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Abstract The purpose of this paper consists in presenting
models of compact stars described by a new class of exact
solutions to the field equations, in the context of general rela-
tivity, for a fluid configuration which is locally anisotropic in
the pressure. With current sensitivities, we considered a non-
linear form of modified Van der Waals equation of state viz.,
pr = αρ2 + βρ

1+γρ
, as well as a gravitational potential Z(x)

as a generating function by exploiting an anisotropic source
of matter which served as a basis for generating the confined
compact stars. The exact solutions are formed by correlating
an interior space-time geometry to an exterior Schwarzschild
vacuum. Then, we analyze the physical viability of the model
generated and compare it with observational data of some
heavy pulsars coming from the Neutron Star Interior Com-
position Explorer. The model satisfies all the required pivotal
physical and mathematical properties in the compact struc-
tures study, offering empirical evidence in support of the
evolution of realistic stellar configurations. It is shown to be
regular, viable, and stable under the influence generated by
the parameters coming from the theory namely, α, β, γ , δ,
everywhere within the astral fluid in the investigated high-
density regime that supports the existence of realistic heavy
pulsars such as PSR J0348+0432, PSR J0740+6620 and PSR
J0030+0451.
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1 Introduction

One of the most interesting unsolved issues in modern
physics is the attributes of dense nuclear matter. Due to the
constraint of terrestrial experiments, regarding the properties
of nuclear matter’s equation of state (EoS) at supra-saturation
densities, that is greater than the nuclear saturation density
2.8 × 1014 g cm−3, scientific groups are focusing on investi-
gating compact objects in the cosmos, including mainly white
dwarfs (WDs) and neutron stars (NSs). Specifically, NSs are
considered to be the best extraterrestrial labs for studying the
undetected features of dense matter [1–4]. Our knowledge
with regard to NSs has considerably extended, since the pio-
neer work of Oppenheimer and Volkoff [5]. Mass, radius and
other parameters of stellar objects depend on the EoS selected
for the dense matter. Dozens of EoS have been proposed to
describe NS matter over the years [6]. Since the EoS is one
of the main observables characterizing matter features under
intense conditions, hence its constraint, therefore, necessi-
tates integrating nuclear physics and astrophysics. Many the-
oretical and experimental efforts along with astrophysical
observations have been put to probe the properties of dense
nuclear matter. Several NSs with a mass about 2 M� probed
over the last decennary whole enough stringent restraints on
nuclear matter EoS. Amongst the most enormous observed
pulsars is the pulsar PSR J1614-2230 having the smallest
uncertainty on the mass M = 1.906+0.016

−0.016 M� [7]. Other
two pulsars with M > 2 M� are PSR J0348+0432 with
M = 2.01+0.04

−0.04 M� [8] and MSP J0740+6620, recently dis-

covered with a mass of 2.14+0.10
−0.09 M� [9].
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In recent decades, the anisotropy effects on the modeling
of relativistic astrophysical objects in strong gravitational
fields have already been discussed in some recent works.
We can expect the emergence of unequal principal stresses,
dubbed anisotropic fluid when modeling such high-density
heavenly configurations above the nuclear density. This gen-
erally signifies that the radial pressure component is not equal
to the components in the tangential direction viz., two dis-
similar types of pressure components interior these relativis-
tic astrophysical objects. It is interesting to mention here
that the anisotropy effect has been first predicted by Jeans in
1922 [10] for self-gravitating configurations in the Newto-
nian regime. Then, an engrossing vision about more realistic
astrophysical systems where the nuclear interactions must be
analyzed in a relativistic way when a stellar structure with
density energy ρ > 1015 g cm−3 was given by Ruderman
[11]. In Refs. [11,12], the authors argued that the matter pro-
portion in the extremely congested nucleus of a stellar struc-
ture could present unequal stresses. However, the authors [13]
have thoroughly investigated the anisotropy sources at the
heavenly interior. Thereafter, the authors [14] have evaluated
and contended viable underlying cause for local anisotropy
in self-gravitating structures using representative cases of
both Newtonian and general relativistic circumstances. In
the same context, several authors [15–18] have also been
analyzed the source and consequences of local anisotropy on
cosmic configurations. It is also worth mentioning here that
in order to explore the the local pressure anisotropy effect
on a well-defined basis, it is mandatory to know the substan-
tial physical grounds accountable for its semblance, such as,
e.g., the pion condensation, exotic stage transitions over grav-
itational crash [19,20], viscosity [21], presence of a strong
nucleus or the existence of a type-IIIA super-critical fluid
[22], heavy electromagnetic areas [23–25], slow turning of
a fluid [26], emergence of willing distortion of Fermi sur-
faces [27,28], availability of super-critical fluid states with
constrained Cooper pair orbital momentum [29–32], or con-
strained super-critical fluid momentum [33,34].

