. The perpetually repeating motion of stars and planets in the sky, not
necessarily descendent, was thought to be a natural motion, consequence of the
rotation of celestial spheres to which stars were attached. Two other hypotheses
about dynamics were held until the XVI century, that essentially impeded any
further comprehension or advancement in mechanics: a constant force is needed for
uniform motion and a force can be applied only by direct contact.

The Italian astronomer and natural philosopher Galileo Galilei (1564-1642), who
founded the scientific method as the winning combination of theory and experiments,
was the first to think out of the box and to propose, supported by observation, that
a constant force is instead responsible of an accelerated motion. He was also the first
physicist to formulate the Principle of Equivalence, which states that laws of Physics
(or more precisely of Mechanics, as it was the only branch of Natural Philosophy
studied at that time) must be invariant under Galilean Transformations, coordinate
changes between systems of reference in relative motion at constant velocity one
respect to the other. Galileo was also the first to show experimentally that bodies
fall with the same acceleration regardless of their composition (a statement which
will later be known as the Weak Principle of Equivalence).

The German astronomer Johannes Kepler (1571-1630) was another protagonist
in the history of gravitation. His starting point was the Heliocentric Theory, first
proposed by the Greek philosopher Aristarchus of Samos (310-230 BC), but later
argued by the Polish astronomer Nicolaus Copernicus (1473-1543). According to
this theory, planets orbit the Sun, not the Earth. Analyzing the data on planets
motion collected by the Danish astronomer Tycho Brahe (1546-1601), he was able to
formulate his homonimous three quantitative laws of motion for planets orbiting the
Sun. He showed that the simplest explanation for planet trajectories in the sky is
drawn by the assumption that every planet (in the Solar System) follows an elliptic
path around the Sun.

Sir Isaac Newton (1642-1726) was the first to understand that the heavenly
motion of the Moon and the earthly one of a free falling body were manifestations
of the same force acting at a distance between every massive object in the Universe,
without requiring bodily contact. We cannot but quote the well-known formula that
captures the principal features of Newton’s Gravity:

F = ≠G
m1m2

r2 r̂ , (1.1)



1.1 Early Concepts and Newton’s Theory of Gravity 3

Figure 1.1. PhilosophiæNaturalis Principia Mathematica, Isaac Newton, (1686). In these
pages taken from the first edition of the Principia, we can appreciate the geometric proof
given by Newton for elliptical trajectories of a body that is subject to a force directed
toward one of the ellipse’s foci (first law of Kepler).

where F is the three-vector force acting on the two masses, m1 and m2, and r is the
separation vector between them, with the origin of the reference frame centered in
one of the two bodies. The minus sign reflects the attractive nature of gravity while
G is a proportionality constant, that can be experimentally determined.

Newton’s law correctly predicts the orbital motion of planets as described by
Kepler’s laws (see Fig. 1.1). Gravity is indeed a central force: its invariance under
rotations implies conservation of angular momentum, which leads to planar and closed
orbits. However, the crucial point of Newton’s argument is what later was called the
Weak Equivalence Principle (WEP), already suggested by Galileo’s observations: the
inertial mass, i.e., the resistance that a body opposes to the application of a force,
appears to be the same as the gravitational mass, the charge of the body subject
to gravitational interaction [the m’s in Eq. (1.1)]. The importance of this principle
was indeed guessed by Newton, who placed it at the beginning of his masterpiece
PhilosophiæNaturalis Principia Mathematica. The mysterious action at a distance,
however, seemed to avoid any kind of possible explanation based on the Physics
known at that time, and the English scientist humbly commented «Hypotheses non
fingo» («I feign no hypotheses») on the impossibility of going beyond the descriptions
of phenomena to find their cause.
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1.2 The Einstein Equivalence Principle

At the beginning of the XX century, a huge revolution in the foundations of
Physics was carried out by Albert Einstein (1879-1955), whose articles issued on the
Annalen der Physik scientific journal in 1905 completely changed our understanding
of the world. He succeeded in restoring the equivalence between inertial systems
that seemed to be broken by Maxwell’s electrodynamics, which is not invariant
under Galilean Transformations. In the framework of Special Relativity, Space and
Time are no more separate entities, but directions in a four-dimensional space in
which the maximum velocity allowed is the speed of light, c. The laws of Mechanics
and Electrodynamics are the same in every inertial system of reference (a modified
version of the Galilean Equivalence Principle mentioned before), we only have to
replace Galilean Transformations of coordinates with Lorentz ones. At the same
time, Einstein led the foundations of Quantum Mechanics postulating the discrete
nature of energy in his analysis of the Photoelectric E�ect and he provided a proof
of the existence of atoms based on Brownian motion.

In the following years, he went further, trying to reconcile Special Relativity with
Gravitation. He started from the well-established WEP, adding a key element that
revealed the path to General Relativity. If all bodies fall with the same acceleration
in an external gravitational field, then for an observer in a freely falling elevator in
the same gravitational field the bodies should be unaccelerated (except for possible
tidal e�ects due to inhomogeneities in the gravitational field, which can be made
small by working in a su�ciently small elevator). Thus, the equivalence of a local
free falling system of reference to an inertial one, in which all laws of Physics must
behave under the domain of Special Relativity. This extension of the WEP is called
Einstein Equivalence Principle (EEP). Following [76], we can formulate it in three
separate statements:

Postulate 1.1. The Einstein Equivalence Principle (EEP)

• Weak Equivalence Principle (WEP): if an uncharged test body is placed at an
initial event in spacetime and given an initial velocity there, then its subsequent
trajectory will be independent of its internal structure and composition;

• Local Lorentz Invariance (LLI): the outcome of any local non-gravitational test
experiment is independent of the velocity of the (freely falling) apparatus;

• Local Position Invariance (LPI): the outcome of any local non-gravitational test
experiment is independent of where and when in the universe it is performed.

The EEP naturally suggests that gravitation should be a metric e�ect of curved
spacetime, described by what is called a Metric Theory of Gravity. Let’s briefly
sketch the arguments that leads from the EEP to a metric description.

The WEP suggests that in our Universe there are some preferred trajectories
along which freely falling bodies move: following these 4-d lines, we can find local
frames respect to which bodies are unaccelerated. Invoking the LLI, we can state
that around the same point in spacetime P it is possible to find an infinite set of free
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falling frames with di�erent relative velocities such that non-gravitational laws of
Physics are the same (i.e, they are described by Lorentz invariant equations). This
last condition implies that there will be a set of second-rank tensors �

(A)
µ‹ that in

a local freely falling frame reduce to terms proportional to the Minkowski metric,
up to a constant dependent on both the specific tensor A and the point P. These
dependencies can be parametrized through a scalar field „

(A)(P). In formulae:

�
(A)
µ‹ æ „

(A)(P)÷µ‹ (1.2)

where ÷µ‹ is the Minkowski flat metric.

Physical laws of any local non-gravitational interaction, however, must be in-
dependent of the point P at which they are formulated (LPI). Then, using some
simple arguments from di�erential geometry, one can prove that there must exist
a unique, symmetric, second-rank tensor field gµ‹ , which we will call metric, that
reduces to the Minkoswki tensor ÷µ‹ in every local freely falling frame. Furthermore,
the metric has a family of preferred worldlines called geodesics. At each point P, it
is possible to find some reference frames, called Local Lorentz frames, which follow
these geodesics, such that:

gµ‹(P) = ÷µ‹ + O(|x– ≠ x
–(P)|2) (1.3)

We therefore conclude that Local Lorentz frames are exactly the freely falling
frames of the EEP and geodesics must be the trajectories of freely falling bodies. In
the next section, the postulates of metric theories of gravity will be analyzed.

Here we wish to stress how the EEP, suggesting that any viable theory of gravity
must be metric, indirectly solves one of the greatest mysteries of gravitation, the
so-called Newtonian action at a distance. There is no longer need for this artifact
to explain gravitational attraction since gravity is only a consequence of curved
spacetime, a local property of the Universe itself. Newton’s starting point (the WEP)
was correct, but his conception of space and time as separate and absolute entities
misled him, preventing him from going further.

1.3 Metric Theories of Gravity

In the previous section, we argued that the e�ect of gravity must be equivalent
to the ones produced by a curved spacetime in which freely falling objects follow
special trajectories, called geodesics of the metric. It turns out that the most general
Theory of Gravity, assuming EEP as the founding principle of our Universe, has
some peculiar characteristics. In the following, we first analyze the properties of
a Metric Theory of Gravity, focusing our attention on Lagrangian-based theories,
for which an important result holds. We will then provide a first classification for
Metric theories, mainly based on the gravitational fields we include in our theory.
Finally, we will modify EEP to include gravitational experiments: this will lead to
the definition of the Strong Equivalence Principle (SEP), valid in (but non exclusive
of) General Relativity.
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1.3.1 Definition

We can write three postulates that constitute the essential requirements for any
Metric Theory of Gravity:

Postulate 1.2. Metric Theory of Gravity

• Spacetime is endowed with a metric g;

• Free falling bodies follow the metric geodesics;

• In local Lorentz frames, the non-gravitational laws of physics are those of
Special Relativity.

To understand what the properties of a generic Metric Theory of Gravity are and
how we can generate (and parametrise) di�erent theories that obey the EEP, we must
introduce some definitions, following [67]. First of all, we will restrict our attention
to a subclass of all possible generally covariant physical theories, called Lagrangian-
based, relativistic theories. These theories are based on an action principle that,
with extremization with respect to variations of all dynamical variables, generates
all the dynamical laws of the theory. The Lagrangian density L can be split into
two contributions L = LG + LNG. The gravitational part, LG, is the largest part
and it contains only gravitational fields. The non-gravitational part, LNG, is the
remainder: when gravity is turned o�, it approaches the total Lagrangian of Special
Relativity.

We then define what it means for such a theory to be universally coupled.

Definition 1.3 (Universal coupling). A generally covariant Lagrangian-based rel-
ativistic theory is universally coupled if it can be cast into a mathematical form
(representation) in which the action for matter and non-gravitational fields ING

contains precisely one gravitational field: a symmetric, second-rank tensor gµ‹ that
reduces to ÷µ‹ when gravity is turned o�; and when gµ‹ is replaced by ÷µ‹, ING

becomes the action of Special Relativity.

It can be proved that any Lagrangian-based theory universally coupled is a Metric
Theory and vice versa (see [67] for details). This theorem stresses the fact that
independently on how many gravitational fields we consider in our theory, matter
and non-gravitational fields, within the context of a Lagrangian-based relativistic
Metric Theory, only couple with the metric gµ‹ . Therefore, we can consider the
metric as a property of the spacetime itself, rather than a field over spacetime.

1.3.2 Classification

The fact that matter and non-gravitational fields are essentially oblivious to
extra gravitational fields other than the metric does not mean that these last have no
role in gravitation theory: they alter and modify the way in which matter and non-
gravitational fields generate spacetime curvature and produce the metric. Based on
the di�erent kind of gravitational fields we can add to our theory, we can distinguish
between two broad classes:
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• Purely dynamical: Metric theories whose gravitational fields have their struc-
ture and evolution determined by coupled di�erential equations;

• Prior-geometric: Metric theories for which there is at least one gravitational
field whose structure and evolution is given a priori, independent on the other
fields of the theory.

Furthermore, depending on the nature of the extra gravitational fields, we can
have di�erent e�ects that influence the results of local gravitational experiments.
Consider a frame su�ciently small that inhomogeneities of external gravitational
fields can be neglected, but large enough to encompass a system of gravitating
bodies: we will call it quasi-local Lorentz Frame. Gravitational-like experiments
can be influenced by the presence of external gravitational fields (not coupled with
matter and non-gravitational fields) through the values they assume at the boundary
of the local frame. These boundary conditions alter and modify the metric generated
by the local system, making local gravitational experiments sensitive to the location
or velocity of the quasi-local Lorentz Frame with respect to the external environment.
In other words, we can have a violation of the equivalence principle for gravitational
experiments. We ought to point out that there is no EEP violation, since non-
gravitational experiments couple only to the metric that can always be made locally
Minkowskian. Depending on the nature of the extra gravitational fields in the theory,
we can distinguish three main behaviours:

• Metric-only theories: if there is only the metric gµ‹ ; local gravitational physics
is independent of location and velocity of the local system;

• Dynamical Scalar theories: if there are some dynamical scalar fields „
(A)

besides the metric; local gravitational physics may depend on the location of
the frame.

• Dynamical Vector-Tensor or prior-geometric theories: if there are additional
dynamical vector-tensor gravitational fields or prior-geometric fields besides
the metric; local gravitational physics may depend on both the location and
the velocity of the frame.

1.3.3 The Strong Equivalence Principle

General Relativity (GR) is the simplest Metric Theory of Gravity we can imagine,
with only one gravitational field, the metric gµ‹ . Based on the previous observa-
tions, we are tempted to reformulate the Einstein Equivalence Principle to include
gravitational experiments, seeking a founding postulate for GR. We can state the
Strong Equivalence Principle (SEP) in the following way [75]:

Postulate 1.4. The Strong Equivalence Principle (SEP)

• Gravitational Weak Equivalence Principle (GWEP): WEP is valid for self-
gravitating bodies as well as for test bodies;
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• Local Lorentz Invariance (LLI): the outcome of any local test experiment is
independent of the velocity of the (freely falling) apparatus;

• Local Position Invariance (LPI): the outcome of any local test experiment is
independent of where and when in the universe it is performed.

With respect to the EEP, the SEP includes self-gravitating bodies as well as
gravitational experiments. Although the conjecture

SEP ∆ GR

seems very likely, there is presently no rigorous proof of it. Further, there are some
quantum-inspired modifications of GR (known as R

2-terms theories) that at very
small scale provide a counterexample to the previous statement. However, since
several metric theories (with GR as the notable exception) are expected to violate
the Strong Equivalence Principle in some way, SEP testing plays an essential role in
the research of the ultimate theory of gravity.

1.4 The Parametrized Post-Newtonian Formalism

The parametrized post-Newtonian (ppN) limit of a metric theory of Gravity
was first developed by Kenneth Nordtvedt, Jr. (1939) in [51], extending the work
initiated by Eddington, Robertson and Schi�. It was later modified by Cli�ord M.
Will (1946) in [74] to include hydrodynamics. The full and most generalized version
we present in the following was elaborated by Nordtvedt and Will in [77] and it is
regarded as the canonical ppN framework for the choice of parameters and gauges.
We begin with a brief review of the Newtonian limit of any metric theory, which
allows us to establish the connection between the metric and gravitational potentials.

1.4.1 The Geodesic Equation and The Newtonian Limit

To understand the connection and the correspondence between Newton’s theory
and its metrical generalization, we start with the aforementioned WEP (see Postulate
1.1), trying to find the equation of motion for a test particle that is freely falling
in a homogeneous gravitational field. If we place ourselves in the Local Lorentz
frame, which the Equivalence Principle always allows us to do, we do not see the
particle subject to any acceleration. The particle moves instead along a straight line
in a four dimensional space: in this local frame, it is simply a free particle under
laws of Special Relativity. If we call ›

– the coordinates in this frame and · the test
particle’s proper time (that is both a Lorentz invariant and the time coordinate in
the comoving Lorentz Frame), we can write:

d2
›

–

d·2 = 0 . (1.4)
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We now consider a generic transformation of coordinates — a di�eomorphism in
the language of di�erential geometry — expressed by the relation ›

– = ›
–(xµ).

Consequently, the coordinate displacement has to change accordingly:

d›
– = ˆ›

–

ˆxµ
dx

µ
. (1.5)

After some manipulations, we can rewrite Eq. (1.4) in the x-coordinate system as
follows:

0 = d2
›

–

d·2 = d
d·

3
ˆ›

–

ˆxµ

dx
µ

d·

4
= d2

x
µ

d·2 +
5

ˆx
µ

ˆ›–

ˆ
2
›

–

ˆxflˆx‡

6dx
fl

d·

dx
‡

d·
. (1.6)

We can define the functions in the square brackets as the Christo�el Symbols (also
called A�ne Connections), using the following notation:

�µ

fl‡ © ˆx
µ

ˆ›–

ˆ
2
›

–

ˆxflˆx‡
. (1.7)

The �µ
fl‡ symbols vanish completely in the Local Lorentz frame, as we can see

restoring x
µ = ›

µ in Eq. (1.6) and checking its consistency with Eq. (1.4). Further,
they are symmetric over the two low indices and they are not tensors, otherwise
they would have to vanish in every system of reference. Equation (1.6) is called
the geodesic equation and it identifies special trajectories in curved spacetime along
which a freely falling body moves.

Di�erential geometry provides an alternative description for Christo�el symbols.
They naturally emerge when we deal with the definition of covariant derivative.
Without going through the specific derivation (which is available in standard texts
of General Relativity, e.g. [48]), we quote only their relation to the metric. Indeed,
the requirement that geodesics coincide with the straight lines in the local Lorentz
geometry allows us to uniquely define Christo�el symbols as linear combinations of
the first derivative of the metric. In formulae:

�µ

fl‡ = 1
2g

µ–(g–fl,‡ + g–‡,fl ≠ gfl‡,–) , (1.8)

where we used the coma convention for partial derivative, i.e. g–fl,‡ = (ˆ/ˆx
‡)g–fl.

Let’s now see how the geodesic equation modifies in the Newtonian limit of
the theory. When the gravitational potential is su�ciently small and velocities are
much smaller than the speed of light, the Newtonian approximation works properly.
We can describe this limit with coordinates that are as nearly globally Lorentz as
possible:

gµ‹ = ÷µ‹ + hµ‹ with |hµ‹ | π 1 and |vj | =
----
dx

j

dt

---- π 1 . (1.9)

Since at this level of approximation dt/d· ¥ 1, using the geodesic equation (1.6) and
the relation between the metric and Christo�el symbols of Eq. (1.8), we can write:

d2
x

i

dt2 ¥ d2
x

i

d·2 = ≠�i

fl‡

dx
fl

d·

dx
‡

d·
¥ ≠�i

00 = 1
2h00,i ≠ h0i,0 . (1.10)
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We can further simplify Eq. (1.10) noticing that, in the Newtonian limit, time
derivatives of the metric are much smaller than spatial derivatives, as we can
intuitively see from a dimensional analysis argument (h–—,0 ≥ vh–—,i). In the
Newtonian approximation, we therefore obtain the following relation:

d2
x

i

dt2 ¥ 1
2h00,i . (1.11)

Recalling some notions of classical mechanics and conservative forces, we can
express the acceleration as the gradient of a scalar function U , called the gravitational
potential. Given a distribution of matter described by the density fl(x, t), we have
that:

d2
x

i

dt2 = ˆU

ˆxi

where U(x, t) =
⁄

fl(xÕ
, t)

|x ≠ xÕ|d
3
x

Õ
. (1.12)

Comparing Eqs. (1.11) and (1.12), we find that the Newtonian limit for the
metric perturbation h is:

h00 = 2U , h0i = hij = 0 . (1.13)

This relation is crucial since it shows that Newtonian gravity can be seen, from the
metric point of view, as a warped time first order e�ect. The invariant line element
ds

2 will consequently di�er from the Minkoskian one, being:

ds
2 = g00dt

2 + dx
2 + dy

2 + dz
2 = (≠1 + 2U)dt

2 + dx
2 + dy

2 + dz
2

. (1.14)

The geodesic equation (1.6) can be found in a more elegant way starting from a
variational principle for a free falling particle, extremizing the free action:

SNG = ≠m0

⁄
d· = ≠m0

⁄ 3
≠ gµ‹

dx
µ

dt

dx
‹

dt

41/2
dt

= ≠m0

⁄
(≠g00 ≠ 2g0jv

j ≠ gjkv
j
v

k)1/2
dt . (1.15)

In the integrand of Eq. (1.15), we recognize the Lagrangian L for a single particle in
a metric gravitational field, which in the Newtonian limit reproduces the well-known
result1:

L = ≠m0(1 ≠ 2U ≠ v
2)1/2 ¥ ≠m0 + 1

2m0v
2 + m0U . (1.16)

1.4.2 Post-Newtonian Variables and Expansion

The main goal of this section is to further expand (in the most generic way)
the Lagrangian at the following orders in the perturbation of the metric. This will
lead to the definition of other gravitational potentials and it will allow to make
quantitative prediction on the possible deviations from Newton’s theory of gravity,
generically called post-Newtonian e�ects. Among these last, we can only but quote
the iconic perihelion advance of Mercury, which is certainly one of the most famous
tests of General Relativity within the Solar System.

1Apart from a constant factor ≠m0 and a minus sign in front of the third term, due to the
convention we implicitly used to define U = ≠�, where � is the classical gravitational potential.
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The post-Newtonian framework works when we are dealing with weak gravita-
tional fields and we are in a slow-motion approximation, i.e. velocities are much
smaller than the speed of light. Let’s first describe the variables we will use to
describe the energy-matter content of the system:

• U is the gravitational potential as defined in Eq. (1.12);

• fl is the mass density of the system, which can be viewed as a measure of the
number density of baryons n multiplied by a standard rest mass per baryon
µ0 in a standard state, measured in a local, free falling, comoving frame;

• p is the pressure (for a perfect fluid, the diagonal components of the energy
momentum tensor in the Lorentz Local frame);

• � is the ratio of the total energy density (all other forms, such as compressional,
thermal, magnetic, radiative) to rest mass density fl; we can write for the total
energy E ≥ fl�V, where V is the total volume.

Assuming a perfect fluid description for matter, we can write the energy-momentum
tensor T

µ‹ in a fully covariant form (for details about hydrodynamics in curved
spacetime, we refer to [76], Section 3.2):

T
µ‹ = (fl + fl� + p)uµ

u
‹ + pg

µ‹
, (1.17)

where u
µ = dx

µ
/d· is the four-velocity of the fluid element. As long as the equations

of motion for the non-gravitational matter hold, we can prove the local conservation
of the energy-momentum tensor, expressed by the vanishing of its covariant derivative
Ò‹T

µ‹ = 0 (valid in every frame):

Ò‹T
µ‹ © T

µ‹

;‹ = T
µ‹

,‹ + �‹

‹–T
µ– + �µ

–‹T
–‹

= 1Ô
≠g

ˆ‹(
Ô

≠gT
µ‹) + �µ

–‹T
–‹ = 0 , (1.18)

with g = det(gµ‹) and we have introduced the usual notation convention for covariant
derivative Òµ„ © „;µ. To fully describe hydrodynamics in curved spacetime, we
can add to Eq. (1.18) the rest mass conservation law (or, alternatively, the baryonic
number conservation law). Its covariant form is the following:

(flu
µ);µ = 0 ,

Ô
≠g(flu

µ);µ = (
Ô

≠gflu
µ),µ = ˆ

ˆt
fl

ú + ˆ

ˆxj
(flú

v
j) = 0 , (1.19)

The manipulations in the second line lead us to the definition of the variable fl
ú ©

fl
Ô

≠gu
0 which satisfies the “Eulerian” continuity equation in any (t, x) coordinate

system.
Let ‘ be an adimensional small parameter through which we will expand the

metric. We can use the virial theorem for a gravitationally bound system (the solar
system, for example) to relate the mean velocity of its components to the mean
value of the gravitational potential U . By order of magnitudes, we can write (in
geometrized units):

v
2 ≥ U ≥ O(‘2) . (1.20)
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Assuming hydrostatic equilibrium, we can relate density and pressure to the potential:

p/fl ≥ U ≥ O(‘2) . (1.21)

Furthermore, from thermodynamics we can link the total energy to the pressure of
the system by:

E ≥ pV ≥ fl�V ∆ � ≥ p/fl ≥ O(‘2) . (1.22)

To complete our overview by order of magnitudes of the variables, we observe that
far from the radiation zone changes in time of all quantities at fixed position are
due primarily to the motion of matter, in formulae:

ˆ

ˆt
≥ v · Ò ∆ |ˆ/ˆt|

|ˆ/ˆx| ≥ O(‘) . (1.23)

If we recall the general form of the Lagrangian L introduced in Eq. (1.16), we
can notice that the Newtonian approximation is given by corrections up to order
O(‘2) in the metric. To find the post-Newtonian approximation, it is su�cient to go
up to order O(‘4), as can be explicitly seen by writing the Lagrangian as:

L = ≠m0

3
1≠2U ≠v

2 ≠”g00[O(‘4)]≠2”g0j [O(‘3)]vj ≠”gjk[O(‘2)]vj
v

k

41/2
. (1.24)

We have not included in the Lagrangian expansion odd-order terms. Since they
contain odd number of velocities v or time derivatives ˆ/ˆt, they are not invariant
under time inversion and they represent dissipative e�ects. O(‘) and O(‘3) are
respectively forbidden by conservation of rest-mass energy (baryon number) and
conservation of energy in the Newtonian limit. Beyond O(‘4), di�erent theories
make di�erent predictions.

1.4.3 Post-Newtonian Potentials and Metric

Although at first sight for an exact description of a perfect fluid in any metric
theory of gravity a formal solution of the field equations in each theory seems to be
needed, we can guess the general form of the metric corrections by parametrizing
them with suitable post-Newtonian potentials. These are functionals of the matter
variables we described in the previous section, computed up to the order required
by consistency of the expansion. Unfortunately there are an infinite number of
such potentials. To perform any reasonable calculation, we have to assume some
constraints to restrict their number, in part as evidence obtained from known results
in other gravitation theories. Following [48], we assume for the corrections ”g to the
metric in post-Newtonian approximation that:

1. they have to be of the order written in Eq. (1.24);

2. they must be dimensionless (in geometrized units);

3. under rotations, ”g00 must be scalar, ”g0j vector and ”gjk a two index 3-tensor
and should be built by appropriate combinations of the variables associated
with the matter distribution;
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4. the coordinates must asymptotically reduce to the global Lorentz frame and
the metric to flat spacetime at r æ Œ: this is possible if we assume that the
corrections die out at least as fast as 1/r;

5. for simplicity, the functionals are generated only by rest mass density fl (or
better its modified “Eulerian” version fl

ú), the energy density �, pressure p

and their combinations with velocity, not by their gradients.

We have to specify a coordinate system in which to carry out our computations
of the metric corrections. We will use a local quasi-Cartesian system (also referred
to as ppN coordinates) with coordinates (t, x

j) = (t, xj) as nearly Lorentz as possible.
We further assume that the center of mass of the local fluid is at rest with respect
to a universal rest frame, in which the universe appears isotropic. Although it can
be proved that the surrounding cosmological setting may be ignored when imposing
asymptotic boundary conditions to the metric, cosmological boundary conditions of
auxiliary fields can be crucial (for details, see Section 4.1.3 in [76]). As a first step,
we redefine the Newtonian potential U , using the conserved density fl

ú:

U(t, x) ©
⁄

fl
ú(t, x

Õ)
|x ≠ xÕ| d3

x
Õ

, Ò2
U = ≠4fifl

ú
. (1.25)

Dropping the explicit dependency on primed coordinates for matter variables
(e.g. fl

ú(t, x
Õ) © fl

úÕ), we can build the following potentials, in order to expand the
metric:

• ”gjk[O(‘2)]: it must be a 3-tensor, the only terms allowed are U”jk and Ujk

where
Ujk ©

⁄
fl

úÕ (x ≠ x
Õ)j(x ≠ x

Õ)k

|x ≠ xÕ|3 d3
x

Õ
, (1.26)

related by the superpotential

X ©
⁄

fl
úÕ |x ≠ x

Õ| d3
x

Õ
, (1.27)

such that:
X,jk = U”jk ≠ Ujk . (1.28)

• ”g0j [O(‘3)]: we can build out two 3-vector potentials Vj and Wj :

Vj ©
⁄

fl
úÕ v

Õ
j

|x ≠ xÕ| d3
x

Õ
, Ò2

Vj = ≠4fifl
ú
vj ,

Wj ©
⁄

fl
úÕ v

Õ · (x ≠ x
Õ)(x ≠ x

Õ)j

|x ≠ xÕ|3 d3
x

Õ
. (1.29)

These also are related to the superpotential X by:

X,0j = Wj ≠ Vj . (1.30)
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• ”g00[O(‘4)]: we can build several scalar potentials at fourth order in ‘. We will
limit ourselves to contributions from U

2 and the following other possibilities:

�1 ©
⁄

fl
úÕ v

Õ2

|x ≠ xÕ| d3
x

Õ
, Ò2�1 = ≠4fifl

ú
v

2
,

�2 ©
⁄

fl
úÕ U

Õ

|x ≠ xÕ| d3
x

Õ
, Ò2�2 = ≠4fifl

ú
U ,

�3 ©
⁄

fl
úÕ �Õ

|x ≠ xÕ| d3
x

Õ
, Ò2�3 = ≠4fifl

ú� ,

�4 ©
⁄

p
Õ

|x ≠ xÕ| d3
x

Õ
, Ò2�4 = ≠4fip ,

�5 ©
⁄

fl
úÕÒÕ

U
Õ · (x ≠ x

Õ)
|x ≠ xÕ| d3

x
Õ
,

�6 ©
⁄

fl
úÕ (vÕ · (x ≠ x

Õ))2

|x ≠ xÕ|3 d3
x

Õ
,

�W ©
⁄ ⁄

fl
úÕ

fl
úÕÕ (x ≠ x

Õ)
|x ≠ xÕ|3 ·

5(xÕ ≠ x
ÕÕ)

|x ≠ xÕÕ| ≠ (x ≠ x
ÕÕ)

|xÕ ≠ xÕÕ|

6
d3

x
Õd3

x
ÕÕ

. (1.31)

Using a suitable gauge transformation, known as the standard ppN gauge, we
can make the spatial part of the metric diagonal and isotropic by removing both the
Ujk and �5 dependency2. We are therefore left with 10 potentials, associated to the
metric corrections:

”gjk[O(‘2)] : U”jk ,

”g0j [O(‘3)] : Vj , X,0j ,

”g00[O(‘4)] : U
2
, �1, �2, �3, �4, �6, �W .

