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Abstract We make use of the condition of vanishing com-
plexity, based on the current definition proposed by Herrera
(Phys Rev D 97:044010, 2018), to find exact interior solu-
tions to the Einstein equations for describing compact stellar
objects. In the framework of general relativity, the complex-
ity factor is an outcome of the orthogonal splitting of the
Riemann tensor from which structure scalars are obtained.
By using the Vaidya-Tikekar (V-T) metric ansatz (J Astro-
phys Astron 3:325, 1982) for the spacetime of a static spher-
ically symmetric matter distribution, we model superdense,
relativistic stars. The interior spacetime is matched to the
exterior Schwarzschild solution across the boundary of the
star where the radial pressure vanishes. The physical viabil-
ity of the model has been tested following the current data
corresponding to the pulsar 4U 1820 — 30. The stability of
the model fulfilled the given criteria, namely the Tolman—
Oppenheimer—Volkoff equation, the adiabatic index and the
causality conditions.

1 Introduction

Einstein’s general theory of relativity (GR) is currently the
most acceptable theory for describing gravitational phenom-
ena [1]. It has successfully explained and given accurate cal-
culations of the deflection of light which passes near massive
bodies, and the more complex motions of objects in strong
gravitational fields. The detection of gravitational waves, and
additional outcome of GR, has also been confirmed and is
now actively studied. Compact objects such as neutron stars
are ideal systems for the application of general relativity. The
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field equations obtained relate the metric functions, some-
times labelled gravitational potentials, to the matter content
which is also to be determined to some extent depending on
the method of closure. It is common to choose a well estab-
lished potential, such as that of Vaidya and Tikekar [2], and
then solve for the remaining metric function in the case of
a line element involving two metric functions. Inherent in
proceeding with the solution process, an equation of state is
often used [3-5] or some other constraint on the matter vari-
ables, such as pressure isotropy [6]. Constraints can also be
imposed on the spacetime geometry, such as the Karmarkar
condition which constrains the Riemann tensor to allow for
embedding into a five-dimensional flat metric [7,8].

The complexity factor as proposed by Herrera [9] offers
itself as an additional means of constraining the matter con-
tent, perhaps an alternative route to imposing an equation of
state. Moreover, the complexity factor may be considered for
both static and dynamical systems [9, 10]. It has thus become
significant in modelling relativistic, self-gravitating systems
such as massive, compact objects. In the complexity factor
formalism, an additional relationship is established, connect-
ing the principal quantities obtained from the energy momen-
tum tensor, namely, the energy density, the pressures, shear
stresses and the heat flux in the case of dynamical, dissipa-
tive collapse. A definition of complexity based on these bulk
properties is quite different from the original definition, based
on information content and disequilibrium approached from
a statistical analysis [11,12] which has also been applied to
compact stars [13,14]. For astrophysical systems, the more
recent definition for the complexity factor arose from the
orthogonal splitting of the Riemann tensor and an analysis
of the five structure scalars which emerged. Initially stud-
ied by Bel [15] and then followed up by Gémez-Lobo [16]
and Herrera et al. [17], structure scalars were obtained which
could be used to develop a new notion of complexity. In the
case of static systems, the complexity factor is in essence
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an interplay between the pressure anisotropy and the energy
density inhomogeneity.

The concept of complexity within the context of rela-
tivistic, compact stellar objects has thus been of much inter-
est and has expanded the methods for obtaining physically
viable interior solutions for self-gravitating, relativistic stars
[18,19]. The complexity factor formalism was initially only
investigated from a mathematical perspective. However the
benefits of using the current definition are seen when it is used
as an additional condition for closing the system of structure
equations required for hydrostatic equilibrium. The case of
vanishing complexity factor is somewhat of an ideal situation
however it allows for the removal of other constraints such
as pressure isotropy and imposing of an equation of state
[20]. In particular, the complexity factor may be used as a
self-consistent way to introduce anisotropy. The success of
applying the vanishing complexity condition has been shown
in recent studies, even for systems to which modified and
higher order gravity theory has been applied [21-23].

In this work we obtain solutions for relativistic stars which
are described by Vaidya—Tikekar (V-T) geometry [2]. The V-
T potential is well-suited to the study of superdense compact
objects [24-28]. The matter distribution is considered to be
anisotropic and the complexity factor formalism is used to
obtain the complementary metric function. A model is gen-
erated and applied to the well-studied ultra-compact binary
4U1820—30 which has a short orbital period of about 11 min
[29,30]. The neutron star component has a well-determined
mass and radius, typical of those expected for neutron stars.
The model generated is shown to be stable, satisfying the
energy conditions and physically reasonable it terms of the
calculated quantities which may be compared with other
models for such a system.