The EoS, which is the principal input to the Tolman–
Oppenheimer–Volkoff equations [5,35], establishes the sta-
ble stages of a non-rotating NS, are constructed in diverse
fashions. The non-relativistic formalism with some param-
etrizations of Skyrme [36] and the three-body potential of
Akmal–Pandheripande–Ravenhall [37] are highly success-
ful in portraying nuclear EoS, including the NS. Moreover,
many exact stellar solutions to the Einstein field equations
were obtained by various methods with generalized path-
ways for one of the metric potentials that does have a linear
EoS [38–42], a quadratic EoS [43], a polytropic EoS [44,45],
a Chaplygin EoS [46–52] and Van der Waals EoS [53–55]
etc., and without a specific barotropic EoS linking pressure
to energy density [56–61]. Despite the fact that many such
works have been published over the years, only a small num-

ber of these stellar solutions are compatible with non-singular
metric functions via a physically agreeable stress-energy ten-
sor.

In this paper, we study a new class of solutions to Ein-
stein’s field equations representing static spherically sym-
metric anisotropic matter distribution in terms of a speci-
fied form of modified Van der Waals EoS such as pr =
αρ2 + βρ

1+γρ
along with a gravitational potential Z(x) as

a generating function. The exact solutions are formed by
correlating an interior space-time geometry to an exterior
Schwarzschild vacuum. Then, we study the physical viabil-
ity of the model generated and compared with observational
constraints from some massive NSs reported in the literature
such as the millisecond pulsars PSR J0348+0432 [8], PSR
J0740+6620 [9] and PSR J0030+0451 [62].

The paper is organized as follows. In Sect. 2, we briefly
discuss the basic principles of an equivalent system of equa-
tions by using the Durgapal–Bannerji transformation, to rep-
resent an anisotropic static spherically symmetric matter dis-
tribution. In Sect. 3, we provide new classes of exact interior
stellar solutions. Section 4 presents an insight of intersection
circumstances for a sleek corresponding between intrinsic
and extrinsic geometries, whereas Sects. 5, 6 and 7 discuss
physical properties, validity, and stability. Finally, conclud-
ing remarks are reported in Sect. 8.

2 Spherically symmetric space-time

Our motive in this study is to discuss a model describing an
anisotropic matter distribution with static spherical symme-
try in terms of a boosting function obeying a Van der Waals
type EoS. For this purpose, we start with static spherically
symmetric spacetime that can be represented by the line ele-
ment

ds2− = −e2ν(r)dt2 + e2λ(r)dr2 + r2d	2
2, (1)

in Schwarzschild coordinates xa = (t, r, ϑ, ϕ). Here ν and
λ represent the gravitational potentials which are only func-
tions of r , and d	2

2 = dϑ2 + sin2 ϑ dϕ2 portrays the metric
on the two-sphere in polar coordinates. .