Choosing the following ten conventional parameters, denoted by “, —, ›, –1, –2,
–3, ’1, ’1, ’3, ’4 we can finally write the ppN metric:

g00 = ≠1 + 2U + 2(Â ≠ —U
2) + O(‘6) , (1.32a)

g0j = ≠1
2[4(1 + “) + –1]Vj ≠ 1

2[1 + –2 ≠ ’1 + 2›]X,0j + O(‘5) , (1.32b)

gjk = (1 + 2“U)”jk + O(‘4) . (1.32c)

where

Â :=1
2(2“ + 1 + –3 + ’1 ≠ 2›)�1 ≠ (2— ≠ 1 ≠ ’2 ≠ ›)�2 + (1 + ’3)�3

+ (3“ + 3’4 ≠ 2›)�4 ≠ 1
2(’1 ≠ 2›)�6 ≠ ›�W . (1.33)

The parameters are chosen to have a special physical significance, as summarized
in Fig. 1.2. Although strictly speaking their numerical values depend on the coor-
dinates choice for a given solution, we can give a heuristic interpretation of them
by studying their value in GR, for some characteristic coordinates and metric. In

2The desired simplification is obtained by using the gradient of the superpotential X,µ as
infinitesimal coordinates shift. See Section 4.2.2 of [76] for details.
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Figure 1.2. Physical interpretation of ppN parameters. This table, reproduced from
[76], provides a heuristic explanation of the ppN parameters chosen in the canonical
parametrized post-Newtonian framework. The third column reports generic values for
the parameters. The last two columns list non-vanishing parameters in two classes of
metric theories for which they are computed. For additional details, see Sec. 1.4.4.

the Schwarzschild solution to the GR equations expressed in isotropic coordinates,
we see that “ = — = 1 and all the other parameters vanish. The coe�cient — can
be seen as a proxy to quantify the non-linearity of the theory (it multiplies the U

2

term of the metric) with respect to GR, while the coe�cient “ can be thought of as
a measure of how much spatial curvature is produced by the unit mass.

1.4.4 Post-Galilean Transformations and Preferred Frame E�ects

In order to understand the meaning of the ppN parameters other than — and
“, it is useful to study how the metric changes under the action of a coordinate
transformation that allows the center of mass of the fluid to move with a velocity w

with respect to the universe rest frame, for |w| ≥ O(‘). In Sec. 1.3.2, we provided a
classification of generic metric theories based on their behaviour under local Lorentz
transformations, i.e. on the possible dependency of gravitational experiments on
the velocity of the chose quasi-local Lorentz frame. We said that for Metric-only
theories (such as GR) and Dynamical scalar theories, local gravitational physics
is independent from the coordinates chosen. Therefore, for such theories the ppN
metric should be invariant under any transformation of coordinates within the
post-Newtonian approximation, which we will now show.
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We first generalize the metric to take into account coordinate-frame motion
relative to the universal rest frame by considering the coordinates subject to a post-
Galilean transformation (first introduced in [18] by Chandrasekhar and Contopolous).
This class of transformations rises from the mixing of a Lorentz boost, truncated
at the appropriate order, with a gauge adjustment to keep the metric “simple,” i.e.
with vanishing o�-diagonal spatial components and no �5 dependence. Explicitly,
the post-Galilean transformation from the rest frame coordinates x

– = (t, x) to the
moving ones x̃

– = (·, x̃) reads:

x = x̃ +
3

1 + 1
2w

2
4

w· + 1
2(x̃ · w)w + O(x̃‘

4 + ·‘
5) ,

t = ·

3
1 + 1

2w
2 + 3

8w
4
4

+
3

1 + 1
2w

2
4

x̃ · w+

+ 1
2(1 ≠ –2 ≠ ’1 + 2›)wk

X,k

¸ ˚˙ ˝
gauge change

+O(x̃‘
5 + ·‘

6) . (1.34)

where the extra gauge freedom derived from the introduction of the additional
post-Newtonian variable w.

In the new coordinates, the metric becomes:

g̃00 = g00 + �P F
, (1.35a)

g̃0j = g0j + �P F

j , (1.35b)
g̃jk = gjk , (1.35c)

where the metric components on the right hand side are the ones of Eqs. (1.32)
computed in the new coordinate system, and

�P F = (–3 ≠ –1)w2
U + (2–3 ≠ –1)wj

Vj + –2w
j
w

k
X,jk ,

�P F

j = ≠1
2–1wjU + –2w

k
X,jk . (1.36)

As we may see, the –i’s are connected to preferred-frame e�ects. They are seen
not to vanish only in Vector-Tensor theories and in prior-geometric ones, where the
presence of vector/tensor gravitational fields in the former and the existence of an
absolute gravitational field (such as a flat background metric) in the latter explicitly
break local Lorentz Invariance.

The ’i parameters and –3 are linked to the possibility of finding a conserved total
momentum (not energy, which is already conserved at this level of approximation by
Newtonian dynamics). It can be proved [42] that any metric theory with no absolute
elements whose field equations can be derived from an invariant action principle has
’i = –3 = 0 and consequently a conserved total momentum. Theories of gravity with
these properties are called semi-conservative. Total angular momentum is conserved
only if we have invariance under the aforesaid post-Galilean transformations (i.e. –1
and –2 vanish too) and these theories are called fully-conservative.

Finally, the › parameter is instead connected to the Whitehead potential �W

(first spotted in Whitehead theory of gravity) and it can appear also in GR if one
uses gauges that are not diagonal in the spatial part of the metric.
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1.5 Metric Theories of Gravity: an Overview

In this section, we briefly present some examples of Metric Theories of Gravity.
The ppN formalism described in the previous section allows to compare and classify
generic metric theories through the computation of their post-Newtonian limit and
parameters. The general procedure is described in [76], Sec. 5.1. The method consists
in solving by iteration the field equations of each theory at post-Newtonian order,
imposing boundary cosmological conditions to the fields. The starting point of every
generally covariant, Lagrangian-based, relativistic, universally coupled theory (i.e.
a Metric Theory according to the theorem we quoted in Sec. 1.3.1) is an invariant
action, from which we can derive field equations through a variational principle. At
the end of this section, the ppN parameters for the cited theories are reported in
Fig. 1.3, while the most updated experimental bounds for their values are reported
in Fig. 1.4. In the following, we will not use geometrized units.

1.5.1 General Relativity

GR is undoubtedly the simplest metric theory we can think of. It is a metric-only
theory with one gravitational field, the metric g. If we neglect the cosmological
constant (which brings e�ects only at cosmological scales), it has no arbitrary
parameters. Field equations can be derived from an invariant action principle (as
shown in Ch. 21 of [48]) ”I = 0, where:

I = c
4

16fiG

⁄
R

Ô
≠g d4

x + Im(Âm, gµ‹) , (1.37)

where G is the experimentally measurable Newton coupling constant, R = g
µ‹

Rµ‹ is
the Ricci Scalar Curvature derived from Ricci Tensor Rµ‹ , Im is the non-gravitational
action universally coupled with the metric and containing all the matter fields Âm.

The action was first proposed by the German mathematician David Hilbert in
1915. By varying the action with respect to gµ‹ , we obtain the field equations:

G
µ‹ = 8fiG

c4 T
µ‹

, (1.38)

where G
µ‹ = R

µ‹ ≠ 1
2g

µ‹
R is the Einstein tensor and T

µ‹ is the energy-momentum
tensor. As the Einstein tensor satisfies the Bianchi Identities G

µ‹
;‹ = 0, T

µ‹
;‹ = 0

holds and the energy-momentum tensor is conserved.
In a 1974 paper [42], Lee, Lightman and Ni showed that the conservation equation

for T
µ‹ for a Lagrangian-based, generally covariant metric theory is a consequence

of the gravitational field equations if and only if there are no absolute variables, i.e.
prior geometric inputs, in the theory. This condition forces the ’i and –3 parameters
to vanish in the ppN framework, as stated in Sec. 1.4.4. This indeed is a necessary
condition to build a conserved tensor �µ‹ (with �µ‹

;‹ = 0) that reduces to T
µ‹ in

the absence of gravity.
GR ppN parameters can be computed by the post-Minkowskian approximation of

the theory (see [56] for a pedagogical introduction). At the end of the computation,
all parameters are seen to vanish with the exception of “ = — = 1. GR is then a
fully conservative theory with no preferred-frame e�ects.
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1.5.2 Scalar-Tensor Theories

Scalar-Tensor theories di�er from General Relativity by the addition of a scalar
gravitational field3

„, coupled to the metric tensor through an arbitrary function w(„)
and with a potential V („). Pioneered by Brans and Dicke in 1961 [15], they have
regained attention in a more generalized version due to the rise of new cosmological
theories of inflation. Their invariant action, written in what is called the Jordan
Frame, is:

I = c
4

16fiG

⁄ 5
„R ≠ w(„)

„
g

µ‹
„,µ„,‹ ≠ V („)

6Ô
≠g d4

x + Im(Âm, gµ‹) . (1.39)

Varying the action with respect to gµ‹ and „, we can straightforwardly obtain the
field equations:

G
µ‹ = 8fiG

„c4 T
µ‹ + w(„)

„

3
„,µ„,‹ ≠ 1

2gµ‹„,—„
,—

4
+ 1

„
(„;µ‹ ≠ gµ‹⇤g„) , (1.40)

⇤g„ = 1
3 + 2w(„)

38fiG

c4 T ≠ dw

d„
„,—„

,— + d
d„

(„2
V )

4
, (1.41)

where T = gµ‹T
µ‹ and ⇤g = g

µ‹ÒµÒ‹ is the scalar d’Alambertian with respect to
the metric.

Let „0 be the asymptotic value of the scalar field at present cosmological time
and w0 © w(„0). If we develop the theory perturbatively, at first order in the
Newtonian limit with gµ‹ = ÷µ‹ + hµ‹ we obtain (in the V („) = 0 approximation):

h00 = 2 U

c2 , h0i = hij = 0 with Ò2
U = 8fiGe� , (1.42)

where
Ge� = G

„0

4 + 2w0
3 + 2w0

. (1.43)

From Eq. (1.43), we see that the empirical gravitational constant Ge� (i.e. what
experiments can measure) is no longer a constant, but a function of the present
value of the scalar-field background „0 and therefore theoretically depends on time
and location.

Among the first and simplest modifications of GR, there were f(R) theories,
whose invariant actions can be written as:

I = c
4

16fiG

⁄
f(R)

Ô
≠g d4

x + Im(Âm, gµ‹) , (1.44)

where f(R) is a proper function of the Ricci scalar. f(R) can be adjusted to make
the universe experience an accelerated expansion without introducing Dark Matter
or any Cosmological Constant. These theories are equivalent to Scalar-Tensor ones,
as can be seen by replacing f(R) with f(‰) ≠ f,‰(‰)(R ≠ ‰), where ‰ is a dynamical
scalar field. As long as f,‰‰ ”= 0, equation of motions for the ‰ field impose that
‰ = R. We can then cast the action in the form of Eq. (1.39) by defining „ © ≠f,‰(‰)
and setting w(„) = 0 and „

2
V = „‰(„) ≠ f(‰(„)).

3We consider the case of a single additional scalar gravitational field for simplicity, but multiple
ones are also admitted.
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The computation of ppN parameters resembles the GR case, leading to all
vanishing parameters with the exception of:

“ = 1 + w0
2 + w0

, (1.45)

— = 1 + „0w
Õ
0

(3 + 2w0)(4 + 2w0)2 . (1.46)

In the original Brans-Dicke Theory, w = wBD is a constant and in the limit wBD æ Œ
the theory is indistinguishable from GR, where “ = — = 1.

1.5.3 Vector-Tensor Theories

These theories contain two gravitational fields, the metric g and a dynamical,
timelike, four-vector field u

µ. They depend on five di�erent coupling constants Ê, c1,
c2, c3, c4, and a constraint parameter ⁄. The action can be generically written as:

I = c
4

16fiG

⁄ 5
(1+Êuµu

µ)R≠K
µ‹

–—
Òµu

–Ò‹u
— +⁄(uµ

uµ+1)
6Ô

≠g d4
x+Im(Âm, gµ‹) ,

(1.47)
where

K
µ‹

–—
= c1g

µ‹
g–— + c2”

µ

–”
‹

— + c3”
‹

–”
µ

—
≠ c4u

µ
u

‹
g–— . (1.48)

We can divide this broad class of theories into two subsets:

• constrained theories, for which ⁄ works as a Lagrangian multiplier, enforcing the
normalization u

µ
uµ = ≠1. As a consequence, the Ê term can be re-absorbed

into the definition of G or, equivalently, set to zero;

• unconstrained theories, for which ⁄ vanishes, Ê is arbitrary, and the asymptotic
value of the vector u

0 as another free parameter to be set.

Einstein-Æther Theory — Among constrained theories, particular relevance
is held by the Einstein-Æther model, which is the most general parity-preserving
but Lorentz-violating theory that includes up to (quadratic) first derivatives in the
vector field. In some special cases, Lorentz symmetry breaking has been shown
to be a mechanism for renormalization of gravity [70], which makes these theories
particularly interesting to study. Einstein-Æther theories have a single 4-vector field,
known as the “æther” and it is one of the possible constrained theories we described
before. The theory was studied in its generality by Jacobson and collaborators
[39, 44, 40, 29]. In [33], Foster and Jacobson computed the ppN parameters for this
theory. Defining the following standard combination of ci parameters

c14 © c1 + c4 , c123 © c1 + c2 + c3 , c± © c1 ± c3 , (1.49)
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the ppN parameters for Einstein-Æther model are:

“ = — = 1 , › = –3 = ’1 = ’2 = ’3 = ’4 = 0 ,

–1 = ≠8(c2
3 + c1c4)

2c1 ≠ c+c≠
,

–2 = 1
2–1 ≠ (2c+ ≠ c14)(c+ + c14 + 3c2)

c123(2 ≠ c14) . (1.50)

One of the most interesting consequence of the model is that the gravitational
constant G that enters Kepler’s third law in a binary system is not the same as the
constant GN that enters Newton’s third law in a Cavendish-type measurement. In
turn, this is di�erent from the bare constant G entering the Einstein-Æther action.
Defining the sensitivity ‡ as:

‡ =
32

3–2 ≠ –1

4
C

ú
,

where C
ú is the compactness of the body [32], we can write the following relations

between the three gravitational constants:

GN = G

3
1 ≠ c14

2

4≠1
, G = GN

(1 + ‡A)(1 + ‡B) .

If we impose that gravitational-wave modes have real (not imaginary) frequencies
and we require energy to be positive, we can constrain the values of the ci parameters.
Furthermore, imposing the condition c4 = ≠c

2
3/c1 and the condition that either

c+ = 0 or that c2 = c+(c3 ≠ 2c1)/3c1, we can reproduce GR ppN parameters,
making –1 = –2 = 0 and reducing the free parameters of the model down to two
(conventionally, c±). For further details, see e.g. [79].

1.5.4 Other Kinds of Theories

Tensor-Vector-Scalar Theories — Modified Newtonian Dynamics (MOND) is
a phenomenological mechanism proposed by Milgrom in [47] to explain flat rotation
curves observed in spiral galaxies, without the assumption of hidden Dark Matter,
but instead proposing a modified gravitational dynamic to take into account the
anomalous behaviour of galaxy outer velocities. Three gravitational fields — the
metric g, a four-vector field u

µ and a scalar field „ — are necessary to reproduce
MOND phenomenology in a fully relativistic theory of gravity, which is called indeed
Tensor-Vector-Scalar (TeVeS) Theory. The only ppN parameters of this class of
theories di�erent from the ones of GR are –1 and –2, computed only in some
particular cases. For further references, see [63].

Quadratic Gravity — Quadratic gravity theories rise from the idea of adding to
the GR action terms that are quadratic in the Riemann tensor, Ricci tensor and Ricci
scalar in order to reproduce an “e�ective field theory” model. They can contain parity-
violating terms (proportional to R̃R = R̃

– “”

—
R

—

–“”
, where R̃

– “”

—
© 1/2Á

“”fl‡
R

–

—fl‡
)



1.5 Metric Theories of Gravity: an Overview 21

and a scalar field „. Chern-Simons gravity is one of the simplest among these theories.
It contains only the parity-violating term R̃R besides the scalar field. It can emerge in
string theory as well as in loop quantum gravity to contribute to anomaly cancellation.
For details, we refer to [11]. Other theories in this class have an action proportional
to the Gauss-Bonnet invariant of the manifold, R

2 ≠ 4R–—R
–— + R–—“”R

–—“”, and
for this reason they are called Einstein-Dilaton-Gauss-Bonnet.

Massive Gravity — These theories emerge from attempts to provide the graviton
with mass, although within a completely classical framework. This is equivalent
to the addition of three helicity states to the propagation of gravitational fields,
bringing problems of continuity with GR. These problems can be avoided only by
carefully introducing non trivial elements or mechanisms in the theory, such as
non-dynamical flat-background metric or screening e�ects. For a thorough reference,
see [21].
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Figure 1.3. ppN parameters values for some semi-conservative metric theories (–3 = ’i =
0). Primed values denote complicated functions of the arbitrary constants and matching
parameters for each theory. (Reproduced from [75].)

Figure 1.4. Current ppN parameters experimental bounds. For the majority of theories,
’4 is not available independently from the other parameters, therefore it is not listed.
(Reproduced from [75].)
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Chapter 2

Gravitational-Wave Radiation
in Metric Theories of Gravity

This chapter briefly reviews the theoretical foundations of the phenomenon of
Gravitational Radiation in a generic Metric Theory of Gravity. The approach to
solve wave equations in GR is shown to remain valid, with little modifications, in
other theories of gravity. The speed of gravitational waves in some of the theories
quoted in the first chapter is computed. In the last section, gravitational-wave
polarization modes are studied in detail, providing the essential toolkit to analyze
detector responses to them.
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2.1 Wave Solutions in General Relativity

In this first section, after a brief overview on the long-lasting debate about the
existence of gravitational waves, we will focus on the phenomenon of gravitational
radiation in GR. We will develop an alternative formalism for GR, mainly due to
the Russian theorists Lev Davidovi� Landau (1908-1968) and Evgenii Mikhailovich
Lifshitz (1915-1985), to e�ciently find wave equations of the theory, without any
approximation. Then, the DIRE (Direct Integration of Relaxed Einstein Equation)
approach to compute gravitational waveforms by subsequent iterations will be
illustrated in some detail. Finally, the well-known result of the quadrupole formula
will be derived from the machinery introduced, leading to a rough estimate of the
gravitational-wave amplitude.

2.1.1 A Century Long Debate

At first sight, the presence of wave solutions to the Einstein field equations in
GR could seem quite surprising. Geodesic motion indeed does not produce any
form of wave. However, the possibility that small perturbations of the metric can
propagate throughout spacetime was already deduced by Albert Einstein himself. By
addressing the problem of the motion of a rotating dumbbell, held together by non-
gravitational forces, in a couple of papers in 1916-1918 [26, 27], Einstein discovered
that such dynamical system would radiate energy through metric waves, the leading
term of which was found to be proportional to the second time derivative of the
quadrupole moment of the source. Although the calculation was straightforward,
the magnitude of the predicted waves was so small that Einstein himself thought
they could have never been detected. For decades, some physicists even cast doubts
upon the reality of these gravitational waves (GWs), considering them as artefact of
general covariance.

In the 60s there were the first serious attempts to experimentally detect GWs
with resonant bar detectors, pioneered by Joseph Weber. However, the sensitivity
of the apparatus was not enough to reveal any feasible sources of GWs. In 1979,
observations of the decay rate of the orbit of a binary pulsar system were shown
to be in agreement with the quadrupole formula [65]. This led Hulse and Taylor
to be awareded with the 1993 Nobel Prize in Physics. However, in 1976, Ehlers et
al. [25] moved serious criticism toward the solution of the mathematical problem
of radiation emitted by self-gravitating bodies, because of the use of techniques
from classical electrodynamics to solve the field equations which involved ill-defined
integrals. By 1990, all these computational problems were solved. Meanwhile, the
proposals of large-scale interferometric gravitational-wave detectors began to build
consensus, making the inspiral and coalescence of binary compact objects (such as
black holes or neutron stars) a promising candidate source for detectable waves.

Every doubt on the reality and detectability of GWs was definitely clarified
on September 14, 2015, when the first direct detection of GWs emitted by the
coalescence of two black holes was seen by the LIGO interferometers, in USA [6].
Among the subsequent detections achieved by the LIGO-Virgo Collaboration [4] is
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the first neutron star binary coalescence in 2017 [3]. This sparked the flourishing of a
new branch of Observational Astronomy, called Multi-Messenger [7], which provides
a new way of testing GR in high field regimes [2]. We are just at the dawn of a new
era that will surely bring precious insights to our comprehension of the Universe.

2.1.2 Einstein’s Equations in Relaxed Form

To provide an e�cient calculation method for GWs, it is convenient to rewrite
the Einstein field equations (1.38) using a di�erent formalism, first developed by
Landau and Lifshitz in their influential book The Classical Theory of Fields [41]. In
the remainder of this section, we will not use geometrized units.

We start with the definition of the key object of Landau-Lifshitz framework, the
gothic inverse metric g–—:

g–— :=
Ô

≠gg
–—

, (2.1)
where g

–— is the inverse metric and g = det (gµ‹). The inverse gothic metric as
defined in Eq. (2.1) is not a tensor, but a tensor density. From g–—, we can build
H

–µ—‹ , another tensor density with the same symmetries of the Riemann tensor:

H
–µ—‹ := g–—gµ‹ ≠ g–‹g—µ

. (2.2)

It can be shown that
1

2(≠g)ˆ–—H
–µ—‹ = G

µ‹ + 8fiG

c4 t
µ‹

LL
, (2.3)

where t
µ‹

LL
is known as Landau-Lifshitz pseudotensor. This object may be explicitly

written as a quadratic combination of Christo�el Symbols:

t
µ‹

LL
= c

4

16fiG

)
(2�‡

–—�fl

‡fl ≠ �‡

–fl�fl

—‡
≠ �‡

–‡�fl

—fl
)(gµ–

g
‹— ≠ g

µ‹
g

–—)+

+ g
µ–

g
—‡(�‹

–fl�fl

—‡
+ �‹

—‡�fl

–fl ≠ �‹

‡fl�fl

–—
≠ �‹

–—�fl

‡fl)+

+ g
‹–

g
—‡(�µ

–fl�fl

—‡
+ �µ

—‡
�fl

–fl ≠ �µ

‡fl�fl

–—
≠ �µ

–—
�fl

‡fl)+

+ g
–—

g
‡fl(�µ

–‡�‹

—fl ≠ �µ

–—
�‹

‡fl)
*

. (2.4)

To gain insight on the physical relevance and meaning of the object we just
defined, we can substitute the Einstein tensor G

µ‹ using Einstein’s field equations
(1.38) in Eq. (2.3), finding:

1
2(≠g)ˆ–—H

–µ—‹ = 8fiG

c4
!
T

µ‹ + t
µ‹

LL

"
. (2.5)

This expression provides a non-tensorial form of Einstein’s field equations. Further,
using H

–µ—‹ ’s anti-symmetry, from the identity

ˆ‹–—H
–µ—‹ = 0 , (2.6)

we can write the following conservation law:

ˆ‹

5
(≠g)(T µ‹ + t

µ‹

LL
)
6

= 0 . (2.7)
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In the context of GR, this equation is equivalent to the usual expression of energy-
momentum conservation T

µ‹
;‹ = 0 and suggests that we can interpret the Landau-

Lifshitz pseudo-tensor as the entity that contains the information of the energy and
the momentum carried by the gravitational field. Since in the local inertial frame in
which gravity is suppressed Christo�el Symbols are seen to vanish, t

µ‹

LL
cannot be a

tensor (it would have to vanish in every reference frame) and its numerical value is
coordinate-dependent.

Now, we can use the residual gauge freedom to impose the harmonic gauge
condition ˆ—g–— = 0. Introducing the potentials

h
–— := ÷

–— ≠ g–—
, (2.8)

we can rewrite the field equations in the so-called relaxed form:

⇤h
–— = ≠16fiG

c4 ·
–—

, (2.9)

where

·
–— := (≠g)(T –—[m, g] + t

–—

LL
[h] + t

–—

H
[h]) , (2.10)

t
–—

H
[h] := c

4

16fiG(≠g)(ˆµh
–‹

ˆ‹h
—µ ≠ h

µ‹
ˆµ‹h

–—) . (2.11)

tH is an additional (harmonic-gauge) contribution to the e�ective energy-momentum
pseudotensor while the box operator is the d’Alambertian in flat spacetime. In
formulae:

⇤ := ÷µ‹ˆ
µ‹ = ≠ 1

v2
ˆ

2

ˆt2 + Ò2
, (2.12)

v being the wave propagation speed in the theory. In GR, v = c. Enforcing the
harmonic gauge condition is equivalent to imposing the conservation statement:

ˆ—·
–— = 0 . (2.13)

Equations (2.9) and (2.13) together represent an exact reformulation of Einstein’s
field equations: up to now, no approximation was performed. Furthermore, Eq. (2.9)
is a wave equation in “flat spacetime:” each component of the potential h

–— has a
wave solution with ·

–— acting as the source. To underline the high non-linearity of
the wave equation, we have indicated explicitly in square brackets the dependency
on the source (generically denotes as m) and on the gravitational field of each term.
One of the possible procedures to compute the gravitational waveform involves
solving iteratively the relaxed equation and is known as DIRE, Direct Integration of
Relaxed Einstein Equation. The approach was elaborated by Will, Wiseman and
Pati in [78, 52, 53] and it will be sketched in the next subsection.
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Figure 2.1. The near-zone and the wave-zone domain. Integration domains for the
retarded solution of the wave equation with the field point in the wave zone: C(x) is
the past “null” cone (with speed v) of the field point x; D is the world tube of the near
zone of radius R; N (x) is the intersection of D with C(x) and W(x) is the rest of the
null cone; M(x) is a constant retarded-time hypersurface used for calculating multipole
moments. (Reproduced from [76].)

2.1.3 The DIRE Approach for Solving the Relaxed Field Equations

The formal solution of Eq. (2.9) is given (using the retarded Green’s function
technique) by:

h
–—(t, x) = 4G

c4

⁄

C(x)

·
–—(t ≠ |x ≠ x

Õ|/v, x
Õ)

|x ≠ xÕ| d3
x

Õ
, (2.14)

where the integral is computed over C(x), the flat-spacetime past null cone (with
speed v) of the field point x = (t, x), and |x ≠ x

Õ| is the Euclidean distance between
the field point x and the source point x

Õ. We can split the integration domain into
two di�erent parts: the near-zone domain N (x) and the wave-zone domain W(x).

If we consider tc to be the characteristic time scale of the source, we can define
⁄c = vtc to be the characteristic wavelength of the source. We choose the boundary
between the near and the wave zone at selected radius R from the source, taking
R of the same order of magnitude as ⁄c. This three-dimensional sphere of radius
R identifies a world tube D, whose intersection with C(x) determines N (x), as
illustrated in Fig. 2.1. We can then write the solution h

–—(x) as the sum of two
contributions depending on the domain chosen:

h
–—(x) = h

–—

N (x) + h
–—

W (x) . (2.15)

Although hN and hW will individually depend on R, their sum (i.e. the total
solution) will be R-independent, as explicitly shown in [52].
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A feasible way to solve the integral in Eq. (2.14) is to proceed by iteration,
under the assumption of a weak-field regime (Îh

–—Î π 1) and within a slow-motion
approximation. The latter condition imposes that the characteristic velocity within
the source vc is much smaller than the speed of light (vc π c) in order to keep the
piece of the source function with compact support µc (usually the matter energy-
momentum tensor) deep within the near zone (vctc = rc π ⁄c). Notice that these
two assumptions were already made in the definition of post-Newtonian regime in
Sec. 1.4.

The first iteration consists in setting h
–—

0 = 0 in the right-hand side and solving
the relaxed equation (2.9) for h

–—

1 , using the Minkowskian energy-momentum tensor
T

–—[m, ÷]. The equations of motion are not known, but the solution is found to
be dependent on the matter variables m. From the solution h

–—

1 , we can form
the inverse metric g

–—

1 and we can construct an improved version of the e�ective
energy-momentum pseudotensor:

·
–—

0 = (≠g)(T –—[m, g1] + t
–—

LL
[h1] + t

–—

H
[h1]) .

The n-th iteration is simply obtained (at least in principle) by the (n ≠ 1)-th
pseudotensor, solving the relaxed field equation again for h

–—
n . To find the equations

of motion for the source at the n-th iteration, we can enforce the gauge condition
ˆ—·

–—
n = 0 on the e�ective pseudotensor computed at the corresponding order.

Notice that to avoid contradictions, the enforcing of the gauge condition/conservation
statement must be delayed at the very last step of the iterative process.

At fixed iteration order, the formal integral in Eq. (2.14) must be handled
di�erently, according to the proximity of the field position x to the near zone. If we
want to compute the waveform, the solution must be evaluated for points in the far
wave zone, for which the only significant contributions to the integral comes from
1/R terms, where R = |x ≠ x

Õ| is the distance from the source. Considering first the
contributions given by the near-zone domain h

–—

N (x), we can expand the integral in
the following way:

h
–—

N (x)
--
wave = 4G

Rc4

⁄

N
·

–—

3
t ≠ R

v
+ N · x

Õ

v
, x

Õ
4

d3
x

Õ + O
3 1

R2

4
, (2.16)

where N © x/R and the subscript
--
wave stands for the fact that the solution is

evaluated for far field points, with |x ≠ x
Õ| ∫ R. Within the approximations

previously described, we can further develop the potential h
–—

N (x) performing a
multipole expansion in which each ¸-pole moment of the source is di�erentiated ¸

times with respect to t:

h
–—

N (x)
--
wave = 4G

Rc4

Œÿ

¸=0

1
¸!v¸

3
ˆ

ˆt

4¸ ⁄

M
·

–—

3
t≠ R

v
, x

Õ
4

(N·xÕ)¸d3
x

Õ+O
3 1

R2

4
. (2.17)

Notice that we have changed the domain of integration into M since the temporal
dependence of the source function no longer involves the integration variable x

Õ

making the new integration domain a surface of constant time (the constant equal
to the retarded time · = r ≠ R/v, see Fig. 2.1). Furthermore, there is an interesting
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property that links time and space derivatives of the solution. Indeed, by inspection,
it can be shown that:

Òh
–—

N (x)
--
wave = ≠N

1
v

ˆth
–—

N (x)
--
wave + O

3 1
R2

4
. (2.18)

Since the approximations we have made are compatible with the post-Newtonian
(PN) limit of the metric theory, to preserve consistency we ought to choose a specific
PN order and solve each iteration with corrections at the corresponding order. As a
result, the solution will be computed at nPN order, where vc ≥ 0.5PN1. In the far
wave zone, to complete the solution we should add to Eq. (2.17) the result of the
integral carried over the rest of the “null” cone, h

–—

W (x). However, depending on the
metric theory chosen, its contributions can be negligible at first PN order. In GR, it
can be proved that h

–—

W (x) contributions (known as gravitational-wave tails) occur
at 1.5PN order at least.

