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Introduction

As the quantum theory developed, researchers began to investigate the characteristics
of subatomic particles in the search for the fundamental building blocks of matter.
The discovery of the electron is considered the starting point of this journey. In 1897,
J.J. Thomson identified negatively charged particles emitted from cathode ray tubes as
electrons. Later Rutherford conducted a well-known gold foil experiment a few years
later and observed that some of the alpha particles were deflected. He deduced that
atoms were mostly empty space and had a small, dense nucleus made up of positively
charged particles, called protons (1919). In 1932 Chadwick discovered neutral particles
within the nucleus, referred to as neutrons.

In the 1960s, Gell-Mann and Zweig introduced the quark model [1,2]. According
to this theory, protons and neutrons were not elementary particles. They are proposed
to be composed of more fundamental particles called quarks, the building blocks of
all visible matter. Quarks and antiquarks are held together by gluons, the interaction
mediator, forming protons and neutrons in the nucleus. The interactions between quarks,
antiquarks, and gluons, known as partons [3], are described by the quantum field theory
of the strong force, Quantum Chromodynamics (QCD), first proposed in 1972 [4]. The
term ”"chromo” in QCD refers to the color charge of the partons, named red, blue, green,
or their counterparts. The color charge does not reflect the colors we see in everyday
life, but it behaves like real colors in the sense that three different colors or a pair of a
certain color and its counterpart can create a color-neutral particle. Quarks also come in
six different flavors, distinguished by their mass and charge: up, down, charm, strange,
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top, and bottom. The lightest quarks, the up and down quark, play a major role in the
structure of atomic nuclei and have a mass less than 6 MeV, while the top quark, which
has a mass of approximately 173 GeV [5] was the last of the six to be discovered [6, 7].

The groundbreaking discoveries in the field of particle physics are closely related
to the development of accelerator and detector technologies worldwide. For instance,
the existence of quarks was first verified through inelastic electron-nucleon scattering
experiments conducted at the Stanford Linear Accelerator Center (SLAC) in 1968 [8,9].
The existence of gluons was confirmed at Deutsches Elektronen-Synchrotron (DESY)
in 1979 [10-13]. The heaviest known quark, the top quark, was finally observed
at the Tevatron at the Fermi National Accelerator Laboratory (Fermilab) in 1995 [6],
completing the third generation of quarks, which is 40 times more massive than its pair,
the bottom quark. After being proposed more than 50 years earlier, the Higgs particle
was finally detected at the Large Hadron Collider (LHC) at CERN in 2012 [14, 15].
Despite these achievements, there are still many fundamental questions that cannot be
addressed by existing accelerators. This has led to the requirement for the development
of new accelerators. One of the candidates is the Electron Ion Collider (EIC) [16,17]
currently being constructed in the United States, as of the time this thesis is written,
as the successor of the Relativistic Heavy Ion Collider (RHIC) which aims to provide
high-resolution information about the internal structure of hadrons.

At particle colliders, QCD plays a crucial role in describing the interactions of high
energy partons. QCD has two key features that are very important in high energy
scattering analysis: color confinement [18] and asymptotic freedom [19, 20]. Color
confinement arises from the non-Abelian nature of QCD, where the interaction mediator
(gluon) carries a color charge. As a result, gluons interact with each other and the
interaction between quarks becomes stronger as the distance between them increases.
At a certain point, the amount of energy needed to separate two quarks becomes so large
that it creates other quark-antiquark pairs. Hence, quarks have never been observed
as single particles. The second key feature of QCD, asymptotic freedom, states that
the effective coupling of QCD becomes asymptotically smaller at high energies (short
distances), allowing us to treat quarks as (almost) free particles when the coupling is
small. This makes QCD amenable to perturbative analysis at high energies, while the
low energy regime remains non-perturbative and must be studied through experiments.

Deep Inelastic Scattering (DIS) is a widely-used technique in experiments, such as
those conducted at SLAC, HERA, and the upcoming EIC. DIS is a collision between
leptons (such as electrons, muons, and neutrinos) and hadrons (typically protons or
heavier nuclei). The theoretical analysis is based on the factorization framework, in
which the cross section can be divided into two components: the hard part and the soft
part. The hard part of the process involves the interaction between a virtual photon,
emitted by the incoming high-energy electron, and the partons within the proton. This
part can be analyzed using perturbative methods. Alternatively, in the dipole picture that
is valid at high energies, the emitted photon splits into a quark-antiquark pair (dipole)
that interacts with partons within the hadron via two-gluon exchanges, referred to as
the pomeron. The soft part of the process involves the interactions between partons




within the hadron, described by Parton Distribution Functions (PDFs). These functions
are uncalculable and must be measured through experiments. Fortunately, there is a
universal PDF that is independent of the process, known as the collinear PDF [21]. This
one-dimensional PDF only depends on the collinear momentum of the parent hadron
and is the simplest form of PDF. The collinear PDF f,(z) describes the probability density
of finding a parton ¢ in a hadron with a longitudinal momentum fraction .

Collinear PDF gives a fundamental understanding of the proton structure in terms of
the variable x, but it is limited in providing a comprehensive picture. To gain a deeper
understanding of the proton’s content, it is important to consider multidimensional PDFs
such as the three-dimensional Transverse Momentum Dependent (TMD) PDFs. These
PDFs take into account the transverse momentum distribution of partons k,, which
refers to the momentum direction perpendicular to the direction of the parent hadron’s
motion. This provides a more comprehensive description of the partonic structure of
the hadron compared to the one-dimensional PDF by incorporating a greater number
of observables into the cross-section that can be observed in experiments. However,
the Wilson line/loop structures in TMDs which represent the resummation of infinite
gluon interactions, lead to a process dependence. This means that each event requires
a separate calculation, making TMDs a non-universal object. Despite the difficulties in
extracting TMDs from experimental data, the study of TMDs remains a highly sought-
after area of research in particle physics due to its potential to capture some interesting
phenomena, such as single-spin asymmetries, investigation of the origin of the proton
spin, and the intrinsic transverse momentum of quarks and gluons. The complexity of
the calculation process has motivated scientists to develop advanced techniques for more
efficient extraction of TMDs. In this thesis, we will only cover the basics of TMDs and
not go into the details of TMD factorization and TMD evolution.

To gain deeper insights into the internal structure of hadrons, one can turn to the
Wigner distribution [22], sometimes referred to as the "mother distribution". Compared
to three-dimensional TMDs, the five-dimensional Wigner distribution provides a more
comprehensive view of the phase-space distribution and dynamics of the partons within a
hadron. The Wigner distribution is a function of parton’s light cone momentum fraction
x, the parton’s transverse momentum k, , and the impact parameter b,. Upon taking
the Fourier transform of the Wigner distribution in the b, space, we can obtain the five-
dimensional Generalized Transverse Momentum Dependent (GTMD) distributions, which
are functions of x, k,, and the transverse off-forwardness A, . These GTMDs provide
information on the orbital angular momentum of quarks and gluons, not captured by
the TMDs. The main focus of this thesis will be to examine the consistency of the GTMD
picture in describing diffractive processes.

There is a growing interest among researchers to find ways to measure the GTMD
experimentally. One proposed method involves observing diffractive dijet production in
electron-proton collisions, where in the small x limit the cross section will be proportional
to the gluon GTMD [23]. It is worth noting that approximately 10% of DIS events
observed at HERA at small values of x are diffractive events, where the incoming
proton remains intact while losing only a small fraction of its initial momentum. In this
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thesis, we focus on the gluon GTMD, since the density of gluons grows quickly as we
move to high energy (z < 0.01 region), making the quark contribution negligible. The
expected exponential growth of the gluon density is believed to slow down, leading to
the phenomenon of gluon saturation which can only be described through non-linear
QCD. Models that incorporate the saturation effect have been successful in describing
inclusive and diffractive DIS at HERA and heavy ion collisions at RHIC and LHC. We aim
to include this effect in our model of the gluon GTMD. We restrict our discussion to the
unpolarized distribution of gluons within an unpolarized hadron.

This thesis focuses on exploring how a GTMD model, which incorporates the satura-
tion effect, can describe various diffractive processes and provide predictions for future
experiments, particularly at the EIC. The thesis begins with a brief overview of QCD and
DIS in Chapter 2, followed by an in-depth examination of the non-linear QCD framework,
in particular, the Color Glass Condensate (CGC), in Chapter 3. The CGC describes that
in high-energy heavy-ion collisions, a large number of gluons are generated and become
so dense that they form a disordered frozen state, similar to glass, see e.g. [24,25]. The
CGC is then the resulting state of gluon saturation. The Golec-Biernat-Wiisthof (GBW)
model was developed to effectively describe the saturation regime observed in the HERA
data [26,27]. We will incorporate the GBW parametrization into our GTMD model.

In Chapter 4, we introduce multidimensional PDFs and provide definitions of GTMDs
from two different perspectives. In Chapter 5, we construct a gluon GTMD model to
describe the transverse off-forwardness squared ¢, the transverse momentum of the jets
K|, and the photon virtuality *> dependence data from HERA-H1 on diffractive dijet
production. At first, we used a small average z value to describe the Q% data, but we
found that an z-dependent saturation scale was necessary to improve the description.
By incorporating an z-dependence through adopting the GBW parameterization, we
improved the description of the ? data. In Chapter 6, we then extend the model
to describe diffractive J/¢) production and argue that both diffractive dijet and J/¢
production should be described by the same underlying picture. However, there is some
tension in the parameters we use in diffractive .J/¢ production, which may only be
resolved with more data from higher precision experiments at the EIC, but also from
Ultra-peripheral Collisions (UPCs) at RHIC and LHC. We provide predictions for both
diffractive dijet and .J/v production with optimal parameterizations for each process as
a test of the underlying model. In Chapter 7, we discuss the future prospects of GTMD
studies and summarize the important points.




QCD in high energy collisions

This chapter is dedicated to giving a brief overview of the fundamental concepts of QCD
and high-energy collisions. In Sec. 2.1, we examine the behavior of the running strong
coupling as a result of QCD’s non-Abelian symmetry. The section also delves into two
important QCD phenomena: confinement and asymptotic freedom, which stem from the
non-Abelian gauge theory. Sec. 2.2 explores high-energy Deep Inelastic Scattering (DIS)
as a tool to study the internal structure of the proton. We then discuss collinear Parton
Distribution Functions (PDFs) in Sec. 2.3, which serve as the foundation for further
analysis of the proton’s internal structure in subsequent chapters. We also emphasize
the importance of Wilson lines and the gauge invariance of correlation functions.

2.1 The running strong coupling

One of the objectives in the study of QCD is to provide theoretical descriptions of the
strong interaction in high-energy scattering processes. To achieve this, we need an
expression for the cross section that includes observables and parameters that can be
tested in experiments. In a field theory, these ingredients can be obtained by requiring
invariance under gauge transformations in the Lagrangian which outlines all possible
interactions between the fields. We can then construct the scattering amplitude for the
process using Feynman diagrams, which are graphical representations of the propagation
and interactions of the fields in the Lagrangian.

The general Lagrangian density for QCD which is invariant under SU(3) transforma-
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6 QCD in high energy collisions

tions, can be expressed as’

_ 1
Loeo = Y Oy (i) —myl) ¢y — L™+ Lar + Lyve. (2.1
f

The first term of the Dirac Lagrangian describes the quark propagators, where the quark
field is represented by ¢) with mass my, and the sum runs over all six quark flavors f.
Here, I represents the identity matrix and D, denotes the covariant derivative defined
as

D,=10,+ igt“AZ, (2.2)

with g determines both the coupling between the quark and gluon fields and the coupling
between the gluons themselves. The color matrices ¢t* act as generators of the SU(3)
color group. In the fundamental representation the color matrices can be related to the
Gell-Mann matrices t* = % [28] which satisfy

[t ") =ift Tr (1) = %5‘“’ (2.3)

where a,b,c = 1,2, ...8 representing the eight generators (32 — 1) of the SU(3) group.
The real valued structure constants f®° are antisymmetric under the exchange of any
two indices, i.e., f%¢ = — fba¢ and satisfy the Jacobi identity

fadefbcd + fbdefcad + fcdefabd =0. (24)

The field strength tensor in the second term, which represents the interactions between
gluon fields Af, is defined by

o = 0,AL — 0,A% + gf AL AS (2.5)

The non-Abelian term g f**A" AS gives rise to gluon self-interactions, distinguishing
QCD from QED. The last two terms of Eq. (2.1), the gauge-fixing term (GF) and the
Faddeev-Popov ghost term (FPG), will not play an important role in this thesis.

In the Abelian theory of Quantum Electrodynamics (QED), opposite charges attract
each other through the electromagnetic force. This interaction strength decreases rapidly
with distance, making it easy to separate two oppositely charged particles over long
distances. In contrast, the strong interaction of quarks governed by the non-Abelian
theory of QCD behaves differently. The self-interacting gluons create a flux tube between
two quarks, as depicted in Fig. 2.1. As the two interacting quarks approach each other,
the interaction weakens. Conversely, as the distance between the quarks increases, the
interaction becomes stronger and at sufficiently large distance, it is energetically more
favorable to create another pair of quarks than separating those quarks as free particles.
Therefore, it is impossible to isolate a quark as a color-charged particle, and a single free
quark has never been observed. This property is referred to as confinement.

1We use the standard Feynman-slash notation ) = v*D,,.
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Figure 2.1: (a) Interaction of two electrostatic charged particles (¢* and e~) in QED. (b)
Interaction of two color charged particles in QCD. The flux tube that connects the quark
(¢) and antiquark (¢) emerges because the gluons are confined by a force that is even
stronger than the confinement between quarks.

Another consequence of the gluon’s self-interacting behavior is the anti-screening of
charges. In QED, an electron is surrounded by a cloud of virtual photons and e*e™ pairs,
and the fluctuating e"e™ pairs will arrange themselves in such a way that the e* cloud
is closer to the electron and screens the electron charge. This screening effect results
in a smaller effective charge for the electron. As a result, the running QED coupling «
decreases with increasing distance.

On the other hand, in QCD, a quark with a certain color charge is not only surrounded
by ¢q pairs that cause a screening effect, but also by gluon pairs that result in an anti-
screening effect. Eventually, the anti-screening effect from the gluons wins. As a
result, unlike the QED’s coupling behavior which is stronger at small distances, the
running strong coupling a, = g¢?/4r7 is weaker at short distances and grows with
increasing distance. Due to the strong coupling’s decreasing asymptotic behavior with
increasing energy, at small distances (high energy), quarks can be considered as free
particles. This phenomenon, known as asymptotic freedom, was predicted by Politzer
[20], Gross, and Wilczek [29,30]. This powerful feature of QCD allows us to describe
high energy collisions (small distances) using perturbative methods. However, in the non-
perturbative regime where the strong coupling is large at large distances, perturbative
QCD (pQCD) methods are not applicable. Perturbative QCD makes use of a small running
coupling constant expansion for which the first order expansion in «, is known as the
leading order (LO), while the next power is called the next-to-leading order (NLO),
and so on. The higher order terms in the expansion are considered to give a smaller
contribution due to the larger powers of «,. In this thesis we will mostly discuss the
leading order in perturbation theory, focusing primarily on the nonperturbative aspects.

Effectively, the running of the coupling is derived from the renormalization group
equations (RGE) [31], which follow from the requirement that the observables associated
with the Lagrangian density in Eq. (2.1) should not depend on a renormalization scale
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1. Thus the RGE for QCD can be expressed as

{,uQai”Q + B(as)] O(as) =0 (2.6)

with a, = ¢*/4m, g is the strength of the interaction, while the so-called 3 function is
defined as

_ das(/ﬂ) _ 2 3 4
Blos) = 3 R (Boa? + Brov + Pacry + ...) . (2.7
We will only consider the first order expansion (one-loop) where [19, 20]
11N, — 2N
Bo = Tf (2.8)
T

Here, N, and N, represent the number of colors and active flavors at a given energy
scale u, respectively. The higher order expansion (more loops) of the f—function — as
has been calculated in for example [32-34] — will be ignored in our discussion. Taking
the first order expansion of Eq. (2.7), the QCD running coupling reads

2
@s(,u2> _ Ct(ﬂo) —, (29)
1+ as(ug)Bo In [Z_ﬁ]

where 1 is a constant of integration which has dimension of energy and should be fixed
experimentally.

The strong coupling can be predicted at any perturbative energy scale . by fixing the
renormalized coupling a,(2) at a given scale sy through the S-function (the RGE). The
reference scale y is commonly defined as A. At one loop order, A represents the scale
where the running strong coupling becomes infinite, as determined by the vanishing of
the first order expansion of the S-function (the Landau pole)

/JJZ B 1 B 1 MQ
Poln {F} =@ ) T [u_%} ' (10

Therefore, by setting the renormalization scale to the physical energy scale of the process
u? = Q?, the QCD running coupling can be expressed in a simpler form at one loop order

1
Oés(Qz) = W (2.11)

For three active flavors, the value of the reference scale A, also commonly referred
to as Aqcp, to be in the range of 200 — 300 MeV, indicating that QCD becomes strongly
coupled when ) becomes smaller than approximately 1 GeV (infinitely large at () =
Aqcp), or equivalently at distances greater than 0.2 fm (1/Aqgcp ~ 0.8 — 1 fm), beyond
which perturbative QCD is not applicable. In practice, the standard reference scale
used in experiments is the mass of the Z boson, M, determined by the experimental
measurements of a, shown in Fig. 2.2.
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The strong coupling behavior around Agcp and the rapid growth of o, at low values
of @ (less than 1 GeV) have led to the commonly accepted practice of applying a scale of
1 GeV or higher when using perturbation theory. This serves as a separation between the
perturbative and non-perturbative regimes. Predictions of the running coupling behavior
as a function of ) by pQCD can be compared to experimental data, as shown in Fig.
2.2(b). This comparison shows that pQCD provides very accurate predictions for the
strong coupling behavior of QCD up to the NNLO and N®LO, indicating that pQCD is a
valid method for QCD calculations for energies above 1 GeV.

SOP 200816 obcans 0.35 [ — T — T — é....., T
g a | oo [ T decay (N'LO) == ]
PDG 2020 —oan owQ I low Q2 cont. (N3LO) =
Mateu 2018 0o 03 HERA jets (NNLO) —+ ]
Peset 2018 . :
Narison 2018 (c&) f@,‘égg r Heavy Quarkonia (NNLO)
Narison 2018 (b2) [ e'e jets/shapes (NNLO+res) —* |
JBRBltj“OG .—o:i__' ) F \\ pp/pp (_]etS NLO) =
AsMP16 —t PDF fits 0.25 I EW precision fit (N3LO) +e— ]
NNPDF31 He—
s 3 pp (top, NNLO) i 4
MSHT20 I 1
&
ALEPH (j&s) — o 02 _
OPAL (j&s) =
JADE (j&s) 3
Dissertori (3j) ete”
JADE (3j) jets
Verbytskyi (2]) Ho— . & I
Kardos (EEC) shapes |
Abbate (T) o 0.15
Gehrmann (T) +——e———
Hoang (C) —e—
Klijnsma (tf) + o
cMs (th) : -
e S 011
d'Enterria (W/2) -
HERA (jets) : [ __ 2
b = ay(M2) = 0.1179 + 0.0009
PDG 2020 F electroweak [
Gfitter 2018 i 005 sl n sl L gl
FLAG2019 e lattice 1 10 100 1000
1 1 1 1 1
0.110 0.115 0.120 0.125 0.13
August 2021 as(M2) August 2021 Q [GeV]
(@) (b)

Figure 2.2: (a) A collection of (M%) measurements from seven distinct types of data.
Here, M represents the mass of the Z° gauge boson. The world average of o (M3) is
depicted by the dashed line and dark shaded magenta band in the center. (b) A fit to
as(Q?%) measurements from experiments using QCD perturbation theory. These figures
are taken from [35].

Let us return to the examination of the screening and antiscreening effects in relation
to the behavior of the running QCD coupling. To gain a deeper understanding of the
contribution of these effects, we can analyze the (3, term in Equation (2.8). The first
term in 3y, 11N,./127, arises from gluon loops (gluon self-interactions, antiscreening),
while the second term, —2N;/12m, is a result of quark loops (screening). For the
Standard Model where N, = 3 and N; = 6 (in general N; < 16 ), the antiscreening
effect dominates, leading to () = —Boa? < 0 and S, > 0. This behavior illustrates
the asymptotic freedom of QCD, where «,(Q?) decreases and approaches zero as Q?
increases to infinity, as depicted in Fig. 2.2(b). It is important to note that the sign of the
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B-function changes when N, > 16. In the study of the conformal window, it is indicated
that the nature of the theory changes even before N; = 16, see for example [36, 37].
The discussion of large N falls outside the scope of this thesis, where in most of the
discussions presented here, we will assume Ny = 4.

2.2 Deep inelastic scattering (DIS)

The existence of quarks can be detected through DIS of electrons off protons, where an
incoming electron emits a virtual photon that collides with the proton target. In contrast
to elastic scattering, where the electron scatters without breaking up the proton and no
additional hadrons are produced in the final state, high energy virtual photons in DIS
can penetrate the internal structure of the proton, resulting in the production of other
hadrons in the final state. These observations, which demonstrate consistency between
theoretical predictions and experimental measurements from many particle accelerators,
provide strong evidence for the presence of quarks inside protons.

The Parton Model (PM) is a commonly used approach in the analysis of DIS experi-
ments. This model, first introduced by Feynman [21], defines partons as the constituents
of a hadron, which include quarks, antiquarks, and gluons. In the PM, it is assumed
that partons are moving in the same direction as the parent proton, with each parton
carrying a fraction x of the proton’s momentum. The proton also contains a sea of
gluons and quark-antiquark pairs, which fluctuate and interact with each other over time
scales much longer than the interaction time between the partons and the virtual photon.
Because the interaction between the partons and the virtual photon is short-lived, the
virtual photon views the partons as a frozen state. As a result, the PM focuses only on
the electromagnetic interaction between the partons and the virtual photon, ignoring
any other particle interactions. For a comprehensive review of the Parton Model, see for
example [38].

One advantage of using DIS to study the internal structure of a proton is because
the DIS cross section can be factorized into two parts: soft and hard part. The hard
process is the electromagnetic interaction between the virtual photon and the parton.
This part is perturbatively calculable in QED. Whereas the parton-parton interactions
inside the hadron which is called the soft process is not perturbatively calculable process
and encoded by the PDFs.

Consider a high energy DIS collision as illustrated in Fig. 2.3
e()+ H(P) — e(l') + X (px) (2.12)

where the electron with momentum ¢ emits a virtual photon and collides with a hadron
H (a proton in this case) with momentum P. The collision results in a final state with
momentum px and mass My. After the collision, the final momentum of the electron is
¢'. In experiments, the virtual photon source can come from any type of lepton, such as
electrons, muons, or (anti)-neutrinos, while the target can be any type of hadron, heavy
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nuclei in addition to a proton. Lead (Pb) and Gold (Au) are the heavy nuclei that are
widely used in DIS experiments, particularly at LHC and RHIC.

The interaction between the virtual photon and the proton in DIS depends on the
momentum transfer ¢ = ¢ — ¢’ and the incoming proton momentum P. We can build
two important scalar kinematic variables that are Lorentz invariant from these two
observables to characterize the DIS

rp=Q*/ (2P - q) and Q* = —¢~ (2.13)

Here, x5 is commonly referred to as the Bjorken variable, which in DIS (PM) can be
identified with the longitudinal momentum fraction carried by the parton struck by the
virtual photon, while ()? represents the hard scale at which the proton is probed, also
known as the photon virtuality. This ()* is a measure of the magnitude of the momentum
transferred between the electron and the proton during the scattering process, where the
interaction is mediated by a (virtual) photon. As a result, Q* characterizes the resolution
with which the partons inside the proton can be probed. A high value of ()? indicates
that the scattering process occurs at a small distance scale, which allows for a more
detailed exploration of the internal structure of the proton. Conversely, a low value of
Q? corresponds to a larger distance scale, leading to the observation of the proton as a
more extended object.

In addition to these variables, there are several other kinematic variables that are
often used to describe DIS, and will appear frequently throughout this thesis:

y=(P-q)/(P-0) inelasticity,

s=(P+1()? electron-proton centre of mass energy,

W? = (P+q)? ~ys—Q? invariant mass; photon-proton centre of mass energy,
m? = P? proton mass squared,

v=(P-q)/m energy transfer.

In the lab frame y defines the fractional electron energy loss by the incoming particle
Y = E*TE/, with /° = F and ¢° = F’ indicate the initial and final energy of the electron
respectively. When the center-of-mass energy of a collision is much larger than the
mass of the target particle, i.e. s > m?, we can approximate Q* ~ zys, where the
dimensionless variables z and y satisfy 0 < x < land 0 <y < 1.

The cross section of the DIS lepton-proton scattering will be comprised of two key
elements, the leptonic term L, and the hadronic term W

do
T LW, 2.1
dxdy o S (2.14)

The leptonic tensor is determined through perturbative calculations in QED and repre-
sents the virtual photon emission from the electron. On the other hand, the hadronic
tensor, which characterizes the virtual photon-parton interaction, involves both hard and
soft components. The hard part can be evaluated through perturbative methods to yield
coefficient functions, while the soft part, a non-perturbative quantity, gives rise to PDFs.
The most general form of Lorentz structures will be used to parameterize the hadronic
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e(?)

\/Sg: VV.."‘"

>
H(P)

—X (Px)

Figure 2.3: The leading order (lowest order in «) diagram of DIS illustrates a high
energy electron e which emits a virtual photon +* and then interacts with a hadron H,
represented as a gray blob. The electron transfers energy v to the proton through the
virtual photon with off-shellness Q? = —¢?. The momentum of the final state electron,
¢, is detected, while the momentum of the final state X is integrated over as it is
unspecified.

tensor and extract the PDFs from the structure functions. For a polarized proton, we can
decompose W** into tensor terms times scalar functions

__ gtPq v _ ¢"Pq
e — (g + LT B2, Q) + <Pﬂ v ) <P v >F2(9€ Q°)
Q> ) P.q ’
S-q
. S . Ga (5,8 - P,B_.>
+ ze“"o‘ﬁ—?g . 291(907 Q%) + ietvoP P-q - 92(z, Q) (2.15)

with Fi, Fy, g; and go the structure functions which encode the non-perturbative infor-
mation of the structure of the proton. In the unpolarized scattering process, which is the
focus of this thesis, the last two terms are zero, leaving only F} and F3. The structure
function F}(z, Q?) describes the longitudinal polarization of the virtual photon, while
Fy(z, Q%) describes the transverse polarization. Both of these structure functions can be
measured in experiments, and they are related to the PDFs in a nontrivial way.

2.3 Parton distribution functions

In the previous discussion, we stated an idea of factorisation where the hard and the soft
part in DIS can be separated. While the hard part can be analysed using the perturbative
method, the soft part that is described by the PDFs is non-perturbative and should be
extracted from experiments. In case PDFs depend only on the longitudinal momentum
fraction of a parton of the parent hadron z, the factorisation in hard and soft parts
is called collinear factorisation and hence the PDF will be called collinear PDF. If the
transverse momentum of the parton k, is considered, we will encounter a transverse
momentum dependent (TMD) factorisation where the PDF is known as the TMD PDF or
simply TMD. The collinear PDF will be discussed in this chapter, while the TMD PDF will
be discussed in chapter 4.
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2.3.1 Operator definition of PDFs

To simplify calculations, we will often use light-cone coordinates, which are widely used
in the discussion of high-energy scattering. The details of these coordinates can be found
in Appendix A. In addition, We will be working in the Breit frame, where the momentum
of the proton, photon, and quark, respectively, can be expressed as follows:

Pt = (P, P7,0.) q" = (—% %,OL) k' = (kT k7,0.), (2.16)

with P > P~ and k' >> k~. However, we will only use this frame as long as Q% > 0
(for electroproduction). When Q? — 0, we will switch to the dipole frame, which is
more appropriate for this case, especially when xp — 0. Further details about these
reference frames can be found in Appendix B.

In order to obtain the operator definition of PDFs for the hadronic tensor W, we
need the help of the so-called handbag diagram. The operator definition of the process
shown in the handbag diagram in Fig. 2.4 can be written as

~ ()7 (Plibs(0)| X)X [ta (0)|P). 2.17)

In the leading twist approximation which is valid up to O(1/Q), the hadronic tensor
WH can be expressed as

WH ~ 411 Z 2 Tr (®9(x)7"y ) (2.18)
q

where we have ignored the quark mass. Here e, denotes the electric charge of the
parton, and 7" is one of the Dirac gamma matrices in light cone coordinates discussed
in Appendix A.

Figure 2.4: The handbag diagram showing a virtual photon scattering off a quark with
momentum k inside a proton with momentum P and the momentum of the struck quark
is denoted by £’. The blob represents a quark-quark correlator ®. The wavy vertical line
is a final-state cut, which represents the separation between the amplitude (to the left of
the line) and its conjugate (to the right of the line).
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In the Breit frame, it is assumed that the outgoing quark momentum moves in the
minus direction after the collision, with ¥* = k* + ¢* ~ (—k*,k™,0), see Appendix B.
As a result, the Bjorken variable can be approximated as

Q2 kt

xB:QP-q:x:ﬁ

(2.19)

where we have used the fact that the momentum of the proton and the quark are
dominated by the plus component. Here, = denotes the light cone momentum fraction
carried by the struck quark. In this way, we will only discuss the collinear PDF, which
solely depends on x. We have also introduced the integrated quark correlation function
(correlator) ®(x), which is defined as follows

dz= . _ -
Be)as = [ Goet T (PIG0.07, 0000000 2 0IP) 220
The integrated correlator is derived from the unintegrated quark-quark correlator, which
is defined as follows
d4Z ik-z 7,

C.5(k) = We (P|Y5(0)1a(2)| P). (2.21)
The correlator mentioned above is called the unintegrated correlator because it de-
pends on the full quark four-momentum. The relation between the collinear integrated
correlator ®(x) and the unintegrated correlator is the following

d(z) = / Ak~ d?k, ® (2, k™ k). (2.22)

We should note that this is a naive relation. When this relation is used to define TMDs,
as seen in, for example, [39], there may be issues with its convergence. This topic will
be discussed further in Chapter 6.

The collinear PDF is constructed from the expansion of the integrated quark correla-
tor (in the leading twist), which is similar to the parametrization method used for the
structure function in Eq. (2.15). By applying this parametrization method, the unpolar-
ized collinear PDF is defined by projecting the integrated correlator on the corresponding
gamma matrices, see for example [39,40]

fo(z) = %Tr (®(x)7") . (2.23)

We will revisit this PDF later after discussing the gauge invariance of the correlator.

Upon examining the unintegrated correlator in Eq. (2.21), it becomes clear that
the expression for the unintegrated quark-quark correlator must be incomplete. This is
because this type of two-point correlation function, which contains two quark fields at
two different spacetime points, is not gauge invariant and therefore violates the (gauge)
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symmetry of the theory. In order to address this issue, we will investigate the problem
further and show that the solution will lead to the introduction of the Wilson line.

First, we recall that under a non-Abelian gauge transformation, a Dirac field will
transform as

() = V(z)y(z) U(x) = P(x)Vi(z) (2.24)
with
V(z) = @@l (2.25)

Applying this transformation to the unintegrated correlator we see that the correlator
transforms as

d*z . -
0(b) = [ G S POV OV )P (2.26)
which is clearly not gauge invariant. However, the gauge invariance of the quark
correlator (or any two-point function in general) can be maintained by inserting an object
that connects those two different spacetime points. Under a local SU(3) transformation,
this object should transform as

Up..) — V(0O)UpVT(2). (2.27)

This object is called a Wilson line — also called a gauge link— which in the fundamental
representation takes the form

Yy
Uz = Pexp [zg/ AZ(z)t“dzu] (2.28)
with P is a path ordering operator and defined as
PA(2)B(y) = 6z — y) Ax) B(y) + 6(y — ) B(y) A(x). (2.29)

with @ is the Heaviside step function, which takes the value 0 when = < y, and 1 when
x > y. The path ordering operator plays an important role for the non-Abelian case,
because unlike in the Abelian case, the gauge fields A, at different points along the
path do not necessarily commute. In Eq. (2.28), ¢t* are generators of SU(3) (in the
fundamental representation) indicating that the Wilson line can be viewed as a rotation
of the color state of the particle.