The Einstein field equation is defined as,

8πTi j = Gi j , (2)

where Ti j and Gi j describe the energy-momentum tensor for
matter distribution and Einstein’s tensor, respectively. Here
the Einstein’s tensor Gi j depends completely on the Ricci
tensor Ri j and the Ricci scalar R. This can be expressed as

Ri j − 1

2
Rgi j = Gi j , (3)

where gi j representing the metric tensor.
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Let’s suppose that the matter implicated in the distribu-
tion is anisotropic in kind. By using the entire function, one
thus obtains the function for energy-momentum tensor in the
accompanying shape:

T j
i = ρη jηi + prχiχ

j + pt
(
η jηi − χiχ

j − g j
i

)
, (4)

whereas η j is the fluid 4-speed and η jηi = χiχ
j = 1, χi

is the unit space-like vector and thus η jχi = 0. The above
equation (4) gives the components of an anisotropic fluid’s
energy-momentum tensor at any point in the form of den-
sity ρ, radial pressure pr and transverse pressure pt . In this
regard, the energy-momentum tensor T j

i along with a simple
form of line element can be expressed as

T j
i = diag (−ρ, pr , pt , pt ) , (5)

with

T j
i = 0 i f i �= j. (6)

For the line element (1) and energy-momentum tensor (5),
the system of Einstein field equations in relativistic units
8πG = c = 1, can be expressed as

ρ =
[

1 − e−λ

r2 + e−λ

r

dλ

dr

]
, (7)

pr =
[
e−λ − 1

r2 + e−λ

r

dν

dr

]
, (8)

pt =
[

1

2

d2ν

dr2 + 1

4

(
dν

dr

)2

− 1

2r

(
dν

dr
− dλ

dr

)

−1

4

dν

dr

dλ

dr

]
e−λ, (9)

This stellar system of Eqs. (7)–(9) portrays the evolution of
the gravitational field within an anisotropic celestial config-
uration.

The gravitational mass contained within the spherical
object of radius r is given by,

m (r) = 1

2

∫ r

0
ρ (ε) ε2dε, (10)

while ε is an integration constant. We now use the transfor-
mation proposed for the first time in Ref. [63]

x = r2, Z (x) = e−2λ(r), A2y2 (x) = e2ν(r). (11)

The stellar system of Einstein field equations expressed in
(7)–(9) becomes

ρ = 1 − Z

x
− 2

dZ

dx
, (12)

pr = 4Z

(
1

y

dy

dx

)
+ Z − 1

x
, (13)

pt = 4x Z
d2y

dx2 +
(

4Z + 2x
dZ

dx

) (
1

y

dy

dx

)
+ dZ

dx
. (14)

The gravitational mass expression (10) becomes

m (x) = 1

4

∫ x

0

√
ερ (ε) dε, (15)

in terms of x introduced in (11).
It is interesting to observe that a physically realistic fluid

distribution of matter expecting to fulfill the barotropic EoS
viz., pr = pr (ρ). In this concern, we consider that the inte-
rior matter distribution obeys the modified Van der Waals
EoS as follows,

pr = αρ2 + βρ

1 + γρ
, (16)

in order to successfully complete the stellar system of Eqs.
(12)–(14). Here α, β and γ are real parameters.

The decelerated and accelerated periods are determined
by parameters, α, β and γ of the EoS, and in the restricting
situation α, γ → 0, we can recover the dark energy EoS,
with β = pr/ρ < −1/3. It has also been pointed out that the
perfect fluid EoS pr = βρ represents an estimation of cos-
mic epochs portraying stationary circumstances, with phase
transitions ignored [64]. Consequently, the modified Van der
Waals model has the advantage of depicting the transition
from a matter field ruled era to a scalar field ruled epoch
without introducing scalar fields. Furthermore, it aids in the
clarification of the cosmos by using a small number of ingre-
dients, and the modified Van der Waals fluid definitely treats
dark energy and dark matter as a single fluid. By restricting
the free parameters [64], the modified Van der Waals sce-
nario was also effectively challenged with a wide range of
observational tests.