To evaluate the multipole moments in Eq. (2.17), a PN description of the source
is needed. We can obtain this from the near-zone solution for the field, carrying out
a similar expansion of the integral, this time with |x ≠ x

Õ| π R (as indicated by the
subscript

--
near). Concerning the near-zone domain contribution to the integral, we

have:

h
–—

N (x)
--
near = 4G

c4

Œÿ

¸=0

(≠1)¸

¸!v¸

3
ˆ

ˆt

4¸ ⁄

M
·

–—(t, x
Õ)|x ≠ x

Õ|(¸≠1)d3
x

Õ
. (2.19)

The first term is an instantaneous Poisson potential with source ·
–—, while the

following terms are of ¸ ◊ 0.5PN order, being ˆt ≥ vc/rc ≥ 0.5PN. This last relation,
valid for every multipole expansion, can also be used to count the order of each PN
term in Eq. (2.17). The outer integral h

–—

W (x) generally gives contributions only at
very high PN orders (in GR, starting from 4PN) and it may be safely neglected.

2.1.4 The TT-Gauge and the Quadrupole Formula

We now apply the computational technique of the previous subsection to GR,
where v = c. First of all, it is interesting to study how many independent components
the h

–— potential has in the far wave zone. Its symmetric nature is inherited from
the metric itself, so we are left with ten degrees of freedom. However, invariance
under coordinate transformations (or gauge transformation, as they are called if
they involve the h

–— potentials) allows us to reduce the degrees of freedom to six.
A general proof of this fact, valid in any metric theory of gravity, will be provided
in Sec. 2.3.1. For the moment, we can explicitly show this property within GR
noticing that, given the definition of h

–— in Eq. (2.8), the harmonic gauge condition
ˆ—g–— = 0 implies:

ˆ—h
–— = 0 ∆ ˆjh

–j = ≠c
≠1

ˆth
–0

.

1Notice that the convention used in this context di�ers from the one adopted in Sec. 1.4, where
vc ≥ 1PN.
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This property combined with the result in Eq. (2.18) allows us to rewrite — up to
a constant factor — all the metric components as functions of the spatial part of
the h

–— tensor, reducing (as expected from the previous considerations) the degrees
of freedom of the perturbation down to six (the number of free components in a
symmetric 3 ◊ 3 tensor):

h
0j

N = Nkh
kj

N + O
3 1

R2

4
,

h
00
N = NkNjh

kj

N + O
3 1

R2

4
. (2.20)

Within GR, it is possible to specialize the harmonic gauge even further. Under
a gauge transformation generated by a four-vector field ’

–(x), the potentials h
–—

will transform as:

h
–— æ h

–— ≠ ˆ
–
’

— ≠ ˆ
—
’

– + (ˆµ’
µ)÷–—

, (2.21)

and, consequently,
ˆ—h

–— æ ˆ—h
–— ≠ ⇤’

–
. (2.22)

If we choose ’
µ such that ⇤’

µ = 0 to preserve the harmonic gauge condition, we can
eliminate another four degrees of freedom, which leaves us with only two radiative
modes. Decomposing the perturbation into irreducible pieces, it can be shown that
the gauge invariant part of the metric is the transverse-traceless (TT) spatial part
h

jk

T T
, such that Njh

jk

T T
= 0 = ”jkh

jk

T T
. The gravitational potentials in this particular

form are said to be in the transverse-traceless gauge, or TT gauge, a specialization
of the harmonic gauge that can be achieved in the far wave zone.

If we want to compute a waveform in GR, we have to solve the multipole
expansion of Eq. (2.17) in the far wave zone. Two iterations are required to obtain
1PN equations of motion or the gravitational waveform for a binary system. The
first iteration is found by substituting h

jk

0 = 0 into the source term ·
jk and solving

the relaxed equation for h
jk

1 . The source term would receive a contribution only
from the special relativistic limit of the energy-momentum tensor T

jk

0 ≥ fl
ú
v

j
v

k as
defined in Eq. (1.17) (where v is the 3-velocity of the fluid/system). Stopping at
the first iteration would have meant imposing the gauge condition directly on the
energy-momentum tensor, leading to the Minkowskian conservation law T

–—

,—
= 0

which implies a flat spacetime with no gravitational interaction at all. Further,
contributions from the Landau-Lifshitz pseudotensor ·

–—

LL
are at the same order

as the purely kinetic terms T
jk

0 and must be taken into account for a consistent
analysis. The Newtonian dynamics is indeed recovered at the second iteration of the
procedure.

We can use some properties of the source term to avoid explicitly calculating
the two iterations. As a consequence of the gauge condition ˆ—·

–— = 0, we can
show that, taking ·

–— to be symmetric, which is always possible in fully-conservative
theories such as GR:

·
jk = 1

2(·00
x

j
x

k),00 +
!
·

pj
x

k + ·
pk

x
j
"

,p
≠ 1

2(·pq
x

j
x

k),pq . (2.23)
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At the lowest multipole order in Eq. (2.17), we have:

h
jk

N = 4G

Rc4

⁄

M
·

jk(t ≠ R/c, x
Õ)d3

x
Õ
. (2.24)

We can substitute the integrand in the previous equation with the right-hand side of
Eq. (2.23), converting all the (spatial) divergence terms into surface integrals. Every
R-dependence must be dropped since it is cancelled from the opposite contribution
in h

jk

W . We are then left with the following relation:

h
jk

N = 2G

Rc4
d2

dt2

⁄

M
·

00(t ≠ R/c, x
Õ)xÕj

x
Õkd3

x
Õ
. (2.25)

At the lowest PN order ·
00 = T

00 = fl
ú, and we finally obtain:

h
jk

N = 2G

Rc4
d2

dt2

⁄

M
fl

ú(t ≠ R/c, x
Õ)xÕj

x
Õkd3

x
Õ

= 2G

Rc4 Ï
jk

. (2.26)

where Ï
jk is the second derivative in time of the quadrupole moment of the source.

For a discrete set of bodies with masses mi, this may be written classically as:

I
jk ©

ÿ

i

mix
j

i
x

k

i .

Equation (2.26) is the well known quadrupole formula, derived by Einstein in [27].
The fact that the result is the same whether the source is gravitationally bounded
(a binary system) or not (Einstein’s dumbbell) is a direct consequence of the Strong
Equivalence Principle (SEP) described in Sec. 1.3.3. Finally, Eq. (2.26) can give
us a rough estimate of the GW amplitude h0. Given a mass M confined to a
volume of radius rc, being vc ≥ rc/tc the characteristic velocity of the source, we can
approximate Ï

jk ≥ Mr
2
c /t

2
c = Mv

2
c . Plugging in typical astrophysical parameters

M = 10M§ and R = 1Mpc, we find:

h0 ≥ GM

Rc2

3
vc

c

42
= 4.8 ◊ 10≠19

3
M

M§

431Mpc
R

43
vc

c

42
. (2.27)

High speed phenomena produce the strongest waves. However, it is important to
stress that vc is the characteristic velocity of a source that deviates from spherical
symmetry. Indeed, the only possible external solution to Einstein’s equation for
a spherical-symmetric system is necessarily static and given by the Schwarzschild
metric. This statement is known as Birkho�’s theorem.

2.2 Wave Solutions in Metric Theories

In the previous section, we outlined a general procedure, the DIRE approach,
to compute by subsequent iterations the predicted gravitational waveform from
a relaxed field equation as Eq. (2.9). Throughout the calculation we did not use
any specific GR property, keeping the propagation speed of the waves as a free
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parameters of the theory. The same algorithm can be used to solve the wave problem
in any metric theory of gravity, provided the field equations can be rewritten in
a relaxed form. In the following, we will sketch the general procedure to find the
waveform in a generic theories. Furthermore, specific examples of relaxed equations
and their consequence on the propagation speed of the wave will be analyzed for
some of the theories described in Sec. 1.5.

2.2.1 Waveform

Working in the universal rest frame, once we have chosen a specific theory for
gravity and set the cosmological boundary conditions to agree with solar system
experiments, it is su�cient to expand any gravitational fields (tensor, vector, scalar)
about their asymptotic values:

gµ‹ = g
(0)
µ‹ + hµ‹ ,

„ = „0(1 + �) ,

K
µ = (K + k

0
, k

1
, k

2
, k

3) ,

Bµ‹ = B
(0)
µ‹ + bµ‹ . (2.28)

Then, using all available gauge freedom, we can express the field equations in a
relaxed form, of the kind:

⇤Â
A = ≠16fi·

A
, (2.29)

where the ⇤ operator is the one defined in Eq. (2.12). Â
A is either one of the

perturbation of the fields in Eq. (2.28), or a linear combination of them and ·
A is

a source term involving the non-gravitational energy-momentum tensor as well as
gravitational energy-momentum pseudo-tensors, quadratic in the fields.

A general result proved by Lee in [42] states that every Lagrangian-based metric
theory admits a conserved pseudo-tensor ·

–— such that:

ˆ—·
–— = 0 . (2.30)

The pair of equations (2.29) and (2.30) is completely equivalent to the field equations
for the theory as found using the variational principle (see Sec. 1.5). One can then
bring all the computational machinery developed for GR in any alternative theory:
first, the relaxed equation (2.29) can be solved formally as a function of the matter
variables; then, Eq. (2.30) can be used to obtain the matter behaviour as a function
of time to finally get the full solution for the fields of the theory.

2.2.2 Speed

As we saw in the previous subsection, obtaining a specific waveform for a given
theory can be a lengthy procedure that involves a lot of computational power
and mathematical subtleties. However, some properties of the waves in a generic
metric theory can be predicted (and measured) without the full calculation of the
waveform. Among them, the measurement of the propagation speed of GWs is
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definitely one of the most stringent tests on GR that can be performed. The Einstein
Equivalence Principle (Sec. 1.2) requires that in every frame the propagation speed
of a massless non-gravitational field is c, the speed of light. However, it does not
place any constraint on the speed of GWs that is ultimately determined by the
detailed structure of the field equations.

To compute the expected speed of wave propagation in a generic metric the-
ory of gravity, it is convenient to develop the formalism within the two following
approximations:

• Weak waves: the perturbation amplitude |hµ‹ | that characterize the wave is
small with respect to the background metric |g(B)

µ‹ |, i.e.

|hµ‹ |
|g(B)

µ‹ |
π 1 .

• Short-wavelength: the wavelength ⁄ of the wave is small with respect to the
radius of curvature of the background spacetime R, i.e.

⁄

R
π 1 ,

where R can be thought of as the inverse square root of a typical component
of the Riemann tensor as measured in a local Lorentz frame.

This regime is equivalent to the geometrical optics limit for an electromagnetic
wave (see [48], Sec. 22.5 for further references). A simple method to the study GW
propagation speed within the geometrical optics approximation is to solve the vacuum
field equations of a specific metric theory, linearized about a background metric
chosen to be locally Minkowskian. This is equivalent to studying GW propagation
in a local Lorentz frame.

General Relativity — The vacuum linearized field equation in harmonic coor-
dinates can be taken from Eq. (2.9), setting the right-hand side to zero:

⇤h
–— = 0 . (2.31)

This equation admits plane-wave solutions

h
–— = A–—

e
i¸µx

µ
, ÷µ‹¸

µ
¸

‹ = 0 , (2.32)

where A–— is a constant tensor amplitude and ¸µ is a constant wave-vector. From
the second relation in Eq. (2.32), we see that the gravitational wave-vector is a null
4-vector in the local Lorentz frame: the electromagnetic and gravitational light cones
coincide, i.e. GWs travel at the speed of light c.
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Scalar-Tensor Theories — If we introduce a conformal transformed metric in
the action in Eq. (1.39):

g̃µ‹ = „

„0
gµ‹ , (2.33)

we can express Scalar-Tensor theories in a Landau-Lifshitz formalism analogous to
the one developed in Sec. 2.1.2. If we define

g̃–— ©


≠g̃g̃
–—

, (2.34)

h̃
–— © ÷

–— ≠ g̃–—
, (2.35)

imposing the harmonic-gauge condition

ˆ—h̃
–— = 0 ,

we can rewrite the two field equations (1.40) and (1.41) (setting c = 1) as

⇤h̃
–— = ≠16fiG̃(≠g̃)(T̃ –— + t̃

–—

„
+ t̃

–—

LL
+ t̃

–—

H
) , (2.36)

⇤„ = ≠8fiG̃·
s

, (2.37)

where

(≠g̃)t̃–—

„
= 1

16fiG̃

53 + 2w

„2

3
g̃

–µ
g̃

—‹ ≠ 1
2 g̃

–—
g̃

µ‹

4
„,µ„,‹ ≠ Ṽ („)g̃–—

6
, (2.38)

·
s = ≠


≠g̃

„

3 + 2w

3
T̃ + „

8fiG̃

dṼ

d„

4

+ 1
16fiG̃

; d
d„

5
ln

33 + 2w

„2

46
g̃µ‹

„,µ„,‹ ≠ 2h̃
µ‹

„,µ‹

<
, (2.39)

G̃ = G/„0, Ṽ („) = „0V („)/„
2, T̃

–— = („0/„)3
T

–—, t̃
–—

LL
and t̃

–—

H
being the Landau-

Lifshitz and harmonic pseudo-tensor as defined in Eqs. (2.4) and (2.11), but computed
as functions of h̃

–— .

Vacuum solutions in the linearized theory are easily found setting both source
terms in Eqs. (2.36) and (2.37) to zero. For Ṽ („) = 0 and expanding „ around its
asymptotic value „0 as „ = (1 + �)„0, we find:

h̃
–— = A–—

e
i¸µx

µ
, ÷µ‹¸

µ
¸

‹ = 0 , (2.40)
� = Be

i¸
Õ
µx

µ
, ÷µ‹¸

Õµ
¸

Õ‹ = 0 , (2.41)

where ¸µ and ¸
Õ
µ are two di�erent wave vectors for the tensor and scalar wave

respectively, both null. If we were to take Ṽ („) ≥ m
2
„

2, providing the scalar field
with a mass, we would obtain a massive propagation relation for the scalar field with
a propagation speed of the correspondent wave lower than c, while the h̃

–— waves
are still null.
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Figure 2.2. Gravitational-wave speeds and polarization modes in Einstein-Æther theory.
For each propagating degree of freedom of the Einstein-Æther theory, the propagation
speed squared v

2
g and its limit for small ci parameters are shown. The E(2) classification

of the polarization modes will be explained in Sec. 2.3.2 in some detail. (Reproduced
from [76].)

Einstein-Æther Theory — Einstein-Æther theory has five propagating degrees
of freedom. The two pure-metric waves, analogous to GR ones, with speed (1≠c+)≠1/2

are completely decoupled from the vector field. The remaining two transverse and one
longitudinal æther-metric modes have speeds that depend on complicate functions
of the c-parameters.

An elegant and straightforward method to obtain them can be found in [35]: it
derives the linearized equations of motion around the flat spacetime background
using the gauge invariant variables of the theory to easily separate physical degrees
of freedom. This technique is used in Sec. 2.3.1 to identify the possible polarization
modes of a GW within the metric tensor and it can be extended to the other
gravitational fields of the theory.

For sake of completeness, in Fig. 2.2 speeds and polarization modes of Einstein-
Æther waves are reported.

Massive Gravity — Massive gravity theories introduce a mass mg for the
“graviton,” i.e. a massive vacuum equation for the linearized metric h

–— of the kind:

⇤h
–— ≠

3
mg

~

42
h

–— = 0 , (2.42)

where ~ = h/2fi is the reduced Planck constant. Substituting the plane-wave solution
as in Eq. (2.32), we obtain for the ¸µ wave vector the following equation:

÷µ‹¸
µ
¸

‹ = ≠
3

mg

~

42
. (2.43)

If we consider ¸
0 = Ê and ¸

i = k
i, we find the dispersion relation:

Ê
2 ≠ |k|2 =

3
mg

~

42
, (2.44)

where k = |k|2 = k
i
ki. From Eq. (2.44), it is straightforward to derive the speed of

propagation of the wave, in units of c:

v © dÊ

dk
=

3
1 ≠

m
2
g

E2

41/2
=

3
1 ≠ ⁄

2

⁄2
g

41/2
, (2.45)
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where E = ~Ê is the energy of the wave, ⁄ its wavelength and ⁄g = h/mg is the
Compton wavelength of the graviton.

There are several ways to probe the graviton mass and place constraints on its
value: a full review of the possible experimental tests and the most recent bounds can
be found in [22]. Currently, GW detection is one of the most powerful instruments
to constrain in a model-independent way gravitational wave speed and the graviton
mass. From the combined observations by Advanced LIGO and Advanced Virgo in
their first catalog GWTC-1 [5], a 90% credible bound was found on the graviton
mass to be:

mg Æ 4.7 ◊ 10≠23 eV

c2 .

2.3 Gravitational-Wave Polarizations

Among the general properties of the wave in a generic Metric Theory of Gravity,
polarization modes play a special role since, as we will see in Chapter 3, GW detectors
responses to them are very specific.

GW polarization modes are the radiative degrees of freedom of the theory. As we
have seen at the beginning of Sec. 2.1.4, in the context of GR the potentials h

–— in
the far wave zone encode only two physical degrees of freedom. Indeed, we removed
the redundant components by appealing to the harmonic gauge condition ˆ—h

–— = 0
and its further refinement to the TT-gauge. In a generic metric theory, we cannot
rely on the harmonic gauge condition. However, we can reduce the total degrees
of freedom of the far wave zone metric down to six, using the standard freedom to
transform the coordinates.

In the following, we will first provide a general proof of this property using the
ppN form of the metric (as developed in Sec. 1.4) in the far wave zone. We will then
explore an alternative demonstration based on more general arguments that allow
for a group-theoretic classification of waves and metric theories.

2.3.1 Gravitational Potentials in the ppN Framework

Let’s consider the form of the ppN metric for a stationary system in a frame in
which the center-of-mass is at rest. The leading contribution at 1PN order (O(‘2))
can be read from Eqs. (1.35):

g00 ƒ ≠1 + 2U + (–3 ≠ –1)w2
U + –2w

j
w

k
X,jk , (2.46a)

g0j ƒ ≠1
2–1wjU + –2w

k
X,jk , (2.46b)

gjk ƒ (1 + 2“U)”jk , (2.46c)
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where w is the velocity of the frame with respect the universal rest frame. Using
the relation (1.28), we can express the superpotential derivatives X,jk as a function
of U and Ujk. Let R := |x ≠ x

Õ| and N := x/R. Since we want to study the metric
in the far wave zone, we can approximate the potentials neglecting contributions of
order O(R≠2), thus obtaining:

U ©
⁄

fl
ú(t, x

Õ)
|x ≠ xÕ| d3

x
Õ ƒ 1

R

⁄
fl

ú(t, x
Õ)d3

x
Õ © M

R
,

Ujk ©
⁄

fl
úÕ (x ≠ x

Õ)j(x ≠ x
Õ)k

|x ≠ xÕ|3 d3
x

Õ ƒ UNjNk ,

X,jk = U”jk ≠ Ujk = M

R
(”jk ≠ NjNk) .

where we implicitly defined M as the active gravitational mass of the source. We
can rewrite the metric as:

g00 ƒ ≠1 + M

R

5
2 + (–2 + –3 ≠ –1)w2 + –2(w · N)

6
, (2.47a)

g0j ƒ M

2R
w

k

5
(2–2 ≠ –1)”jk ≠ 2–2NjNk

6
, (2.47b)

gjk ƒ
3

1 + 2“M

R

4
”jk . (2.47c)

From this metric, we can derive the potentials h
–— := ÷

–— ≠ g–—. After a straicght-
forward calculation, we find that the potential are given by:

h
00 ƒ M

R
(3“ + 1) , (2.48a)

h
0j ƒ M

2R
w

k

5
(2–2 ≠ –1)”jk ≠ 2–2NjNk

6
, (2.48b)

h
jk ƒ M

R
(1 ≠ “)”jk . (2.48c)

We now consider a time-dependent source that emits GWs: the stationary
potentials are supplemented by the following time-dependent corrections �h

–—

�h
00 = 1

R
C(·, N) , (2.49a)

�h
0j = 1

R
D

j(·, N) , (2.49b)

�h
jk = 1

R
A

jk(·, N) , (2.49c)

where · := t ≠ R/v is the retarded time (v being the propagation speed of the wave)
and C transforms as a scalar, D

j as a Cartesian vector and A
jk as a Cartesian

symmetric tensor under rotation of the spatial axes. We can uniquely decompose
these functions into irreducible pieces. The Cartesian vector field D

j can be written
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in terms of a longitudinal piece (N j
D) and a transverse piece (Dj

T
) as:

D
j = NjD + D

j

T
, NjD

j

T
= 0 . (2.50)

The Cartesian symmetric tensor A
jk can be decomposed into trace (”jk

A), longitudinal-
tracefree (N j

N
k ≠1/3”

jk), a longitudinal-transverse (N j
A

k

T
+N

k
A

j

T
) and transverse-

tracefree (Ajk

T T
) pieces as:

A
jk = 1

3”
jk

A +
3

N
j
N

k ≠ 1
3”

jk

4
B + N

j
A

k

T + N
k
A

j

T
+ A

jk

T T
, (2.51)

where NjA
j

T
= 0 , NjA

jk

T T
= ”jkA

jk = 0 .

The ten independent components of h
–— are contained in the potentials C (one

component), D
j

T
(two components), D (one component), A (one component), B

(one component), A
j

T
(two components) and A

jk

T T
(two components).

Now, we study how these potentials transform under a gauge transformation
such that the form of h

–— is preserved. This requirement implies that the allowed
transformations on coordinates are small deformations x

– æ x
– + ’

–(x) induced by
a gauge 4-vector ’

–(x), whose general form we can write as:

’
0 = 1

R
–(·, N) + O

3 1
R2

4
, (2.52a)

’
j = 1

R
—

j(·, N) + O
3 1

R2

4
, —

j = N
j
— + —

j

T
. (2.52b)

The gauge vector field needs to be a harmonic function of the coordinates ⇤’
–(x) =

O(R≠2) to preserve the form of the gravitational potentials. Using Eq. (2.21) and
the derivation property for the far away zone of Eq. (2.18), the ten independent
potentials will transform in the following way:

C
Õ = C + ˆ· (– + —) , (2.53a)

D
Õ = D + ˆ· (– + —) , (2.53b)

D
Õj
T

= D
j

T
+ ˆ· —

j

T
, (2.53c)

A
Õ = A + ˆ· (3– ≠ —) , (2.53d)

B
Õ = B + 2ˆ· — , (2.53e)

A
Õj
T

= A
j

T
+ ˆ· —

j

T
, (2.53f)

A
Õjk

T T
= A

jk

T T
. (2.53g)
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We can rearrange the transformed potentials into six gauge invariant quantities:

AS := ≠1
6(A + 2B ≠ 3C) (one component) , (2.54a)

AL := 1
3(A + 2B + 3C ≠ 6D) (one component) , (2.54b)

A
k

V
:= A

k

T ≠ D
k

T (two components) , (2.54c)

A
jk

T T
(two components) . (2.54d)

These potentials represent the real physical six degrees of freedom encoded in h
–—:

we have indeed factor out the coordinate degrees of freedom from the perturbation
by finding gauge independent potentials. The procedure illustrated in this section is
completely general: if we have other gravitational fields, we can build gauge invariant
quantities studying how they change under gauge transformations. Field equations,
written in an appropriate form, will then provide constraints to distinguish between
radiative and non-radiative (solution of Poisson like equations, for example) degrees
of freedom.

In GR, the harmonic gauge condition ˆ—h
–— (which can be viewed as a conse-

quence of the conservation of the pseudotensor ·
–— via Einstein’s equations) implies

that:

C = D , (2.55a)

D = 1
3A + 2

3B , (2.55b)

A
k

T = D
k

T , (2.55c)

making AS = AL = A
k

V
= 0. Therefore, we correctly recover the two radiative

degrees of freedom encoded in the transverse-tracefree part of the metric A
jk

T T
.

2.3.2 The E(2) Framework and Classification

In the previous subsection, we showed that the total number of independent
degrees of freedom for a GW in a generic theory of gravity is six. We provided a gen-
eral proof that is essentially based on the gauge invariance of the ppN approximation
applicable in every metric theory. However, there is a more general and interesting
demonstration of this property that relies on the Newman-Penrose (NP) formalism
[49] of curved spacetime, a result that was first obtained by Eardley et al. in
[24, 23]. It is possible to prove that the most general null or nearly null wave has six
independent polarization modes, which can be classified according to their behavior
under Lorentz transformations. This fact leads to a group-theoretic classification
of metric theories of gravity and it allows to place observational constraints on the
correct one. In this subsection, we will summarise the argument of the original
paper. Some of the obtained results will be useful in Sec. 3.2 for considerations on
GW detector responses.
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The Geodesic Deviation Equation

Einstein’s Equivalence Principle (Sec. 1.2) establishes that it is always possible
to choose a locally inertial frame where the Christo�el symbols vanish and the
metric becomes locally flat. Consequently, it is not possible to define the absolute
acceleration of a test mass at one point. However, it is still possible to have
information on the curvature of spacetime. The Riemann tensor encodes such
information, being zero if and only if the gravitational field is constant and uniform
everywhere. Its components can be written as functions of Christo�el symbols:

R
µ

‹–—
= �µ

‹—,–
≠ �µ

‹–,—
+ �⁄

‹—�µ

–⁄
≠ �⁄

‹–�µ

—⁄
. (2.56)

It is possible to show that mutual tidal acceleration between two test masses depends
only on the Riemann tensor itself, thus it is the only possible local observable that
may be defined. Consider two particles moving along two nearby geodesics x

µ(·)
and x

µ(·) + S
µ(·), where · is the a�ne parameter of the geodesics and S

µ(·) is
the separation vector between the two. If spacetime is curved, initially parallel
geodesics will eventually cross. It can be shown (see, e.g., Sec. 3.10 in [17] for a
straightforward demonstration) that the relative acceleration between two geodesics
A

µ can be written as:

A
µ := Ò

t̨
(Ò

t̨
S

µ) © D
2
S

µ

d·2 = R
µ

‹–—
t
‹
t
–
S

—
, (2.57)

where t̨ is the tangent vector of the geodesics. Equation (2.57) is known as the
Geodesic Deviation Equation. If we choose the a�ne parameter · to be the proper
time of two massive bodies with negligible self-gravitational energy, expressing the
previous relation in a local Lorentz frame ›

µ = (t, ›) with its origin centered in one
of the two, we can recognize in the right-hand side of Eq. (2.57) the acceleration
between the two masses:

D
2
›

µ

d·2 = ≠R
µ

‹–—
u

‹
›

–
u

—
, (2.58)

where u
– is the 4-velocity of the moving mass. For slowly moving particles, we can

rewrite the previous equation as:

d
2
›j

dt2 = ≠c
2
R0j0k›

k
. (2.59)

We see that the relative acceleration depends only on the electric components of
the Riemann curvature tensor. In this chapter, we have found that gravitational
waves are perturbations of the metric field g

–— as well as of other fields of the theory.
However, the resulting Riemann tensor (which is derived from the metric alone)
is the only measurable field: this is the reason why we can define a “gravitational
wave” in terms of the Riemann tensor it produces in any metric theory. In the limit
of weak, plane, null wave propagating in vacuum, the linearized Riemann tensor
depends only on the retarded time Rµ‹–— = Rµ‹–—(u), where u = t ≠ r (from now
on, c = 1). All the possible polarization modes of generic GWs follow immediately
from the independent components of the Riemann tensor.
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Riemann tensor in Newmann-Penrose formalism

The key idea of the NP formalism is to rewrite GR (and consequently every
metric theory) in an coordinate-independent framework. Instead of choosing a
coordinate frame, every tensor of the theory is projected onto a complete four null
vector basis at each point in spacetime, called null tetrad. The basis used is usually
chosen to reflect some symmetries of the curved spacetime, leading to simplified
expressions for physical variables.

To treat gravitational radiation, a good choice of basis is the following:

n = 1Ô
2

(t̂ + r̂) , (2.60a)

¸ = 1Ô
2

(t̂ ≠ r̂) , (2.60b)

m = 1Ô
2

(◊̂ + i„̂) , (2.60c)

m̄ = 1Ô
2

(◊̂ ≠ i„̂) , (2.60d)

where (t̂, r̂, ◊̂, „̂) are the four versors of the ›
µ system in spherical coordinates and n

is aligned with the direction of propagation of the wave (n can be thought as the
wave vector). In other terms, if we express n in the local Lorentz frame, we choose
nµ = u,µ, where u = t ≠ r is the aforementioned retarded time. Being null vectors,
their self-normalization vanishes. Furthermore, the tetrad vectors obey the following
relations:

≠¸ · n = m · m̄ = 1 .

Each tensor of the theory can be locally projected along these four vectors, and its
components can be written as:

Rabc... © Rµ‹–...a
µ
b

‹
c

–
. . . ,

where a, b, c, . . . run over (n, ¸, m, m̄).

The Riemann curvature tensor has a total of 20 independent components. If
we split the tensor in its irreducible parts under Poincaré transformations (Lorentz
plus translation), we obtain three objects: the Weyl tensor Cµ‹–— (10 independent
components), the traceless Ricci tensor R̃µ‹ (9 independent components), and one
Ricci scalar R (for definitions, see [48], Sec. 13.5). In the NP formalism, one encodes
the 10 algebraic independent components of the Weyl tensor in five complex Weyl-NP
scalars

�0 := ≠Cnmnm , �1 := ≠Cn¸nm , �2 := ≠1
2(Cn¸n¸ ≠ Cn¸mm̄) ,

�3 := ≠Cn¸m̄¸ , �4 := ≠Cm̄¸m̄¸ , (2.61)

while the full Ricci tensor Rµ‹ has 10 components that are encoded into 4 real scalars

�00 := ≠1
2Rnn , �11 := ≠1

4(Rn¸ + Rmm̄) , �22 := ≠1
2R¸¸ , � := ≠ R

24 , (2.62)
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and 3 complex scalars

�01 := ≠1
2Rnm , �02 := ≠1

2Rmm , �12 := ≠1
2R¸m . (2.63)

For a weak, plane, null wave the Riemann tensor depends only on the retarded
time: thus, every derivative with respect to the vectors (n, m, m̄) is seen to vanish.
Let p, q, r, . . . run over n, m, m̄ only, we have that:

Rabcd,p = 0 . (2.64)

Furthermore, we can apply the linearized Bianchi identities Rab[pq,¸] = 0 to obtain:

Rabpq = 0 . (2.65)

Considering its symmetries, we see that the only non-vanishing components of the
Riemann tensor for a weak, plane, null wave are of the kind Rp¸q¸, for a total of six
independent components, that can be expressed as functions of {�2, �3, �4, �22} as:

�2 = ≠1
6Rn¸n¸ , (2.66a)

�3 = ≠1
2Rn¸m̄¸ , (2.66b)

�4 = ≠Rm̄¸m̄¸ , (2.66c)

�22 = ≠Rm¸m̄¸ , (2.66d)

where �2 is a real scalar. These amplitudes are related to the “electric” components
of the Riemann tensor, which govern relative acceleration via Eq. (2.59), by:

�2 = ≠1
6Rz0z0 , (2.67a)

�3 = ≠1
2(Rx0z0 ≠ iRy0z0) , (2.67b)

�4 = ≠Rx0x0 + Ry0y0 + 2iRx0y0 , (2.67c)

�22 = ≠Rx0x0 ≠ Ry0y0 , (2.67d)

where we assumed that the wave to be propagating along the z-axis (r̂ © ẑ), without
loss of generality.

