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Abstract

We present a measurement of the ratio of charged B lifetimes using
1fb~! of data accumulated by the high impact parameter selection based
hadronic B trigger at CDF. The problem of fitting decay time distributions
is solved in a novel Monte-Carlo independent way by analytically calcu-
lating acceptances for each event from the decay geometry and known
trigger selection criteria. We measure a B¥ lifetime of 498.2 + 6.8 + 4.5
pm in the decay mode BY — D%z% with D° — KTxt. This compares
well with the PDG value of 491.1 + 2

All uncertainties quoted from our analysis are statistical and system-
atic respectively, the PDG uncertainty combines the two categories.

This measurement is presented as a demonstration that we can pur-
sue lifetime measurements in other B hadron decay modes selected by
the hadronic B trigger at CDF. This note contains the original note with
additional sections and appendices at the end addressing issues since pre-
blessing.
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1 Introduction

CDF is the only running experiment to be accumulating a high-statistics sample
of hadronic B decays across the full spectrum of B hadrons. This note is con-
cerned with using these data from CDF’s hadronic trigger sample, for lifetime
measurements.

B-hadron lifetimes, being parameters of fundamental importance in their own
right, gain specific significance due to the precise predictions of Heavy Quark
Expansion (HQE) [1], [2]. Precision lifetime measurements provide a testing
ground for this theoretical tool that is frequently relied upon for relating exper-
imental observables to parameters of the CKM matrix. While precise measure-
ments exist for the types of B-hadrons produced at the B-factories, the accuracy
for By and A, lags behind the precision of the HQE calculations.

The relative width difference between the long and short lived CP eigenstate
of the BY — BY system is predicted to be 5= ~ O(10%). Combined with a
measurement of the mass difference between those two states, this parameter
could be sensitive to new physics. The lifetime difference can be extracted
by measuring the By lifetime in decays to pure CP eigenstates, like the fully




Figure 1: Given the 3-momenta of all particles in the decay, the cut on the
Impact parameter of the decay products translates directly into a cut on the
lifetime of the primary particle. For clarity, the figure only illustrates the effect
of an impact parameter cut on one of the decay products (the one going straight
upwards).
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hadronic decays B? — DsDy [3] and B? — K*K~, which are both CP even,
and compare that with the lifetime measured in flavour specific decays like
B? — Dgmr. Until 2009, significant numbers of B? — DDy, BY — KTK~ and
B? — Dy decays will only be available in the CDF hadronic B sample.

The hadronic B trigger which is so crucial for obtaining these data, biases B
lifetime distribution by triggering on the impact parameter of tracks in the
event. Currently, at CDF, this effect is taken into account by using a Monte
Carlo simulation to calculate an efficiency function.

In this note, we present a Monte Carlo-independent method to correct for this
lifetime bias. It only uses information from the measured data on which the
lifetime fit is performed, only, to correct for the lifetime bias on an event-by-
event basis. This eliminates some systematic problems, maximizes the use of
information, and is robust against several effects that could bias the SVT ac-
ceptance.

2 The Basic idea

Taking a given event and keeping every kinematic aspect of it fixed, except for
the decay time of the primary particle, an upper and a lower impact parameter
cut directly translate into cuts on the decay-length and hence on the lifetime
of decaying particle, as decay-length and hence on the lifetime of decaying par-
ticle, as illustrated for the case of a two-body decay and an impact parameter
cut on only one track, in figure 1. A more realistic scenario is given in figure
2. The figure illustrates that, by sliding a decay tree along the direction of the



Figure 2: Given the 3-momenta of all particles in the decay, and the decaylengths
of particles down the decay chain (here a D°), the requirements of the hadronic
trigger that two particles pass the IP cut translates into an acceptance of one

or more intervals.
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Illustration of the link between impact pa-
rameter requirements and cuts on the de-
cay time. Whenever 2 tracks pass the IP
requirements, the acceptance is set to one,
otherwise zero. The hadron trigger at CDF
also requires that a track pair pass a mini-
mum L., cut, where the L., is calculated
from the impact parameters. This is not
illustrated here, but accounted for in the
method.



B. The impact parameters correspond to the distance between the prim. vertex
and the point where the backwards extensions of the tracks hit the dashed lines
perpendicular to them. Where an individual track passs the IP requirements,
the corresponding perpendicular dashed line is solid (in same colour as the cor-
responding track). Whenever 2 tracks pass the IP requirements, the acceptance
as a function of time (plotted at the bottom) is set to one, otherwise zero. The
hadron trigger at CDF also requires that a track pair pass a minimum L., cut,
where the L, is calculated from the impact parameters. This is not illustrated
here, but accounted for in the method.

The clue is that none of those kinematics needed to translate from an impact
parameter cut to a cut (or cuts) on the decay time, have themselves any depen-
dence on the life time of the primary particle.

3 The signal Probability Density Function (PDF)
ignoring measurement errors and other detec-
tor effects.

We can write the probability to find an event with decay time ¢ as the product
of the probability to find ¢ given that ¢ is must be between t,;, and ty. and
the probability that ¢ is constrained to lie within those limits:

P(t) = P(tlt S [tmirn tmax]) . P(tminy tmax)
1 =t
€7

- ﬁ : P(tmina tmax)
Ik %e% ar
tmin
—t
e T
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For a series of measurements, the probabilities for each measured time t; can
be multiplied to give the likelihood for the mean decay time 7. The limits
tmins and tmax,; can be calculated easily from the kinematics of each decay. In
general it will be difficult to calculate P(tmin i, tmaxi). However, P(tminis tmaxi)
depends only on the impact parameter cut, and the kinematics of the decay —
the momenta of the particles, and possibly the decaylengths of some long-lived
particles within the decay chain, like the Dy in By — D,Fn* — but not on
the life time of the primary itself. So in the log-likelihood, the sum over the
log (P(tmin i, tmaxi)) iS simply a constant that can be ignored. The total log-
likelihood function for a set of N “ideal” decays (no measurement uncertainties,
background, etc) is given by:



logL = —Nlog(T)
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where the index ¢ labels the event, each of which has its measured decay time
t; and minimum and maximum decay times tyi,; and tpax-

Note that the only difference to the likelihood function without an impact pa-
rameter cut is the term:

N
log Eip = — Z lOg (e*t,nin /T e*tmaxi/‘r) (3)

=1

The upper lifetime cut has some dramatic effect on the precision with which
the lifetime can be measured. Finding an event with lifetime ¢ contains less
information, if already restricted the range of possible values for ¢ due to lifetime
cuts. The effect is quite significant. For example, an upper lifetime cut at twice
the B lifetime looses only 14% of events. However, the statistical error of the
measurement is increase by a factor of 2, equivalent to a signal loss of 75%. This
is discussed in more detail elsewhere [4].

For more complicated decay geometries, the impact parameter cuts on the decay
products can translate into a series of disjoint time-intervals which changes the
correction term to:

t

N i
" _tminij _ ‘maxij
log Lip, = — g log E e~ T —e - (4)
i=1 j=1

where i labels the events and j labels the allowed time-intervals for each event.
The likelihood function in equation 2 is derived for the ideal case that we are
dealing with an exact time measurement and an exact impact parameter cut.
Any real measurement will have an uncertainty on both.

4 The signal PDF for an “offline trigger”, with
measurement errors

As an intermediate step, to illustrate the concepts, assume that the impact
parameter cuts are applied to the offline data, only (rather than the SVT-
measured quantities). Then the acceptance would still be a top-hat function (or
a combination of them), but now as a function of measured decay time, rather
than true decay time. Nothing would change in the illustrations 2, except that
all quantities are now offline-measured quantities, and the acceptance for the
event is plotted as a function of the measured proper time.

We can write the probability to measure a decay time to (given the IP cut and
the decay kinematics that relate the impact parameter to the time measurment



for any given decay) as an integral over all true decay times ¢ in terms of the
following functions:

e The probability that a particle decays with true decay time ¢, given its
mean life it 7,
1 -

—€ 7.
T

e The probability that, given the true decay time ¢ and measurement un-
certainty of o;, the measured decay time is tg

1 _ (t—tg)?

e 2“t2
V2o

e The acceptance as a function of the measured decay time ty for the given
decay kinematics.
Aip (to) -

In terms of these parameters, the total probability is:

_ (t—tg)?

%)
Fes e 58, 0 a
0 ;
P(to) = oo 00 . 7(t—t0)2
[ 27 e T Aip (to) dtdty
—oo 0 .

If the impact parameter cut were applied on the offline quantities,

Aip (to,--) = D (B(to — tmin i) — O(to — tmax 1)) (6)
i=all
intervals
where 0 is the Heavidside function. It has this simple form because we es-
tablished a direct link between the offline impact parameter and the measured
lifetime.

5 The signal PDF for different online and offline
quantities.

The real trigger uses fast-measured SVT quantities rather than offline quantities
to cut on, thus, at first sight, destroying the one-to-one correspondence between
impact parameters and cr. We will now re-establishing a direct link between
the SVT-measured impact parameter and measured lifetime, and thus keep the
very simple form of the acceptance function Equation 6.



Figure 3: Re-establishing the direct link between impact parameter cuts (in
SVT) and measured lifetime (measured from offline data).
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5.1 Using Ad

To to so, we simply include the difference between the offline impact parameter
and the SVT impact parameter amongst those parameters that we assume to
be lifetime independent. This means that if we plot the (true) lifetime in bins of
“(SVT impact parameter) minus (offline impact parameter)”, we assume that
the distributions will all look the same. This is the case if the SVT impact
parameter error is independent of the actual value of the impact parameter,
which can be validated using the same data the fit is performed on. Figure
3 illustrates how the SVT-dy(cr) is calculated from the offline dg(c7) using
dsVT = d$f + Adp, assuming a constant Ady. One of the advantages of this
method is that we do not need to know the actual impact parameter error. The
SVT resolution function can have any shape. This method can even handle
systematic shifts in the impact parameter measurement of the SVT, as long
as those shifts are uniform within the allowed impact parameter range, which
means that is method is much more robust and requires a far less detailed
understanding of the SVT performance than any Monte-Carlo based method.

5.2 The discretised SVT d,

While the method is intrinsically insensitive to shifts and skews in the SVT-dy
resolution function, it turns out to be surprisingly sensitive the the discreti-
sation in the SVT-measured impact parameter. The SVT, using fast integer
arithmetic to fit the track parameters, returns impact parameters in multiples
of 10 pum, i.e. possible values are d3VT = 0,410 1, £20 1, 30 1, . ... A typical
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Figure 4: The SVT-calculated dy in Monte Carlo events. For clarity, the his-
togram is restricted to values between 120y and 500 p.
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d3VT distribution in Monte Carlo, for values between 120 1 and 500 y, is shown
in Figure 4. Steps of 10 1 seem small compared to the SVT resolution of about
~ 50 pm, but ignoring this discretisation results in a significantly biassed fit re-
sult. Ignoring the effect in a fit to 15k detailed MC events yielded a fit result of
cr = 448 &+ 6 um for an input value of 496 p, about 100 off. This is easy to take
into account though. As the event is slid along in cr, the SVT-dj is not simply
calculated as d5V 7T (cr) = dSf (c7) + Ady, instead the result for d5¥'T is rounded
to the nearest 10 pm.

d3VT (eT) = [nearest multiple of 10 um of] (dg™ (c7) + Ady) .

With this modification, the fit result, using the same events, is 494 + 7 um,
in good agreement with the input value of 496 yum. More on detailed and toy
Monte Carlo studies in Section 12.

5.3 The full PDF with realistic SVT errors, but a flat SVT
efficiency between dy = 0 and dy = oc.

Now we have a direct relationship between the measured lifetime and the SVT
impact parameter. So we can take the decay geometry and vary, as the only
parameter, the measured lifetime by sliding the decay vertex position along the
direction of the measured momentum. For each position of the decay vertex,
we can calculate, from the measured decay geometry, the corresponding offline
impact parameter, and get from that the impact parameter the SVT would have
measured for any given measured decay time, as illustrated in figure 3.

Because of the direct correspondence between measured lifetime and SVT-
measured impact parameter, the acceptance in terms of the measured time tg

is still:
Aip (t07 . ) - Z (0(1;0 - tmin 1) - @(to - tmax z)) (7)
i=all
intervals
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With this equation 5 becomes:

®yoz g -l
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measurement. Using the frequency function

F(@:%Z? / e dy (9)

this can be written as

P(ty) =

£ Tt - ) a

i=all tmin i

intervals
L %R (2 - 2)
- —t4 102 ‘ ¢ t=tmax i (10)
—er 2R (L ¢ F(t }
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o2

Deviding both numerator and denominator by 272 makes the formula numer-

ically robust against very large values for o/7, yielding very large values for
102

€22, So finally we get:

lop (kg
P(to) = — € 7;)72 (== (11)
P e R e O] N
i=all —'min i
intervals

The Frequency Function F can be calculated by fast numerical algorithms, im-
plemented for example in the cernlib function FREQ, a C++ translation of which
is available in root as TMath: :Freq. Therefore, with equation 10, or equation
11, we have a fully analytical formula to calculate the log-likelihood function,
taking into account the SVT-based trigger.

The only task remaining is to use the direct relationship between the offline-
measured time and the SVT-impact parameter to find the intervals of measured
times within which a given decay would be accepted. The trigger does not only
cut on one impact parameter, but requires two tracks to pass the impact pa-
rameter cuts, p; cuts and x2 cuts. The SVT also calculates the L,y of each
track pair, from the above information. We can calculate what impact parame-
ter the SVT would have measured for each measured decay time, and know all
the other SVT quantities used by the trigger. So, sliding the decay-tree up and
down along the measured momentum direction, we can calculate for each posi-
tion (each possible measured time), if the event would have passed the trigger

12



or not. In practice, this is implemented as a search algorithm. The algorithm
scans through all times between some absolute minimum and maximum time
cut in sensibly sized steps for a first estimate. It then refines the intervals using
standard iterative methods.

6 The cut-off in the SVT single track efficiency,
and the absolute trigger efficiency for 2 tracks
and more.

6.1 Why it doesn’t matter for 2 tracks

For two particle final states (like Bq — nm, By — KK), the absolute value of
the efficiency function is irrelevant, because it only changes between zero, and
a constant non-zero value as we slide the event along in cr. The absolute value
of that constant does not affect the fit. Note that this argument assumes that
the SVT track-finding efficiency is independent of ¢r. This is a reasonable
assumption for tracks with |dp| < 1mm. For the 2-track case, the trigger cuts
ensure |do| < 1mm for both tracks. Since no track with |dg| > 1mm enters
the fit, it does not matter that the trigger efficiency does not remain constant
beyond that point.

6.2 The complication for more than 2 tracks

An interesting complication arises if there is more than one track pair in the
decay that could fire the trigger. As we slide the decay along, there’ll be regions
in ¢r where one track pair is available for triggering, and others, where there
are two. In general, the efficiency should be higher if two track pairs satisfy
the the trigger requirement, rather than only one. This is because, for a given
single-track finding efficiency of the SVT (which is around 50%), the probability
of finding two tracks out of three is higher than the probability of finding two
out of two.

If the SVT track finding efficiency were indeed independent of c¢7, the following
argument would save us the complicated calculation: We could simply calculate

P(t|t € [tmin, tmax))

given that the SVT found exactly those tracks it did. Given the found tracks,
the trigger efficincy is either 1 or 0, no matter how many tracks are available
for triggering.

Unfortunately, beyond |dp| = 1 mm, the SVT efficiency is clearly not flat, instead
it drops quite rapidly, as shown in figure Figure 5. This is not a problem for
two body decays, because tracks with |dy| > 1 mm are never seen because of the
very trigger requirements we are correcting for. But in a three body decay, two
tracks with 0.12mm < |dg| < 1mm can fire the trigger, while the third track

13



Figure 5: SVT single track finding efficiency as a function of |d| in Monte
Carlo, for the mp from the B, in B, — D(Knp)nrg with p; > 1.5GeV. The
arrows indicate d3 values for a 3-track event. Tracks 1 and 2 have an SVT
match. Track 3 hasn’t. As the efficiency fct for this event is calculated for
different values of c7, at some point track 3’s |d5®| would be below 1000 ym.
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can have an impact parameter |dp| well beyond 1 mm, where the SVT single
track finding efficiency is essentially 0. This track won’t have an SVT-measured
dy. As we slide the event along in c7, at some point the dy of the third track
will be < 1 mm, and it could potentially play a role in the trigger decision. We
now need two pieces of information to get the trigger efficiency at this c7:

e How likely would the track have been found by the SVT?

e What would the SVT-measured dy have been?

6.3 Easy, but expensive ways out

There are two simple ways out of this predicament, that ensure that there never
is a track with |dg| > 1 mm, and therefore no need answer to the two questions

posed in the previous section:

e “Two track”: Treat a multibody decay like a two body decay, by declaring
two tracks as “trigger tracks” and re-applying the trigger condition using
these two tracks only. Note that the decision which two tracks are the
trigger tracks must be made before we know if they actually fired the
trigger or not — we can’t increase event numbers by simply chosing event-
by-event the tracks that actually did fire the trigger. This way we are back
in the same situation as for two-body decays and don’t need to worry what
happens to the SVT efficiency beyond |dg| = 1 mm. This solution is rather
costly in statistics.

e “Fiducial cut”: Use all tracks in the trigger decision, but impose a cut
requiring all of them to have an impact parameter |dg] < 1mm. The

14



effect of this cut on the acceptance as a function of ¢ can be calculated
in the same way as that of the other impact parameter cuts. Again, no
track with |dp| > 1mm affects the calculation of the trigger acceptance,
and it doesn’t matter how the SVT single-track finding efficiency looks like
beyond 1 mm. This solution is not very costly in the number of events, but
since it reduces the width of the lifetime window, it significantly reduces
the statistical power per event, due to the effect discussed in [4].

Since both simple solutions outlined above are too costly in statistical precison,
we will have to answer the above questions, how likely a track is to be found
once its |dp| is below 1 mm (single track SVT efficiency), and what its impact
parameter would have been.

6.4 Solving the > 2 track problem in an efficient way

So in order to fit lifetimes efficiently, we will finally have to answer the questions:

e What would the SVT-measured dy have been for those tracks that haven’t
got an SVT match?

e How likely is a track to be found by the SVT?

We will then use this to calculate the absolute value of the SVT efficiency, which
will vary depending on how many tracks pass the trigger requirements at a given
CT.