On the other hand, this type of modified Van der Waals EoS
expressed in (16) seems less economical and in comparison
to observational tests, it is more flexible because of the wide
number of free parameters. Next, it is conceivable to write
the stellar system of Eqs. (12)–(14) in the simplest shape

e2λ = Z−1, (17)

e2ν = A2y2, (18)

ρ = 1 − Z

x
− 2

dZ

dx
, (19)

pr = 4Z

(
1

y

dy

dx

)
+ Z − 1

x
, (20)

pt = pr + �, (21)

� = 4x Z
d2y

dx2 + dZ

dx

(
1 + 2x

(
1

y

dy

dx

))
+ 1 − Z

x
(22)

in terms of gravitational potential grr i.e., Z , while in our
stellar model the amount � = pt − pr is the anisotropy test
that provides

y = Cx−1/4exp

[ ∫
1

4Z

(
1

x
+ αρ2 + βρ

1 + γρ

)
dx

]
(23)
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with C is an integration constant. Consequently, the line ele-
ment (1) can be expressed in terms of the new variables
defined in (11) as follows,

ds2 = −A2C2r−1exp

[ ∫
1

4Z

(
1

x
+ αρ2 + βρ

1 + γρ

)
dx

]
dt2

+Z−1dr2 + r2 (
dϑ2 + sin2 ϑdϕ2) . (24)

Therefore, the solution representing static spherically sym-
metric anisotropic matter distribution with the specified form
of modified Van der Waals EoS can be readily established in
accordance with the generating gravitational potential Z (x).
Next, we discuss in detail how we build compact stellar con-
figurations with anisotropic matter.

3 Exact solutions for anisotropic compact heavenly
structures

In the system of Einstein field equations expressed in (17)–
(22), there are six independent equations with independent
variables namely, ρ, pr , pt , �, y and Z . On the one hand, we
can see that the stellar system of equations strongly depends
on the gravitational potential Z (x). On the other hand, the
system proposes that it is conceivable to define one of the
amounts implicated in the integration process from equation
(22) which is the master equation in the present study whose
solution given by the relation (23). For this purpose, we make
an explicit choice for the gravitational potential Z (x) in the
following form

Z (x) = 1

2

[
2 − δx

][
1 + δx

]−1
, (25)

where δ is a positive real parameter. Here Z (x) = 1 at
x → 0, which shows that for a broad range of values of
the parameter δ, the form of gravitational potential has been
found to be regular, positive, and non-singular at the origin,
as well as well-behaved in the stellar interior, and thus sat-
isfies all of the requirements leading to the solution’s main
physical acceptability.

Now, on substituting (25) into (23), we get the explicit
function of y which is

y = Cexp

[
− δα

4

11 + 8δx

1 + 2δx + δ2x2

][
2 − δx

]−φ1

×
[

4(1 + δx) + 3δγ + √
3δγ (3δγ − 16)

4(1 + δx) + 3δγ − √
3δγ (3δγ − 16)

]φ2

×
[
2(1 + δx)2 + 3δγ (3 + δx)

]φ3
[
1 + δx

]φ4
(26)

where

φ1 = 15

2

β

6 + 5δγ
+ 25

24
δα − 3

4

φ2 = β
√

3δα

8
√

3δα − 16

52 − 15δγ

6 + 5δγ

φ3 = 3β

8

4 − 5δγ

6 + 5δγ

φ4 = 25

24
δα.