The paper is organized as follows: In Sect. 2, the Ein-
stein equations corresponding to the spherically symmet-
ric anisotropic matter distribution have been laid down. In
Sect. 3, the vanishing of complexity factor has been used to
generate the new exact solutions to construct a stellar model.
The Sect. 4, deals with the necessary physical requirements
for a realistic star to validate the model. In Sect. 5, the match-
ing of the interior with the exterior Schwarzschild metric
provided to meet the physical requirement for constructing
realistic star and to fix the model parameters. In Sect. 6, using
the current data available for the pulsar 4U 1820 — 30, has
been used to analyze the physical features of the model. Sec-
tion 7 is dedicated to analyzing the stability of the model
under different required conditions. Finally, in Sect. 8, some
concluding remarks have been given by highlighting some
main results.
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2 The field equations

The interior spacetime of a spherically symmetric compact
object in the system of coordinates (x* = ¢, x! = r, x> =6,
x3 = ¢) is given by the line element

ds® = "Vdr* — I dr? — r2(do? + sin® 0d¢?), (h

where ¢ and ¢*) are the gravitational potentials to be
determined.

The matter distribution of the stellar interior is assumed
to be anisotropic with respect to pressure, so that the energy-
momentum tensor takes the form

Top = (0 + pouiuj + pe&ij + (Pr — POXiXj> (2)

where p denotes the energy-density, and p, and p; are the
fluid pressures along the radial and transverse directions
respectively. The four-vectors involved are the four-velocity,
u', and a unit space-like vector, x i alon g the radial direction
such that u'u; = —1, x'x; = land u' x; = 0.

The Einstein field equations for the line element (1) (in
the system of units where G = 1 and ¢ = 1), are

(1 — e_’\) Ne
8mrp = 5 + , 3)
r r
/ =\ 1— e—)»
Sijr = e - ( 2 )7 (4)
r r
—A 2 / 2)\'/
8np; = ¢ <2v” TN Tl —) , ©)
4 r r

where primes (") denote differentiation with respect to the
radial coordinate r.
The pressure anisotropy (p; — p,) of the stellar fluid is
then
e 1" 2 2, /
8T A(r) = T(Zv +VT—vA —;(v + 1)

4
+r—2(€)" — 1)).
(6)

Our system is thus described by four Eqgs. (3)—(6) in which
the potentials, e* and ¢', determine 0, Pr, P and A. By
imposing the condition of vanishing complexity factor, we
solve for the potential e” which then completes the descrip-
tion of the model. Another popular way of solving for an
unknown potential is via an equation of state (EoS) however
the EoS chosen must then be well-motivated [4,28]. More
sophisticated EoSs might only provide approximate solutions
via numerical methods due to computational limitations [31].



Eur. Phys. J. C (2024) 84:13

Page3of 10 13

3 Generating a new model via vanishing complexity

We make use of the Vaidya—-Tikekar (V-T) ansatz [2] for
the metric potential g, which is suitable for describing the
geometry within superdense compact matter. The V-T poten-
tial is given by

S0 1 —K(@#?/L?)

T 1= @02/Ly @

where K is the dimensionless spheroidal geometric parame-
ter and measures the departure from radial spherical symme-
try. L is a curvature parameter of dimension length. Thus the
V-T ansatz has a specific geometric interpretation in that it
describes a spheroidal geometry for the ¢ = constant hyper-
surface characterized by the parameters L and K. The V-T
metric will represent spherically symmetric spacetime which
is well-behaved and non-singular at the origin for r < L and
K < 1. This spheroidal 3-space geometry represents flat
3-space for K = 1, while for K = 0 it reduces to the spheri-

_ (1-K)BL*—-Kr?)

and vanishing complexity then requires that
V[r —v)y +2]=2rv" =0. (10)

Integration yields an expression for the remaining metric
function v, given as

eV? = Ay /remdr + By, (11)

where A and B; are constants to be determined from the
junction conditions. Applying the V-T potential (7) we then
obtain,

= o (\/(LZ ~ ) (12— k)

K (L —r?)
(K — L2

(K-1
V=K

L?sin~!