6.4.1 Assigning a value for the SVT-d; to those that haven’t got one.

As we slide the event along in c7 to calculate the efficiency, we calculate the SVT
dy at a given value for ¢7 from the offline dy, assuming that Ady = dgVT — dgﬁ
is independent of c¢r. To assign a value for the SVT-dy to those tracks that
weren’t actually found by the SVT (for example because their dy was outside
the SVT acceptance), we first histogram the Ady = d5¥'T — d5T distribution
for those tracks where this information is available. Such a histogram is shown
for real data in figure Figure 6. For all tracks without an SVT dy, we draw a
random number from this histogram, i.e. we generate a random Ady according
to the Ady distribution found in data.

6.4.2 Absolute Trigger efficiency from the SVT single-track finding
efficiency

Now that we include tracks outside the dy range where the SVT single track
finding efficiency is flat, we cannot simply calculate the efficiency function given
that the SVT found the exactly those tracks it did, because this condition is no
longer c7 independent. Therefore the efficiency function will no longer simply

15



Figure 6: Ady Distribution for tracks in B, — Dx candidates.
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Table 1: Trigger efficiency in terms of the SVT-single track finding efficiency,
for a three particle final state.

Number of track-pairs
passing the trigger
cuts, out of 3 tracks

Trigger efficiency in
terms of e,

1 track pair g2
2 track pairs 2e2 —¢3
3 track pairs 3e2 — 23

be either 1 or 0. Instead it will depend on the number of tracks available for the
trigger decision, and the probability of the SVT to find those tracks. In order to
decide which track combinations could have fired the trigger, we need d5¥7T for
all tracks involved, including those which were not actually found by the SVT.
For the tracks not found in the SVT we use the d3VT values generated from
random numbers and the measured Ady distribution, as described in Section
6.4.1 above.

In order not to have to model the complicated turn-off curve of the SVT effi-
ciency near |d8ff| = 1mm we describe the SVT single track finding efficiency as
flat for |d3ff| < 1mm and zero elsewhere. For this to be accurate, we have to
treat those tracks with |d3ff| > 1 mm as having not been found by the SVT. With
this simple form, the SVT single-track finding efficiency is described by a single
parameter, the SVT single track finding efficiency for tracks with |d5| < 1 mm,
€s. At each given cr, for each given track, the SVT single track finding efficiency
is either O or &4.

The total SVT efficiency is the probability that at least one track pair that sat-
isfies the trigger requirements will be found by the SVT. This can be expressed
as a polynomial in €5. The possible values for the SVT efficiency for the three
track case are given in Table 1. For 4 or more tracks in the final states, this is
a bit more complicated, for example we would need to distinguish two possible
ways in which 2 track pairs could pass the trigger: the pairs could either have
a track in common, or not. In the computer program calculating those effi-
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Figure 7: Decision tree for the example of 3 tracks in the final states. Each
track can either be found (probabilitye £5) or not be found (probability 1 — &)
by the SVT, giving 23 = 8 possible combinations. The total trigger efficiency is
calculated by adding up the individual probabilities of those combinations that
pass the trigger cuts.

track A

track B

track C

‘83 ‘ ‘82(]—8)‘ ‘62(1—8)‘ ‘s (1—8)2‘ ‘82(1—8)“8 (l—s)sz (1—8)2H (]—8)3‘

1 2 3 - 5 6 7 8

ciencies, this is handled in the most general way, allowing to calculate the total
efficiency for any number of tracks and any track combination. This is achieved
by generating a “decision tree” at the end of which stand all possible, mutually
exclusive combinations of found and missed tracks. The probability for each
such combination is calculated, where each track found contributes a factor of
€5, and each missed track a factor of (1 —&,). These probabilities are added up
for all combinations that pass the trigger cuts. This process is illustrated for
the three-track case in Figure 7, from which the results listed in table Table 1
can be read off in the following way:

e 1 pair: If for example only the track pair (A,B) passes the trigger cuts,
we need to add up the probabilities for combinations 1 and 2, giving
e3+e2(1—¢g,) = €2

e 2 pairs: If (A,B) and (B,C) pass, but not (A,C) (for example because
of the opposite charge requirement), the possible combinations are 1,2, 5,
giving €2 + e2(1 — g5) +2(1 — &) = 22 — 3.

e 3 pairs: If all three possible track pairings pass the trigger requirements
(which is possible in the B.CHARM_LOWPT scenario which has no op-
posite charge requirement), we add up combinations 1,2, 3, 5, giving 3¢2 —
2e3.

6.4.3 Fitting ¢,

The method described above requires the absolute value of the SVT single track
finding efficiency. This is fit at the same time as the lifetime, and the other pa-
rameters of the fit. The information used to fit the single track finding efficiency
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is the number of tracks found in each event, relative to the minumum of 2 re-
quired to pass the trigger. For the three track case, it is the frequency of finding
two tracks in the SVT versus three, for those events where all three tracks are
within the SVT’s reach, i.e. have |d$f| < 1mm and a minimum p; of 2 GeV.
The probabilites associated with those track configurations are exactly those at
the end of the decision tree in Figure 7.

It is obvious that for two body decays, there is not enough information to fit the
single track finding efficiency, because in order to pass the trigger, all decays will
have exactly two tracks found in the SVT. Fortunalety this doesn’t matter, since
the single track finding efficiency is not needed for two body decays anyway, as
discussed in Section 6.1.

6.4.4 Changes in the SVT

The final issue that needs addressing is how the fit copes with data that contains
periods of distinct different efficiency. The periods of distinct efficiency arise due
to changes in the SVT algorithms or hardware. Over the period of data taking
that results in 1fb of data there are 4 changes to the SVT. They are

e The initial running from start to 12/26,/02

On 12/26/02 begin using 4/5 logic for the silicon hits

On 07/24/04 use new patterns and new geometry file

On 07/22/05 installation of new AM board

On 08/31/05 move to using 128K patterns

If we plot the efficiency in these different periods we see that the last two had
little effect on the efficiency in the impact parameter range of 0-1000 microns,
the only region we are interested in. While they do increase the efficiency as
a function of impact parameter beyond 1000 microns it is irrelavent to this
analysis as all tracks with matches above 1000 microns are deemed to have
been not found. The first two changes have made significant increases to the
efficiency. These results are shown in two plots below in figure 8

Now that we know there are two significant changes in the SVT efficiency we
must consider whether it is necessary to fit 3 separate efficiencies based upon
run number or whether a single averaged efficiency will be sufficient. To test this
we generate toyMC that has sections with differing efficiency as found in data
and fit the lifetime with a single floating efficiency. We generate 1000 pseudo
experiments of 24K events each. We find that although there is no significant
pull in the lifetime distribution the fitted gaussian is wide, figure 9. This
implies that in using this single efficiency when there were infact 3 present leads
to an underestimation of the statistical error by almost 20%. We try therefore
instead to fit the 3 efficiencies simultaneously with an event having sensitivity
to a particular parameter if its “run” falls into the correct range. We run the
pull study again and find that the the fitted gaussian to the pull distribtuion is
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Figure 8: SVT track finding efficiency as a function of impact parameter and
split into different time periods. The top plot shows the first two changes that
did affect the efficiency in the range of interest. The lower plots shows the final
two changes which did not affect significantly the data in the range of interest.

centred on 0 and has unit width, as shown in figure 10. We decide therefore to
fit 3 efficiencies simultaneously with the lifetime. Each efficiency will be fit by
events corresponding to that run period.

6.4.5 The full signal PDF with realistic trigger for decays to three
or more particles

For 2 body decays, the probability density function given in Equation 7 is suf-
ficient to fit a lifetime to an SVT-biassed signal sample. For multibody decays
the PDF needs to modified to take into account the above considerations. We
will use the following definitions:

e P(trkles): The probability to find exactly the given track combination,
which corresponds to one single element at the end of the decision tree in
Figure 7.

e P(trigger|trk,t,) The probability that the given track configuration fires
the trigger, given the impact parameters etc calculated for the measured
decay time t,, using the sliding method. This is either 1 or 0.

o P(trigger|es,t,): The probability that the trigger fires, given &4, but
summed over all possible track combinations that could have fired the trig-
ger, p(trigger|es,t,) = Y, p(trk|es) P(trigger|trk,t,). This corresponds
to the entries in Table 1. It is essentially the normalisation factor to go
with P(trkley)P(trigger|trk,t,)

e poly;(e5): Since P(trigger|e;) is constant for to within one time interval
with constant track configuration, it can be replaced by poly,(es), where
the index i labels the time interval, and poly; (&) is one of the polynomials
in table Table 1 (or equivalent).

19



| One floating efficiency | pull
90 Entries 1000
E Constant 65.12+ 2.71
80 Mean -0.04186 + 0.03845
F Sigma 1.186 + 0.032
70—

o %
40 é J(
L

. :

10

o e e b b by

4 -3 -2 -1 0 1 2 3 4

19

Figure 9: Pull distribution of the lifetime fit if only one floating efficiency is
allowed.
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Figure 10: Pull distribution of the lifetime fit if 3 separate floating efficiencies
are allowed.
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With these definitions, the PDF for a single decay can be expressed as

P(trkle,) P(trigger|trk, t,) e = F3 57 F (Lo — 2)
P(t)) =
+

tmax i -
> X [ P(trkle,)P(trigger|trk, to) e I52F (o — 2) dto
all trk i=all tmini
intervals
2

P(trk\es)%e%o‘*‘%%p (o — 2)

= - » = (12)
X polvi(es) [e T HER (£ 2) 4R (1))
i—all t=tmin i
intervals

where we ommitted P(trigger|trk,t,) in the numerator because it is 1 for all
events in the sample.

6.5 Toy-MC

In order to test the basic principle, a toy-Monte Carlo simulation is used that
generates isotropic B! — Dg7 events with a mean BY-lifetime of 1.55 ps and a
mean Dg-lifetime of 0.49 ps. The 2-D impact parameter resolution is assumed
to be Gaussian with 33 pm(intrinsic) ® 33 um(beam-spot). The impact param-
eter measured in the x-y plane is required to be between 0.12mm and 1mm.
Alternative intrinsic IP resolution functions have been tried out to demonstrate
the robustness of the method against systematic effects:

e “Standard”: A simple Gaussian resolution function with ¢ = 33y, as
described above.

e “Offset”: A Gaussian resolution function with o = 33 i1, with an offset of
33 i, i.e. the mean measured SVT impact parameter is 33 o larger than
the true one.

e “Exponential from hell”: A positive exponential with an rms of 33 p,
i.e. the SVT impact parameter is always bigger than the true impact
parameter, and the difference is distributed according to an exponential
with a “lifetime” of 33 p.

None of these rather drastic biases produces a bias in the fitted lifetimes (Figure
11).

6.6 Detailed MC

The method has been tested on a Monte Carlo sample of B,, — D signal events,
with a detailed detector simulation, in particular a detailed simulation of the
SVT and the trigger. 35k events passed all cuts, including those imposed on
the SVT. The fit result of 495 + 5 u compares well with the true value of 496 .
A projection of the fit to the MC data is shown in figure 12.
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Figure 11: Toy MC pulls 1 — 2k MC experiments, 0.5k signal evts each, S/B =1,

with different intrinsic IP-resolutions
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Figure 12: Monte Carlo-independent lifetime fit (line) to 24k simulated BT — Dr
events (crosses), subject to the impact parameter trigger at CDF, using a detailed
detector simulation. MC-input: ¢7 = 496 um. Fit result: ¢7 = 491.4 + 5 pm.
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7 Including Background

7.1 Introduction

So far, we have described a Monte Carlo-free method to correct for the trigger
bias, that works on signal data alone. Including background makes the situation
considerably more complicated, because the basic trick we applied doesn’t quite
work anymore. In our PDF, we calculate the probability to find a lifetime given
the efficienty function At,ie, calculated from the decay kinematics that translate
the trigger cuts into different lifetime cuts event by event. The argument was
that those kinematics do not themselves depend on the lifetime, and the corre-
sponding term in the PDF can be ignored. Mathematically: In the expression

P(cr,kin) = P(cr|kin) P(a) (13)

we can ignore P(kin) because it is a simple factor and < P(kin) = 0. However,
if we add background, the full expression is (where P(s) is the signal probability
and P(b) =1 — P(s) the background probability)

P(cT, Atrig) = P(5)P(cT|Atrig, 5) P(Atrig|s) + P (D) P(cT| Atrig, b) P(Atrig|b) (14)

Now the efficiency-function terms, P(A¢rig|s) and P(Auigl|b), only factor out if
they are the same for signal and background. If they are different for signal and
background, ignoring these factors is equivalent to getting the signal fraction
wrong in the fit, which is more obvious if we re-write Equation 14 as

P(ct, Agig) = P(5)P(Atrigls)P(cT|Atrig, 5) + P(b) P(Atrig|b) P(cT| Agrig, b15)
= {P(s[Atrig) P(cT| Atrig, 8) + P (b Atrig) P(cT[Atrig, b) } P(ALH)

So we can either, as in Equation 15, fit the probability to find a given efficiency
function, or at least, as in Equation 16 calculate an event-by-event signal proba-
bility based on the efficiency function. The last term in Equation 16, describing
the total probability to get the given efficiency function (whether it’s signal or
background), does indeed factor out and can be ignored, but if we ignore the
kinematics alltogether, we will get the event-by-event signal fractions wrong and
hence the wrong fit result.

The same problem shows up for anything that changes our PDF event-by-event,
be it the event-by-event efficiency functions, or event-by-event lifetime errors.
The latter is the ex ample used by Giovanni Punzi when he discusses this effect
in [6].

7.2 The full likelihood with everything

Now that things are getting more complicated, it is worth starting from scratch,
deriving the exact expression for the probability density function from first
principles. We'll use the following notation:

e P(A) “probability of A”
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Some rules of manipulating probabilities: In the following, we’ll basic rules of
manipulating probabilities. Here’s a reminder:

e Aand B
P(A,B) = P(A)P(B|A) (17)

e ... which leads to Bayes’ theorem

P(A,B) _ P(A)P(B|A)

PABY =" = Pm)

e A or B.
P(AorB) = P(A)+ P(B) — P(A, B) (19)

We include the following measured quantities in our fit:

e The measured lifetime, ¢,.

e The efficiency function Ayye, calculated from the decay kinematics and
the trigger cuts.

e The mass, m.

e The track-configuration observed, trk. Basically how often we find, say,
three tracks in the SVT compared to two. Used to fit the SVT’s single
track efficiency.

e The measured lifetime error is NOT used as it is correlated to other quan-
tities resulting in problems described later. Instead we use a average
resolution for all events.

Since we only have triggered events, we want to calculate the probability of
making these measurements, given the event passed the trigger:

P (to,m, trk, Ayyig|trigger) (20)

It is important at this point, to distinguish between the probability of finding
an acceptance function, P(Ayig), and the probability that the trigger triggers,
P(trigger). P(Asig) depends on the decay kinematics only, it is simply the
probability to find an event where the decay kinematics translate the trigger
cuts to the given efficiency function. P(trigger|At.ig) is the probability that
a decay with these kinematics passes the trigger. This includes integrating
over all other quantities (decay times, masses, track configurations), for the
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given acceptance function. It is basically the denominator in 12. P(trigger) is
the same, except that it now also requires the integration over all acceptance
functions, i.e. this is what you’d calculate using an average accepance function,
for example derived from Monte Carlo. The difference between P(Ayyig) on
one side, and P(trigger), P(trigger|Asig) on the other, is important, because
P(trigger) and P(trigger|Atig) depend on the mean lifetime, while P(Agig)
doesn’t.

Now we have background, we separate Equation 20 into a signal and a back-
ground part. We use the letters s and b for signal and background. Using
Equation 19, P(s,b) = 0, and P(sorb) = 1:

P (to,m, trk, Apigltrigger) = P (s,to,m, trk, Agig|trigger)
+ P (b, to, m, trk, Apig|trigger) (21)
In the following, we focus on the first term on the right hand side in Equation

21, only:
P (s,to,m, trk, Agig|trigger) (22)

The results for
P (b,to,m, trk, Agyig|trigger) (23)

will be analogous.
So far, nothing has happened. Using Equation 18 on Equation 22 gives:

P (s,to,m, trk, Atyig|trigger)

_ P(s,to,m, trk, Ayig) P (trigger|s, t,, m, trk, Agig) (24)
B P(trigger)

Note that P (trigger|s, t,, m, trk, Ayig) is either 1 or 0, because the trigger de-
cision is completely determined by the efficiency function, the decay time, and
which tracks have actually been found by the SVT. The denominator in Equa-
tion 24 is the probability that the trigger fires - we would rather re-write this
in terms of the event-by-event probability that the trigger fires given the ac-
ceptance function, P(trigger|Atig). And finally, it is easier to calculate this
denominator for signal and background separately, so the aim is to find an ex-
pression in terms of P(trigger|Agig,s). Using Bayes’ theorm (18), we find for
the denominator in Equation 24:

. . P(Atri 8)
P(t = P(t Atrie, g2 25
(trigger) (trigger| Aprig S)P(Atrig,s|trigger) (25)
The left-hand term in the numerator of Equation 24 can be written as
P (s,to,m, trk, Agig) = P (s, Atrig) P (to, m, trk|s, Atrig) (26)

Putting these together (note the cancellation of P(Ayyig, s)), and abbreviating
P (trigger|s, to, m, trk, Auig) as P (trigger|all) , we get:

P (s,to,m, trk, Apig|trigger)

_ P(ty,m, trk|s, Airig) P(Agig, s|trigger) P (trigger|all) (27)
N P(trigger| Agig, 5)
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The first term in the numerator can be split further

P (to,m, trk|s, Auig)
= P (to|s, Auig) P (trk|to, s, Awig) P (m|trk,to, s, Airig) (28)

So far, we only used basic rules of manipulating probabilities, nothing else. Now
we make some sensible assumptions:

e t,, the measured lifetime, is independent of the Ayg,iq, i.e. the decay kine-
matics. Remember that Ay, is all about decay kinematics, so P(t,|Atrig)
is not the probability of measuring ¢, given the trigger, but it is the prob-
ability of finding ¢, given the decay kinematics that translate trigger cuts
into lifetime cuts, before the trigger is applied.

e irk, the number of tracks found by the SVT, is independent of o, and
Atrig.  Again, remember that Agse is all about decay kinematics, so
P(trk|Aupig) is not the probability to find k out of n tracks in the SVT
given the trigger, but it is the probability of finding k out of n tracks in the
SVT given the decay kinematics that translate trigger cuts into lifetime
cuts.

e m, the reconstructed mass, is independend of trk, t5, Agrig-

With this we get:
P (to,m, trk|s, Anig) = P (lo|s, Awig) P (trkl|to, s) P (mls) (29)
so our PDF is now:

P (s,to,m, trk, Aqig|trigger)
P (tols,) P (trk|to, s) P (m|s) P(Atrig, s|trigger) P (trigger|all)
P(trigger| Agig, 5)

(30)

Finally, we’ll have to deal with the second but last term in the numerator,
P(Aqrig, s|trigger). Note that the condition “|trigger” ensures that we need to
look only at quantities as the are distributed after the trigger, which is also all
we have access to. There are several different ways in which this term could be
disentangled

1. P(s|trigger)P(Aurig|s, trigger), where the first term is simply the overall
signal fraction after the trigger, i.e. in the data we see. The other term
fits the A distribution (how to fit a distribution of acceptance functions
is the subject of an entire section later on).