Consequently, the exact model for the stellar system of Eqs.
(17)–(22) composed of energy density, radial and tangential
components of pressure is obtained as follows

e2λ = 1

2

[
2 − δx

][
1 + δx

]−1
, (27)

e2ν = A2C2exp

[
− δα

2

11 + 8δx

1 + 2δx + δ2x2

][
2 − δx

]−2φ1

×
[

4(1 + δx) + 3δγ + √
3δγ (3δγ − 16)

4(1 + δx) + 3δγ − √
3δγ (3δγ − 16)

]2φ2

×
[
2(1 + δx)2 + 3δγ (3 + δx)

]2φ3
[
1 + δx

]2φ4
, (28)

ρ = 3δ

2

3 + δx

1 + 2δx + δ2x2 , (29)

pr = αρ2 + βρ

1 + γρ
, (30)

pt = pr + �, (31)

then, using (22) and (25), we obtain the explicit form of the
anisotropic parameter as follows

� = 2x

[
2 − δx

1 + δx

]
d2y

dx2 + 1

2

3δx

1 + 2δx + δ2x2

[
δ − 2

1

y

dy

dx

]

(32)

where y is specified by the previously mentioned relationship
(26). If � < 0, the anisotropic factor is attractive in nature
and repulsive if � > 0.

4 Matching conditions for anisotropic solution

At this stage, the interior space-time is smoothly connected to
the vacuum exterior Schwarzschild space-time at the stellar
surface r = Rs , and it is obvious that Rs > 2M , while Rs

and M are the radius and total mass of the star, respectively.
In this case, the line element for the stellar configuration at
the junction surface � with radius r = Rs has the form

ds2+ = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2d	2
2.

(33)
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Here, the total mass is denoted by M . Nevertheless, the fol-
lowing requirements must be met at the hyper-surface � in
order to ensure the smoothness and continuity of the inward
space-time metric ds2− and the outside space-time ds2+ at the
boundary surface.

[ds2−]� = [ds2+]�, [Ki j−]� = [Ki j+]�, (34)

e2ν−|r=Rs = e2ν+|r=Rs and e2λ−|r=Rs = e2λ+|r=Rs , (35)

and

(∂e2ν−

∂r

)
|r=Rs

=
(∂e2ν+

∂r

)
|r=Rs

, (36)

The interior and exterior spacetimes are represented by −
and +, respectively, while the curvature is described by Ki j .
By using the continuity of the first fundamental form, which
is [ds2]�=0, we can always get [F]� ≡ F(r −→ R+

s ) −
F(r −→ R−

s ) ≡ F+(Rs)− F−(Rs), for any function F(r).
Furthermore, this arrangement provides us with,

g−
rr (Rs) = g+

rr (Rs) and g−
t t (Rs) = g+

t t (Rs).

(37)

Following that, the spacetime (1) must achieve the second
fundamental form, Ki j , at the hyper-surface �, which is
equivalent to the O′Brien and Synge junction condition [72].
In this context, we discovered that the radial pressure at the
surface should be zero, i.e., when r = r� , leading to

pr (R) = 0. (38)

The size of the stellar structure is determined by this require-
ment. Alternatively, �− and �+ are being used to symbolize
the interior and exterior sectors, respectively.

The hyper-surface is then represented by the accompany-
ing line element,

ds2 = dτ 2 − R2
s dϑ2 + R2

s sin2 ϑ dϕ2. (39)

The proper time boundary is denoted by τ . In this perspective,
the boundary’s extrinsic curvature � can be written as,

K±
i j = −η±

k

∂2yk±
∂ni n j

− η±
k �k

μ l
∂yμ

±
∂ni

∂yl±
∂n j

, (40)

with ni denoting the coordinates in the boundary �, and η±
k

denoting the four-speed normal to �. The components of this
four-speed are obtained using the coordinates (yν±) of τ± as
follows,

η±
k = ± d f

dyk

∣∣∣∣gμ l d f

dyμ

d f

dyl

∣∣∣∣
−1/2

with ηkη
k = 1.

(41)

The interior and exterior sector unit normal vectors can then
be written as

η−
k =

[
0, eν, 0, 0

]
and η−

k =
[

0,

(
1 − 2M

r

)−1

, 0, 0

]
.