Finally, the gauge invariant unintegrated quark-quark correlator is obtained by
inserting the Wilson line to the correlator given by

d*z . .
Do) = [ 1™ (P 0) U v 2)IP) (2.30)

We note that in the light-cone gauge, where A" = 0, the Wilson line becomes unity and
can be omitted from the definition of the collinear PDF.
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In the above the Wilson line is inserted into the correlator by hand and seems
arbitrary without any physical justification. However, it turns out that the Wilson line
is a resummation of an infinite number of gluons emitted by the struck quark, thus it
has a physical basis. This resummation can be related to the eikonal approximation,
which describes the interaction of a high-energy quark with the target and will be further
discussed in the next section.

2.3.2 Wilson line and eikonal approximation

In high-energy DIS, a virtual photon collides with a quark. The struck quark, moving
with very high momentum, can emit and absorb many soft gluons without any change
in its initial momentum. This picture is known as the eikonal approximation. In this
approximation, the infinite gluons emitted by the struck quark would be resummed as a
Wilson line, which was previously encountered in the discussion of PDFs. The eikonal
approximation is valid in the high-energy limit where the coupling constant is small,
and the typical momentum transfer of the gluons is much smaller than the energy of the
parent hadron. In this limit, the probability for multiple gluon emission is large. We will
discuss how the Wilson line arises from resumming the infinite soft gluon exchanges in
the eikonal approximation.

Consider a high-energy quark with momentum &’ = (k¥'*, ¥~, 0, ), which emits a soft
gluon with momentum [ as shown in Fig. 2.5(a). We are working in the Breit frame,
where the quark momentum is highly boosted in the direction of its motion such that the
momentum of the quark is dominated by the plus component, i.e., &’" > k’~. Following
the Feynman rules described in Appendix C, the soft gluon emission process shown in
Fig. 2.5(a) can be written as

i +1)

W+ 1) + e (—igty") u(k'), (2.31)

where (k') is the quark spinor. In the eikonal approximation, where the momentum of
the quark is much larger than that of the soft gluon, which is equal to neglecting [ with
respect to &’ and using &'t > k', Eq. (2.31) can be approximated as

o -

% (—igt"y")u(k') =~ #—I—ZE (—igt®) u(k'), (2.32)
where n# is a light like vector defined in Appendix A that can be used to express the
light-like momentum such that £* = |k’|n*. In obtaining Eq. (2.32), we used the fact
that #'u(k') = 0, the anticommutation relation {v*, 7"} = 2¢"*, and rewrote the quark
momentum in terms of the directional vector n*. This equation shows that applying the
eikonal approximation to the soft gluon emission process is equivalent to replacing the
Dirac propagator with the Wilson line propagator

Z(ljﬂzl + l ) eikonal appr. it
(K" +1)% + ie n-l+ie

(2.33)
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This procedure can be extended to include infinite gluon emission, which is then
represented by a Wilson line which runs from —oo to 0, see, for example [40]

e d4ln n o
U-—co0) = Z(ig)"/wn CA(lL)...n - A(ll)H — (2.34)

J P
n=0 =1 Zk:l b + i€

In this case, a high-energy quark that emits an infinite number of soft gluons can be
approximated as a bare quark times a Wilson line running from —oo to 0, as illustrated
in Fig. 2.5.

4 K+1
> 9 > gt 9 s

(a) (b) ()

Figure 2.5: (a) A bare quark with momentum £’ emits a soft gluon with momentum /.
(b) A bare quark emits an infinite number of gluons. (c) In the eikonal approximation,
resummation of infinite soft gluon emissions leads to a Wilson line (represented by the
double line).

2.3.3 Collinear PDFs

We will now utilize the eikonal approximation discussed earlier to analyze the correlator
®(x). This will allow us to demonstrate that the Wilson line arises from a physical
phenomenon, specifically a resummation of infinitely many soft gluon exchange during
the process. At the same time, the Wilson line also serves as an object that ensures the
gauge invariance of the correlator. We begin by considering a first-order correction of
the PDF, in which one soft gluon connects the struck quark with a blob, as shown in the
handbag diagram in Fig. 2.6(a). This diagram contributes to the hadronic tensor as [40]

1 ¥—1
LN 2T | @, (k)Y y Ty Y| - 2.35
W §€q2 r |: P( )7 /y 7 (k/ . l)2 _’_ZEV ( )
Here, ¢, is the quark-quark-gluon correlator
1 d*z d*u . _
k) =< [ — ihzgitu=2)(p A P). 2.
(0= [ e e I PO i (P). 236

Following the previous procedure of applying the eikonal approximation to the high
energy quark, the Dirac propagator term can then be approximated as

+ P lﬁzl—l ~ + p l%, _ —’}/+np
T =02 rie VT ok Itde nel—ie

~ (2.37)
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Figure 2.6: (a) A soft gluon exchange connects the struck quark and the blob, which
represents the quark-quark-gluon correlator. Infinite soft gluon exchanges (b) can be
resummed as a Wilson line represented by the double lines (c). Reproduced from
Ref. [40].

which is a Wilson line propagator, see Appendix D.2. In this approximation, we utilize
the fact that the quark is predominantly moving in the positive direction, leading to
the suppression of the negative component with respect to the positive component. As
previously mentioned, the Wilson line propagator replaces the Dirac propagator.

By using the perturbative expansion of the Wilson line in the momentum space

- d*l
U = S_(i9)" [ {n AlL) o Al et (2.38)
fvtoo] ;} 6l Hn Z“nkﬂ_ze
and the Wilson line property
U[Ly] = Ugy’x}, (2.39)

the single soft gluon emission in Equation 2.37 can be extended to include many soft
gluon emissions, which are then absorbed in the definition of the quark-quark-gluon
correlator as a Wilson line running from 0 to 2z~

u[az 0, = »Peig f(f_ dX\ n-A(O*,)\*,OL)7 (240)
upon integrating over [. The correlator, as defined by Eq. (2.22), should be integrated
over £~ and k. Since we are discussing the collinear PDF, the correlator is evaluated
at 2t = z, = 0 or equivalently 2% = 0. Thus, the quark-quark-gluon correlator can be
expressed as follows:

A2” iopta— o T
Bup(o) = [P0 00U g (07,2 00IP), (24D

where the hadronic tensor now reads

ZeZTr )Yty } (2.42)
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Another useful property of the Wilson line is that it can be decomposed into two
lines such that
U 20,0 = U U

07~,400;0 1 | [+00,2750 ]

(2.43)

This property allows us to associate a separate line with the quark on each side of the
cut, which is important when discussing the Wilson line in TMD PDFs that depend
on more variables. It should be noted that this decomposition only applies when the
path does not involve a transverse direction. In the case of TMD PDFs, the Wilson line
does involve a transverse component (at lightcone infinity), so a decomposition in the
transverse direction must also be considered which will be discussed in Chapter 4. The
Wilson lines and a gauge invariant two-point function and its properties is discussed
in Appendix D.2. We should also note that the introduction of the Wilson line to the
correlator can result in path-dependent results, which in turn leads to process-dependent
PDFs. Consequently, the same hadron may have different PDFs in different processes,
depending on the specific path taken by the Wilson line, where in the context of the
collinear PDF, the path will be in the plus or minus direction. In general we can only
predict processes that involve the same path or a path that can be related to it.

From the definition of the PDF in Eq. (2.23) the operator definition of the integrated
unpolarized collinear quark PDF for a quark with flavor ¢ at leading twist approximation
can be constructed as

o) = [ e PO, 07,00, 7 U0, 002 OLIP).
(2.44)
The anti-quark PDF has the same form as the quark PDF, but the direction of the Wilson
line is reversed. Using a similar procedure, the integrated gluon PDF can also be obtained
as

dz= 1 izPtz~ ja - —a j -
fo(x) = 5 prC PREPIFT(0%,07,00) Ug ™, o FH2(07,27,00)|P), (2.45)
Since we are discussing gluons, we require the adjoint Wilson line, denoted as U[‘;’jy],
which connects two gluons at different spacetime points
) Y
Ulyy = Pexp [zg/ AZ(z)Tacbdzu} (2.46)

where T represents the generators of the QCD gauge group in the adjoint representation
which obey relations

[T, T = if*T°  Tr(T°T") = 35". (2.47)

where the first relation (the Lie algebra commutation relations) is satisfied by the
generators in any representation, thus also in the fundamental representation ¢“, cf. Eq.
(2.3), while the second relation (the trace) has a representation dependent prefactor.
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In the collinear factorization framework, the quark PDFs enter the deep inelastic
scattering (DIS) cross section as:

o H(z, 1i?) folw, 1), (2.48)

dx

where H(z,?) represents the hard part that depends on Q? and also on the type of
parton (¢), which is summed over. The variable i denotes the energy of the factorization
scale. The soft part, described by the PDFs f,(z, u?), captures the probability of finding a
parton of type ¢ inside a proton. The PDFs obey the DGLAP (Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi) evolution equations [41-43], which allow them to be evolved from one
energy scale to another. The DGLAP equations are a set of linear evolution equations that
describe the behavior of PDFs as a function of energy, i.e. their ;» dependence, enabling
us to make predictions for experiments performed at different energies.

By studying the behavior of the PDFs as a function of x and y, we can gain insight
into the parton distribution inside the proton. The extraction of PDFs and their fits have
been studied by many research groups, such as NNPDF [44], CT [45], MSTW [46],
CTEQ [47], HERAPDF [48], and ABMP [49]. These groups use different methods and
assumptions in their PDF fits, providing different sets of PDFs. Significant progress has
been made in the extraction and understanding of PDFs. One of the intriguing results of
these PDF fits is that they confirm that gluons dominate the proton content in the small
x region (high energy), as seen in Fig. 2.7. This result has prompted the study of small x
physics, which focuses on the gluon content of the proton, where the quark PDFs can be
neglected with respect to the gluon PDFs.

At small values of x, the probability of finding a parton carrying a certain fraction
of the proton’s momentum increases significantly. This also follows from the fact that
the DGLAP splitting function, which defines the probability of a gluon splitting into
another gluon with a fraction of its momentum z, behaves like P;, oc 1/z in the limit
x — 0. Perturbative corrections contain logarithms in 1/z that become large at small
x and which become very relevant because of the large gluon distribution. These
large logarithms need to be resummed to all orders in perturbation theory, and the
BFKL (Balitsky-Fadin-Kuraev-Lipatov) equation [51-53] was developed to achieve this.
Similar to the DGLAP equation, which describes the collinear evolution of the parton
distributions, the BFKL equation is linear in the gluon distribution. However, at even
smaller values of x, the gluon density in the proton becomes so high that the nonlinear
effects become important, leading to a moderation of the growth of the gluon density.
This phenomenon is known as gluon saturation. In this regime, single-gluon scatterings
are unlikely, and instead, it is necessary to consider multi-gluon distributions as function
of x and transverse momentum or its Fourier conjugate r, . Therefore, the Color Glass
Condensate framework, which describes the proton as a collection of densely packed
interacting gluons, cannot simply be described by the gluon PDF f,(x) with modified x
behavior. The saturation regime and how it can be described is the main topic of the
next chapter.
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Figure 2.7: Collinear (unpolarized) parton distribution functions f(z, u?) times z, eval-
uated at two different energy scales (a) > = 10 GeV? and (b) p?> = 10* GeV? ob-
tained from NNLO NNPDF3.1 global analysis [50]. Here f of different parton types
(ty, dy, @, d, s >~ 5, ¢ ~ ¢ b ~ b, g) are indicated by different color with v meaning
valence quark. Both plots show that at z < 1072 the proton content is dominated by the
gluon (red) where the gluon PDF is divided by 10. In fact, the gluons exceed the quark
distributions already at = = 0.1.
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The Color Glass Condensate

The Color Glass Condensate (CGC) framework is an effective field theory that describes
high-energy scattering processes (s > 2, i.e. small ) where the partonic content of a
fast-moving hadron is dominated by gluons, as discussed previously. At high energies,
gluon densities rapidly increase and their occupation numbers become large enough to
be treated classically. This rapid increase in density leads to non-linear phenomena and
results in gluon saturation. The CGC framework proposes that the higher momentum
fraction partons are the source of the partons with smaller momentum fraction. The
name CGC derives from the fact that it is a state of frozen disorder (like a glass), in this
case frozen color charges, which has high occupation number (like a condensate). It is
approximately frozen, in the sense that as a whole it evolves slowly compared to the
time scale of the gluonic interactions. A detailed overview of the CGC can be found in
e.g. [25,54].

In this chapter, we provide a brief overview of the CGC framework in Sec. 3.1, which
will be used to study high energy DIS. We then discuss the dipole picture description of
DIS in Sec. 3.2. In Sec. 3.3, we investigate the widely used Gaussian weight function
proposed by McLerran-Venugopalan (MV). The original MV model does not incorporate
the dependence on either = or the impact parameter b, , both of which are expected to
be necessary to accurately represent the phenomena observed in accelerators. To address
this issue, several models have been proposed, including the Golec-Biernat-Wusthoff
(GBW) model, which captures the saturation effect and successfully describes small
x and small ()? data at HERA. We discuss the GBW model in Sec. 3.4. In Sec. 3.5,

23
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we explore the concept of geometric scaling as a possible indication of the saturation
phenomenon.

3.1 A Brief Overview of the CGC Framework

In the CGC framework, at high energies, the partonic content of a hadron with large P*
momentum can be described in terms of small-x partons (gluons essentially) that are
emitted from partons with large x values (quarks essentially) that have high momentum
xP*. In a high-energy collision, these emitted small-z gluons form a classical strong
gluon field which replaces the usual partonic description. In this scheme, the partons
with large x P™ momentum are treated as static color sources p. For the probe, due to
time dilation, these sources are frozen in time. Because the gluon density is high or in
other words, the occupation number of gluons is very large, these sources can be treated
classically. These sources generate a current that is assumed to move in the z* direction
(the dipole which scatters off the hadron is assumed to move in the 2~ direction) [55]

JHz) = "p(z,z1) (3.1)

with p = p, 7% The colour field can be obtained by solving the classical Yang-Mills
equations
D, F* = J" (3.2)

with D, = 0, —igA, and """ is the the colour field strength tensor. This equation should
fulfil the conservation equation [D,,, J#| = 0.

In the CGC framework, the distribution of color sources present in high-energy
hadrons must be calculated by taking the average over all possible distributions of
sources. The expectation value of an observable, represented by the classical color field
O(p), for a particular source distribution p can be obtained through a path integral, see
e.g. [25,560]

(0) = / DA W] Ol). (3.3)

The weight function W]p| is related to the color source distribution and is model
dependent. In Sec. 3.3, we will provide the description of the weight function when
discussing the MV model.

3.2 DIS in the dipole picture

When the density of gluons is very high, the probability that gluons interact will approach
1. At this point, instead of the scattering of the virtual photon off a single gluon from
the target, scattering off multiple gluons simultaneously should be taken into account.
This is expected to lead to moderation of the growth of the gluon distribution, which
means saturation is expected to occur. Therefore, a new description of DIS is required at
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small values of x that incorporates the possibility of multiple scattering. In this regime,
the dipole picture [57,58] is frequently employed to describe DIS.

Within the framework of the dipole picture, DIS ep collisions can be thought of as
a two-step process. First, the incoming electron emits a virtual photon that does not
carry a color charge and fluctuates into a quark-antiquark pair (a color dipole). During
the second step, the dipole interacts with the target through vacuum quantum number
exchange, known as the pomeron which is typically represented by two gluons [59-61].
This interaction is illustrated in Figure 3.1. The former step is calculable in perturbative
QED and can be described by the lightcone wave function ¥ of the virtual photon
splitting into a ¢g, while the latter is encoded by the dipole scattering amplitude, which
incorporates both perturbative and non-perturbative factors in the leading order. For
the next-to-leading-order corrections, the dipole factorization has been calculated in
e.g. [62] and has been fitted to HERA data in e.g. [63]. In this thesis, we will only
discuss the leading order, but for processes beyond DIS.

q
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Figure 3.1: A lowest order diagram of DIS ep scattering. The virtual photon +* emitted
by the electron splits into quark-antiquark pair (dipole) which scatters off the proton
target P via two-gluon exchanges.

The cross section for v*p scattering can be obtained using the optical theorem
and taking the imaginary part of the forward dipole scattering amplitude N (z,r,,b,)
convoluted with ¥, which then takes the form:

O-%Tg(xa QQ) = 2\/dz d2rL d2bi |\IJT,L(Z7rLa Q2>‘2N(xerabL)v (34)

where the indices T and L denote the transverse and longitudinal polarisation of the
photon, respectively. Here, z = k™ /q" represents the longitudinal momentum fraction
of the quark with respect to the photon ¢, where k denotes the quark momentum after
the interaction. In this equation, »;, = x;; — @5, represents the transverse separation
between the quark and the antiquark or the dipole size, where x;, and x5, are the quark
and the antiquark transverse positions, respectively. Here we use an explicit expression
that depends on the impact parameter b, which is given by the average of the transverse
positions of the quark and the antiquark, i.e., b, = (1, + @2, ) /2. In a model where




26 The Color Glass Condensate

the impact paramater is not considered, the integration over b, would be replaced by a
constant ~ oy.

In the leading order, the photon lightcone wave functions can be written as [62, 64]

U(ry,z) = (2r)% 2ee; \/2(1 — 2)®r (7, 2)0hy b (3.5)

with ee; denotes the electric charge of a quark with flavor f, while h, and h; are the
helicity of the quark and antiquark, respectively. The one loop corrections of the photon
wave function has been calculated in e.g. [65] which will not be considered in this thesis.
For the leading order, the scalar function ®; ;. (7, z) are defined as

Or(ry,z) = i(1—22—2h)) 6)\7”'271@ 2(1—2)r? Ky <Q z(1— z)ri)
1

Op(ry,z) = —22(1 - 2)QKy (Q z(1 - z)ri) (3.6)

with A denotes the polarisation of the photon and K, ;(z) are the modified Bessel
function of the second kind which decay rapidly when the argument increases. Explicitly,
the squared photon wave functions can be expressed as

OCtem
Uz, 7)) = 4—7:2 Zeff ([2%+ (1= 2)*] 3K (er) + miKG(egrL))
!
6ctem
W (z,70)° = 2 Zefc (4Q%2%(1 — 2)°K{(ggr1)) - (3.7)
f

The sum runs over the quark flavor f, while ¢ is the quark charge, and £} = 2(1—2)Q* +
mfc with m denotes the quark mass which will be neglected in most of our calculation.

The final ingredient of the cross section is the dipole scattering amplitude, which is
defined as

N(z,r1,b))=1~-S(z,7.,b)), (3.8)

where 1 represents the non-interacting term. As discussed in the previous chapter 2.3.2,
the collinear quark PDFs require gauge invariance. Similarly, the S-matrix representing
the probability amplitude for the dipole with size r, to scatter off the hadron with impact
parameter b, should also be a gauge invariant expression. At small x, the S-matrix can
be related to a two-point function of the Wilson lines that result from the summation of
all gluon exchanges of the quark and antiquark of the dipole with the target during the
scattering process, see e.g. [66,67]. This two-point function can be defined as:

S(x,71,b)) = <NiTr [u*(bL . %)u(m + %)} > : (3.9)
c C

where N, = 3 denotes the number of color and C indicates an average over the target
color charge configurations. In Chapter 4 on GTMDs, the average (O(r,,b,))c will
be related at small = (following [68]) to off-forward matrix elements of the form
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(P'|O(r.,b.)|P)/(P|P) or equivalently, (P*, R, = 0|O(r,,b,)|Pt,R, =0) where R,
is the transverse center of longitudinal momentum.

In the definition of the S-matrix in Eq. (3.9), we use the Wilson line in the funda-
mental representation, which contains the transverse direction and is given by

U(z,) = Pexp {z’g/Af{(O*,z,wL)tadz . (3.10)

The Wilson line that goes in the transverse direction is a crucial component of the TMD
PDFs, which will be discussed further in Chapter 4. This transverse piece that appears at
lightcone infinity arises due to the inclusion of gluon exchanges [69-71]. In the Feynman
gauge, it is often ignored, but in the lightcone gauge A" = 0, it must be included due to
gauge invariance. The expression given by Eq. (3.9) should be closed as a (rectangular)
loop at infinity with the inclusion of the transverse piece, hence it is usually referred to
as the Wilson loop operator [72].

At high energy, the interaction between the dipole and the target is eikonal, meaning
that the quark transverse position ¢,; = b, + %~ and the antiquark transverse position
x21 = b, — %+ do not change during the process. However, the quark (as does the
antiquark) undergoes a color rotation in the target color field, picking up a Wilson line
U(b, + %), while the antiquark picks up a conjugate Wilson line ¢'(b, — %-). The
S-matrix encodes all the information about the hadronic scattering and can depend on
x, r,, and b, . It cannot be calculated in perturbation theory, even though the coupling
constant turns out to be small (large logarithms in 1/x necessitate resummation). An
all-order expression for it was obtained by assuming a Gaussian distribution of colour
sources, which is the widely-used model proposed by McLerran and Venugopalan that
will be discussed in the following section.

3.3 The McLerran-Venugopalan Model

In the McLerran-Venugopalan (MV) model [55,73,74], the weight function W |p| appear-
ing in Eq. (3.3) is assumed to be Gaussian which takes the form

pa<l‘_, wJ-)pa(I_7 wJ-)
()

where 1% is the average charge density squared per unit of transverse area. The distribu-
tion of the color sources p,(z~, «, ) in the nucleus will take the form [56]

Wlp] = exp [—% /dxdzau (3.11D)

(Pal@r, 210 )po(5, 21)) = Sappt®(27)0 (a7 — 3)0(®11 — @21 ), (3.12)

where in the original MV model the density of partons per unit area N per unit rapidity
y for a large nucleus with radius R is defined as [73]

1 dN

= ——— 3.13
TR? dy ( )

p
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which is assumed to be large p > Agcp

The distribution of the color sources ;? can be related to the saturation scale @,
which marks the energy scale at which the density of gluons inside a nucleus becomes
so high that nonlinear QCD effects start to play a role and the exponential growth of the
gluon distribution is stopped [56]. This phenomenon is described by nonlinear evolution
equations such as the Balitsky-Kovchegov (BK) and Jalilian-Marian, Iancu, McLerran,
Weigert, Leonidov, Kovner (JIMWLK) equations, which are necessary to account for
the saturation effects and the nonlinearity of the gluon dynamics. In contrast, linear
evolution equations such as DGLAP and BFKL are insufficient to describe the saturation
regime.

The distribution of the colour sources ;2 can be related to the saturation scale Q,
which corresponds to the energy scale at which the density of gluons inside a nucleus
becomes so high that they start saturate, i.e. where nonlinear QCD effects start to play a
role as [56]

4
Q% = %t“ta/dz_u2(x_)2 (3.14)

with ¢ is the strong coupling constant.

The expected behavior of the saturation scale is to increase with the size of the
nucleus, following roughly a ~ A'/3 dependence, where A is the atomic mass number.
At RHIC, the saturation scale is estimated to be around 1 GeV, while at LHC it is
anticipated to be 2-3 GeV [56]. At these energies, the coupling constant «,(Q);) is
expected to be small, such that a,(Q;) < 1, indicating that we are in a regime where
perturbation theory is applicable. However, the phenomenon of saturation is actually a
nonperturbative effect. This is because the saturation scale itself is a nonperturbative
quantity, and the behavior of the gluon distribution at small x requires resummation of
large logarithms in 1/x.

In the original formulation of the MV model, the average charge density squared ;.
was assumed to be constant with a value of ;2 = 1.1 A3 fm* [55, 73]. Consequently, the
saturation scale (), was also assumed to be constant. However, it is generally expected
that the saturation scale will have a more complex dependence on both the nuclear
size and x. This motivates other model proposals that include the x and also impact
parameter b, dependence on the saturation scale, based on the MV model.

In the MV model, the dipole correlator in Eq. (3.9) is related to the saturation scale,
which is given by [56]:

2 M2
S(TJ_) = exp {_Tlfs In (7“3_1/\2 + e)} , (3.15)

where A is an infrared cutoff that can be associated with confinement, and hence it is
usually taken to be Agcp. The Euler’s number e is included to regulate the divergence for
dipoles larger than 1/A. Following the unitarity property of the Wilson line, if we insert

r, = 0 into Eq. (3.9), the dipole correlator will give S = 1 as it should also be fulfilled by
Eq. (3.15). This describes the event of no scattering. However, for large dipole sizes, the
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dipole correlator vanishes, and the scattering amplitude will approach unity, as expected
by the black-disk limit of the hadron. In this limit, the high gluon density in the hadron
effectively screens out any incoming probe and absorbs all incoming particles, resulting
in no scattering. Thus, in this limit, a hadron appears completely black to a probing
particle and behaves like a perfect absorber that absorbs any interacting parton without
scattering [75, 76].

In attempts to incorporate the impact parameter b, into the saturation scale, several
models have been proposed, such as the IPSat [77] and the bCGC [78] models. Another
phenomenological model discussed in Ref. [79] modifies the MV model to include the
impact-parameter dependence of the saturation scale inspired by fits to the HERA data.
In this model, the impact parameter enters the dipole amplitude via the saturation scale
and factorizes such that

Q2(by) = Q3,T(by), (3.16)

where T'(b,) is the target profile in impact parameter (transverse) space, b, = |b|,
and @2, is a free parameter related to the saturation scale. The simplest profile for the
proton is a Gaussian profile, while for heavier nuclei, the Woods-Saxon distribution
is typically used. Here, we will follow the idea of Ref. [79] of including the impact
parameter dependence to the saturation scale based on the MV model which will be
explicitly discussed in Chapter 5. The model developed by Ref. [79] also discusses
angular correlations, which will not be considered in this thesis.

3.4 The Golec-Biernat Wiisthoff Model

In order to capture the dynamics of saturation in v*p DIS, Golec-Biernat and Wiisthoff
(GBW) developed a dipole scattering amplitude model N that includes x dependence
[26,27]

7"2
N(xz,r)) =09 {1 — exp <—WL($))] (3.17)
where Ry(z) is the saturation radius which decreases with decreasing = and defined by
1/ 2\ M2
Ro(z) = — | — (3.18)
() Qo (xo)

with Qy = 1 GeV and » = Q?/(Q? + W?). Therefore, the model contains three free
parameters: oy, g, and A, which are fitted to HERA data for x < 0.01. The key feature
of the model is the Gaussian dependence on the quark-antiquark separation r, over
Ry(x), where r| = |r |, which for small r, implies

2
rL
N x (QRO(x)) , (3.19)

which means N rises quadratically at small r, and flattens off at large r, . This flattening
is expected as a sign of saturation, which occurs when the photon wavelength 1/Q) is on
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the order of the proton size. Explicitly, if we insert Eq. (3.17) into the DIS cross section
in Eq. (3.4) such that [26]

1
(2, Q) = / iz / e U (2, Q% e PN (2, m0), (3.20)
0

the cross section will be governed by N (z, ) which provides saturation of the cross
section. We can observe the expected flattening behavior of the dipole scattering
amplitude, which captures the saturation effect, as illustrated in Figure 3.2. At small (2,
the total v*p DIS cross section o7 7, where most of the contribution comes from o7, is
constant and dominated by the saturation region r; ~ 2R,. This expression also reflects
that for large 9%, the dominant contribution comes from small dipoles, known as color
transparency, which leads to a faster rise of the cross section as a function of energy.
This effect arises due to the fact that at high energies, the quarks in a hadron can be
thought of as nearly-free particles that move independently of one another. As a result,
the hadron becomes more transparent to the probe as the energy of the probe increases.

----- Q? = 0.05GeV?
Q? = 0.1 GeV?
Q? = 0.5GeV?
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Q? = 2.0 GeV?
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Figure 3.2: The behavior of the dipole cross section N (x,r,)/oq as a function of the
dipole size r; of the GBW model [26] at small x for different values of ()? with fixed
W = 60 GeV. Larger ()? corresponds to larger .

As depicted in Fig. 3.3(a), the GBW model provides an good description of the
H1 [80,81] and ZEUS [82,83] data at x < 0.01, with the normalization found to be
0o = 23.03 mb, while the other two free parameters yield the best fit at A\ = 0.288 and
xo = 3.04 x 10~%. These fit parameters are obtained by assuming that the three light
quark flavors involved (excluding charm) have a common mass of 140 MeV. However,
assuming a different quark mass resulted in different parameter values, as the cross
section increases logarithmically with decreasing quark mass and then diverges when
the quark mass approaches zero, which serves as a regulator. Including charm, which
has a significantly larger mass than the three light quark flavors, alters the parameters
to different values: oy = 29.12 mb, \ = 0.277, and z, = 0.41 x 10~*, as shown in Fig.
3.3(b) [26].
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Figure 3.3: (a) The GBW model, which exhibits a logarithmic * dependence, was fitted
to HERA data at = < 0.01 for three light quarks with a common mass of 140 MeV (solid
lines) and zero quark mass (dotted lines). The line across the curves indicates the critical
line at Q? = R;?(x), which characterizes the transition to the nonlinear/saturation
region In (b), the same behavior is shown, but with the inclusion of charm with different
free parameters. The dotted lines in (b) show the charm contribution itself. The figures
are taken from [26].

The GBW model not only provides a good description of HERA data but also makes
predictions for saturation at low z and its dependence on perturbative Q2. Specifically,
the model predicts that saturation occurs at low z ~ 10~* at perturbative scales of
@Q* ~ 1 — 2 GeV? and that this saturation scale increases with increasing energy. This is
significant because it suggests that saturation effects in high-energy collisions at small
x, such as those at the LHC and future EIC, can be fully probed in the small coupling
regime of QCD.

3.5 Geometric Scaling

In the limit of very small z, the linear BFKL equation predicts that the gluon density grows
rapidly and eventually violates the unitarity of the scattering amplitude. Therefore, it is
expected that the gluon density should saturate and the rapid growth of the gluon density
should be tempered, leading to the non-linear Balitsky-Kovchegov (BK) equation [84-87]
or more generally Jalilian-Marian-lancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK)
equations [88-90], which form an infinite set of coupled equations. Because of the lack
of an analytical solution to the non-linear BK and JIMWLK equations, phenomenological
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models have been proposed to include the small-z evolution incorporating the saturation
phenomenon.

The saturation phenomenon is often associated with geometric scaling, which refers
to the dependence of the cross section only on Q% and x through the dependence on
Q?/Q*(x), where Q,(x) denotes the saturation scale. There is strong evidence that
geometric scaling is indeed a manifestation of saturation and can be related to the
asymptotic properties of the BK equation [91,92], although it can also be accommodated
by the DGLAP equation [93]. However, it has been shown that establishing geometric
scaling for certain processes is experimentally challenging, particularly at RHIC and LHC,
where a much wider range of transverse momentum and rapidity must be probed [94,95].
It should also be noted that the MV model does not have the geometric scaling property.

As discussed in the previous section, one of the well-known phenomenological
models for the dipole scattering amplitude is the GBW model which incorporates the
saturation scale that depends on z. This model describes the HERA data well and
demonstrates the feature of geometric scaling in the DIS total cross section at small
x. The model is characterized by the dipole scattering amplitude depending only on z
and r, through the combination r, /Ry(z), which directly determines its dependence on
energy via r = Q*/(W? + Q*). In the GBW model, the geometric ratio is then translated
into the scaling variable 7 = Q*/Q?(z) ~ (Ro(x)/r.)’. In the beginning, the geometric
scaling behavior captured by the GBW model was observed in the total DIS cross section
at HERA for small values of x and Q2. However, this feature was later confirmed in the
total DIS cross section over a relatively wide range of energies 0.045 < Q% < 450 GeV* at
x < 0.01 [96], as shown in Fig. 3.4, where the data are taken from more experiments:
H1 [80,81], ZEUS [97-101], NMC [102], E665 [103], SLAC [104], BCDMS [105], and
EMC [106]. Geometric scaling has also been confirmed in DIS on nuclei [107,108], as
well as in other diffractive processes such as Deeply Virtual Compton Scattering (DVCS)
and vector meson production [109].