2. P(Airig, |trigger) P(s| Atrig, trigger). Here we can ignore the first term, as
it does not depend on the parameters we are interersted in, and it is the
same for signal and background. The second term is a signal fraction as a
function of A¢ig and o;. While there are other possible disentanglements
this turns out to be the default solution that we choose. We use fisher
discriminants to model this term, but this is complicated enough to deserve
its own section 8.
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With this, the final version of the signal-part of the total PDF is:

P (s,to, m, trk, Aqig|trigger)
= P (s]Aunig, trigger) x
P (to|s,) P (m|s) P (trk|t,, s) P (trigger|all)
P(trigger| Agig, 5)

(31)

The different terms in the PDF are listed below. Where background has a
different model this is also described:

P (to|s,) This is the probability of measuring a lifetime ¢,, given the average
(unchanging) lifetime error oy, for signal events with a mean lifetime 7. It
is given by

1 - o2 t
P (tols, 1) = —e S (0 - ”> (32)

P (t,|b,0¢) The background lifetime model is discussed in its own section ?7.

P (m|s) The signal mass distribution is by a 2 Gaussians with different means
and widths. Further details of this mass model and why it is chosen are
described in another section 10.

P (m|b) The background mass distribution is a first order polynomial. Reasons
for this choice are detailed in section 10.

P (trk|t,, s) The probability to find the given track configuration in the SVT,
expressed in terms of the SVT’s single track finding efficiency, €5. It is
given by

P (trk|t,,s) = P (SVT found k tracks out of n|t,,s) =&* (1 — 55)(n7k)

(33)
where k is the number of tracks found in the SVT, and n is the number of
tracks available to be found; n is smaller or equal to the total number of
tracks in the final state. A track is “available” if it has |d§f| < 1 mm and
p: > 2 GeV. Note that this is not the usual “n over k” expression, because
we are not asking for the probability that any k out of n tracks are found,
but that those specific k tracks that have SVT matches are found, and
the others not.

P (trigger|all) The probability that the trigger fires, given all measured quanti-
ties. This is simply one or zero:

. 1 if event passes trigger cuts
P (trigger|all) —{ 0 else P &8

(34)
So its value is 1 for all events in the sample and could be omitted. It is
however useful a term to keep in mind if one wants to calculate the PDF
for values of, say, c7, not actually found in the event, for example if one
wants to integrate the expression.
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P(trigger|Atrig, s) The probability that the trigger fires, given the efficiency
function Agglt’s the normalisation factor. It’s given by:

max i

t

1 -t 102 t
g g / P (trk|to, s) P (trigger|all) —e RS (O — G) dto
T

all trk i=all ¢

min i

intervals
102 [t o £\ e
= 3wl [P R (L= D) (G)] T
i=all a7 T/ d b=t
intervals

P (s]|Agrig, trigger) The signal fraction as a function of the acceptance function.
This is tricky because it involves a function of a function, rather than the
usual function of a parameter. The strategy we follow is, to characterise
the the the acceptance function with a single number and then evaluate
signal/background probabilities as a function of this number. In doing so,
we need to make sure that

P(s|Number(Agig)) ~ P(s|Atrig) (36)

to a good-enough approximation. This means that the characteristic num-
ber must be chosen such as to minimise the information loss in the process
(Atrig) — number, in terms of the signal-ness or background-ness of the
acceptance function. A relatively simple number to calulate that is very
good at separating signal from background, i.e. at minimising the infor-
mation loss regarding the signal-ness or background-ness of the acceptance
function, is the Fisher discriminant. In the following we describe how we
associate a Fisher discriminant to each acceptance function, using data
only, and then how we use this to calculate P (s|Ayyig, trigger).

8 Fisher Discriminant to calculate P(s|acc)

P(s]acc): The more complicated term to deal with is the acceptance function.
The use of fisher discriminants is introduced to deal with this term.

8.1 The use of Fisher Discriminants

If our acceptance function were characterizable using a set of variables then a
Fisher Discriminant Analysis could be used to separate signal and background
in the way required above. Our acceptance functions typically have the form
of top hat functions over intervals of c¢7, so we can sample the height of the
function at N points, creating a vector v; with N entries. Each entry is a
variable describing the shape of the acceptance function at a given value of c7.
In the Fisher Discriminant Analysis we find the N-component projection vector
w and use it to form the scalar product w.v; for every event. We name the
scalar product w.v; the Fisher scalar and the distribution of the fisher scalar is
parameterized to separate signal and background in much the same way as for
invariant mass or any other kinematic variable. A detailed description follows.

28



8.2 Basics of Fisher Linear Discriminant Analysis

Imagine two classes of events, eg signal and background with their own distribu-
tions of variable z and y as shown in figures 13(a), 13(b) and 13(c). The means
of variable z and y for each distribution are shown as the points m; = (T5, ¥s)
and M = (Tp,Tp). We are looking for a linear direction w on which to project
these events such that value of the projected point along w provides the best
discriminator between signal and background. From the diagrams we can con-
clude that the best projection direction is one where the distance between the
projected means of each class of event is large while the spread around each
mean remains small.

B B |
o TG

(a) The best separa-
tion here is most likely
along the means

(b) Here the separation
along the y axis is better
than along the means
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Figure 13: This illustrates that it is necessary to take the means and spread of
each variable in finding the direction of best separation

Firstly we consider the square of the separation of projected means of signal
and background events along the projection direction. This is given in equation
37, and gives the definition for the matrix we refer to as Sy;.

(< wlmg > — < wimy >)? =< w|(m; —mp) >< (s — ) |w > (37)
=< w|Sy|w >

Secondly we consider the square of the spread of the signal events around the
projected mean, Scat2;, which leads to the definition of the matrix S, as shown
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in 38, where p; =((x;,¥;)).. There is a similar expression for the background
events, Spg.

Scat?;, = Z (< wlp; > — < wlm; >)?
All signal events
= Y <uwlpi-m)><Emi-m)lw> (g

All signal events

= Z < w|Ssiglw >

All signal events

It is clear that the best projection direction is one in which the means of the
two types of events fall far apart but simultaneously the spread is small. This
is Fisher’s criterion and is expressed mathematically as finding the w for which
J(w) is maximized, where J(w) is given below 39.

< w|Splw > < w|Splw >
(w) =2 W|(Ssig + Sog)lw > < w[(Su)|w > (39)

From equations 40 and 41 we find that by maximizing this condition we are
left simply with an eigenvalue equation. Furthermore using the definition of the
matrix Sy, we can simplify the equation and remove the need to find the actual
eigenvalues and just use the inverse of S, and the vector (7z — my,) to find the
vector w.

=0 (40)

_ 2Sy|w > <w|Sylw >  2S,lw >
VulJ(w)) = <w|Sylw > <w|Sylw > < w|Sylw >

Surlw > =ASy|lw > =0
Sarlw > = ASy|w > (41)
ST S lw > = Aw >

Using the definition of Sy, from equation 37 we can rewrite Spslw > in the
following way.

Sulw > = |(fs — mp) >< (M5 — mp)|w > (42)
5M|w > X |(Ws—m) >

If we insert this into equation 40 we see that it is not necessary to solve for
the eigenvalues and that all we require to find |w > is the inverse of Sy and
|(ms — iy >.

St (ms — mp) > jw > (43)
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The value of the discriminating variable is given by the scalar product of the
event vector (z;,y;) in this case and w, and this fisher scalar variable is the best
one for distinguishing between the two classes of events.

While the diagram illustrates the technique for 2 variables only, the mathematics
is general and hence we can extend this to any number of variables and the
matrices Sy or S, are just expanded to n X n square matrices, and the vectors
w etc grow to length n too.

8.3 Using the Fisher Scalar Distribution to calculate sig-
nal probability

Imagine that we could quantify the acceptance functions as a set of variables.
Then we could use fisher discriminant analysis to find the direction of best
separation. One way in which we could do this is to turn the acceptance function
into a column vector v;. A detailed description on how this is achieved follows
in the next section. Each row of the vector would be a different variable treated
similar to « and y as above. We find the vector w as above and then w.v would
be a discriminating variable, that we could use to give us the probabilities
P(s|Aprig, trigger) and P(b|Ay4, trigger). We call the variable w.v the fisher
scalar.

8.3.1 Acceptance function — Vector

Our acceptance functions are like a series of top hats added together. We can
draw them in a histogram by plotting the acceptance probability as a function
of cr for every event. A typical acceptance function may look like the one in
figure 14 where the differing heights are regions in which there are 2,3 (or more)
tracks with IP in the region where it could play a part in the trigger decision.
We can write this one histogram as the sum of the histogram that contains the
sections where there are only two tracks and the histogram that contains the
section where there were are three tracks and so on. This is illustrated in figure
14. So for each event there will be t types of histogram where t maybe 1,2
(or more) depending on the number of tracks in the final state of the decay.
The reason the acceptance function in split into regions of different heights is to
allow the acceptance function to be independent of the efficiency for the fisher
discriminant part of the analysis.

The histograms are binned finely over a very large range (-500 to 10,000 mi-
crons) to ensure all parts of the acceptance function are included. We then find
the minimum and maximum bin over the whole dataset, and then rebin each
histogram into a smaller number of n bins over the new range. Typically this
number is 20 for 3 track decays. The height of the histogram in each of the n
bins provide the values for the first n bins of the vector. We then move onto
the next histogram and the height of its bins provide the next n entries into the
column vector. We arrived at the choice of 20 through testing on MC signal
and background mixes. To try and preserve as much information as possible it
is desirable to use an increased number of bins. However we have found that

31



3trks

2trks 2 2trks
0.25
1/0 1/0 1
| H
111511111 T

Frrin
n+ln+2n+3 e 2n—12n

14

IIIIIIIIIIIIII?C

1 23 ... n—1n

Figure 14: Splitting the acceptance function into the sum of its parts.

using too many bins has caused problems during the inversion of a matrix. One
eigenvalue can become numerically close to zero and this stops accurate inver-
sion of the matrix. We found that 20 bins was a good choice for 3 track decays;
in tests it did not appear to cause a lifetime shift, nor did we encounter errors
during matrix inversion. There is only one further change made to this vector
which will be explained in a later section.

Now that we have each acceptance function as an acceptance vector, v;, for each
event, and it is of length n*t. As there are n*t variables the matrices Sy; and
Sy are of dimension n*t x nxt. We can now consider how to find these matrices
and the vector |m; - Ty > so that we can find the vector w and hence find the
fisher scalar for every event.

8.3.2 Extracting ( |m; - My >) from the dataset

If we had a sample of events which we knew , a priori, were signal and another
that we knew were background, making this vector is a trivial exercise. However
we can use a mass only fit to the data to define two regions; a sideband region
and a signal region. We can assume that all the events in the sideband region
are background events and that this background is typical of all the background
in the sample. We can find |75 > by simply summing all the acceptance vectors
in the sideband region and dividing by the number of events in this region.

The equivalent vector for events in the signal region is called [, > which we
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can write as equation 44 where we know f, from the mass fit. f, is the fraction
of signal in the signal region. The vector ( [, - Ty >) is proportional to ( [
- Ty >). This is our vector for the difference between the means.

Z events in ‘Ui >

R signal region

m =
" Z events in 1
signal region (44)

My > = folms > +(1 — fo)|my >
[y — g, > = fo| (s > —|my >)

We may find that some of the variables in the vector [y - 7, > have value 0
, which means that the variable in that entry can provide little discriminating
power. Keeping these variables in the vector turns out to cause problems during
matrix inversion and so we truncate ( [i; - T, >) by removing rows where the
entry in ( [m; - mp >) is 0. We also remove the corresponding rows from the
individual acceptance vector v; so that all the vectors have the same dimension.

8.3.3 Finding Sy

We wish to find S,, which can be written as 45 where v, and v, are the ac-
ceptance vectors of pure signal and pure background events respectively. The
definition is taken from equations 38 and 39.

Sw= > s =) >< (v, > =)+ D (v —15) >< (v — )|

Signal Background
events events

(45)
Again we consider the signal region and background region.

We can calculate the matrix called Spi as given in equation 46 trivially as we
already have my,.

Sy, = Z [(vi —Tg) >< (vi — )| (46)

Sideband
events

We can also calculate the matrix called Spressg given in equation 47. We
calculate |m; > as we know the value of f; from the mass fit and we know
fs*|(s-mp) > and |y >.

Sbassig = Z |(Ui - Ws) >< (U'L' - Ws” (47)

Sideband
events
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The matrix S(sg +b) is calulated in 48.

Ssgb = Z (v = M) >< (v — )
Sz’gnal
region
events

- S e —mg) >< (vg — )|

Signal
events insignal (48)
region
+ > [(vp — T5) >< (v — T725)|

background
events in signal
region

We can calculate the 3 matrices in equations 46, 47 and 48 by considering
the signal fraction under the peak, events in the signal region and events in the
background sideband. We can combine these matrices together to give us Sy
as shown in 49.

N° Background in sideband
NO Background in signal region

Sw = Ssg+B

bassig

n N° Background in dataset < S (49)
NO Background in sideband region bk

In practice, we optimize the procedure slightly by using the event-by-event signal
probability derived from the mass fit, i.e. we use the information that events
near the center of the B mass peak have a larger signal probability than those
at the edges of our signal window.

8.4 Using the fisher variable to get signal probability

To verify the procedure, we apply it to our toy MC, details of which come
later. For the purpose of defining the Fisher direction and calculating the Fisher
discriminant, the toy mc was used like any other data sample, the information
which event came from signal and which from background. We see that the two
classes of events are separated, the blue events coming from background and
the red from signal. Dividing the signal by the total we can see the distribution
of signal fraction as a function of signal.

We model this distribution using the Lagrange interpolating polynomials. Their
parameters are the value P(s|Fisher — scalar) for certain values of the Fisher
scalar, which are then smoothly interpolated - for details see [5].

We can fit for the height of this function at regular intervals of the fisher vari-
ables. The distribution is binned and the signal fraction in each bin is a fit
parameter. An example of this function after the fit is performed is shown in
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Figure 15: The distribution of fisher scalar is shown here from signal Monte
Carlo is red and that from background is blue. It is clear that their distributions
are different.

Figure 16. The fit parameters are constrained to lie between 0 and 1 as this is a
probability distribution function. The fit did not know which event were signal
or background. As we see from the figure the fit matches the truth distribution
very well. The data is binned as a function of fisher scalar, and the signal frac-
tion in each bin is a fit parameter. Again we use Monte Carlo and background
data mixed together to find how many bins the data needs to be split into so
that the distribution is well modelled. By construction the higher the number
of bins that are used, the higher the degree of polynomial that Lagrange Inter-
polating Polynomials uses to fit the distribution. To fit the truth well we use
about 15 - 20 bins, and pick 15 as a default. In doing this we do introduce
some fluctuations at the end of the distribution but as there are so few events
in these regions we do not expect this to cause any pull in the best fit lifetime
result. We fit each bin for the signal fraction, and the advantage of using the
Lagrange Interpolating Polynomials is that the probability changes smoothly
across the bin instead of jumping at the bin edge. The disadvantage is that in
the tails of the fisher scalar distribution where the statistics in each bin are low
the function is poorly behaved as it is not pinned down well. To improve this
we make a small change to start and end the interpolating polynomial in the
region of high statistics and use a single bin either side to fit the tails. This
results in an effective 13th order polynomial. The choice of number of bins and
the order of the polynomial is tested in crosschecks and we note here that as
we reduce the order of polynomial from 13 to 9 there is no change in the fitted
region. We conclude that this choice gives a sufficiency fit.
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Figure 16: The data points show the truth signal fraction in the fit. The red
line shows the fitted function. The data points are shown to demonstrate that
the correct signal fraction has been found. The fit itself does not know which
events are signal or background so does not know the truth, yet manages to
match it well.
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9 Using an overall, average 0., motivation, ver-
ification and choice

At this point we make a small diversion to explain the choice of resolution for
this analysis and also to explain why it is not possible to use the event by event
measured lifetime error.

Since the calculated uncertainty of each events proper decay length c7, sigmac,
is correlated with the event’s acceptance function we have to take this into
consideration before extracting a lifetime from a fit. This is illustrated by the
following plots of the event by event resolution

Formerly we had attempted to deal with this correlation by including the a4
into the vector of quantities from which a Fisher scalar discriminant was to be
extracted. The hope was that this would decorrelate the appropriate variables
and provide a scalar distribution that would allow us to determine the proba-
bility of an event being signal given a particular o., and acceptance function.
We have since determined that this procedure has potential pitfalls:

1. This method of accounting for correlation works best for strong and linear
correlations, which is not the case as illustrated in Fig 17

We also note the following:

i. Ignoring the different background and signal acceptance function dis-
tributions biases the lifetimes to a lower value.

ii. Ignoring the different background and signal o, distributions biases
the lifetimes high, see CDFNOTE 8524 and others.

2. Given i and ii, we can never be sure if these effects have been accounted
for separately or have simply canceled. The use of such a technique in a
mode with different topology would have a different effect.

In the light of the above we propose the use of an overall gcr in place of using
the event by event quantity. We demonstrate that this has an effect at the sub-
micron level on the best fit lifetimes. We also determine what an appropriate
value for such an 0., would be using data and background subtraction however
the reader will note the choice hardly matters as demonstrated below.