E(2) classification

We now attempt to classify the waves and their polarization modes by identifying
some properties that are observer-independent. However, we choose to restrict our
attention to a subgroup of “standard” observers such that:
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• each observer agrees on the propagation direction of the wave (no pure rotation
of the wave vector n);

• each observer measures the same wave frequency (same Doppler e�ect).

The “standard” observers with the constraints we have just defined are connected
by a subgroup of Lorentz transformations such that the wave vector n is kept fixed.
The subgroup of Lorentz transformations that leaves a 4-vector unchanged is called
little group (for details on the group-theoretic foundations, see [73]). If the 4-vector
is null (like n), its little group coincides with the E(2) Euclidean group of rotations
and translations on the plane: hence, the name of the classification.

The most general of this restricted class of transformations acts on the tetrad
defined in Eqs. (2.60) as follows:

n
Õ = n , (2.68a)

¸Õ = ¸ + –̄m + –m̄ + ––̄n , (2.68b)
m

Õ = e
i„(m + –n) , (2.68c)

m̄
Õ = e

≠i„(m̄ + –̄n) , (2.68d)

where – is an arbitrary complex number that produces null rotations (peculiar
combination of boosts and rotations, also called parabolic Lorentz transformations)
while „ is a real-valued phase that generates rotations about the propagation direction
in space (the spacial part of n). Under E(2) transformations, the amplitudes of
GWs will change accordingly:

�Õ
2 = �2 , (2.69a)

�Õ
3 = e

≠i„(�3 + 3–̄�2) , (2.69b)
�Õ

4 = e
≠2i„(�4 + 4–̄�3 + 6–̄

2�2) , (2.69c)
�Õ

22 = �22 + 2–�3 + 2–̄�̄3 + 6––̄�2 . (2.69d)

Setting – = 0, we recognize that the amplitudes {�2, �3, �4, �22} are helicity
eigenstates because they transform under a rotation of an angle „ with a phase
factor e

is„, s being the helicity eigenvalue that can be read from Eqs. (2.69):

s(�2) = 0 , s(�22) = 0 ,

s(�3) = ≠1 , s(�̄3) = +1 ,

s(�4) = ≠2 , s(�̄4) = +2 . (2.70)

Although the amplitudes are observer-dependent quantities, we can make cer-
tain frame-invariant statements about the presence or absence oof each amplitude,
classifying the most general GW in 6 di�erent categories. Each class is identified by
a string, representing the Petrov type (see [55]) of their non-vanishing Weyl tensor,
and a subscript, corresponding to the maximum number of non-vanishing amplitudes
as seen by any observer. We have the following classification:
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• Class II6: �2 ”= 0 ;

• Class III5: �2 = 0 and �3 ”= 0 ;

• Class N3: �2 = 0, �3 = 0, �22 ”= 0, �4 ”= 0 ;

• Class N2: �2 = 0, �3 = 0, �22 = 0, �4 ”= 0 ;

• Class O1: �2 = 0, �3 = 0, �22 ”= 0, �4 = 0 ;

• Class O0: �2 = �3 = �22 = �4 = 0 . (No wave.)

Classes II6 and III5 belong to non-unitary and indecomposable representations. It is
not possible for such theories to describe their waves through a massless particle
field and they cannot be quantized in a way that is Poincaré-invariant with respect
to the local Lorentz metric. Although the classification was developed for exactly
null-waves, the considerations we made can be generalized for nearly-null waves
(with propagation speeds close to c), apart from replacing the vanishing of the modes
with corrections of order O(‘), where ‘ = (c/v)2 ≠ 1.

Each di�erent theory of gravity makes di�erent predictions, and this is one of
the reasons why GW polarizations are among the strongest GR test we can perform.
We now list results for a few metric theories.

General Relativity — In vacuum, Einstein’s field equations lead to Rµ‹ = 0.
As a consequence, from Eqs. (2.66), we have that:

�2 = �3 = �22 = 0 . (2.71)

Therefore, General Relativity is an N2 class theory that predicts only two polariza-
tions encoded in the complex amplitude �4.

Scalar-Tensor Theories — For a massless scalar field, the vacuum linearized
field equations can be written from Eqs. (1.40) and (1.41) as:

Gµ‹ = 1
„0

(„,µ‹ ≠ ÷µ‹⇤÷„) , (2.72)

⇤÷„ = 0 . (2.73)

The solution to Eq. (2.73) is given by the plane null wave in Eq. (2.40). Then, from
Eq. (2.72), we can write the Ricci tensor as:

Rµ‹ = ≠Be
i¸

µ
xµ¸µ¸‹ . (2.74)

We then obtain
�2 = �3 = 0 , �22 ”= 0 , �4 ”= 0 (2.75)

for the wave amplitudes. Consequently, Scalar-Tensor Theories are of class N3.

Einstein-Æther Theory — Three di�erent modes are present in this theory
that belongs to di�erent classes, with di�erent propagation speeds, as reported in
Fig. 2.2.
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Chapter 3

Gravitational-Wave Detection

This chapter provides an overview on interferometric techniques used in GW detec-
tors and then analyzes in detail the response of an interferometer to a spacetime
perturbation. Particular attention will be paid to how the GW polarization mode
content is measured by the detector. A first new quantitative study on the sensitivity
to specific polarization modes of a network of interferometers is performed. In
the last section, two model-independent methods of polarization reconstruction are
presented.
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3.1 Gravitational-Wave Interferometers

In Chapter 2, we showed that Metric Theories of Gravity generally predict the
existence of GWs. However, as discussed in Sec. 2.1.4, Eq. (2.27), the amplitude
of the predicted perturbation is usually so small that GW detection is a real
experimental challenge. The first attempts to GW detection were made by Joseph
Weber in the 60s using resonant bar detectors, but their sensitivity was not enough
to detect the small ripples in spacetime. The revolution was brought by the use
of interferometers, optical instruments which use the principle of superposition
to combine electromagnetic waves and to extract physical information from the
apparatus.

Interferometric techniques are based on the interference principle, a consequence
of the wave nature of light. The classic experiment that demonstrates interference
of light was performed by the English scientist Thomas Young (1773-1829) in 1802.
His double slits experiment has a simple setup: light is passed through a pinhole
so as to illuminate an aperture consisting of two narrow slits. On a screen placed
beyond the slits, a pattern of bright and dark interference bands (called interference
pattern) is seen to form. Indeed, if we mix two waves with the same frequency, the
resulting intensity pattern is determined by the phase di�erence between the two
waves. This is related to the superposition principle. The linearity of Maxwell’s
equations implies that electromagnetic fields add up at a fixed point in empty space.
Thus, waves that are in phase will undergo constructive interference, while waves
that are out of phase will undergo destructive interference. Waves which are not
completely in phase nor completely out of phase will have an intermediate intensity
pattern, which can be used to determine their relative phase di�erence.

3.1.1 The Michelson Interferometer

Although several configurations of interferometers were developed along the
years, one of the most versatile devices was invented by the American physicist
Albert Abraham Michelson (1852-1931), and was called in his honor Michelson’s
interferometer. The 1881 version scheme, as it appeared in his article “The relative
motion of the Earth and the Luminiferous ether” [45], is reported in Fig. 3.1. Its
basic design was very simple: light from a lamp (a) passed through a lightly silvered
glass plate or a beam splitter (b): part of it went to the mirror c, and part of it was
reflected towards the mirror d. The two separated beams, reflected at the end of
each arm, are then recombined on a screen (e). Usually a compensating plate (g)
is inserted in one beam in order to have the two optical paths include the same
thickness of glass. If ” is the path di�erence between the two rays reaching e, then
it is possible to show (see [34]) that the irradiance I is proportional to

I Ã 1 + cos 2fi”

⁄
© 1 + cos �Ï , (3.1)

where ⁄ is the wavelength of the light used and �Ï the phase di�erence of the two
beams at recombination. In other terms, a simple interferometer is sensitive to
variation of length of its arms comparable to the wavelength of light.
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Figure 3.1. Michelson’s interferometer in his perspective drawing as published in [45].
Although ultimately incapable of distinguishing between di�ering theories of aether-
dragging, it provided important lessons for the design of Michelson and Morley’s 1887
instrument.

Michelson’s interferometer was created to measure the dragging-e�ect of the
luminiferous aether due to earth’s motion around the Sun. The wave nature of
light, understood as a classic wave, required the existence of a medium, called the
aether, whose vibrations produce the electromagnetic waves, and which is supposed
to fill space. During its revolution around the Sun, the Earth would have faced an
“aether’s wind” along its direction of motion: this e�ect would have slowed down the
light travelling along the arm aligned with the motion, without altering the speed in
the other arm, perpendicular to it. By the simple use of Euclidean geometry, first
Alfred Potier (1882) and then Hendrick Lorentz (1886) had shown that this e�ect
would have been equivalent to a path di�erence ” of:

” ƒ 2Lv
2

c2 (3.2)

where L was the interferometer arms length and v the velocity of Earth with respect
to the aether. Therefore, a shift of the fringes (bright bands of the interference
pattern) was expected.

Michelson’s 1881 experiment was inconclusive, mainly for the reduced length of
the apparatus that limited the sensitivity of the experiment. In 1887, Michelson
and Morley repeated the experiment [46], using multiple reflected beams, increasing
the equivalent length of the arms up to 11 m. A shift of ≥ 0.5 of the fringes was
expected, but no e�ect was seen. The experiment became what has been called the
most famous failed experiment in history of Physics. However, it was dramatically
fruitful: it was the first strong proof against the existence of aether, which leads the
path to a new comprehension of the world.
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3.1.2 Interaction of a Gravitational Wave and an Interferometer

An apparatus with Michelson’s interferometer at its heart was used almost 130
years later to detect GWs. Before developing the maths to fully describe the interac-
tion of an interferometer with a GW, it is interesting to follow a heuristic description
based on Rainer Weiss’s review in [72] to gain intuition on how interferometers can
interact with spacetime perturbations. In Chapter 2, we saw that far from the source
GWs can be thought of as distortions of the spatial geometry (only transverse to
the propagation direction if we are in GR). These small perturbations of a locally
flat metric ÷

–— can be written as:

gij = ÷ij + hij . (3.3)

where gauge freedom allows us to set h
00 and h

0i to zero, as we showed in Sec. 2.3.
We can describe the propagation of light along an interferometer arm in the

local Lorentz frame (t, ›
i) with the origin placed at the beam splitter with a null

spacetime interval �s
2:

�s
2 = 0 = gijd›

i
d›

j = (1 + h)L2
0 ≠ �t

2
, (3.4)

where h is a mean (diagonal) perturbation and L0 is the arm spatial length. The
“real” distance L between the end points of the arm is determined by the ligth travel
time �t as measured by local synchronized clocks, which are not a�ected by the
perturbation:

L = �t ƒ
3

1 + h

2

4
L0 . (3.5)

Therefore, substituting the estimated value for h from Eq. (2.27), the path di�erence
produced in a 4 km interferometer arm by a GW is:

d ƒ hL0 ƒ 10≠19 ◊ 4 km ƒ 10≠16 m , (3.6)

much smaller than any feasible wavelength. From Eq. (3.5), it is clear that if we
want to have any hope to detect GWs using an interferometer, we have to increase
the arm length by thousands of times.

3.1.3 Fabry-Pérot Cavities

The winning idea is to modify the Michelson setup to so that it includes two
resonant Fabry-Pérot cavities, one in each arm, as in Fig. 3.2. A Fabry-Pérot cavity
is an optical device made by two parallel reflecting mirrors. Electromagnetic waves
can pass through it only if a resonant condition is verified. Indeed, the electric
field will transmit through the cavity and build up inside only if the length of the
mirrors separation is an integer number of half wavelengths. Once the beams are
inside the cavity, they are reflected multiple times and partially transmitted outside,
where they add up together in a geometrical series. The parameter that regulates
the sharpness of the interference fringes is called finesse F and it is related to the
reflectance R of the mirrors as:

F = 4R

(1 ≠ R)2 . (3.7)
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Figure 3.2. Fabry-Pérot interferometer. This scheme represents the core of any
gravitational-wave interferometric detector. Each of the the two arms is filled
with a Fabry-Pérot resonant cavity, which increase both the e�ective length of the
arms and the sensitivity to small mirror displacements. [Reproduced from https:

//www.ligo.caltech.edu/page/ligos-ifo.]

The transmitted intensity is proportional to the Airy function (see [34] for a detailed
derivation):

1

1 + F sin2
3�„

2

4 , (3.8)

where �„ is the total phase accumulated in a round trip (a complete travel back and
forth in the cavity). If the argument �„/2 of the sine term is an integer multiple of
fi, the Airy function is equal to unity, regardless of the finesse value. This creates
concentric interference fringes at the output of the system. If the reflectance is very
small (low finesse), the interference fringes are broad and indistinct; whereas if R

is close to unity (high finesse), the fringes are very sharp. The phase, apart from
a constant factor due to the reflection ”r, can be related to the geometry of the
interferometer. If we call L the length of the cavity, ◊ the incoming wave incidence
angle, and ⁄ the wavelength, assuming the rays propagate in vacuum, we find:

�„ = 4fi

⁄
L cos ◊ + ”r . (3.9)

https://www.ligo.caltech.edu/page/ligos-ifo
https://www.ligo.caltech.edu/page/ligos-ifo
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Fabry-Pérot cavities in GW interferometers provide a double advantage. Firstly,
they allow laser light to build up within the interferometer. A high number of
cycling photons increases the detector sensitivity. Secondly, folding the path of light
multiple times allows the e�ective length of the interferometer arms to be much
longer, increasing their sensitivity to perturbations brought by GWs. After entering
the instrument via the beam splitter, the laser in each arm bounces between its two
mirrors about 300 times prior to being merged with the beam from the other arm.
This feature results in an e�ective length of almost 1200 km for each arm, making
the detectability of GWs possible.

3.2 Full Analysis of the Interferometer Response to a
Gravitational Wave

This section carries out a detailed analysis of the interferometer di�erential arm
(DARM) response to GWs. Relations between di�erent frames of reference will be
used to find the antenna patterns, angular sensitivity functions of the instrument
which are seen to depend only on the polarization of the incoming wave. The
antenna patterns for both a two-arm and a three-arm interferometer are reported.
These are obtained from the code fully reported in App. B written to develop the
phenomenological part of this thesis (described in Ch. 5) and constitute a first
independent result to validate the approach.

3.2.1 Test Mass Displacement

We want to describe the Fabry-Pérot Michelson interferometer hit by a (plane)
GW as two pairs of test masses (at the ends of the two resonant cavities situated
in the two arms of the detector) subject to a metric perturbation: the response of
the detector depends on the di�erence in travel time along the two arms. In a local
Lorentz frame, the behavior of the separation vector ›

– between the two ends of
the same arm is given by the equation of geodesic deviation in its slow-motion limit
(2.59), which we repeat here for convenience:

d
2
›j

dt2 = ≠c
2
R0j0k›

k
.

The components R0j0k
of the linearized Riemann tensor are given as functions of

the h
–— potentials by:

R0j0k = ≠1
2

3
ˆ00h

jk ≠ 1
2ˆ00h”jk + ˆjkh

00 + 1
2ˆjkh + ˆ0jh

0k + ˆ0kh
0j

4
, (3.10)

where h := ÷–—h
–— and D is the distance from the GW source. In GR, R0j0k

may
be expressed completely in terms of the transverse-traceless part of the metric h

jk

T T
.

However, if we are in a generic metric theory, exploiting the relations we found
in Sec. 2.3.1, we can express the potentials as functions of the six gauge invariant
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quantities in Eqs. (2.54). Therefore, we have:

d
2
›j

dt2 = ≠ G

2c4D

ˆ

ˆ·2 Sjk(·, N)›k , (3.11)

where

S
jk := (”jk ≠ N

j
N

k)AS + N
j
N

k
AL + 2(N j

A
k

V + N
k
A

j

V
) + A

jk

T T
. (3.12)

Here, N = (cos „ sin ◊, sin „ sin ◊, cos ◊) is a unit 3-vector which points towards the
direction of the source in the sky, identified by the two polar angles (◊, „) on the
celestial sphere (the wave propagation direction), · is the retarded proper time and
the tensor Sij contains time-dependent amplitudes of the perturbation. Integrating
over time, we obtain the equation of motion for the displacement of one test mass
with respect to the other at first order:

›
j(t) = ›

j(0) + G

2c4D
S

jk(·, N)›k(0) . (3.13)

Therefore, the single test mass displacement depends on which GW modes are
impinging onto the detector.

3.2.2 Polarizations

To understand in concrete terms and visualize GW polarizations, it is interesting
to examine the geodesic deviations they generate on a ring of free-falling particle. To
do this, we must first choose a convenient basis to write the S

jk tensor explicitly. A
transverse frame is conventionally chosen, in which the basis vectors (N, eX, eY) can
be expressed as functions of the polar angle ◊ and the azimuthal angle „, introduced
to describe the direction of propagation on the celestial sphere, as:

N := [sin ◊ cos „, sin ◊ sin „, cos ◊] , (3.14)
eX := [cos ◊ cos „, cos ◊ sin „, ≠ sin ◊] , (3.15)
eY := [≠ sin „, cos „, 0] . (3.16)

The basis provides the following completeness relation:

”
jk = N

j
N

k + e
j

X
e

k

X + e
j

Y
e

k

Y . (3.17)

We then define the six gravitational-wave polarizations from the gauge independent
potentials of Eqs. (2.54) to be:

Ab := AS , (3.18a)
Al := AL , (3.18b)
Ax := e

j

X
A

j

V
, (3.18c)

Ay := e
j

Y
A

j

V
(3.18d)

A+ := 1
2(ej

X
e

k

X ≠ e
j

Y
e

k

Y )Ajk

T T
, (3.18e)

A◊ := 1
2(ej

X
e

k

Y + e
j

Y
e

k

X)Ajk

T T
. (3.18f)
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Figure 3.3. E�ect of di�erent GW polarizations on a ring of free-falling test particles.
Plus (+) and cross (◊) tensor modes (green); vector-x (x) and vector-y (y) modes (red);
breathing (b) and longitudinal (l) scalar modes (black). In all of these diagrams, the
wave propagates in the z direction. This decomposition into polarizations was first
proposed for generic metric theories in [23], as discussed in Sec. 2.3.2. [Reproduced from
[38].]

We can finally rewrite S
jk using the polarizations just defined and the completeness

relation Eq. (3.17) as:
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e
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X)A◊ . (3.19)

Assuming that the wave travels along the z-direction, we therefore have:

S
jk =

Q

ca
Ab + A+ A◊ Ax

A◊ Ab ≠ A+ Ay

Ax Ay Al

R

db . (3.20)

On a circular ring of free-falling particles, the perturbation produces a displacement
given by Eq. (3.13) that, in terms of the (x, y, z) components of the vector ›

j , is
written as:

x(t) = x0 + G

2c4D

5
(Ab + A+)x0 + A◊y0 + Axz0

6
,

y(t) = y0 + G

2c4D

5
A◊x0 + (Ab ≠ A+)y0 + Ayz0

6
,

z(t) = z0 + G

2c4D

5
Axx0 + Ayy0 + Alz0

6
,
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with ›(0) = (x0, y0, z0). We have a total of six di�erent modes, the specific action
of which is illustrated in Fig. 3.3. Two scalar modes Ab and Al, called breathing
and longitudinal mode, respectively, one of which (Ab) is transverse to the wave
propagation direction. Two vector modes Ax and Ay, partly longitudinal and partly
transverse. Finally, two tensorial transverse modes A◊ and A+. GR allows for A◊
and A+ only.

With this last particular choice of wave direction, we can compare the amplitudes
with Eqs. (2.67) by using Eq. (2.59) and find the following useful relation between
the polarization amplitudes AP and the Newman-Penrose quantities:

Re�4 = G

2c4D
Ä+ , Im�4 = ≠ G

2c4D
Ä◊ ,

Re�3 = G

4
Ô

2c4D
Äx , Im�3 = ≠ G

4
Ô

2c4D
Äy ,

�22 = G

2c4D
Äb , �2 = G

12c4D
Äl . (3.21)

As seen in Sec. 2.3.2, from a field-theoretic point of view polarizations are strictly
related to the helicity (projection of the spin along the motion) of the graviton:
a massless graviton has only ±2 helicity, which correspond to the two tensorial
polarizations of GR. However, having extra polarizations does not necessarily imply
a massive graviton. Indeed, as we saw in Sec. 2.2.2, Scalar-Tensor theories allow
for a scalar breathing mode carried by the scalar field perturbation �, since the
physical waveform h

–— is related to h̃
–— by the relation:

h
–— = h̃

–— + �÷
–—

.

Massive Scalar-Tensor theories can have also a longitudinal mode, suppressed by a
factor of (⁄/⁄c)2 with respect to the breathing one. More general theories of gravity
can present up to six polarizations: Einstein-Æther theory predicts all six modes
(see [40] or Fig. 2.2).

3.2.3 Di�erential Arm Response Function

While the amplitudes and the phases of GWs depend crucially on the source
dynamics, the response of a quadrupolar antenna to them is determined by the
geometry of the system source-detector (up to an overall normalization), as we will
see in the following. Let e1 and e2 be the unit vectors aligned with the two arms of
the interferometer, of equal length L0. If we place the origin of the local Lorentz
frame at the beam splitter, the test mass at the end of the first arm will be at a
position ›1 = L0e1, while the other will be at at ›2 = L0e2. Assuming that the
armlength is much shorter than the wavelength of the GW, the displacement of each
test mass is given by Eq. (3.13):

›
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1 = L0

3
e

j

1 + G

2c4D
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e
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4
, (3.22a)

›
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2

4
. (3.22b)
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Figure 3.4. Detector frame and transverse frame comparison. The various polarization
degrees of the wave, according to Sec. 3.2.3, are projected onto a transverse basis that is
aligned with its direction of propagation. We can determine the relative position with
respect to the detector using the three angles ◊, „ and Â shown above. Therefore, three
rotations are necessary to transform the components of a vector from one frame to the
other. [Reproduced from [56].]

The length of each arm at first order in the perturbation is given by

L1 = L0

3
1 + G

2c4D
Sjke

j

1e
k

1

4
, (3.23a)

L2 = L0

3
1 + G

2c4D
Sjke

j

2e
k

2

4
. (3.23b)

The response of the interferometer is regulated by the phase di�erence �Ï at
beam recombination, i.e. the argument of the cosine function in Eq. (3.1). Being
” = 2(L1 ≠ L2), we have that:

�Ï = 4fi

⁄

G

c4D

1
2(ej

1e
k

1 ≠ e
j

2e
k

2)Sjk(·, N) © 4fi

⁄

G

c4D
S(t) , (3.24)

where S(t) is known as the di�erential arm (DARM) response function.

To understand the behavior of the interferometer response function, we have to
express all quantities in Eq. (3.24) in the same reference frame. As shown in Fig. 3.4,
two di�erent 3-vector bases are involved here. The polarization degrees of the wave,
components of the tensor Sjk, are usually projected onto the orthonormal basis
(N, eX, eY) we defined back in Sec. 3.2.2, aligned with the direction of propagation
of the wave N, called the transverse frame. On the other hand, the interferometer
DARM response depends on a detector tensor, linear combination of the versors
aligned with the antenna arms, which is therefore conveniently written in the detector
frame basis, (e1, e2, e3). Three degrees of freedom are needed to link the two basis.
We first generically assume that (eX, eY) are rotated by the polarization angle Â
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around N with respect to the basis (eÕ
1, e

Õ
2). These primed vectors are obtained by

two subsequent rotations of (e1, e2) performed to align e3 with N. We can write
the total response as a function of three angles (◊, „, Â):

S(t) = FP (◊, „, Â)AP (3.25)

where a sum runs over all polarizations P = {b, l, x, y, +, ◊}. The FP ’s are called
antenna pattern functions. Their explicit computation for a two-arm interferometer
yields the following relations:

Fb = ≠1
2 sin2

◊ cos 2„ , (3.26a)

Fl = 1
2 sin2

◊ cos 2„ , (3.26b)

Fx = ≠ sin ◊(cos ◊ cos 2„ cos Â ≠ sin 2„ sin Â) , (3.26c)

Fy = ≠ sin ◊(cos ◊ cos 2„ sin Â + sin 2„ cos Â) , (3.26d)

F+ = 1
2(1 + cos2

◊) cos 2„ cos 2Â ≠ cos ◊ sin 2„ sin 2Â , (3.26e)

F◊ = 1
2(1 + cos2

◊) cos 2„ sin 2Â + cos ◊ sin 2„ cos 2Â . (3.26f)

As a first step to validate our code (fully reported in Appendix B), a complete
study of the antenna patterns for a two-arm and a three-arm interferometer was
performed. The results are reported in Figs. 3.5 and 3.6. For a detailed description
of the simulated three-arm interferometer, see [59]. As seen from Eqs. (3.26), the
detector response to the scalar polarizations (apart from a sign) is completely
degenerate; this holds even in the three-arm interferometer configuration. Therefore,
the two polarizations cannot be distinguished from one another and from now on
we will consider only a single scalar mode S, with corresponding antenna response
FS . Furthermore, the sensitivity of a three-arm detector is — on average — greater
than the two-arm configuration, presenting also a peculiar azimuthal symmetry in
the detector frame.
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Figure 3.5. Angular response of a two-arm interferometer to each GW polarization. The
radial distance represents the response of a single two-arm quadrupolar antenna to a
unit-amplitude gravitational signal of a tensor (top), vector (middle), or scalar (bottom)
polarization, i.e. |FP | for each polarization P for Â = 0. The polar and azimuthal
coordinates correspond to the source location with respect to the detector, which is to
be imagined as placed with its vertex at the center of each plot and arms along the x

and y-axes. The response is plotted to scale, such that the blue lines representing the
detector arms have unit length in all plots.
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Figure 3.6. Angular response of a three-arm interferometer to each GW polarization.
The radial distance represents the response of a system with a triangular topology,
where the arms of the equilateral triangle are each used twice to form three Michelson
interferometers. One can show analytically that the response to the di�erent GW
polarizations is equivalent to that of two L-shaped detectors with arm length 3L/4. In
the figure, the response to a unit-amplitude gravitational signal of a tensor (top), vector
(middle), or scalar (bottom) polarization is shown, i.e. |FP | for each polarization P for
Â = 0. The polar and azimuthal coordinates correspond to the source location with
respect to the detector, which is to be imagined as placed with its center in the origin of
each frame. The response is plotted to scale, such that the black lines representing the
detector arms have unit length in all plots.
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Figure 3.7. The five-interferometer GW network available in the near future, used for this
research.

3.3 Network of Interferometers and Overlaps

In the measurement of GW polarizations, eight di�erent unknowns play a role:
the six polarization modes and the two angles that identify the position of the
source in the sky. However, as mentioned earlier, the DARM response functions of a
laser interferometer to the two scalar modes are completely degenerate, and we are
therefore left with five independent polarization modes. The number of available
quadrupolar antennas is then crucial in fully measuring the polarization content of
GW signals. Further, the relative orientations of the arms of the instruments plays a
fundamental role. While aligning the arms of a pair of interferometers maximises the
probability of coincident (between detectors) detection, it hampers the possibility of
distinguishing between di�erent polarizations because the antenna pattern functions
of the two detectors will be the same.

The location of the instruments of the GW detector network is shown in Fig. 3.7.
Other than Virgo and the two LIGO interferometers in Hanford (USA) and Livingston
(USA), two other detectors are shown: KAGRA, the Kamioka Gravitational Wave
Detector, which started taking data on February 25, 2020, and LIGO-India, a third
LIGO instrument that is expected to be completed in ≥2025. Additionally, the
prospect of building a new generation of detectors, the so called 3G detectors, is
under discussion and investigation by the international scientific community [36, 57].
This is the network used to produce the studies reported in this thesis.

If we are interested in the sensitivity of a network of N detectors, it is useful to
define the e�ective response vector as:

F̨H(◊, „) := (|F 1
H(◊, „)|, ..., |F N

H (◊, „)|) , (3.27)



3.3 Network of Interferometers and Overlaps 59

where we set Â = 0 since we are not dealing with any specific source, and where the
F

i

H
’s are the sums in quadrature of the two antenna patterns of the i-th detector

for each polarization H = {s, v, t} (scalar, vector, tensor). With these quantities
in hand, we can determine the e�ective sensitivity of the network to non-tensorial
polarizations with respect to tensorial ones by computing the overlap factor:

FH/t = F̨H(◊, „) · F̨t(◊, „)
F̨t(◊, „) · F̨t(◊, „)

, (3.28)

where H ”= t.

It is essential to quantify in advance, through simulations, how GW detector
configuration choices a�ect our ability to measure the GW polarization content, as
this measurement can place strong, fundamental constraints on theories of gravity.
From the definition of overlap given in Eq. (3.28), we can draw skymaps of relative
sensitivity. This has been done in [38] for the three-detector LIGO-Virgo network.
We extended the study to the five-interferometer network described previously.

To allow for a comparison with the LIGO-Virgo three-interferometer network,
results for both networks are shown in Figs. 3.8 (LIGO-Virgo network) and 3.9
(five-detector network). These are skymaps color coded to highlight regions of the
sky in which the tensor and the non-tensor responses are highly distinguishable.
Notice that the patterns are anchored to angular locations with respect to Earth
(not the fixed stars): in other terms, the shown sensitivity depends only on the the
specific location and orientation of the detectors in the considered network. To find
the correspondent sky location in the celestial sphere, the sidereal time of arrival of
the signal must be taken into account.