(42)

Then, utilizing the line elements (1) and (39) in conjunction
with the Schwarzschild spacetime (33), we can formulate
[
dt

dτ

]

�

= [
e−λ

]
�

=
[(

1 − 2M

r

)−1]

�

, (43)

where [r ]� = Rs . Eq.(42) can be used to derive the non-zero
components of the curvature (Ki j ) as follows,

K−
00 =

[
− λ′

2 eν

]

�

, K−
22 = 1

sin2 ϑ
,

K−
33 = [

r e−ν
]
�

,

K+
00 =

[(
M

r2

)(
1 − 2M

r

)−1]

�

, K+
22 = 1

sin2 ϑ
,

K+
33 =

[
r

(
1 − 2M

r

)1]

�

.

Therefore, when we combine the junction condition [K−
22]�

= [K+
22]� with [r ]� , we obtain

e−ν(Rs ) =
(

1 − 2M

R

)
. (44)

When the preceding statement is inserted into the matching
condition [K−

00]� = [K+
00]� , it produces the following result,

λ′(Rs) = 2M

Rs (Rs − 2M)
. (45)

Therefore, at the hyper-surface, the relevant criteria supplied
by Eqs. (43)–(45) give rise to the following expressions,

e2λ(Rs ) =
[

1 − 2M

Rs

]−1

= 2

[
1 + δR2

s

2 − δR2
s

]
, (46)

e2ν(Rs ) =
[

1 − 2M

Rs

]
= A2y2

(
R2
s

)
. (47)

It is clear to observe that the condition (46) does not impose
any constraints on the parameters, whereas the condition (47)
imposes a constraint on the parameter A as

A =
√

1

2y2
(
R2
s

) 2 − δR2
s

1 + δR2
s
. (48)

Due to the complicatedness of the static and spherically sym-
metric solutions for the system of the field equations, we
exhibit graphically that the radial reliance of our stellar sys-
tem’s physical quantities, which includes matter variables of
the anisotropic model are well-behaved throughout the inte-
rior of the stellar configuration and hence the stellar model
satisfies all necessary conditions.
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Fig. 1 Behaviour of the matter density ρ and the radial and transverse pressures (pr , pt ) against the radial coordinate r of our stellar model for
three heavy pulsars. For plotting these graphs, we use the numerical values of the constant parameters given in Table 1

5 Physical analysis

We now proceed to discuss the physical acceptability of the
stellar solutions acquired in this study. We will look at var-
ious physical features of compact stellar object formations
and we demonstrate that acquired solutions are physically
viable. We have considered the observational data of three
compact astrophysical objects viz., PSR J0348+0432, PSR
J0030+0451 and PSR J0740+6620 as models in order to show
the anisotropic effects presented with spherical symmetry
within space-time metric in the context of general relativity.
The graphs were drawn by selecting parameter values as fol-
lows after comprehensive empirical fine-tuning: δ, α, β and
γ for some heavy pulsars as shown in Table 1. The election of
parameters have been such that the anisotropic stellar mod-
els are physically reasonable fulfilling the following physical
requirements:

• Necessary criteria for matter density and pressure com-
ponents: From Fig. 1 we see that the density and pressure
profiles are all monotonic decrease smoothly towards the
surface layer of the stellar configurations, having their
maximum values at the stellar center and the radial pres-
sure pr are disappearing at the boundary of each stellar
configuration r = Rs . At the star’s surface layer, how-
ever, matter density is always positive. The central den-
sity due to ordinary matter is evaluated as follows,

ρc = ρ (r = 0) = 9

2
δ > 0. (49)

Then, the central pressure for our present stellar model
is acquired as follows,

pc = p (r = 0) = 81

4
αδ2 + 9βδ

2 + 9γ δ
> 0. (50)

These informations immediately indicates that both den-
sity and pressure are non-negative within the interior of

compact stellar configuration. On the other hand, as also
seen in Fig. 1, at the stellar boundary, the transverse pres-
sure is greater than zero, which is physically feasible [65].
Moreover, an anisotropic fluid scenario has been clearly
stated by the supposition of particles in movement on cir-
cular orbits [66,67] and the transverse pressure of a sur-
face layer is related to surface tension [68]. As it is clear
from Fig. 1 that the anisotropy profile � is a monoton-
ically increasing function as one moves from the stellar
centre towards the stellar boundary remaining finite and
continuous in the interior and repulsive in nature.