9.1 Demonstrating the effect of an overall o,

To demonstrate the effect of using an overall resolution rather than the event
by event quantity we take a sample of roughly 80,000 Monte-Carlo events for
the charged decay mode and fit this sample using the event by event and several
different overall o., the results are tabulated for each mode below.
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Profile Plot of correlation of the fisher scalar and lifetime error in signal events
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(a) Signal events

Profile Plot of correlation of the fisher scalar and lifetime error in background events
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Figure 17: Profile Plots illustrating the correlation between fisher scalar and
lifetime error for signal and background events. Realistic Monte Carlo was used
for the signal and upper sideband was used for the Background. The fisher
direction was calculated using the events from these 2 samples.
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Table 2: 80000 realistic MC B+ — DOz* truth lifetime 497 ym
Configuration Best Fit +Error

Event by Event 0., | 494.149 £ 3.083 pum
Oer=2 pm (fixed) 494.158 + 3.083 um
0e;=21 pm (fixed) | 494.158 + 3.083 pm
0e=26 pm (fixed) | 494.156 + 3.083 pm
0r=32 pm (fixed) | 494.159 + 3.083 pm
0e-=100 pm (fixed) | 490.694 + 3.058 pm

Table 3: 20000 realistic MC B* — DOz truth lifetime 497 pm
Configuration Best Fit +Error

Event by Event o., | 496.116 &+ 6.070 pym
Oer=2 pm (fixed) 496.128 £ 6.070 pm
0er=21 pm (fixed) | 496.127 £ 6.070 pm
0er=26 pm (fixed) | 496.125 £ 6.070 pm
0er=32 pum (fixed) | 496.118 + 6.070 pm
0=100 pm (fixed) | 492.585 + 6.019 pm

We use the whole 80,000 events and then a lower statistics piece of 20,000 events
using overall resolutions of 2, 21, 26 32, 100 microns. Given that in data the
average resolution is 26 um for the B the last data point is hardly neccesary.
It seems that applying of order 25 pm is fine as a choice and the negligible shift
in best fit lifetime shows us that given the L,, cut the current CDF resolution
is about as good as we would want.

We see that only when the overall resolution is changed to a drastic value of
100 pm is there a shift ~4 pm micron in the lifetime.

9.2 Understanding the effect: Why it doesn’t matter what
overall resolution we choose.

To understand why these different choices make very little difference let us begin
by writing down the expression for the probability density function in proper
decay time:

1
_ ; 1o t=tmax i (50)
O e AR O]
i=all
intervals

t=tmin i

recall that we apply an L,, cuts of 350 um for our analyses, and the average of
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Figure 18: B o, distribution red is signal, blue is background, unfilled is total.

the cr distribution is 600 pum, for large arguments the Ffunction tends to 1, and
the behaviour of the probability density functions is determined by the expo-
nential terms. We can see that we expect very small changes in the likelihood
for [L]> > ‘Z—; which we expect is always the case.

To summarize if the lifetime resolution is good, then it is nearly the same as
having perfect resolution, (we can see that making a drastic change to the overall
resoultion from 21 pum to 2mm hardly changes the best fit lifetime) this simply
that the usual resolution is already very close to the limiting case of a perfect
resolution. We see that the answer begins to shift at the 1 % level only when
an unrealistic resolution of 100 um is applied to all events.

9.3 Determining a reasonable average o, for the BX sam-
ple

Finally we make a choice of a specific overall resolution to apply to the mode. We
take our final data sample after all cuts and look at the background subtracted
sample for the ocr distribution. The overall and background subtracted sub-
tracted ocr distributions are shown below. The overall resolutions derived are
25.7 pm for the B. Recall that we hardly expect variations in these particular
choices to make a difference.

Finally we have made the choice of 26 pum for the BE™ when we do analyse
data.
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Figure 19: B?f o¢r distribution of signal only: Average 25.7 pym .

41



bmass1 bmass!

[Entries 62318
Mean 528
4000 ¢ RMS 0.01896

525 53 535 54 545 55

Figure 20: We find that realistic MC is fit well by 2 Gaussians.
10 Modelling the Mass

In this section we give some detail to the mass model for signal and back-
ground. The mass fit is important for two reasons. Firstly it is present in the
full Likelihood expression and is a significant discriminant between signal and
background. Secondly the initial step in the fit is to do a mass only fit so that
we can make the fisher vector. The mass distribution is an important part of
making this fisher vector.

All we need to do is model the shape for signal and the shape for background so
there is a good fit to the data. In Bu there are 3 classes of events that we classify
as signal. These are the main peak, some events where one or more photons
were radiated and also some presence of the cabibbo suppressed mode; B to
DK. We treat all these three types of events as signal, and do not distinguish
between them. We have Monte Carlo that contains B — Dm and B — Dn(nvy)
and find that over our fit range of 5.23 to 5.5 the signal mass is well fit by 2
Gaussians where the means and widths are allowed to float. 20

In our data the contribution of events that radiated photons may be different
and furthermore there is the cabibbo suppressed mode. We try the same two
Gaussian model for data, expecting the floating parameters to adjust themselves
for these differences.

The shape of the combinatoric background should have the same shape as the
wrong sign combination of ‘B’ — D — 7—. We examined the mass distribution
of this reconstructed data over the fit range 5.23 to 5.5. It is well described by a
first order polynomial. We only look at the wrong sign to decide upon a sensible
shape for our model. We do not fix the slope in our data from the wrong sign
distribution. The wrong sign distribution is shown in Figure 21.

Putting this all together

P(mls) = f1 x Gauss(m|my,01) 4+ (1 — f1) x Gauss(m|ma, 02), P(b|s) = 14+ m
(51)
The functions Gauss and the polynomial have been normalized over the re-
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Figure 21: The wrong sign distributions looks like a first order polynomial.

stricted mass range 5.23 -5.5GeV. So in total there six parameters introduced
by this model. They are mq,mso, 01,02, f18 In the initial mass fit there is an
extra parameter fs that fits the fraction of signal and background. In the final
lifetime fit the signal fraction is taken care of by the term P(s|Acc, o¢)

We fit the mass parameters alone in the initial mass fit and then hold them
constant in the time fit. We find that this model fits the data well. Plots are
shown in the result section.

11 Modelling the Background Lifetime

We are not interested in the physical meaning of the background lifetime distri-
bution and we postulate a general PDF y(t). This is the distribution of lifetimes
in the background before the trigger. This includes all detector resolution effects
so our function does not depend on the measured uncertainty on lifetime, oy.
The probability of measuring a lifetime, ¢, given that an event is background
and given the acceptance function, calculated for that event, is

v g <<ty
P(t‘b, Atrig) — ) J Acceptancedt T -7 = ax (52)
0 for all other ¢.

y(t) has been normalised such that ¢ lies within the acceptance function. Note
that this function has no physical meaning and we don’t require one for back-
ground.

We parameterise the background by fitting the height, y(t), at different lifetimes,
t;, and interpolating between these points using exponential functions. So

aji1—a
aj+< et ) (t=t5)

y(t)=e for t; <t <t;u (53)

where the a; are constants to be found. We are free to choose the number, n,
and spacing of the points ¢;. We would like to use as few parameters as are
needed to describe the distribution so we space the points most tightly at low
lifetimes where the distribution of lifetime varies most rapidly and have fewer
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Figure 22: A fit to uppersideband of using the interpolated model for lifetime

points at large lifetimes where the distribution varies less. We distribute ¢;
logarithmically according to

In(etb)—in(e) ; t — tmi
t; = tmin + (—c+e(l”<0>+ = a)) : M

where ¢ and b are constants which affect the scale of the logarithmic spacing.
For a given ¢ (we choose ¢ = 1) decreasing b spaces t; more equally. We chose
¢ =1 and b = 4 as this gives a good fit to the background in the upper
sideband. We use 10 parameters in the fit. Using more does little to affect the
goodness of fit but does alter the fit stability. Using these parameters the ¢;
are found at 0, 146.9, 322.6, 532.7, 783.9, 1084.3, 1443.5, 1873.1, 2386.7, 3001.
The parameterisation is tested using the background in the uppersideband and
is shown in figure 22.

(54)

12 Validation of Method using toy Monte Carlo

This section details the studies that have been done and their methods to vali-
date the Monte-Carlo Free technique. In an ideal scenario we would like to have
generated enough realistic Monte Carlo for signal and background to be able
to run 1000 independent pseudoexperiments and check for any residual biases.
However this involves generating 24M events that pass all analysis and trigger
cuts for each signal mode and 9M background events using pythia as the back-
ground is assumed to be combinatoric. There is not the time nor resource to be
able to do this.

We have at our disposal approximately 65K realistic MC events for B4 and 20K
background events from the upper sideband. One way to boost the sample size
would be to bootstrap the events whereby for each psuedo experiment 24K sg
and 9K bkg are chosen from the parent samples with the possibility of choosing
the same event more than once available. However while this method of con-
structing toy experiments is useful in assessing the statistical error calculation
it cannot be used to determine any residual bias of the method or fitter.

Imagine that the 65K sample has a truth input of 496 microns and a fitted
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lifetime of 498+ /-2 microns. This one sample on its own is deviant by 1 sigma
which would happen relatively often. If we then use this sample to bootstrap
from we will find that the mean fit result is also close to 498 simply because the
parent sample is too. However this does not imply that the mean bias of the
method is 2 microns. It is unclear how to interpret results using a bootstrap
method. To use the background sample this way we also have to reassign the
mass and in the process of doing this run the chance of breaking correlations
that aren’t taken into account.

Another method is to take the realistic MC and the upper sideband shifted down
and perform the fit that way. While this method doesn’t have the problems
associated with bootstrapping we only have enough for 2 samples and it is not
possible to make any conculsions from this on the performance of the method.

We have turned therefore to toyMC as our main validation tool. The toy is
described below.

12.1 The Toy

The toy used is not simply a toy that generates the fit quantities from the pdf.
Infact for this method it is not possible to create such a simple toy, the reason
being that the lifetime probability pdf changes from one event to the next based
on the event’s acceptance function. We do not have a way of generating stand
alone acceptance functions. Instead this toy generates the whole decay chain.
A toy for this method would require knowlegde not only of the fit parameters
but also all the track momenta, track impact parameters, a modelling of the
trigger etc. In an attempt to do this we must stress that we cannot expect to
create a toy that matches all features of the data, as this would, in effect, have
to be as detailed as B Generator or Pythia. We are merely trying to achieve a
close approximation to the data so that for example the mean momentum in toy
and data are similar or that the acceptance functions in the toy roughly match
those found in data.

12.1.1 Generating Singal Events

Let us take the B* as an example. Four quantities are independently generated.
Described below is the “standard toy for signal”. Studies using variants of this
are detailed later in this section.

e The B Lifetime - This is generated from an (unbiased) exponential, using
the current PDG lifetime as mean 7 = 491.1um, smeared by a gaussian
of width 26 microns

e The D Liftime - This is also generated from an exponential with mean
lifetime taken from the PDG

e The B Mass - for the basic toy this is a simple Gaussian as we are more
interested in the ability of the method to remove lifetime biases. The mean
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mass is the PDG mass and we use a width of 18MeV. A more complicated
mass model is added once we are satisfied that the method can unbias the
effect of the trigger.

e The B transverse momentum. We use histograms from realistic B Gen-
erator Monte Carlo as a basis for the Bpr. However as the B Generator
MC has already been triggered once, using that distribution for our toy
MC will result in a bias towards accepting events with a higher momen-
tum. We find that using the B Generator spectrum x 0.72 gives a final
momentum spectrum closest to what we find in data.

With the 4 quantities above we have sufficient information to generate the entire
decay. Firstly a momentum direction is chosen. We choose a direction that is
uniform in ¢ and flat in . The momentum vector for our particle is (cos¢ *
sind, sing * sinf, cosd) * Bp. We calculate the Lxy and B vertex of the particle
in the lab frame. In the rest frame of the B we create a decay resulting in a
D% and 7t. In the rest frame these will have equal and opposite momenta and
the decay will be isotropic. We transform these quantities to the lab frame to
calulate all the track parameters requrired. The decay of the D° — K + &
is done in exactly the same way. We now have all the kinematic quantities
required. The SVT single track efficiency for signal over 1fb~! is approximately
0.75. So at random we give 75% of the tracks an “SVT Match”. Only these
tracks can be used by the trigger. In addition the tracks that are given an
SVT Match also have their SVT impact parameter discretised to the nearest
10pm as would have been done had this been a real event.We have also now
modelled the SVT single track effieciency which would be crucial in any toy
validating the method for more than a two body decay. Finally the event, with
all the kinematic information is passed through the trigger simulation and all
analysis cuts are also applied to the event at this stage. There are three trigger
paths (Low-Pt, Scenario-A (Medium-Pt) and Scenario-C(High-Pt)). We ensure
that the final sample has a similar trigger mix to that found in data as this
is important to make the acceptance function distributions similar. For events
that pass all cuts (trigger and analysis) we can now construct the acceptance
function in the same way that we would for real data. Now that we have the
acceptance fucntion, mass and b liftime we have all the quantities to required
for a fit.

12.1.2 Generating Background Events

Background is generated primarily in the same way. The mass spectrum for the
basic toy is flat. The B lifetime comes from the lifetime fit to the uppersideband.
The resulting function is the distribution of lifetimes before the trigger and so
we use this to generate the distribution of lifetimes for background. For the D
lifetime we simply draw from the histogram of the same quantity found in the
uppersideband. Momentum distributions were based on exponentials that were
scaled until they resulted in a distribution similar to that found in data. Recall
once again that the aim was only to find a close approximation and not an
exact match. The single track SVT effieciency is lower for background, partly
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due to an increased fraction of tracks with only 3 hits in teh silicon. Therefore
in background generation the SVT effieciency is set to 0.65.

Kinematically one key difference between signal and background is the momen-
tum distribution of the pion from the B. In signal this tends to be of high
momentum, whereas in the sideband this is generally of low momentum. To
make the background toy kinematics better reflect the uppersideband we reject
a large fraction of events in the background that have a higher momentum.
Once this had been done we find that the agreement between the toy signal
MC and the sideband subtracted signal region and the toy background and the
sideband was good enough and have choosen to establish this as the standard
toy.

12.2 Agreement between Standard Toy and Data

The most important plots to compare are those of the acceptance function. If
we can get the toy to match the data for this variable it will give a Punzi bias of
approximately the right size and direction. Moreover if there is agreement be-
tween the acceptance function distributions it implies that all the kinematics are
in broad agreement as the acceptance function is calculated using a combination
of Impact parameters, momenta, opening angles etc. For B+ the acceptance
function is split into three parts as described elsewhere. These three parts are
where there is one track pair available for the trigger, two track pairs and three
track pairs. For the data and the toy we plot the average acceptance function
in each of these three categories. The comparison for transverse momentum is
also shown.

The agreement between toy signal and the sideband subtracted signal region is
very good considering that the detail of the simulation is minimal in comparison
to the cdfSim. The agreement between toy background and the sideband is less
good but still sufficient and broadly matching.

12.3 Validation of method

We start with the validation of the signal only pdf. Our data sample contains
approx 24K signal events so we generate 1000 sets of 24K events and perform a
lifetime fit upon them. The pull distribution ( Fit lifetime - lifetime error) /error
on fit is a unit gaussian. This demonstrates the validity of the signal only pdf,
in particular the method of dealing with tracks that are initially outside the
trigger impact parameter cuts. This is shown in Figure 25.

Secondly we consider the addition of background. We add to the signal events
9K background events and perform the fit in two configurations. Firstly with
the full pdf and secondly omitting the part that deals with the Punzi effect due
to acceptance function to show that this toy really does contain such a bias.
We find that there is such a bias. In figure 26 the pull is biased and this
corresponds to a shift of -4.740.24 microns. When we take into account the
Punzi effect with the full likelihood we find that we can correct for this bias and
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Figure 23: Comparison plots between the sideband subtracted signal region
in the B plus data and the toy signal generator. From the similarities of the
acceptance function it is possible to see that the kinematic distributions of the
toy broadly match those found in data.

measure only a very small shift in the lifetime of 0.224+0.21um. The plots in
figure 27 demonstrates that this method is capable of working.

This toy represents only the default signal and background generation. To test
the robustness of the method we try 4 further scenarios. Firstly we soften
and harden the momentum spectrum of the background, and use these varied
backgrounds to perform a pull study and check there is no bias. The different
momentum spectra are shown in Figure 28 with the resulting pull distributions.
We observe no significant bias in the lifetime measurement.

We also vary the input signal lifetime by 4+50um and check that the method
can work with different lifetimes. The pull distributions and results are shown
in 29 and again there is no significant bias observed.

It should be noted that each of these changes in pt or lifetime will change the
acceptance functions and this in term will change the fisher scalar distribution.
Despite this the fitting methods prove to be robust against such changes.

We conclude therefore that the method does remove the bias induced by the
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Figure 24: Comparison plots between the sideband region in the B plus data and
the toy background generator. From the similarities of the acceptance function
it is possible to see that the kinematic distributions of the toy broadly match
those found in data.

SVT based trigger.
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Figure 26: Pull of lifetime fit when ignoring the Punzi effect
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Figure 27: Pull of lifetime fit when accounting for the Punzi effect.
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Figure 28: The plots shows the different Pt spectrums used for the background
variants. The pull plots are also shown and are unit gaussians
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Figure 29: Pull of lifetime using the input lifetimes of 450pm and 540um. The
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13  Analysis cuts for B* — D%*, D — K¥x+

In this section we define the analysis cuts used to select B¥ — D%7* . The
same cuts are used for testing Monte Carlo and analysing data. When there
has been reason to depart from this for testing Monte-Carlo we have mentioned
this explicitly.

13.1 Track Quality Cuts

The following cuts are applied to all tracks from all modes:

Each track has transverse momentum Pr greater than 0.35 Gev.

Each track is required to have hits in a minimum of 5 COT axial super-
layers and 5 COT stereo super-layers.

Each track is required to have hits in a minimum of 3 silicon R-® layers.

Each individual track is required to have an n < 2

We use the xbh0d, xbhOh, and xbhOi datsets which are fed from the hadronic
B trigger. We begin by reconstructing a charged or a neutral D and then
combining it with a candidate track with a pion mass hypothesis to form a B
candidate. Selection cuts are applied on the Ds and the fully reconstructed
Bs. The final reconstructed quantities are obtained from the AC++ wrappered
CTVMFT vertexing program, using version 6.1.4 of CDF software and pass 17
of the alignment. All information from LO0O of the Silicon detector is dropped.

The selection cuts themselves are detailed in the following subsections.

13.2 Selection cuts for the B* — Dr*, with D — KFr*

We begin reconstructing D° candidates in the KF7* mode by combining all
opposite track combinations assigning them the mass of a K and .

The following cuts are then applied on D° candidates assumed to decay in the
mode: D — K¥g+

Oppositely charged track pairs are assigned the mass of the K or 7.

The raw mass of the D° must lie between 1.81 and 1.92

The transverse flight distance of the D in the direction of its Py (D Lay)is
> —100pm and is < than 1 cm.

The angular separation in ¢ between the K candidate and the flight path
of the DY is < 1.5 radians.
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The D daughters lie in a cone defined by AR = \ﬂAnQ + A¢?) < 2
e The transverse momentum of the D9 is >2.4 GeV.