For a more detailed quantitative study of the overlap factor, the probability
distribution function (over all sky locations) of each overlap is plotted in Figs. 3.10a
and 3.10b. The extended network of five detectors (that from now on will be referred
as the network) is still less sensitive to scalar with respect to vector modes, since
the interferometers are individually less sensitive to these; but the sensitivity to the
scalar polarization is improved with respect to the three-detector configuration, as
it can be seen from the left tail of the distribution that ends one order of magnitude
before the other. From this first quantitative analysis, which is exclusively based on
the reciprocal position and orientation of detectors, it is already possible to infer
that with the addition of two interferometers, the response to non-GR polarization
is mostly improved.
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Figure 3.8. Overlaps of LIGO-Virgo network e�ective antenna patterns. The normalized
inner-products of Eq. (3.28) for the three-instrument network. The top (bottom) plot
compares vector (scalar) to tensor polarizations via the quantity Fv/t (Fs/t). Red (blue)
marks regions for which the e�ective non-tensor response is greater (less) than the tensor
one. A map of Earth is overlaid for reference.
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Figure 3.9. Overlaps of the five-detector network e�ective antenna patterns. These plots
are equivalent to the ones in Fig. 3.8 but for a GW network that includes KAGRA and
LIGO-India.
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(a) LIGO-Virgo Network

(b) Five-detector Network

Figure 3.10. Histograms of the probability distribution functions (PDFs) of the overlaps
factor. As it can be seen by the comparison, although the overall scalar sensitivity is
still less than the vector one also for the five-detector network (b), it is improved with
respect to the LIGO-Virgo network (a) by almost one order of magnitude.
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3.4 Model-Independent Polarization Reconstruction

As seen in Sec. 3.2.3, antenna patterns are a direct manifestation of local geometry
only (polarizations and detector geometry), independent of the physical details of
the source or the underlying theory. We may thus exploit the di�erence in the
response of the network to the various polarizations to infer the polarization content
of the wave. There are two ways to extract polarizations from antenna patterns for
transient GW signals. We discuss these in the next two subsections.

3.4.1 Null Streams

In the first scenario, the GW signal has an optical counterpart that allows for
an accurate determination of its sky position [7]. In this case, it is particularly
convenient to look for non-GR signal content by constructing one or more GR null
streams. These are directions in the multidimensional space of the network response
(the dimensionality of which is set by the number of detectors) in which there should
be no signal if the wave is tensor-only polarized. Indeed, for N detectors, the
signal manifold is N -dimensional with N bases vectors, five of which can be chosen
along the independent antenna patterns {F

i
+, F

i
◊, F

i
x, F

i
y, F

i
s}, where the Latin index

runs over the N detectors. The remaining N ≠ 5 vectors will give us null streams,
regardless of the polarizations of the wave. The j-th detector datastream can be
written in tensor notation as:

S
j = F

j

P
h

P + n
j

, (3.29)

where n
j is the noise content in the j-th detector. In the case of three detectors, we

can define a GR null stream, i.e., a stream without tensor modes, in the following
way [19]:

SGR≠null =
eijkF

j

+F
k
◊

|”ijF
i
+F

j

◊|
S

i
, (3.30)

where ”ij is the Kronecker Delta, di�erent from zero and equal to one only for i = j

while eijk is the Levi-Civita Symbol, di�erent from zero and equal to one only for
e123 = 1 and even permutations of the three indices. Depending on the number of
interferometers, we can have more than one null stream, and with more than five,
one can construct a complete set of null streams that covers all metric theories of
gravity. This method is model independent, but it has the disadvantage of requiring
an electromagnetic counterpart.

3.4.2 Sine-Gaussian Expansions

A second method, developed in [20], which does not necessarily require an
electromagnetic counterpart is the following: using a sine-Gaussian analysis to
reconstruct the waveform, one may infer from the time delays the source location
and then the best fitting combination of antenna patterns for the peak in amplitude.
This analysis is independent from the phase evolution and it only needs a well-defined
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peak (as shown in [38], Sec. III A). A similar approach was recently used in [1] to
extract unbiased information from the signal and perform a model-independent GR
test. With three interferometers, it is already possible to infer the direction N of
the source in the sky just measuring time delays. It is given by the formula:

”ti = N · xi/c , (3.31)

where ”ti is the time delay with respect to the geocenter and xi joins the geocenter to
the i-th detector. With four interferometers, constraints on the propagation velocity
of GWs can be placed, providing information about the mass of the graviton and,
indirectly, on GW polarizations. The key idea is that, in such test, no polarization
information is extracted from the phase evolution: in other terms, the sine-Gaussian
template is only used to infer the source location from the time lag between detectors,
and the best-fitting combination of antenna patterns from the amplitudes and phases
at peak energy. We chose to adopt this methodology for our research.
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Chapter 4

Data Analysis Techniques

This chapter focuses on the most updated data analysis techniques applied to
GW Physics. First, a general introduction on random processes and noise is provided,
with particular focus on the main sources of disturbance in GW interferometric
detectors. In the second section, linear signal processing is described in some detail,
and the role of matched filtering for a given-form signal detection is emphasized.
The last part is devoted to the development of a Bayesian Inference Framework to
deal with GW polarization hypotheses.
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4.1 Noise

Chapter 3 introduced the working principles of interferometers: they ought to
be extremely sensitive instruments to e�ectively detect GW. There are many non-
gravitational e�ects that can move the mirrors or a�ect the laser beam, mimicking
a GW detection. Everything that can alter or disturb the interferometer response
impeding GW detections is generally called noise, as opposed to the signal, the GW
e�ect on the instrument.

4.1.1 Random Processes

In most cases, noise is generated by random processes that can be controlled in
their intensity, but never completely removed. A random process is an ensemble
of random variables y(t) that represent the same physical entity. The y(t), called
a realization of the process, can be thought of as a (scalar) function of time the
future evolution of which cannot uniquely determined a priori from any set of
initial data. For example, if we take the random walk process in one dimension,
each single walker is a realization of it. To make predictions on a random process
evolution, we need to know the complete set of probability distribution functions
{p1(y1, t1), . . . , pn(yn, tn; . . . ; y1, t1)}, where the subscript n is the number of inde-
pendent values of y that appear in pn. The following quantity

p(yn, tn; . . . ; y1, t1)dyn . . . dy1

represents the probability that one of the realizations y(t) of the process takes a value
in the range (yi, yi +dyi) at each time ti. To have a complete probabilistic knowledge
of the random process, in principle we need an infinite number of probability
distribution functions. However, some restrictive hypotheses on the nature of the
random process render the computation of the probability distributions a feasible
task that involves only a small amount of information.

We define a random process to be stationary if and only if the probability
distributions depend on time di�erence, i.e.

p(yn, tn; . . . ; y1, t1) = p(yn, tn + · ; . . . ; y1, t1 + ·) . (4.1)

This property does not imply a probability distribution constant in time, but only
that p is independent from any absolute clock.

Many (stationary) random processes in Physics are often assumed to be ergodic,
such that their statistical properties can be deduced from a single, su�ciently long,
random sample of the process. In other terms, each specific y(t) of the ensemble,
when viewed for su�ciently long times, is representative of the entire process. As a
corollary, when the ergodic hypothesis is satisfied, time averages of a random process
obtained using a realization y(t) are equal (for su�ciently long times) to ensembles
averages (average on the possible realizations of the process). In formulae:

F̄ © lim
T æŒ

1
T

⁄
T/2

≠T/2
F (y(t))dt = ÈF (y)Í ©

⁄
F (y)p1(y)dy , (4.2)
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where p1(y, t1) = p1(y, 0) © p1(y) for a stationary process.
Another recurrent (but somewhat more restrictive) assumption made to model a

random process in Physics comes as a result of one of the most famous theorems
in probability theory, the central limit theorem. When we have a random process
that is the sum of a large number of statistically independent random influences, its
probability distribution function becomes Gaussian. For a Gaussian random process,
we can consequently write:

pn(yn, tn; . . . ; y1, t1) = N exp
5

≠
nÿ

j=1

nÿ

k=1
Ajk(yj ≠ ȳ)(yk ≠ ȳ)

6
, (4.3)

where N is a positive renormalization constant, Ajk are the elements of a positive-
defined symmetric matrix, and ȳ is the ensemble average of y:

ȳ = ÈyÍ =
⁄

yp1(y)dy .

We can define Pn(yn, tn|yn≠1, tn≠1; . . . ; y1, t1) as the conditional probability of
obtaining a value yn at time tn if y(t) took the values yi at times ti. We can relate
it to the absolute probability distribution p, by writing:

pn(yn, tn; . . . ; y1, t1) =
= P (yn, tn|yn≠1, tn≠1; . . . ; y1, t1)pn≠1(yn≠1, tn≠1; . . . ; y1, t1) . (4.4)

Finally, a random process is said to be Markov (or Markovian) if and only if all of
its future probabilities are determined by its most recently known value, i.e.,

Pn(yn, tn|yn≠1, tn≠1; . . . ; y1, t1) = P2(yn, tn|yn≠1, tn≠1) . (4.5)

4.1.2 Power Spectral Density and Noise Classification

Let us define the power spectral density (PSD) Sy(f) of a generic random process
y(t) as the convergent integral, for positive frequency f :

Sy(f) © lim
T æŒ

2
T

----
⁄

T/2

≠T/2
[y(t) ≠ ȳ]e2fiift

dt

----
2

© lim
T æŒ

2
T

|ỹ0(f)|2 . (4.6)

Inside the absolute value we recognize the Fourier transform

ỹ0(f) =
⁄ Œ

≠Œ
y0(t)e2fiift

dt (4.7)

of the zero-mean random variable y(t)≠ ȳ, assuming a truncation in the time domain
of the function to regularize divergences in the Fourier integral computation, i.e.

y0(t) ©
I

y(t) ≠ ȳ if ≠ T/2 < t < +T/2 ,

0 otherwise.
(4.8)

The mean value was subtracted to avoid a delta function in Sy(f) at zero frequency.
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Let ‡
2
y be the variance of the random variable y(t), defined as the average value

(on time) of the squared deviations with respect to its mean value ȳ. Using the
definition of average value on time given in Eq. (4.2) and the definition of y0(t) of
Eq. (4.8), it follows that:

‡
2
y © (y(t) ≠ ȳ)2 © lim

T æŒ

1
T

⁄
T/2

≠T/2
(y(t) ≠ ȳ)2

dt = lim
T æŒ

2
T

⁄ Œ

0
|y0(t)|2dt . (4.9)

By the virtue of Plancherel’s theorem (see [12] for details), the integral of the squared
modulus of a function is equal to the integral of the squared modulus of its Fourier
transform. Therefore, from Eqs. (4.6) and (4.9) we can write:

⁄ Œ

0
Sy(f)df = lim

T æŒ

2
T

⁄ Œ

0
|ỹ0(f)|2df = lim

T æŒ

2
T

⁄ Œ

0
|y0(t)|2dt = ‡

2
y . (4.10)

Thus, the integral of the power spectral density of y over all positive frequencies is
equal to the variance of y. The PSD has units of

[Sy(f)] = [y2]
[f ] = [y2]

Hz = [y2] · Hz≠1
.

To grasp the physical meaning of the object just defined, it is useful to illustrate
its application to GW detection. Interferometers are capable of very sensitive
measurements of length variation: their output can be thought of in units of length.
However, a lot of phenomena di�erent from GWs can produce similar output,
generally called noise. As we said at the beginning of this section, noise is the
outcome of many random processes that add up together. A brief overview of the
noise sources in a typical GW detector is given in the following subsection.

Let assume that the noise can be described by a random variable n(t), expressed
in units of length (as the signal we want to measure). We usually consider data
on a finite interval of time. Subtracting the mean value from the noise — usually
connected to some systematic — we find a variable which has all the characteristics
of y0(t) we defined earlier. We can then name the PSD of the detector as the
Power Spectral Density of its noise, Sn(f). When there is no signal, the PSD can
be measured from the Fourier transform of the interferometer response function,
applying Eq. (4.6).

If we now filter the interferometer response Fourier transform so that only a
specific portion at frequency f , in a very narrow bandwidth �f , gets through
the filter, then the variance of the filtered response will be the portion of integral
of Eq. (4.10) coming from this frequency band, i.e. Sn(f)�f = ‡

2
n(f). In other

terms, the root mean square of the noise oscillations at frequency f in a very narrow
bandwidth �f is given by


Sn(f)�f . The PSD gives us a colored noise: it measures

noise in the frequency space and it allows us to distinguish between background and
signal.
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Figure 4.1. Amplitude Spectral Density of LIGO detectors noise. Gravitational wave
signals with amplitudes lower than this noise floor are too quiet for the interferometers
to detect. The sensitivity of the Advanced LIGO detectors in the first observing run
(September 2015 to January 2016) was about a factor of three better than the instruments
that collected data, in 2010. In the next few years, LIGO scientists will work to reduce
the detector noise to the lowest achievable level with the current hardware (the design
sensitivity of the detectors). The narrow spectral lines (sharp spikes in the spectrum
produced by internal resonances in the instrument) contain negligible power, and so
can be ignored for our purposes. At high frequencies, f & 150 Hz, the noise is due to
randomness in arrival times of photons used to measure the mirror motions (photon shot
noise). At intermediate frequencies, 40 Hz . f . 150 Hz, it is primarily thermal noise.
At low frequencies, f . 40 Hz, it is primarily due to mechanical vibrations that sneak
through The vibration isolation system (seismic noise). (Reproduced from [43].)
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In GW detectors, what is commonly used to model the instrumental noise is
the Amplitude Spectral Density (ASD), which is equal to the square root of the
PSD normalized over the length of the e�ective path travelled by laser beams. It is
measured in 1/

Ô
Hz units and it can be directly compared with the Fourier transform

of the dimensionless perturbation of the metric h̃(f) at a specific frequency, often
called the strain of the incoming GW. At a given frequency, the predicted GW
perturbation could be seen by the detector only if it were greater than the ASD. In
Fig. 4.1 we report the measured and designed sensitivity of the LIGO interferometers
at di�erent stages of their evolution.

In experimental Physics, noise usually takes a specific name based on the shape
of its spectrum (the f dependence of Sn(f)). Some of the most common behaviour
often encountered in experiments are the following:

• White Noise: Sn is independent of f . It is called white because it has equal
amounts of power per unit frequency at all frequencies, just like white light
that is the result of the combination of equally intense di�erent colors (fre-
quencies). A quasi-white noise source is given by thermal noise (also called
Johnson–Nyquist noise), the electronic noise generated by the thermal agitation
of the charge carriers (usually the electrons) inside an electrical conductor at
equilibrium, which happens regardless of any applied voltage.

• Pink Noise or Flicker Noise: Sn Ã 1/f . It takes its name from the fact that
at any time scale, the noise seems to be periodic with one, two, or three
oscillations , with amplitudes independent of the chosen time interval. This
kind of noise is very common in Physics: it mainly occurs at low frequency in
electronics, geophysics and astrophysics.

• Random-walk Noise: Sn Ã 1/f
2. A Gaussian-Markov process such Brownian

Motion, i.e. the time evolving position x(t) of a dust particle bu�eted by air
molecules in a large, constant-temperature room has this kind of spectrum.

4.1.3 Typical Noise Sources for Gravitational-Wave interferome-
ters

We now give some examples of the main sources of noise in a GW detector,
following [43].

• Seismic noise. Mainly due to ground vibrations generated by earthquakes,
wind, ocean waves, and human activities. Several techniques were developed
to insulate the mirror system from the ground motion, but this is still one of
the greatest sensitivity limitations for ground-based interferometers.

• Thermal noise. Caused by microscopic fluctuations of the individual atoms in
the mirrors and their suspensions. Cryogenic techniques were implemented to
limit this source in the KAGRA detector (see [10] for a detailed overview).



4.1 Noise 71

Figure 4.2. ASD of Advanced LIGO noise budget. (Reproduced from [9].)

• Quantum noise. The intrinsically statistical uncertainty due to the discrete
nature of photons (light quanta) prevents from an exact measure of the
transmitted light by photodetectors.

• Gas noise. Although the arms of the interferometers operate under a full
vacuum, there can be residual gas particles in the vacuum enclosure and these
may interact with the mirrors and the laser light producing disturbances in
the response.

• Charging noise. Static electric charges on the glass mirror and their interactions
with the metal of the vacuum enclosures and the mirror supports are another
source of noise.

• Laser noise. Laser stability plays a significant role in limiting small variations
of intensity and frequency, that can be misinterpreted as potential signals.

• Auxiliary degree-of-freedom noise. Mainly due to position and alignment of
the various mirror in the detectors.

• Oscillator noise. Generated by the radiofrequency modulation of the laser
light.

• Beam jitter. Slight variations in the position and angle of the laser beam in the
tube can cause a misalignment of the laser beam with respect to the optical
cavities.
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• Scattered light. Spurious signals in the photodetectors can be generated by the
light scattered by imperfections in the mirrors.

• Electronics noise. Every analog measurement is converted into a digital signal
through a huge electronics sector which can give contributions to the noise
budget.

Figure 4.2 reports the Advanced LIGO noise budget (its ASD). Single contribu-
tions from some of the sources we discussed are superimposed.

4.2 Matched Filter and Signal-to-Noise Ratio

In experimental physics, as well as in engineering, very often a random process
is mixed with the signal we want to measure. Therefore, we need to apply some
strategy to isolate the signal within the raw data, distinguishing it from the noisy
background. In this Section, we develop the fundamental tools that allow for a
filtering of the noisy data, in order to make the detection of a signal buried in noise
possible. These techniques are encompassed in the theory of linear signal processing.

4.2.1 Filters, Kernels and Signal-to-Noise Ratio

Given a realization) y(t) of a stationary random process, we define a filter to be
a linear functional W (t) of the variable y(t) such that:

W (t) =
⁄ +Œ

≠Œ
K(t ≠ t

Õ)y(tÕ)dt
Õ
, (4.11)

where K(t ≠ t
Õ) is the stationary filter’s kernel. Using the convolution theorem, we

can write the Fourier transform of the filter — which is technically a convolution
integral — as the pointwise product of the variable and the kernel Fourier transforms,
ỹ(f) and K̃(f). In formulae,

W̃ (f) = K̃(f)ỹ(f) . (4.12)

If we now compute the PSD of the filter functional, applying Eq. (4.6), we find that:

SW (f) = |K̃(f)|2Sy(f) , (4.13)

where Sy(f) is the PSD of the random variable y(t). Applying a filter modifies the
PSD of the response, allowing us to remove noise in favor of the signal. The choice
of the kernel is crucial for the purposes of every specific analysis.

As an example, we can examine the band-pass filter. Suppose we have a monochro-
matic weak signal of frequency f0 buried in some noise n(t). The total process will
be described by

r(t) =
Ô

2As sin(2fif0t + ”0) + n(t) , (4.14)
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where As is the signal amplitude, ”0 its phase o�set and the factor
Ô

2 is added for
later convenience. Although the noise is an impediment to the signal detection, we
can send r(t) through a band-pass filter centered in f0 and with bandwidth

�f ©
s Œ

0 |K̃(f)|2df

|K̃(f0)|
π f0 . (4.15)

The output of a band-pass filter has the general form:

W (t) =
Ô

2|K̃(f0)|As sin(2fif0t + ”1) + w(t) , (4.16)

where the first term is the filtered signal, still monochromatic but with a re-scaled
amplitude and a di�erent phase ”1, while the second term is the filtered noise. If
we suppose that the noise PSD fluctuates negligibly over the small bandwidth,
i.e. Sn(f) = Sn(f0), using Eq. (4.13), we find that:

Sw(f) = |K̃(f)|2Sy(f0) . (4.17)

The filtered noise w(t) is then a superposition of sinusoids all with nearly the same
frequency f0, with a frequency spread large as the bandwidth �f . This kind of
functions is known from acoustic to produce beats: the sum of two sinusoids with
a small di�erence in frequency �f around f0 is an f0 sinusoid with amplitude
modulated over a period of �t = 1/�f . Consequently, the filtered noise will be of
the form:

w(t) = w0(t) cos[2fif0t + „(t)] , (4.18)

a sinusoidal function at frequency f0 but with amplitude w0(t) and phase „(t)
randomly fluctuating on timescales �t. This makes the signal distinguishable from
the noise.

In the context of filters, the Signal-to-Noise Ratio (SNR) plays a special role.
This is a mathematical object that tells us how strong the signal is compared to the
noise it sits in. It is defined as the ratio between the root mean square of the filtered
signal over the root mean square of the noise. For a band-pass filter, we have a root
mean square output signal equal to

S © |K̃(f0)|As ,

(the factor
Ô

2 simplifies with the root mean square of the sine function) and a root
mean square output noise of

N ©
5 ⁄ Œ

0
Sw(f)df

6 1
2

= |K̃(f0)|
Ò

Sn(f0)�f .

Consequently, the SNR will be:

S

N
= As

Sn(f0)�f
. (4.19)

Therefore, the narrower the filter bandwidth is, the more accurate the measurement
of the signal will be (provided that the bandwidth includes the frequency f0 of the
signal).
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4.2.2 Matched Filter

Often the signal one seeks amidst noise is not sinusoidal but has some other
known form h(t). In this case, the optimal way to search for it is with a so-called
Matched filter (or Wiener filter, a generalization of the band-pass filter), which will
be described in the following subsection.

We can imagine our response dI(t) at each detector I as a superposition of a
pure signal h(t) and the noise nI(t), described by a specific power spectral density
S

I
n(f) at each detector. In formulae:

dI(t) = hI(t) + nI(t) , (4.20)

S
I

n(f) = lim
T æŒ

2
T

----
⁄

T/2

≠T/2
nI(t)e2fiift

dt

----
2

. (4.21)

We are looking for a filter W (t) that can isolate the signal from the noisy
background. Let’s suppose we have the template, that is, the predicted waveform,
for h(t). It can be shown (for details, see [66], Ex. 6.12) that W will be maximally
sensitive to the signal if we use as the filter kernel K(t) the inverse Fourier transform
of the following:

K̃(f) = 4h̃(f)
Sn(f) , (4.22)

where h̃(f) is the Fourier transform of the signal template.
This last object is called Matched Filter or Wiener’s optimal filter. By virtue of

Plancherel’s theorem, we can compute integral norms both in time and in frequency
domain, obtaining the same result, since the Fourier transform is a unitary linear
operator. We can now define the SNR of this filter to be:

fl(t) = Èh|dÍ


Èh|hÍ
, (4.23)

where we used the notation Èh|sÍ for the following scalar product (Re stands for the
real part)

Èh|dÍ = 4Re
⁄ Œ

0

h̃
ú(f)d̃(f)e2fiift

Sn(f) df . (4.24)

As already stated, the SNR, which is a function of time, measures how well we can
distinguish the signal (and then extrapolate its waveform) from a noisy background.
From Eq. (4.24), it seems necessary to know in advance the template h(t) for the
signal in order to recover the highest possible SNR value and to see the signal itself.
However, it is worth pointing out that this analysis can be carried out also in a
model-independent way, using for example a basis of sine-gaussian waveforms to
reconstruct the signal (see Sec. 3.4.2).

An example of a noisy response for the simulated signal described in the next
chapter is shown in Fig. 4.3a and the SNR time series fl(t) is shown in Fig. 4.3b. In
the following, we will call the maximum of the function fl(t) for each signal the SNR
of the event. Notice that for a pure noise signal, fl(t) oscillates randomly in the
interval [0, 3]. Usually, an event is considered a signal candidate when it has a SNR
of at least 8.
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(a)

(b)

Figure 4.3. Example of a simulated GW noisy response of the Virgo detector with its
strain in frequency space (a) and time evolution of the SNR of the response (b). The
waveform used is described in the next chapter. The signal is not distinguishable by
eye in time domain, but its strain in the frequency domain (the square root of the PSD
of the full response) reported in the second plot shows a little bump at 100 Hz, the
frequency chosen for the sine-gaussian. As a comparison, we also plot the square root
of the analytical PSD used to generate the noise. Notice that, since the total length of
the signal in time is 4 s, the Discrete Fourier Transform has a maximum resolution in
frequency of T

≠1 = 0.25 Hz. As expected, the SNR shows a peak for the time of arrival
of the wave.
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4.3 Bayesian Framework

In this section, we develop the tools that are necessary to analyze GW signals
within a Bayesian framework. After a brief introduction on the two most used
statistical inference methods in Physics, the Bayesian approach is presented in depth.
We then specialize it to the problem of our interest, namely the measurement of
GW polarizations, finding the explicit general form of the likelihood for a network
of interferometers. Finally, we provide details on the algorithm used to e�ciently
explore the parameter space.

4.3.1 Statistical Inference Methods

In Science, a variety of statistical inference methods are used to extract from
the data the properties of underlying probability distributions and, ultimately,
to test theoretical hypotheses in light of the experimental evidence. One of the
fundamental principles of experimental Science is the reproducibility (also called
test-retest reliability) of an experiment, which is the closeness of the agreement
between the results of successive measurements of the same observable carried out
under the same conditions. This axiom, which relies on the existence and persistence
of laws of Physics, led to the development of frequentist inference, a framework
in which statistical hypotheses are tested and confidence intervals are determince.
The core of this method can be summarized as follows. Through the conduction of
a set of experiments, multiple random samples can be taken from the underlying
probability distribution. If the underlying probability distribution depends on a
set of parameters, then these parameters are considered to be fixed quantities that
remain constant during the experiments. It is simply because we can only sample
noisy instances of the truth that the true parameters remain hidden from our eyes.
A large number of experiments will remove this noise and allow us to estimate the
underlying parameters.

However, in GW Physics we do not have the power to set the parameters at the
beginning of our experiment, so it is impossible to conduct the same experiment with
similar initial conditions. Then, to handle this kind of problems, a di�erent and more
flexible framework is of paramount importance: the Bayesian inference method. One
of the main di�erences between the two methods is its ability of the latter to include
prior beliefs (in the form of probability distributions) about the parameter values
that reflects a previous knowledge of the phenomenon. The probability distributions
are then updated in light of the (new) data: the outputs of a Bayesian inference
method are probability distributions (called posteriors) for the parameters of the
model. Furthermore, one of the greatest advantages of this method is that, instead
of yielding a discrete “true/false” value for the initial hypothesis within a certain
confidence interval as the frequentist method does, it can be used to quantitatively
compare di�erent hypotheses and operate a model selection, assigning to each one
a continuous probability of being the correct one. In summary, Bayesian statistics
views the data as fixed and the underlying parameters as variable while frequentist
statistics assumes that the underlying parameters are fixed and various experiments
with a random component can be conducted.
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4.3.2 Bayes’ Theorem

The term Bayesian refers to the English statistician Thomas Bayes (1702–1761),
who proved that probabilistic limits could be placed on an unknown event. However,
the probability theorem that takes his name was formally introduced by the French
scholar Pierre-Simon Laplace (1749–1827) in his 1812 book Théorie analytique des
probabilités. At the core of Bayesian inference is Bayes’ theorem, which can be
written as the following equation:

P (A|B) = P (B|A)P (A)
P (B) . (4.25)

It states that the conditional probability P (A|B) for the event A given the event B

(i.e., the likelihood of event A occurring given that B is true) is given by the inverse
conditional probability P (B|A) multiplied by the ratio of the marginal probabilities
P (A) and P (B) of observing A and B, respectively.

We can divide the task of using Bayes’ Theorem to analyze a set of data D into
two problems: parameters estimation and model selection.

Parameters estimation — Given a specific model H of our data which depends
on a set of parameters ◊, we can recover the joint posterior probability distribution
function on the multidimensional space of parameters P (◊|H, D) as:

P (◊|H, D) = P (D|H, ◊)P (◊|H)
P (D|H) . (4.26)

This is an application of Bayes’ Theorem, where:

• P (D|H, ◊) is the likelihood, the core of the computation, a measure of how
well our model with chosen parameters can describe the data observed;

• P (◊|H) is the (multidimensional) prior of our model, a joint probability
distribution function that weighs the parameter space according to our previous
knowledge on the phenomenon;

• P (D|H) =
s

� P (D|H, ◊)P (◊|H)d◊, often indicated by Z, is the evidence, the
likelihood integrated over the whole parameter space (weighted by the prior),
which works as a normalization factor in this context, but is crucial in the
context of model selection, as we will see shortly.

Model selection — We can also use Bayes’ theorem to assign a statistical
significance to a model compared with another, deciding which of several models
is more probable in light of the observed data D, and by how much. This may be
done by considering the ratio of posterior probabilities obtained using two di�erent
models Hi and Hj , defining the odds for Hi versus Hj as:

Oi

j = P (Hi)
P (Hj)

P (D|Hi)
P (D|Hj) = P (Hi)

P (Hj)Bi

j . (4.27)
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In the last equation, we introduced the definition of Bayes factor Bi

j
, which is the

ratio of the two evidence integrals for Hi and Hj .
Since the XIV century, a problem-solving principle has driven the progress of

rational thinking: Occam’s razor. The idea is attributed to the English scholastic
philosopher William of Ockham (c. 1287–1347), whose words are:

Entia non sunt multiplicanda præter necessitatem,
(Entities should not be multiplied without necessity.)

This philosophical razor advocates that, when presented with competing hypotheses
about the same prediction, one should select the solution with the fewest assumptions.
In other words, simple models must be favored over more complex ones. Bayesian
model selection automatically takes into account an intrinsic Occam factor via the
Bayes odds we just defined. Simple models tend to make precise predictions. Complex
models, by their nature, are capable of making a greater variety of predictions. So, if
Hi is a more complex model, it must spread its predictive probability P (D|Hi) more
thinly over the data space compared to Hj , reducing the evidence normalization
integral with respect to the Hj . Thus, when the data are compatible with two
theories, the simpler one will turn out to be more probable, without the need of
expressing our subjective dislike for complex models.

