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Abstract. As a consequence of the increasingly large flux of partons at small x, Double

Parton Interactions (DPI) play an increasingly important role at high energies. A detail

understanding of DPI dynamics is therefore mandatory, for a reliable subtraction of the

background in the search of new physics. On the other hand, DPI are an interesting topic

of research by themselves, as DPI probe the hadron structure in a rather different way, as

compared with the large pt processes usually considered. In this note we will make a short

illustration of some of the main features characterizing DPI in pp and in pA collisions.

1 Introduction

The rapid increase of the parton flux at small x causes a dramatic rise of all cross sections with large

momentum transfer exchange in high energy hadronic collisions [1,2]. The values of x, which con-

tribute to a hard process, with a fixed lower cutoff in the exchanged momentum, are in fact increasingly

smaller at large energies. One thus faces a unitarity problem in large pt processes at high energy. A

good example is the inclusive cross section to produce mini-jets which, as shown in fig.1, may become

larger than the total inelastic cross section at high energy.

Figure 1. Minijets cross section as a function

of the cutoff in pt at Tevtron and at the LHC.

The problem with unitarity is solved when Multiple Parton Interactions (MPIs) are introduced in

the interaction dynamics. MPIs introduce the possibility of different hard partonic interactions in a
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given inelastic event and, while each inelastic event contributes with multiplicity ’one’ to the inelastic

cross section, each inelastic event contributes with the multiplicity of hard partonic interactions to the

inclusive hard cross section. In this way, when the average multiplicity of hard partonic interactions

in a inelastic event is large, the inclusive cross section is no more bounded by the value of the total

inelastic cross section [3].

The simplest case of MPIs is the Double Parton Interaction (DPI). A possible case to consider is

the production of four large pt jets, where transverse momenta are compensated pairwise. The process

can thus be originated by two different pairs of initial state partons, which interact independently with

large transverse momentum exchange. The corresponding contribution to the cross section maximizes

the incoming parton flux and thus it gives an increasingly important contribution at large energies.

Given the large momentum transfer, hard interactions are localized in a space region much smaller

as compared to the hadron size. In a DPI two hard partonic interactions are thus localized in two dif-

ferent points in transverse space, in the overlap region of the matter distribution of the two interacting

hadrons. The hard component of the interaction is thus disconnected and the process can be described

by the geometrical picture in fig.2.
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Figure 2. Geometrical picture of a DPI.

As apparent in fig.2, the non-perturbative components of a DPI are in this way factorized into functions

which depend on two fractional momenta and on the relative transverse distance b between the two

interaction points. The non-perturbative input to DPI, namely the double parton distribution functions,

have thus dimensions of an inverse area and contain information on the hadron structure not accessible

in a single scattering processes.

When neglecting spin and color, the inclusive double parton-scattering cross-section, for two par-

ton processes A and B in a pp collision, is thus given by [4]

σ(A,B)
D =

m
2

∑
i, j,k,l

∫
Γi, j(x1, x2; b)σ̂A

i,k(x1, x′1)σ̂B
j,l(x2, x′2)Γk,l(x′1, x

′
2; b) dx1dx′1dx2dx′2d2b (1)

where m is a symmetry factor (m = 1 when A = B and m = 2 when A is different from B), the

functions Γ(x, x′; b) are the double parton distributions, which depend on two fractional momenta and

of b, σ̂A,B are the partonic scattering cross sections and the sum is over the different parton species

contributing to the process.

Notice that the dependence of σD on the transverse momenta of final partons is very well char-

acterised and it is very strong. Actually it is as strong as the square of a single hard scattering cross

section. One should stress that this feature represents a rather non trivial experimental test of the DPI

interaction dynamics.
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By introducing the "effective cross section", σe f f , one may expresses σD by the so called "pocket

formula", utilised in the experimental analysis:

σ
pp (A,B)

D =
m
2

σAσB

σe f f
(2)

where σA and σB are the single scattering inclusive cross sections. Of course the "pocket formula"

makes sense only, if comparing with experiments, σe f f turns out to be weakly dependent on the

reaction channel and on kinematics. Which is indeed the case, as it may be seen by looking at fig.3,

where the results of different measurements of σe f f are shown [5-9].