The scalar sum of 7+ and K T transverse momenta is > 2.4GeV

e The KT and #F Prs are each individually > 0.4GeV

Next we loop over all tracks in the event with charge opposite to the 7 from the
DO that are not its daughters and assigning them the mass of a = and constrain
the 3 tracks to a common vertex this is our B* candidate on which the following
selection criteria are applied:

e The reconstructed B mass lies between 5.23 and 5.5 GeV

e The transverse flight distance of the B in the direction of its Pr ( Lyy) is
> 350pm and < than 1 cm

e The candidate B vertex x? < 15
e The Py of the #* from the B¥ is > 1 GeV.
e The impact parameter of the B with respect to the beam spot is < 80um.

e The angular separation in ¢ between the B and its m daughter is < 3.0
radians

e The momenta of the D and 7 from the B lie within a cone defined by
AR = /(An? + Ap?) < 2

e All the B daughters have a z0 within 5cm of each other.
e The B* transverse momentum (Pr) >5.5
e The scalar sum of all B daughter charged tracks Prs is > 5.0

e The calculated uncertainty of the proper decay time (xc) of the B, ., is
less than 100 g m
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Figure 30: A profile plot of mass vs lifetime in the sideband. As the mass is
increased the average lifetime falls.

14 Systematic Studies

14.1 Systematic error due to Mass Lifetime Correlation

One assumption that is present in the pdf is that there is no correlation between
mass and lifetime. While this is true for signal it is not true for background. We
can see this by looking at the profile plot in Figure 30 of the upper sideband
for these two quantites over a mass range of 270MeV which is the range in
our datafit. To assign a systematic for ignoring this correlation we introduce
the correlation into they toy by rejecting events such that the final correlation
matches that found in data. We then perform a pull study using this toy. We
find that there is a shift on the mean of the pull of 0.42 £0.05. This corresponds
to a lifetime shift of 2.2 microns and we assign that as a systematic to ignoring
the correlation in the pdf.

This figure turns out to be one of the leading systematic errors of this analysis
and further improvements in the future would include accounting for a correla-
tion in the pdf.

14.2 Systematic error due to the single-track efficiency of
the SVT

The MC-free method assumes that the single-track finding efficiency of the SVT
is flat between for 0< dy 1000pum where dg is the impact parameter measured
by the SVT. However we observe that there is some deviation from the flat
hypothesis. To estimate the effect of the deviation on a lifetime measurement
we reject events according to the deviation and estimate a systematic error.

A signal region sample from BFf — D%r% is used and a description of the
evaluation of the systematic error now follows.
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14.2.1 Determining the single track finding efficiency of the SVT

The single track efliciency of the SVT is found by dividing the number of tracks
found by the SVT by the number of tracks found by the offline as a function of
the offline impact parameter dj.

Offline tracks for this study of the decay BEf — D7 are selected according to
to the following criteria:

i . The number of Silicon hits in R-phi (Ax-hits) should be > 3
ii . The track transverse momentum Pr > 2 GeV

iii . and track | n|< 1.1

The final expression for SVT single track efficiency is given by the expression:

. (do) = NSVT(Az — hits > 3: Pr > 2GeV,| 1 |< 1.1) (55)
SVIAT0) ™ NOFF(Ax — hits > 3 : Py > 2GeV, |1 |< 1.1)

We fit this expression to the function :

de —
esvT = po X erfc( Opzpl) (56)

where er fc is the complementary error function, dy is the offline impact pa-
rameter and pg, p1 and po are free parameters.From figure 31 we see that the
efficiency is almost flat but starts to drop just before 1000 microns.

14.2.2 Determination of the systematic error

To ascertain the error the assumption of flatness causes we turn to our toy
monte carlo. We generate signal events using an efficiency determined by the
fit of the distribution above, but fit with the standard one floating efficiency.
We test this on 1000 samples of 24K events and find that the mean shift in the
fitted lifetime is -1.9 4+0.2 microns and assign this as a systematic.

14.3 An approach to evaluating a systematic error due to
Silicon Misalignment

In the appendix we have described how full detector and trigger simulation
MC can be used for evaluating a possible systematic error in lifetime due to a
misalignment of the detector ??7. This technique is computationally intensive
and results in a large statistical error on the measurement itself. We do not wish
to accept this large (5.0 micron) statistical error as a systematic all indications
suggest that this would be a large overestimate.
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Figure 31: Single track efficiency of the SVT.
Instead we turn to an estimate made by toy MC. By using geometry we calcu-
late the effect of radially moving all Silicon wafers. The new impact parameter
doshifted = dotrue + R - sin(¢y)
56

is give by:
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Figure 32: Diagram to show how hit are assumed to be at the wrong place if
the position of the silicon layer is not at the official position.

in this expression dosp;fieq 15 the impact parameter recalculated due to the
radial movement of the wafers, do;, .. is the true, generated impact parameter
of the track. The angle ¢,, is the track ¢y but measured from the bisector of
a wedge to the origin of the co-ordinate system (also assumed to be the beam
spot), thus ¢,, lies between +%=, here a, is defined as the angle subtended by
a silicon wedge at the center of the co-ordinate system. Finally R is the radial
shift, in or out. The secondary vertex positions are all re-calculated analytically
taking the shifted impact parameters into account. The effect of this shift is
shown in Figure 32 where we can see that the change in position of silicon layer
causes the hit to be assumed to be at a different place from the true point.

We turn to CDF note 6551 that did a study using unbiased decays and 4 different
alignment scenarios. They found that a 50 micron move out of silicon layers
caused the largest shift in lifetime and that overall they quoted a conservative
error of +1um as a systematic due to alignment.

We use our toy generator that has been configured to shift impact parameters
and decay vertices assuming the alternate alignment, in two cases. Firstly we
generate “unbiased” decays by removing all trigger and analysis lifetime based
cuts. This will provide a crosscheck to the study using realistic MC and the Jpsi
trigger. Secondly we apply the effect of the silicon shift to our decays using that
have lifetime based trigger cuts applied to them. We generate 1000 samples of
24K events and look at the pull of the fitted lifetime.

14.3.1 Results

We find that for the unbiased events we find a shift of 0.97 £ 0.1 . This is
consistent with the findings of the realistic MC study using the Jpsi trigger. For
events passing the two track trigger we find a smaller shift of 0.46 £+ 0.2 which
is smaller. We assign a systematic of 0.5 microns due to silicon misalignment in
this method.
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14.3.2 Interpretation

There is one partial explanation for this reduction in systematic error. If we
condsider our simple likelihood without measurement errors and assume that
the events have a single top hat bounded by tmin and tmax as the acceptance
function we have:

(57)

A change in alignment alters t, tmin and tmax. If the change in each is the
same then there is no change to the probability. If all events were to behave like
this we would expect an alignment systematic of 0. To get an estimate for how
often this happens we look at a sample of events in toy triggered by the tracks
from the D. This gives a simple acceptance function. We then look at those
that would pass both alignment scenarios and look for events that have changes
in t, tmin and tmax within 5 microns of each other. We find that 10% of the
events in this sample fall into this category. Other combinations of changes in
tmin. tmax and time would also serve to reduce the change in the likelihood
in comparison to a sample passing a trigger with no lifetime cuts (and hence
only changes in t). While there are also combinations that would serve to alter
likelihood more heavily, given the results of the two studies and a demonstration
that the toy study does observe effects similar to those observed in realistic MC
we conclude that these happen less often.

14.4 Fitter Bias

To assess any bias of the fitter itself we generate the toy in the same way
as described in the validation section. The one difference is to add the more
complicated mass model of 2 gaussians for signal and a first order polynomial
for background. Again we generate 1000 samples of events and find a small shift
in the mean of the pull of 0.04 & 0.04. This corresponds to a shift in lifetime of
0.2 microns, we use this as the overall bias of the fitter.

As the mass parameters are fixed this leads to a underestimation of the statistical
error. We use the width of the pull distribution to assign a scale factor by which
the statistical error of the data fit must be multiplied. The gaussian fitted to
the pull distibution has a width of 1.10 4+ 0.03 and so we assign this as a scale
factor to the data fit.

14.5 Background parameterisation systematic

The form of the background lifetime parameterisation is fairly arbitrary and it is
useful to test how robust the parameterisation is to fitting different distributions
that have broadly the same features. In the toy studies presented so far includ-
ing background the lifetime was generated using an exponential interpolating
function similar to the used to fit the data.
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Figure 33: Fit to background using a sum of two exponentials.

We can also fit the upper sideband to a sum of 2 exponentials although the fit
is of a poor quality it does at least broadly mimic the shape of the data. This
is shown in figure 33. We use the parameters obtained in this fit to generate a
different toy background and repeat the toy study measuring the signal lifetime
in 1000 samples using our interpolating model for background. We find the
the mean of the pull is shifted from zero and corresponds to a shift of 0.8 +0.2
microns and assign this as a systematic due to the background parameterisation.

14.6 Systematic Error due to Resolution Function

In this analysis we have assumed that our lifetime errors are gaussian and to
model the effect of these we have convoluted our exponential decay function
with a single gaussian model of constant width as described in section 9, this
single gaussian is then our resolution function. In the same section we have
also demonstrated that the choice of using a single average o, in place of the
event-by-event quantity is typically less than a tenth of a micrometer.

Several lifetime and related analysis at CDF have found that the resolution
function is in fact composed of 3 gaussians. These analyses use an event by
event o., and so the derived resolution function is has essentially three scale
factors for the event by event o, of the three different categories of event. A
fit is made of the distribution of the differences in lifetime of the prompt events
divided by the individual event by event o., to 2 or three gaussians. If we
were able to fit this distribution to a single gaussian of unit width and center
at zero, this would mean that a single gaussian models our resolution function
very well and also that our errors at CDF are correctly calculated. The need for
more than one scale factor in the fits we describe tells us that neither of these
assumptions is true can be seen in CDF note 8524.
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Figure 34: Resolution function for the B* decay mode.

In order to determine a resolution function for our data we use the scale fac-
tors for the different gaussian components of the resolution functions for the
B* — DO7P™ in table 1 page 14 CDF note 7500. We take each event by event
sigma in our data sample using each o, calculate the resolution by: o,..s =
S(f1-G(0, 81.0¢7) + (1 — £1).G(0, s3.0¢; ), where f; and s; are the fractions and
scale factors for each resolution function component and G represents a Gaus-
sian, and the first argument is its mean (zero). We then make a background
subtracted plot of o,.s and fit it to three Gaussians. Note that since we do not
use event by event errors (0., ), we cannot use the scale factors, but we can use
these to weight each error and then smear them according to how we believe
the scale factors should effect each error on average. We then obtain resolution
functions composed of the sum of gaussians of different resolutions and different
fractions. We summarize this for B* in the table below. Note the resolution
functions is assumed to be:

f(@) = fi.G(x,01)+ (1= f1).(fo.G(x,02) + (1 — f2).G(z,03)) and if g(t) defines
the pure signal lifetime distribution then the convolution to be performed to
obtain a lifetime probability density function would be: [ g(¢).f(x — t)dt

Mode o1 o) 03 fi f2
BT — DO7%F [ 20. ym | 37.2 pm | 74.8um | 0.51 | 0.96

and below we show the fits to the o, distributions for the B mode.

The next step is to determine the systematic uncertainty due to using a single
overall width when in fact the resolution function is composed of 3 gaussians
and 3 widths. We generate toy monte-carlo, smear the lifetimes according to the
generated resolution functions and then fit first with an overall o., fixed at 26
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pm and then using the function appropriate for the mode in the convolution. We
quote the difference between the two measurements as a systematic uncertainty
due to assigning a single width instead of the whole resolution function. The
results are summarized in the table below.

Mode Input lifetime | Fixed o Full Resolution Function

Systematic Uncertainty

BT = Dx* | 491.4 ym 487.25 + 3.71 um | 486.98 + 3.71

0.27 pm

14.7 Inclusion of the Cabibbo supressed mode

The signal region contains events that are actually mis-reconstructed B — DK
events. These events have the same true lifetime as our signal events but as
the mass assignment for one track is incorrect the mass and Pr are shifted and
this causes a change on the determined cr. The first order is to estimate what
proportion of the signal classed events are in fact the cabibbo supressed decays.
We use the toy generater with an input mean mass of 5.276 and width of 20MeV
to generate B — DK events and then “reconstruct” the events using a pion for
a kaon. Then we apply the lower lifetime cut of 5.23 and find that only 33% of
events that are of the supressed mode will pass the mass cut. Then we use the
branching fraction of B — DK and B — D7 from the PDG to determine that
only 3% of events in the sample are expected to be cabibbo supressed decay
mode.

To estimate the systematic we generate 1000 samples of 24K events where 3%
of them were generated as B — DK and fit the lifetime and observe the pull on
the mean lifetime. This is found to be —0.0173 4+ 0.03 and therefore we assign
a negligible systematic due to including the cabibbo supressed mode. This is
unsurprising as they constiute a small percentage of the sample.

14.8 Some CrossChecks

In this section we outline some crosschecks on the choices of parameterisation
and on some of the systematics. We start with establishing whether the fitter is
biased in anyway to samples from differing luminosity periods etc. We measure
the lifetime of the 0d data alone and that of the Oh+-0i dataset. We find that
the 0d dataset gives a lifetime of 488.3 £11.9 and the combined Oh and 0i has
a lifetime of 502.248.8 . These two lifetimes are not statistically different. We
also check that the fit results are consistent if the data is split into two randomly.
For sample 1 we get 498.9410. and for sample 2 we get 498.84+9.6 As there will
be variations in fisher direction between sample 1,2 and the total and all the
lifetimes are consistent this gives confidence that the actual direction of fisher
scalar doesn’t matter.

We also consider the parameterisation of the fisher variable. The default choice
is to use an effective 13th order interpolating polynomial. Using one toy sample
we reduce the number of polynomial to see if there is any effect. We remove
4 orders. The plots of these fits are shown in Figure 35. Both are giving a
reasonable fit. The difference in lifetime between these fits is negligble (0.1
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Figure 35: The Left plot shows a fit using a 13th order polynomial and the right
plot shows a fit using a 9th order polynomial. There was no change in lifetime
between the two.
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RMS 209.4
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Figure 36: A fit to the upper sideband over the range 5.5 - 5.8 GeV.

microns). We cross check this behaviour in the data sample and find again a
neglible change in the lifetime. We also observe an increase in the statistical
error by 0.1 microns. With this study we conclude that we could have used a
lower order polynomial, although it makes little difference to the final result.

We also try to crosscheck some of the systematics on data and show that the
shift in measured lifetime is consistent with the prediction from toy.

For the Background parameterisation there is some choice as the the spacing
and the number of fit points. We change the number of fit points by +1 and
change the spacing variable to try for more bunched or more equal spacing.
Using these alternatives no fit shows a difference from the default by more than
0.4 microns. This shows that the default choices are in an optimum region. We
know that choosing something very different from the defualt choice leads to a
poorer quality of fit of the upper sideband only. We do not use the 2 exponential
model to fit the data as it is known to have a very poor fit to the upper sideband.
This study has not shown a need to re-evaluate our systematic of 0.8 microns.

We also consider how well the default parmeterisation continues to fit the side-
band when we consider upper sideband in a higher mass window. We take
events that lie between 5.5 and 5.8GeV as this provides statistics similar to the
data sample and find that the fit continues to fit well. The fit is shown in Figure
36

We also test the resolution function. We apply the alternate resolution function
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to data and see that the lifetime shifts by -0.2 microns. This is consistent with
the quoted systematic of +0.3um.

14.9 Summary of Systematic Errors

We present here a summary of all sources of systematic error for the B* decay
mode first.

Source Assigned Error pm
Misalignment of Silicon 0.5

SVT single track Efficiency 1.9

Correlations in Background 2.2

Background Parameterisation | 0.8

Resolution 0.3

General Fitter Bias 0.2

Suppressed Mode inclusion negligible

We add these uncertainties for the charged B lifetime in quadrature and obtain
+ 3.1 pm.

15 Results from the Data fit

The fit is performed in two step in the same way as the toy studies. First a
mass fit that has 7 parameters. Using this we can do the necessary sideband
subtraction for the fisher discriminant and calculate this variable for every event.
Then we perform the lifetime fit. There are a total of 30 floating parameters:
10 for background lifetime, 13 for P(S—Acc) 3 efficiencies for signal and 3
efficiencies for background and finally the mean signal lifetime itself.

With the pdf that has now been tested on Toy Monte Carlo we turn our attention
to data and perform the lifetime fit. The mass and lifetime projections are shown
and demonstrate that the model is a good fit to the data. The projections are
shown in Figure 39.

We find that the lifetime for B+ in the decay to D is

eT = 498.2 £ 6.8(stat) £ 3.1(syst) (58)

In Conclusion we have shown that using a Monte Carlo free method of correct-
ing for lifetime bias is a viable method for lifetime measurement. In a quick
comparison to the Monte Carlo based efficiency curve we find that our system-
atic error is lower and that there is a small increase in the statistical error of
less than 20%. A direct comparison is difficult due to differing analysis cuts
leading to different signal yields. The MC contains information not available to
our fitter and this is why the MC-free method returns a higher statistical error.

The real benefit of this method will come when it is used on modes where the
kinematics of the decay are not fully present in the CDF Monte Carlo or where
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Figure 37: Projection of mass fit on data. The two separate components sig-
nal(red) and Background (blue) are also shown

the detailed MC does not reproduce data for example the movement of the
beam spot. For example in modes where there is dalitz interference present in
the decay of a daughter particle or polarisation issues which are not added in
the Monte Carlo. The Monte-Carlo free method corrects for these effects via
the acceptance function calculation exactly and for modes that are otherwise
dominated by systematic errors of this kind will see a significant reduction in
systematic error in comparison to the MC-efficiency curve analysis.

64



Entries 33104
Mean 554.1
E RMS 323.6
10° =
102 =
L éindot = 331
10 ~ Prob= 059
1 E
EL P PRI S SRS N PRI L .
0 500 1000 1500 2000 2500

PRI IR PR R B R

| | |
1000 1500 2000 2500

Figure 38: The lifetime projection. Blue represents the total while signal and
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Figure 39: The Likelihood function.
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16 Update to Systematic Errors after Pre bless-
ing

At preblessing a few questions were asked on the systematic errors. The answers
and further studies are collected here. In addition we have moved from using
the mean of the fitted pull distribution to calculate the systematic error and
instead use the mean of the residual distribution. The plots of the residual
distributions are found in Appendix 2. This has resulted in a +0.01 change in
some of the systematic error.