4.3.3 Bayesian Hypotheses on the Gravitational-Wave Polarization
Content

Summarizing the work carried out by Isi and collaborators in [37], given a
vector of responses D of our network, we want to test seven possible Bayesian
hypotheses regarding the polarization content of D: it is purely tensor (Ht), it is
purely vector (Hv), it is purely scalar (Hs), it is a scalar-tensor combination (Hst), it
is a vector-tensor combination (Hvt), it is a scalar-vector (Hsv) combination, it is a
scalar-vector-tensor (Hsvt) combination. Using Bayes’s theorem, we can expand the
probability P (HS |D) that, given the data, a signal hypotheses S can be accepted:

P (HS |D) =
ÿ

m

P (Hm)P (D|Hm)
P (D) , (4.28)

where m œ {t, v, s, st, vt, sv, svt}, P (Hm) is a prior on the model, P (D|Hm) is the
marginalized likelihood, and P (D) is an overall normalization constant. We can
then define the odds of detecting a non purely tensor signal as:

Ont

t =
ÿ

m”=t

P (Hm)
P (Ht)

Bm

t (4.29)

There is a subtle di�erence between a generic tensor signal and a GR signal
for a compact binaries coalescence, which is relevant only if we know a priori the
inclination of the source within the tri-axial GR model. An extended study of this
di�erence can be found in Appendix A of [37]. Besides choosing among di�erent
models, we can use Bayesian statistics to obtain the posterior probability density
function on the parameters of a given template for the waveform, provided that we
define correctly all the contributions that appear in Eq. (4.26).
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4.3.4 The likelihood

The function we choose to be our likelihood plays a crucial role. This has to
be maximized in order to find the most suitable values for the model parameters
to reflect the data. The two following assumptions on the noise (as described in
Sec. 4.1) must be made for each detector:

• it is stationary: the PSD Sn(f) is constant in time;

• it is Gaussian: in each frequency bin, noise is characterized by a zero mean
normal distribution with known variance, estimated from Sn(f).

Then, following [69], the likelihood function for the model H of parameters ◊, given
the detector response as in Eq. (4.20), is simply the product of Gaussian distributions
in each frequency bin with adjusted mean value due to the presence of the signal:

P (d|H, ◊; Sn(f)) = exp
ÿ

j

5
≠

2
---h̃j(◊) ≠ d̃j

---
2

TSn(fj) ≠ 1
2 log fiTSn(fj)

2

6
, (4.30)

where
d̃j(f) = T

N

ÿ

k

dke
≠2fiijkf

. (4.31)

is the Discrete Fourier Transform (DFT) of the response (the index k runs over time
and depends on the chosen sampling frequency, N is the total number of samples, T

is the total length in time of the response) and h̃ is the discrete Fourier transform of
the template, at given parameters ◊. To understand the meaning of this functional
form, we first point out that the likelihood is maximized in correspondence of the
most probable values for the parameters of the model in light of the data. Assuming
the parameters we choose to fix when building the template correctly reproduce
the data, when we subtract in the frequency domain the template of the signal
from the data, we should recover in each specific bin only the noise contribution
(Fourier transformed). We assumed that the noise is both stationary and Gaussian.
Then, using Eq. (4.6), we observe that the fraction in the first term is minimized
(maximizing the exponential) when a pure Gaussian noise of variance Sn(fj) is left
in each bin. The procedure of dividing by the PSD in the frequency domain is
sometimes called data whitening.

To analyze a network of detectors coherently, we make the additional assumption
that the noise in the detectors is uncorrelated. This allows us to write the coherent
network likelihood for data obtained from each detector as the product of the
likelihoods in each detector I:

P (d|H, ◊) =
Ÿ

I

P (dI |H, ◊; S
I

n(f)) (4.32)
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4.3.5 Exploring the Parameter Space: the Nested-sampling Algo-
rithm

One of the main challenges of Bayesian inference, that constituted for decades
an obstacle for the development of the framework, resides in the high computa-
tional cost of the objects we defined as its ingredients, which are integrals over
the multidimensional parameter space. An e�cient way to explore the parameter
space is therefore needed, the so-called Bayesian sampler. This is an algorithm
that progressively maximizes the likelihood, avoiding local maxima. One of the
algorithms used for GW data analysis is Skilling’s Nested-sampling [62]. The key
idea of Nested-sampling is to numerically compute the evidence, by reducing it to a
one-dimensional integral, defining the variable change in a proper way. Posteriors
on parameters can then be determined with a minimal computational cost. We now
summarize the main features of this algorithm.

As the prior and posterior are by definition normalized (since they are probability
distributions), the magnitude of the evidence is governed by the likelihood function,
that can be thought of as a measure of how well the data fits the hypothesis H. We
recall this quantitiy is defined by the multi-dimensional integral

Z © P (D|H) =
⁄

�
P (D|H, ◊)P (◊|H)d◊ . (4.33)

Although we assume the parameter space � to be a continuous manifold, and
the likelihood to be a smooth function of the parameters ◊, if the integral is not
solvable analytically, we can approximate its value using a finite set of points. The
Nested-sampling algorithm is actually a general method of numerical integration
that can be applied to other continuous integrals. A stochastic sample of N live
points, denoted by ◊a (a œ {1, . . . , N}) is chosen such that the evidence integral can
be approximated as the following:

Z ƒ
Nÿ

i=1
Liwi , (4.34)

where La © P (D|H, ◊a) is the likelihood value at ◊a, and the weight

wa = P (◊i|H)d◊ (4.35)

is the fraction of the prior distribution represented by the a-th sample.
The key passage in Nested-sampling is the computation of such weights for

stochastic samples. Each starting point ◊a is thought to be lying on a contour of
equal likelihood in parameter space. If we consider each contour as delimiting the
part of the parameter space with greater likelihood, we have sliced � into nested
volumes of increasing likelihood. We now proceed by following iterations. We first
define the prior mass Xi to be the fraction of the total prior volume enclosed by the
i-th contour. Since the likelihood is maximized (if data are present) in a small part
of the parameter space, the lowest likelihood line will enclose the largest volume. By
definition, X0 = 1. We can then think of a mapping between the contour lines in
� and the prior masses Xi, such that the likelihood L(X) increases toward smaller
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Figure 4.4. Conversion of the multi-dimensional evidence integral to a mono-dimensional
one. The mapping between the contour lines in the physical parameter space and the
prior masses allows for the change of variables. Each live point is thought to be lying on
a constant likelihood contour. (Reproduced from [61].)

value of X, as shown in Fig. 4.4. Consequently, we can express the evidence as the
one-dimensional integral:

Z ƒ
Nÿ

i=1
L(Xi)�Xi , (4.36)

where �Xi = Xi+1 ≠ Xi. Comparing Eqs. (4.34) and (4.36), we have found that
the weight we need to assign to each stochastic sample can be estimated from the
variation of the prior mass between successive contours.

The crucial idea is to extract from the prior’s new points so that progressively
smaller contour lines can be assigned to each of them, maximizing the likelihood. To
achieve this, the likelihood value for each live point at the i-th iteration is computed.
Then, the point with the least likelihood L

min
i

is saved and removed from the set
of active points: we will call it a dead point. The point in substitution of it can
be extracted randomly via a simple Markov chain Monte Carlo step (see [16] for a
thorough introduction) according to the prior, accepting only steps that keep the
likelihood above the minimum previously found. These samples are drawn from
the prior distribution within the likelihood contour of the dead point (i.e., they are
extracted inside a fraction Xi of the full prior). It can be shown that the volume
enclosed at each iteration shrinks geometrically, ensuring the speedy convergence
of the integral [64]. We can then the assign a weight wi = Xi ≠ Xi≠1 to the i-th
iteration’s dead point, where the (log-)prior volume at each iteration changes by a
factor:

E[ln Xi ≠ ln Xi≠1] = ≠N
≠1

, (4.37)
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E[·] being the expected value and N the number of live points. We can use Eq. (4.34)
to update the evidence at each step as:

Zi = Zi≠1 + L
min
i wi , (4.38)

where an explicit computation from Eq. (4.37) gives wi = exp (≠i/N). Iterations
continue until a termination condition is met, usually when the total evidence that
would be left if all the remaining points lay at the maximum likelihood so far
discovered L

max becomes less than a certain fraction of the total evidence so far
accumulated, e.g., Lmaxwf < Zf e

≠5, where f is the number of the final iteration.
The residual live points are then recycled and included in the evidence computation
with equal weight wf , giving:

Z ƒ Zf = Zf≠1 +
Nÿ

a=1
Lawf . (4.39)

Extracting the posterior from the evidence is a simple task, with negligible
computational costs. For further details on its application to inspiral GW signals
with a detector network, see [68].
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Chapter 5

A Phenomenological Study

This chapter presents the results of an original and independent research that
aims at assessing with software simulations the possibility of inferring the polarization
content of a transient GW within a Bayesian framework, given the extended network
of five ground-based interferometric detectors available in the near future. In the
first section, an overview of the goals and methodology adopted for the study is
given. Then, the network response to a fully-polarized transient GW is described.
Finally, the polarization content for simulated signals is inferred, with particular
attention to the relation between the precision/accuracy of the reconstruction and
the SNR of the signal. Further, systematics relating the reconstruction of the modes
and the specific polarization content of the wave is investigated at di�erent SNRs.

A technical note on this phenomenological study is publicly available on the
LIGO Document Control Center [54].
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5.1 Motivation, Methods and Goals

This section introduces the research question this thesis aims to answer. We
then make some considerations about the methods to best address the goals of this
phenomenological study. The second subsection is devoted to a discussion of the
possible gravitational waveforms we can use and some arguments are presented in
favor of the simplified toy model we describe in the following.

5.1.1 Research Question and Methodology

The main goal of this study can be summarized in the following research question,
which constitutes our starting point:

How well can we constrain admixtures of scalar and/or vector polar-
izations in a transient Gravitational-Wave signal, given the extended
network of five ground-based interferometers available in the near future?

In other words, we want to quantitatively study the accuracy at which we can recover
non-GR polarization modes in a GW signal, using a network of five interferometers
(three LIGO instruments, Virgo, and KAGRA).

Let’s assume that GR is not our ultimate theory of gravity. As we saw in Sec. 2.3,
di�erent theories make di�erent predictions on the possible polarization modes, and
GR is the more restrictive one, admitting only two tensorial polarizations. Therefore,
polarization tests are among the strongest tests on GR one may perform.

The approach we will adopt consists in simulating the network response to a
transient GW signal in the most generic theory of gravity, equipped with all six
polarization degrees of freedom. Once the waveform is chosen, we add noise to the
signal to make it more realistic and use the techniques described earlier in Ch. 4 to
recover the injected value for the wave polarization content. Since the polarization
modes are encoded in some observables (variables we e�ectively measure), the
Bayesian Inference methodology described in Sec. 4.3 is the most adequate tool to
analyze their values, providing probability distribution functions (what we called
posteriors) for each parameter of the model. The shape expected for each posterior is
Gaussian, since we are injecting the signal in a stationary Gaussian noisy background,
and the distribution we obtain from statistical inference will carry all the information
we need. In particular, we focus on:

• Accuracy — The closeness of the mean value for each distribution to the
injected value chosen for the simulation is a measurement of the precision at
which we can recover the polarization content of the wave from the noisy data.

• Precision — The width of the distribution represents how well the polarization
content is recovered. If the tail of the distribution is well detached from zero,
it means that the polarization component related to that specific variable has
been detected.
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Further, the Bayesian approach can also be used in model selection to compute the
odds for a non-GR description of the signal.

The outcome of our study is a Python code (fully reported in Appendix B)
that generates and analyzes GW signals with generic polarization content, within
a Bayesian framework. Most of the code is written from scratch by the author.
Noise generation and matched filtering algorithms are both implemented using the
PyCBC Python open-software package [50], while the inference code is built upon the
Dynesty package [64], a free Pure Python, MIT-licensed Dynamic Nested Sampling
package for estimating Bayesian posteriors and evidences.

The preliminary part of this original study was already examined in Ch. 3.
In Sec. 3.2.3, we recovered the antenna patterns for a two-arm and a three-arm
interferometer. In Sec. 3.3, we extended the study of the overlaps factor as defined
in Eq. (3.28) from the three interferometers network (performed in [38]) to the
future five-detector network of Fig. 3.7. In this chapter, we focus our attention to
polarization reconstruction from simulated data, as we will see in the following.

This research is motivated by several reasons. First of all, as we showed in
Ch. 3, the response in amplitude of a single interferometer (as well as the one of
the entire network) to di�erent GW polarizations is peculiar of the geometry of
the source-detector and independent from the specific metric theory within the
waveform is computed and generated. As already stressed before, the key idea is
that, in such tests, no polarization information is extracted from the phase evolution,
which strictly depends on the theory we choose to describe the coalescence of the
binary. As in Sec. 3.4, this allows for model-independent strategies to reconstruct
the polarization content of the wave, e.g. the null stream approach described in
[19]. However, it is crucial to quantify in advance (even before the construction of
the detectors) the sensitivity of the network because it does depend on the position
and orientation of the detectors. Our code is very flexible and new ground-based
interferometers with two or three arms can be easily added to (or removed from)
the network. Such studies can provide strong evidence in support of some particular
configurations for future detectors.

Furthermore, testing a methodology to extract polarization content is crucial
for implementing these techniques in data analysis pipelines. Since the two scalar
polarizations are completely degenerate for ground interferometers, we have a total
of five (distinguishable) modes. If the direction on the sky is known, for example via
the observation of ah electromagnetic counterpart, we have a total of five degrees of
freedom (up to an overall amplitude) for the polarization content of the wave. To
completely disentangle the polarizations, at least five interferometers are needed.
This is the reason why the future five-detector network was chosen for our study.
Some initial tests within a Bayesian framework on polarizations has already been
made in [8] (the first GW with a strong electromagnetic counterpart that allowed
for a precise determination of the position), where an overwhelming evidence in
favor of pure tensor polarization modes in comparison to pure vector and pure scalar
modes was found. However, no constraints can yet be placed on small admixtures of
non-GR modes with tensorial ones, due to the limited number of available detectors
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and to Virgo’s low SNR for this specific event. This will be possible in the range
of 5-10 years, when the five detectors network will be operating at full sensitivity.
In conclusion, our phenomenological study can provide a foretaste of near future
fundamental tests of gravity.

5.1.2 Preliminary Considerations on the Waveform

During the first observing run (O1), from September 12, 2015 to January 19,
2016, and the second observing run (O2), which ran from November 30, 2016 to
August 25, 2017, the LIGO-Virgo Collaboration achieved several GW detections
(for the most recent catalog, see [4]). They were all transient (limited in time) GWs
coming from Compact Binaries Coalescence events. Such waves are emitted when
two compact bodies (neutron stars or black holes) orbit one around the other faster
and faster, bound by their reciprocal gravitational attraction, until they collapse
into each other. The remnant static body has often a mass lower then the sum
of the progenitor ones. Part of the total mass of the two original bodies is indeed
converted into energy and released as gravitational radiation. The GWs emitted by
inspiralling binaries systems can be accurately modelled using a high-order PN GW
generation formalism, as we saw in Ch. 2. The gravitational waveform and energy
flux are then obtained to high PN order and the binary orbital phase evolution is
determined from an energy balance argument (see [14] for a thorough review).

Within GR, from Eq. (2.26), we can compute the inspiral gravitational waveform
for a binary system of two bodies of mass m1 and m2 in quasi-circular orbit at
leading PN order, expressing the quadrupole moment as a function of (x̂j

, v̂
j), the

orbital trajectory and orbital velocity unit vectors. The calculation leads to the
following equation for the potentials (in geometrized units):

h
jk = 4µM

Dr
(v̂j

v̂
k ≠ x̂

j
x̂

k) , (5.1)

where M := m1 + m2 is the total mass, µ := m1m2/M the reduced mass, r the
orbital separation, and D the (luminosity) distance of the source. Let �(t) be the
orbital phase and ÿ the inclination angle of the system, from Eq. (3.25) we may write
the response function of an interferometer h(t) in time domain as:

h(t) = AGR
M5/3

D
�̇2/3

e
≠i2� + c.c. , (5.2)

where
AGR © ≠F+(1 + cos2

ÿ) ≠ 2iF◊ cos ÿ , (5.3)

M = µ
3/5

M
2/5 is the chirp mass and we have used Kepler’s third law to simplify

the result. The response function is composed by a slowly varying amplitude and a
rapidly varying phase �. The phase evolution in time is usually computed from the
balance law that relates the rate of change in binding energy to the GW luminosity.
From Eq. (5.2), the Fourier transform h̃(f) of the waveform is then computed (often
in a Stationary Phase Approximation (SPA), see e.g. [19], Sec. IIB) and it is used
to filter experimental data.
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As discussed in Sec. 4.2.2, data analysis techniques generically use the template
of the waveform to detect the wave, introducing what Yunes and Pretorius in [80]
called a fundamental bias in GW astrophysics: the assumption that GR is the correct
theory of gravity during the entire wave-generation and propagation regime. So
far, only GR templates have been used to detect GWs. Although the experimental
data seems to fit well with GR templates, systematic errors in the detection and
parameter estimation of signals can arise, leading to a mischaracterization of the
Universe through incorrect inferences about source event rates and populations. The
key point is that the GR limit (or better, the GR limit within the ppN framework) is
valid in the weak field regime, as verified by precision experiments and observations,
but it need not to hold in the dynamical strong-field regime where tests are lacking
(and where GWs are generated). In the aforementioned work, Yunes and Pretorius
proposed a remedy through the introduction of the parameterized post-Einsteinian
(ppE) framework, which consists of the enhancement of waveform templates via the
inclusion of extra-parameters, called ppE parameters. These modified templates
are deformations of the GR waveform achieved by introducing extra phases and
amplitudes terms which depend on ppE parameters. In the standard ppE framework,
only deformations of the two GR polarizations are considered. These are induced by
corrections to the frequency evolution equation only, and can arise from modifications
of the binding energy or energy flux carried by the wave. The simplest ppE template
for the inspiral stage may be written as:

h̃(f) = h̃
(GR)(f) · (1 + –u

a

2)ei—u
b
2 , (5.4)

where

u¸ =
32fiMf

¸

41/3
(5.5)

is the reduced ¸-harmonic frequency, h̃
(GR)(f) the Fourier-domain GR template,

and (–, a, —, b) the four ppE parameters. This modified template takes into account
possible variations from GR. Furthermore, Sampson et. al. have shown in [58] that
ppE parameters can be put in relation to ppN parameters (see Ch. 1), making it
possible to specify the model for (almost) every metric theory. Chatziioannou et. al.
in [19] have extended the ppE framework to include all harmonics (since the previous
template is adequate to describe the ¸ = 2 harmonic only) and all polarizations. The
templates obtained are essentially modifications of the GR template with additive
amplitudes and phase factors for each polarization degree.

Motivated by this analytic results, we tried to build a similar waveform for our
study: a superposition of di�erent amplitudes, one per polarization mode. However,
as we already stressed previously, all the information regarding GW polarizations
does not depend on the phase evolution of the wave. This is a crucial property of
GW detection that allows for a further simplification. Since we aim to perform a
phenomenological test on the possibility of inferring GW polarization content for
a generic wave, we do not need the full description provided by the ppE scheme.
This will be useful in a future GR test on real experimental data, providing a model-
independent template to filter the signal, at the price of expanding the parameter
space. Additionally, the ability to reconstruct polarization content is a property
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of the detector network itself and it is almost independent from the metric theory
we used to compute the waveform. Our final goal is indeed to show that, if any
extra-polarization signal other than tensorial is present in the wave (as allowed by
other metric theories of gravity, as we showed in Sec. 2.3.2), the five-interferometer
network is able to detect it and disentangle it from the tensorial ones. Inspired
by the approach illustrated in Sec. 3.4.2, which constitutes a model-independent
way of reconstructing the GW signal and its polarization content, we decided to
use monochromatic sine-Gaussians as our candidate transient waveform. A full
description of the waveform and its network response in simulations is provided in
the following section.

5.2 Fully Polarized Gravitational Wave: the Network’s
Response

In this section, we describe in detail the waveform used in this phenomenological
study and the five-detector network response to it.

5.2.1 The Waveform

A specific source of gravitational waves is generically identified by the following
astrophysical parameters:

• Sky coordinate location: (”,–);

• Polarization angle: Â;

• Geocentric sidereal time of arrival: t0;

• Luminosity distance of the source: dL.

For what we said in Sec. 5.1.2, it is reasonable to build a simplified toy model of
the response at each two-arm detector I using a single sine-Gaussian wavepacket
with given frequency � and relaxation time · :

hI(t) = AI cos(�t + „I) exp
5

≠ (t ≠ t0 ≠ ”tI)2

2·2

6
, (5.6)

where

AI = |A|
dL

|ÃI | , (5.7)

ÃI =
ÿ

pœ{+,◊,x,y,s}
‘pF

I

p . (5.8)
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We implicitly defined the following quantities:

• the complex coe�cients
‘p = ap

|A|e
i„p (5.9)

which depend exclusively on the unknown underlying properties of the GW
generation mechanism (e.g., the tensor ones, within a tri-axial emission model,
are functions of the inclination angle ÿ) and are also coordinate frame dependent
quantities. Since we pick |A| to be the total amplitude, we expect |‘p| œ [0, 1];

• |A| =
Òq

p
a2

p is the overall amplitude of the wave;

• F
I
p = F

I
p (–, ”, Â = 0, t0) are the antenna patterns for the detector I. By setting

Â = 0, we are choosing a specific polarization frame: we can arbitrarily fix
the polarization angle thanks to the degeneracy between Â and the two pairs
of parameters (‘+, ‘◊) and (‘x, ‘y), consequence of the rotational property of
antenna patterns (see Appendix A in [37]);

• the measured phase at the detector I is:

„I = arctan Im[ÃI ]
Re[ÃI ]

≠ �(t0 + ”tI) (5.10)

Following [37], we can also define the normalized e�ective strain amplitudes as:

ht =
Ò

|‘+|2 + |‘◊|2 , (5.11a)

hv =
Ò

|‘x|2 + |‘y|2 , (5.11b)

hs = |‘s| . (5.11c)

We can introduce two (coordinate independent) hyper-parameters ⁄v and ⁄s to
quantify how much of the wave is tensor, vector or scalar polarized, so that:

h
2
t = 1 ≠ ⁄v ≠ ⁄s , (5.12a)

h
2
v = ⁄v , (5.12b)

h
2
s = ⁄s . (5.12c)

The main goal of this research is to establish how well we can infer the two hyper-
parameters ⁄v and ⁄s from signals with di�erent SNR.
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5.2.2 Simulated Network Response

An example of the pure signal as seen in each detector of the network can be
found in Fig. 5.1. The e�ective time of arrival of the signal (i.e., the time at which
the perturbation reaches its peak in each detector) is shifted with respect to t0,
the sidereal time of arrival at the center of the Earth, due to signal propagation
through the Earth. In this study, the propagation speed is assumed to be equal to
c, the speed of light, for every polarization mode. Although this property does not
hold true for some theories, as we showed in Sec. 2.2.2, this simplification does not
have any consequence on polarization reconstruction, apart for some extra degrees
of freedom (the speed of each wave mode) that should be taken into account in
parameter estimation. The overall amplitude and the luminosity distance are two
degenerate parameters that cannot be distinguished in principle, since at farther
distance equal sources will result in weaker waves due to the d

≠1
L

dependence of
the metric in the far wave zone [see Sec. 2.1.3, Eq. (2.16) in which we neglected
R

≠2 © d
≠2
L

terms].

To provide a realistic simulation of the network response, Gaussian colored noise
(weighted in frequency space) was added to the signal timeseries. To generate the
noise, we used the designed analytical PSD Sn(f) for each detector, in the most
optimistic prevision, called designed sensitivity. As seen in Sec. 4.1.2, the PSD can
be interpreted as the variance of the Gaussian instrument noise (with zero mean)
in each frequency bin. Noise generation was implemented using PyCBC [50]. The
noise is then added to the pure signal, yielding the response as shown in Fig. 5.2.
The signal is completely buried into noise.

If, however, we apply the matched filter we described in Sec. 4.2.2, we find that
the mean SNR around the peak of the signal is about 8, just enough to make it a
candidate. The response strain in frequency space as well as the SNR of the signal
for the detector LHO, obtained using the matched filtering technique, are reported in
Fig. 5.3. We recall that in this study we want to relate the ability of reconstructing
polarization modes of the wave to the SNR of the signal, trying to determine whether
any systematics are present. We do not aim to put any lower bound limit on the
overall amplitude of the wave that can be detected and disentangled. This is the
reason why we used the most optimistic PSD available for each detector, instead of
realistic ones. The disentanglement power of the network in separating polarization
modes depends on the overall amplitude of the wave only via the SNR of the signal,
as we will see in the following.
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Figure 5.1. Example of a simulated GW signal as seen by the network. The signal shown
was generated with random sky location (–,”), random polarization angle Â, sidereal
time of arrival at the center of the earth t0 = 0 s, unitary luminosity distance dL = 1.
Both ⁄v and ⁄s were set to 0.1 with fixed overall amplitude |A| = 10≠22, randomly
choosing the remaining amplitude parameters (the two ‘’s and the five phases „p). The
total duration of the segment is 1 s and the sine-Gaussian was chosen with frequency
� = (2fi)100 Hz and damping time · = 0.1 s. Time shifts between signals of several
tens of ms are due to the signal propagation (assumed to happen at the speed of light)
through the Earth, while amplitude changes are a direct consequence of the various
detector antenna response functions (see Sec. 3.2.3). The polarization analysis is based
on these last amplitude (and phase) di�erences.
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Figure 5.2. Example of a simulated noisy GW signal as seen by the network. The noisy
response of the network is shown for the pure signal of Fig. 5.1. The GW signal is buried
into Gaussian colored noise, that is more than one order of magnitude greater than the
signal amplitude itself. Low frequency noise content is seen to dominate. In this figure,
we can appreciate di�erences in the design sensitivity of the five detectors: the PSD used
for the LIGO detectors is indeed the most optimistic version for the aLIGO+ update
[13], which is almost half an order of magnitude lower (in its most sensitive part) than
Virgo and KAGRA ones.
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(a)

(b)

Figure 5.3. Matched filtered LHO detector response for the noisy signal in Fig. 5.2. Both
the response strain in the frequency domain, with the analytical PSD superimposed (a)
and the time evolution of the SNR of the response (b) are reported. As expected, the
SNR shows a peak for the time of arrival of the wave.
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5.3 Bayesian Inference of the Gravitational-Wave Po-
larization Content

In this section, we present the results of our phenomenological study. We limited
our analysis to Bayesian parameter estimation. Indeed, the posterior distributions
found for the polarization (normalized) amplitudes ‘’s or the hyper-parameters ⁄’s
encode all the information we need to study both the accuracy and precision of
polarization reconstruction.

5.3.1 Tools

For the sake of completeness, we recall in the following the main ingredients
to perform Bayesian parameter estimation given some experimental data D and a
model H that depends on a set of parameters ◊. In Sec. 4.3.2, we have found that
we can use Bayes’ theorem to recover the joint posterior probability distribution
function on the multidimensional space of parameters

P (◊|H, D) = P (D|H, ◊)P (◊|H)
P (D|H) , (5.13)

where:

• P (D|H, ◊) is the likelihood.

• P (◊|H) is the (multidimensional) prior of our model. We can choose a single
parameter and find the (one-dimensional) probability distribution function
for it by integrating over the other parameters: this procedure is called
marginalization.

• P (D|H) =
s

� P (D|H, ◊)P (◊|H)d◊, often indicated by Z, is the evidence, the
core target of computations performed with the Nested-sampling algorithm
(Sec. 4.3.5).

In the following, we define each object that appears in Eq. (5.13) for the case in
point.

Parameters space — Assuming the toy model described in Sec. 5.2.1, fixing
the sine-Gaussian frequency � and damping time · , we are left with a total of 12
independent parameters {–, ”, |A|, „+, „◊, „x, „y, „s, ‘◊, ‘y, ⁄v, ⁄s}. Notice that dL

is degenerate with |A|, Â is degenerate with some of the amplitudes (as shown in
appendix A in [37]) and the time of arrival t0 cannot be inferred since we simulate
the response of the network for a symmetric interval in time with respect to t0 itself
(2 s before and 2 s after). Due to the heavy computational cost of each simulation,
for practical purposes we chose to reduce the dimensions of the parameters space to
6, assuming the overall amplitude and the five amplitude phases to be known.
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Priors — Priors in the sky locations are set to be uniform over the celestial
sphere: the right ascension (–) prior is flat in the interval [0, 2fi) while the cosine
of declination (cos ”) prior is flat in the interval [≠1, 1). Priors on the amplitude
parameters (the two ⁄’s and the two ‘’s) are taken to be flat in the interval [0, 1),
provided we get the normalization to one of the five ‘’s square sum. Indeed, it
can happen that these four amplitude parameters are not compatible with each
other: in this case, we reject the point in the parameter space, weighting it by a
negative infinite likelihood, which is well handled by the Python code as it can be
implemented as a NumPy constant.

Likelihood — As seen in Sec. 4.3.4, the likelihood for a network of GW detectors
with uncorrelated noise can be written in the general form:

P (d|H, ◊) =
Ÿ

I

P (dI |H, ◊; S
I

n(f))

= exp
ÿ

I

ÿ

j

5
≠

2
---h̃I

j
(◊) ≠ d̃

I

j

---
2

TSI
n(fj) ≠ 1

2 log fiTS
I
n(fj)
2

6
, (5.14)

where d̃
I

j
is the content of the j-th bin of the Discrete Fourier Transform [defined in

Eq. (4.31)] of the noisy signal as seen by the I-th detector, h̃
I

j
(◊) is the pure signal

prediction for it at fixed value of the parameters ◊, S
I
n(fj) is the PSD of the noise

for the I-th detector in the j-th frequency bin, and the sum runs over all frequency
bin and detector index values j and I. A visual study on the mono-dimensional
and bi-dimensional behaviour of this likelihood in parameter space is reported in
Appendix A for a random high-SNR signal.

Bayesian sampler and Output — The likelihood and the priors were plugged
into the Bayesian Nested-sampler. The sampler outputs the posterior distributions
for the parameters we choose to infer. These can be visualized using the built-in
Dynesty plotting utility. The two used in the following are trace plot, showing
the evolution of the values sorted for the parameters (and their marginal posterior
distributions) in one-dimensional projections, and the corner plot, which shows a
combination of one-dimensional and two-dimensional marginalized posteriors.

Posteriors Analysis — The marginalized one-dimensional posteriors for each
simulation are then saved and stored in Python dictionaries. The grafic utility
Seaborn [71] is then used to compute Kernel Density Estimations (KDEs) and to
produce violin plots: this kind of plot shows the distribution of quantitative data
across several levels of one (or more) categorical variables so that those distributions
can be compared. Unlike a box plot, in which all of the plot components correspond
to actual datapoints, the violin plot features a KDE of the underlying distribution.
This is indeed the most e�ective and appealing way of showing multiple distributions
of data at once.
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5.3.2 Results

In this section, we present the results of our research. As a first example to
validate our methodology, we tested our inference code on two signals with di�erent
SNRs, to recover six parameters of the wave (sky location and four amplitude
parameters), as discussed in the previous section. These cases represent a low (about
10 in each detector) and a high SNR scenario (about 100 or more). Trace plots and
corner plots of the two examples are reported in Fig. 5.4 and in Fig. 5.5. The trace
plots show the evolution of the sampled parameter space points as a function of
the variable X, which corresponds to the one-dimensional variable used to compute
the evidence integral (the prior mass defined in Sec. 4.3.5). This variable (or more
appropriately, ≠ ln(X)) can be seen as a proxy for the number of iterations the
algorithm needs to converge to the global maximum of the likelihood. The corner
plots show the two-dimensional posteriors for each parameter pair (marginalized
over all other parameters), and, on the diagonal, the mono-dimensional posterior
distribution of each single parameter (marginalized over all other parameters), as
recovered by the algorithm. In all plots, red lines identify the injected value.