Figure 3. σe f f as measured in different

experiments.

When σA is small, the ratio σA/σinel represents the probability of having the process A in a inelas-

tic collision. In the pocket formula σ(AB)
D = σAσB/σe f f (here one assumes A � B) and in the biased

case, where the process B takes place in presence of the process A, the effective cross section thus

plays the role of the inelastic cross section.

By looking at fig.3, although within large experimental errors, the observed values of the effective

cross section are approximately constant (∼ 15 mb) and do not seem to depend on

the C.M. energy (Fermilab, LHC)

the reaction channel (4 j; γ3 j; γγ2 j; γb(c)2 j; W j j; J/Ψ J/Ψ; Z J/Ψ; Υ D0; J/Ψ D0)

the values of x and Q2

There is on the contrary a clear indication that the effective cross section is sizably smaller (≈ 2-4

mb) in the case (J/Ψ J/Ψ) and (J/Ψ Υ) production

Notice thatσe f f is sizably smaller as compared withσinel, which is an indication of strong partonic

correlations in the hadron structure.

2 σe f f and Partonic Correlations

One may write the double parton distribution functions as

Γ(x1, x2; b) = G(x1, x2) fx1 x2
(b), G(x1, x2) = Kx1 x2

G(x1)G(x2) (3)
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where G(x) is a usual "one-body" parton distribution. The function f is normalised to one and the

transverse scale, characterising f , may depend on fractional momenta. After integration on the trans-

verse coordinate b, one thus obtains the average multiplicity of pairs with fractional momenta x1 and

x2:

∫
fx1 x2

(b) d2b = 1; G(x1, x2) = Kx1 x2
G(x1)G(x2) = 〈n(n − 1)〉x1 x2

; G(x) = 〈n〉x (4)

Parton distributions are in this way understood as average number of partons with a given momentum

fraction. In the simplest case one would have Kx1 x2
= 1 which, after integrating on the transverse

coordinate b, would be consistent with a Poissonian multiparton distribution in multiplicity [10]. By

using relations in Eq .s (3) and (4), the double parton scattering cross section is given by

σ
pp (A,B)

D (x1, x′1, x2, x′2) =
m
2

Kx1 x2
Kx′

1
x′

2
G(x1)σ̂A(x1, x′1)G(x′1)

×G(x2)σ̂B(x2, x′2)G(x′2)

∫
fx1 x2

(b) fx′
1
x′

2
(b)db

=
m
2

Kx1 x2
Kx′

1
x′

2

πΛ2(x1, x′1, x2, x′2)
σA(x1, x′1)σB(x2, x′2) (5)

where

∫
fx1 x2

(b) fx′
1
x′

2
(b)db =

1

πΛ2(x1, x′1, x2, x′2)
(6)

and the effective cross section is thus expressed in terms of the typical area of the interaction region

Λ, which may depend on the fractional momenta of the interacting partons, and on the multiplicities

of the interacting parton pairs:

σe f f (x1, x′1, x2, x′2) =
πΛ2(x1, x′1, x2, x′2)

Kx1 x2
Kx′

1
x′

2

(7)

Limiting cases are

a) partons are not correlated in multiplicity. In such a case Kx1 x2
= 1

b) partons are not correlated in the transverse coordinates. In such a case one may write the

generalised "one-body" parton distribution Γ(x; b) as

Γ(x; b) = G(x) fx(b),

∫
fx(b)d2b = 1 and one has : fx1 x2

=

∫
fx1

(b′) fx2
(b − b′)d2b′ (8)

where fx(b) is the two gluon from factor of the nucleon. If one assumes that the effects of correlations

are negligible, there are no unknowns and σe f f can be evaluated. One obtains

σe f f = πΛ
2 = 32mb (9)
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which is roughly a factor 2 larger as compared with the experimental indications. One may thus

conclude that either K is not equal to 1 or partons are correlated in the transverse coordinates or, most

likely, that partons are correlated both in multiplicity and in the transverse coordinates.