16.1 Systematic errors due to SVT single track efficiency

The assumption in this analysis that has the most effect on the lifetime will
be the assumption that the SVT single track finding efficiency is flat. It is
particularly important for variables which are indirectly related to lifetime. For
expample imagine an event that has a given set of kinematics that would fire the
trigger should it decay at any point between 500um and 1500um. The method
assumes that the event is equally likely to be triggered at any time provided
it decays within these times. However in general the IP of the tracks will be
higher if the event decays at 1500m than if it decays earlier. If the SVT is less
likely to find tracks with IP= 900 microns than it is to find tracks with IP=200
microns then the assumption that the event is equally likely to fire the trigger
no longer holds.

We look therefore at the deviation from flat due to impact parameter and track
transverse momentum. We also look at the single track efficiency as a function
of Eta, although we expect this not to be as large a problem as the eta of a
track is not related to the lifetime.

16.1.1 Variation in effieciency as a function of IP

We had already investigate the effect of the non-flat effieciency as a function of
impact parameter by fitting a curve to the efficiency, generating toy using that
efficiency and then using 1000 pseudoexperiments to assign a systematic. We
now look at 1 sigma deviations from the fitted curve and test 2 further curves
that are more curved than the one originally used. The curves are the blue and
green ones in 40.

For the two curves we generated 1000 samples of toy using the new efficiency
parameters. The green curve caused the most deviation of -3.1 microns. To be
conservative we use this as systematic error.

16.1.2 Variation in effieciency as a function of Track Pt

We also consider now the variation in efficiency as a function of track transverse
momentum. The plot from data is shown in 41, and the efficiency is fit to
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Figure 40: Single track efficiency of the SVT. The red curve shows the orignial
fit while the blue and green curves are 1 sigma deviations of the fit that are
more curved than the original fit result.

a 3rd order polynomial. We generate toy with this efficiency distribution and
fit a mean shift in 1000 samples of 1.8 microns. while the curve for transverse
momentum is more deviated from flat than that of impact parameter there is
less direct correlation between track pt and lifetime than there is for impact
parameter and lifetime.

16.1.3 Variation in effieciency as a function of Track Eta

We also consider variation of the efficiency with track eta. We see that the
effieciency is flat out to approximately an eta of 0.8 after which it falls rapidly,
becoming close to 0 by an eta of 1.1, 42. We generate toy with this shape
and find from 1000 experiments a small deviation of 0.3 microns from the truth
input lifetime.

16.1.4 Other Considerations

It is prudent also to consider the variation of the determined systematic error
as a function of lifetime. These studies have been carried out using an input
lifetime of 491.1 microns. We repeat the SVT flatness as a fucntion of IP using
the red curve for an input lifetime of 540 microns. We find an increase in the
systmatic error of only 0.1 microns. Given that the B+ lifetime is not as larger
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Figure 41: Single track efficiency of the SVT as a function of track transverse
momentum
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Figure 42: Single track efficiency of the SVT as a function of track eta

as 540 microns we conclude that any reasonable variation in the lifetime of B+
will not increase the above systematics.
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16.2 Cross Checking the Alignment Systematic

Previously we had considered a radial movement out of all the silicon layers.
This time instead we leave the inner and outer layers fixed and move the middle
two layers out by 50 microns. The toy is modified to produce “hits” on all four
layers. Due to the misalignment these hits no longer lie on a straight line, and
we use least squares technique to fit for a straight line. We caluclate from this
the new track impact parameter and new track phi, and then find the new vertex
point. We run 1000 toy samples of this and find that the bias in lifetime due to
this alignment scenario is only 0.3 microns which is smaller than that found by
moving all layers. We therefore continue to use the previous systematic.

16.3 Mass and Lifetime Correlation

We have increased the number of pseudo experiments for this systematics to 1000
which was not possible earlier due to CPU constraints. While the systematic
from the residual does increase from 2.4 to 2.5 microns this is within the error
or the error on the systematic. The mass lifetime correlation in background
is one of the larger systematic errors. In principle it is possible to invent a
function that will take into account the correlation and reduce the systematic
error, however this is not trivial. We leave this as an improvement that could be
made to a future analysis. The mass and lifetime are not correlated for signal
events, and a plots demonstrating this has been added to the main body of the
note.

16.4 Final Systematic Errors

We present here a summary of all sources of updated systematic error for the
B* decay mode.

Source Assigned Error pm
Non-flat single track Efficiency wrt to impact parameter | 3.1
Non-flat single track Efficiency wrt to track Pr 1.8
Correlations in Background 2.5
Background Parameterisation 0.8
Resolution 0.3
General Fitter Bias 0.4
Silicon Alignment 0.4
Non-flat single track Efficiency wrt to Eta 0.3

We add these uncertainties for the charged B lifetime in quadrature and obtain
+ 4.5 pm.

Most of these systematics errors relate to features in the data that the method
is not yet sophisticated enough to accommodate. Therefore crosschecking these
errors in data is not possible as the effect is already present and we cannot
take it away. We can however check the systematic error due to using different
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Figure 43: Pull distribution of standard Toy

functions. We use the alternate resolution function in a data fit and find that
the fit results increases by 0.2 microns which is consistent with the quoted error.
For background paramterisation we alter the spacing and number of parameters
in the fit and again find that deviations in best fit lifetime are small and less
than 0.8 microns.

17 Answers to other questions from Pre blessing

17.1 Scaling of the Statistical Error

We had previously stated that fixing the mass parameters caused an underesti-
mation of the statistical error. This is wrong. The width of the pull is wide at
1.10£0.03 as seen in figure 43. We run toy using a simple mass model and keep
the mass free, this still results in a pull distribution that is wide at 1.07 +0.03
and is shown in figure 44. This indicates that fixing the mass fit is certainly not
the cause of the error underestimation. In an attempt to discover where this
underestimation is coming from we have tried fixing both the efficiency and the
fisher scalar parameters to their truth values but continue to see a pull distribu-
tion that is slightly wide. Any difference we see in parabolic errors calculated
by Minos and the error returned by Migrad is of order 0.05 microns, which is
not large enough to account for a wider pull. In light of this we conclude that
we don’t fully understand why pull distribution is wide but that the underes-
timation of statistical error is small, and so we continue to scale the statistical
error by ten percent.
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Figure 44: Pull distribution of toy using a floating simple mass model

17.2 Fisher Scalar distributions and plots for the fit to
data

It would be useful to have similar plots for data as those we make for MC. In MC
we have a plot of signal fraction as a function of fisherscalar, where we can plot
the truth signal fraction in each bin as we have access to the truth information.
In data this is obviously not the case, however another option would be to split
the data in bins of fisher scalar and perform a mass fit to the events in each
bin. From the mass fit we can obtain a signal fraction for that bin of fisher
scalar which we can then compare to the value of signal fraction as a function of
fisher scalar as returned by the fit using the lagrange interpolating polynomial
function.

We have done this and is displayed in figure 45. In the tails there are not
enough events to do a mass fit. The fisher scalar distribution itself is shown in
figure 46.

17.3 Fits to realistic Monte Carlo

We have additional statistics in B-;D pi realistic monte carlo for both the
charged and neutral modes. We fit for B+ with an input lifetime of 496 75K
events with best fit lifetime 493.343.2 microns and for BO with an input lifetime
of 464 microns and 71K events a lifetime of 467.8£2.8. The projections of these
fits are shown in figures 47, 48.
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Figure 45: The red curve depicts the signal fraction as a function of fisher
scalar as determind by the fit to data. the black points give the signal fraction

as determined independently by mass fits.
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Figure 46: The fisher scalar distribution in data.
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Figure 47: Bu realistic MC fit
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17.4 Agreement between Toy and Data

There remains a small disagreement between the standard toy and data. It must
be stressed that no information from the toy mc is used in the data fit, it is
used simply for validation and assesment of systematic errors. Furthermore the
toy has been tested in a variety of configurations with small variations on the
standard and extreme variations and the method has been robust against these
all. CDF generator momentum spectrums have been used and we have tried
further tweaking of parameters however the differences remain. It is unrealistic
to expect better agreement without full detector simulation, therefore we no
longer wish to pursue a better agreement of toy and data.

17.5 Calculation of Acceptance

For tracks that do not have SVT matches we draw delta from a histogram where
delta is the difference between the SVT and offline impact parameter. How do
we know that the distribution is valid for unmatched tracks. We can never
know this but have the expectation that tracks are not found simply because
the SVT algorithm does not that the time or patterns to pick up all tracks that
are subsequently found offline. This is clear from the study of efficiency as a
function of IP.

Having said this we do want to explore how sensistive we are to the details of
this histogram and try two tests on data. The first is to shift the histogram by
10 microns so that tracks with no match are shifted in IP causing a change to all
accpetance functions that contained an unmatched track. The second change
was the increase the value of delta by 10% which means that all unmatched
tracks have in general a larger differece between their offline and “svt” impact
parameters. In both cases we find a shift of 0.1 microns indicating that there
is little sensitivity to this plot. Any large problems relating to this would have
been picked up in the realistic MC fits.

17.6 Affect of neglecting difference in accpetance distri-
butions in data

We run a fit on data ignoring the difference between signal and backround ac-
cpetance functions. In practice this means instead of fitting the signal fraction
as a function of fisher scalar we simply fit an overall signal fraction. We find
a lifetime of 489.7 4+ 6.4 microns. This is approx 8.5 microns different to the
fit result. There are examples of fits to toyMC that exhibit a similar difference
though the average difference in toy is 5 microns. This result simply demon-
strates the need to take into account the distribution of acceptance functions.
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18 Appendix 1: Full Fit results

The next pages detail the fit results.
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The mass fit has 7 parameters. There is the mean mass of two gaussians, their two widths and the
fraction of the first gaussian. The remaining two parameters are the slope of the background and
the overall signal fraction. The overall signal fraction is fit as Nb/Ns where Nb and Ns are the
numbers of background and signal events respectively.

The mass fit parameters are as follows:

@ massGl 5.27607e+00  3.96198e-04  8.66936e-07 8.67397e-01
1 WidthGl 1.44530e-02 1.06187e-03 -4.28272e-06 -2.44704e+00
2 massG2 5.26991e+00  2.59145e-03 9.73308e-06 6.57738e-01
3 WidthG2 2.64230e-02  3.45552e-03 -1.17986e-05 -2.54983e-01
4 FracG2 4.38550e-01  1.35813e-01  1.10956e-03 -1.42748e-02
5 polyBg -1.65742e-01  3.73389%e-03 -2.94891e-04 -1.10570e-02
6 FracBtoS 3.69421e-01  1.28983e-02 6.27225e-06 4.83176e-02

The error matrix is

@1 1.57e-07 -2.88e-07 5.694e-07 -9.587e-07 3.783e-05
11 -2.88e-07 1.128e-06 -2.574e-06 3.431le-06 -0.0001432
2 1 5.694e-07 -2.574e-06 6.716e-06 -8.597e-06 0.0003443
3 | -9.587e-07 3.431e-06 -8.597e-06 1.194e-05 -0.000463
4 | 3.783e-05 -0.0001432 0.0003443 -0.000463 0.01893
51 5.004e-07 -1.363e-06 3.80le-06 -6.194e-06 0.000184
6 | 2.037e-06 -5.32e-06 1.43e-05 -2.401e-05 0.0007267

0 | 5.004e-07 2.037e-06
11 -1.363e-06 -5.32e-06
2 | 3.801le-06 1.43e-05
3 | -6.19%4e-06 -2.401e-05
41 0.000184 0.0007267
51 1.401e-05 3.997e-05
6 | 3.997e-05 0.0001664

The correlation matrix is

| o | 11 2 | 3 1 4 |
01 1 -0.6846 0.5546 -0.7003 0.6942
11 -0.6846 1 -0.9355 0.9349 -0.9806
2 1 0.5546 -0.9355 1 -0.9601 0.9658
31 -0.7003 0.9349 -0.9601 1 -0.974
4 | 0.6942 -0.9806 0.9658 -0.974 1
51 0.3374 -0.3428 0.3919 -0.4789 0.3573
6 | 0.3986 -0.3884 0.4277 -0.5386 0.4095

| 5 1 6 |



The lifetime fit consists of 30 parameters. There is 1 mean lifetime. There are 3
different periods of efficiency and we fit one parameter in each for signal and
background. There are then 10 parameters to describe the background lifetime
distribution and finally 13 parameters to describe the signal fraction as a
function of fisher scalar.

The parameters and their errors are given below:

@ ctau 4.98192e+02 6.18302e+00
1 effsgl 4.87819e-01 3.28771e-02
2 effbgl 5.07594e-01 6.62107e-02
3 effsg2 6.56376e-01  8.48179%e-03
4 effbg2 5.22103e-01 1.86643e-02
5 effsg3 7.25423e-01 5.57023e-03
6 effbg3 5.59604e-01 1.74698e-02
7 ctBgl 1.05000e+01  3.51666e-01
8 ctBg2 7.07979%9e+00 5.85253e-02
9 ctBg3 4.76888e+00 3.68506e-02
10 ctBg4 2.71620e+00 4.37419e-02
11 ctBg5 1.27828e+00 6.67679¢e-02
12 ctBgo 1.280060e-01 1.00457e-01
13 ctBg7 -1.19225e+00 1.86124e-01
14 ctbg8 -1.94059%e+00 2.92104e-01
15 ctBg9 -2.78179%9e+00 4.6980%e-01
16 ctBglo -7.15913e+00 2.62929%e+00
17 fishl 1.78634e-01 7.63403e-02
18 fish2 2.59323e-01 6.30126e-02
19 fish3 3.28393e-01 2.34602e-02
20 fish4 3.79042e-01  1.31397e-02
21 fish5 5.38973e-01 1.08355e-02
22 fisho 6.60332e-01  7.79486e-03
23 fish7 7.68602e-01  5.54558e-03
24  fish8 8.13567e-01 5.11646e-03
25 fish9 8.49147e-01  7.60666e-03
26 fishl0 9.00413e-01  7.18338e-03
27 fishill 9.36690e-01 1.02055e-02
28 fishl2 9.19232e-01  3.61318e-02
29 fishl3 1.00000e-00 4.80377e-02

The error matrix follows. The numbers refer to fit parameters as above.

I 0 | 11 2 | 3 1 4 |
0 | 38.7 -0.0006851 0.002309 0.0001657 0.001966
1| -0.0006851 0.001082 -0.0006823 6.779e-09 -1.594e-07
21 0.002309 -0.0006823 0.007169 -5.794e-08 6.89%4e-07
31 0.0001657 6.779e-09 -5.794e-08 7.467e-05 -5.282e-05
4 1 0.001966 -1.594e-07 6.8%4e-07 -5.282e-05 0.0007453
51 0.0002425 2.038e-08 -1.235e-07 3.43e-08 -6.984e-09
6 | 0.001983 -2.672e-07 1.131le-06 -4.82e-08 7.479%e-07
7 | -0.1208 -1.211e-05 2.723e-05 -1.358e-06 -7.869%e-05



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

-0.1041
-0.1015
-0.1057
-0.1244
-0.1512
-0.2029
-0.2374
-0.2882
-0.3549
0.001054
-0.005169
-0.004498
-0.006362
-0.005463
-0.004417
-0.003118
-0.002201
-0.001981
-0.001591
-0.001101
0.0005338
1.965e-09

0.0002425
2.038e-08
1.235e-07
3.43e-08
.984e-09
.114e-05
.281e-05
.159%¢e-06
.172e-06
.076e-06
.867e-06
.056e-06
.018e-06
.953e-07
.763e-06
.186e-06
.311e-05
.60%e-08
.345e-06
.498e-07
.065e-07

-1.69e-07
-3.091e-07
-2.023e-07
-3.528e-07
-6.166e-07
-7.745e-07
-8.852e-07
-3.832e-06

1.728e-11
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1.401e-05
-8.88%e-08
6.388e-06
-1.529e-06
2.786e-05
1.815e-05
5.479e-06
3.326e-05
-0.0002314
-5.588e-07
1.212e-06
-5.259%e-07
2.215e-06
-1.277e-07
1.565e-06
1.075e-06
-7.522e-07
-1.765e-07
-5.637e-07
7.421e-07
-9.856e-06
3.789%e-12

0.001983
-2.672e-07
1.131e-06
-4.82e-08
7.479e-07
-2.281e-05
0.0003454
-4.897e-05
8.895e-07
.434e-05
.762e-05
.037e-06
.928e-05
.554e-07
1.97e-05
-5.2e-07
0.0002049
7.322e-07
5.97e-006
-5.996e-06
-4.797e-06
-2.604e-06
-2.314e-06
-1.881e-06
-9.665e-07
-4.873e-07
7.71e-07
2.474e-006
1.846e-05
-8.26le-11
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-5.409%e-05
1.518e-05
-9.303e-06
2.687e-05
-0.0001049
-6.923e-05
-7.768e-06
-0.0001385
0.001075
1.998e-06
-4.655e-06
2.568e-06
-8.768e-06
1.571e-06
-6.304e-06
-4.678e-06
4.51e-06
2.345e-06
3.5e-06
-2.587e-06
4.413e-05
-1.887e-11

-0.1208
-1.211e-05
2.723e-05
-1.358e-00
-7.869%e-05
-8.159%e-06
-4.897e-05
0.4317
0.3059
0.308
.3068
.3075
.3085
.3104
.3122
.3171
0.3421
.784e-05
.0002844
.0001398
.102e-05
.0001375
.0001198
.048e-05
3.34e-05
4.048e-05
1.095e-05
6.582e-06
4.931e-06
1.477e-10

[SISESE SRS RS
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-3.114e-06
-2.73e-06
-1.285e-06
7.271e-07
-1.556e-06
-4.417e-006
4.869%e-06
-1.002e-05
5.638e-06
4.161e-07
-8.063e-07
7.601e-07
3.387e-07
1.162e-07
-3.225e-07
-1.718e-07
-1.09%4e-07
-6.08e-07
-8e-07
-7.265e-07
-1.28e-06
9.445e-12

-0.1041
1.401e-05
-5.409%e-05
-3.114e-06
-1.342e-05
-6.172e-06
8.895e-07
0.3059
0.3099
0.3067
0.3069
0.307
0.3083
0.3101
0.312
0.3168
0.3418
-0.0001199
8.74e-05
7.263e-05
6.793e-05
5.92e-05
.663e-05
.403e-05
.244e-05
.597e-05
.579e-05
.479%e-06
.807e-06
.471e-10

PO PR NDNWOG

.342e-05
.25%e-05
.426e-05
.076e-006
.494e-05
.493e-05
.983e-05
.579%e-05
.954e-05
.035e-06
.357e-06
.339%e-06
.965e-06
.912e-06
.558e-06
.669e-06
.755e-06
.097e-07
1.628e-06
2.39%e-006
2.43e-00
-3.622e-11