In Fig. 3.4(a), the occurrence of geometric scaling is clearly shown at = < 0.01,
while in Fig. 3.4(b), this property is not observed for > 0.01. The scaling behavior,
which is observed only at small values of z, is believed to be evidence of the saturation
phenomenon in QCD at these small x values. Even if the geometric scaling observed
at small = is not due to saturation (or its onset), the saturation phenomenon is still
expected to exist on theoretical grounds, although probably at even smaller values of =
in that case. In this respect it is promising that evidence for BFKL evolution, which is
linear but does indicate the presence of large logarithms in 1/z, has been seen in PDF
fits [110].

Although the geometric scaling feature depends on the proposed saturation scale
Q?*(z), it is still unclear whether it indicates the existence of saturation phenomena.
Therefore, it should be further tested in more processes. To understand the saturation
phenomena, further studies are needed, particularly with the possibility of deeper
investigation at the future EIC.
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Figure 3.4: (a) The total DIS ~*p cross section as a function of the scaling variable
T = Q*/Q? over a large range of Q: 0.045 < Q* < 450 GeV? at 2 < 0.01 exhibits
geometric scaling, while (b) at « > 0.01, it does not. The figures are taken from [96].
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Multidimensional PDFs

The partons in a hadron are typically not collinear to the parent nucleon, which for
certain scattering processes necessitates consideration of their transverse momentum
k.. This, in turn, leads to the study of PDFs that depend on k, in addition to x. The
purpose of this chapter is to present various PDFs that depend on more variables than
the one-dimensional collinear PDFs. Generally, PDFs that depend on more variables
provide more information about the internal structure of hadrons.

Two closely related generalizations of the one-dimensional PDFs are the transverse
momentum dependent PDFs (TMDs) and the generalized parton distributions (GPDs).
The TMDs depend on both the longitudinal momentum fraction = and the transverse
momentum of the partons k. On the other hand, GPDs in general are four-dimensional
objects that depend on the one-dimensional longitudinal momentum fraction z, the
two-dimensional off-forwardness in the transverse direction A (which is defined as
A = P’ — P), and the one-dimensional momentum fraction related to the longitudinal
off-forwardness ¢ = —A" /(P* + P'*) (known as the “skewness” parameter). Here, P
and P’ denote the proton momentum before and after interaction, respectively. However,
if one sets £ = 0 or ignores the direction of A, (and uses t = —A? instead, the
GPDs become three-dimensional. In addition to the TMDs and GPDs, the generalized
transverse momentum dependent PDFs (GTMDs) provide even more information by
being six-dimensional functions when including the skewness parameter. However, in
this chapter, we will only focus on the zero skewness case, i.e. on five-dimensional
GTMDs. The Fourier transform of GTMDs in impact parameter space yields the Wigner

35
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distribution, also known as the “mother distribution.” All of the aforementioned PDFs
are related to each other, as shown in Fig. 4.1.

| G4 |
A, =0
[ d?k,
‘ Wigner (x,k,,b,) Sadh GTMD(x,k,,A)) ‘ j Collinear PDF(x) ‘
o J d2k,
| TMD(xk))

Figure 4.1: Relation between Wigner distribution, GTMD, TMD, GPD, and collinear PDF
in the zero skewness case. We note that the integral [ d*k, cannot be literally taken
since it requires a specific regularization method to be applied, see Eq. (4.30) and the
discussion following it.

We begin this chapter by the discussion of TMDs in Sec. 4.1, followed by a discussion
on GPDs in Sec. 4.2. In Sec. 4.3, we will demonstrate how the definition of GTMDs can
be obtained from both TMDs and GPDs, along with the issues involved. Since we are
interested in the small-x limit, we will restrict our discussion to the unpolarized gluon
GTMD. Our final expression of the gluon GTMD will be utilized in the cross section of
both diffractive dijet production in Chapter 5 and diffractive coherent .J/+) production in
Chapter 6.

4.1 TMDs

Unlike collinear PDFs, which depend only on the longitudinal momentum fraction of
partons, TMDs also depend on the transverse momentum of the partons with respect
to the direction of the parent hadron’s momentum, providing information on the three-
dimensional momentum structure of hadrons at the partonic level. TMDs are relevant in
a variety of processes, such as Semi-Inclusive DIS (SIDIS), Drell-Yan (DY), and proton-
proton collisions at the LHC.

The study of TMDs faces several challenges. TMDs are nonperturbative quantities
and therefore, their computation requires the use of lattice QCD techniques. These
techniques, in turn, demand a significant amount of computational resources. For further
details, one may refer to [111,112] and the references therein. On the experimental side,
TMDs can be extracted from fits to data, but also that is challenging because it requires
less inclusive processes for which more than one particle in the final state has to be
detected in order to become sensitive to the transverse momentum flow in the process.
In such multiple particle production processes, one has to isolate the contributions from
different particles and accurately determine the kinematics of the scattering process, but
also the number of events is lower compared to the more inclusive processes, leading
to less statistics and resulting in larger errors in the measurements. Nevertheless, for
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SIDIS, DY and a few other processes sufficient data has been accumulated in recent years
that quark TMDs have been extracted with reasonable precision, see e.g. [113-116]
These are also the processes for which TMD factorization has been proven [39,117,118].
About gluon TMDs much less is known yet, but some first studies have been made
recently [119,120].

To obtain an expression for the quark TMDs, one can begin with the correlator
described in Chapter 2. By integrating the unintegrated correlator in Eq. (2.30) over £,
the quark-quark TMD correlator can be obtained:

o _ [dE P2 i T+ - + -
ap(T, k1) = / We LEH (Pl (07,07,01 ) Up, (07, 27, 21 )| P) (4.1)
where the Wilson line that maintains the gauge invariance of the correlator is already
included. However, unlike the collinear case, the Wilson line now connects the quark
field at point (0*,0~, 0, ) with the quark field at point (0", 2™, z, ) which requires a piece
of Wilson which runs through the transverse direction. The path connecting those fields
depends on the process being considered. One of the most well-known Wilson line
paths is the so called staple-like path, which commonly appears in high-energy collision
processes. The staple-like path consists of three Wilson lines: one that runs from the
origin (0*,07,0,) to either plus or minus infinity in the minus direction (0", +00~,0, ),
another that runs along the transverse direction from (0%, +007,0,) to (0%, 007, 2, ),
and the last one that runs from (0", +oo™, 2z,) to (07,27, 2z, ). This path is explicitly
written as:

ubt =us
[0,2] (07,0050, ]
The minus sign indicates the Wilson line which run along the minus direction which has
been discussed when considering the collinear PDFs, while the Wilson which runs along

the transverse direction is defined as (in the fundamental representation):

U Ui oy (4.2)

[£007;01,2] |

z1
Uiooo, =) = Pexp {ig / dA; A0, A7 = 400, AL )ta | . (4.3)
0,

The choice of either future [+] or past [—| pointing Wilson lines is dependent on the
specific process being studied [69,71,121] For instance, in the case of SIDIS, a future
pointing Wilson line is necessary, which runs along plus light-cone infinity, and represents
the gluon interactions occurring after the quark is struck by the photon, a process known
as final-state interaction. Conversely, in DY, a past pointing Wilson line is required, which
runs along minus light-cone infinity, and describes the gluon interactions occurring before
the quarks are annihilated which is referred to as initial-state interaction.

Under time-reversal projections, TMDs can be divided into two types: time-reversal
odd (T-odd), which flip their sign under time reversal, and time-reversal even (T-even),
which do not. Both T-even and T-odd TMD correlators can be constructed from the [+]
and [—] Wilson lines in the definition of the quark correlator [71]

1
@T—even<x7 kL) _ 5 ((I)H](J}, kL) + ol (IL‘, kﬁL>)

Oy k) = % ((I)H](x,ku_) — 3l (z, ki)). 4.4)
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In the unpolarized spin-1/2 hadron case, the TMD quark correlator is T-even. However,
in the polarized case, certain TMD correlators can be T-odd. The Sivers effect [122],
which describes the correlation between the transverse spin of a polarized hadron and
the transverse momentum of a struck parton, can induce a T-odd TMD. The predicted
sign change of the T-odd Sivers function between SIDIS and DY processes is an important
feature that can be experimentally verified to validate the predictions of the TMD
formalism in polarized scattering. In these cases, under time reversal, the initial state
interactions in DY represented by the past pointing Wilson lines are replaced by final
state interactions in SIDIS represented by the future pointing Wilson lines [123]. We
note that upon (formally) integrating the TMD correlator over the transverse momentum
[ d*k, (using an appropriate method of regularization, see the discussion below Eq.
(4.30), the TMD correlator will reduce to the collinear correlator, where the staple-like
Wilson lines reduce to the one that runs along the straight line. In this case, all T-odd
functions vanish, which means that the collinear correlator should be T-even.

To obtain TMD expressions, one needs to parameterize the quark correlator in terms
of Dirac matrices that characterize the polarization of the quark: unpolarized (U), vector
polarized (longitudinally (L) or transversely (T)), or tensor polarized. However, the
parameterization for tensor polarization will not be considered here, as we restrict
to protons. For a complete description of the tensor polarized parameterization, see
e.g. [124,125].

In practice, one usually starts by parameterizing the unintegrated correlator and then
integrates each parameterized correlator term over k~. At leading twist the resulting
TMDs from the parameterization can be divided into eight types, depending on the
type of hadron polarization, as shown in Table 4.1. Out of these eight types, only two
are T-odd: the Sivers fi; [122,126] and Boer-Mulders hi [127] functions. The former
encodes the correlation between the transverse momentum of an unpolarized quark in
a transversely polarized hadron, while the latter encodes the correlation between the
transverse momentum and the transverse polarization of a quark inside an unpolarized
hadron. The worm-gear function ¢, [128] describes the distribution of longitudinally
polarized quarks inside a transversely polarized hadron, while the other worm-gear
function h;; describes the distribution of transversely polarized quarks in a longitudinally
polarized hadron. The pretzelosity hi; [129] is related to the shape of the nucleon
and can provide information on its deviation from sphericity. Out of the eight types
of TMDs, only three survive the integration upon the parton transverse momentum
[ d*k . : number density f;, helicity g; and transversity h,. In recent years, significant
progress has been made in extracting TMDs from data, particularly in determining the
number density f; and the Sivers function f;5, both of which have been observed to
be non-zero [130-132]. Additionally, for the first time the extraction of the worm-gear
function g7 from SIDIS has been made [133] and attempts to extract the pretzelosity
function hi; [134].
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Parent hadron polarization
U L T
. i it
(number density) (Boer-Mulders)
L g1 hlLL
(helicity) (worm-gear L)
uark polarization
Q P T / 1J§“ air hy
(Sivers) (worm-gear T) | (transversity)
hip
(pretzelosity)

Table 4.1: The eight leading-twist TMDs based on the polarization of the parent hadron
and the quark. Here, U, L, and T refer to the unpolarized, longitudinally polarized, and
transversely polarized, respectively.

Similar to TMD PDFs, there exist eight independent TMD fragmentation functions
(FFs) at leading twist, which describe the probability distribution of producing a hadron
with a certain momentum fraction of the initial parton. A detailed review of this topic is
available in e.g. [135].

Analogous to the quark TMDs, the gluon correlator can be obtained from the
unintergrated gluon correlator for the unpolarized case
'pvipo d42 ik-z v o
UV e (k) = / Wek (P|Tr [F*(0)Up, 1 F* (2)UL g] | P) (4.5)
where the Wilson lines are now in the adjoint representation, but they have the same
properties as in Eq. (4.2). The trace (Tr) indicates a trace over the color indices of the
two gluon fields. After integrating over k£~, the gluon-gluon TMD correlator can be
obtained as

‘o 2 dz=d? . .
I‘UU H%PU(I.’ kL) — ﬁ/ ’2(27T)':J-esz+z —ik -z

<{PITE [P U P (0L 1P)|

(4.6)

In fact, there are multiple ways to obtain a gauge-invariant definition of the gluon-
gluon TMD correlators, each of which may arise in different physical processes. It has
been shown that there are three different types of Wilson line structures related to the
gluon that can be used to obtain a gauge-invariant quantity. The structure shown in
the above equation is the simplest of these structures and is referred to as the type-1
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structure [136]. In subsequent chapters, we will focus only on this structure, as it is
directly relevant to the diffractive processes that we are concerned with.

The parameterization of the gluon TMD correlator is similar to that of the quark TMD,
with leading-twist gluon TMD correlator being parameterized in terms of unpolarized,
vector polarized, and tensor polarized. For more details on the parameterization of the
gluon TMD correlator, see [125]. Also as in the quark case, under time reversal, the
gluon TMD correlator can be divided into T-even and T-odd. For the unpolarized case,
the T-even function f; possesses the following properties:

et o] gl gl 4.7)

The + and — symbols represent the future- and past-pointing Wilson lines, respectively,
similar to the quark case. However, there are two Wilson lines involved in each gluon
TMD. In the small-z limit, these two structures are related to the two fundamental gluon
distributions: the former is the unintegrated Weizsacker-Williams (WW) distribution,
while the latter is the dipole distribution. The dipole distribution appears in a wide
range of processes, such as inclusive DIS, SIDIS, DY, and dijet production in pA collisions.
On the other hand, the WW distribution is involved in fewer processes, such as quark-
antiquark dijet correlation in DIS. However, a direct-photon jet correlation process in pA
collisions has been identified as a potential probe to separately study these two-gluon
distributions [67]. The dipole distribution will be an important ingredient of the gluon
GTMDs in the small-z region, which will be discussed in Sec. 4.3.

4.2 GPDs

GPDs are a complementary source of transverse distribution information to TMDs. While
TMDs describe the momentum-space distribution of partons in a nucleon, GPDs provide
information on the spatial distribution of partons. GPDs are also known as “off-diagonal,"
“off-forward," “nondiagonal,” “nonforward," or “skewed" parton distributions [137],
as they involve matrix elements of proton states with different momenta P and P’:
(P'|...|P). The off-forwardness is then given by P’ — P, with the + component referred to
as “skewness”. GPDs can be probed in some exclusive processes, such as exclusive deeply
virtual production of photons (DVCS) or mesons (DVMP). Comprehensive references on
these GPDs can be found in [137-143].

Generally, GPDs depend on variables z, &, and ¢. Like TMDs, they can be described
in terms of matrix elements of nonlocal operators with light-cone separated quark or
gluon fields. In the lightcone gauge, where the Wilson lines that maintain the gauge
invariance of the two-point functions become unity, quark GPDs in the unpolarized case
can be expressed as follows [137,144]:

de= e
Hole&t) = 5 [ e (P2 /20 ol DIP)
= Y i e a(Pyyu(P) + By (€. ya(P) TP ()| a8)
- 2P+ q 1S ’Y q 1S 2M ) .
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while for gluons

Holot) = 5 [ Goe s (PP (=2 )R /2| P)
— b [ Bl E P uP) + B ()

0TV,
2M

u(P)| .(4.9)

In the above equations v is the quark field and F** is the gluon field strength tensor
Here, A = P’ — P denotes the momentum transfer or the so-called off-forwardness,
while ¢ = A?. The skewness parameter is given by ¢ = —A™ /(P + PT). In a covariant
gauge, Wilson lines need to be inserted as in the collinear PDF case. For the polarized
case of GPDs, one can refer to [137] which will not be discussed here. We should note
that the definition of GPDs may vary among different authors, with some differing by a
factor of 2x or 2.

GPDs are dependent on two lightcone momentum fractions: = and £, which must
satisfy the condition (z,¢) € [—1, 1]*> [145]. This dependence leads to different regions,
each with three possible values of ¢ corresponding to different values of x, as depicted in
Fig. 4.2. The applicability of the evolution equations governing GPDs: DGLAP and ERBL
(Efremov-Radyushkin-Brodsky-Lepage) [146], is also subject to the specific values of
x and &. The evolution of GPDs in the range —1 < 2 < —¢ and £ < z < 1 is governed
by the DGLAP equation (which is referred to as the DGLAP region), while in the range
—¢ <z <&, the ERBL equation is applied (the ERBL region), as illustrated in Fig. 4.3.
At the transition region where = = £, the GPDs are expected to be continuous but not
necessarily smooth [147,148].

-1<x<-¢ -§{<x<é E<x<1
, DGLAP region \ ERBL region \ DGLAP region |
T T T > X
-1 - 0 & 1

Figure 4.2: Different regions probed by GPDs for £ > 0: (left) x € [-1, —¢] : emission of
an antiquark with momentum ¢ — = and reabsorption of an antiquark with momentum
—¢ — z, (middle) =z € [—¢,¢]: emission of quarks and antiquarks with momentum
fractions ¢ — x and (right) £ + z, = € [¢, 1]: emission and reabsorption of a quark with
momentum = — £. Reproduced from [137].

4.3 GTMDs

The most general GTMDs are 6-dimensional parton distributions that depend on the
skewness parameter &, the parton’s lightcone momentum fraction z, the parton’s trans-
verse momentum k,, and transverse off-forwardness A which describes how the
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V.

o ERBL
) -1

Figure 4.3: The regions probed by the two different evolution equations: DGLAP and
ERBL, are determined by the values of x and £. Reproduced from [144].

incoming hadron momentum is modified. In the subsequent discussion, we will focus on
the zero skewness case (¢ = 0), where the GTMDs reduce to 5-dimensional objects. The
associated Wigner distribution parton is a function of x, k , and the impact parameter b
which is the Fourier conjugate of A . GTMDs can be viewed as off-forward extensions
of TMDs or as transverse momentum dependent extensions of GPDs. As a consequence,
the GTMDs inherit properties of both TMDs and GPDs and any subtle issues related to
them. In this section we will go into some of these matters, restricting the discussion to
the distribution of unpolarized quarks inside an unpolarized hadron, for which we take
a proton for definiteness.

GTMDs and the associated Wigner parton distributions were first considered in
[149,150] and analyzed further in e.g. [151-154] for quarks and in [154,155] for gluons,
while the classification of gluon GTMDs was first introduced in [157]. In [149,150],
the relation between the Wigner distribution and the 6-dimensional GTMDs relies on
nonrelativistic approximations, while the relation between the Wigner distribution and
the 5-dimensional GTMDs (£ = 0) in the infinite momentum frame was first introduced
in [156]. The first suggestion to access GTMDs experimentally was put forward in [23].
In that paper the process of diffractive dijet production in electron-proton collisions was
considered to probe gluon GTMDs. Diffractive dijet production was earlier suggested as
a way to probe gluon GPDs [158] and considered at small x in [64]. Diffractive single
jet production was studied in [159]. In this thesis, we will build upon these ideas and
develop a model for the unpolarized gluon GTMD, similar to the one proposed in [23].
The analysis of diffractive processes that we will be discussing in Chapters 5 and 6 will be
based on this model. Models for quark GTMDs have been considered in e.g. [160-162].
For gluon GTMDs the models are so-far based on the small-x MV model [55, 73, 74] and
related CGC descriptions. In the subsequent chapters, we will also use the MV model as
our starting point but introduce a few free parameters to be fitted to the available data
from H1, ZEUS, and LHC. This will enable us to make predictions for the EIC, RHIC, and
LHC, which will hopefully help to further test the underlying GTMD description.
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4.3.1 Two definitions of GTMD

As shown in Fig. 4.1, GTMD can be obtained from either the TMD or GPD extensions. In
light of these relations, we will discuss several issues related to obtaining GTMD from
both the TMD and GPD. First of all, the quark GTMD ¢(x,k,, A ) can be defined as the
off-forward generalization of the quark TMD ¢(x, k, ):

d\ A T A T

— 2 e ik, T AR _ = + _ i
ook, Ar) = [ 500 ek (PRS- T U w(Gn+ ) ),

where the lightlike vector n specifies the — direction, whereas the proton momentum
P specifies the + direction: P -n = P*. In the above expression A = P’ — P denotes
the off-forwardness considered here for zero skewness, i.e. ¢ = —A*/(P'" + P*) =0,
such that A = A, . The Wilson line ¢/ is one of the staple-like lines discussed in Sec. 4.1
which does not play an important role here and will be left unspecified.

Alternatively, the quark GTMD can be defined as the Fourier transform of the
Wigner quark distribution W (x, k, , b, ), which itself can be defined as the transverse
momentum dependent generalization of the impact parameter dependent GPD ¢(x, b, )
[139,163-166]:

x| — A A
o, = [ 55 ™ (PFRL =0/ T(= 0+ b) 7 Ub(Gn +b.) [P Ry =),
(4.11)

where the impact parameter b, is measured with respect to the transverse center
of longitudinal momentum R{™ = Y z;r,; of the system and |P*, R, = 0) is the
normalized proton state localized in the spatial | direction [139, 166]:

d*P,

O O(PL)|P, Py), (4.12)

]P*,RL:0>:/\//

for some wave packet ®(P, ). This expression for ¢(z,b, ) thus depends on the wave
packet considered. If this wave packet is sufficiently localized in transverse position
space, such that (P, + A ) =~ (P, ), meaning it is slowly varying on the scale of the

4
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off-forwardness, one can relate it to the standard GPD H [139,164-166]:

2 2 D/
O [ s s B (PDB(PL)

_ 2
Q(x7bl_) - |N| /27TP+ € (271')2 (27’(’)2
X <P+,Pi| E(—%nanL) 7+L{¢(%n+bL) |P+,PL>

dx  ,, [ 2P &P, by
=t e | G e PRI

L — A A
x (P, P 1/1(—5”) 7+U¢(§n) |P*,Py)
2P, LA,
~ 2 O(P 2 7'LbJ_'AJ_H —A2
NP [ Gt (2.0, A%)
EAL
:/ (%)ge bLALH (2,0, —A%). (4.13)

In the second step we used that, unlike forward matrix elements, off-forward matrix
elements of the form (P*, P{| O(b,) |P*, P,) are not translation invariant, but pick up
a phase when translating the operator O(b,) to O(0,). In the above derivation it was
also used that (P*, P{| O(0,) |P", P,) only depends on the difference of P| and P,,
which is a consequence of invariance under transverse boosts, see [139], in particular its
Eq. (5).

One observes that only in the case that ®(P, ) is a constant, the relation between
q(z,b,) and H(z,0,—A?) is exact. When viewing ¢(z, b, ) as the Fourier transform of
the GPD H(z,0, —A?) it is thus understood that one considers a wave packet that is
sufficiently localized in coordinate space and hence sufficiently delocalized in momentum
space. This then raises the question of how to reconcile such a very delocalized state in
transverse momentum space with a state that has a specific z-momentum and energy,
which are related by P~ = (M? + P?)/(2P"), which means that large uncertainty in
P? generally translates into large uncertainty in P~ oc PY — P? and hence in P° and/or
P3. This issue is known to pose a problem for 3D spatial distributions, where a state
cannot be simultaneously in a definite eigenstate of position and momentum and frame
and wave packet dependence enters!. For the 2D charge distribution and analogously
for ¢(x,b, ) one can avoid this issue by boosting to a frame in which P* is much larger
than the typical P, values. This allows to maintain P~ = (M? + P?)/(2P") < P" in
the wave packet, such that the state has sufficiently definite P° and P? components even
if the P, distribution is very broad, cf. [139] for further discussion.

Starting from the impact parameter dependent GPD ¢(z, b, ) one obtains a definition

IThis issue received renewed attention recently in the context of defining the 3D charge radius for the
nucleon [167,168]. For nucleons (as opposed to heavy nuclei) the system size is not sufficiently large with
respect to the Compton wavelength to allow for an unambiguous, wave packet independent, definition of
the charge distribution and hence of the charge radius [168].
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of the Wigner parton distribution W (z, k,, b, ) defined as?
dA
W(x,kJ_,bJ_) E/

2m P+
A
x (P",R; =0 w(——nerl—?) +U¢( n+bL+—) [P, R, =0).
(4.14)

The GTMD can then be obtained by Fourier transforming the Wigner distribution from
b, space to the A, space, which takes the following form:

b, .
W(x,kL,AL)E/(%; e AL (2,k1, b)), (4.15)

d2lr'J_ ei}\xeikl-’lu_

Just like for the Fourier transform of ¢(z, b, ) and the GPD H(x,0, —A?), one can equate
the two GTMD definitions ¢(x, k,, A ) in Eq. (4.10) and gy (z, k., A ) in Eq. (4.15) for
a sufficiently narrow state |[P*, R, = 0) in coordinate space, for which, as we discussed
above, one has to consider a frame in which P* is much larger than the typical P, values.
The assumptions under which ¢ and ¢y can be considered equivalent GTMD definitions
are usually left implicit. We emphasize that the sufficiently narrow state refers to the
wave packet in which the state is prepared, not to the nucleon or nucleus which itself will
have some profile in transverse coordinate space that may be considerably less narrow.
Assuming for illustration purposes a ball-shaped object, the wave packet around R, =0
characterizes the distribution of the center of the ball, accounting for any uncertainty in
its position, rather than describing the shape of the ball itself. It is to be expected that
the center of a ball can be located with much greater precision than the size of the ball.
However, for subatomic particles this is not necessarily the case, but, as explained, for
the two-dimensional momentum distribution of the proton in the Infinite Momentum
Frame it is.

4.3.2 Gluon GTMD at small

Since gluons constitute the dominant part of the hadron content at small values of z, it
is justifiable to concentrate on the gluon distributions and ignore the contributions from
quarks. In particular, it has been proposed that in the small-x limit the dipole gluon
GTMD can be probed in the process of electron-proton or electron-nucleus collisions in
DIS where the dipole gluon GTMD, for zero skewness and for the unpolarized case, is
defined as [23,72]:

Gl ki, AL) = P2+/d22—7;(d;7z;‘26ik~z (P'| Tx [FH <_§> U (%) UH] P)

2t=0

(4.16)

2In [149,150] the Wigner quark distribution was defined as a generalization of the 3D charge density
in the Breit frame (for a brief discussion of that see [169]), which inherits the mentioned wave packet
dependence issue for the nucleon.

3We thank Markus Diehl for this insight.
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Here i is a transverse index that is summed over in this case of unpolarized gluons and
U™ are the standard staple-like Wilson lines in the forward (+) and backward (—)
lightcone directions, also simply referred to as + and — links. In discussing GTMDs,
Ref. [23] introduces a function *Gpp(z, ., A, ) which corresponds to G+~ 1(z, g, A})
in our notation. This function is represented as a blob with two gluons attached to it as
shown in Fig. 4.4. While this is a simplified representation, it is important to note that
an infinite number of eikonal gluon exchanges are present, which lead to the Wilson
line in the correlator expression, even if they are not explicitly depicted.

q
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Figure 4.4: An illustration of the GTMD in a diffractive process which is represented
by a blob with two gluons attached to it. For simplicity, the infinite number of eikonal
gluon exchanges are not shown.

Since we are interested in the small-z region, we can approximate Eq. (4.16) in the
limit of x — 0 for which one can show to arrive at [72]

Gk, A ) = 92<;P> / d?;ggw k(@ —yL) AL (L )2
x (P'| 8};8;Tr [U[D](ybﬂm)] |P)
_ ! {kﬁ —A—i] Gk, A)) (4.17)
Tomg? |t 4 L= '
where
Uy, @) = UMy, 2 ) U (@, y)) (4.18)

will be referred to as the Wilson loop and
(P'|P) = (27)32P*6(AT) 6P (A L) (4.19)

yielding the divergent factor

(P|P) = 2P* / db~d’b,, (4.20)
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which is assumed to be regularized, e.g. by considering a finite volume. In this way one
finds that

4N, d’x | d? . .
O ki A — c / 1a"y, —ik-(xy—y,1) iA(x L +y1)/2 P/ O] p
G ( 1 J_) <P|P> (27’(’)2 € € < |S (wJ_ayJ_) | >
4N, d2rld2bj_ ik, 1, iA| b, r, T
_ c —ik | ry A - P O] b ——b =) |P
<P!P>/ Grp ¢ OIS OL bt IR
(4.21)
where
1
Sz, ,y.) = FTI" U5y, z1)], T =YL — T, b, = @ (4.22)

Comparing again to the notation of [23] we see that
Fr = GI/((4m)°N,) (4.23)

where F, satisfies the normalization condition
/kol PA e B F (k) AL) = 1. 4.24)

In Eq. (4.21) b, is defined with respect to some unspecified reference point, so one
may wonder what determines this position? In fact, in the derivation of Eq. (4.17) the
following step is performed:

(P+AL|00L,71)|P) = ¢® 2P+ AL|O(bL,7.)|P)

P PP+ AL Oy, 7)) |P
_ b, <fd2b 1Oy, 7)) >’ (4.25)
1

where the last step is formally exact, but as mentioned, the normalization factor [ d*b;
(which is part of (P|P), cf. Eq. (4.20)) is actually divergent and requires consideration
of a regulator. In the derivation it is used that although matrix elements of the form
(P+A,]O(by)|P) are both b, and A dependent, despite b, and A, being each other’s
Fourier conjugates, the b, dependence enters just through a phase. As a result, the
integrand is actually b, independent and any reference point will do. However, the
analysis in the previous subsection suggests that it is better to replace Eq. (4.25) by

&b,
(27)?

where b, is considered with respect to R, = 0 and a large P™ momentum frame and a
spatially localized wave packet are implicitly considered. It is also implicitly used that
(PT,P| O(0.,r,) |PT, P.) only depends on the difference of P| and P,, just like for
r, = 0 in the GPD case (7, is not affected by the required transverse boosts, since the

ebrAL(PT R =0[0(by,r1)|Pt Ry =0), (4.26)

(P+AL00L,7)|P) = /
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corresponding r* = 0). It is furthermore interesting to note that Eq. (4.26) relates an
off-forward matrix element to an integral over diagonal matrix elements.

Following the above replacement, matrix elements of the form
(P'1O(by,T1)|P)/(P|P) (4.27)
are to be interpreted as
(PY R, =0[O(by,r.)|Pt, R, =0) (4.28)

in the expression for G and, similarly, for 7!~ which follows from G~ by the replace-
ment SP(x,y,) =1 - ST (), y,):

2 2
FO(k, A = 4N, /d r d°y, e~k @1—y1) i @ity)/2(pr | S0z ) | P)

(P|P) (27)?
4N, dQ'rJ_d2bJ_ ik, -r, Al b T L
_ c —iky Ty JIA- Pl1— O] R =) | P).
57 ] e 1= S = S b ) 1P
(4.29)

The function F™!, which is associated with GI™ in the small-z limit of the gluon GTMD
definition of Eq. (4.17), will be extensively used in the analysis of diffractive dijet
production and diffractive J/¢) production in the subsequent chapters.