)—l-wz,

12)

where w; and w; are constants in terms of A; and Bj. The
matter quantities are then

8mp = K7 (13)
12 L 2,2 »
(K =5) /(L2 =) (12 = Kr?) = E=LL 12 5in! ( /%) —2(K - D2
87p, = , (14)
(L2 — Kr2) (\/(LZ —r2) (L2 = Kr?) = E=D 2 gin~! ( /IZELSZ)) - 2%)
2,2 »
(K =512 +4K7%) J(12 = r2) (12 = Kr2) — B 14 in~! ( /%) —2LK - D2
87, = : (15)

(L2 — Kr2)? <\/(L2 —r?) (L2 = Kr2) — E=D 12 gin! ( /—’ié“Sf}) - 2%)

cal Schwarzschild interior metric. Previously, the V=T ansatz
was utilized widely in developing realistic models of com-
pact stars [24,25,32]. In this work, the V=T potential has been
utilized to generate a new class of solution that could describe
relativistic anisotropic compact stellar objects in which the
complexity factor vanishes.

In accordance with Herrera [9], the complexity factor for
a static configuration is defined as

— _ _ 4 ' 3 7
Yrp=n(pr=p) =53 o p (x)dx. ®)

By substituting values of p,, p; and p into the above equa-
tion, we obtain

V[r(V —v) +2]-2r"

Yrrp = ym e”, 9

and the pressure anisotropy, defined as A = p; — p,, is given
by

(K —DKr?

SrA= T
T Lk

(16)

The mass contained within a sphere of radius r is calcu-
lated as
(K — Dr?

m(r) = /0 4rq?p(q)dg =

4 Physical requirements

The following constraints are relevant in developing models
for compact stellar objects:

@ Springer
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— The metric should be non-singular and regular (finite and
positive) throughout the stellar interior. Also, at the centre
it is required that e *© = 1 and ¢"© = constant.

— At the boundary surface of the star, the interior geometry
should match continuously to the exterior Schwarzschild
spacetime metric. Additionally, the radial pressure must
vanish at the boundary however there is no restriction on
the energy density and the tangential pressure.

— The density, and radial and tangential pressures should
be non-negative inside the star: p > 0, p, > 0, p; > 0;
Also at the centre they should be finite with the radial and
transverse pressures at the centre being equal. In general,
the tangential pressure remains larger than the radial pres-
sure for an anisotropic stellar configuration.

— The gradients of the density, radial pressure and tangen-
tial pressure are all zero at the centre and negative at all
other points of the interior. These ensure the monotoni-
cally decreasing nature of the physical quantities from
their maximum values at the centre. Mathematically,
p' =0, pp <0, p; <0;

— The various energy conditions must be satisfied at each
point of the interior of the star. In general relativity, the
energy conditions represent certain inequalities between
the energy density and the pressures, namely the weak
energy condition (W EC), null energy condition (N EC),
strong energy condition (SEC) and dominant energy
condition (D EC). Their definitions are:

(1) Weak energy condition (WEC): p > 0, p, +p >
0,pr+p =0,

(2) Null energy condition (NEC): p, +p > 0, p+ p;
0,

(3) Strong energy condition (SEC): p + p, +2p; > 0,

(4) Dominant energy conditions (DEC): p — |p,| = 0
and p — |ps| =2 0,
One can note that since for a realistic star the energy
density (p) and pressures (p,, p;) are positive, energy
conditions (1), (2) and (3) are always satisfied. Also
for an energy density greater than the pressures in the
interior points, condition (4) is satisfied. Thus all of
the energy conditions are obeyed. On the other hand,
one needs to check the trace energy condition (TEC)
[33,34], given by p — p, —2p; > 0.

v

— The radial and tangential sound speeds should not exceed
the speed of light. This is referred as the causality con-
dition (¢ = 1 in our system of units): 0 < % <1,0<

% < 1; This constraint ensures causality of the speed
of sound within the object.