UL [ 1
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-0.1015
-8.889%¢e-08
1.518e-05
-2.73e-06
1.259e-05
-3.076e-06
1.434e-05
0.308
.3067
.3086
.3073
.3081
.3091
.3111
.3128
.3177
0.3427
-0.0001171
3.598e-05
2.308e-05
4.114e-05
3.732e-05
4 .458e-05
2.15e-05
1.691e-05
1.535e-05
9.053e-06
8.274e-006
1.9e-05
1.736e-10

[SESESESE SR SRR
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-0.1057
6.388e-006
-9.303e-06
-1.285e-06
1.426e-05
-1.867e-06
1.762e-05
.3068
.3069
.3073
.3094
.3073
.3096
.3111
L3131
.3178
.3432
-0.000116
-3.407e-06
3.91e-06
.776e-06
.984e-05
.395e-05
.243e-05
.106e-05
.292e-05
.546e-06
.456e-06
.051e-05
.908e-11

[SESESESISEIS SIS ESR S

NNONRFRPRPRPEPWNO

-0.2882
3.326e-05
-0.0001385
-1.002e-05
4.579%e-05
-1.186e-06
-5.2e-07
0.3171
0.3168
0.3177
0.3178
0.3195
0.3209
0.339
0.287
0.6876
-0.2944
-0.0004735
-5.495e-05

-0.1244
.529¢e-06
.687e-05
.271e-07
.076e-06
.056e-06
.037e-06

0.3075
0.307
.3081
.3073
.3139
.3082
.3133
.3141
.3195
.3444
.0001598
. 746e-05
.307e-06
.164e-06
.207e-05
.148e-05
.532e-05
.012e-06
.115e-05
.283e-06
.768e-06
.001e-06
.001e-10

WkERkrUUNDNBRE
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-0.3549
-0.0002314
0.001075
5.638e-06
-3.954e-05
-3.311e-05
0.0002049
.3421
.3418
.3427
.3432
.3444
.3501
.3306
.5117
.2944
11.01
0.000153
-6.871e-05

[SESESESIICSES RIS IS RS

-0.1512
2.786e-05
-0.0001049
-1.556e-06
1.494e-05
-2.018e-06
1.928e-05
0.3085
.3083
.3091
.309%6
.3082
.3263
.3088
.319%
.3209
.3501
-8.816e-05
2.183e-05
-9.274e-05
-3.251e-06
1.196e-05
1.515e-05
1.082e-05
9.218e-06
7.376e-06
4.817e-06
5
1
5

[SESESESE SRR N

.365e-06
.223e-05
.379%e-10

0.001054
-5.588e-07
1.998e-06
4.161e-07
-2.035e-00
7.609%e-08
7.322e-07
-2.784e-05
-0.0001199
-0.0001171
-0.000116
-0.0001598
-8.816e-05
-0.0005304
-0.0002307
-0.0004735
0.000153
0.01333
-0.001277

-0.2029
1.815e-05
-6.923e-05
-4.417e-06
2.493e-05
2.953e-07
-3.554e-07
.3104
.3101
.3111
.3111
.3133
.3088
.3623
.3071
0.339
0.3306
-0.0005304
-5.402e-05
-4.867e-05
-1.19e-07
-2.79%4e-05
2.498e-06
1.84e-05
1.109e-05
1.159%e-05
1.133e-05
1.163e-05
2.375e-05
2.633e-10

[SESESESI SIS RIS RS

-0.005169
1.212e-06
-4.655e-06
-8.063e-07
1.357e-06
-2.345e-06
5.97e-06
0.0002844
8.74e-05
3.598e-05
-3.407e-06
-3.746e-05
2.183e-05
-5.402e-05
-0.0002185
-5.495e-05
-6.871e-05
-0.001277
0.004519

-0.2374
5.479%e-06
-7.768e-06
4 .869%e-06
-2.983e-05
-3.763e-006
1.97e-05
0.3122
0.312
0.3128
0.3131
0.3141
0.319
0.3071
0.4217
0.287
0.5117
-0.0002307
-0.0002185
-3.89%e-05
-6.088e-05
2.41e-05
.099%e-05
.319e-05
.775e-05
.102e-05
.616e-05
.065e-06
.275e-07
.381e-10

NP, OFPNPEFEPENWOD

-0.004498
-5.259%e-07
2.568e-06
7.601e-07
-7.33%e-006
4.498e-07
-5.996e-06
0.0001398
7.263e-05
2.308e-05
3.91e-06
-2.307e-06
-9.274e-05
-4.867e-05
-3.89%e-05
6.308e-05
-8.72e-05
0.0001237
-0.0003179
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6.308e-05
1.56e-05
3.079%e-05
2.483e-06
1.619e-05
2.15%e-05
1.587e-05
1.982e-05
1.12e-05
-7.517e-07
8.275e-11

-0.006362
2.215e-06
-8.768e-06
3.387e-07
-4.965e-06
1.065e-07
-4.797e-06
9.102e-05
6.793e-05
4.114e-05
9.776e-06
-4.164e-06
-3.251e-00
-1.19e-07
-6.088e-05
1.56e-05
-0.0001197
-7.266e-05
0.0001619
-5.362e-05
0.0001955
1.443e-05
-1.00%e-05
7.923e-06
-2.644e-06
5.546e-06
-2.749%e-06
2.800e-06
6.421e-00
5.127e-12

-0.001981
-1.765e-07
2.345e-06
-6.08e-07
5.097e-07
-6.166e-07
-4.873e-07
4.048e-05

-8.72e-05
-0.0001197
-0.0001602

0.0001512

5.081e-05

5.965e-05
6.377e-05
1.282e-06

3.72e-05

0.0001167

1.173e-09

-0.005463
-1.277e-07
1.571e-006
1.162e-07
-3.912e-06
-1.69e-07
-2.604e-006
0.0001375
5.92e-05
3.732e-05
2.984e-05
1.207e-05
1.196e-05
-2.794e-05
2.41e-05
3.079%e-05
-0.0001602
4.956e-05
-0.0001038
2.36e-05
1.443e-05
0.0001435
1.914e-05
-9.632e-006
3.603e-06
-7.174e-006
5.352e-06
-3.71e-06
-2.275e-05
-5.103e-11

-0.001591
-5.637e-07
3.5e-06
-8e-07
1.628e-06
-7.745e-07
7.71e-07
1.095e-05

0.0001237
-7.266e-05

4.956e-05
-1.177e-05
-4.634e-07
-6.76%e-06
-1.094e-05

1.164e-05
-3.279%e-06
-0.0001273
-3.717e-10

-0.004417
1.565e-06
-6.304e-06
-3.225e-07
-1.558e-06
-3.091e-07
-2.314e-06
.0001198
.663e-05
.458e-05
.395e-05
.148e-05
.515e-05
.498e-00
.099%e-05
.483e-06
.0001512
.177e-05
.106e-05
. 166e-06
.009%e-05
.914e-05
.075e-05
.325e-06
.305e-06
.507e-006
.533e-006
.682e-00
3.17e-05
8.43%e-11

I
P PORPNNFRPPNWRERPSONUINEFRPWWRAUIS

-0.001101
7.421e-07
-2.587e-006
-7.265e-07
2.39%e-06
-8.852e-07
2.474e-006
6.582e-006

-0.0003179
0.0001619
-0.0001038
3.106e-05
-1.5e-06
1.623e-05
1.966e-05
-2.092e-05
4.83e-06
0.000248
7.204e-10

-0.003118
1.075e-06
-4.678e-06
-1.718e-07
-1.669%e-06
-2.023e-07
-1.881e-06
4.048e-05
3.403e-05
2.15e-05
1.243e-05
1.532e-05
1.082e-05
1.84e-05
2.319%e-05
1.619e-05
5.081e-05
-4.634e-07
-1.5e-06
-3.956e-06
7.923e-06
-9.632e-06
7.325e-06
3.637e-05
-5.375e-06
-4.634e-06
4.154e-06
-1.008e-06
-3.371e-05
-9.373e-11

-0.0005338
-9.856e-06
4.413e-05
-1.28e-06
2.43e-06
-3.832e-06
1.846e-05
4.931e-06

0.0005879
-5.362e-05
2.36e-05
2.166e-06
-3.956e-06
-6.413e-08
-7.593e-06
7.312e-06
-3.342e-06
-5.489%e-05
-1.495e-10

-0.002201
-7.522e-07
4.51e-06
-1.094e-07
-1.755e-06
-3.528e-07
-9.665e-07
3.34e-05
.244e-05
.691e-05
.106e-05
.012e-006
.218e-06
.109%e-05
.775e-05
.159%e-05
.965e-05
.769%e-06
.623e-05
.413e-08
.644e-06
.603e-06
.305e-06
.375e-06
.345e-05
.268e-05
.092e-06
.135e-06
.867e-05
.271e-11

NNNOPFP WURFR, WNOPFRPOUNPRPPRPOOR,EPEN

-1.965e-09
3.78%-12
-1.887e-11
9.445e-12
-3.622e-11
1.728e-11
-8.261e-11
1.477e-10
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The Correlation matrix follows:
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.597e-05
.535e-05
.292e-05
.115e-05
.376e-06
.159e-05
.102e-05
.587e-05
.377e-05
.094e-05
.966e-05
.593e-06
.546e-06
.174e-06
.507e-06
.634e-06
.268e-05
.457e-05
.621e-06
.50%e-06
.911e-05
.731e-10

PURUVORRONUVINR RPORNRERNRRERN

1
-0.003348
0.004384
0.003083
0.01158
0.006986
0.01715
-0.02956
-0.03006
-0.02938
-0.03056
-0.03569
-0.04255
-0.0542
-0.05877
-0.05587
-0.01719
0.001468
-0.01236
-0.02982
-0.07314
-0.0733
-0.08441
-0.0831
-0.06118
-0.03963
-0.03316

.57%e-05
.053e-06
.546e-06
.283e-06
.817e-06
.133e-05
.616e-05
.982e-05
.282e-06
.164e-05
.092e-05
.312e-06
. 749e-06
.352e-06
.533e-06
.154e-06
.092e-06
.621e-06
5.951e-05
-8.77e-06

5.7e-05
1.698e-10

VOPARUNNNRRPRRPREL,AONOR

-0.003348
1

-0.245
2.385e-05
-0.0001775
0.000111
-0.0004372
-0.0005603
0.0007652
-4.865e-06
0.0003492
-8.298e-05
0.001483
0.0009168
0.0002565
0.001219
-0.00212
-0.0001472
0.000548
-0.0006594
0.004816
-0.0003241
0.005657
0.005418
-0.003954
-0.0006678
-0.002222

4.479%-06
8.274e-06
6.456e-06
4.768e-06
5.365e-06
1.163e-05
9.065e-06
1.12e-05
3.72e-05
-3.279%e-06
4.83e-06
-3.342e-006
2.806e-06
-3.71e-06
1.682e-06
-1.008e-06
2.135e-06
1.509e-06
-8.77e-06
0.0001272
-0.0001492
-3.593e-10

0.004384
-0.245

1
-7.919e-05
0.0002982
-0.0002614
0.0007186
0.0004896
-0.001147
0.0003227
-0.0001975
0.0005664
-0.00217
-0.001358
-0.0001413
-0.001972
0.003827
0.0002045
-0.0008179
0.001251
-0.007406
0.001549
-0.008852
-0.009161
0.00921
0.003446
0.005359

6.807e-006
1.9e-05
2.051e-05
.001e-06
.223e-05
2.375e-05
1.275e-07
-7.517e-07
0.0001167
-0.0001273
0.000248
-5.489%¢-05
6.421e-00
-2.275e-05
3.17e-05
-3.371e-05
2.867e-05
-5.911e-05
5.7e-05
-0.0001492
0.001877
1.997e-09

0.003083
2.385e-05
-7.919e-05
1

-0.2239
0.0007113
.0003002
.0002392
.0006473
.0005687
.0002673
0.0001502
.0003153
.0008492
0.0008678
-0.001399
0.0001966
0.0004172
-0.001388
0.003628
0.002804
0.001123
-0.004437
-0.003296
-0.00219
-0.008756
-0.012

.471e-10
.736e-10
.908e-11
.001e-10
.379%-10
.633e-10
.381e-10
.275e-11
.173e-09
.717e-10
.204e-10
.495e-10
.127e-12
.103e-11
.43%e-11
.373e-11
.271e-11
.731e-10
.698e-10
.593e-10
.997e-09
1.36e-11

P WRPRRPNOOOUIUIR,PNWEROLONNURANEREPR

0.01158
-0.0001775
0.0002982
-0.2239

1
-4.584e-05
0.001474
-0.004387
-0.0008833
0.0008301
0.0009392
0.0003319
0.0009579
0.001517
-0.001683
0.002023
-0.0004365
-0.0006458
0.0007393
-0.01109
-0.01301
-0.0119%
-0.006785
-0.01014
-0.01112
0.002324
0.007731
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-0.01568
-0.00198
-8.563e-05

0.006986
0.000111
-0.0002614
0.0007113
-4.584e-05
1

-0.22
-0.002225
-0.001987
-0.0009923
-0.0006016
0.0003377
-0.000633
8.791e-05
-0.001038
-0.0002562
-0.001788
0.0001181
-0.006252
0.003324
0.001364
-0.002528
-0.006585
-0.00601
-0.01093
-0.01375
-0.01799
-0.01406
-0.01585
0.0008393

-0.03056
0.0003492
-0.0001975
-0.0002673
0.0009392
-0.0006016
0.001705
0.8395
0.9913
0.9944

1

0.9863
0.9745
0.9292
0.8069

0.002
-0.006916
3.124e-05

0.01715
-0.0004372
0.0007186
-0.0003002
0.001474
-0.22

1
-0.004011
8.598e-05
0.001389
0.001705
0.0002917
0.001816
-3.177e-05
0.001632
-3.374e-05
0.003322
0.0003413
0.004779
-0.01331
-0.01846
-0.0117
-0.0148
-0.01678
-0.008993
-0.003263
0.005378
0.0118
0.02293
-0.001205

-0.03569
-8.298e-05
0.0005664
0.0001502
0.0003319
0.0003377
0.0002917
0.8354
0.9843
0.9898
0.9863

1

0.9631
0.9291
0.8632

-0.002708
0.01203
-6.042e-05

-0.02956
-0.0005603
0.0004896
-0.0002392
-0.004387
-0.002225
-0.004011
1

0.8364
0.8438
0.8395
0.8354
0.822
0.785
0.7318
0.5821
0.1569
-0.0003671
0.00644
0.008775
0.009908
0.01747
0.02168
0.01022
0.008791
0.007668
0.00216
0.0008881
0.0001732
6.097e-05

-0.04255
0.001483
-0.00217
-0.0003153
0.0009579
-0.000633
0.001816
0.822
0.9696
0.974
0.9745
0.9631

1

0.8981
0.8616

-0.007453
-0.003418
0.00029%04

-0.03006
0.0007652
-0.001147

-0.0006473
-0.0008833
-0.001987
8.598e-05
0.8364

1

0.9919
0.9913
0.9843
0.9696
0.9256
0.863
0.6863
0.185
-0.001866
0.002336
0.00538
0.008728
0.008876
0.01209
0.01014

0.006972

0.005806

0.003678
0.0007134
0.0002823
7.165e-05

-0.0542
0.0009168
-0.001358

-0.0008492
0.001517
8.791e-05
-3.177e-05
0.785
0.9256
0.9303
0.9292
0.9291
0.8981

1

0.7857

0.007762
0.002055
-0.0003597

-0.02938
-4.865e-06
0.0003227
-0.0005687
0.0008301
-0.0009923
0.001389
0.8438
0.9919

1

0.99%44
0.9898
0.974
0.9303
0.8671
0.6897
0.1859
-0.001827
0.0009635
.001714
.005296
.005607
.009541
.006417
.005264
.003438
.002112
0.00132
0.0007893
8.472e-05

[SESESESISES RIS IS

-0.05877
0.0002565
-0.0001413
0.0008678
-0.001683
-0.001038
0.001632
0.7318
0.863
0.8671
0.8669
0.8632
0.8616
0.7857

1
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0.6891
0.1859
-0.001807
-9.112e-05
0.0002899
0.001257
0.004478
0.007258
0.003707
0.003439
0.00289
0.001759
0.001029
0.0008513
1.417e-05

-0.05587
0.001219
-0.001972
-0.001399
0.002023
-0.0002562
-3.374e-05
.5821
.6863
.6897
.6891
.6878
L6775
.6791
.5329
1
-0.107
-0.004947
-0.0009857
0.003137
0.001346
0.003099
0.000356
0.003237
0.004503
0.002381
0.003098
0.001197
-2.092e-05
2.706e-05

[SESESESESECS RIS IS

-0.07314
0.004816
-0.007406
0.002804

0.6878
0.1853
-0.002472
-0.0009947
-0.0001699
-0.0005316
0.001799
0.006681
0.004533
0.002781
0.002477
0.002148
0.0007545
-4.122e-05
0.0001936

-0.01719
-0.00212
0.003827
0.0001966
-0.0004365
-0.001788
0.003322
0.1569
0.185
0.1859
0.1859
0.1853
0.1847
0.1655
0.2375
-0.107

1
0.0003995
-0.000308
-0.001084
-0.00258
-0.00403
0.005418
0.002539
0.003108
0.002391
5.009e-05
0.0009937
0.000812
9.584e-05

-0.0733
-0.0003241
0.001549
0.001123

0.6775
0.1847
-0.001337
0.0005686
-0.006696
-0.000407
0.001748
0.003154
0.003142
0.00279
0.001607
0.001093
0.0008327
-0.0004942
0.0002553

0.001468
-0.0001472
0.0002045
0.0004172
-0.0006458
0.0001181
0.0003413
-0.0003671
-0.001866
-0.001827
-0.001807
-0.002472
-0.001337
-0.007634
-0.003078
-0.004947
0.0003995
1

-0.1646
0.04418
-0.04502
0.03584
-0.01212
-0.0006657
-0.01014
-0.01179
0.01307
-0.002518
-0.02545
-0.000873

-0.08441
0.005657
-0.008852
-0.004437

0.6791
0.1655
-0.007634
-0.001335
-0.003335
-1.413e-05
-0.003875
0.0004934
0.00507
0.003187
0.00239%6
0.00244
0.001713
0.0009109
0.0001186

-0.01236
0.000548
-0.0008179
-0.001388
0.0007393
-0.006252
0.004779
0.00644
0.002336
0.0009635
-9.112e-05
-0.0009947
0.0005686
-0.001335
-0.005006
-0.0009857
-0.000308
-0.1646