Once the gluon GTMD is extracted from data one may wonder if it can be used to
obtain the gluon GPD by integration, as suggested by Fig. 4.1. In [170] it was pointed
out that the gluon GPD H, at small x can be expressed in terms of the small-z gluon
GTMD through the following integral*:

1
cHy(x,A) = W/quLqif(gD](x,ql,Al). (4.30)

This relation is derived using the operator definitions of the functions, not taking into
account renormalization. However, this relation suffers from the same problems as its
forward limit, where the collinear PDF f(x) is viewed as the integral of a TMD [39]:

°

flz) = /dztuf(w, 7). (4.31)

Since the large transverse momentum tail of the TMD f(x, ¢?) behaves as 1/¢%, the
integral will diverge logarithmically and requires some form of regularization. More
formally, beyond tree level TMD factorization implies that the TMD depends on two
scales, the rapidity scale ¢ and the renormalization scale p, satisfying two coupled
evolution equations, whereas the collinear PDF only depends on the scale 1 and satisfies
just one evolution equation. It is thus not straightforward how to relate them beyond

4Taking into account that the definition of ]-'(gD] differs from that of F} in [170], Eq. (4.30) differs by a
factor 2 from the one given in [170].
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tree level, and it will be scale and scheme dependent. Clearly, Eq. (4.30) suffers from the
same problems. Because of this, here we do not provide curves for GPDs based on the
GTMDs we obtain, as they would unavoidably depend on the adopted procedure of how
to regulate the large transverse momentum behavior to make the integral in Eq. (4.30)
converge. Rather than expecting that the TMD determines the collinear PDF through
an integral relation, one can instead consider the unambiguous relation in which the
collinear PDF determines the large transverse momentum dependence of the TMD:

2) oot [ Bp(E
o) o / yp(y)f@), 4.32)

where P denotes a splitting function (ignoring for simplicity the possibility of mixing
among various PDFs). Similar expressions hold for the perturbative large transverse
momentum tails of GTMDs in terms of GPDs, as recently studied at the one loop level
in [171]. So rather than using fits of GTMDs to obtain results for GPDs, it is better to
use models, lattice determinations, or fits of GPDs to predict the tails of the GTMDs and
compare those to GTMD fits. This we do not attempt here, as we are primarily concerned
with the small transverse momentum region in the discussion. In the analyses in the
next two chapters we will emphasize which information on GTMDs one can obtain that
go beyond the GPDs in terms of integrals of GTMDs other than the one in Eq. (4.30).
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Probing gluon GTMD in diffractive dijet
production

As discussed earlier, diffractive dijet production at small z is proposed as a potential
probe of the gluon GTMD. In this chapter, we will discuss how a gluon GTMD model,
based on the MV model with a minimum number of free parameters, can describe the
available data from the H1 experiment at the HERA collider and provide predictions as
a test for future experiments, especially at the future EIC. First, we will consider the
general expression of the cross section in Sec. 5.1, then show how the GTMD enters the
cross section in Sec. 5.2. Next, we will introduce an x independent model based on the
impact parameter-dependent MV model in Sec. 5.3, and fit it to the HERA data. We
will also provide predictions based on this model. In Sec. 5.4, we improve the model
by incorporating the x dependent GBW parameterization, resulting in an improvement
in the fit to the H1 data, especially the Q?> dependence. Lastly, we also discuss how
this diffractive dijet production process probes information about the GTMD that goes
beyond the GPD description of it that has been considered in e.g. [158].}

IMost of the results in this chapter are published in [68] and [172].
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52 Probing gluon GTMD in diffractive dijet production

5.1 Diffractive dijet production cross section

According to the dipole framework, the production of a quark-antiquark pair ¢g (a
dipole) from a photon can be obtained by applying the quark and anti-quark creation
operators to the vacuum state, represented in mixed momentum-coordinate space, see
e.g. [64,65]:

lg(pf, @11, a1, he) G(ps, ot , o, b)) = b (P, @11,y h) dT (P, @21, a2, h2)|0). (5.1)

Here, x;, denotes the transverse position of the quark/anti-quark when interacting with
the target, h; = +1/2 denotes their helicity, while p; and k; represent their momentum
before and after interacting with the target, respectively. The index i = 1, 2 refers to the
quark and antiquark, respectively. The quark/anti-quark color indices before and after
the interaction with the target are indicated by «; and f;, respectively. The momentum
space (p™,p,) and the mixed space (p*, x ) representation of the creation operator for
quark (antiquark) b' (d") are related by the Fourier transform of the transverse part

Px,
bi(pT,pL) —/%em'““(ﬁ,m), (5.2)

where the creation operators in the mixed space representation follow the anti-commutation
relation [62,65]:

{b(p/+7 w/J_J O/u hl)v bT(p+7 T, h)} = {d(p”r’ wﬁ_v O/v h’/)u dT(p+7 T, h)}
= (2m)2p* ('t — p")0P (@ — 1 )0arabn.  (5.3)

Following the definition of the ¢¢ states in the mixed space representation given by
Eqg. (5.1), we can define the splitting of the incoming virtual photon into the dipole as:

V(G wn) = Y Waalzn@in)la(z, T11) (22, T21)) (5.4)

qq states

where U is the incoming virtual photon lightcone wave function defined in Eq. (3.5).
However, here we use a different notation, where z; = z for the quark and z, = 1 — z for
the antiquark. We will use z; instead of k;" to define the longitudinal component of the
quark/anti-quark momentum.

Within the eikonal approximation, the dipole interacts with an infinite number of
gluon exchanges, which can be expressed in terms of Wilson lines ¢/ («;,). Since the
interaction takes a very short time, the transverse position of the quark and antiquark,
denoted by x;,, remains constant. Therefore, the outgoing wave function after the
interaction can be expressed as follows

SW*> = Z [U(wu)UT(wu)}BIBQ Uiz, i) |q(z1, 11, B1)q(22, T21, Pa)) (5.5)

qq states
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P | 2 1 ki, B

P21, 22 x,

Figure 5.1: Diagram of diffractive DIS +*p at the leading order. A virtual photon which
splits into a dipole (¢q pair) interacts with the target. The bold blue vertical line indicates
the interaction position of the dipole with the target.

with U () is the Wilson line in the fundamental representation defined in Eq. (3.10).
The overlap of the incoming and outgoing wave functions, which defines the dipole
scattering amplitude or the S-matrix, now reads:

Sua(@i1,@a1) = Gk 211) g(kT, 201)|S|Y* (21s ®i1)) (5.6)

As we are working in the momentum representation, we should perform a Fourier trans-
form of the mixed-space representation to obtain the momentum-space representation

d? d?
Soq(kii, kol ) = / L1l / L2L gk L@y —ika 1 way [U (21 U (20)] Woqlzi, zin).
(5.7)

Using the optical theorem

2

g P(A) —
- 2qT(2m)6(k + Kk — )

Re |:<(j(l€f—, le) q(k;—7 k2i>|j - ~§|7*(2‘i7 kzL))} (58)

the scattering amplitude can be obtained as

dQIBlJ_ d o o i
(Myg)e = 22m)0(z1 + 20 — 1) / / A

[I — S(wu_,.’llgj_)] \Ifq(j(Zi,CCU_). (59)

The scattering amplitude will enter the diffractive dijet DIS cross section, which is
defined as:

do 7 (20°) 3(k{ + k5 —q*)
k+2k+ 1 2 B 2
2 dki dk§ d?ky ) ks, ;; (275 [(Mag)cl
do7 P(A) 5(z1 + 20 — 1) ,
=2 oo g 5.10
dzidzod?ky d?ky ) Z 22125 (2m)° [(Mag)cl ( )
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with C' indicates an average over the color of the target. In the expression of the cross
section, one usually utilizes K| and A | instead of k;,, which are the Fourier conjugates
of b, and r_, respectively. They can be related as follows:

T + @2

by = ==

A =k +kyi

ki — ka1

5 (5.11)

rL=x1, —x2 << K=
We will discuss the cross section further in Sec. 5.3.1 after introducing the explicit form
of the dipole scattering amplitude.

5.2 Diffractive dijet production cross sections in terms
of GTMD

The GTMD enters the diffractive dijet cross section via F”!, which is defined in Eq.
(4.29) and related to the GTMD G, As emphasized before, we will only consider
unpolarized gluons, particularly because the azimuthal modulations in the diffractive
dijet cross section arising from the elliptic GTMD [23, 173] are expected to be much
smaller than the present cross section uncertainties. In the model studies of [174-178]
and in the CMS data [179] the azimuthal asymmetries are found to be at the 10-30%
level or (much) smaller. As a first step it would be important to check whether the GTMD
description of diffractive dijet production is consistent with cross section measurements
in various kinematic variables and various kinematic regions. With the presented results
we hope to facilitate such a study.

ky
e ——
. 5
! S
k
S ks
q
q &
q+a/2 § g —q+4/2
g g
P p
P P’

Figure 5.2: One of the leading order diagrams of diffractive dijet production in ep
collisions.

Following Ref. [23] the cross section of diffractive dijet production in electron-proton
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collisions is expressed in terms of F! cf. Eq. (4.29) as

do
dy1dys d?’ky ks,

> /dqud2ti[D](qJ—7 AL)F[D}(qjg AJ—)‘A(KJ_7 q., qﬁ_v 6?)7 (512)

for a particular amplitude function A, with qﬁ) related to the transverse momentum of
the gluons as depicted in Fig. 5.2. Here K is the transverse part of K = (k; — k2)/2,
where k; denotes the momentum of jet i, A is the transverse part of A = k; + ko, v;
is the rapidity of jet i, and ¢} = z(1 — 2)Q” (ignoring the quark mass), with z is the
momentum fraction of one of the two jets. One considers this process in the so-called
correlation limit: A, <« K, where K| sets the hard scale, allowing to also consider the
photoproduction (Q* = 0) case. One of the leading order diagrams of diffractive dijet
production in ep collisions in this kinematic regime is shown in Fig. 5.2. In this exclusive
process the transverse momentum of the jet pair gives a handle on the A; momentum,
even if the off-forwardness of the struck nucleon or nucleus itself is not measured. More
details of the cross section calculation will be given below, but first we will discuss the
model for the Wilson loop GTMD G and the corresponding F.

In the process considered the incoming virtual photon splits into a quark-antiquark
dipole pair that interacts with the proton or nucleus.?

The large jet transverse momentum, or equivalently large K |, the typical size r;
of the dipole will be small. At small enough z even small dipoles will have multiple

interactions with the target. In the saturation regime at small = one often employs the
MV model for the dipole scattering amplitude [25,55,56,73,74]:

SOy, yo) + Sz, 1) L o o 1
< 5 >C = exp (—Zrle In LﬁAQ + e}) , (5.13)

where the subscript C' indicates that an average over the color configuration of the target
is taken, A denotes the QCD scale, and ¢ is the natural number that is introduced as an
infrared regulator, see [88]. For an infinitely large nuclear target the saturation scale
() is only a function of x. As a consequence, in that case the MV model expression
applies to the forward scattering case and it is only a function of r, =y, — «, due to
translational invariance (r3 = |r?%|). For finite nuclei at small =, a dependence of Q, on
impact parameter is often considered, see e.g. [58,79,182]. The b, (= |b_|) dependence
of Q, is usually implemented as Q*(z,b,) = Q*(x)T4(b.), where T4 (b, ) is the nuclear

2Note that for sufficiently high center of mass energy of the scattering this dipole picture can be
reconciled with the target having a large P momentum which, as we discussed, was required to consider
the impact parameter dependence with respect to a sufficiently well determined center R, = 0 of the
target. The appropriate frame is referred to as the dipole frame [180] which is discussed in Appendix B.
In addition, for large dipole sizes the impact parameter should also be defined with respect to the center
of momentum of the dipole [181], but that is not relevant for the small dipole sizes considered here. The
impact parameter definition actually depends on what one considers the centers of the two extended
objects: the proton/nucleus and the dipole. One can consider the center of the dipole or the transverse
center of longitudinal momentum. The former definition is used here, while the latter, which is typically
applied to the proton/nucleus state [139,165], could also be adopted for the dipole as done in Chapter 6.
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profile function or nuclear thickness function that describes the distribution of nuclear
matter inside a nucleus integrated over the z component of b [79]. Here T'4(b, ) scales
with A'/3. For scattering off a proton at very small z that is described by the CGC, one
can similarly introduce a profile function. To be specific, we will consider

dralC
QX(b,) = ”Nf 21 (b)), (5.14)
with a Gaussian b, profile [177]:
Ty(by) = exp (—b1/(2R2)), (5.15)

where R, is the gluonic radius of the proton for which we will take the value R, = 0.5 fm,
such that 1/R, ~ 0.4 GeV.

Using Eq. (5.13) with this Q%(b, ) implies automatically nonzero off-forwardness,
even if one is considering only diagonal expectation values. Furthermore, by identifying
(and implicitly absorbing the lightcone volume factor 2P* [ db~ of (P|P) in the process,
see the discussion around Egs. (4.26) - (4.28))

(SPUby, 7))o = (P R =0[ST(by,r,)|PT, R, = 0), (5.16)

we arrive at the following expression for the GTMD:

2 2 ) 1 1
Gk, ,AL) = 4N, /Me_“kL TLetALbL exp (—Zrng(bL)ln{ 5o —I—e}) :
ri A
(5.17)

This becomes the standard MV model expression for the gluon TMD in the limit R, — oo
and A; — 0. We expect this model expression to be applicable as long as the typical
b, values probed are larger than the typical dipole sizes. Therefore, we will restrict
application of the model to the region A, < 1 GeV, which is consistent with the

correlation limit, because well-defined jets will have transverse momenta of at least a
few GeV. In practice, higher A | will hardly matter, as will be seen (cf. Fig. 5.4).

In [174,175] Gaussian weighting factors e "1 and e %" are introduced as cut
offs. This will cut out the regions where the ¢G dipole does not overlap with the target
or its size becomes large compared to the target size, where the model should not be
applicable. Here we will only introduce e~“"1, as we found that there is actually no
need for e—<* when considering F.

5.3 An r independent model

To develop a realistic yet simple GTMD model, we will introduce a model with a minimal
number of free parameters and investigate whether it can adequately describe the
available data, or if further improvements are necessary. To be specific, in order to fit
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the model to H1 data, we will introduce two free parameters {¢,, y} in the model in the
following way:

2 2
J—:[D](ku’ AJ_ =i / M e kLTl iALbyL eiﬁrri

o TR e )

(5.18)

These parameters introduced here are chosen based on physical considerations. The
parameter ¢, serves as the dipole size cutoff to ensure that the dipole sizes contributing
are restricted to the perturbative region, since we expect the dipole sizes that contribute
to the cross section to be small. This Gaussian weight factor was also introduced in
the Wigner, Husimi and GTMD distributions of [174,175]. In practice the dipole size
restriction should result from the kinematics of the process, i.e. by the large transverse
momentum of the jets (recall that K, is the Fourier conjugate of r,) or the large
mass of the produced quarkonium, but by enforcing it explicitly in the model, we can
obtain convergent integrals of the GTMD without reference to a process. The other free
parameter y allows to change the overall magnitude of the saturation scale, which is
expected to be close to 1 if the estimates of the saturation scale in DIS are also applicable
in this diffractive process. In the numerical calculation, we will use ¢, = (0.5fm) 2
and y = 1.25, which were obtained from fitting to the H1 data, as will be explained in
Sec. 5.3.4. We will consider a fixed value A = 0.24 GeV and consider N; = 4 for the
number of active flavors. In the context of photoproduction for the EIC prediction, we
consider K| to set the hard scale. Therefore, it is necessary to have K| > 2m,. The
fitted y value can be viewed as determining the (average) x value of the model through
the = dependence of the saturation scale. In applications of the MV model the saturation
scale is usually taken to be Q?(x) = AY3(3-107*/2)%3 [GeV?], that stems from the GBW
(geometric scaling) description of the inclusive DIS data from HERA [183]. Equating
this expression with xQ?(b; = 0,) = 0.5xA'/3 [GeV?], one finds y = 2(3 - 1074 /z)°3.
Expanding Equation (5.18) in the Fourier mode decomposition yields:

FOky ALY = F Nk, AL) + 2F7 (kL AL) cos 205 + ..., (5.19)

where 0,» denotes the angle between k; and A . The contribution of the elliptic part
]—"2[5], and even more so of the higher order harmonics, to the cross section will be small
compared to the angular independent part ]-"(ED}. Therefore, we will only retain the latter.

In Fig. 5.3, we show the function }"(ED] for various parameter choices and ranges
that we will consider for the model. This figure indicates that the contribution to the
cross section comes from small values of A, where A, > 1 GeV provides hardly any
contribution. This justifies the requirement that the process we consider should be in
the correlation limit. We note that the associated function of ]—"(QD} has also been studied
in [184], but we obtain a different result.
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Figure 5.3: The function .F([)D] /(27)? as a function of the transverse momentum & for
three different values of A, for the choice ¢, = (0.5 fm)~2. The curves are for y = 1.25
and the bands around them correspond to y in the range from 1.0 to 1.5, where larger
x yields larger results.

5.3.1 The cross section

As discussed earlier, the cross section for the diffractive dijet production process y*p(A) —
qqp(A) can be calculated at leading order (LO) by combining two steps: 1) the incoming
virtual photon which splits into a quark-antiquark dipole pair and 2) the interaction
of the pair with the proton or nucleus via two-gluon exchange. The LO of the virtual
photon light cone wave function with virtuality @) described in Eq. (3.5) is discussed in
many papers, such as [62,64,65]. Following Eq. (5.10), the diffractive dijet production
cross section differential in z;, K|, and A, can be expressed as:

dog ] 1 ,
: = 0 -1 ; 5.20
dzdzd? K d?A 2(27)5212 (2142 ) ;; |<qu>c} g ( )

where M,; denotes the amplitude of this process defined in Eq. (5.9), 212 = ki, /k™ are
the outgoing quark and antiquark longitudinal momentum fraction with respect to the
virtual photon longitudinal momentum, and the sum is over color indices (; and quark
helicities h;. For the case of a transverse photon the amplitude is given by:

T 2 EPrid?by A i
My = eep/z122 [ — 21 — 20| Ony iy /d m/we LB LeTmLdL

O T LA
u}gl}52<bj_ - 7’ b, + 7) - 55152]

(S (KJ_ - QL)
: ) (5.21)
2120Q? + (K1 — q.)

X
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and for a longitudinal photon by:

L 2 d*r, d*b, —ib, A, _—ir,-q
qu = —266f\/2’1225h17,h2 d q, W@ LBlLeTTidqL
21220
2120Q* + (K1 — qu)%

where €, denotes the polarization vector of a photon with helicity A\. In the above
expressions, we used the integral form of the modified Bessel functions K ; in the
photon wave functions in Eq. (3.5) using

=] Uk T
X [u[[ﬁgz(bl B 7’ b, + 7) - 5,31/52] (5.22)

) eik-m
d“k = 2nKy(|lxle
[ = 2K ele)
9 ’Lk‘,llﬂ: X w]
i .

/d k:6 n kzzk = 27rzm5fK1 (|zley) - (5.23)
We also assumed that in the dipole frame the incoming photon has zero transverse
momentum, such that the quark and antiquark momenta are related as p;;, = —p>, (see
Fig. 5.1).

After averaging over color and photon polarization, and after summing over quark
helicities [64], we arrive at

do” Qem ) ,
dzydzd? K | d?A | 8(2m)*N, Z e} 0(z1 + 22 — 1) [2] + 23]

X /cz2ql /d2 Fq ,A)Fqg, ,A))

{ (Ki—q.) H (K. —q\) ]

g 220Q? + (KL —q1)°] | 212Q* + (K. — q,)’
(5.24)
and
Y*p
dzldzjgfgdzm - 2(2(::;2NC Ef: ot ane / Ta. / e
x F(q,A)FT (g, AL)
« ! L . (5.25)

22Q? + (K, —q1)° 212002 + (K — ¢,)°

As discussed earlier we will only consider the angular independent part F o,

We note that since there is an average over the color configurations of the target,
the cross section will scale as N,, the sum over colors of the quark-antiquark pair. Since
we express the cross section in terms of GTMDs that themselves scale as N., the above
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expressions have an overall 1/N, factor, rather than N, like in e.g. [64]. But the results
are consistent with each other.

In order to relate 077 to the diffractive dijet cross section ¢ for electron-proton
collisions in DIS in HERA experiments, one can use [64]

doP Nem, y2 * *
= 1-— —)ol?+(1— TP 5.2

with y = Q%/sz and /s is the center of mass energy of ep collision, which for the H1
data to be discussed was 319 GeV. We will fit the resulting expression to the high Q?
electroproduction data of H1 and make predictions for high ? electroproduction at EIC.
We will also make predictions for photoproduction, which we now discuss.

5.3.2 Photoproduction: Q* =0
For the case of Q? = 0 the expression for do7).” can be used to arrive at:

doP Qo

— 2 2
dz1dzed? K | d?A | o 27-(- AN, Zef Z1t 2 — 1) |:Zl + ZZ}

X /quL /dQQ/Lf[D](QL7AL)}_[D](q/LaAL)

[<Kl—qL>},[(KL—q1>]'

X

5.27
K. 0] |(K. —4,) :27)

The integrations over the angles of g, and ¢/, can be calculated analytically to arrive
at [175,185]

Folgi, A1) (K, — 21)3 K
/d2(h 0 (qéK L)(q )LQ q.) = ( 7?(2 LAT(KL,AL); (5.28)
1—qL 1

with
I o)
Ar(K1,AL) = (2n)? /O dgiqi Fo (qu, Av). (5.29)

In Fig. 5.4 we show the function A7 (K, A, ) as a function of K, for the same parameters
choices and ranges as in Fig. 5.3. It shows that the function is already very small when
AJ_ =1 GeV.

The ~p differential cross section can thus be written as:

do™® (2m) aem AZ(K L, A))
= 1 A2t 2L
dz1dzd K | dA? 16N Z ef 0(z1 + 22 — 1) 21 + 23] K,

.(5.30)
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Figure 5.4: The function Ar(K,,A)) as a function of K, for three different values of
A

5.3.3 Electroproduction: Q2 > 0

For the case of Q? > 0 the cross section receives contributions from both the transverse
and the longitudinal polarization states of the photon. The integrations over the angles
of g, and ¢/, can again be calculated analytically to arrive for the transverse part in Eq.
(5.24) at

(K1 —qu) ] (2r)° K,
- A K 7A Rz R 531
21%Q? + (K| —q.) K2 (K1, AL z,Q)  (5.31)

/dQQL]:(ED] (qu,AL) {
with

qL ]:([)D] (g1, A1)
2

1+

Ki - Cﬁ - 2122Q2 ]

VK2 + @ + 212002 — (2K q1)?
(5.32)

1 oo
AT(KJ_7AJ_7Z7L’Q) = W/ dQJ_
0

while for the longitudinal part in Eq. (5.25) can be evaluated to be

3
d*q, F g, A { ¢ } _CORL kAL 5.33
/ a1 Fy (g, A1) 0 L Ky —a))? K2 LK, AL z,Q)  (5.33)

with

> d
AL AL=Q) = [ g aFe.a)

0

K, Q ‘
VK2 + 2+ 21200Q%)2 — (2K 1q, )2
(5.349)
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Therefore, the v*p differential cross section for Q% > 0 can be expressed in terms of Ay
and A; as

A (KLa ALa Ziy Q)

dO'Z*p Oéem Z + 1) [ + :| (5 35)
dzydzd K dA2 16N e dla+ 2 - : K. '
and
Y 2 4 2 K, A )
doy _ (%) aem e?c 6(z1 + 20 — 1)2223 ALKL AL 2 Q) (5.36)

dzidzdK  dA% 4N, K,

f

In Figs. 5.5 we show the functions At and A;, for the same parameter choices as in
Fig. 5.3 and Fig. 5.4, and for Q> = 4 GeV? and z; = z, = 0.5. It can be seen that the
magnitude of Ay is comparable to that of Ay. However, the 2722 term in front of Ay
makes its contribution to the differential cross section much smaller as can be seen in
the next section. In Figs. 5.6 we show Ar and A; for different values of Q2.

A =024 GeV; ¢, = (05 fm)™% x = 1. 25*8 5 A=0.24 GeV; ¢, = (0.5 fm)™% x = 1. 25*3 5
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S
Ny
502f
4 L
—
5 |~
= 00
<
Q?=4GéV;z =05 Q?=4GéV;z; =05
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Figure 5.5: (a) The functions At from Eq. (5.32) and (b) Ay, from Eq. (5.34) as functions
of K | for three different values of A |, Q®> = 4 GeV?, and z, = 2z, = 0.5.

The expressions of A7 in Eq. (5.32) and A, in Eq. (5.34) show that exclusive
coherent diffractive dijet production allows to obtain information on GTMDs even
though the transverse momentum dependence is integrated over. The dependence
on the external momenta of the weights inside the integrals can be used to study the
transverse momentum dependence of the GTMDs. For photoproduction ~p one can set
Q? = 0 and drop the longitudinal part as it does not give any contribution.
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Figure 5.6: (a) The functions At from Eq. (5.32) and (b) Ay from Eq. (5.34) as functions
of K, for five different values of Q?, A, = 0.1 GeV, and z; = 2, = 0.5. We note that
strictly speaking one can not simultaneously have small values of both ? and K, due
to the absence of a hard scale in such a scenario. Consequently, a factorized description
becomes unfeasible in that case.
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The expressions also show that exclusive coherent diffractive dijet production allows
to obtain information on GTMDs that goes beyond the GPDs, in the sense that they probe
integrals other than the one of [170] where the gluon GPD H,, at small x is expressed in
terms the small-z gluon GTMD, cf. Eq. (4.30):

1
(47)2 v

As pointed out in the previous chapter formally this relation requires specification of
the scale and scheme dependences beyond tree level and also in the model the integral
will not converge despite the fast fall-off for large transverse momenta as shown in Fig.
5.7. The important point here is that the expressions of Ay in Eq. (5.32) and A, in Eq.
(5.34) involve convergent integrals that moreover can be changed by varying @) and K, .
In that sense exclusive coherent diffractive dijet production allows to obtain information
on GTMDs that goes beyond the GPDs.

cHy(x,A,) =

/quLqif[[)D](m,ql,Al). (537)
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Figure 5.7: The function ¢3 F/(2r)? from Eq. (5.37).

5.3.4 Model fit of H1 data

The H1 and ZEUS experiments at HERA have studied the diffractive dijet process in
a series of papers [186-188]. Here we focus on [187] where data in the ? range of
4 — 110 GeV? was presented, for y € [0.05,0.7] and ¢ < 1 GeV?, that allows us to study
the correlation limit region, where here we use ¢t = |A|?.* Given this Q* range we
consider the case of four flavors. In the case of photoproduction for the EIC prediction
(cf. Fig. 5.12), we consider K, as the determining factor for the hard scale. Hence, we
require K| > 2m,.. The H1 cross sections for two central jets shown in Fig. 5.8 are

3Strictly speaking, this is —t compared to the general definition t = (P’ — P)? used in earlier chapters.
We redefined this ¢ for simplicity, in order to avoid minus sign mistakes or having to write |¢| everywhere.
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obtained by extrapolation to the range ¢, <t < 1 GeV? in order to compare to earlier
results [186]. We fit our model to this extrapolation range. Here, ¢y, is the minimum
kinematically accessible value of ¢.

y 2. . .
Qz c [4,110] GeV?; K, € [5, 12] GeV QZ c [4> 110] Gev2; te [tminy 1 GEVZ]

103 o _ . _ =4 -2, ]
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Figure 5.8: Differential cross section as a function of (a) ¢t and (b) K, ~ k;, for the
model for the indicated parameter choices and ranges, and for the H1 FPS data including
the total uncertainties .. For the K| dependent, the ranges (¢, ~ 0).

We first consider the data for the t-dependence of the differential cross section based
on Egs. (5.35) and (5.36). We select ¢, = (0.5 fm)~? and find that y = 1.25 can describe
the data quite well, as shown in Fig. 5.8, which has a very clear e~* dependence, with
b ~ 6 GeV 2. The slope of the cross section as a function of ¢ is controlled by the proton
profile in Eq. (5.15). The H1 data description does not depend much on ¢, as shown
in Fig. 5.9, where the two different values of ¢, give approximately the same result.
Therefore, we have chosen ¢, = (0.5 fm)~2 which is the cutoff used in [174,175,189].

We also display a band corresponding to y in the range from 1.0 to 1.5. This range
is selected on the basis of the K| -dependence of the differential cross section. The
H1 data is actually presented as a function of the transverse momentum of one of
the jets, which is large (in the range 5 — 12 GeV) and almost back-to-back with the
other jet in the transverse plane, such that one can expect that ¢, < K, although the
values of ¢, are not included in [187]. On the basis of this expectation we approximate
K, = (k1L —k91)/2=Fk11 —q1/2 = ky,. The result is shown in Fig. 5.8. As can be seen
the transverse momentum dependence does not show as clear a power law fall-off as the
model curves, hence, the considerable uncertainty in the y value. The contribution of
the longitudinal part to the cross section is not very large as shown in Fig. 5.10, where it
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Figure 5.9: Diffractive dijet production cross section for two different values of ¢, for (a)
the K| distribution and (b) the ¢ distribution.
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Figure 5.10: Contribution from the longitudinal (Long.) and transverse (Transv.) parts

to the diffractive dijet production cross section for (a) the K| distribution and (b) the ¢
distribution.
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is 12 % at K| = 12 GeV and becomes smaller for smaller K|, e.g. itis 3.5 % for K, =5
GeV.
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Figure 5.11: (a) Differential cross section as a function of )? for the model for the
indicated parameter choices and ranges (¢,,;, ~ 0), and for the H1 FPS data including
the total uncertainties d;,;. (b) Demonstration that the central values of the H1 data as a
function of (? fall within the range of the Q? integral of the model.

For the description of the H1 data we selected values for x in the range 1.0 — 1.5
with a central value y = 1.25. One could relate these values using the GBW model
expression for the saturation scale to corresponding = values: y = 2(3 - 107*/2)%3, such
that y = 1.25 + 0.25 corresponds to = ~ (1 — 3) - 10~3. We consider such x values to be
acceptable and consistent with the typical x values at which the MV model is generally
considered to be applicable. Selecting a fixed y value corresponds to selecting an average
x value. In Fig. 5.11 we show the ? dependence of the model in comparison to the
H1 data. It shows that for smaller ()2, which corresponds to smaller x values for given
y and s, a larger y value is needed, whereas at larger ()%, a smaller y value is needed.
Clearly a better description of the ? dependence of the data could be obtained with
an z dependent y. However, since the integral of a curve through the central values of
the H1 data as function of ()? is found to fall within the range of the (? integral of the
model, we proceed with the model with a fixed y, i.e. with an average x. We note that
the H1 data spans an x range from 5 - 107° to 0.02, giving a geometric mean of 1073,
which corresponds well with the x values we obtain from the GBW model expression for
the x values considered.

All in all, we conclude that an = independent GTMD model allows for a fair de-
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scription of the diffractive dijet production H1 data, for reasonable model parameters,
in reasonable agreement with assumptions on the gluonic radius and the = values the
model applies to. However, it is clear that this model needs to be improved in order
to more accurately capture all features of the H1 data. The improved model will be
discussed in Sec. 5.4.

5.3.5 Model predictions for EIC and LHC

Here we present predictions for diffractive dijet production at the EIC using our model.
For leptoproduction we consider the range 3 < K, < 9 GeV, because the center of
mass energy of EIC will be lower than at HERA. At even lower K| we expect that jets
cannot be resolved anymore and by selecting this range, we can consider the fixed
flavor case with N; = 4. We consider Q* € [1 GeV?, K?] rather than the fixed range
@Q? € [4,110] GeV? of HERA and also show the cases for Q?> = K? and Q*> = 4K? (here
we expect smaller Q? to be better described by larger y and vice versa).

