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Abstract
Parametric photon creation via the so called dynamical Casimir effect is calculated nu-
merically. We consider a model where a three-dimensional resonant cavity is bisected
by a semiconductor diaphragm, which is irradiated by a pulse laser with frequency of
the GHz order. Our preliminary results show that the photon number density depends
on where the diaphragm is placed with the midpoint giving the largest contribution.

1 Introduction

In the pursuit of an experimental verification of the dynamical Casimir effect (DCE), the problem arises of
how to oscillate a cavity wall with an extremely high frequency of the GHz or THz order? A particularly
nice idea was by Yablonovitch [1], also see references in [2], who proposed an optical excitation of valence
electrons of a semiconductor into the conduction band by a pulse laser, which makes the semiconductor
metallic. The metallized semiconductor wall reflects electromagnetic waves and thus the semiconductor
diaphragm (SCD) acts like an oscillating cavity wall. Quite recently, experimental schemes to detect
DCE photons have been proposed using a semiconductor wall irradiated by a pulse laser [3].

From a theoretical standpoint there have been been some works on the SCD idea [2, 4, 5]. However, in
[5] the prerequisite guaranteeing a perturbative treatment is not satisfied when the SCD is placed far from
the cavity wall and a numerical approach should be used, e.g. [6]. Also, recently the work of Dodonov &
Dodonov [7] discussed some possible problems with the SCD idea, relating to that fact that the dielectric
constant of the semiconductor has a large positive imaginary part in the conducting (irradiated) state,
which therefore leads to dissipative effects. A possible resolution to this problem was advocated in [8] by
applying a single mode phenomenological dissipation model. The purpose of this work is to discuss how
the location of the SCD affects the number of created photons assuming the SCD is a perfect conductor
when irradiated (unitary evolution). Furthermore, we find that when the SCD is not attached to one of
the cavity walls, such as at the midpoint, then the single mode approach used in [8] should somehow be
generalized to multimode coupling.

2 Model for TE Modes

We evaluate numerically the number density for TE photons for an SCD placed in an aluminum cavity
with dimensions Lx × Ly × Lz(Lx = Ly ≡ L = 5 cm, Lz = 2L) which is bisected by an n-type semicon-
ductor diaphragm (SCD) placed at a position d from the left wall along the z-axis (the exact details of
the experimental design & detection will be presented elsewhere [9]). Electromagnetic waves in a vacuum
can be conveniently decoupled into two scalar functions (or scalar Hertz potentials as they are commonly
known) ψE and ψM instead of the usual scalar & vector potential (φ,A), e.g. see [10]. This allows us to
find solutions for each respective scalar Klein-Gordon equation:

[∇2 − 1
c2
∂2

∂t2
]ψE(x, y, z, t) = V (t)δ(z − d)ψE(x, y, z, t) (1)

where the subscript E will be used to denote the TE mode. Similarly to the work of [4, 5], we model the
SCD by a Dirac delta function, δ(z−d) with potential V (t) = 4πρe(t)∆ze2/m∗c2; where ρe is the density
of conduction electrons, ∆z is the effective thickness of the SCD for laser absorption, e is the electronic
charge and m∗ the effective mass of the conduction electrons in the SCD with m∗ = 0.07m0 (m0 being
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the electron rest mass and c, the velocity of light). Estimating a pulse laser power of around 100 J/pulse
then we find ρe∆z ∼= 1× 1013 cm−2, where we have assumed a donor density of 1018 atoms cm−3 and an
energy interval of 10 meV between the conduction band minimum and donor level (at a temperature of
1 K). Thus one obtains the following maximum and minimum values for V (t) of Vmax = 500 cm−1 and
V0 ≈ 0 cm−1.

In the following we shall assume that the period of the laser pulse is set to T = 149.07 ps, which
corresponds to a frequency of about three GHz for the TE fundamental modes: (1, 0, 1) & (0, 1, 1)
respectively. The overall shape of V (t) is assumed to asymmetric because the SCD excitation and
recombination times are expected to differ [7]. We use a profile for V (t) of the form of one Gaussian of
half-width σ1 = 4 ps going from V0 to Vmax where saturation at the maximum lasts for tsat = 7 ps with
the second Gaussian with σ2 = 11 ps going back down to V0 . We assume the pulse is offset by 30 ps.
In practice these times can be measured experimentally and for example lifetimes of the order of 10 ps
may be achievable. In order to avoid strong dissipation effects in the SCD we have also set the saturation
time to a short time tsat = 7 ps.

The scalar function ψE represents the longitudinal component of the magnetic field Bz and satisfies
Dirichlet boundary conditions (BCs) on the longitudinal boundary and Neumann BCs on the transverse
boundaries. Thus, the solution for the TE mode takes the form

ψE(x, t) =


√

2
Lx

cos
(
πmxx
Lx

)√
2
Lz

cos
(
πmyy
Ly

)
×AEm

√
1
d sin (kmz) 0 < z < d√

2
Lx

cos
(
πmxx
Lx

)√
2
Lz

cos
(
πmyy
Ly

)
×BEm

√
1

Lz−d sin (km(Lz − z)) d < z < Lz
,

(2)
where mx and my are integers (0, 1, 2, 3, . . .) with mx = my 6= 0 and m (dropping subscript z) denotes
the eigenvalues of the function km(t) in the z-direction AEm is a normalization constant satisfying

(ψn, ψn)E =
(

1− sin(2dkn)
2dkn

)
(AEn )2 +

(
sin(2kn(Lz − d))

2kn(d− Lz)
− 1
)

(BEn )2 = 1 . (3)

The SCD δ-function in the wave equation leads to a discontinuity in the spatial derivative at z = d, while
the field itself is continuous:

ψI(z = d, t) = ψII(z = Lz − d, t) (4)

∂

∂z
ψI(z = d, t)− ∂

∂z
ψII(z = Lz − d, t) = −V (t)ψ(z = d, t) (5)

From the above relations, we obtain the following continuity and eigenvalue relations for the TE mode:

AEm
BEm

=
√

d

Lz − d
sin(km(Lz − z))

sin(kmd)
sin(kmLz)

sin(km[Lz − d]) sin(kmd)
= −V (t)Lz . (6)

In this work we solve for the eigenvalues km(t) exactly.