1

-0.195
0.1722
-0.1289
0.05494
-0.003701
0.04175
0.03639
-0.04035
0.00637
0.08514
0.002906

-0.0831
0.005418
-0.009161
-0.003296

0.5329
0.2375
-0.003078
-0.0050006
-0.00247
-0.006704
.003098
.009335
.005921
.004726
.004028
.003226
.001237
4.531e-06
0.0003081

[SESESESI SRS

-0.02982
-0.0006594
0.001251
0.003628
-0.01109
0.003324
-0.01331
0.008775
0.00538
0.001714
0.0002899
-0.0001699
-0.006696
-0.003335
-0.00247
0.003137
-0.001084
0.04418
-0.195

1

-0.1582
0.08123
0.01062
-0.02705
-0.0004573
-0.03897
0.03909
-0.01222
-0.05225
-0.001671

-0.06118
-0.003954
0.00921
-0.00219



[
QWO NOOUTL D WNEOS

NNNNNNNRRRERRRRR
OURWNRPRPROWOWOONOUI A WNE

-0.01301
0.0013064
-0.01846
0.009908
0.008728
0.00529%
0.001257
-0.0005316
-0.000407
-1.413e-05
-0.006704
0.001346
-0.00258
-0.04502
0.1722
-0.1582

1

0.08614
-0.08578
0.09397
-0.0327
0.04937
-0.02549
0.01779
0.0100
9.941e-05

-0.03963
-0.0006678
0.003446
-0.008756
0.002324
-0.01375
-0.003263
0.007668
0.005806
0.003438
0.00289
0.002477
0.001607
0.00239%6
0.004028
0.002381
0.002391
-0.01179
0.03639
-0.03897
0.04937
-0.07452
0.09628
-0.09564
0.2729

1

0.09068

-0.011%
-0.002528
-0.0117
0.01747
0.008876
0.005607
0.004478
0.001799
0.001748
-0.003875
0.003098
0.003099
-0.00403
0.03584
-0.1289
0.08123
0.08614

1

0.1899
-0.1333
0.052
-0.07452
0.0579
-0.02745
-0.04382
-0.001155

-0.03316
-0.002222
0.005359
-0.012
0.007731
-0.01799
0.005378
0.00216
0.003678
0.002112
0.001759
0.002148
0.001093
0.00244
0.003226
0.003098
5.009e-05
0.01307
-0.04035
0.03909
-0.02549
0.0579
-0.06986
0.0893
-0.1365
0.09068
1

-0.006785
-0.006585
-0.0148
0.02168
0.01209
0.009541
0.007258
0.006681
0.003154
0.0004934
0.009335
0.000356
0.005418
-0.01212
0.05494
0.01062
-0.08578
0.1899

1

0.1444
0.02682
0.09628
-0.06986
0.01773
0.08699
0.00272

-0.01568
0.002
-0.002708
-0.007453
0.007762
-0.01406
0.0118
0.0008881
0.0007134
0.00132
0.001029
0.0007545
0.0008327
0.001713
0.001237
0.001197
0.0009937
-0.002518
0.00637
-0.01222
0.01779
-0.02745
0.01773
-0.01482
0.03273
0.01665
-0.1008

-0.01014
-0.00601
-0.01678
0.01022
0.01014
0.0006417
0.003707
0.004533
0.003142
0.00507
0.005921
0.003237
0.002539
-0.0006657
-0.003701
-0.02705
0.09397
-0.1333
0.1444

1

-0.1541
-0.09564
0.0893
-0.01482
-0.129
-0.004214

-0.00198
-0.006916
0.01203
-0.003418
0.002055
-0.01585
0.02293
.0001732
.0002823
.0007893
.0008513
.122e-05
.0004942
.0009109
.531e-006
-2.092e-05
0.000812
-0.02545
0.08514
-0.05225
0.0106
-0.04382
0.08699
-0.129
0.1144
-0.1698
0.1705

POOPOOOSOS

-0.01112
-0.01093
-0.008993
0.008791
0.006972
0.005264
0.003439
0.002781
0.00279
0.003187
0.004726
0.004503
0.003108
-0.01014
0.04175
-0.0004573
-0.0327
0.052
0.02682
-0.1541
1

0.2729
-0.1365
0.03273
0.1144
0.003409

-8.563e-05
3.124e-05
-6.042e-05
0.0002964
-0.0003597
0.0008393
-0.001205
.097e-05
.165e-05
.472e-05
.417e-05
.0001936
.0002553
.0001186
.0003081
.706e-05
.584e-05
-0.000873
0.002906
-0.001671
9.941e-05
-0.001155
0.00272
-0.004214
0.003409
-0.00584
0.005967

ONOOSOSOFrL 0N



27 | 0.01665 -0.1008 1 -0.3053 -0.008637
28 | -0.1698 0.1705 -0.3053 1 0.0125
29 | -0.00584 0.005967 -0.008637 0.0125 1



[Fit - Truth, Standard Toy, Full fit including realistic mass model| resid

Entries 1002
Mean 0.3671
RMS 6.108

70

60

50

40

30

20

10

)] b e b e ] =
- - 10 15 20
Fit-Truth, microns

N
o
-
o
'
-
o
a
o
o

Figure 49: GeneralFitterBias. This is the residual of plot of figure 43 Systematic
error assigned = 0.4 microns
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Figure 50: This is the residual of the bkg mass lifetime correlation pull study.
Assigned systmatic error is 2.5 microns

19 Appendix 2: Systematic Study residual Plots

Contained in this section are the residual plots of Fit-Truth for the pull studies
of Toy MC that resulted in a systematic error.
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Figure 51: This is the residual of study using the worst case scenario of single
track efficiency as a function of IP. Assigned error 3.1 microns
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Figure 52: This is the residual of study using investigating the single track
efficiency as a function of track Pt. Assigned error 1.8microns
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Figure 53: This is the residual of study investigating single track efficiency as a
function of track eta. Assigned error 0.3 microns

78



\ Fit - Truth for Bkg lifetime parameterisation sy i \ resid

Entries 1001
Mean 0.7942
RMS 5.708

50

40

30

20

10

oLl v v 1 v e e b L
-15 -10 -5 0 5 10 15
Fit-Truth, microns

Figure 54: This is the residual of study using the an alternate background
generation but the standard fit function. Assigned error 0.8 microns
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Figure 55: This is the residual of study for silicon alignment. Assigned error
0.4 microns
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20 Appendix A: The Simulation of the Misaligned
SVT

We simulate events with wafers in their default position, and then simulate a
misalignment by introducing wafer slewing both in the track reconstruction and
in the SVT. Unfortunately this means rerunning the simulation of the SVT.
The simulation, including GEANT hit production, is carried out using wafers
in their default position (TABLE 160045 1 GOOD). Then + 50 um wafer shifts
are introduced into the SVT and into the Track reconstruction by using the
tables TABLE 160047 1 TEST and TABLE 160047 2 TEST). To introduce these
constants into the track fits is trivial: the proper alignment table is specified in
the .tcl file.

To introduce the constants into the SVT trigger is much more involved. The first
step is to distill the SVX geometry into a set of constants summarizing wafer
position. This happens within a special procedure (makergeo.csh) developed and
maintained by the SVT group. Makergeo is a script which runs an AC++-based
program that can be steered through .tcl files and the (mis)alignment tables are
introduced at that point. The output file containing the desired information is
given the .rgeo extension.

The SVT track fit operates by taking four hit positions plus two XFT param-
eters (¢p and curvature c), forming a vector of input parameters and apply-
ing a linear transformation to those parameters. The constants used in this
transformation are determined using linear regression to simulated tracks. The
simulation, which is not to be confused with CDF’s full detector simulation,
simply generates particles across the detector acceptance in order to determine
the linear relationship between track parameters and hit positions. In order
to obtain “misaligned” constants, these tracks need to be recreated and the
regression repeated. The procedure to do this is called corrgen; it appears to
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Database | Default | Shift Out | Shift In
Beam-x (um) | -1973.8 | -1973.8 -1973.0 -1974.8
Beam-y (pm) 5152.8 5153.0 5148.8 5157.4
dx/dz (mr) 0.5598 0.5598 0.5605 0.5595
dy/dz (mr) 0.1739 0.1739 0.1738 0.1744

Table 4: Beamspot shifts induced by misalignment of silicon wafers.

live only outside CDF’s version-controlled code management system, but can
be obtained through the SVT group. The output of “corrgen” is a file with the
“.fcon” extension, containing fit constants.

Finally, the new fit constants are introduced into the simulation via “mapset”
files; these contain pointers to the new .fcon files created in the previous step.
This file is edited by hand, and the new file is introduced to the SVT simulation.

The alignment table used to generate the new SVT constants is presented to
the reconstruction procedures, specifically the track fits, via the .tcl file.

20.0.1 How the Beamspot Changes when the Silicon Detector is
Misaligned.

The misaligments we considered (a 50 micron displacement of all wafers in-
wards and outwards) produce a collective effect on the beamspot position. The
collective motion of such detectors induces an apparent shift of the beampsot.
The plot of dyvsg, used to obtain the beam spot position, changes amplitude
when the wafers move out or in. We take account of this effect by re-doing the
beamspot measurement, introducing the modified beamspot both into the SVT
simulation and into the event reconstruction.

The study was performed using stiff muons (50 GeV) in order to obtain high
impact-parameter resolution for each event and thereby enhance the statistical
power of the events we generated. The statistical power was further ehanced
by artificially shrinking the lateral size of the beamspot to one micron. The
beamspot was fit to default alignment and to the two misaligned configurations,
using an unbinned maximum likelihood fit.

Table 4 shows the fitted beamspot positions. In addition to the beamspot
positions and slopes determined from our procedure, we include in the table
the numbers coming from the database; these are to be compared with the
beamspot position we determine for the default position. The discrepancy is at
the submicron level. This gives us confidence that the values we extract for the
apparent beasmpot position in the misaligned detector is also accurate. When
the wafers are shifted out (in) by 50 microns, the apparent displacement of the
beamspot from the center of the detector decreases (increases) by about 4-5
microns or 0.1%. A crude scaling argument would predict that the effect would
be less than the wafer displacment divided by the wafer position, or (50 u) /
2.5 (cm) = 0.2%. The Dq vs ¢¢ plots using both default beam positions and
the apparent beam position as determined from our fits are shown in Figs. 56,
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57, and 58

We noticed another effect: the the resolution deteriorates when the wafers are
moved. This increases the apparent size of the beam. This effect vanishes at
the center of the wafer and becomes more pronounced on each side of the wafer.
The overall size of the effect on Dy is aproximately 30 microns, peak-to-peak.
This effect. which is a Dy distortion due to the collective shift of wafers, is in
fact larger that than the overall shift of the beamspot. It has a significant effect
on the event selection, migrating events in and out of the acceptance.

In principle, one could hope to use the observed flatness of CDF’s beamspot
to put an upper limit on the amount of distortion in the real SVX; in prac-
tice however we interpret the alignment group’s “50 micron” prescription as a
characterization of magnitude of possible alignment effects, so, we consider the
two cases we study (50 pm in and 50 pm out) as our benchmark worst case
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Figure 56: Dy vs. ¢g plot after correction for the beamspot. Events are single
muons at 50 GeV. Events are simulated with tracks at their default positions
and reconstructed in the same way.

We can also make the plot of the SVT Dg vs ¢g, using SVTD banks after the
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Figure 57: Dy vs. ¢g plot after correction for the beamspot. Events are single
muons at 50 GeV. Events are simulated with tracks at their default positions and
reconstructed with wafers moved out, by 50 x4 m. Top: the default beamspot
position is used. Bottom: misaligned beamspot position is used.
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Figure 58: Dy vs. ¢g plot after correction for the beamspot. Events are single
muons at 50 GeV. Events are simulated with tracks at their default positions
and reconstructed with wafers moved in, by 50 ¢ m. Top: the default beamspot
position is used: Bottom: misaligned beamspot position is used.
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beamspots determined by our procedure have been loaded into SVTSIM. This
is shown in Fig 59. This plot is sculpted by the efficiency of the hit-finding and
track-finding, and it is difficult to draw conclusions from this plot. However it
does appear to rule out large shifts in the SVT due a mismatch between the
alignment table and the beamspot numbers fed to svtsim.
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Figure 59: Dy vs. ¢q plot for the SVT tracks. The apparent beamspot position
as determined from our fits are fed to the SVT.
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20.1 Systematic Due to Silicon Misalignment

The alignment group quotes the systematic error on the alignment of the sili-
con system as being 50um. The usual way in which the effect of a misaligned
detector has upon a lifetime result is to simulate the misaligned detector. One
simulates with one alignment table and estimates track parameters using an-
other, observing the effect upon the fitted lifetime.

What others have done Since the selection of events in dimuon channels
is largely independent of aligment (apart from very loose cuts like x2), any
differences due to selection are assumed to be statistical fluctuations and these
are zeroed by fixing the selection and varying only the alignment constants.
Event selection is performed using one alignment table; then, the tracking fits
are redone using a different table. The wafer misalignments produce hit slewing
which propagates to tracks, then to vertex positions, to proper decay times and
ultimately to the fitted B lifetime. Since track refits can be performed in the
analysis step, the entire systematic study can be conducted without even a rerun
of production.

Why we cannot do that. The effect that a misaligned detector has upon the
lifetime measurement extracted in this analysis, and the treatment we use to
estimate it, differs from previous analyses in several ways.

e The selection of events by the hadronic B trigger is affected by the align-
ment. This is not the case in analyses in which lifetime distributions are
unbiased by the trigger.

e Since now the selection of events changes, the samples used to estimate
the lifetime before and after the shift vary slightly. If the samples are not
100% correlated, then any shift in the central value induced by the offline
tracking must be considered to have a statistical error coming from the
sample difference.

A simple thought experiment serves to illuminate the last issue. If the wafer
positions are changed, some events will enter or leave the sample. In case the
events that are gained/lost all come from the front edge of the acceptance, we
would say that the alignment was affecting the lifetime. In case the events are
gained/lost at random, without regard to their lifetime we would see a different
measured lifetime for sure but we would have to say that the change in the
measured value was due to statistical fluctuation.

One could approach this problem by determining the degree to which the two
measurements were statistically correlated. Our approach is to determine,
through a procedure we describe below, the change in fitted lifetime value due
to alignment together with its statistical error. This will be quoted as § + o.

Needless to say, the procedures by which a misaligned detector is introduced
into the SVT is a non trivial task both for us and for the CDF analysis farm.
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Figure 60: Sample 1 ovelaps with Sample 2. We consider Sample A (unique to
selection 1), Sample B (unique to selection 2) and Sample C (common to both
selections).

20.2 The Statistical Error in the Alignment Shift

Two measurements of a quantity performed with overlapping samples are ex-
pected to show differences due to statistical fluctuations. Here, we estimate the
size of those differences (“¢”, in the discussion above). Let’s call the first set of
events “Sample 1”7 and the second set of events “Sample 2”. Furthermore, we
call their intersection “Sample C” (for common); those are the events common

to both selections.

Furthermore, we call the events unique to the first selection “Sample A” and
those unique to the second selection “Sample B”. The event selections can be
visualized with Venn diagrams, as if Fig. 60.

Suppose that unbinned maximum likelihood fits to Samples 1 and 2 return
measured values x1 £ o7 and x2 + 02. These measurements can be each be
considered as weighted average results. x1 =071 could be obtained as a weighted
average of an estimate of x within sample A and an estimate of x within sample
C. We'll denote these estimates as x4 £ 04 and g + op. The weight w of a
the estimate is defined as

1
=]
Then,
- WAL A + WoXCO (59)
wp + we
w] = wp +we (60)
And
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Xy = WBTE T Woro (61)
wp + W

W9 = wWpg + Wwe (62)

This composition is useful because, unlike samples 1 and 2, samples A, B, and
C are disjoint so they are statistically independent. Notice that we do not claim
that the estimate of z within samples A, B, or C is physically meaningful. We
merely are stating that they relate to the measurements within samples 1 and
2 as stated above. (E.G: the average height of students in a class is certainly
the average of the average of the short students and the average of the tall
students). For this reason we shall refrain from calling estimates of x in samples
A, B, or C as measurements; we refer to estimates of x in samples A, B, and C;
and measurements of x in samples 1 and 2.

We are interested in the difference A = x; — x5 between measurement 1 and
measurement 2. We can write it in terms of the estimates within samples A, B,
and C in the following way:

A =1 — T2 = (63)
WATA +WeXo  WBTB + WoTc
wA + we wp + wc

The advantage in doing so is that we know the degree of statistical correlation
between x 4, x5, and x¢ is zero, wheras we do not know the degree of correlation
between x1 and zo at all.

Our goal is to determine the o, the error on the measurement difference. It
can be got from a straight propagation of errors using the above expression. We
compute

IN?
A = (5 ) (65)
i=A,B,C v

)

Carrying out the algebra, we obtain:

5 wh wR weo(wp —wa)?
= - + 66
OA (wA 4 wC)Q (wB + U)C)Z (wA + wC)Q(wB + wC)2 ( )

Two limiting cases are of interest. When the events do not overlap at all,
we = 0, and one sees easily that 03 = 0% + 0%. When all of the events are
common wa = wg = 0 and oao = 0. These are precisely what one expects.
We shall use this formula below to obtain the statistical error on the alignment
shift.
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Sample Size (events) | 7 (default) (pm) | 7 (out) (um | o, (um)
A (default only) 26.4K 443 6
B (Move out) 28.2K 438 6
C (Common) 38.0K 533 537 7

Table 5: Raw lifetime estimates within samples (A,B,C). Sample A consists of
events selected with default alignment, only; sample B of events selected with
wafers moved out; and sample C of common events.

20.3 Estimate of the Alignment Systematic.

The lifetime shift has been evaluated by shifting the wafers outwards by 50
pm. We simulated BT — D97, simulating the detector and the SVT trigger,
reconstructing the events and applying the lifetime estimators to selected events.
The input lifetime was 496 pm. The procedure to simulate the misaligned SVT
is detailed in section 20.

The events which are common to each selection are about 60% of the selection.
The raw numbers are shown in Table 20.3. Samples A and B contain events
lying at the edge of the acceptance, so the low value of the lifetime estimate for
these subsamples is expected. Sample C is depleted in such events so the high
lifetime seen in that subsample is also expected. Sample 1, which is AUC, gives
a measurement of 495 + 5 while sample 2, BUC, gives 49345, so we observe a
downward shift of two microns.

Using the formulae derived in this note, we determine the shift to be -2 + 5
pm. This is large and dominated by statistical uncertainty. Given the sizes of
the other systematics we wish to pursue a more agressive approach.
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