We also present model predictions for photoproduction. As expected, the cross
section is much larger in this case. The photoproduction result can also be translated
into predictions for Ultra-Peripheral Collisions (UPCs) in p-Pb and Pb-Pb collisions at the
LHC upon folding in the appropriate photon distribution inside a Pb nucleus, cf. [175].
However, if in such collisions K, values are reached that are much larger than Q,,
then the saturation description may no longer be appropriate. Also it is important
that the dijet pair has a rapidity gap in order to ensure a diffractive process. The only
currently available UPC jet production data is by the ATLAS collaboration [190], where
such a rapidity gap condition is not imposed however. The diffractive contribution was
estimated to be at most at the 5% level for the small = part of the data [191] and it may
thus not be surprising that our GTMD model cannot describe those ATLAS UPC data,
underestimating the cross section by two or three orders of magnitude as shown in Fig.
5.13, where the cross section is highly sensitive to the values of y that are chosen. In
contrast, the collinear factorization description of [192] at NLO is able to describe the
ATLAS data well. We expect that the LHC will provide more data on exclusive diffractive
dijet UPCs in a region where A, < K which is expected to be able to probe the GTMD.
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Figure 5.12: (a) Predictions for diffractive dijet production in ep (black curve) and ~p
(red curve) collisions at the EIC. (b) Predictions for diffractive dijet production in ep
collisions at the EIC for Q = K, and QQ = 2K, .
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Figure 5.13: Predictions for exclusive diffractive dijet production in ultra-peripheral
Pb-PDb collisions at the LHC in the small-z region associated with the kinematic regimes
probed by ATLAS [190].
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5.4 An z dependent model

In the previous section we used a small-z model without any = dependence, because
the expressions in terms of the Wilson loop operator were obtained in the strict z — 0
limit [67,72,193,194]. The model was able to describe the H1 data on the differential
cross sections as function of ¢t and K| quite well, for which all data have the same small
average x value. But the model did not describe well the data as a function of Q? for
which the average x value is different for each data point or each bin, cf. Fig. 5.11. To
improve on this we now incorporate an x dependence in the model by replacing the
constant free model parameter y (cf. Eq. (5.18)) by the following function of z and Q?:

A
@) =x () (5.38)
with 2y = 3 x 107% and \ = 0.29 based on the model by GBW for the saturation scale
[26,27]. This value of \ also turns out to allow for a reasonably good description of the
Q)? dependence of the H1 diffractive dijet electroproduction data (using z = Q?/(ys)) for
diffractive dijet production, but as we will see later .J/v) production prefers a somewhat
smaller value A = 0.22.

Our motivation to include this type of = dependence in our model is the observation
of geometric scaling behaviour of DIS ep collisions data in the low z and low Q? region
at HERA [26, 27]. This feature of the data was well-described by a saturation scale of
the form Q%(z) ~ = with X\ ~ 0.29. Later, it was shown that the total cross section
of v*p exhibited geometric scaling over a much wider range of ? values (from 0.045
to 450 GeV?) in the z < 0.01 region of HERA data [96] (see also [92,93]). Similar
scaling was also observed in diffractive DIS with a specific parameterization [109] and
in inclusive eA processes [107].

We note that apart from this new ()? dependence introduced through the kinematic
relation between x and %, we do not introduce any additional z and/or )?> dependence
from QCD corrections. We also consider a fixed coupling constant. The reason for not
including evolution is that the scale evolution of GTMDs has not been studied in full
yet. Even for TMD evolution the interplay between the x and )? evolution is not yet
fully clear (the scale evolution of TMDs and Sudakov resummation for TMD processes at
small x has been investigated in e.g. [195-198]). Since the kinematic range of EIC is not
too different from the one of H1 and ZEUS, we expect evolution not to be essential for
obtaining predictions. Given the large uncertainties in the model parameters we expect
logarithmic corrections to be of minor importance at this stage. This also avoids the
question of what precisely sets the hard scale in the various processes (dijet versus .J/v,
electroproduction versus photoproduction). But the kinematic relation between = and
Q? for the J/4 case is affected by the J/v) mass, of course.
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5.4.1 The model

With all the above considerations taken into account we arrive at the following McLerran-
Venugopalan (MV) [55,73, 74] like model for the dipole scattering amplitude (see Eq.
(5.18):

1= (89by v ))o — [1 ~exp (—ﬁriw)@i(m In {LA ; } )} ot (5.39)

As in the previous case, here the factor e~“"% in Eq. (5.39) is introduced to ensure
that the dipole sizes contributing are restricted to the perturbative region. This Gaussian
weight factor was also introduced in the Wigner, Husimi and GTMD distributions of
[174,175]. In practice the dipole size restriction should result from the kinematics of
the process, i.e. by the large transverse momentum of the jets (recall that K, is the
Fourier conjugate of r ) or the large mass of the produced quarkonium, but by enforcing
it explicitly in the model, we can obtain convergent integrals of the GTMD without
reference to a process. In principle, ¢, is a free parameter of the model but we will use
the fixed value ¢, = (0.4 fm)~? for both diffractive dijet and .J/+ production discussed in
Chapter 6, which corresponds to the gluonic radius of the proton used in [177]. The
dependence of the model on ¢, will be further discussed in Sec. 6.4 after the discussion
of the fit to .J/¢ production data.

The above corresponds to a leading order description of a dipole interacting with a
proton or nucleus through two-gluon exchange in the ¢-channel. The resulting (S™),
N, and ]—"(QD} are purely real. In principle GTMDs can be complex, with an imaginary
part that is referred to as the odderon contribution. In the forward limit for unpolarized
protons this contribution has to vanish for the dipole case since the odderon contribution
will be T-odd, whereas there is no TMD corresponding to that case [72]. Odderon
contributions may arise for nuclei or from quadrupoles or higher multipoles. Even when
the odderon contribution is considered absent down to a certain small = value, nonlinear
QCD evolution would generate a nonzero contribution for even smaller = values [199].
Therefore, in principle the imaginary part has to be included, but that has not been done
in diffractive dijet production thus far. Later on we comment on the size of the expected
correction from the imaginary part.

The saturation scale in the model will be taken as

A 47TCY§CF
Ne

Zo

Q%(z,b1) = x(2)Q%(b) = X (;)

Q3. T(by) (5.40)

with T'(b) is the profile of the proton or nucleus. For the proton we use a Gaussian
profile

b2
T,(b)) = exp (—2—52) (5.41)
P
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with R, the gluonic radius of the proton [177]. For heavy nuclei the profile is described
by the thickness function [79]

TA(bJ_) = NA/dZ PA <\/bi + 22) (5.42)

which is obtained from the Woods-Saxon distribution

1
pa(r) = T
el

aA

(5.43)

Here, N, is a normalization factor such that T4(b, = 0) = 1. For the numerical
calculations we choose the nuclear radius R4 = 1.12A'/3 fm with A the mass number of
the nucleus®. For lead (A = 208) we use a4 = 0.546 fm and for gold (A = 197) we use
a4 = 0.535 fm. For the proton we use Qg , = 1 GeV?, while (similar to what was done
in [177]) for the heavy nuclei Qgs’ , can be obtained from the relation

[ Qe br) =47 [ @b, QR (ab1) (5.44)

to be evaluated at the same value of x. Here 7 will be considered a free parameter to be
fitted to the data. Explicitly, for heavy nuclei we have

J &b, T,(b1)

2 o 2
Qosa = A"QOS,pm

(5.45)

Requiring [ d?b, T4 (b, ) o R o A*3 we obtain the following expression for the satura-
tion scale

Qgs,A &S An_gQgs,p (546)

which will determine the saturation scale of the heavy nuclei. The general expectation is
that n should have a value near 1.

In Figs. 5.14, we present the function Ay (cf. Eq. (5.29)) for the z-dependent
model. The plot demonstrates that the model is suitable for the considered process,
particularly in the correlation limit where the contribution from A > 1 GeV is negligible
(see also Fig. 5.4). The figures illustrate that the amplitude of the z-dependent model is
smaller compared to the z-independent model. Additionally, they demonstrate that the
amplitude increases as x decreases.

4Using a different nuclear radius will affect the ¢ distribution of the cross section, as shown in [200],
where a larger radius corresponds to a steeper slope.
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Figure 5.14: The function Ar (K, A, z), as described in Eq. (5.29) for the x-dependent
model for (a) x = 102 and (b) z = 1073, considering three different values of A .

5.4.2 Model fit of H1 data

With the above model and cross section expressions we fit the H1 data of [201]. Although
the data is for the production of at least two jets and not fully exclusive, a leading order
description in the measured kinematic regime will be dominated by the production of
two jets in any case. Also the data is not fully for coherent diffraction, but the ¢ values
are so small and the kinematic cuts on the final state proton are such that the additional
light hadrons that may be produced in the process are not expected to alter the process
much compared to the coherent case. The data is consistent within errors with actual
exclusive coherent diffractive dijet production data from ZEUS [188] (to be specific, this
we checked for do/df at § = xp/xp = 0.1). The ZEUS data is less differential however
and therefore not used here. Finally, the H1 data do not have zero skewness, in fact,
it may typically be larger than the z values (the average value for zp =~ ¢ is around
0.03-0.04 [201], whereas the geometric average of the upper and lower value of the =
range is 10~%), meaning that the ERBL region is probed rather than the DGLAP one,
cf. e.g. [137]. These caveats concerning this data should be kept in mind, when we
discuss the tension with the best GTMD model description of the /1) production case
(for which ¢ is also not exactly zero, of course). This is also one of the reasons why we
do not attempt to find the best model fit that can describe both processes simultaneously.
The purpose here is to demonstrate those features that the model fits have in common
and those that are in tension, such that future experimental investigations can focus
particular attention on these aspects.
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The best fit to the ¢ distribution of H1 data [201] is shown in Fig. 5.15. The ¢
distribution is well described by an exponential fall-off, do/dt «x exp(—bt), as also is
the case for the ¢ distribution for J/v¢ production. The slope b is mainly determined
by the gluonic radius of the proton R, and we find that the model gives the best
fit for R, = 0.49 £+ 0.02 fm which leads to the slope b = 6.0 + 0.5 GeV~2 (in [201]
b = 5.89 + 0.50GeV~? is given for the H1 data). Incorporating the statistical and
systematic uncertainties of the data which are simply added in quadrature, we give a
band around the best fit (central value) y = 1.5 £ 0.1.

Within errors, our model gives a reasonable description of the ¢, Q?, K, and y
distribution data, an improvement with respect to the = independent model of our
previous study [68]. In Fig. 5.16, it is demonstrated how the ? description of the
data improves in the = dependent model. In determining the free parameters, we first
determine R,, which governs the slope of the ¢ dependence and does not depend on Y.
This is due to the clear exponential form e~* observed in the ¢ dependence. Subsequently,
we perform a y?/dof analysis (cf. Fig. 6.2) to determine the optimal value of y, which
governs the amplitude of the cross section. The number of degrees of freedom (dof) is
15, taking into account all available data (combined ¢, K, )%, and y), and it leads to
the best fit value (the lowest x?/dof) at y = 1.5. This is in contrast to the x independent
model, where the best fit is obtained solely from the ¢ dependence data. Consequently,
the best fit of the K| distribution in the z dependent model exhibits a slightly lower
magnitude compared to the x independent model, but still falls within the range of the
band, which is constrained by y. Bands around the central value are shown to reflect the
1o error range for the ¢ dependence data. The parameters obtained from fitting the H1
data for both the = independent and x dependent models are summarized in Table 5.1.

Parameters
x independent model x dependent model
X =1.254+0.25 Xx=15+£0.1
R, =0.5fm R, = 0.49 fm
e = (0.5fm) 2 € = (0.4fm)~2
GBW parameterization: (zo/z)*
ro =3 x 107* A =0.29

Table 5.1: Parameters utilized for both the x independent and = dependent models. We
note that in the x independent model, we take ¢, = R,, whereas in the « dependent
model, we consider a fixed ¢, = (0.4fm)~? in line with the gluonic radius of the
proton used in Ref. [177], which is also employed for the .J/¢) production in Chapter 6.
Furthermore, R, = 0.49 fm is obtained from fitting the slope of the ¢-dependence data,
see Fig. 5.15.
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Figure 5.15: The best fit of diffractive dijet production to H1 data with R, = 0.49 fm,
A =0.29, and ¢, = (0.4 fm)>. The central value corresponds to y = 1.5 while the band
correspond to Y = 1.4 and y = 1.6 for the lower and upper band respectively. The
systematic and statistical uncertainties are added in quadrature.
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Figure 5.16: Comparison between the = dependent and x independent model fits of the
Q? and K | distribution data.

5.4.3 Model predictions for EIC

Comparing Figs. 5.8 and 5.15, we observe a significant distinction between the =z
independent and = dependent models in terms of their capability to reproduce the slope
of the *-dependent data (see also Fig. 5.16). The x dependent model captures this
aspect better than the x independent model, as it was intended to do. However, both
models exhibit similar trends in the ¢t and K| distributions. To show the differences
between the = dependent model and the previous x independent model, we present
predictions for diffractive dijet photo- and electroproduction at the EIC, utilizing the
obtained fit parameter values (cf. Table 5.1) and considering the same range of K|
values.

In contrast to the x independent model, here we should consider the center-of-mass
energy s of the process. In this study, we focus on two specific EIC energies: /s = 45 GeV
and /s = 140 GeV, see e.g. [16]. These energies will also be used to provide predictions
for J/1v production in Chapter 6. To investigate the small-x regime, we analyze for
which values of y and ()? these energies probe x < 0.01. From Fig. 5.17 one can see that
for /s = 45 GeV, only a limited range of ) values probes x < 0.01.

In Fig. 5.18(a), we provide predictions for photoproduction (Q? = 0.05 GeV?) at the
EIC for these two center-of-mass energies. The range of y is chosen to be the same as in
Fig. 5.12(a), which corresponds to the y ranges probed by H1. We observe that both the
z-independent and x-dependent models yield predictions with the same slope for the
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Figure 5.17: The range of = values probed by (a) /s = 140 GeV and (b) /s = 45 GeV
at the EIC for Q? € [1,100] GeV? and y € [0.05,1.00]. The dot-dashed line indicates
x = 0.01.

K, dependent photoproduction cross section. This observation is expected because the
K| distribution of the cross section probes a constant z value for both models (hence
a constant Q?). Consequently, for a given Q? value, /s = 140 GeV probe a smaller
r (leading to a larger amplitude), while /s = 45 GeV probes larger x (resulting in a
smaller amplitude). Thus, the /s = 140 GeV case demonstrates a larger amplitude
compared to the z-independent model, whereas the /s = 45 GeV case shows a smaller
amplitude. It is important to note that the z-independent model does not specify the
value of s.

We also present predictions for electroproduction in Fig. 5.18(b), considering @) =
K, as in Fig. 5.12(b) case. However, it is important to note that /s = 45 GeV only
probes a very narrow range of 9%, as depicted in Fig. 5.17(b). Therefore, we do not
provide predictions for electroproduction at /s = 45 GeV. Two different ranges for y are
considered: y € [0.05,0.7], which corresponds to the H1 y range shown in Fig. 5.12(b),
and y € [0.4,0.99], which covers a range where all values of )? in the predictions
(@Q* € 19,81], GeV?) are fully within the desired small « limit. It is worth noting that
the former choice of y range probes 0.083 < x < 0.0007, which is not fully in the small
x limit. Compared to the predictions of the z-independent model in Fig. 5.12(b), the
x-dependent model shows a smaller amplitude but with a steeper slope. This observation
is expected because the (Q? dependence of the z-dependent model decreases more rapidly
compared to the z-independent model, as demonstrated in Fig. 5.16(a).
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Figure 5.18: (a) Predictions of the z-dependent model for photoproduction (vyp) at
two different EIC center-of-mass energies: /s = 45 GeV (blue line) and /s = 140 GeV
(red line). (b) Predictions of the z-dependent model for electroproduction (y*p) with
Q. = K, at /s = 140 GeV for two different choices of y ranges. The bands correspond
to the values of y = 1.5 £ 0.1.




Probing gluon GTMDs in exclusive
coherent diffractive J/¢) production

Coherent diffractive processes form a promising way to probe GTMDs. For example,
exclusive coherent diffractive dijet production in electron-proton collisions, which was
the subject of the previous chapter, has been suggested as a probe of gluon GTMDs
in [23] (see also [176]). By measuring the transverse momenta of the two jets one can
access the off-forwardness as well as the transverse momentum distribution of gluons,
albeit the latter only in an indirect way through a weighted integral where the weight is
a function of the observed momenta (see Sec. 5.2). Exclusive coherent diffractive .J/1
production in electron-proton collisions can also be used [202,203], but in this case
the weight of the integral cannot be varied substantially (double .J/¢) would be more
suited for that), in that sense it is closer to processes like DVCS that probe GPDs, which
are fixed integrals of GTMDs [170]. Nevertheless, if the underlying GTMD description
is valid, then the various processes should be describable simultaneously by the same
GTMDs. There is data from the H1 and ZEUS experiments of HERA, which can be used
to check this to a certain extent. In this chapter we will attempt such a combined analysis
and reach the conclusion that there is considerable tension between the optimal dijet
and J/v descriptions. This tension can be due to the theoretical assumptions that go
into the GTMD description, such as the selected GTMD model form or the model for the
J /1 wave function, but can also have an experimental origin. This offers an excellent
opportunity for the future U.S.-based EIC as it can provide additional and more precise
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data on both processes in different kinematical regions. Other tests of the underlying
GTMD description can come from UPC data of RHIC and/or LHC. Here it is important to
ensure that the processes are exclusive and coherent diffractive which means the proton
or nucleus has to remain intact.

In the previous chapter we have considered a MV based (small x) model in order
to obtain a description of diffractive dijet production data of H1. Although the data is
neither fully exclusive, nor fully coherent, the kinematics is such that in leading order a
GTMD description is expected to be appropriate. The z-independent model was able
to describe the ¢ dependence and the transverse momentum of the jets, but the Q?
and y dependence was not described very well. By incorporating an x dependence in
the model following the GBW parameterization, a better description of the Q2 and y
dependence was obtained. In this chapter we will show that the z-dependent GTMD
model can also provide a good description of the ¢ dependence of the exclusive coherent
diffractive J/v production data of H1 and ZEUS for different (* values, including the
photo-production case. However, it turns out there is no choice of parameters that leads
a good description of the dijet and J/¢ data simultaneously. The tension is solely in
the slope of the exponential fall-off in ¢, which in the model is entirely governed by the
width of the proton profile. We do no intend to resolve this tension by adjusting the
model, because there may be other reasons for the tension beyond the GTMD model
and future data will be needed to confirm or refute the tension. We use the optimal
model for the J/1 data to obtain predictions for the EIC and for UPCs, rather than the
model that has the minimal tension with the dijet data as it would not yield a satisfactory
description of either process.

In this chapter, we will only discuss the .J/v) production case with the z-dependent
model. Our aim is to use as much as possiblethe fit parameters obtained from the dijet
case to also describe diffractive J/¢ production data at HERA and LHC. The diffractive
J /1 production cross section expression in terms of GTMDs is given in Sec. 6.1, followed
by discussions about certain phenomenological corrections often considered. The fit
results to H1 and ZEUS ~*)p data are presented in Sec. 6.2 We additionally perform a
fit of the model to the ALICE Run 2 data on mid-rapidity UPCs off Pb nuclei in order
to incorporate the A dependence into the model. This analysis is presented in Sec. 6.5.
Based on the obtained fits, we provide predictions for v*)p in Sec. 6.6 at the EIC and for

UPCs at RHIC, LHC (at Run 1 center-of-mass energy), as well as the EIC with Au nuclei.
1

!The results in this chapter are largely based on [172].
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Figure 6.1: Vector meson production.

6.1 Exclusive coherent diffractive .J/¢) production cross

section
The differential cross section of exclusive coherent diffractive vector meson production
as a function of momentum transfer squared ¢t = —A? (for ¢ = () can be written
as [78,202]
dg%*g—“/l’ 1 “psVpl|?
i = 1o AR () B 6.1

expressed in terms of the elastic scattering amplitudes

1
App =2 / s / deL/ ff; (W 0,), e = Gam 2 (e by )],

’ (6.2)
for the transverse/longitudinal polarization (7'/L) of the virtual photon. Here b,
denotes the impact parameter, S(r,, b, ) is (the real part of) the dipole-proton scattering
amplitude defined in Eq. (5.39), and (V¥§ V), , is the overlap between the photon
and the vector meson wave functions which depends on the transverse dipole size r |,
momentum fraction z carried by the quark, the quark mass m/, the vector meson mass
My, and the photon virtuality Q2. We are working in a frame where the colliding virtual
photon and proton have zero transverse momentum. We note that in Eq. (6.2) we use
the phase factor e(z=?)7+-A1 ag suggested in [170], rather than ¢0-?)71-AL a5 used
in [202]. In practice, it does not make much difference though. In models studied
by [204], the cross section amplitude using the phase factor from [170] is only 3.5%
larger than using the one from [202]. Note that the impact parameter b’ = b, — (1 —z)r,
corresponds to the distance between the transverse center of longitudinal momentum of
the proton/nucleus (R, = 0) and the transverse center of longitudinal momentum of
the dipole (zx, + (1 — 2)y_), rather than simply the center of the dipole corresponding
to b, defined earlier, cf. [139,166,181].
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The photon-vector meson wave functions overlaps are expressed as [202]

(Ty0), = éfeWc—z) [m3Ko(er)or(ry, z) — (2° + (1 — 2)*) eK1(er )0y, dr(rL, 2)]

2

2_y
Y e 6.3)

(U W), = éfe%%(l—z)@ffo(em Myo(re, =) + 030775

where ¢ ; are model dependent scalar functions and ¢ is usually taken to be O or 1.
Because the wave function overlap of the longitudinal part is linearly dependent on @),
the chosen value of § does not affect photoproduction (()? ~ 0). However, the chosen §
value significantly affects the large (Q? cross section as the longitudinal part becomes a
larger portion as Q) grows: the second term of (U}, W), grows faster than the first term
when 6 = 1. In this study, we will use the so-called Gaus-LC (GLC) and boosted Gaussian
(BG) vector meson models [77,202]. The GLC model is given by:

2

ér(ri,z) = Npz*(1—z)%exp {—;?L%] (6.4)
2

op(ry,z) = Npz(l—z)exp {—;ﬁ%} : (6.5)

For V' = J/v the parameters are listed in [202]: Nr = 1.23, N = 0.83, R2 = 6.5 GeV~2,
R? = 3.0 GeV 2, with m; = 1.4 GeV. The BG model is given by [205,206]:

oro(ri,z) = Nrpz(l—z)exp [ai(2)r] + ax(2)] (6.6)
. 22(1—2) m%R2 m?R2 . .
with a,(2) = —=57> and ay(z) = —g%0-5 T - The parameters are listed in [202]

(see also [2071): Ny = 0.578, N, = 0.575, R? = 2.3GeV 2, and My = 3.097 GeV. For
both models the parameters are fixed by requiring that the wave function is normalized
and that the decay widths are reproduced (for details on this we refer to [202]). We also
note that other vector meson wave functions and potential models have been considered
in order to describe diffractive production of J/¢> and other heavy quarkonia, see for
example [77,208-214]. These descriptions can in principle also be translated into GTMD
model expressions, which possibly allows for a more direct comparison of models (rather
than a comparison of how they describe the data), but that is not our objective here.

The objective of this study is to investigate a gluon GTMD description of diffractive
processes. For this purpose we employ a relatively generic model for the gluon GTMD
at small x values. Our primary goal is thus not the model itself. Rather, we aim to
examine the feasibility of a unified GTMD description for both diffractive dijet and J/1
production data, identify agreements, differences, and potential tensions, and provide
predictions to help identify the underlying causes of any discrepancies, using a generic
GTMD model. Additionally, we aim to highlight the unique insights that can be gained
from these processes regarding GTMDs that go beyond the scope of GPDs. As far as
we are aware, these aspects have not been previously examined in this manner, which
enhances their significance, especially for the EIC community and for investigations
related to UPC at LHC and RHIC.
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Before moving on to the description of the data, we make some observations about
whether this process probes a GPD rather than a GTMD. If we restrict to the angular
independent part only, then we can express Eq. (6.2) as?

¥

1

5N / dZ/dQ?”L (U ¥s)r . (TJ_7Z>/dQQJ_JOOQJ_+5L|TL)-F(ED](x7QL7AL)7
cJO

(6.7)

Ar, =

with , = (3 — 2)A . This expression shows that also in diffractive J/+ production
one probes an integral over a GTMD with an integrand that depends on the kinematic
variables of the process (in this case z and A ;) and hence different integrals of the
GTMD can be obtained in this way, even though with less possibilities for varying the
integrand than in the dijet case. This also means that the expression cannot be given
in terms of a GPD (which does not depend on z), only in an approximation, as pointed
out by [170]. As the weight of the integral over the GTMD depends on A, through
0, and A, is generally small and only relevant in a small kinematic region (and the
region around z = 1/2 contributes the most), this dependence may be ignored to good
approximation leaving a fixed integral over the GTMD, which however still is not an
expression in terms of the gluon GPD H, through Eq. (4.30). This would require small
lg. + d.|, for which we can consider the first order expansion of the Bessel function
Jo(lgr +dL|r)~1— %, and use the fact that [ d2q, F\ ' (x,q.,AL) = 0 [170],
to find that

™

1
Arp g =~ 3N /0 d,z/dQ’rlri (\IJ*V‘IJ’Y)T,L (’rl,z)/dquqif([)D](x,qL,AJ_)

T30

1
= / dz / dPrort (U5, (ro, 2) aHy(x, AL, (6.8)
c 0

where in the last step we used Eq. (4.30). It should be stressed that this is an approxima-
tion that depends on the relevant range of the ¢, integration. Therefore, following the
discussion at the end of chapter 4 we will consider the GTMD expression rather than the
approximate one in terms of the GPD. Diffractive scattering in terms of GPDs has been
studied in [158], where a different limit is considered though: A, — 0 while £ # 0.

6.2 Analysis of coherent diffractive J/v production data

The total v*p cross section for .J/v production studied by H1 [215] is defined as o, =
or+eop withe = (1—-y)/(1—y+3y?) (with (¢) = 0.99 in [64,202]), while by ZEUS [216]
it is defined as oy = o7 + o,. Here we will also use ¢ = 0.99, which corresponds to
(y) ~ 0.13. This differs from the dijet case where a range of y values is considered and
the = value depends on y. The z value used in the .J/v production case is determined

2Gee the discussion in footnote 2.
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by [78,217]

M2 M2 2
T =21xp (1—1— Q;/) = ngéi (6.9)

We recall that o, = 0 for the photoproduction case.

Diffractive vector meson production at HERA and LHC has been studied extensively
with various model approaches, such as [78,204,207,218-224]. It has been shown in
[202,203,225,226] that MV-like models can describe diffractive vector meson production
well. In most model studies the dipole scattering amplitude is real and hence A}TE_’V”
imaginary, but as mentioned in Sec. 5.4.1, in reality there will be an imaginary part. The
phenomenological correction 1+ 3% is introduced to account for that contribution. Using

dispersion relations an expression for /5 has been obtained [217,227,228]:

1n [A}ff‘”p]

o [L] (6.10)

A
Br. = tan [%} ; A =

This expression implies that only x dependent elastic scattering amplitudes yield nonzero
(. Phenomenological studies of HERA data [217, 229, 230] find that the real part
correction (1 + %) is anywhere between 10% and 25%. Given the large uncertainty
in the model fits that we obtain from these HERA data, this correction will not be of
much importance. Therefore, we will first fit the data without this correction and then
estimate the size of the correction for that fit afterwards. In this way we find that in our
case (1 + (8?) is in the 10-15% range. More details on this will be presented below.

Another correction often considered comes from taking into account nonzero skew-
ness. The off-forwardness A = P’ — P for zero skewness, i.e. £ = —A*/(P'" + P*) =0,
means A = A and ¢t = —|A?|. In practice ¢ will not be exactly zero. Therefore, in
order to correct for this the factor R? is included, where R, for gluons at small = and
small ¢ is given by [228]

Hy(x=¢¢) 2" T(\+3)
Hy(x=260)" m T(\+4)

where H,(z,¢) is the standard (helicity non-flip) gluon GPD (now for nonzero skewness,
unlike in Eq. (4.30)). This factor Rz is a substantial correction for HERA kinematics,
found to be in the order of 40-70% [217,229,230]. We note though that the value
H,(z = ) is at the boundary of the ERBL and DGLAP regions, where the function
is continuous but not differentiable, hence changing abruptly, so a slight change in =
with respect to ¢ or vice versa can matter considerably. This introduces an uncertainty
regarding the actual correction that is needed, as the data span a range of x and ¢
values. Furthermore, the specific value x = 2¢, which is in the DGLAP region, stems
from the GPD analysis of [231] for which the region around this value is found to make
the dominant contribution. This is quite different from our GTMD approach for which
x = 2¢ plays no dominant role and the ratio H,(z,§)/Hy(x,0) (i.e. with the same z value
in numerator and denominator) for small nonzero £ seems more appropriate to consider.
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Moreover, the data are more likely in the ERBL region (z < &), like for the dijet data (see
discussion in Sec. 5.4.2). However, strictly speaking we do not know exactly what is £ in
the J/v case, because that is not clearly specified in the experimental papers. Hence,
given these considerations, here we do not include the Rg correction factor in this paper
and also not correct for nonzero skewness in another way. Given the large uncertainties
in the model fits (due to the large uncertainties in the data), this is not expected to be
essential.

6.3 Combined fit of diffractive dijet and .J/¢) production

Having obtained the fit parameters for diffractive dijet production in Chapter 5, our next
objective is to apply these parameter values to fitting the data for J/¢) production. Thus
far, no previous phenomenological study has simultaneously investigated both types of
processes, despite the potential for both to be described within the same GTMD-based
approach. In this section, we will demonstrate our method for performing a combined fit
of both processes using this model. Additionally, we will reveal the presence of tensions
that arise and show that the model alone cannot resolve them. Our focus will be on
identifying the specific areas where these tensions emerge and discussing the unresolved
aspects within this particular context.

To begin with, our emphasis will be on the ¢ slope of both processes, as they both
exhibit a similar functional form of do/dt ~ exp|—bt]. As in the dijet case, the model
parameter R, of the proton profile directly determines the ¢ slope of the differential cross
section for J/vy production. However, it turns out that the latter is found to be quite
different from that of the dijet case, with the .J/¢) production slope substantially smaller.
They are only compatible at the 30 level, hence there is considerable tension. Due to
this aspect of tension, the uncertainty in the model parameters is larger than what is
suggested by studying only one of the two types of process. Future data is needed to
resolve this issue.

In Fig. 6.2(a) the x? per degree of freedom (dof) as a function of y is shown for the
case that a fit is made to both the photo- and electroproduction data®. It can be seen
that also in this case GLC gives a slightly better minimal y?/dof and prefers a y close
to the one of the dijet case. Therefore, the GLC model seems to be preferred. However,
when it comes to the ¢t and IV slope, all vector meson wave function models require ¥,
R, and X values that are smaller than those obtained from the dijet data. This is clearly
visible in Fig. 6.2(b) where we show the value of b of d?c/dt dQ? x e~ for ep collisions,
where b is solely determined by R, in Eq. (5.41).

The preferred proton profile for the dijet case is R, = 0.49 fm. For the .J/¢ case we
choose two different values of R, due to the fact that the photoproduction data exhibits
a somewhat steeper slope (R, = 0.41 fm) compared to the electroproduction data
(R, = 0.40 fm), although this difference is not statistically significant, see Fig. 6.2(b).
Here it should be recalled that the J/¢ data is for fixed y (y*)p) and the dijet data is y

3We thank Gerco Onderwater for useful discussions on the fits.
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integrated (ep) (cf. Fig. 5.15(d) for the y dependence of the dijet data). The d?c/dtdQ>
slope data points in Fig. 6.2(b) are only available for J/¢) production [216,232,233],
while the Q% dependence of the dijet slope is extracted from the fit (see Fig. 5.15). The
dijet slope data is given only for Q? and y integrated which is b = 5.89 & 0.50 GeV 2. The
bands of the ¢ slope (b) for the J/1) case shown in Fig. 6.2(b) reflect the aforementioned
R, values, while for the dijet case the bands correspond to the 1o error in R,, i.e.
R, = 0.49 £ 0.02 fm, for which a larger R, gives a larger b. The fact that the b slope of
each process is not completely constant in the range of (0.01 GeV)? < ¢ < 1GeV? has
also been included in the bands, see Fig. 6.7 for the ¢ dependence of the slope.

N |
6r ':' J/1 BG Rp = 0.40fm —op — €'jip s ZEUS 2004
w A\ " J/¢ BG Rp = 0.41fm — (%)
. ¥'p = J/¢p [GLC]
i J/4 GLC Rp = 0.40 fm 7k o ZEUS 2002
. — e
J/9% GLC Rp = 0.41 fm 7P = J/¢p [BG]
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Figure 6.2: (a) x?/dof vs y for dijet production (combined @Q?, ¢, K, , and y dependence
data [201] with dof=15) and .J/+ production (combined photo- and electroproduction
data [215,216] with dof=35) for two different possible values of R,. (b) ¢ slope (b)
of the model as a function of Q? for the dijet and J/+ cases. The .J/¢ data are taken
from [216,232,233]. Note that the diffractive dijet production case is y integrated,
while the .J/v case is evaluated at W = 90 GeV and for fixed y. The slopes of both dijet
and J/1 cases are calculated in the range of (0.01 GeV?) < t < 1 GeV~.