@ Springer

5 Matching conditions

It is necessary to match the interior solution obtained to the
Schwarzschild exterior metric,

SEU T T2
r (1-2%)
2 (d92 + sin? 9d¢>2) , (18)
at the boundary r = b with M = m(b). Thus,
2M
20 = (1 - 7) (19)

oM\
) (1 _ _) . (20)
b
Together with the condition that the radial pressure van-
ishes at the surface (p, (b) = 0) we may obtain the following
expressions,
b(1 —K)

b\|K + ——— 21
+ 21

L

(22)

0 =~

b3
0y — ﬁ[(s — K)Wb(b = 2M) + (b(1 — K) + 2K M)

a-K M —b s
= " 2M —b(1—1/K) ] 23)

6 Application of the physical requirements to modelling
compact stellar objects

In order to demonstrate the viability of our model, we con-
sider the pulsar 4U 1820 — 30 with an estimated mass of
M = 1.58M¢ and radius b = 9.1 km [30,35,36]. Using
these values with the spheroidal parameter set at K = —1,
the remaining model parameters are determined using the
junction conditions. We obtain: {L = 15.50 km; w1 =
0.003096; w> = 1.500}. Reverting to S.I. units, physical
quantities from the energy-momentum tensor are calculated
and represented graphically. These are then compared with
observed data and results from other models.

InFig. 1, the regularity and non-singular nature of the met-
ric potentials, in addition to smooth matching at the surface
boundary, have been shown.

Figure 2, 3, 4 shows the nature of the energy density and
pressures along the radial and transverse directions respec-
tively. All of the physical quantities decrease monotonically
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metric functions

r (km)

Fig. 1 Metric functions with exterior matching

from their maximum value at the center as expected. At a
particular distance the radial pressure vanishes thus defining
the boundary of the star. The energy density and transverse
pressure are however non-vanishing at the bounding surface.

Variation of anisotropy along the radial direction has been
depicted in Fig. 5 and is zero at the center as expected.

The monotonically increasing mass function is shown in
Fig. 6 with regularity at the centre m(0) = 0.

Even though we have not assumed any particular EoS
in developing the model, we are still able to infer informa-
tion about the dependence of the pressure with respect to the
energy density. The nature of the EoS of the matter distribu-
tion has been shown to obey a linear relationship in Fig. 7.

All the energy conditions (WEC, SEC, DEC, NEC and
T EC) stated in Sect. (4) are satisfied, supporting the physical
viability of the model. This is shown graphically in Fig. 8.

800 ——— — — —— —

o (MeV/fm?®)

400 ‘ ‘ ‘
0

r (km)

(a) Radial variation of energy density profile

Fig. 2 Energy density profile

For a fixed surface density of magnitude 4.0 x 10'*gm —
cm ™3 the mass—radius (M—R) relationship has been gener-
ated as shown in Fig. 9. A few well-known pulsars have been
included, namely SAX J1748.9 — 2021 (M = 1.817 03 M;
b=11.7 £ 1.7 km), 4U1820 — 30 (M = 1.46 £ 0.21Mg;
b=11.1 + 1.8 km), Vela X-1 M = 1.77 £ 0.08 M; b =
10.654 km), Her X - 1 (M = 0.85 £ 0.15M; b = 8.1 km),
GWI170817 — 1 M = 1.45Mg; b = 11.9 km) and the sec-

ondary component of GW 190814 (2.59 7008 M,).

7 Stability analysis

We shall discuss the stability of a star based on the following
criteria:

— Adiabatic index: The adiabatic index I", or ratio of the
specific heat capacities, is an important measure of the
stability of an anisotropic stellar configuration. It is given
by

r=ttrd (24)
p dp
To ensure stability of a relativistic sphere, the adiabatic
index should be greater than 4/3 [37,38]. In our model,
this condition is met as shown in Fig. 10.
— Causality condition: Another test of stability concerns
the radial and tangential speeds of sound, given by

756
650
590
540
510
467

(b) Contour shading of energy density along radial direction (scales are
inkm & Mev/ fm?)
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(a) Radial pressure - ° °

(b) Contour shading of radial pressure along radial direction (scales are
in km & Mev/fm?)

Fig. 3 Radial pressure profile

100

83.0
720
62.0
53.0

p: (MeV [ fm?)
(=2
o

467

40 ]

2 4 6 8
r (km)

20
0

(a) Tangential pressure

(b) Contour shading of tangential pressure along radial direction (scales

are in km & Mev/ fm3)
Fig. 4 Tangential pressure profile

with the full expressions for our model given in appendix Figure 12 shows that the sound speed stability factor is
A. These are plotted in Fig. 11. As can be seen, causality favourably negative.
is maintained (‘ZZ , il—’/’)’ < 1). — Tolman—Oppenheimer—Volkoff (TOV) stability condi-

— Cracking: Stability with respect to cracking is another tion: The stability of a star is described in terms of
important criterion. The idea of cracking was introduced the well-known Tolman—Oppenheimer—Volkoff equa-
by Herrera [39] by considering the outcome of a per- tion. For static equilibrium, a star maintains its sta-
turbation on an equilibrium configuration with respect bility by the balance of gravitational, hydrostatic and
to radial forces. Later, Abreu et al. [40] found a simple anisotropic forces. The TOV equation is given by,

upper bound on the difference between tangential and

radial sound speeds that promotes stability within a star. v dp, 2

It was determined that (v> — v> < 1) promotes stability - 5('0 + P — dr + ;(Pt —P)=0. (25
whereas (v? — v? > 1) was unstable.