An additional experimental indication is that, in the kinematical region where DPI are important,

the effective cross section depends only weakly on fractional momenta [5]. It makes therefore sense to

assume that there is a weak dependence of both Λ and K on fractional momenta.

On the other hand it is clear that, since all new information on the hadron structure is summarized

by a single quantity, namely the effective cross section, by studying DPI in pp collisions, one does not

obtain enough information to discriminate between Λ and K. In other words one cannot disentangle

parton correlations in the transverse coordinates and in multiplicity by studying DPI only in pp.

To obtain additional information on multi-parton correlations one needs to study DPI in pA colli-

sions. In the case of a double parton interaction, in a collision of a proton with a nucleus, the effects

of longitudinal and transverse correlations are in fact different when a single nucleon or two different

target nucleons participate in the hard process.

3 DPI in pA Collisions

In the case of DPI in proton - nucleus collisions, in the regime where non additive corrections to the

nuclear parton distributions are small, one may have a double parton interaction against a single or

against two different target nucleons [11,12]. DPI have been measured in the WJJ production channel

at the LHC, in pp collisions. It’s interesting to compare the results, obtained in pp collisions, with the

expectations of WJJ production in p − Pb collisions in the same kinematical regime.

���	
���
������
�
�����
����������
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Figure 4. Different

contributions to the DPI cross

section in pA collision.

When neglecting the effects of the interference terms, which are estimated to produce a correction

of the order of 10%, one obtains a simple expression for the DPI cross section in pA collisions:

σpA(WJJ) = σ
pA
S (WJJ) + σ

pA
D (WJJ)

σ
pA
D (WJJ) = σ

pA
D (WJJ)

∣∣∣
1
+ σ

pA
D (WJJ)

∣∣∣
2

(10)

The labels S and D here above correspond to the single and double parton scattering contributions,

while the labels 1 and 2 distinguish the terms where one or two different target nucleons take
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tive part in the process. By neglecting the effects of interference terms, the explicit expressions of

σ
pA
D (WJJ)

∣∣∣
1

and of σ
pA
D (WJJ)

∣∣∣
2

are [13]

σ
pA
D (WJJ)

∣∣∣
1
=

1

σe f f

[
Zσpp

S (W) + (A − Z)σ
pn
S (W)

]
σ

pp
S (JJ)

σ
pA
D (WJJ)

∣∣∣
2
= K
[Z
A
σ

pp
S (W) +

A − Z
A
σ

pn
S (W)

]
σ

pp
S (JJ)

∫
T (b)2d2b (11)

where Z is the nuclear charge and T (b) the nuclear thickness, as a function of the impact parameter

b. In the kinematical regime of interest the production of jets is dominated by gluons, so in Eq.(11)

we have put σ
pp
S (JJ) = σ

pn
S (JJ). Notice that, while σ

pA
D (WJJ)

∣∣∣
1

grows linearly with A, σ
pA
D (WJJ)

∣∣∣
2

represents an additional positive contribution to the cross section, which grows as A4/3. Therefore,

in the case of DPI, the correction to the "impulse approximation term" is not the typical negative

shadowing correction term. On the contrary, in the case of DPI, the correction term is positive and one

has a anti-shadowing correction which, with heavy nuclei, may represent the dominant contribution

to the cross section.

The first term in the equations above, σ
pA
D (WJJ)

∣∣∣
1
, is proportional to the effective cross section

and does not add much to the information on DPI obtained from pp collisions. The second term,

σ
pA
D (WJJ)

∣∣∣
2
, is on the contrary proportional to K, which measures the multiplicity of pairs of par-

tons in the projectile hadron (one should remind that when K = 1 the multiplicity distribution is a

Poissonian).