Our model shows that the dijet slope is slowly increasing in Q* while for J/4 it is
steadily decreasing. This tension cannot be resolved with the present set of just three
free parameters. It is also clear that it cannot be attributed to the vector meson wave
function, but stems from the proton profile. Of course, it may be (in part) due to the
aforementioned caveats about the dijet data, but without additional future data, that
can likely not be clarified.

We also constrain the combined fit to the data on the W dependence of the pho-
toproduction of J/1¢) production. For both GLC and BG wave functions, the slope of
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the W dependence data is primarily governed by the A parameter, as illustrated in Fig.
6.3 Therefore, the determination of the parameter A relies on fitting the slope of the
W dependence data of the total cross section for .J/¢) photoproduction from HERA
and LHC. Importantly, there exists a pivotal point where any chosen \ yields the same
value. This point corresponds to (zo/z)* = 1 in Eq. (5.38), and its location depends
on the chosen value of z,. In this analysis, we select 2y = 3 x 10~ obtained from the
GBW parameterization, which corresponds to W ~ 178 GeV for M/, = 3.1 GeV in this
particular model. It turns out that unlike the dijet case, this data favors a smaller value
of A = 0.22 compared to Agpw. The fit result to the W dependence data is shown in Fig.
6.4(b). The complete parameter values for each wave function obtained by fitting the
model to the ¢ and W dependence data are summarized in Table 6.1.

: L /P
Parameters | Diffractive dijet
| GLC | BG
~ 1.5£0.1 R,=041fm | 1.40 —1.45 | 1.05 —1.10
X R, =0.49 fm R,=040fm | 1.45—-1.50 | 1.10 — 1.15
A 0.29 0.22
€ (0.4 fm) 2

Table 6.1: Parameters of the z-dependent model employed in diffractive dijet and J /1)
production.
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Figure 6.3: The slope of the total .J/v¢) photoproduction cross section as a function of W
for each wave function: BG (dashed lines) and GLC (solid lines) for different values of \.

We note that trying to obtain a better fit of the W dependence of the total cross
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section will lead to a less good description of the photoproduction differential cross
section do /dt. As the model is probably less appropriate for the integral over all ¢, we
have given preference to the latter. We refer to [200] for a combined description of H1
data of total photoproduction cross section and the differential cross section for both
coherent and incoherent diffraction, taking into account proton shape fluctuations.

6.4 Model description for .J/¢) production

In Fig. 6.4 we show that our MV-like model with optimum fit parameters y, R, and
A obtained from Sec. 6.3 and without the mentioned corrections (cf. Eq. (6.10)) can
describe the ¢ distribution data of HERA [215,216] and of the data on the total cross
section as a function of W from HERA (H1 [234] and ZEUS [233]) and LHC (ALICE [235]
and LHCb [236,237])%, even though it is not optimal for the W dependence fit. As
discussed in Sec. 6.3, the ¢ dependence of the model is controlled by the proton profile
R,, the W slope by A, while the amplitude of the cross section is y dependent where
large y means a larger cross section. Here we give preference to the description of the
photoproduction data, i.e. the parameters are obtained from a simultaneous description
of the ¢ and W dependence of the photoproduction data, where there is only a very
narrow range of R, and y values that describe those data simultaneously. If one would
include electroproduction data, the parameters would change considerably (cf. Fig.
6.2(a) such that the photoproduction data would be described less well. In this case,
we do not solely rely on the minimum x?/dof analysis. Instead, we consider the y
value which is close to the minimum, and take a band around it to better describe
the photoproduction data. As depicted in Fig. 6.4, if the electroproduction data is
incorporated in the y?/dof analysis (cf. Fig. 6.2), it would favor smaller y values,
because the electroproduction data presented in Fig. 6.4 indicates a preference for
smaller y values. For instance, in the x?/dof analysis with R, = 0.41 fm, the minimum
value of y for GLC is 1.34, but in our final fit to the data, we utilize y = 1.40 — 1.45 (see
Table 6.1).

Here we note that the H1 and ZEUS data sometimes differ quite a bit from each
other, when comparing data sets at the same or very similar values of ()%. Therefore, we
prefer to let the Q? dependence be determined by the model after the parameters are
fixed at Q? = 0.05 GeV>. It then turns out that the ¢ dependence is well described using
GLC for all values of Q) considered, while BG overestimates the data for large Q2.

We show bands of values of x and R, which describe the photoproduction data
qualitatively equally well within the errors of the data points. However, they should
not be interpreted as 1o error bands, as they are not obtained from a fit to all data
points through a minimization with respect to all parameters simultaneously. Instead,
we determine R, by adjusting it to match the slope of the ¢ dependence observed in
the photoproduction and electroproduction data from H1 and ZEUS, cf. Fig. 6.4(a).
Similarly, we determine A by tuning it to fit the slope of the ¥ dependence observed

#We thank Cristina Sdnchez Gras for helping us reproduce the LHCb data points.
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Figure 6.4: Left: GTMD model fit of the ¢ dependence of exclusive coherent diffractive
J/v¢ production data from H1 [215] and ZEUS [216], for two vector meson wave
function models: GLC and BG. The systematic and statistical uncertainties are added
in quadrature. The bands correspond to the ranges of values of x and R, specified in
the text. Right: Fit of the model to the ¥ dependence of the total J/¢) photoproduction
cross section at HERA and LHC [233-237]. The data are only shown for x < 0.01 which
corresponds to W > 30 GeV (= 10M /).

in the total photoproduction data from LHC and HERA, as shown in cf. Fig. 6.4(b).
Subsequently, we obtain i through a x? analysis, as illustrated in Figure 6.2. Given
the uncertainties in the data and the tension with the dijet data, a more sophisticated
determination of the parameters and the error bands does not seem to be called for at
this point. To be specific about the bands, for GLC we use xy = 1.45 — 1.50 for R, = 0.40
fm and y = 1.40 — 1.45 for R, = 0.41 fm, while for BG we use y = 1.10 — 1.15 for
R, =0.40 fm and xy = 1.05 — 1.10 for R, = 0.41 fm. We choose two different possible R,
because of the fact that the photoproduction data prefers a steeper slope (R, = 0.41 fm)
than the electroproduction data (R, = 0.40 fm).

We emphasize that, unlike in the dijet case, for the J /1 case, the cross section is more
sensitive to the chosen value of ¢,, which means that the adopted wave function of the
J /1 is broader than the gluonic radius of the proton (to be specific, for the models used
here, the GLC wave function is about twice as broad, while the BG wave function is 1.5
times broader, see Fig. 6.5). For the dijet case, changing ¢, from (0.4 fm)~2 to (0.5 fm) 2
results in a 4% decrease in the cross section at ¢ ~ (0.01 GeV)? and a 3% increase in
the cross section at ¢ ~ (1 GeV)?, indicating that K, is indeed large enough to ensure
only contributions from small enough dipoles. In addition, the slope of the exponential
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fall-off in ¢ remains almost independent of ¢, as shown in Fig. 6.6. As said, for the J/1
case, the cross section is more sensitive to the chosen value of ¢,, where changing ¢, from
(0.4fm)~2 to (0.5 fm) 2 results in almost a 30% increase in the cross section. Fig. 6.7
demonstrates that even though GLC wave functions exhibit a larger change in slope
compared to BG, it still remains relatively small. For instance, when changing from
e = (0.4,fm)~2 to ¢, = (0.5, fm) 2, the slope of the GLC changes by approximately 1%
to 2%, whereas for the BG, it changes by less than 1%. For heavier quarkonia (which
can be investigated at the EIC too) the adopted value of ¢, should matter less. We note
that the change in amplitude due to a change in ¢, can be compensated for by a change
in the free parameter y which makes the precise value of ¢, less relevant. Here we try to
keep the values of ¢, and y as similar as possible to the dijet case. Since also for the J/1
case the slope remains largely unchanged for different values of ¢,, we conclude that the
damping factor is in any case not relevant to the problem of the tension between the
slopes.

GLC b7 X e_"”i; €. = (0.4 fm)_2 BG dr X e""’"i; €. = (0.4 fm)_2
""" (ﬁfr with U.SRT mEmEE ¢T with 0.69R
__0a5F  eeeas b7 __0.15p
5 g
o o
| Il
n 0-10F n 010
5 3
E E
§ o0.05} § 0.05}
0.00F 0.00F
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Figure 6.5: The widths of the GLC and BG wave functions as a function of the dipole
size r, for z = 0.5, compared with the dipole size cutoff ¢, of the model. Here, Ry and
R represent the free parameters of the GLC and BG wave functions, respectively, see
Egs. (6.4) and (6.6). The figures show that the width of the BG and GLC wave functions
¢r (black dashed lines) are equal to ¢ times the cutoff exp[—e,r?] (red lines) if the free
parameters of each wave function are decreased to 0.5R; for GLC and 0.69R for BG
(blue dashed lines).
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Figure 6.6: Sensitivity of the slope and amplitude of the cross-sections to changes in
e for (a) diffractive dijet and J/v¢ production: (b) BG wave function, and (c¢) GLC
wave function. The lower section of each figure displays the differential cross section
multiplied by e and normalized to 1 at ¢ = (0.01 GeV)2. The lower sections show that
the slopes of both dijet and .J/« production hardly change with the variation in e,.
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Figure 6.7: The slope of the exponential fall-off of the cross section (b) for different
values of ¢, in the case of (a) BG and (b) GLC wave functions. The slope, which is not
completely constant, is calculated at a given value of ¢ with respect to ¢ = (0.01 GeV)?.




92 Probing gluon GTMDs in diffractive J /v production

In Fig. 6.8, we present the model description of the combined W dependence data
of the total J/v photoproduction and contrast it with the JMRT (Jones-Martin-Ryskin-
Teubner) NLO [238,239] and the power law fit to H1 [240]. The power-law function
representing the photoproduction cross section, which was obtained through fitting the
H1 data, can be expressed as follows:

W é
Gopsipip = N (90 GeV) (6.12)

with § = 0.67 £ 0.03 and N = 81 + 3 pb.

LHCb (/s = 13 TeV)
LHCD (v/s = 7 TeV)
ALICE

ZEUS

500F

4 » 4 = @

200¢F

o (nb)

100¢

50¢

mmm— power law fit to H1
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102 10°
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Figure 6.8: Comparison of the model description of the combined 1V dependence data
to the JMRT NLO model [238] and the power law fit to H1 [240]. The data points are
obtained from [236,240].

We note that the total photoproduction cross section o, , /4, as a function of W of
LHCD for both /s = 7 TeV and /s = 13 TeV presented in Figs. 6.4 and 6.8 is derived
from the central exclusive production (CEP) cross section of J /v in pp collisions o, 7y
(or any vector mesons 1)) which is related as [239]

dn dn

%Uw%d)p(wﬁ + T(W—)k—dk__gwﬁtbp(W—), (6.13)

Oppsup = T(We)ky
where r, kx = My/2exp[£Y], dn/dks, and W} = 2ki./s denote the gap survival
factor, photon energy, photon flux, and the invariant mass of the photon-proton system,
respectively. The necessary parameter values are listed in [236,239], see also [241].

For our model, the total photoproduction cross section is obtained by integrating the
differential cross section do/dt in Eq. (6.1) up to t = 1.2 GeV? at Q* = 0.05 GeV* which
correspond to the kinematic regime probed by HERA [215], without considering the
[ and skewness corrections. As expected, the GLC model provides a better fit to the
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data compared to the BG wave function. However, at low W, the GLC model slightly
underestimates the data and falls below the description provided by the JMRT, which
incorporates NLO QCD effects. The JMRT NLO is shown to follow the trends of the data
across the entire 1 range. Nevertheless, both BG and GLC wave functions still offer a
better description of the data compared to the power law fit, which exhibits deviations
from the data at both low and high .

In Fig. 6.9 we show the W distribution resulting from the model fits to the ¢-
dependence. Both models can describe well the small Q? data (photoproduction). For
electroproduction GLC overestimates the data by at most 20, while BG shows a larger
deviation from the data, as shown in Fig. 6.9(b).
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Figure 6.9: W dependence of the model fits compared to the H1 data for (a) photopro-
duction and for (b) (Q?) = 8.9 GeV? for the two different wave function models and the

same model parameters as in Fig. 6.4.

Using the obtained fit parameters, we also fit the model to the data of the total cross
section of photo- and electroproduction from H1 [215] and ZEUS [216] experiments. The
fit is performed for both GLC and BG wave functions, with a fixed center-of-mass energy
W.,, = 90 GeV. It is evident that the model effectively describes the data throughout the
entire range of ()%, as demonstrated in Figure 6.10. The cross section is determined by
integrating up to ¢ = 1.2 GeV>. In this analysis, we use R, = 0.4 fm, which corresponds
to y = 1.45 — 1.50 for GLC and y = 1.10 — 1.15 for BG, see Table 6.1.
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Figure 6.10: Fit of the model to the total cross section of v*)p — .J/4p as a function of
)? data from H1 [215] and ZEUS [216] for both GLC and BG wave functions.

6.5 Coherent Diffractive .J/¢) Production in UPCs at midra-
pidity

Ultra-peripheral Heavy Ion Collisions at LHC and RHIC can be used to study photon-
nucleus collisions. In order to make sure that one is dealing with exclusive coherent
diffractive production of a J/1 there need to be rapidity gaps between the .J/¢ and
both nuclei. We consider the /¢ to be produced at mid-rapidity which is also known
as CEP, characterized by the presence of two (pseudo)rapidity gaps, as depicted in Fig.
6.11. Note that a vector meson like the .J/v) cannot be produced from two photons. The
central rapidity range of the LHC is |Y| < 0.8 and at RHIC |Y'| < 1. Here we simply take
Y = 0. In that case the colliding photon and gluon will both have an energy of My /2,
which means that the gluon has a momentum fraction of -, = My /,/syy. For the LHC
Pb-Pb UPC data [242] at /syy = 5.02 TeV (Run 2) this corresponds to z, = 6 - 10~* and
at \/syy = 2.76 TeV (Run 1) to z, = 0.001. For the RHIC Au-Au UPC data at \/syy = 200
GeV this corresponds to z, = 0.015, which is at the edge of the range of applicability of
the MV-like model that we are using. We will use the ALICE data to fit » and then obtain
predictions for RHIC, keeping in mind this caveat.

The photoproduction cross section in A-A UPCs at midrapidity (Y = 0) can be related
to the photonuclear YA cross section as [242]:

dZO'J/¢
dYdpz

dOZYA

T (6.14)

ly=0 = 2n.a(Y = 0)

with pr is the transverse momentum of the .J/¢ and n., is the photon flux averaged
over the impact parameter range corresponding to the UPC centralities. The factor 2 in
front of n,, is to account for the fact that there are two possible photon sources [243].
The photon-nucleon center of mass energy squared W,y for A-A UPCs at mid-rapidity is
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Figure 6.11: Diffractive J/¢ photoproduction at mid-rapidity (CEP) mediated by the
pomeron IP. The plot under the diagram shows the distribution of particles in the
azimuthal angle (¢) vs pseudorapidity (7) plane, revealing two gaps in (pseudo)rapidity
for the final state particles. The shaded area represents the region of pseudorapidity of
the produced particles. Reproduced from [241].

determined by W2 = My /sy [239,244]. For LHC Pb-Pb UPC data at \/syy = 5.02
TeV this corresponds to W,y = 125 GeV and at \/syn = 2.76 TeV to W.,n = 93 GeV, while
for RHIC Au-Au UPC data at /syny = 200 GeV this corresponds to W,y = 25 GeV.

In Fig. 6.12 we provide a fit of our model to the ¢ dependence of the differential
cross section d?c/dY dt [242] for coherent diffractive J/+ production at Y = 0 in ultra-
peripheral Pb-Pb collisions at \/syy = 5.02 TeV. According to [242], various models
can describe the ALICE data well. One such model is the leading-twist approximation
(LTA) of nuclear shadowing [245,246], which combines the Glauber-Gribov formalism
with the phenomenology of photon diffraction from HERA. The lower bound of the
GLC fit in our model is close to the LTA (low shadowing) model result with a slightly
steeper slope, as shown in Fig. 6.12(b). Another model, the b-BK [204, 247, 248],
was proposed based on the solution of the Balitsky-Kovchegov equation [84,87] with
an impact parameter dependence. Another study that incorporates nucleon shape
fluctuations [200] also provides a good fit to the data, including the W dependence of
the coherent .J/v¢ photoproduction total cross section and the ¢ distribution of coherent
and incoherent J/¢ photoproduction data from HERA. While the former two models
utilize the BG wave function, our model provides a better description of the ¢t and W
dependence data using the GLC wave function. Another wave function model based on
the Buchmiiller-Tye potential [214] that uses 7-b correlation [249] with two different
parameterizations: GBW [26,27] and BGBK [250], also gives good agreement with the
data [251]. Differences in the magnitude and slope of the cross section between other
models and ours could also be due to the use of different nuclear radius parameters.

Extrapolating the fit gives a prediction of the first diffractive minimum (or dip) to be
at t ~ 0.016 GeV>. We find that the dip position is determined by the target profile R4,
such that it will move towards a smaller ¢ value for larger R,. The fit turns out to be
very sensitive not only to the value of R4, but also to the power of A. With the fit of the
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Figure 6.12: (a) Fit of the model to ALICE (Run 2) data [242] of coherent diffractive
J /1 production at midrapidity in ultra-peripheral Pb-Pb collisions at /syn = 5.02 TeV.
We use the same parameter values as in Fig. 6.4, but fit the additional parameter 7 that
determines the saturation scale for nuclei. (b) Ratio of the model fit to the ALICE data
for lower and upper bounds of each wave function.

model to the ALICE data, we find that » = 0.96 4+ 0.01 for GLC and n = 0.95 + 0.01 for
BG give the best fit, see Fig. 6.12. The values of 7 for each wave function are determined
through a y?/dof analysis, as shown in Fig. 6.13. Therefore, our model fit indicates that
the saturation scale behaves like Q? oc A%?7=930 not A/, The latter in fact does not
provide a good fit. Following Eq. (5.46), the saturation scale Qg, , for the heavy nucleus
A depends on 7, R4, and R, and is in all cases found to be between 1.5 and 1.9 GeV*.
The choice of proton and nuclear profile, particularly the Gaussian proton profile used in
our study, can affect the fitted n value and may differ with different profiles. We did not
attempt to find profiles that would lead to » = 1 and do not exclude that that is possible.
To obtain the actual value of 7, data for intermediate A values is needed. Here, we only
use A = 208, which is insufficient to draw a definite conclusion about the A dependence.
The saturation scales used for each 7 for Au and Pb nuclei obtained from Eq. (5.44) are
summarized in Table 6.2.
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AR Em) [ [@wGev) | [ar,@m) [ 5 [ Qha(Gev?)

Pb 0.40 0.94 1.54 Au 0.40 0.94 1.52
0.95 1.63 0.95 1.60
0.96 1.72 0.96 1.69
0.97 1.81 0.97 1.78

Pb 0.41 0.94 1.62 Au 0.41 0.94 1.60
0.95 1.71 0.95 1.68
0.96 1.80 0.96 1.78
0.97 1.90 0.97 1.87

Table 6.2: Saturation scales for Pb and Au with their dependence on 7.
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Figure 6.13: Determination of 7 for the (a) BG and (b) GLC wave functions.

6.6 Predictions

We will present predictions for processes that are relevant at RHIC, LHC, and EIC,
utilizing the parameters obtained from the previous analysis.

6.6.1 ~")p predictions for the EIC

With the obtained model fits to the H1 data of the electro- and photo-production
processes in Sec. 6.2, we provide predictions for the same processes at EIC. The EIC
will cover a different kinematic region, although not significantly different enough
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for evolution to play a significant role®. Fig. 6.14(a) shows the predictions without
the phenomenological correction 1 + 4% and Fig. 6.14(b) with. In Fig. 6.15 we show
the correction by itself. The predictions presented in Fig. 6.14 pertain to two distinct
center-of-mass energy values, specifically /s = 45 GeV and /s = 140 GeV, which are
the standard values assumed for EIC predictions. For the inelasticity variable y, we have
selected values of approximately 0.79 and 0.13, which fall within the range of y values
investigated in the HERA experiments. To explore the small-z, regime (z, <0.01), we
have chosen W = 40 GeV and W = 50 GeV for each respective /s value. The analysis
outlining the selected values of y, W, and ? for each /s is presented in Fig. 6.16.
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Figure 6.14: Predictions of diffractive v*)p — J /4 p at the EIC for two different wave
function models, (a) without /3 correction and (b) with 5 correction. We choose W = 40
GeV for /s = 45 GeV which will probe y ~ 0.79 while W = 50 GeV for /s = 140 GeV
will probe y & 0.13, where we use y = (Q* + W?) /s.

It is important to note that the EIC predictions displayed in Fig. 6.14 represent
e’ do /dt, where the parameter b characterizes the slope of each wave function. Specifi-
cally, we have chosen b = 4.6 GeV* for GLC and b = 4.4 GeV? for BG. These particular
values of b have been selected to ensure that the predictions, along with their associated
bands, roughly exhibit a linear trend. By presenting the predictions in this manner, we

SHere evolution in both = and @ is meant. As discussed in Sec. 5.4 GTMD evolution due to quantum
corrections has not been studied yet, but it is expected to affect the predictions by much less than the
current uncertainties of the data. A rough estimate of the impact of logarithmic quantum corrections is
given by log (1/s1/4/52). Assuming a coupling constant of order 1, we find that log (319/140) ~ 0.82 and
log (140/45) ~ 1.13. However, when we extend the model to LHC energies, the evolution may become
relevant. This is evident from log (5.02/0.319) = 2.76, indicating that the probed x values at LHC Run2
are significantly smaller compared to those at HERA and EIC.
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Figure 6.15: The phenomenological correction 1 + 32 of the model for diffractive J/¢
production in v*)p for the EIC predictions in Fig. 6.14.
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Figure 6.16: Determination of the y, Q? and W range of the EIC predictions for which
z, 5 0.01 for (a) /s = 140 GeV and (b) /s = 45 GeV. The horizontal dotted lines indicate
the selected values of Q? for electroproduction: (a) 10GeV? and (b) 4 GeV?. The red
lines correspond to the chosen inelasticity y values.
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aim to facilitate the analysis of the slope behavior, which may not precisely follow the
" function. Notably, for ¢ > 0.5 GeV?, the majority of the bands in the plot exhibit a
decreasing trend.

In Fig. 6.15 the correction obtained with the model is plotted for +*)p collisions
as a function of ¢ and found to be in the 10-15% range, a bit larger in the BG model
than in the GLC model, and slowly increasing in ()%. This is in agreement with other
phenomenological studies [217,229,230]. For longitudinal photon polarization a similar
size correction is obtained. Fig. 6.19 shows similar size corrections for UPCs to which
we will turn next.

6.6.2 UPC predictions for RHIC, LHC and EIC

Using the parameterization for UPCs obtained in Sec. 6.5 by analyzing the ALICE
data (LHC Run 2), we present predictions for RHIC and LHC (Run 1) at midrapidity
in Fig. 6.17. In general, both wave function models give very similar results but
GLC shows a somewhat larger band than BG as expected from the previous analysis
on vp (see the x?/dof in Fig. 6.2). Fig. 6.17(a) is for Au-Au UPCs at Vsnn = 200
GeV. Fig. 6.17 shows that the first diffractive dip for Au-Au at RHIC is predicted to
be around ¢ ~ 0.017 + 0.001 GeV? which is close to its location in RHIC preliminary
data [252] and other studies [219, 244], while for Pb-Pb at LHC Run 1 it is predicted
to be around ¢ ~ 0.015 & 0.001 GeV?. Fig. 6.17(b) is for Pb-Pb UPCs at LHC Run 1
with \/syy = 2.76 TeV. In Fig. 6.18, we provide predictions of e-Au collisions at the
EIC for photoproduction (Q? = 0 GeV?) and electroproduction (Q? = 10 GeV?) for fixed
x, = 0.01 which corresponds to W.x = 31GeV and W,y = 44 GeV, respectively. The
bands for each wave function model reflect the uncertainties on R, (which translates to
n) and x. As shown in Fig. 6.19, the [ corrections are in the order of 6-10% for UPCs,
which is small compared to the uncertainties, hence not included here.




Predictions 101

1 1
—_ 10 YAu — J/¢Au Venvn =200GeV | 10 ¥Pb — J/4Pb VEnn = 2.76 TeV
[x] 3]
| |
> P
g 1 5 !
z === GLC#y = 0.96 £ 0.01 e == GLC 7 = 0.96 4 0.01
g m— BG 5 = 0.95 4 0.01 g m— BG 7= 0.95+ 0.01
S— _1 So— _1
« 10 « 10
< <
>~ >~
T 2 LHC Run 1
-2 ™ 4n-2
= 10 RHIC = 10
I I
>“| _3 >" -3
© 10 A b 10
o (3]
< o
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
t (GeV?) t (GeV?)
(@ (b)

Figure 6.17: Model predictions for coherent diffractive J/¢) production at midrapidity
in ultra-peripheral (a) Au-Au collisions with ,/syy = 200 GeV at RHIC and (b) Pb-Pb
collisions with /syny = 2.76 TeV at LHC.
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Figure 6.19: The phenomenological correction 1 + 32 of the model for diffractive J/v
production in yA in UPCs in Fig. 6.17. We show only small ¢ for vA because the correction
diverges at the diffractive dip.




Summary and outlook

We have investigated high-energy (small x) diffractive dijet production utilizing a multi-
dimensional parton distribution function, the gluon GMTD, for which we considered
a generic small-r model. To start we employed an z-independent, impact parameter-
dependent MV model, along with two additional free parameters. After fitting the model
to HERA data, we found that the model described the data quite well, although some
improvements were still needed in order to capture all features of the data. To achieve
this, we implemented an z-dependent saturation scale in the model, following the GBW
approach. We applied the improved model to the description of the exclusive diffractive
J/1 production data from both HERA and LHC. A good description of the data were
obtained, although a tension regarding the ¢ dependence of the dijet case could not
be resolved. With the obtained model we provided predictions for the EIC, LHC, and
RHIC to assess the consistency of the model and of the unified GTMD description of the
various processes. After this very brief overall summary, the contents of this PhD thesis
will now be summarized in more detail.

After a general introduction in Chapter 1, in Chapter 2, we examined the DIS
high-energy collision process, which is widely employed as a tool to investigate the
internal structure of hadrons, for instance using accelerators such as the Stanford Linear
Accelerator, HERA, the SPS at CERN and the future EIC. One important aspect of
DIS is that its cross section can be factorized into soft and hard parts. The hard part
can be calculated in perturbative QED, while the soft part contains non-perturbative
QCD information encoded by the PDFs (Parton Distribution Functions), which can only
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be extracted from experiments or calculated using lattice QCD. The correlator in the
definition of PDFs, which involves two fields at different space-time points, is not gauge
invariant. However, it can be restored by introducing the Wilson line (gauge link). In
the eikonal approximation, the Wilson line represents the resummation of an infinite
number of gluon interactions during the process.

The simplest type of PDFs, the one-dimensional collinear PDFs, played a crucial role
in confirming the dominance of gluons in the small = regime. This dominance formed the
foundation for the analysis of high-energy collisions in this thesis, where we neglected
the contribution from quarks in the proton or nucleus. Another important aspect of
the PDFs was their predictive power on different energy scales, which is governed by
the DGLAP equations. This allowed to make predictions for experiments performed
at different energies. However, the one-dimensional collinear PDFs do not properly
describe the behavior of the gluons in the small x limit. The collinear PDFs describing
the gluon distribution exhibit rapid growth, eventually violating the unitarity of the
scattering amplitude.

In order to analyze high-energy scattering properly, a suitable framework is required
to define the distribution of partons and control the rapid growth of the gluon distri-
bution, which requires inclusion of nonlinear QCD effects and transverse momentum
dependence (through its Fourier conjugate). In Chapter 3, we discuss this within the
CGC framework, that applies at small 2 where nonlinear phenomena become dominant.
In this regime, the occupation number of gluons becomes extremely high, making single
scattering events between the probe and a gluon unlikely to occur. Due to the high
occupation number, the gluons can be described classically, where the expectation value
of associated observables can be obtained through a path integral weighted by a weight
function. The MV model utilizes a Gaussian weight function, which can be related to the
saturation scale, i.e. the scale at which the non-linear QCD effects become significant,
through the scattering amplitude. The latter is a matrix element of Wilson lines, that
in addition to lines that runs along a straight line along the light-cone, also contains
Wilson lines in the transverse direction at light-cone infinity, together forming a Wilson
loop. This is an important ingredient of the higher-dimensional PDFs called GTMDs that
play a main role in this thesis.

In Chapter 4, we investigated higher-dimensional PDFs that go beyond the one-
dimensional collinear PDFs. Firstly, we discussed two such PDFs that probed distinct
aspects of parton momentum: TMDs and GPDs. TMDs are three-dimensional and depend
on z and k,, while GPDs are four-dimensional with dependencies on z, £, and A .
To gain a more comprehensive insight into the internal structure of the hadron, we
could utilize even higher-dimensional PDFs, the six-dimensional GTMDs. The Fourier
transform counterparts of GTMDs known as the Wigner distributions, are often referred
to as the "mother distributions". Although GTMDs can, in principle, be viewed as either
the off-forward generalization of TMDs or transverse momentum-dependent GPDs, the
generalization process requires the use of regularization techniques, making it not a
straightforward step. It should also be emphasized that the description provided by
GTMDs is more comprehensive than the combined information obtained from separate
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examinations of GPDs and TMDs.

It was proposed that the gluon GTMD could be probed through the diffractive dijet
production process at small = and zero skewness. In this regime, the staple-like Wilson
line structure inherent in the GTMD can be related to the Wilson loop matrix element of
the dipole scattering amplitude. This motivated us to develop an MV-like CGC model
for the gluon GTMD at small = that we introduce in Chapter 5. The small = gluon
GTMD model was constructed by initially considering a simple z-independent model
and fitting it to the available data of diffractive dijet production. Given the dominance
of the gluon at small z, our primary focus was on the gluon GTMD. The main objective
of this study was to demonstrate that a simple gluon GTMD model could effectively
describe the available data of diffractive processes, especially diffractive dijet production,
rather than aiming to provide a comprehensive model to describe general processes. We
began our description of the gluon GTMD model by incorporating the impact parameter
dependence into the saturation scale, building upon the MV model. This approach
allowed us to minimize the number of parameters in our model that needed to be fitted
to the data. Specifically, we introduced two physically motivated free parameters: ¢, and
x. The ¢, parameter limited the contribution of large dipole sizes, effectively restricting
our model to probe dipole sizes on the order of the gluonic radius of the proton. On the
other hand, the x parameter served as a constant that adjusted the overall value of the
saturation scale.

Fitting the model free parameters to the H1 data, we found that their values turned
out to be reasonable from the physical interpretation point of view. With this we obtained
a good description of the ¢t dependence of the data and a reasonable description of the
jet transverse momentum dependence. This provided confidence that the gluon GTMD
description is appropriate for this process in the examined kinematic range. With this
model we provided predictions for the EIC for both electroproduction in a somewhat
different kinematic regime and for photoproduction which has a much higher cross
section. Hopefully this will allow further tests of the underlying GTMD description.