The above Eq. (25) can be written as

@ Springer
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(a) Radial variation of anisotropy

Fig. 5 Anisotropic pressure profiles

0.5

0.0

Fig. 6 Mass profile

Fo(r) + Fu(r) + Fu(r) =0, (26)
where F,(r) = —”7,(,0 + pr) is the gravitation force,
F,(r) = —‘fi”r ~ the hydrostatic force and F, (r) = 2(p; —

pr)/r the force due to pressure anisotropy.

The force components and their sum are represented
graphically in Fig. 13. As shown, the configuration is
in static equilibrium with the hydrostatic and anisotropic
forces together balancing the force due to gravity.

— HZN condition: According to the Harrison—Zeldovich—
Novikov (HZN) stability condition [41,42], a stable stel-
lar configuration requires that d M (pg)/dpg > O where
M, po denotes the mass and central density of the com-
pact star. In our V=T complexity vanishing model,

oM 3(K — 12p?
o0 2(3—3K + Kb2p)?’

27)

467
36.0
230
11.0

n n n
-5 0 5

(b) Contour shading of anisotropy along the radial direction (scales are in
km & Mev/fm?)

100 ——————F—————F T
80 - B

60 B

pr (MeV/fim?)

40t 1

n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n 1 n n n n
500 550 600 650 700 750
o (MeV/fm®)

Fig. 7 Equation of state

This has been depicted graphically in Fig. 14 and stability
in terms of this condition is supported.

8 Conclusion

In this research exposition we sought an exact solution of
the classical Einstein field equations describing a compact
stellar object in which the radial and transverse pressures
are different at each interior point. In order to obtain the full
gravitational behaviour of the interior spacetime, we imposed
the condition of vanishing complexity, which in our frame-
work requires that the pressure anisotropy should be sup-
ported in magnitude by the energy density inhomogeneity.
The vanishing of the complexity factor reduced the prob-
lem to a quadrature relating the two interior gravitational

@ Springer
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Fig. 9 Mass-radius (M-b) relationship
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Fig. 10 Adiabatic index

potentials. We employed the Vaidya-Tikekar ansatz, suitable
for superdense, relativistic compact objects, to complete the
gravitational behaviour of the model. We demonstrated that
our stellar model has many salient features including regu-
larity of the metric functions and associated physical quan-
tities. The contour plots in Figs. 2-5 reinforce the regular-
ity of the density, radial and tangential pressures, and the
pressure anisotropy throughout the stellar interior. In Fig. 5b
we observe that the anisotropy factor is everywhere positive,
indicative of a repulsive force due to anisotropy. This repul-
sive contribution due to pressure anisotropy helps stabilize
the stellar configuration against the inwardly driven gravi-

@ Springer
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Fig. 11 Radial and tangential sound speeds squared
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Fig. 12 Sound speed stability factor
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Fig. 13 Forces due to gravity, pressure gradient and pressure
anisotropy

tational force. The study of the (M—R) curves revealed the
robustness of our model which successfully accounted for
the mass-radii characteristics of some well-known pulsars
viz., SAX J1748.9 — 2021, 4U1820 — 30, Vela X-1 and Her
X - 1. In addition, our model predicted low-mass stars as well
as compact objects with masses beyond 2 M, which may be
progenitors in binary mergers responsible for gravitational
events. This is encouraging within standard classical gen-
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_(K_1)2L4 -1

x | (K =5)L% +4Ks? Ners sin
K (L2=r1) ) 2K — DL’

(K — 1)L? w1

(1 7K) 2 . —1

+2K( L2 —r2) (L2 — Kr?) + ———=L"sin

Y= (2 - k) +

K (L2 —r?) 2w,

(K-DL2 | o
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[ (L2 =) (L2 - k) (K — 5L + 4K )

_1)2 K L2_ 2
_(K=1) L4 sin~! ( ’)
v—K (K — 1)L2
_1\g2
2K = DLPwy (A2)
]
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