By measuring the amount of anti-shadowing, actually σ
pA
D (WJJ)

∣∣∣
2
, one can thus obtain informa-

tion on how the pairs of projectile partons are correlated in multiplicity.

Different contributions to the cross section are therefore possible, depending on the actual value

of K. Two extreme cases can thus be considered in proton - lead collisions

a) There are no correlations in multiplicity:

K2 = 1 and πΛ2 = σe f f

σ
pA
D (WJJ)

∣∣∣
2

σ
pA
D (WJJ)

∣∣∣
1

≈ 2 (12)

b) There are no correlations in the transverse coordinates:

K2 = 2 and πΛ2 = K2σe f f

σ
pA
D (WJJ)

∣∣∣
2

σ
pA
D (WJJ)

∣∣∣
1

≈ 3 (13)

Notice the huge values of the anti-shadowing contributions to the cross section: 200% and 300%

in the two limiting cases.

A more detailed information is obviously obtained when looking at the differential distributions.

In fig.5 the transverse distributions in p−p and p−Pb are compared. The leading Standard Model con-

tribution (Single Parton Interaction) is represented by the pinkish histograms. The green histograms

are the contributions due to Double Parton Interactions. The black histograms are the sum of Single

and Double Parton Interactions.
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Figure 5. Upper figures: transverse spectra of the leading jet in p − p (left panel) and p − Pb collisions (right

panel). Lower figures: transverse spectra of the W decay-lepton in p − p (left panel) and p − Pb collisions (right

panel).

In the upper panels in fig.5, one compares the transverse spectra of the leading jet in p − p (left

panel) and p−Pb collisions (right panel). One may notice that, consistently with the results of ATLAS

and CMS, in p − p DPI can only provide a minor modification to the SPI spectrum. On the contrary,

the contribution of DPI is much more important in p − Pb, where the slope in pt of the leading jet is

substantially modified at pt ≤ 40 GeV .

In the lower panels in fig.5, one compares the transverse spectra of the W decay-lepton in p − p
and p − Pb collisions. Again DPI have a small effect in p − p while, as shown in lower panel on

the right side, DPI produce a huge increase of the spectrum at pt � 40 GeV in p − Pb. In a DPI

the W boson is in fact produced with a rather small transverse momentum, since the observed jets

do not recoil against the W. The transverse spectrum of the W decay-lepton produced by DPI (green

histogram in the figure) is thus limited at pt � 40 GeV and the huge increase of the spectrum of the

decay lepton at 40 GeV can in this way give a direct indication on the contribution of DPI, and thus

on the anti-shadowing term, to the cross section.

One may therefore conclude that one expects rather sizable effects from DPI in p − Pb as com-

pared to p − p at the LHC, because of the different interaction mechanism in the two cases. The

additional contribution to the cross section, namely σ
pA
D (WJJ)

∣∣∣
2
, is dominant at large A and it is di-

rectly proportional to the multiplicity of interacting pairs of partons in the projectile (the factor K in

the present note). In the case of WJJ production in p − Pb one should therefore be able to obtain a
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rather direct indication on the size of K by simply looking at the inclusive transverse spectrum of the

W decay-lepton in p − Pb collisions.

The sizable increase of the fraction of events due to DPI in p − Pb collisions and the significant

difference of the resulting value of the cross section, as a function of the correlation parameter K, are

rather encouraging indications of the potential of DPI in p − Pb collisions to obtain information on

the parton correlation parameter K and, as a consequence, also on Λ. With a joint study of DPI in

p − p and p − Pb, one might thus be able to obtain information, to a large extent model independent,

on the typical values of multiplicity of parton pairs and on the typical transverse distances between

partons in the hadron structure; possibly also at different values of the parton’s fractional momenta.

The option of an experimental study of DPI in p−Pb at the LHC could therefore be highly rewarding,

offering a viable possibility of obtaining a remarkable insight into the three dimensional structure of

the hadron.
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