In both cases, the injected value is recovered correctly with a high accuracy
(generally within one sigma), but the precision of the result crucially, and not
surprisingly, depends on the SNR. In the second simulation, in which the SNR is
much lower, the posterior distributions are wider and less peaked around the true
value. This is the first important result of our study: the network (within this model)
is able to disentangle all the polarization degrees of the wave, but the precision (i.e.,
the sensitivity of the network to each specific polarization) strictly depends on the
strength of the signal and its SNR in each detector.

To further analyze the systematics of this behaviour, we simulated several
di�erent signals from sources with increasing value of the hyper-parameters ⁄’s,
randomly setting the other ten parameters to have three di�erent SNRs (in each
detector) for each ⁄: greater than 100, between 25 and 100, lower than 30. We
repeated this study for a mixture of two polarizations (taking one of the two ⁄’s to
be vanishing) and three polarizations (allowing both ⁄’s to be non-zero and set to
the same value). The marginalized posterior distributions for the ⁄’s are reported in
Fig. 5.6 for the two-polarization admixture and Fig. 5.7 for the three-polarization one.
As expected, the higher the SNR is, narrower and better peaked around the injected
value the posterior distribution is. Qualitatively — for low SNR sources — the more
the wave is a mixture of di�erent polarizations, the worse it is generally recovered
by the network. This can be explained thinking that for highly mixed waves we
are adding possible degeneracies to the network responses: for a complex wave
(superposition of many di�erent polarizations), it is more di�cult to disentangle
the single contributions. Besides this qualitative behaviour, there is no particular
systematic on the value at which the distribution is peaked at: they are — at least
for the low SNR scenario, in which they can significantly di�er from the true value —
randomly distributed around the true injected value.
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Figure 5.4. Trace plots and corner plots of a high SNR source. The injected true value
(red lines in both plots) is well recovered after some iterations of the sampling algorithm,
with high accuracy and high precision. This specific source was randomly chosen with
an ‘◊ close to zero: the algorithm correctly provides upper limits for its value. Dashed
lines in the trace plots enclose the 95% (2-sigma) credible intervals.
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Figure 5.5. Trace plots and corner plots of a low SNR source. Same as Fig. 5.4, but for
the low SNR scenario. The injected values are still well recovered, but with a lower
precision with respect to the previous case. This specific source was randomly chosen
with an ‘y close to zero: the algorithm correctly provides upper limits for its value.
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Figure 5.6. KDE of the marginalized posterior distribution for ⁄s in the case of tensor-
scalar polarized waves (top) and for ⁄v in the case of tensor-vector polarized waves
(bottom), with di�erent SNR and increasing non-GR content. Both plots for each kind
of two-polarization wave represent the same data: the horizontal axis shows the true
injected value, while on the vertical axis reports the posterior distribution as recovered
by our Bayesian analysis. The di�erence between the two panels on each is only in
the way results are plotted: on the left, violin plots for the three SNR sources are
superimposed to show if there are systematic deviations from the diagonal line, which
represents the true injected value. On the right, the three violin plots are plotted next
to each other, so the horizontal grid line is the only meaningful reference for the true
value. The white dot inside the distribution corresponds to the mean value, while the
black band represents the first quartile interval.
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Figure 5.7. KDEs of marginalized posterior distributions for ⁄s (left) and ⁄v (right) for
tensor-vector-scalar polarized waves, with di�erent SNR and increasing non-GR content.
The plotting convention is the same as the one adopted in the left panels of Fig. 5.6.
Qualitatively, the true value for low SNR scenarios is recovered generally worse in this
case than the previous ones, due to the fact that a highly mixed wave generally increases
the complexity and the possible degeneracies in the parameter space.

Finally, we simulated many other sources, fixing the mean SNR (within a range of
two units) for the network, in the case of a tensor-vector-scalar polarized wave with
increasing non-GR content. Posterior distributions for ⁄s are reported in Fig. 5.8. As
expected, the disentangling power of the network and approach generally increases
with the mean SNR with some exceptions, due either to SNRs being distributed
very unevenly (with a high standard deviation) among the detectors, or to statistical
fluctuations in the nested sampling algorithm. The latter explanation is confirmed
by repeating the analysis for the same data-sets multiple times, obtaining slightly
di�erent posterior distributions, compatible with the observed inversions.

In conclusion, it was found that through Bayesian inference it is indeed possible
to accurately extract the polarization content of transient GW signals, and with
precision limited by the SNR in the response. As expected, the precision mostly
improves with the total network SNR, with some exceptions, due either to an SNR
distributed very unevenly among the five detectors or to statistical fluctuations in
the Bayesian sampler.
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Figure 5.8. KDEs of the marginalized posterior distributions of ⁄s for tensor-vector-
scalar polarized waves, with increasing SNR mean and non-GR content. The plotting
convention is the same as the one adopted in the right panels of Fig. 5.6. Inversions in
the behaviour of the recovered distribution for increasing SNR mean are due both to
statistical fluctuations in the sampling algorithm and to a very uneven distribution of
the SNR among the five detectors.
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Conclusions

«Apri la mente a quel ch’io ti paleso
e fermalvi entro; ché non fa scienza,

sanza lo ritenere, avere inteso»

Dante, Paradiso V

In this thesis, we have first shown that generic metric theories of gravity allow
for six independent polarization modes for their waves. Depending on the field
content of the theory, only some of these may be allowed. GR is undoubtedly the
most restrictive theory, predicting only the two transverse tensor polarization. We
have seen that the response in amplitude of a network of GW detectors is strictly
correlated to the polarization of the wave through the antenna patterns of each
interferometer, which depend only on the relative geometry between the source and
the detector. After reviewing the most updated data analysis techniques to handle
GW data, we proposed and realized an extensive and original phenomenological
study of the performance of the five-detector network configuration [LIGO Hanford
(USA), LIGO Livingston (USA), Virgo (Italy), KAGRA (Japan) and LIGO-India]
in disentangling polarization modes within a Bayesian approach.

We found that, even using a monochromatic sine-Gaussian as toy model for
the waveform, the network of five L-shaped interferometers at design sensitivity
available in the near future is able to e�ciently disentangle the five polarization
components for a generic transient signal: the precision strictly depends on the SNR
of the signal and how it is distributed between the five detectors. The results were
obtained within a Bayesian framework, using parameter estimation techniques. Most
of the code was written from scratch by the author and it flexibly allows to add
(or removal) ground-based interferometers with two or three arms to the network.
Such studies are of crucial importance since they can provide strong evidence in
support of specific configurations for future detectors. A technical note on this
phenomenological study is publicly available on the LIGO Document Control Center
[54].

As a first suggested future work, model selection can be used to discriminate
between di�erent models, measuring the odds of a generic theory of gravity, given
the simulated data. Since the GW polarization is mainly a geometric factor, the
results found are essentially independent of any theory model. On the theoretical
side, it would be interesting to numerically develop some waveforms for alternative
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theories of gravity to be used in similar phenomenological studies. Some classes of
extended templates that can take into account possible deviations from GR have
already been studied in the literature (see [80, 19]) and it would be interesting to
repeat the study using more plausible waveforms.

So far, we dealt exclusively with transient signals. However, it should be men-
tioned that if we have a longer lasting signal (a persistent signal detected with
current detectors, 3G detectors or LISA), the motion of the interferometer relative
to the source would allow us to study the evolution in time of antenna patterns,
extracting more information from the single detector. For continuous GW signals, a
complete study with three ground interferometers was reported in [37]. An extension
of this methodology can be applied also to a larger network.

We recall that, the detection of GW non-tensor polarizations would be the first,
direct evidence of new physics; at the same time, repeated non-detections would
allow us to place more and more stringent tests on GR.
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Appendix A

Visual Study of the Likelihood

To better understand the complexity of the likelihood, a visual study of the
function in Eq. 4.32 is reported in this Appendix for a high SNR source and the toy
model described in Ch. 5 with random parameters.

In Fig. A.1, we see the behaviour of the likelihood as a function of one of the
phases: we uniformly sampled a one-dimensional slice of the parameter space,
allowing only one of the amplitude phases to vary („+), starting from the injected
true value. On the vertical axis the di�erence between the value of the likelihood at
the x-value minus the value of the likelihood at the injected value is plotted. If the
true injected value is a global maximum for the likelihood, this di�erence should be
always non positive and equal to zero only for the true value. The plot shows the
expected behaviour.

In Fig. A.2, the likelihood as a function of the overall amplitude is studied. On the
vertical axis, the absolute value of the di�erence between the value of the likelihood
at the x-value and the value of the likelihood at the injected value is plotted. If
the true injected value is a global maximum for the likelihood, the plot should drop
down to ≠Œ for A0 equal to the true value. Also in this case, the plot shows the
expected behaviour.

In Fig. A.3, two bi-dimensional studies of the likelihood are shown. In the first
case, the right ascension – and declination ” are varied, while in the second case the
dependence on two ⁄ hyper-parameters of Eqs. 5.12 is shown. In the former case,
the likelihood is highly non-regular, with several local maxima. This is due to the
fringe e�ect, relevant for the waveform used: changing the sky location shifts the
sine-Gaussians in the N detectors with respect to one another. For high frequency
(f0) signals, a small di�erence in time (whenever f0 · �t = 2nfi, for a small integer
n) is su�cient to allow the shifted sine-Gaussian to properly approximate the exact
waveform. This makes the likelihood itself very sensitive to a small perturbation of
the two sky location parameters. However, there is one global maximum, although
it can be barely distinguished at the center of the plot: it corresponds to the true
injected values for the sky location parameters in this specific simulation. In the
second plot, the surface is smooth and regular, with a global maximum for the
injected true value.
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Figure A.1. Likelihood as a function of „+. On the vertical axis the di�erence between
the value of the likelihood at the x-value and the value of the likelihood at the injected
value is plotted, while on the horisontal axis „+ ≠ „true in units of fi is reported.

Figure A.2. Likelihood as a function of A0. Same as Fig. A.1 but for the overall amplitude
A0, which is log-uniformly sampled around the injected value. The red line shows the
true injected value for A0.
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(a)

(b)

Figure A.3. Two-dimensional study of the likehood The likelihood 2D-surfaces are plotted
as functions of right ascension and declination (–, ”) (a), and of the two hyper-parameters
(⁄s, ⁄v) (b).
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Appendix B

Python Code



1 Bayesian Study of a nonGR polarized GW

1.1 Lib import

[ ]: %matplotlib notebook
import pandas as pd
import numpy as np
from numpy import sin, cos
import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import pycbc
import astropy
from astropy import units as u
from astropy.coordinates import SkyCoord, EarthLocation
from astropy.time import Time
from astropy import constants as const
import warnings
import pycbc.psd
import pycbc.noise
import dynesty
import scipy.stats as sc
from pycbc.types.timeseries import TimeSeries
import matplotlib.mlab as mlab
from scipy.interpolate import interp1d
import time
from time import time
from dynesty import NestedSampler
import warnings
import pickle
from dynesty.utils import resample_equal
import corner
from scipy.stats import gaussian_kde
from dynesty import plotting as dyplot

1.2 Interferometers Data stored in a Dictionary

1.2.1 (taken from https://git.ligo.org/lscsoft/lalsuite/blob/master/lal/src/tools/LALDetectors.h)

[ ]: data2arms=pd.read_csv("data2arms.txt", names=['name', 'value', 'comment'],
sep='=|#', engine='python')

[ ]: warnings.filterwarnings("ignore", 'This pattern has match groups')

name=['VIRGO', 'LHO', 'LLO', 'LIO', 'KAGRA']

108



spec=['(LON|LAT|ELE)', '(LOCATION_X|LOCATION_Y|LOCATION_Z)',�
,!'(X_DIRECTION_X|X_DIRECTION_Y|X_DIRECTION_Z)',�
,!'(Y_DIRECTION_X|Y_DIRECTION_Y|Y_DIRECTION_Z)']

TwoArmDetectorData={}
dic={}
diclabel=['geodetic_pos', 'position', 'nx', 'ny']

for k in range(len(name)):
for j in range(len(spec)):

dic[diclabel[j]]=(data2arms[data2arms.name.str.contains(name[k]+'.
,!*'+spec[j])].value.to_numpy(float))

TwoArmDetectorData[name[k]]= dic.copy()

1.3 Useful functions

[ ]: def gmst_from_gps(gps_time):

#519630571.347 gps is almost 0 gmst. This function computes the gmst_time in�
,!radians for a given gps_time. If no gps_time=None, the gmst_time is set to�
,!zero radians

if gps_time is None:
return 0

else:
return Time(gps_time, format='gps', scale='utc',location=(0,0)).

,!sidereal_time('mean').radian

def ColoredNoiseGen(psd,fs,name,signal):
import pycbc.psd
import pycbc.noise
if psd is 'white':

SNR=float(input('Please, provide a number for the SNR of the signal for�
,!%s detector:' %name))

noise=np.random.normal(0,1,len(signal))
Spwr=np.linalg.norm(signal)/len(signal)
Npwr=np.linalg.norm(noise)/len(signal)
scale=(Spwr/(Npwr*SNR))
return noise*scale

else:
while(psd is None):

psd=input('Please, provide a psd-string to add colored noise to the�
,!signal for %s detector \n (press enter to see all the possible psd or type�
,!\'white\' for a constant unitary PSD):'%name)

if(psd is ''):
print(pycbc.psd.get_lalsim_psd_list())
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psd=None
#Fix a seed for noise reproducibility

return np.array(pycbc.noise.gaussian.noise_from_string(psd,len(signal),1.
,!/fs,seed=123))

def P2R(radii, angles):
return radii * np.exp(1j*angles)

1.4 Source class implementation

[ ]: class Source():

def __init__ (self, right_ascension, declination, polarization_angle,�
,!polarization_amplitude, gps_time=None, gmst_time=None, d_l=1):

self.ra=right_ascension
self.dec=declination
self.pol_ang=polarization_angle
self.pol_amp=polarization_amplitude
self.dl=d_l

if gmst_time is None:
self.time=gmst_from_gps(gps_time)

else:
self.time=(2*np.pi*gmst_time)/86164.0905

1.5 Detector class implementation

[ ]: class Detector():

def __init__ (self, detector_name, geo_pos=None, pos=None):

#geo_pos is a numpy ndarray with the location of the detector expressed�
,!in geodetic coordinates [longitude,latitude,height]

#pos is a numpy ndarray with the location of the detector expressed in�
,!geocentric cartesian coordinates [x,y,z]

self.name=str(detector_name)
from astropy import units as u
if pos is None:

if geo_pos is None:
raise Exception("Error! You must specify the position of the�

,!interferometer on the earth!")
else:
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self.position=EarthLocation.from_geodetic(lon=geo_pos[0]*u.rad,�
,!lat=geo_pos[1]*u.rad, height=geo_pos[2])

else:
self.position=EarthLocation.from_geocentric(pos[0], pos[1], pos[2],�

,!unit=u.m)

self.latitude=self.position.lat
self.longitude=self.position.lon

def __str__(self):
return "[Class Detector] name: %s"%self.name

def antenna_pattern (self, right_ascension, declination, polarization_angle,�
,!gmst_time=None, gps_time=None):

ant_pat={}

#Source in Celestial Coordinates (dec=pi/2-theta and ra=-phi in�
,!spherical geocentric coordinates)

ra=right_ascension
dec=declination
psi=polarization_angle

#Compatibility check for multiple sources

if len(np.atleast_1d(ra))!=len(np.atleast_1d(dec)) or len(np.
,!atleast_1d(ra))!=len(np.atleast_1d(psi)):

raise Exception('Non compatible data for multiple sources: please�
,!provide array of equal length for ra, dec, pol_ang!')

if hasattr(gmst_time,'__len__') and len(np.atleast_1d(ra))!
,!=len(gmst_time):

raise Exception('Non compatible data for multiple sources: please�
,!provide array of equal length for times and sky location parameters!')

if hasattr(gps_time,'__len__') and len(np.atleast_1d(ra))!=len(gps_time):
raise Exception('Non compatible data for multiple sources: please�

,!provide array of equal length for times and sky location parameters!')

#Greenwhich hour angle of the source (which is -phi in spherical�
,!geocentric coordinates)

#if gmst_time is provided, gha is calculated directly using its value

#if gps_time is provided, the corrspondent gmst_time is calculated from�
,!it

#if no times are provided, the gmst_time of the event is set to zero�
,!(see gmst_from_gps function)
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if gmst_time is None:
gha=gmst_from_gps(gps_time)-ra

else:
gha=gmst_time-ra

#Given the position of the source in celestial coordinates, we want to�
,!express them in geocentric coordinates.

#We can express the celestial vector basis (X,Y,Z) in function of the�
,!geocentric ones just performing three rotations consecutively where Z is along�
,!the direction of propagation

X=np.array([-cos(psi)*sin(gha)-sin(psi)*cos(gha)*sin(dec),
-cos(psi)*cos(gha)+sin(psi)*sin(gha)*sin(dec),
sin(psi)*cos(dec)])

Y=np.array([sin(psi)*sin(gha)-cos(psi)*cos(gha)*sin(dec),
sin(psi)*cos(gha)+cos(psi)*sin(gha)*sin(dec),
cos(psi)*cos(dec)])

Z=np.array([-cos(dec)*cos(gha),cos(dec)*sin(gha),-sin(dec)])

#We can write the antenna pattern just computing out the double internal�
,!product between the detector response and the basis.

e_plus=np.einsum('i...,j...->ij...',X,X)-np.einsum('i...,j...->ij...
,!',Y,Y)

e_cross=np.einsum('i...,j...->ij...',X,Y)+np.einsum('i...,j...->ij...
,!',Y,X)

e_x=np.einsum('i...,j...->ij...',X,Z)+np.einsum('i...,j...->ij...',Z,X)
e_y=np.einsum('i...,j...->ij...',Y,Z)+np.einsum('i...,j...->ij...',Z,Y)
e_b=np.einsum('i...,j...->ij...',X,X)+np.einsum('i...,j...->ij...',Y,Y)
e_l=np.einsum('i...,j...->ij...',Z,Z)

plus=np.einsum('...ij,ij...->...',self.response,e_plus)
cross=np.einsum('...ij,ij...->...',self.response,e_cross)
x=np.einsum('...ij,ij...->...',self.response,e_x)
y=np.einsum('...ij,ij...->...',self.response,e_y)
b=np.einsum('...ij,ij...->...',self.response,e_b)
l=np.einsum('...ij,ij...->...',self.response,e_l)

for k in range(len(np.atleast_1d(ra))):
ant_pat[k]={}
ant_pat[k]['plus']=plus[k]
ant_pat[k]['cross']=cross[k]
ant_pat[k]['x']=x[k]
ant_pat[k]['y']=y[k]
ant_pat[k]['b']=b[k]
#ant_pat[k]['l']=l[k]
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return ant_pat

def amp_response(self, ra, dec, pol_ang, pol_amp, gmst_time=None,�
,!gps_time=None):

amp_res={}
for k in pol_amp.keys():

amp=0
for i, mode in enumerate(['plus', 'cross','x','y','b']):

amp+=pol_amp[k][mode]*self.antenna_pattern(ra, dec, pol_ang,�
,!gmst_time=gmst_time, gps_time=gps_time)[k][mode]

amp_res[k]=amp
return amp_res

def time_delay_from_location(self, location, right_ascension, declination,�
,!gmst_time=None, gps_time=None):

#Let be "location" a ndarray representing a reference position in cartesian�
,!geocentric coordinates where the GW signal is detected at a given gps time:�
,!this method returns the time delay at which GW signal is seen by the detector,�
,!given the position in the sky (in celestial coordinates) of the source. In�
,!other words, let t1 be the arrival time in this detector and t2 the arrival�
,!time in the location, this method returns t1-t2 in seconds.

#Location of the source in Celestial Coordinates (dec=pi/2-theta,�
,!ra=-phi in spherical geocentric coordinates)

ra=np.atleast_1d(right_ascension)
dec=np.atleast_1d(declination)

#Compatibility check for multiple sources

if len(ra)!=len(dec):
raise Exception('Non compatible data for multiple sources: please�

,!provide array of equal length for ra, dec, pol_ang!')
if hasattr(gmst_time,'__len__') and len(ra)!=len(gmst_time):

raise Exception('Non compatible data for multiple sources: please�
,!provide array of equal length for times and sky location parameters!')

if hasattr(gps_time,'__len__') and len(ra)!=len(gps_time):
raise Exception('Non compatible data for multiple sources: please�

,!provide array of equal length for times and sky location parameters!')

#Greenwhich hour angle of the source (-phi in spherical geocentric�
,!coordinates)

#if gmst_time is provided, gha is calculated directly using its value
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#if gps_time is provided, the corrspondent gmst_time is calculated from�
,!it

#if no times are provided, the gmst_time of the event is set to zero

if gmst_time is None:
gha=gmst_from_gps(gps_time)-ra

else:
gha=gmst_time-ra

#unit vector representing source direction

versor=cos(dec)*cos(gha),-cos(dec)*sin(gha),sin(dec)

#difference vector between positions

deltav= np.array([self.position.x.value, self.position.y.value, self.
,!position.z.value]) - location

#time of flight

dt_vector=-deltav.dot(versor)/const.c.value

deltat={}
for k in range(len(ra)):

deltat[k]=dt_vector[k]

return deltat

def time_delay_from_earth_center(self, right_ascension, declination,�
,!gmst_time=None, gps_time=None):

return self.time_delay_from_location(np.array([0,0,0]), right_ascension,�
,!declination, gmst_time, gps_time)

def time_delay_from_detector(self, other_detector, right_ascension,�
,!declination, gmst_time=None, gps_time=None):

location=np.array([other_detector.position.x.value, other_detector.
,!position.y.value, other_detector.position.z.value])

return self.time_delay_from_location(location, right_ascension,�
,!declination, gmst_time, gps_time)

def SinGausResponse(self, source, Omega=628, tau=0.1, T=32, fs=4096,�
,!plot=False, noise=False, psd=None):

#Constructing the signal

t_0=source.time*86164.0905/(2*np.pi)
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A_comp=self.amp_response(source.ra, source.dec, np.zeros(len(np.
,!atleast_1d(source.ra))), source.pol_amp, gmst_time=source.time)

dt_dict=self.time_delay_from_earth_center(source.ra, source.dec,�
,!gmst_time=source.time)

timeseries=np.arange(t_0-T/2,t_0+T/2,1/fs)

response={k: {'A': np.absolute(A_comp[k])/source.dl,
'phi': np.angle(A_comp[k])-Omega*(dt_dict[k]+t_0),
'dt': dt_dict[k]+t_0,
'pure_signal': np.absolute(A_comp[k])/source.dl*np.

,!cos(Omega*(timeseries-t_0-dt_dict[k]) + np.angle(A_comp[k]))*np.
,!exp(-(timeseries-t_0-dt_dict[k])**2/tau**2)} for k in A_comp.keys()}

if plot is True:
for k in A_comp.keys():

plt.tight_layout()
plt.plot(timeseries, response[k]['signal'])
plt.title('Response of %s - Source no. %s'%(self.name,k))
plt.ylabel('R [a.u.]')
plt.xlabel('Greenwich Mean Sidereal Time (s)')
plt.show()

for k in response.keys():
if noise is True:

response[k]['response'] = response[k]['pure_signal'] +�
,!ColoredNoiseGen(psd,fs,self.name,response[k]['pure_signal'])

else:
response[k]['response'] = response[k]['pure_signal']

return response

def show_map(self):
fig = plt.figure(figsize=(7,4))
plt.title('Position of "%s" detector'%self.name)
map = Basemap(projection='cyl', lat_0 = 0, lon_0 = 0, resolution = 'c',�

,!area_thresh = 0.1, llcrnrlon=-180.0, llcrnrlat=-90.0, urcrnrlon=180.0,�
,!urcrnrlat=90.0)

map.drawcoastlines()
map.drawparallels(np.arange(-90,90,45),labels=[1,1,0,1])
map.drawmeridians(np.arange(-180,180,45),labels=[1,1,0,1])
map.drawmapboundary()
map.scatter(self.longitude.value,self.latitude.value,c='red',latlon=True)
plt.show()

[ ]: class TwoArmDetector(Detector):

def __init__ (self, detector_name, n_x, n_y, geo_pos=None, pos=None):
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Detector.__init__(self, detector_name, geo_pos, pos)
self.nx=n_x
self.ny=n_y
self.response=0.5*(np.einsum('i,j->ij', self.nx, self.nx) - np.

,!einsum('i,j->ij', self.ny, self.ny))

def __str__(self):
return "[Class TwoArmDetector] name: %s"%self.name

def display(self):
print("%s is a Two-Arm Detector - Geodetic Coordinates \n\t[lon, lat,�

,!height] = [%s, %s, %s]" %(self.name, self.position.lon, self.position.lat,�
,!self.position.height))

[ ]: class ThreeArmDetector(Detector):

def __init__ (self, detector_name, n_x, n_y, n_z, geo_pos=None, pos=None):

Detector.__init__(self,detector_name,geo_pos,pos)
self.nx=n_x
self.ny=n_y
self.nz=n_z
self.response_x=0.5*(np.einsum('i,j->ij', self.nx, self.nx) - np.

,!einsum('i,j->ij', self.ny, self.ny))
self.response_y=0.5*(np.einsum('i,j->ij', self.ny, self.ny) - np.

,!einsum('i,j->ij', self.nz, self.nz))
self.response_z=0.5*(np.einsum('i,j->ij', self.nz, self.nz) - np.

,!einsum('i,j->ij', self.nx, self.nx))
self.response=np.array([self.response_x, self.response_y, self.

,!response_z])

def __str__(self):
return "[Class ThreeArmDetector] name: %s"%self.name

def display(self):
print("%s is a Three-Arm Detector - Geodetic Coordinates \n\t[lon, lat,�

,!height] = [%s, %s, %s]" %(self.name, self.position.lon, self.position.lat,�
,!self.position.height))

[ ]: class Network():

def __init__(self,name):
self.name=name
self.web={}
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def __str__(self):
return "[Class Network] composed of %i detectors \n(use display method�

,!to generate the list of detectors included)"%len(self.web)

def display(self):
print("Network: %s is composed by the following %i detectors:" %(self.

,!name, len(self.web)))
for k in self.web.keys():

self.web[k].display()

def get_lat(self):
return {k: self.web[k].latitude.value for k in self.web.keys()}

def get_lon(self):
return {k: self.web[k].longitude.value for k in self.web.keys()}

def add_detector(self,detector):
self.web[detector.name] = detector

def remove_detector(self,detector):
self.web.pop(detector.name)

def amp_response(self,ra,dec,pol_ang,pol_amp,gmst=None,gps=None):
res=self.web[list(self.web.keys())[0]].amp_response(ra, dec, pol_ang,�

,!pol_amp, gmst_time=gmst, gps_time=gps).keys()
return {k: {self.web[i].name: self.web[i].amp_response(ra, dec, pol_ang,�

,!pol_amp, gmst_time=gmst, gps_time=gps)[k] for i in self.web.keys()} for k in�
,!res}

def time_response(self,ra,dec,gmst=None,gps=None):
res=self.web[list(self.web.keys())[0]].time_delay_from_earth_center(ra,�

,!dec, gmst_time=gmst, gps_time=gps).keys()
return {k: {self.web[i].name: self.web[i].

,!time_delay_from_earth_center(ra, dec, gmst_time=gmst, gps_time=gps)[k] for i�
,!in self.web.keys()} for k in res}

def Response_SNR(self, source, Omega=628, tau=0.1, T=32, fs=4096,�
,!plot_res=False, plot_SNR=False, plot_PSD=False, noise=False, psd=None):

t_0=source.time*86164.0905/(2*np.pi)
timeseries=np.arange(t_0-T/2, t_0+T/2, 1/fs)

if psd is None: psd={i: None for i in self.web.keys()}
if psd is 'white': psd={i: 'white' for i in self.web.keys()}
res=self.web[list(self.web.keys())[0]].SinGausResponse(source,�

,!Omega=Omega, tau=tau, T=T, fs=fs).keys()
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response={k: {self.web[i].name: self.web[i].SinGausResponse(source,�
,!Omega=Omega, tau=tau, T=T, fs=fs, noise=noise, psd=psd[i])[k] for i in self.
,!web.keys()} for k in res}

if plot_res is True:
for k in response.keys():

fig, ax = plt.subplots(nrows=len(self.web), sharex=True,�
,!sharey=True, figsize=(10,10))

fig.subplots_adjust(hspace=0.3)
fig.suptitle('Signal of the source %s'%k)
for i,j in enumerate(self.web.keys()):

ax[i].plot(timeseries, response[k][self.web[j].
,!name]['response'])

ax[i].set_title('Response of %s'%(self.web[j].name))
ax[i].set_ylabel('R [a.u.]')
ax[i].set_xticks(np.arange(t_0-T/2,t_0+T/2,T/10))
ax[i].grid(True)

ax[len(self.web)-1].set_xlabel('Greenwich Mean Sidereal Time�
,!(s)')

plt.show()

psd={k: pycbc.psd.analytical.from_string(name_psd[k],fs*T,1/T,10) for k�
,!in self.web.keys()}

NFFT=4*fs
f_min=10
f_nyq=fs/2
SNR={}

for k in response.keys():
SNR[k]={}
for i in response[k].keys():

data_timeser=TimeSeries(response[k][i]['response'],1./fs)
template_timeser=TimeSeries(response[k][i]['pure_signal'],1./fs)
SNR_complex=np.array(pycbc.filter.matchedfilter.