By the fact that at least formally GPDs can be obtained from GTMDs, we also have
addressed some theoretical issues known for GPDs and small x studies that are relevant
for small-z gluon GTMD models with an impact parameter dependent saturation scale.
First there is the issue that considering the impact parameter dependence requires the
target (and the dipole) to be sufficiently localized in transverse coordinate space. This in
turn requires consideration of the dipole frame with large P and hence sufficiently large
center of mass energy. Second, the dipole size has to be much smaller than the size of the
impact parameter profile considered. This requires consideration of the correlation limit
for dijet production, in which A; = k;, +k,, is much smaller than K| = (k1 — ks, )/2 =~
k1, =~ ko, where the latter scale determines the relevant dipole sizes. On the other
hand, K, should not be so large that one is outside the saturation regime. Under these
kinematic conditions the MV model with impact parameter dependent saturation scale
is expected to be an appropriate model for the gluon GTMDs probed.

Analyzing the model description of the ()?> dependence data, we observed that the
model, which effectively concerns an average value of = only, should be improved. To
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enhance the agreement between the model and the data, we proposed incorporating
an r dependence into our model, allowing it to probe different = values corresponding
to various Q?. By incorporating an x dependence into our previous (z independent)
gluon GTMD model, following the approach of the GBW parameterization for the
saturation scale, we were able to improve the description of the HERA-H1 diffractive
dijet production data. Specifically, the model effectively captured the ()? dependence, as
well as the ¢t and K, distribution data. Additionally, considering that z is related to the
inelasticity y, we were also able to describe the data’s y dependence. Importantly, this
improved description was achieved without introducing any new parameters but rather
by defining the existing parameter y as an x-dependent variable, denoted as x(z). The
good agreement with the H1 data provides support for the GTMD framework employed
in this study. We anticipate that further scrutiny and validation of this framework will be
possible with forthcoming data from the EIC and LHC experiments.

After having successfully described dijet production, we wanted to try to obtain
a simultaneous description with diffractive J/¢) production. However, as outlined in
Chapter 6, describing diffractive .J/¢ production in the same way as the diffractive
dijet production case leads to tension for the slope of the ¢t dependence, which is
quite distinct for the two processes, where dijet production requires a steeper slope
than J/v¢ production. In the model this slope is solely determined by the (Gaussian)
proton profile and there appears to be no clear way to resolve the tension. A few other
differences between the optimal parameter choices for dijet and .J/v¢ production are
found but these can be reduced by adjusting the .J/¢) wave function or by modifying the
x dependence with respect to the GBW parameterization. For instance, dijet production
can be described well by an = dependence of the saturation scale ), o« z~* with
A = Agsw = 0.29, while the W dependence of photoproduction of .J/i’s prefers a
smaller A\ ~ 0.22. A non-constant A may be needed, but we did not explore that option,
anticipating that future more precise data may shed new light on the differences between
dijet and .J/¢ production. Another distinction lies in the parameter y, where diffractive
dijet production tended to favor a larger value of y, specifically y = 1.5 + 0.1, compared
to J/1 production. However, this tension could be minimized by choosing the GLC wave
function, which provided a generally good fit to the data with y = 1.4 — 1.5, in contrast
to the BG wave function, which preferred y = 1.05 — 1.15. All in all, we thus expect that
a common gluon GTMD model description of dijet and .//v production may be possible
once the slope issue is clarified by new data.

With the best fit of our model to combined H1 and ZEUS data on .J/« production,
we have provided predictions for the diffractive .J/¢) production in e-p collisions at the
future EIC. We further fitted our model to UPC data from ALICE (Run 2) to determine
the A dependence of the saturation scale. The fit turned out to be very sensitive to the
power of A and the nuclear profile R4, which suggests that also the profile function
shape will matter considerably. We find an A dependence that is slightly less than the
generally expected A'/3, to be specific, Q? o< A%?"~%-30_ but intermediate A values would
be needed to reach a definite conclusion on the A dependence. With the obtained fit
we provided predictions for UPCs at LHC (Run 1) and RHIC, and for e-Au collisions
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at EIC. We have also investigated a phenomenological correction commonly used for
J /1 production which comes from the odderon contribution, which is in the 10-15%
range and thus unimportant given the present large uncertainties in the available data
of electroproduction at HERA (H1 and ZEUS), and hence in the model. The larger
correction from accounting for non-zero skewness that is often considered in GPD
approaches in the DGLAP regime does not seem appropriate for our GTMD model and
was thus not included. Moreover, a similar correction has not been applied in dijet
production, which would affect the comparison. We have also pointed out that dijet
and J/v production go beyond probing GPDs, rather they probe weighted integrals of
GTMDs with weights that depend on external kinematical variables of the process that
can be varied and exploited. A remaining open question is whether the used data is in
the DGLAP or ERBL region. Hopefully future studies will report specifically which region
is being probed, as the model may have to depend on that.

The predictions from the presented z-dependent gluon GTMD model for .J/1 pro-
duction at EIC, LHC, and RHIC, and measurements for heavier quarkonia and different
nuclei, will hopefully facilitate resolution of the ¢ distribution tension with dijet produc-
tion, clarify the dependence on the skewness probed in the process, and determine the =
and A dependence of the saturation scale of heavy nuclei.







Light cone coordinates

Light-cone (light-front) coordinates are a very useful tool in the analysis of high-energy
physics, especially in the study of DIS. They are constructed by taking the time axis z°
and one space axis 2 from the usual four-vector components (2°, 2!, 2%, 3) to create
two new coordinates z+ and z~, while the remaining two space axes x! and z? are
denoted by x, . In this way, the four-vector z* can be expressed as z* = (%, 27, x),
where

P =F
V2

It should be noted that some authors may not include the 1/+/2 factor when defining
the light-cone coordinates. The volume element in these coordinates can be written as

x x, = (24, 2?). (A.1)

d*y = det do~ dPx . (A.2)
The scalar products of two vectors also take a simplified form, given by
wv = guputv' =utvT +uTvt —uy vy
u-u = 2utu — ui. (A.3)

where the light-cone Minkowski flat space metric is defined as

01 0 0
|10 0 o
Imw =100 -1 0 (A-4)
00 0 -1
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In other words, the metric tensor g,, for this coordinate system has g, = ¢g_, =1
while g;; = —0,; for the transverse components (i and j). All other components of
the metric tensor are zero. Note that g, and ¢g_, are the only non-zero off-diagonal
elements, reflecting the correlation between the light cone components z+ and z~. It
is also common to define light-like vectors n* = (1,0,0, ) and n* = (0, 1,0, ) satisfying
n-n=n-n=0andn-n=1,such that v* = uta* + v n* + «//, where v and v~ are
the light-cone components of the vector v* while u, denotes its transverse component.
In this expression we have promoted u, to a four-vector v/| = (0,0, u, ).

The Dirac gamma matrices will take the form

1
+ 04 .3 5 o=l
+ ) (A.5)
v \/5(7 ’Y) v T

which satisfy anticommutation relations
{7} = 29" (A.6)

In the analysis of high energy DIS, rapidity is a frequently used variable to describe
the longitudinal motion of particles in the center-of-mass frame, and is defined as the
natural logarithm of the ratio of the energy and longitudinal momentum of a particle

1. (E+p. L. (p*
=21 =_Iln|*% A.
v=gm () = gm (), A7)

where E and p, represent the energy and momentum along the z-axis of the particle,
respectively. The use of rapidity allows for a simpler representation of Lorentz boosts
along the longitudinal direction (the z-axis in this case). In terms of rapidity, the
Lorentz-invariant phase-space integration will be expressed as

d’p  dptd’py  dyd’p.

2F,(2m)3  2pt(27)3  2(27)3 (A.8)

One advantage of using the light cone coordinates is the ability to separate a particle’s
momentum into longitudinal and transverse components, which is particularly relevant
in DIS, where the momentum of the proton is dominated by the longitudinal component
while the virtual photon’s momentum is primarily in the transverse direction. By boosting
the proton momentum along a specific direction, usually the beam direction axis, the
z-axis, the large and small components of momentum can be separated into distinct
components. This feature enables the use of various approximations, such as the eikonal
approximation, to simplify calculations in high-energy physics.




Reference frames

Let us consider a four-vector with components 2° = ¢ and 23 = 2. By performing a boost
along the z-axis, we can obtain new components 2’ and ¢/, given by

2 =7 (z+vt) t' =~ (t - U—j) (B.1)
¢

where v = (1 — 2)71/2 is the Lorentz factor, 3 = v/c is the velocity of the inertial
frame one moves to from the rest frame, and ¢ = 1 for convenience. As discussed in
the previous appendix, the ¢ and z components of the four-vector are used to form the
light-cone coordinates 2* = (¢ + z)/v/2. Hence, applying a boost along the z-axis to
these components yields

o+ - Y+ 2) + 9B+ 2)

NG =y (1+p8)z"

Defining A = (1 + /) as the transformation coefficient and B = v(1 — ) = 1/A, we will
have AB = 1. Therefore, if we apply a boost in the z-direction to a vector P expressed
in light-cone coordinates, we obtain

1
(P*, P, P.) —-+T°:g“ (AP+, P PL) . (B.3)

The boost formula will be frequently used in the following discussion to transform from
one frame to another.
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B.1 The quark Breit frame

The Breit frame is a commonly used reference frame in the analysis of high-energy DIS
collisions which is obtained by boosting the photon in the direction of its propagation
towards the proton, in such a way that the ¢° component of the photon momentum
becomes zero. In this frame, the proton moves along the z direction, while the virtual
photon moves in the —z direction, with the photon transferring momentum but not
energy. It is important to note that this is only true in the Breit frame. This frame is also
referred to as the infinite momentum frame, since the proton moves with a very large
momentum towards the virtual photon. It is also known as the brick wall frame, as the
proton (quark in this case) appears to bounce off the virtual photon like a tennis ball off
a brick wall, with its 3-momentum exactly reversing, as depicted in Figure B.1. Here we
will be discussing the Breit frame for the quark, whereas the original Breit frame was
considered for the proton.

' t
'{
y *
VAVAVAVAN
quark 1
p

Figure B.1: An illustration of the quark Breit frame, where a quark with momentum
p* = (p*,p~, p.) moves towards the virtual photon ¢, which acts as a "wall", and bounces
back with a reversed momentum p* = (p~,p*,py).

Consider a quark with momentum, given in light cone coordinates, as p = (p*,p~,p.)
where p-p = 0and p~ = p? /(2p") with the condition p™ >> p~. In the Breit frame, the
incoming quark moves in the positive z direction with momentum

pzzp—Jr_pi:i_ pi NE (B.4)
V2 V2 2ptV2 V2
The struck quark p/, moves in the negative z direction with p’* = —p* and p" = p°. Thus,
in light cone coordinates, it can be expressed as p'" = p~ and p'~ = p*, resulting in
p = (p~,p",pL). The photon momentum can be obtained as
¢ =p —p=(p —p"p"—p,0) =~ (—p",p*0L). (B.5)
By using the relation' (¢#)? = —(Q?, we can express p* = /v/2. Thus, the momentum

!In this Appendix we will use ¢ and P as components in the four-vectors ¢* and P*. To avoid confusion,
in this Appendix we use the notation ¢*q, = ¢ - ¢ = (¢")?, and (¢")? # ¢*, where the latter g represents a
component of the four-vector ¢*. We also use this notation for PP, = (P*)? = P - P and (P*)? # P?,
where the latter P represents a component of the four-vector P*.
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of the incoming quark, outgoing quark, and photon can be expressed in terms of () as
follows:

poe) = (gn) o (55
e _707 M 07_7 = __7_70 B.6
P ( NoR p s Pt q N (B.6)
where the approximation p~ = p%/(2p*) = p}/(V2Q) ~ 0 has been used. The
momentum of the proton can be expressed as

. Q ZEBM2 )
PIJ_ (Q}B\/Q’ Q\/E’OL 9 (B'7)

where P and M represent the momentum and mass of the proton, respectively, and
satisfy the relation (P*)?> = M?. The Bjorken scaling variable is defined as zp =
Q*/(2P - q), where the scalar product of the proton momentum P and the photon
momentum ¢ can be expressed as

B Q2 M2

In terms of the proton momentum P, the quark momentum can be estimated as p ~
xpP + p,. As can be seen in Eqs. B.6 and B.7, when Q> = 0, we obtain or the
approximated momenta

Qg2:0 = (Oa 0, OJ_) P52:

which prevents us from using the quark Breit frame in the case of photoproduction.

0= (Oa 0, OJ.) ) (B-9)

B.2 The dipole frame

While the Breit frame is a powerful tool in analyzing DIS, the approximations become
invalid in the case of photoproduction (Q? — 0). This limitation can be avoided by
considering the dipole frame [180]. The dipole frame remains valid even at low Q?
values and enables the treatment of photoproduction without encountering singularities.
Furthermore, it provides a clearer distinction between the hard and soft scales involved
in the scattering process.

In the dipole frame, the proton and virtual photon momenta are given by (in four
vector notation)

2
P“:(P—F%,0,0,P) qu:(\/q2_Q270707_q> (B]-O)

2P

where P > M implies (P*)? = M? <1 - %) ~ M? and (¢")? = —Q?. In addition,

q > @ leads to the approximations

2
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The plus and minus components of the light cone coordinates are then given by

2
T =v2¢(1+0(Q*/¢ 9O B.12
q ¢(1+0@Q/q) "~ NGT (B.12)
It can be shown that the relation (¢*)? = 2¢T¢~ = —Q? still holds even with these

approximations.

To apply the dipole frame to the context of both small x5 and small Q?, which is the
focus of this thesis, slight adjustments must be made to the original dipole frame. These
adjustments can be made as follows (in four vector notation):

[ /P? P | ] q
Pt = ( 7+M27070, E) qu - < E _Q2a0707_ﬁ> : (B13)

The modified expressions for P* and ¢* satisfy the conditions (P*)? = M? and
(¢")? = —Q* within the dipole frame when P > M and ¢ > (. We can then express
them in light cone coordinates as:

P M? P M?
P' o~ =+ —=,0,0,— |~ [P, =—,0
(ﬁ V2P ﬂ) ( 2P L)

2 2
va i_Q_oo_i>%(_Q_ 0) (B.14)
q (\/5 \/§q7 ) Yy \/§ 2an7 1]
Using the fact that
M2Q2 M2Q2
P.-q=Pq— ~ P ith 1 B.15
q q 1Pg qg Wi 1Pg <1, (B.15)

Wwe can express
s = (P'4+¢")?=2P -q+ M?*—Q*~2Pq

¢ & _&

2P-q 2Pq s
Therefore, in the regime where s > %, we have xp < 1, which is valid at high energies

as the regime of our interest. In this regime, both s and 1/x become large with Q?
fixed. Using this approximation, the scalar product of P and ¢ reads

2 2 M2
Pog= e, - 9 (1 - _2x23> . (B.17)

(B.16)

rp =

2T - 2xp Q?

Thus, for M?/Q?* < 1/z% and Q* — 0, this new dipole frame parameterization ap-
proximation is valid and can serve as an appropriate frame for both electroproduction
(Q* > 0) and photoproduction (Q* — 0). This can be seen by applying Q* = 0 to the
momentum of the proton and photon in Eq. (B.14)

M2
A
Poeey = (P7 ﬁiﬁ)

qu:g = (anaoJ_>
s = (P+q)?=M?+2Pq~2Pq (B.18)
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which will result in (P*)? = M? and (¢*)? = 0, while for zp — 0 we will have s > M2
Therefore, in this thesis, we will discuss photoproduction in the dipole frame instead of
the Breit frame.

To return from the dipole frame (DF) to the Breit frame (BF) for large enough (), we
can perform a boost. Using the prescription in Eq. (B.3) for the photon, we obtain

Q2 boost Q2 1
Ho— (-2 q.0 —_— =(-A 0 B.1
qpr < 2 yq, UL qBF DB 29 Aps - ¢,UL (B.19)

By comparing the photon momentum in the Breit frame given by Eq. (B.6) with the
photon momentum in the dipole frame given by Eq. (B.14), we find the boost coefficient
from the dipole frame to the Breit frame as

App = % > 1. (B.20)

As a validation, we can use App to find the corresponding expression for P* in the Breit
frame after the boost from the dipole frame. This expression is given by

2

M 1 M2
P]SLF = (P, §70L> M P]QLF = (ADaBP AD_>B 2P 0 ) (B21)

where we used x5 ~ Q?/2Pq in Eq. ( B.16). As a result, we find

mwo_ Q :UBM2 )
Fap = (—xB\/T —Q\/§ ;01 (B.22)

which is the expression for the proton momentum in the Breit frame given by Eq. (B.7).

B.3 The rest frame

Another useful frame for DIS, especially in a fixed target experiment, is the rest frame
where the photon interacts with a proton at rest. In this frame, the proton’s momentum
is given by P4 = (M,0,0,0) = (M/+/2,M/v/2,0,), where RF indicates the rest frame.
By using the boost formula in Eq. (B.3), we can transform the rest frame of the proton
to the Breit frame, which is only applicable for Q? > 0, as follows:

M M boost ( M 1 M )
pPho= (== 0, ) 2 Pt~ (Ag e, —— 0 (B.23)
By comparing with the expression for the proton momentum in the Breit frame in Eq.
(B.7), we find that Ag ., = Q/(xpM), where Ap_p > 1if Q% > M?>.
We can also boost the rest frame to the dipole frame such that

M M boost M 1 M
Ph=( 2 =0, ) 2% pt = (Agp—r, —— =0, ). B.24
- (\/5 V2 L) e < PV2 Ao V2 L) (524
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By comparing this expression with the proton momentum in the dipole frame in Eq.
(B.14), we find that Ag_,p, = V2P/M > 1.

As a double check, if we move from the dipole frame to the Breit frame, we will have

Arp = %

. Apor = 2L i .
Dipole frame ——; Rest frame — %" Breit frame

with

2
AD—>B = AR—)BAD—>R = \/553'2 P = gq
B

which is the transformation coefficient we have found in Eq. (B.20). It is important to
note that the boost Ap_.p can be performed for M = 0, however, the boosts Ap_,r and
Agr_,p cannot be performed for M = 0 as there is no rest frame for a massless particle.
The transformations between frames are illustrated in Fig. B.2.

pt p+
»1 Breit frame > 1 Dipole frame

= =1 Rest frame
t
L

t
q-
pe =-1 el «-1

Apog =— Apg =—
AAAA | V2 T
Z

‘T " boost ALLLL) 4 boost ‘l/l’l/lﬁ z
P P 'q\ I PI 'q\ I

Figure B.2: The transformation relations between the dipole frame, the rest frame, and
the (quark) Breit frame.

However, the rest frame also poses a problem when discussing photoproduction. To
demonstrate this issue explicitly, we will examine the photon in the rest frame, which
can be obtained by, for example, boosting the photon momentum from the dipole frame
to the rest frame using Ap_,z. We will find that

po (LM O 0) B.25
dRr < \/§’E’L’B\/§M’L ( )

Explicitly, this frame poses a problem when discussing photoproduction, as at Q* = 0 we
will have

xgM
ngQz:o = (‘%,0, OJ_> (B.26)

which result in
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To further compare the frames, we will look at how the following variables behave in
each frame: P*/P~ and ¢~ /¢ which corresponds to the fraction of longitudinal momen-
tum carried by the target nucleon and the fraction of longitudinal momentum carried
by the struck quark in the virtual photon, respectively. As shown by the transformation
formula in Eq. (B.3), under boost these variables will transform as
Pt q  boost 1 q

P boost
200 A2 and

— — —_——. B.2
P~ P- qt T qt (B.28)

The values of these quantities, along with the light cone components for each frame, are
presented in Table B.1.

Breit frame Dipole frame Rest frame
PG (PHe) (o)
ro(%%0) ((Za0) (-m220)
. =5 > 1 282> 1 1
= —1 —% < -1 < -1

Table B.1: List of momentum components, P™/P~ and ¢*/q~ values for Breit, dipole
and rest frames, see also Fig. B.2 for a pictorial representation.







Feynman rules for Wilson lines

In Sect. 2.3.2, we discussed Wilson lines and the eikonal approximation. In order to
calculate the contribution of the Wilson lines to the scattering process at high energies,
it is necessary to employ the corresponding Feynman rules. We primarily employ the
Feynman rules and notation outlined in [40].

l 7 ! 7
—— - —— -
= n-l+1ie - n-l+1e
L i L i
= n- l + 1€ X n - l —+ 1€
l —ibl ! bl
——— pH e b —_— e
i ; J___ i
S
I —ign*(ta)ij q ign* (ta)ij
q
g
wa wa

Table C.1: Some relevant Feynman rules for Wilson lines. Here, n represents the vector
defined in Appendix A, while the arrow on the Wilson line (represented by double lines)
indicates the direction of the path.
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Gauge invariance and Wilson lines

D.1 Wilson lines and a two-point function

In this section, our primary reference for the discussion of the Wilson line will be [40].
We will begin by demonstrating how the Wilson line preserves the gauge invariance
of a two-point function. Consider a two-point correlation function ®(y, z) = ¢ (y)¢(x),
where the wave functions are located at different positions. It is evident that ®(y, z) is
not gauge invariant under the transformation

Oy, ) = Y(y)U'(y)U(2)¢(2). (D.1)

Our objective is to identify an operator, denoted as T}, ,), that establishes a connection
between the field v)(z) and another point in spacetime, 1/(y). This operator will enable
us to define a gauge-invariant two-point function

DY) Ty (@) = DU (U () [Tiyato ()] = 0y) Tyi(z). (D.2)

Throughout the main discussion of this thesis, this operator will be encountered repeat-
edly.

Our primary focus is on identifying this type of operator within the non-Abelian case,
specifically in QCD. We begin by considering the simpler scenario of the U(1) Abelian
gauge group, where

U(z) = eFioe(® (D.3)
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with «a(z) is a scalar function. In this case, the gauge field will transform as
A, (z) = A, (x) + 0,0(x) (D.4)

By comparing Eq. (D.2) and Eq. (D.4), we can deduce that in an Abelian theory, the
required operator takes the form

ﬂy,z} = eiig fj dZHAH(Z)' (D.S)

In order to generalize this operator, we must take into account that in a non-Abelian
theory, the fields at different spacetime points, A,(z) and A,(z’), do not commute. We
need to revisit Eq. (D.2), where the gauge transporter must be in the form

d . . :
ET[WC] = A (0)Tye with  A,(t) = igAu[2()]2,(2). (D.6)

Since the specific path along which the operator will "transport" the field «(x) from
point z to y is unknown, we introduce an arbitrary path denoted as «. The assumption
is made that v can be parameterized as

2(0) = z, 2(t) =y, dz, = 2,(t)dt; z € 7.
Upon integrating Eq. (D.6), we obtain
t
T[y@] — T[xw] = T(t) — T(O) = / igA«/(t)T(t)dt. (D.7)
0
Assuming that g is small, we can expand 7}, ;| as

Tiy(t) = TO +TO 47 4y 700 4 (D.8)

In Eq. (D.8), the initial condition, represented by the first term 7'(0) = T}, ,) = 7O, is
independent of ¢;. The second and third terms can be expressed in terms of 7°(0)

t
TW(@) = / A, (t)dt,T(0)
0
t t t1
T = / A (4)T(t))dt, = / A, () / A, (t9)dt, dt;T(0) (D.9)
0 0 0
From this pattern, we can rewrite T® as [see e.g. Chapter 15 of [253]]

TO(t) = % (P /0 t /0 tA,Y(tl)AV(tQ)dtld@) 7(0) (D.10)

with P is a path ordering operator. By generalizing these to an n-order, we will get

t t
T™(t) = %P /0 /0 (A (t1)... A, (t,)dtydty...dt, 1 dt,) T(0) (D.11)
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Hence, for the n-th order, the operator can be simplified into an exponential form
t Ay 1 t t
T(t) = ’Pefo Ay(#)dt" _ Z EP/ / (A-y<t1)A’y<tn)dt1dt2dtn,1dtn) T(O) (D]_Z)
n=0 0 0

for which we have set 7'(0) = 7}, ) = 1. We have now identified an object that preserves
the gauge invariance of a two-point function in QCD. This object is commonly referred
to as a Wilson line or a gauge link and can be expressed in a general form

xT

y
Try2) = Uyly, 2] = P exp {iig/ dZ“AM(Z):| ) (D.13)
v

The =+ sign in the exponential indicates the charge of the particles involved (quark or
antiquark).

D.2 Properties of Wilson lines

1. Hermiticty
Taking the Hermitian conjugate of a Wilson line will reverse its direction:

Uy = U[Tb,a]- (D.14)

2. Decomposability
A Wilson line can be decomposed into multiple lines:

Upa,qg = U p)Up, - (D.15)
This decomposition is not unique.
3. Unitarity
The unitarity property is a consequence of the hermiticity and decomposability
properties:

UL, yUias) = Upallion = 1. (D.16)







Lay summary

It is a well-known fact that any visible matter in our universe is composed of atoms, which
consist of electrons orbiting around nuclei comprising protons and neutrons. It is now
known that protons and neutrons, examples of hadrons, are not fundamental particles;
instead, they are composite particles consisting of quarks and gluons, collectively called
partons. At the subatomic level, hadrons are the dominant part, as electrons contribute
very little to the overall mass of atoms, being roughly 1800 times lighter than protons.
Hence, partons are the fundamental particles that contribute the most to the mass
of the atom. This emphasizes the significance of studying partons within hadrons
and understanding the strong force that governs their interactions, which can provide
profound insights into the nature of matter shaping our observable universe.

To investigate the behavior of partons inside hadrons, particle accelerators are
constructed, where fast-moving particles are collided, and detectors are used to detect
the outgoing particles that are produced in the collision. By colliding high energetic
hadrons with structureless particles, such as electrons and positrons, or other hadrons,
researchers can uncover the dynamics of partons and observe their behavior inside
hadrons, gaining insights into how they contribute to the properties of hadrons, such
as spin and mass. However, the study of high-energy collisions, known as high-energy
physics, is both theoretically and experimentally challenging due to many physics and
technical aspects that must be considered.

According to the principle of energy and mass conservation, higher energy collisions
result in the production of a greater number of particles. Consequently, the collision
process appears to be like a catastrophic event, with numerous particles being generated,
many of which have very short lifetimes. It becomes crucial to carefully identify the
outgoing particles by characterizing their charge, spin, mass, and velocity. The strong
force behavior mediated by gluons, which binds quarks inside hadrons, complicates the
situation by preventing quarks and gluons from existing as free individual particles. This
is called confinement, as the quarks and gluons are confined inside hadrons. Fortunately,
in high-energy collisions, quarks exhibit asymptotic freedom, which dictates that the
strong coupling decreases as the energy increases. This allows quarks to be treated as
nearly free particles in part of the collision, facilitating a method of expanding in the
small coupling (o < 1) in such a way that the third, fourth, and higher power terms
can be ignored—these are much smaller compared to the first (leading order, LO) and
second terms (next-to-leading order, NLO). This method is called perturbative QCD
(pQCD). This method offers significant advantages in simplifying the QCD calculations.
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Without this property, we would have to rely only on experimental observations and
lattice QCD computation to gain insights into the hadron substructure. Even though the
lattice QCD method can be applied in regions of a; = 1 where the pQCD method fails, it
presents another challenge in terms of requiring extensive computational resources for
the analysis of processes at accelerators and for non-static quantities, such as appearing
in the description of a collision.

In the case where a proton moves at a very high velocity relative to a probe, the
probe will “see” a greater number of partons within the proton. Consequently, the
fraction of the proton momentum carried by each parton, denoted by x, becomes much
smaller. As confirmed by collinear parton distribution functions (PDFs) studies, when
x is moderately small gluons begin to dominate the composition of the proton. As we
further decrease x to values below 0.01, known as the small = regime, the phenomenon
of saturation, resulting from nonlinear QCD effects, becomes significant. In the large
x regime, the proton’s content can be described using the one dimensional collinear
PDF, but this approach does not apply to the small-x region. Collinear PDF predicts
an exponential growth of the partons towards smaller x, which eventually violates the
unitarity principle of the cross-section. Therefore, in the small = regime, there should be
a framework that controls the growth of the partons. An appropriate framework for this
study is the Color Glass Condensate (CGC) description/approach. Within this framework,
the high density of partons inside the hadron results in a saturation phenomenon which
describes that in the small x regime, the probe is more likely to collide with the high-
density gluons that make up the majority of the proton, rather than with a single quark.
In this CGC description the transverse momentum and the spatial distribution of partons
changes as x changes, requiring going beyond the one dimensional collinear PDFs.

The generalized transverse momentum dependent PDFs (GTMDs), which are the
Fourier transform of the Wigner distribution known as the “mother distribution,” are
higher-dimensional PDFs that can accommodate the saturation phenomenon. Unlike the
one-dimensional collinear PDFs that depend only on x, GTMDs can be six-dimensional
and depend on a more general correlator that depends on more variables. Studying
GTMDs helps us to understand high-energy phenomena and provides a more complete
picture of the dynamics of partons within a hadron or a nucleus.

It has been proposed that the cross section of the diffractive dijet production in the
high-energy Deep Inelastic Scattering (DIS) is directly proportional to the GTMD. In
this high energy (small z) limit, where gluons dominate, the contribution of quarks
can be neglected, allowing us to focus solely on the gluon GTMD. In this thesis project
we first developed a gluon GTMD model based on the well-established MV (McLerran-
Venugopalan) model and incorporated impact parameter dependence. One advantage of
the model is that it introduces only two physically motivated free parameters. By fitting
these parameters to data of diffractive dijet production at HERA-H1, we observed that
the model adequately describes the data for the transverse momentum average of the jet
(K1) and transverse momentum transfer squared (¢). The good agreement of the model
with H1 data provides strong support for the GTMD framework utilized in this study.
We hope that further validation of this framework will be possible with forthcoming
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data from experiments at the Large Hadron Collider (LHC) and the Electron-Ion Collider
(EIC). These future experiments will allow us to gain more insights into the behavior
of partons and the underlying dynamics of high-energy collisions, further refining our
understanding of the GTMD and its role in describing diffractive processes.

However, the above model, which is independent of x, does not accurately capture
the energy dependence ((Q?) of the data as it only probes the average x of the associated
process. To overcome this limitation, an z-dependent model based on the GBW (Golec-
Biernat and Wiisthoff) parameterization was introduced. The GBW model is known for
its success in describing the cross section of the DIS process, including the diffractive
case, at HERA, which motivated us to incorporate this parametrization into our model.
By fitting the free parameters of the z-dependent model to the same diffractive dijet data
from HERA-H1 in the previous study, we found that the improved model was able to
enhance the description of the Q* dependence of the data while maintaining a good fit
to other variables (/K| and t). With the improved model, we provided predictions for the
diffractive dijet process at the EIC, serving as a test of the model for future experiments.

Arguing that diffractive J/¢) and dijet production only differ in the final state, we
expect that these two processes can be described by the same GTMD framework. The
z-dependent model was then further extended to describe exclusive diffractive J/¢
production, with the same parameters employed for both processes. These parameters
independently determine various aspects of the cross section: the proton profile width
R, determines the ¢ slope, the parameter )\ as the power of = controls the IV slope,
while y acts as an overall factor for the saturation scale, determining the cross-section
amplitude. For diffractive J/v production, we utilized two well-known and simple vector
meson wave functions: boosted Gaussian and Gaus-LC. In this study, it is important to
note that the primary objective is not to develop a comprehensive model, but rather
to investigate whether a generic small-z gluon GTMD model can accurately describe
diffractive processes. This five dimensional GTMD description (we assume zero skew-
ness) goes beyond the Generalized Parton Distribution (GPD) description that depends
on fewer kinematic variables (z, skewness, and transverse momentum transfer).