3 Photon Number Density

The second quantization of the equations of motion using the instanteneous basis approach leads to a set of
infinitely coupled equations [11]. The TE field is quantized as ψE(x, t) =

∑
m Cm

[
amum(x, t) + a†mu

∗
m(x, t)

]
with the standard harmonic oscillator solution um(x, t) = e−iω

0
mt/(

√
2ω0

m)ψm(x, 0) for t < 0, before ir-
radiation and the instantaneous basis us(x, t ≥ 0) =

∑
m P

(s)
m (t)ψm(x, t) for t ≥ 0 while irradiated. On

substituting this expression into the wave equation (1) we obtain, after using orthonormality,

P̈ (s)
n + ω2

n(t)P (s)
n = −

∞∑
m

[(
2Ṗ (s)

m k̇m + P (s)
m k̈m

)
gA
mn + P (s)

m k̇2
mg

B
mn

]
, (7)

where

gA
mn =

δmxnx
δmyny

(ψn, ψn)

(
∂ψm
∂km

, ψn

)
gB
mn =

δmxnx
δmyny

(ψn, ψn)

(
∂2ψm
∂2km

, ψn

)
. (8)
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The gAmn and gBmn are very complicated functions and would require numerical integration in general (we
have verified numerically that gAnn = 0 in all cases). However, for special cases (such as at the midpoint
and for d = Lz/3) they can be integrated exactly to give a complicated function of kn(t). The wave
number at a given instant of time is

ω2
n(t) = k2

n(t) +
(
nxπ

Lx

)2

+
(
nyπ

Ly

)2

ωm(0) = ω0
m . (9)

and imposing continuity of un and u̇n at t = 0 leads to the following initial conditions: P (s)
m (0) = 1/

√
2ω0

m

and Ṗ
(s)
m (0) = −i

√
ω0
m/2.

As has been well discussed in the literature [12] the number density, Nm, in a particular mode m is2

Nm =
1
C2
m

∑
n

C2
n|βmn|2 C2

m = 8π/

[(
πmx

Lx

)2

+
(
πmy

Ly

)2
]

(10)

where Cm is a TE normalization [10] and βmn is a Bogolubov coefficient [12]. These can be calculated
by choosing the solution in um(t) for time t ≥ 0 as the out basis states and use the continuity conditions
valid for t < 0 for the in basis states. A straightforward calculation leads to

βmn(t) =

√
ωm(t)

2

(
P (n)
m (t)− i

ωm(t)

[
Ṗ (n)
m (t) +

∑
`

gA`m(t)P (n)
` (t)

])
, (11)

with αmn given by the complex conjugate. The choice of normalization in equation (11) is defined to
satisfy the continuity conditions, which implies αmn(0) = δmn and βmn(0) = 0. By solving equation (7)
numerically we can find βmn(t) and hence the photon number density via equation (10).

4 Results & Discussion

There are various approaches to solve the set of equations (7), e.g. [6], and what we try here is to just
solve the equations directly in MATHEMATICA. It may be worth mentioning that the larger the power
of the pulse laser the more pulses which can fit into a given carrier wave pulse. In our case we expect
the carrier wave pulse to be about 5000 ps long and thus the fundamental TE mode would contain about
33 pulses. However, due to limitations with our code we can only integrate the equations up to 1000 ps,
about 7 pulses. In the numerics we went up to a given cutoff mmax in equation (7) such that the results
converged, which we checked by verifying that the unitarity constraint,

∑
n(|αmn|2 − |βmn|2) = 1, [12]

is satisfied to a given accuracy, see Figure 1. For the midpoint this was at mmax = 17 while that for
d/Lz = 1/3 was at mmax = 10.

A further point is that due to the δmxnx
, δmyny

terms in gAmn and gBmn we only consider the coupling
of the modes in the z-direction to the (1, 0, 1) mode: with (1, 0, nz). The equations effectively become
equivalent to those of a one-dimensional massive scalar field in a cavity with Dirichlet BCs [6], where the
effective mass acts as a damping term. Thus, although there are some limitations with the code (larger
the cutoff mmax the slower the code), these results at the very least give an upper bound on the number
of photons produced for 1000 ps.

The results are presented in Figure 1 and show that the largest amount of photon production occurs
for the SCD placed at the midpoint (at least as compared to the case d/Lz = 1/3 for 1000 ps). Also our
numerics show that assuming single mode coupling leads to an over-prediction in the number of photons
produced, which is simply because we must include the damping terms coming from the effective scalar
field mass (though there are cases where the effective damping is negligible, see [6]).

We are now currently writing code in FORTRAN to deal with the limitations of the integration of
equation (7) over time, the cutoff mmax (which must be increased as we go to larger times) and the fact
that the values for the gAmn and gBmn also require numerical integration in general. However, although
the results presented here have their limitations, if the results are converging then we should be able to
partially extraploate themto larger times.

2The method of detection relies on a Rydberg atom beam which can detect individual photons of single frequency [9].
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Figure 1: Top: the number of photons produced in the (1, 0, 1) fundamental mode against time. Bottom:
the unitarity constraint

∑
n(|αmn|2 − |βmn|2) = 1. Left & right panels are for the SCD at the midpoint

and d/Lz = 1/3 respectively.
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