,!matched_filter(template_timeser, data_timeser, psd[i],�
,!low_frequency_cutoff=10))

peaksample=int((response[k][i]['dt']+T/2-t_0)*fs)
SNR_complex = np.roll(SNR_complex, peaksample)
SNR[k][i] = abs(SNR_complex)

if plot_SNR is True:
plt.figure(figsize=(10,8))
plt.plot(np.arange(t_0-T/2, t_0+T/2, 1/

,!fs),SNR[k][i],'r',label='SNR(t)')
plt.grid()
plt.ylabel('SNR')
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plt.xlabel('Greenwich Mean Sidereal Time (s)')
plt.legend(loc='upper left')
plt.title('Matched filter SNR around Event %d - Detector�

,!%s'%(k,i))
plt.show()

if plot_PSD is True:
data_psd, freqs = mlab.psd(response[k][i]['response'], Fs =�

,!fs, NFFT = NFFT)
plt.figure(figsize=(8,3))
plt.loglog(freqs, np.sqrt(data_psd),'g',label='Strain Event�

,!%d - Detector %s'%(k,i))
plt.loglog(psd[i].sample_frequencies, np.sqrt(psd[i]),'b',�

,!label='Sqrt(Analytical PSD) - Detector %s'%i)
plt.grid()
plt.ylabel('ASD (strain/rtHz)')
plt.xlabel('Freq (Hz)')
plt.xlim(f_min,f_nyq)
plt.ylim(1e-25,1e-20)
plt.legend(loc='upper center')
plt.show()

SNR_max={k: {i: np.max(SNR[k][i]) for i in response[k].keys()} for k in�
,!response.keys()}

response['SNR(t)']=SNR

return response, SNR_max

def show_map(self):
from mpl_toolkits.basemap import Basemap
fig = plt.figure(figsize=(7,4))
plt.title('Network "%s" detectors'%self.name)
map = Basemap(projection='moll', lat_0 = 0, lon_0 = 0)
map.drawcoastlines()
map.drawparallels(np.arange(-90,90,45),labels=[1,1,0,1])
map.drawmapboundary()
map.scatter(np.array(list(self.get_lon().values())), np.array(list(self.

,!get_lat().values())), c='red', latlon=True)
plt.show()
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2 Simulation of the response of a network of interferometers to GW
signal

2.1 Creation of the network

[ ]: OldNet=Network("LIGO-Virgo")
OldNet.add_detector(TwoArmDetector('VIRGO', TwoArmDetectorData['VIRGO']['nx'],�

,!TwoArmDetectorData['VIRGO']['ny'],�
,!pos=TwoArmDetectorData['VIRGO']['position']))

OldNet.add_detector(TwoArmDetector('LHO', TwoArmDetectorData['LHO']['nx'],�
,!TwoArmDetectorData['LHO']['ny'], pos=TwoArmDetectorData['LHO']['position']))

OldNet.add_detector(TwoArmDetector('LLO', TwoArmDetectorData['LLO']['nx'],�
,!TwoArmDetectorData['LLO']['ny'], pos=TwoArmDetectorData['LLO']['position']))

Net=Network("TheFive")
for k in TwoArmDetectorData:

Net.add_detector(TwoArmDetector(k,TwoArmDetectorData[k]['nx'],�
,!TwoArmDetectorData[k]['ny'], pos=TwoArmDetectorData[k]['position']))

2.2 Creation of a random source uniformly distributed on the celestial sphere, at ran-
dom sidereal time

2.2.1 Generating function

[ ]: def generate_random_sky_location (N=100,plot=False):

cos_theta, ra = np.random.uniform(-1,1,N), np.random.uniform(0,2*np.pi,N)
dec = np.arcsin(cos_theta)

if plot is True:
fig=plt.figure()
n=80
cos_theta0, phi0 = np.linspace(-1, 1, n), np.linspace(0, 2*np.pi, n)
theta0 = np.arccos(cos_theta0)
THETA, PHI = np.meshgrid(theta0, phi0, indexing = "ij")
R=np.zeros((n,n))
for i in range(n):

for j in range(n):
R[i,j]=1

X = R * np.sin(THETA) * np.cos(PHI)
Y = R * np.sin(THETA) * np.sin(PHI)
Z = R * np.cos(THETA)
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim(-1,1)
ax.set_ylim(-1,1)
ax.set_zlim(-1,1)
ax.set_xlabel('x')
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ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_xticks(np.arange(-1,1.2,0.5))
ax.set_yticks(np.arange(-1,1.2,0.5))
ax.set_zticks(np.arange(-1,1.2,0.5))
plot = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=0,�

,!alpha=0.2, antialiased=False)
xi=1.01*np.cos(dec)*np.cos(ra)
yi=-1.01*np.cos(dec)*np.sin(ra)
zi=1.01*np.sin(dec)
ax.scatter(xi, yi, zi, s=10, c='r', zorder=10)
x, y, z = np.zeros((3,3))
u, v, w = np.array([[1.5,0,0],[0,1.5,0],[0,0,1.5]])
ax.quiver(x,y,z,u,v,w, arrow_length_ratio=0.05, color='black')
ax.view_init(30,45)
ax.figure.set_size_inches(5,5)
ax.set_title('%d sources uniformily distributed \non the Celestial�

,!Sphere'%N)
plt.show()

return ra, dec

def generate_random_sidereal_time ():
return np.random.uniform(0,86164.0905,1)[0]

def generate_random_amplitudes(lambda_v,lambda_s,A_0=1e-21,N=10):
ampl={}
for i in range(N):

phi=np.random.uniform(0,2*np.pi,5)
f=np.random.uniform(0,1,2)
e_cross,e_y=np.sqrt(1-lambda_v-lambda_s)*f[0], np.sqrt(lambda_v)*f[1]
e_plus,e_x=np.sqrt(1-lambda_v-lambda_s-e_cross**2), np.

,!sqrt(lambda_v-e_y**2)
e_s=np.sqrt(lambda_s)
r=A_0*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl[i]={}
ampl[i]['plus']= c[0]
ampl[i]['cross']= c[1]
ampl[i]['x']= c[2]
ampl[i]['y']= c[3]
ampl[i]['b']= c[4]

return ampl

def generate_random_sources(lambda_v,lambda_s,A_0=1,N=10,plot=False):
ra,dec=generate_random_sky_location(N=N,plot=plot)
t_0=0
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amplitude=generate_random_amplitudes(lambda_v,lambda_s,A_0=A_0,N=N)
psi=np.zeros(N)
return Source(ra,dec,psi,amplitude,gmst_time=t_0) #WARNING: MULTIPLE TIMES�

,!NOT IMPLEMENTED

2.2.2 Creation of the Source

[ ]: lambda_v=0.1
lambda_s=0.1
A_0=1e-22
T=4
fs=4096
sourceran=generate_random_sources(lambda_v,lambda_s,N=1,A_0=A_0)
t_0=0
true={'ra': sourceran.ra[0], 'dec': sourceran.dec[0],

'phi_plus': (2*np.pi+np.angle(sourceran.pol_amp[0]['plus']))%(2*np.pi),
'phi_cross': (2*np.pi+np.angle(sourceran.pol_amp[0]['cross']))%(2*np.pi),
'phi_x': (2*np.pi+np.angle(sourceran.pol_amp[0]['x']))%(2*np.pi),
'phi_y': (2*np.pi+np.angle(sourceran.pol_amp[0]['y']))%(2*np.pi),
'phi_s': (2*np.pi+np.angle(sourceran.pol_amp[0]['b']))%(2*np.pi),
'lambda_v': (np.abs(sourceran.pol_amp[0]['x'])**2+np.abs(sourceran.

,!pol_amp[0]['y'])**2)/A_0**2,
'lambda_s': np.abs(sourceran.pol_amp[0]['b'])**2/A_0**2,
'epsilon_cross': np.abs(sourceran.pol_amp[0]['cross'])/A_0,
'epsilon_y': np.abs(sourceran.pol_amp[0]['y'])/A_0,'A_0': A_0}

3 Toy model response of the network for a single source with a Gaus-
sian Colored Noise with PSD & SNR study

[ ]: name_psd={'VIRGO':'AdvVirgo', 'LHO':'aLIGOAPlusDesignSensitivityT1800042', 'LLO':
,!'aLIGOAPlusDesignSensitivityT1800042', 'LIO':
,!'aLIGOAPlusDesignSensitivityT1800042', 'KAGRA':'KAGRA'}

response,SNR=Net.Response_SNR(sourceran, T=T, plot_res=True, plot_SNR=True,�
,!plot_PSD=True, noise=True, psd=name_psd)

4 Recap

[ ]: print(true)
print(SNR)
true_arr=np.array(list(true.values()))
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5 Bayesian analysis

5.1 Preliminaries

[ ]: datafreq = np.fft.rfftfreq((fs*T),1/fs)
df=datafreq[1]-datafreq[0]
psd={}
data_fft={}

for k in response[0].keys():

data_fft[k]=np.fft.rfft(response[0][k]['response'])

psd_var=np.interp(datafreq,np.array(pycbc.psd.analytical.
,!from_string(name_psd[k], fs*T,1/T,10).sample_frequencies), np.array(pycbc.psd.
,!analytical.from_string(name_psd[k], fs*T,1/T,10)))

psd[k]=psd_var

def plot_result(res, thruths, labels, filename=None):
from dynesty import plotting as dyplot
plt.tight_layout()
cfig, caxes = dyplot.cornerplot(res, color='blue', truths=truths,�

,!truth_color='red', show_titles=True, max_n_ticks=5, quantiles=None,�
,!labels=labels)

fg, ax = dyplot.cornerpoints(res, cmap='plasma', truths=truths, kde=False,�
,!labels=labels)

fig, axes = dyplot.traceplot(res, truths=truths, truth_color='red',�
,!kde=False, show_titles=True, trace_cmap='viridis', connect=True,�
,!connect_highlight=range(5), labels=labels)

if filename is not None:
fig.savefig(filename+'_trace.png')
cfig.savefig(filename+'_corn.png')
fg.savefig(filename+'_pcorn.png')

allpar=False
sixpar=False
skypar=False
amppar=True
lambdapar=True

5.2 Full estimation of the 12 parameters

[ ]: if allpar is True:
def prior_transform(u):

"""Transforms the uniform random variable �u ~ Unif[0., 1.)�

to the parameter of interest

"""
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x=np.array(u)

# right_ascension \in [0, 2pi]

x[0] = 2*np.pi*np.mod(u[0],1)

# cos(declination) uniform \in [-1., 1]

x[1] = np.arcsin(2.*np.minimum(np.maximum(u[1], abs(u[1])), 2 - u[1])- 1.
,!)

# phi_p \in [0, 2pi]

x[2:7]=2*np.pi*np.mod(u[2:7],1)

# lambda_v \in [0,1)

x[7]=u[7]

# lambda_s \in [0,lambda_v)

x[8]=u[8]*(1-u[7])

# epsilon_cross \in [0,sqrt(1-lambda_v-lambda_s))

x[9]=u[9]*np.sqrt(1-u[7]-u[8]*(1-u[7]))

# epsilon_y \in [0,sqrt(lambda_v))

x[10]=u[10]*np.sqrt(u[7])

# A_0 log-uniform \in [1e-22,1e-20)

x[11]=10.** (u[11]*2 - 22.)

return x

def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):
#Building the source_amplitude

phi=theta[2:7]
e_plus,e_x=np.sqrt(1-theta[7]-theta[8]-theta[9]**2), np.

,!sqrt(theta[7]-theta[10]**2)
e_cross,e_y=theta[9],theta[10]
e_s=np.sqrt(theta[8])
r=theta[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
so=Source(theta[0], theta[1], np.array([0]), ampl,gmst_time=t_0)
res=detector.SinGausResponse(so, T=T, fs=fs, Omega=Omega, tau=tau)
return np.fft.rfft(res[event]['pure_signal'])
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def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return�
,!-np.inf

delta_fft[k]=data_fft[k]-model_fft(theta,detector=Net.
,!web[k],T=T,fs=fs)

delta_fft_sqr[k]=np.abs(delta_fft[k])**2
exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.

,!5*np.log(np.pi*T*psd[k][T*10:]/2))
return exp

truths=true_arr
labels=list(true.keys())
t1=time()
sampler = NestedSampler(lnlike,�

,!prior_transform,12,periodic=[0,1,2,3,4,5,6],sample='rwalk')
sampler.run_nested(dlogz=100)
results = sampler.results
t1_end=time()
plot_result(results,truths,labels)

5.3 Sky-location+Ampl param estimate (6 params)

[ ]: if sixpar is True:
def prior_transform(u):

"""Transforms the uniform random variable �u ~ Unif[0., 1.)�

to the parameter of interest

"""

x=np.array(u)

# right_ascension \in [0, 2pi]

x[0] = 2*np.pi*np.mod(u[0], 1)

# cos(declination) uniform \in [-1., 1]

x[1] = np.arcsin(2.*np.minimum(np.maximum(u[1], abs(u[1])), 2 - u[1])- 1.
,!)

# lambda_v \in [0,1)

x[2]=u[2]

# lambda_s \in [0,lambda_v)

x[3]=u[3]*(1-u[2])
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# epsilon_cross \in [0,sqrt(1-lambda_v-lambda_s))

x[4]=u[4]*np.sqrt(1-u[2]-u[3]*(1-u[2]))

# epsilon_y \in [0,sqrt(lambda_v))

x[5]=u[5]*np.sqrt(u[2])

return x

def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):
#Building the source_amplitude

phi=true_arr[2:7]
e_plus,e_x=np.sqrt(1-theta[2]-theta[3]-theta[4]**2),np.

,!sqrt(theta[2]-theta[5]**2)
e_cross,e_y=theta[4],theta[5]
e_s=np.sqrt(theta[3])
r=true_arr[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
so=Source(theta[0],theta[1],np.array([0]),ampl,gmst_time=t_0)
res=detector.SinGausResponse(so,T=T,fs=fs,Omega=Omega,tau=tau)
return np.fft.rfft(res[event]['pure_signal'])

def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return�
,!-np.inf

delta_fft[k]=data_fft[k]-model_fft(theta,detector=Net.
,!web[k],T=T,fs=fs)

delta_fft_sqr[k]=np.abs(delta_fft[k])**2
exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.

,!5*np.log(np.pi*T*psd[k][T*10:]/2))
return exp

truths=np.
,!array([true_arr[0],true_arr[1],true_arr[7],true_arr[8],true_arr[9],true_arr[10]])

labels=[list(true.keys())[0],list(true.
,!keys())[1],'$\lambda_v$','$\lambda_s$','$\epsilon_x$','$\epsilon_y$']
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t2=time()
halfsampler = NestedSampler(lnlike,�

,!prior_transform,6,periodic=[0,1],sample='rwalk')
halfsampler.run_nested(dlogz=1)
halfresults = halfsampler.results
t2_end=time()
plot_result(halfresults,truths,labels)

5.4 Sky-location estimate (ra/dec)

[ ]: if skypar is True:
def prior_transform(u):

"""Transforms the uniform random variable �u ~ Unif[0., 1.)�

to the parameter of interest

"""

x=np.array(u)

# right_ascension \in [0, 2pi]

x[0] = 2*np.pi*np.mod(u[0], 1)

# cos(declination) uniform \in [-1., 1]

x[1] = np.arcsin(2.*np.minimum(np.maximum(u[1], abs(u[1])), 2 - u[1])- 1.
,!)

return x

def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):

#Building the source_amplitude

phi=true_arr[2:7]
e_plus,e_x=np.sqrt(1-true_arr[7]-true_arr[8]-true_arr[9]**2),np.

,!sqrt(true_arr[7]-true_arr[10]**2)
e_cross,e_y=true_arr[9],true_arr[10]
e_s=np.sqrt(true_arr[8])
r=true_arr[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
so=Source(theta[0],theta[1],np.array([0]),ampl,gmst_time=t_0)
res=detector.SinGausResponse(so,T=T,fs=fs,Omega=Omega,tau=tau)
return np.fft.rfft(res[event]['pure_signal'])
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def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return�
,!-np.inf

delta_fft[k]=data_fft[k]-model_fft(theta,detector=Net.
,!web[k],T=T,fs=fs)

delta_fft_sqr[k]=np.abs(delta_fft[k])**2
exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.

,!5*np.log(np.pi*T*psd[k][T*10:]/2))
return exp

truths=true_arr[0:2]
labels=list(true.keys())[0:2]
t3=time()
skysampler = NestedSampler(lnlike, prior_transform,2,periodic=[0,1])
skysampler.run_nested()
skyresults = skysampler.results
t3_end=time()
plot_result(skyresults,truths,labels)

5.5 Lambda/Epsilon estimate (4 params)

[ ]: if amppar is True:
def prior_transform(u):

"""Transforms the uniform random variable �u ~ Unif[0., 1.)�

to the parameter of interest

"""

x=np.array(u)

# lambda_v \in [0,1)

x[0]=u[0]

# lambda_s \in [0,lambda_v)

x[1]=u[1]*(1-u[0])

# epsilon_cross \in [0,sqrt(1-lambda_v-lambda_s))

x[2]=u[2]*np.sqrt(1-u[0]-u[1]*(1-u[0]))

# epsilon_y \in [0,sqrt(lambda_v))

x[3]=u[3]*np.sqrt(u[0])

return x
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def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):
#Building the source_amplitude

phi=true_arr[2:7]
e_plus,e_x=np.sqrt(1-theta[0]-theta[1]-theta[2]**2),np.

,!sqrt(theta[0]-theta[3]**2)
e_cross,e_y=theta[2],theta[3]
e_s=np.sqrt(theta[1])
r=true_arr[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
so=Source(true_arr[0],true_arr[1],np.array([0]),ampl,gmst_time=t_0)
res=detector.SinGausResponse(so,T=T,fs=fs,Omega=Omega,tau=tau)
return np.fft.rfft(res[event]['pure_signal'])

def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return�
,!-np.inf

delta_fft[k]=data_fft[k]-model_fft(theta,detector=Net.
,!web[k],T=T,fs=fs)

delta_fft_sqr[k]=np.abs(delta_fft[k])**2
exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.

,!5*np.log(np.pi*T*psd[k][T*10:]/2))
return exp

truths=true_arr[7:11]
labels=['$\lambda_v$','$\lambda_s$','$\epsilon_x$','$\epsilon_y$']
t4=time()
ampsampler = NestedSampler(lnlike, prior_transform,4)
ampsampler.run_nested()
ampresults = ampsampler.results
t4_end=time()
plot_result(ampresults,truths,labels)
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5.6 Lambdas estimate

[ ]: if lambdapar is True:
def prior_transform(u):

"""Transforms the uniform random variable �u ~ Unif[0., 1.)�

to the parameter of interest

"""

x=np.array(u)
x[0]=u[0] # lambda_v�

,!\in [0,1)

x[1]=u[1]*(1-u[0]) # lambda_s�
,!\in [0,lambda_v)

return x

def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):
#Building the source_amplitude

phi=true_arr[2:7]
if 1-theta[0]-theta[1]-true_arr[9]**2<0 or�

,!theta[0]-true_arr[10]**2<0: return None
e_plus,e_x=np.sqrt(1-theta[0]-theta[1]-true_arr[9]**2),np.

,!sqrt(theta[0]-true_arr[10]**2)
e_cross,e_y=true_arr[9],true_arr[10]
e_s=np.sqrt(theta[1])
r=true_arr[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
so=Source(true_arr[0],true_arr[1],np.array([0]),ampl,gmst_time=t_0)
res=detector.SinGausResponse(so,T=T,fs=fs,Omega=Omega,tau=tau)
return np.fft.rfft(res[event]['pure_signal'])

def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return�
,!-np.inf

delta_fft[k]=data_fft[k]-model_fft(theta,detector=Net.
,!web[k],T=T,fs=fs)

delta_fft_sqr[k]=np.abs(delta_fft[k])**2
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exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.
,!5*np.log(np.pi*T*psd[k][T*10:]/2))

return exp

truths=true_arr[7:9]
labels=['$\lambda_v$','$\lambda_s$']
t5=time()
lambdasampler = NestedSampler(lnlike, prior_transform,2)
lambdasampler.run_nested(dlogz=40)
lambdaresults = lambdasampler.results
t5_end=time()
plot_result(lambdaresults,truths,labels)

6 DATA storing and plotting functions

[ ]: def lambda_res(data):
SNR=np.array(list(data['SNR'][0].values()))
res=data['lambda']['res']
time=data['lambda']['time']
logZdynesty = res.logz[-1] # value of logZ

logZerrdynesty = res.logzerr[-1] # estimate of the statistcal uncertainty�
,!on logZ

# posterior samples

weights = np.exp(res['logwt'] - res['logz'][-1])
samples_dynesty = resample_equal(res.samples, weights)
print('weights are fine!')
lambda_v=np.zeros(len(samples_dynesty))
lambda_s=np.zeros(len(samples_dynesty))
for i in range(len(samples_dynesty)): lambda_v[i]=samples_dynesty[i][0]
for i in range(len(samples_dynesty)): lambda_s[i]=samples_dynesty[i][1]
resdict={}
resdict['samples']=samples_dynesty
resdict['lv_mu'] = np.mean(samples_dynesty[:,0]) # mean of lambda_v�

,!samples

resdict['lv_sig'] = np.std(samples_dynesty[:,0]) # standard deviation�
,!of lambda_v samples

resdict['ls_mu'] = np.mean(samples_dynesty[:,1]) # mean of lambda_s�
,!samples

resdict['ls_sig'] = np.std(samples_dynesty[:,1]) # standard deviation�
,!of lambda_s samples

resdict['cc'] = np.corrcoef(samples_dynesty.T)[0,1] # correlation�
,!coefficient between parameters
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resdict['npos'] = len(samples_dynesty) # number of posterior�
,!samples

resdict['logZ'] = logZdynesty # log marginalised�
,!likelihood

resdict['logZerr'] = logZerrdynesty # uncertainty on log(Z)

resdict['time'] = time #running time of the�
,!bayes code (in seconds)

resdict['v'] = lambda_v
resdict['s'] = lambda_s
resdict['SNR_mu']=np.mean(SNR)
resdict['SNR_std']=np.std(SNR)/np.mean(SNR)
return resdict

def trydict(data):
try:

data['lambda_res']=lambda_res(data)
print('resdict_created')
return 1

except Exception:
print('err_trydict')
return 0

def plot_dy(data):
res=data['lambda']['res']
truths=[data['true']['lambda_v'], data['true']['lambda_s']]
labels=['$\lambda_v$','$\lambda_s$']
cfig, caxes = dyplot.cornerplot(res, color='blue', truths=truths,�

,!truth_color='red', show_titles=True, max_n_ticks=5, quantiles=None,�
,!labels=labels)

fg, ax = dyplot.cornerpoints(res, cmap='plasma', truths=truths, kde=False,�
,!labels=labels)

fig, axes = dyplot.traceplot(res, truths=truths, truth_color='red',�
,!show_titles=True, trace_cmap='viridis', connect=True,�
,!connect_highlight=range(5), labels=labels)

def plot_cor(data):
"""

Function to plot posteriors using corner.py and scipy's gaussian KDE�
,!function.

"""

samples=data['resdict']['samples']
fig = corner.corner(samples, labels=[r'$\lambda_v$', r'$\lambda_s$'],�

,!hist_kwargs={'density': True})

# plot KDE smoothed version of distributions

for axidx, samps in zip([0, 3], samples.T):
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kde = gaussian_kde(samps)
xvals = fig.axes[axidx].get_xlim()
xvals = np.linspace(xvals[0], xvals[1], 100)
fig.axes[axidx].plot(xvals, kde(xvals), color='firebrick')

[ ]: data={'response': response, 'SNR': SNR, 'true': true}

if allpar is True: data['allpar']={'results':results,'time':t1_end-t1}
if sixpar is True: data['sixpar']={'results':halfresults,'time':t2_end-t2}
if skypar is True: data['skypar']={'results':skyresults,'time':t3_end-t3}
if amppar is True: data['amppar']={'results':ampresults,'time':t4_end-t4}
if lambdapar is True: data['lambdapar']={'results':lambdaresults,'time':

,!t5_end-t5}

trydict(data)

filename='data'

# Store data (serialize)

with open(filename+'.pickle', 'wb') as handle:
print('Saving data in %s'%filename)
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)

#Get data (deserialize)

with open(filename+'.pickle', 'rb') as handle:
print('Getting data from %s'%filename)
data= pickle.load(handle)

7 APPENDIX) Uni- and Bi- dimensional Study of the Likelihood

[ ]: def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):
#Building the source_amplitude

phi=theta[2:7]
e_plus,e_x=np.sqrt(1-theta[7]-theta[8]-theta[9]**2),np.

,!sqrt(theta[7]-theta[10]**2)
e_cross,e_y=theta[9],theta[10]
e_s=np.sqrt(theta[8])
r=theta[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
so=Source(theta[0], theta[1], np.array([0]), ampl,gmst_time=t_0)
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res=detector.SinGausResponse(so, T=T, fs=fs, Omega=Omega, tau=tau)
return np.fft.rfft(res[event]['pure_signal'])

def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return -np.inf
delta_fft[k]=data_fft[k]-model_fft(theta, detector=Net.web[k],T=T,fs=fs)
delta_fft_sqr[k]=np.abs(delta_fft[k])**2
exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.5*np.

,!log(np.pi*T*psd[k][T*10:]/2))
return exp

[ ]: #ra,dec and phases

k=2
N=400
false=np.copy(true_arr)

delta=np.zeros(N)
for i in range(N):

delta[i]=(lnlike(false)-lnlike(true_arr))
print('%d'%i,end="\r")
false[k]+=2*np.pi/N

plt.figure()
plt.plot(2/N*np.arange(N),delta)
plt.title('$\Delta$L varying $\phi_+$')
plt.xlabel('$\phi_+$ ($\pi$ unit)')
plt.show()

[ ]: #amplitude param

for k in range(4):

N=500
false=np.copy(true_arr)

delta=np.zeros(N)
xdelta=np.zeros(N)
for i in range(N):

delta[i]=(lnlike(false)-lnlike(true_arr))
xdelta[i]=false[k+7]
print('%d'%i,end="\r")
false[k+7]=np.random.random_sample()
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while((1-false[7]-false[8]-false[9]**2)<0 or (false[7]-false[10]**2)<0):
false[k+7]=np.random.random_sample()

plt.figure()
plt.plot(xdelta,delta)
plt.axvline(x=true_arr[k+7],color='red')
plt.title('Likelihood varying %s'%list(true.keys())[k+7])
plt.show()

[ ]: #overall_amplitude

N=500
false=np.copy(true_arr)
delta=np.zeros(N)

falseamp=np.logspace(0,2,N,base=10)/1e22

for i in range(N):
false[11]=falseamp[i]
delta[i]=(lnlike(false)-lnlike(true_arr))
print('%d'%i,end="\r")

plt.figure()
plt.loglog(falseamp,np.abs(delta))
plt.axvline(x=true_arr[11],color='red')
plt.title('|$\Delta$L| varying $A_0$')
plt.xlabel('$A_0$ (a.u.)')
plt.show()

#I am plotting the deltaln absolute value, which is 0 only for the true value,�
,!otherwise positive

[ ]: def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):
#Building the source_amplitude

phi=true_arr[2:7]
e_plus,e_x=np.sqrt(1-true_arr[7]-true_arr[8]-true_arr[9]**2),np.

,!sqrt(true_arr[7]-true_arr[10]**2)
e_cross,e_y=true_arr[9],true_arr[10]
e_s=np.sqrt(true_arr[8])
r=true_arr[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
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so=Source(theta[0],theta[1],np.array([0]),ampl,gmst_time=t_0)
res=detector.SinGausResponse(so,T=T,fs=fs,Omega=Omega,tau=tau)
return np.fft.rfft(res[event]['pure_signal'])

def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return -np.inf
delta_fft[k]=data_fft[k]-model_fft(theta,detector=Net.web[k],T=T,fs=fs)
delta_fft_sqr[k]=np.abs(delta_fft[k])**2
exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.5*np.

,!log(np.pi*T*psd[k][T*10:]/2))
return exp-2100000

fig = plt.figure()
ax = fig.gca(projection='3d')
N=50
# Make data.

x = np.arange(0, 2*np.pi, 2*np.pi/N)
y = np.arange(-np.pi,np.pi, 2*np.pi/N)
X, Y = np.meshgrid(x, y)
Z=np.zeros((N,N))
for i in range(N):

for j in range(N):
Z[i,j] = lnlike(np.array([x[i],y[j]]))

# Plot the surface.

surf = ax.plot_surface(X, Y, Z, cmap=cm.get_cmap('jet'),
linewidth=0, antialiased=False)

fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()

[ ]: def model_fft(theta,detector,T,fs,Omega=628,tau=0.1,event=0):
#Building the source_amplitude

phi=true_arr[2:7]
if 1-theta[0]-theta[1]-true_arr[9]**2<0 or theta[0]-true_arr[10]**2<0:�

,!return None
e_plus,e_x=np.sqrt(1-theta[0]-theta[1]-true_arr[9]**2),np.

,!sqrt(theta[0]-true_arr[10]**2)
e_cross,e_y=true_arr[9],true_arr[10]
e_s=np.sqrt(theta[1])
r=true_arr[11]*np.array([e_plus,e_cross,e_x,e_y,e_s])
c=P2R(r,phi)
ampl={event: {}}
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ampl[event]['plus']= c[0]
ampl[event]['cross']= c[1]
ampl[event]['x']= c[2]
ampl[event]['y']= c[3]
ampl[event]['b']= c[4]
so=Source(true_arr[0],true_arr[1],np.array([0]),ampl,gmst_time=t_0)
res=detector.SinGausResponse(so,T=T,fs=fs,Omega=Omega,tau=tau)
return np.fft.rfft(res[event]['pure_signal'])

def lnlike(theta):
delta_fft={}
delta_fft_sqr={}
exp=0
for k in response[0].keys():

if model_fft(theta,detector=Net.web[k],T=T,fs=fs) is None: return -np.inf
delta_fft[k]=data_fft[k]-model_fft(theta,detector=Net.web[k],T=T,fs=fs)
delta_fft_sqr[k]=np.abs(delta_fft[k])**2
exp+=np.sum(-2*(delta_fft_sqr[k][T*10:]/psd[k][T*10:])*df/fs**2-0.5*np.

,!log(np.pi*T*psd[k][T*10:]/2))
return exp-2100000

fig2 = plt.figure()
ax2 = fig2.gca(projection='3d')

# Make data.

x = np.arange(0, 0.5, 0.01)
y = np.arange(0, 0.5, 0.01)
X, Y = np.meshgrid(x, y)
Z=np.zeros((50,50))
for i in range(50):

for j in range(50):
Z[i,j] = lnlike(np.array([x[i],y[j]]))

# Plot the surface.

surf2 = ax2.plot_surface(X, Y, Z, cmap=cm.get_cmap('jet'),
linewidth=0, antialiased=False)

fig2.colorbar(surf2, shrink=0.5, aspect=5)
plt.show()
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