Eventually, we found that the z-dependent model fails to accurately describe both
processes using the same parameterization, leading to tension in the parameter fits. This
raises the question of whether diffractive dijet and .J/v¢ production should indeed be
described by the same GTMD framework. In principle, the tension could arise from
multiple sources of uncertainty, such as the vector meson wave functions applied to
J /1 production, the proton profile, corrections (from nonzero skewness and odderon
contributions), and even the data from H1 and ZEUS experiments. More specifically, the
t slope of the two processes exhibits the same do/dt ~ exp[—bt] pattern, but the J/v
data tends to show a steeper slope, which requires a smaller proton gluonic radius in
our model. The discrepancy thus lies in the difference in the ¢-slope originating from the
proton’s profile rather than the final state (dijets versus .J/¢ production). This suggests
that the tension might stem from experimental factors, since the initial proton state
should be the same or very similar for the different data sets and processes. Future
experimental data will help resolve this issue.
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Extending our model to the photonuclear production data at Ultra-Peripheral Colli-
sions (UPC) of Pb nuclei in the LHC as measured by the ALICE collaboration, our study
reveals that the A dependence of the saturation scale does not follow the expected
form A'/3 but instead behaves like A%27-03 even though the model does not exclude
the former possibility. Also this aspect is dependent on the shape of the proton profile,
although not just its width. These findings need further investigations and clarification
through additional data at intermediate A values, for instance at RHIC.

Based on the optimized parameter fits obtained, we provided predictions for the
corresponding processes expected to take place at the upcoming EIC, as well as UPCs at
the LHC and RHIC. Even though the model is generic and not aimed at obtaining the
best possible description of the data, it can still validate whether the GTMD formalism
can be applied to diffractive processes, and simultaneously aim to provide insights into
the sources of tension, specifically concerning the ¢ dependence form. The availability of
new data from experiments at the LHC, RHIC, and the future EIC will be important in
resolving the tension observed in the ¢ distribution between J/¢) and dijet production.
Furthermore, these data will help to elucidate the dependence on the probed skewness in
the process and determine the A dependence of the saturation scale for heavy nuclei. It
is our hope that these forthcoming experiments will provide the necessary information to
address these open questions and refine our understanding of the underlying dynamics.




Leken Samenvatting

Het is een bekend feit dat alle zichtbare materie in ons universum is samengesteld uit
atomen, bestaande uit elektronen die rond kernen draaien. De kernen zijn opgebouwd
uit protonen en neutronen. Het is bekend dat protonen en neutronen, voorbeelden van
hadronen, geen fundamentele deeltjes zijn. In plaats daarvan zijn het samengestelde
deeltjes die bestaan uit quarks en gluonen, ook wel gezamenlijk partonen genoemd. Op
subatomair niveau zijn hadronen het dominante deel. Elektronen dragen namelijk heel
weinig bij aan de totale massa van atomen, omdat ze ongeveer 1800 keer lichter zijn
dan protonen. De partonen zijn de fundamentele deeltjes die het meest bijdragen aan
de massa van het atoom. Dit benadrukt het belang van het bestuderen van partonen in
hadronen en het begrijpen van de sterke kernkracht die hun interacties beschrijft, wat
diepgaande inzichten kan verschaffen in de aard van materie die ons waarneembare
universum vormgeeft.

Om het gedrag van partonen in hadronen te onderzoeken, worden deeltjesversnellers
gebruikt, waar snel bewegende deeltjes botsen, en detectoren de uitgaande deeltjes
die bij de botsing worden geproduceerd detecteren. Door hoogenergetische hadronen
te laten botsen met structuurloze deeltjes, bijvoorbeeld elektronen en positronen, of
andere hadronen, kunnen onderzoekers de dynamica van partonen blootleggen en hun
gedrag in hadronen observeren. Dit geeft inzicht in hoe partonen bijdragen aan de
eigenschappen van hadronen, zoals de spin en de massa. De studie van hoogenergetische
botsingen, bekend als hoge-energiefysica, is echter zowel theoretisch als experimenteel
uitdagend vanwege de vele natuurkundige en technische aspecten waarmee rekening
moet worden gehouden.

Volgens het principe van energie- en massabehoud resulteren botsingen met hoge
energie in de productie van een groot aantal deeltjes. Het botsingsproces lijkt op
een catastrofale gebeurtenis, waarbij talloze deeltjes worden gegenereerd, waarvan
er vele een zeer korte levensduur hebben. Het is cruciaal om de uitgaande deeltjes
zorgvuldig te identificeren door hun lading, spin, massa en snelheid te karakteriseren. De
sterke kernkracht, gemedieerd door gluonen, die quarks in hadronen bindt, compliceert
de situatie door te voorkomen dat quarks en gluonen bestaan als vrije individuele
deeltjes. Dit wordt confinement of opsluiting genoemd: de quarks en gluonen zitten
opgesloten in hadronen. Gelukkig vertonen quarks bij hoogenergetische botsingen
asymptotische vrijheid, wat betekent dat de sterke koppeling afneemt naarmate de
energie toeneemt. Dit maakt het mogelijk om quarks te behandelen als bijna vrije
deeltjes in een deel van de botsing, waardoor de methode om in de kleine koppeling
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(as < 1) te expanderen wordt vergemakkelijkt doordat de derde, vierde en hogere
machtstermen in deze storingsrekening kunnen worden genegeerd - deze zijn veel
kleiner in vergelijking met de leidende orde (LO) en de naast-leidende orde (NLO).
Deze methode wordt perturbatieve QCD (pQCD) genoemd. pQCD biedt aanzienlijke
voordelen bij het vereenvoudigen van de QCD-berekeningen. Zonder deze eigenschap
zouden we alleen moeten vertrouwen op experimentele waarnemingen en rooster
QCD-berekeningen om inzicht te krijgen in de hadron-substructuur. Hoewel de rooster
QCD-methode kan worden toegepast voor «, = 1, i.e. waar de pQCD-methode faalt,
vormt het een andere uitdaging. Namelijk, het vereist uitgebreide rekenmiddelen voor de
analyse van processen bij versnellers en voor niet-statische grootheden, die voorkomen
in de beschrijving van een botsing.

In het geval dat een proton met een zeer hoge snelheid beweegt ten opzichte van
een ander deeltje, zal dit deeltje een groter aantal partons in het proton ‘zien’. Bij-
gevolg wordt de fractie van het protonmomentum dat door elk parton wordt gedragen,
aangeduid met z, veel kleiner. Zoals bevestigd door studies naar collineaire parton-
verdelingsfuncties (PDF’s), wanneer x klein is, zullen gluonen de samenstelling van het
proton domineren. Naarmate we x verder verlagen tot waarden onder 0.01, bekend als
het kleine z-regime, wordt het fenomeen van verzadiging, als gevolg van niet-lineaire
QCD-effecten, significant. In het grote xz-regime kan de inhoud van het proton worden
beschreven met behulp van de eendimensionale collineaire PDF, maar deze benadering
is niet van toepassing op het gebied van kleine x. De collinear PDF voorspelt een
exponentiéle groei van de partons voor kleinere x, wat uiteindelijk in strijd is met het
unitariteitsprincipe van de werkzame doorsnede. Daarom zou er in het regime van
kleine x een model moeten zijn dat de groei van de partons beperkt. Een geschikt
model hiervoor heet Color Glass Condensate (CGC). Binnen dit model resulteert de hoge
dichtheid van partonen in de hadron in een verzadigingsfenomeen dat beschrijft dat in
het kleine x-regime een verstrooiend deeltje meer kans heeft om in botsing te komen
met de hoge dichtheid van gluonen die het grootste deel van het proton vormen, in
plaats van met een enkele quark. In deze CGC-beschrijving verandert het transversale
momentum en de ruimtelijke verdeling van partonen naarmate = verandert, waardoor
meer nodig is dan de eendimensionale collineaire PDF’s.

De gegeneraliseerde transversale impulsafthankelijke PDF’s (GTMD’s), die de Fouri-
ertransformatie van de Wigner-verdeling zijn, bekend als de ‘moederverdeling’, zijn
hoger-dimensionale PDF’s die het verzadigingsfenomeen kunnen accommoderen. In
tegenstelling tot de een-dimensionale collineaire PDF’s die alleen afthankelijk zijn van «,
kunnen GTMD’s zes-dimensionaal zijn en afhankelijk van een meer algemene correlator,
afhankelijk van meer variabelen. Het bestuderen van GTMD’s helpt om hoogenergetische
fenomenen te begrijpen en geeft een completer beeld van de dynamiek van partonen in
een hadron of een kern.

Het is voorgesteld dat de werkzame doorsnede van de diffractieve dijetproductie in
de hoogenergetische Deep Inelastic Scattering (DIS) recht evenredig is met de GTMD.
In deze hoge-energielimiet (kleine x), waar gluonen domineren, kan de bijdrage van
quarks worden verwaarloosd, waardoor we ons uitsluitend kunnen concentreren op
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de gluon GTMD. In dit proefschrift ontwikkelen we eerst een gluon GTMD-model
op basis van het gevestigde MV (McLerran-Venugopalan) model en integreren we
impactparameterafhankelijkheid. Een voordeel van het model is dat het slechts twee
fysiek gemotiveerde vrije parameters introduceert. Door deze parameters te bepalen
aan de hand van meetgegevens van diffractieve dijetproductie bij HERA-H1, nemen we
waar dat het model de metingen voor het transversale momentumgemiddelde van de jet
(K ) en transversale momentumoverdracht in het kwadraat (¢) adequaat beschrijft. De
goede overeenkomst van het model met H1-gegevens biedt een sterke ondersteuning
voor het GTMD-model dat in deze studie wordt gebruikt. We hopen dat verdere validatie
van dit raamwerk mogelijk zal zijn met toekomstige metingen van experimenten bij
de Large Hadron Collider (LHC) en de Electron-lon Collider (EIC). Deze toekomstige
experimenten zullen ons in staat stellen meer inzicht te krijgen in het gedrag van
partonen en de onderliggende dynamica van hoogenergetische botsingen, waardoor ons
begrip van de GTMD en de rol daarvan bij het beschrijven van diffractieve processen
verder wordt verfijnd.

Het bovenstaande model, dat onafhankelijk is van x, geeft echter niet nauwkeurig
de energieafhankelijkheid (Q?) van de experimentele data weer, omdat het alleen de
gemiddelde x van het bijbehorende proces onderzoekt. Om deze beperking te overwin-
nen, werd een z-afhankelijk model geintroduceerd op basis van de GBW-parametrisering
(Golec-Biernat en Wiisthoff). Het GBW-model staat bekend voor het succesvol beschrij-
ven van de werkzame doorsnede van het DIS-proces, inclusief het diffractieve geval, bij
HERA. Dit motiveert ons om deze parametrisatie in ons model op te nemen. Door de vrije
parameters van het z-afhankelijke model te laten bepalen door dezelfde diffractieve dijet
meetgegevens van HERA-H1 in de vorige studie, ontdekken we dat het verbeterde model
in staat is om de beschrijving van de (Q%-afhankelijkheid van de gegevens te verbeteren
en tegelijkertijd een goede fit met andere variabelen (K| en t) te behouden. Met het
verbeterde model hebben we voorspellingen gedaan voor het diffractieve dijetproces bij
de EIC, die dienen als een test van het model voor toekomstige experimenten.

Met het argument dat diffractieve .J/¢ en dijetproductie alleen verschillen in de
eindtoestand, verwachten we dat deze twee processen kunnen worden beschreven door
hetzelfde GTMD-model. Het z-afhankelijke model is verder uitgebreid om exclusieve
diffractieve J /1 productie te beschrijven, waarbij voor beide processen dezelfde parame-
ters zijn gebruikt. Deze parameters bepalen onafhankelijk verschillende aspecten van
de werkzame doorsnede: de breedte van het protonprofiel R, bepaalt de helling in ¢,
de parameter \ als de macht van x regelt de helling in IV, terwijl y fungeert als een al-
gemene factor voor de verzadigingsschaal en de amplitude van de werkzame doorsnede
bepaalt. Voor diffractieve .J/v) productie gebruikten we twee bekende en eenvoudige vec-
tormesongolffuncties: “boosted Gaussian” en “Gaus-LC”. In deze studie is het belangrijk
op te merken dat het primaire doel niet is om een alomvattend model te ontwikkelen,
maar om te onderzoeken of een generiek klein-z gluon GTMD-model diffractieve pro-
cessen nauwkeurig kan beschrijven. Deze vijf-dimensionale GTMD-beschrijving (we
gaan uit van nul scheefheid) gaat verder dan de beschrijving van de Generalized Parton
Distribution (GPD) die afhankelijk is van minder kinematische variabelen (x, scheefheid
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en transversale momentumoverdracht).

Uiteindelijk ontdekken we dat het z-afhankelijke model er niet in slaagt om beide pro-
cessen nauwkeurig te beschrijven met dezelfde parametrisering, wat leidt tot afwijkingen
in de parameter fits. Dit doet de vraag rijzen of diffractieve dijet en .J/+) productie inder-
daad in hetzelfde GTMD-kader moeten worden beschreven. In principe zou de afwijking
kunnen voortkomen uit meerdere bronnen van onzekerheid, bijvoorbeeld door de vec-
tormesongolffuncties die worden toegepast op de productie van .J/v, het protonprofiel,
correcties (van niet-nul-scheefheid en odderonbijdragen) en zelfs de meetgegevens van
H1- en ZEUS-experimenten. Meer specifiek vertoont de ¢-helling van de twee processen
hetzelfde do/dt ~ exp|—bt]-patroon, maar de .J/i)-gegevens vertonen veelal een steilere
helling, wat een kleinere gluonische straal van het proton in het model vereist. De
discrepantie ligt dus in het verschil in de ¢-helling die voortkomt uit het profiel van het
proton in plaats van in de eindtoestand (dijets versus J/¢) productie). Dit suggereert dat
de afwijking tussen experiment en model zou kunnen voortkomen uit experimentele
factoren, aangezien de initiéle protontoestand hetzelfde of zeer vergelijkbaar zou moeten
zijn voor de verschillende datasets en processen. Toekomstige experimentele gegevens
zullen helpen dit probleem op te lossen.

Als we ons model uitbreiden naar metingen van fotonucleaire productie bij Ultra-
Perifere Botsingen (UPC) van Pb-kernen in de LHC zoals gemeten in het ALICE exper-
iment, laat onze studie zien dat de A afhankelijkheid van de verzadigingsschaal niet
de verwachte vorm, A'/3, volgt, maar zich in plaats daarvan gedraagt als A%?"~°3, ook
al sluit het model de eerste mogelijkheid niet uit. Ook dit aspect is afthankelijk van de
vorm van het protonprofiel, maar niet alleen van de breedte. Deze bevindingen moeten
verder worden onderzocht en verduidelijkt door middel van aanvullende metingen bij
tussenliggende A-waarden, bijvoorbeeld bij RHIC.

Op basis van de verkregen geoptimaliseerde parameterfits hebben we voorspellingen
gedaan voor de overeenkomstige processen die naar verwachting zullen plaatsvinden
bij de toekomstige EIC, evenals voor UPC’s bij de LHC en RHIC. Hoewel het model
generiek is en niet gericht op het verkrijgen van de best mogelijke beschrijving van de
gegevens, kan het nog steeds toetsen of het GTMD-formalisme kan worden toegepast op
diffractieve processen, en tegelijkertijd inzicht geven in de reden van de afwijkingen,
specifiek met betrekking tot de ¢ athankelijkheidsvorm. De beschikbaarheid van nieuwe
metingen van experimenten in de LHC, RHIC en de toekomstige EIC zal belangrijk zijn
voor het oplossen van de afwijking die wordt waargenomen in de ¢-verdeling tussen
J /1 en dijet-productie. Bovendien zullen deze metingen helpen om de athankelijkheid
van de gemeten scheefheid in het proces op te helderen en de A afhankelijkheid van
de verzadigingsschaal voor zware kernen te bepalen. We hopen dat deze toekomstige
experimenten de nodige informatie zullen opleveren om deze vragen te beantwoorden
en ons begrip van de onderliggende dynamica te verfijnen.




Rangkuman

Merupakan fakta yang secara umum telah diketahui bahwa seluruh materi yang teramati
di alam semesta ini tersusun atas atom-atom yang di dalamnya terdapat elektron dan
inti. Elektron bergerak mengitari inti atom yang terdiri dari proton dan neutron. Saat
ini telah diketahui pula bahwa proton dan neutron, yang merupakan keluarga hadron,
bukanlah partikel elementer; sebaliknya, proton dan neutron adalah partikel komposit
yang tersusun atas quark dan gluon, secara kolektif disebut sebagai parton. Pada
tingkat subatomik, hadron adalah bagian paling dominan dari atom sedangkan elektron
berkontribusi sangat sedikit terhadap keseluruhan massa atom, di mana massa elektron
1800 kali lebih ringan dari massa proton. Oleh karena itu, parton merupakan partikel
elementer yang berkontribusi paling besar terhadap massa atom. Hal ini memberikan
motivasi pentingnya mempelajari parton yang berada di dalam hadron serta memahami
gaya kuat (strong force) yang mengatur interaksi antar parton. Kedua hal tersebut
diharapkan dapat memberi kita informasi mendalam tentang sifat-sifat materi yang
membentuk alam semesta ini.

Untuk menyelidiki perilaku parton di dalam hadron, dibangunlah akselerator-
akselerator partikel. Di akselerator, partikel-partikel dipercepat hingga memiliki ke-
cepatan tinggi kemudian saling ditabrakkan/dihamburkan. Selanjutnya, digunakan
detektor untuk mendeteksi partikel-partikel yang dihasilkan oleh proses hamburan
tersebut. Dengan menabrakkan hadron berenergi tinggi dengan partikel elementer
lain, seperti elektron dan positron, atau dengan hadron lainnya, para fisikawan dapat
mengungkap dinamika parton dan mengamati perilaku parton di dalam hadron. Hal
ini bertujuan untuk mendapatkan informasi tentang bagaimana kontribusi parton pada
karakter fisis hadron seperti spin dan massa. Namun, studi tentang hamburan partikel
energi tinggi, yang dikenal sebagai fisika energi tinggi (high energy physics), cukup
menantang baik secara teoretis maupun eksperimental karena melibatkan banyak aspek
fisika dan teknis yang harus diperhitungkan.

Menurut prinsip kelestarian (conservation) energi dan massa, semakin tinggi energi
partikel dalam suatu proses hamburan, jumlah partikel yang terproduksi juga akan
semakin besar. Akibatnya, proses hamburan partikel energi tinggi akan tampak sebagai
peristiwa yang sangat tidak teratur karena banyaknya partikel yang terproduksi. Terlebih
lagi, banyak di antara partikel yang dihasilkan tersebut memiliki waktu hidup yang
singkat. Oleh karena itu, diperlukan kecermatan yang tinggi untuk mengidentifikasi
partikel yang dihasilkan dengan melakukan karakterisasi partikel berdasarkan muatan,
spin, massa, dan kecepatannya. Perilaku gaya kuat yang dimediasi oleh gluon yang
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mengikat quark di dalam hadron membuat proses identifikasi partikel menjadi lebih sulit.
Hal ini terjadi karena perilaku gaya kuat membuat quark dan gluon tidak akan muncul
sebagai partikel tunggal bebas. Fenomena ini disebut sebagai kungkungan (confinement),
karena quark dan gluon selalu terkungkung di dalam hadron. Untungnya, dalam
hamburan partikel energi tinggi, quark juga mengikuti perilaku kebebasan asimtotik
(asymptotic freedom) di mana kopling interaksi kuat akan berkurang seiring dengan
meningkatnya energi hamburan. Hal ini menjadikan quark dapat diperlakukan sebagai
partikel bebas pada sebagian proses hamburan dan memungkinkan untuk diterapkannya
metode ekspansi kopling karena kecilnya kopling interaksi kuat pada energi tinggi
tersebut (o, < 1) sedemikian rupa sehingga suku berpangkat tiga, empat, dan yang
lebih tinggi dapat diabaikan. Hal ini dapat dilakukan karena pangkat tinggi untuk
suatu nilai kecil bernilai jauh lebih kecil dibandingkan dengan suku pertama (leading
order, LO) dan suku kedua (next-to-leading order, NLO). Metode ini disebut perturbative
QCD (pQCD). Penerapan metode ini akan menyederhanakan perhitungan QCD secara
signifikan. Jika fenomena kebebasan asimtotik ini tidak ada pada QCD, maka dalam
QCD, kita hanya akan bergantung pada pengamatan eksperimental dan perhitungan kisi
QCD (lattice QCD) untuk melakukan analisa substruktur hadron. Akan tetapi, meskipun
metode kisi QCD dapat diterapkan untuk nilai a; 2 1 di mana metode pQCD tidak
dapat diterapkan, metode ini memiliki tantangan lain berupa diperlukannya sumber
daya komputasi yang sangat besar untuk menyelidiki proses-proses yang terjadi pada
akselerator dan menganalisa besaran-besaran non-statis, seperti yang digunakan dalam
mendeskripsikan proses hamburan.

Ketika proton bergerak dengan kecepatan yang sangat tinggi relatif terhadap par-
tikel penghambur (probe), maka partikel penghambur tersebut akan "melihat" bahwa di
dalam proton terdapat banyak sekali parton. Akibatnya, fraksi momentum proton yang
dibawa oleh masing-masing parton, dilambangkan dengan x, menjadi sangat kecil. Hal
ini telah dikonfirmasi oleh studi fungsi distribusi parton kolinier (collinear parton distri-
bution functions/collinear PDF) yang menunjukkan bahwa pada daerah x cukup kecil,
gluon akan mendominasi komposisi proton. Ketika nilai = semakin diturunkan ke nilai
di bawah 0.01, yang dikenal sebagai daerah x kecil (small-x regime), fenomena saturasi
(saturation) yang dihasilkan dari efek QCD nonlinier menjadi signifikan. Dalam daerah
x besar, distribusi parton penyusun proton dapat dijelaskan menggunakan PDF kolinier
satu dimensi. Namun, pendekatan ini tidak dapat digunakan untuk daerah x kecil. Hal
ini karena PDF kolinier memprediksi bahwa jumlah parton meningkat secara eksponen-
sial ketika x bergerak menuju nilai yang lebih kecil yang akhirnya melanggar prinsip
unitaritas tampang lintang (cross section). Oleh karena itu, pada daerah x kecil, harus
ada suatu kerangka (framework) yang dapat mengontrol pertumbuhan parton. Kerangka
yang tepat untuk menganalisa parton di daerah ini adalah deskripsi/pendekatan Color
Glass Condensate (CGC). Dalam kerangka ini, densitas parton yang tinggi di dalam
hadron menghasilkan fenomena saturasi. Fenomena ini menggambarkan bahwa pada
daerah z kecil, partikel penghambur lebih mungkin bertabrakan dengan gluon daripada
dengan quark tunggal, karena gluon memiliki densitas tinggi yang menjadi partikel
mayoritas penyusun proton. Dalam deskripsi CGC ini, momentum transversal dan dis-
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tribusi spasial parton berubah ketika = berubah, sehingga diperlukan fungsi distribusi
lain dengan dimensi lebih tinggi dari PDF kolinier satu dimensi.

PDF yang bergantung pada momentum transversal diperumum (generalized trans-
verse momentum dependent PDFs /GTMDs), yang merupakan transformasi Fourier dari
fungsi distribusi Wigner yang dikenal sebagai mother distribution, adalah PDF berdi-
mensi tinggi yang dapat mengakomodasi fenomena saturasi. Berbeda dengan PDF
kolinier satu dimensi yang hanya bergantung pada =, GTMD dapat memiliki enam
dimensi dan bergantung pada korelator yang lebih umum yang bergantung pada lebih
banyak variabel. Mempelajari GTMD membantu kita memahami fenomena hamburan
partikel energi tinggi dan memberikan gambaran yang lebih lengkap tentang dinamika
parton dalam hadron atau inti atom.

Telah diusulkan bahwa tampang lintang produksi dijet difraktif (diffractive dijet
production) pada proses hamburan dalam tidak elastik (Deep Inelastic Scattering/DIS)
energi tinggi akan berbanding lurus dengan GTMD. Dalam hamburan partikel energi
tinggi ini (x kecil), di mana partikel penyusun hadron didominasi oleh gluon, kontribusi
quark dapat diabaikan, sehingga memungkinkan kita untuk fokus hanya pada GTMD
gluon. Dalam penelitian ini untuk pertama kali dikembangkan model GTMD gluon
berdasarkan model MV (McLerran-Venugopalan) yang telah mapan dan memasukkan
kebergantungan pada impact parameter. Salah satu keunggulan dari model ini adalah
hanya diperkenalkan dua parameter bebas yang masing-masing memiliki motivasi fisis.
Dengan mencocokkan (fit) kedua parameter tersebut dengan data produksi dijet difraktif
di HERA-H1, diketahui bahwa model tersebut cukup mampu menjelaskan data momen-
tum transversal jet rata-rata (K| ) dan momentum transversal yang tertransfer kuadrat
(). Kemampuan model tersebut menjelaskan data dari H1 memberikan dukungan kuat
untuk menggunakan kerangka GTMD untuk menjelaskan proses-proses difraktif yang
didiskusikan dalam penelitian ini. Diharapkan bahwa validasi lebih lanjut dari kerangka
GTMD ini akan dapat dilakukan dengan tersedianya data baru dari eksperimen di Large
Hadron Collider (LHC) dan Electron-Ion Collider (EIC). Eksperimen yang diharapkan
akan dilakukan di masa mendatang ini memungkinkan kita untuk memahami lebih
dalam tentang perilaku parton dan dinamika yang mendasari hamburan partikel energi
tinggi, yang selanjutnya dapat menyempurnakan pemahaman kita tentang GTMD dan
perannya dalam menjelaskan proses-proses difraktif.

Namun, model yang tidak bergantung pada « di atas tidak secara akurat menjelaskan
data kebergantungan pada energi (Q?) karena model ini hanya mempertimbangkan
nilai x rata-rata dari proses terkait. Untuk mengatasi keterbatasan ini, diperkenalkan
model baru yang bergantung pada = mengikuti parameterisasi GBW (Golec-Biernat dan
Wiisthoff). Model GBW dikenal atas keberhasilannya menjelaskan tampang lintang
proses-proses DIS, termasuk proses-proses difraktif di HERA, yang menjadikan moti-
vasi diterapkannya parameterisasi GBW ke dalam model ini. Dengan mencocokkan
parameter-parameter bebas dari model baru yang bergantung pada x ini pada data dijet
difraktif yang sama dari HERA-H1 yang digunakan dalam analisa sebelumnya, diketahui
bahwa model baru ini mampu memberikan deskripsi data kebergantungan Q? dengan
lebih baik dengan tetap mempertahankan kualitas deskripsi variabel lain (K, dan ¢).
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Dengan model yang diperbarui ini, diberikan prediksi untuk proses dijet difraktif di EIC
untuk menguji model ini pada eksperimen-eksperimen berikutnya.

Dengan menggunakan argumen bahwa produksi J/¢) dan produksi dijet difraktif
hanya berbeda dalam final state, diharapkan bahwa kedua proses ini dapat dijelaskan
oleh kerangka GTMD yang sama. Model GTMD yang bergantung pada = kemudian
diperluas lebih lanjut untuk menjelaskan produksi .J/v difraktif eksklusif, dengan meng-
gunakan nilai parameter yang sama untuk kedua proses. Parameter-parameter ini secara
independen menentukan berbagai aspek dari tampang lintang: lebar profil proton R,
menentukan kemiringan ¢, parameter )\ sebagai pangkat + mengontrol kemiringan W,
sementara y yang bertindak sebagai faktor untuk mengatur skala saturasi (saturation
scale) akan menentukan amplitudo tampang lintang. Untuk produksi J/« difraktif, digu-
nakan dua fungsi gelombang meson vektor (vector meson) yang telah banyak dikenal dan
cukup sederhana: boosted Gaussian dan Gaus-LC. Penting untuk dicatat bahwa tujuan
utama penelitian ini bukan untuk mengembangkan model yang mampu menjelaskan
data secara komprehensif, melainkan lebih menekankan untuk menyelidiki apakah
model GTMD gluon z kecil generik dapat secara akurat menggambarkan proses-proses
difraksi. Deskripsi GTMD lima dimensi ini (diasumsikan skewness bernilai nol) melam-
paui deskripsi Generalized Parton Distribution (GPD) yang bergantung pada lebih sedikit
variabel kinematik (x, skewness, dan momentum transversal yang tertransfer).

Pada akhirnya, diketahui bahwa model yang bergantung pada = gagal menggam-
barkan kedua proses tersebut secara akurat menggunakan parameterisasi yang sama,
yang menyebabkan ketidaksamaan (tension) pada hasil pencocokan parameter untuk
kedua proses. Hal ini menimbulkan pertanyaan apakah proses produksi dijet difraktif
dan J/¢ memang harus dijelaskan oleh kerangka GTMD yang sama. Pada prinsipnya,
ketidaksamaan ini dapat muncul dari berbagai sumber ketidakpastian, seperti fungsi
gelombang meson vektor yang diterapkan pada produksi .J/v, lebar profil proton, ko-
reksi (skewness yang tidak nol dan kontribusi odderon), dan bahkan bisa pula data
dari data eksperimen H1 dan ZEUS. Lebih khusus lagi, kemiringan ¢ dari kedua proses
menunjukkan pola do/dt ~ exp[—bt] yang sama, tetapi data .J/¢) cenderung menun-
jukkan kemiringan yang lebih curam yang membutuhkan jari-jari gluonik proton yang
lebih kecil dalam model tersebut. Dengan demikian, ketidaksesuaian tersebut terletak
pada perbedaan kemiringan ¢ yang berasal dari profil proton dan bukan pada final state
(dijet versus produksi J/v). Hal ini menunjukkan bahwa ketidaksamaan ini bisa jadi
berasal dari faktor eksperimental karena keadaan proton awal (initial proton state) harus
sama atau sangat mirip untuk semua data dan proses-proses yang berbeda. Diharapkan
data eksperimen yang lebih banyak di masa mendatang akan membantu menyelesaikan
masalah ini.

Dengan memperluas model di atas untuk menjelaskan data produksi fotonuklir
pada proses Ultra-Peripheral Collisions (UPC) inti Pb pada hasil pengukuran kolaborasi
ALICE di LHC, penelitian ini mengungkapkan bahwa kebergantungan skala saturasi
pada nomor massa atom A tidak mengikuti pola yang umumnya diharapkan A'/3, tetapi
lebih mendekati A%?"~%3, meskipun model ini tidak menutup kemungkinan pola A'/?
tersebut tetap berlaku di daerah tertentu. Aspek kebergantungan skala saturasi pada A
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ini juga dipengaruhi oleh profil proton yang tentu bukan sekedar karena lebar profilnya
saja. Temuan ini memerlukan penyelidikan dan klarifikasi lebih lanjut melalui data
tambahan untuk inti-inti dengan nilai A menengah, yang misalnya dapat dilakukan di
RHIC.

Diberikan prediksi untuk beberapa proses terkait menggunakan hasil pencocokan
yang paling optimal antara parameter-parameter model dengan data pada tiap proses.
Diharapkan prediksi-prediksi tersebut dapat diuji di akselerator EIC yang sedang dalam
proses pembangunan. Diberikan pula prediksi untuk proses UPC yang eksperimennya
dapat dilakukan di LHC dan RHIC. Meskipun model ini bersifat generik dan tidak
dibangun untuk tujuan utama mendapatkan deskripsi data sebaik mungkin, model
ini masih dapat memvalidasi apakah formalisme GTMD dapat diterapkan pada proses
difraktif dan secara bersamaan juga dapat untuk memberikan informasi lebih lanjut
tentang sumber ketidaksamaan pada parameter yang optimal antara kedua proses,
khususnya untuk data tampang lintang sebagai fungsi ¢. Ketersediaan data tambahan
yang dapat diperoleh dari eksperimen di LHC, RHIC, dan EIC di masa depan akan
menjadi hal penting untuk dapat mengurai sumber perbedaan yang teramati untuk data
distribusi ¢ antara J/v¢ dan produksi dijet. Data tersebut juga akan dapat membantu
menjelaskan kebergantungan tampang lintang pada parameter skewness untuk proses-
proses yang telah diteliti dan menentukan kebergantungan skala saturasi pada A untuk
inti berat. Diharapkan bahwa eksperimen yang akan dilakukan mendatang ini akan
memberikan informasi yang diperlukan untuk menjawab pertanyaan terbuka ini dan
meningkatkan pemahaman kita tentang dinamika yang mendasarinya.
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