• The continuity of the extrinsic curvature via the cor-
responding hyper-surface: Continuity of the extrinsic
curvature via the corresponding hyper-surface, at the sur-
face layer of the stellar configuration r = Rs gives the
condition

(pr )r=Rs
= 0, (51)

which yields

R2
s = 1

4β√
3α2 − 24

αβ

δ
− 9αβγ + 9δα3 − 48αβ2γ − 36α2βγ

2δ
√

α2 − 4αβγ

− 3

8β

[
α +

√
α2 − 4βγ

]
− 1

δ
. (52)

We can obtain the positive radius Rs by selecting appro-
priate parameters α, β, γ and δ.

• The positivity of the energy conditions: The energy con-
ditions are fundamental tools for GR since they permit us
to analyze the casual and geodesic structure of space-time
carefully. One path to deriving such conditions is through
the Raychaudhuri equations [73–75], which define the
action of correspondence of the gravity for timelike,
spacelike, or lightlike curves. If we are working with
an anisotropic fluid, the energy conditions, i.e., Strong
energy conditions (SEC), Dominant energy conditions
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(DEC), Weak energy conditions (WEC), Trace energy
conditions (TEC), and Null energy conditions (NEC) for
GR are expressed as:

– NEC if ρ + pk ≥ 0, ∀k.

– WEC if ρ ≥ 0, ρ + pk ≥ 0, ∀k.

– SEC if ρ + pk ≥ 0, ρ + ∑
k pk ≥ 0, ∀k.

– DEC if ρ ≥ 0, ρ ± pk ≥ 0, ∀k.

– TEC if ρ − pk ≥ 0, ρ − ∑
k pk ≥ 0, ∀k.

where k = r, t . The non-negative profile of state variables
ρ, pr and pt shown in Fig. 1 swiftly adheres to the first
three constraints i.e., NEC infers that an observer travers-
ing a null scheme will measure the typical matter density
as non-negative, according to WEC, the matter density
measured by an observer crossing a time-like scheme
is constantly non-negative, and with regard to SEC, the
trace of the tidal tensor analyzed by the corresponding
observers is always non-negative. The non-negative evo-
lutionary associated with DEC an TEC is also consistent
with the fourth and fifth constraints, in which the DEC
represents the mass-energy that will never be seen to flow
faster than light and according to TEC, the stress-energy
tensor trace should be necessarily non-negative depend-
ing on metric conventions. It is obvious from Fig. 2, that
all energy conditions are carefully verified, resulting in a
non-exotic matter content and are well-satisfied with the
constraints of the realistic stellar configurations, which
corroborate that our stellar model is well-behaved and
describes an acceptable physical system.

• Cracking method for anisotropic compact sphere sta-
bility: It is expected that the speed of sound will be less
than the speed of light within a stellar interior, i.e., the
square of radial (v2

sr = dpr
dρ ) and transverse (v2

st = dpt
dρ )

speeds of sound must fulfill the inequalities 0 ≤ v2
sr ≤ 1

and 0 ≤ v2
st ≤ 1 which is known as a causality condi-

tion. From Fig. 3 we can evidently see that throughout the
interior of the stellar structures, the radial and transverse
speeds of sound are always less than the speed of light
c = 1, indicating that the causality condition is satisfied.
Moving towards the stellar boundary, we discover that
the difference in sound velocity decreases but causality is
never violated and cracking will not occur in all our cases.

6 Gravitational mass, compactness factor and
gravitational red-shift

The compactness factor of our stellar model is defined by a
dimensionless parameter u which is the mass-to-radius ratio

and it cannot be arbitrarily huge. As claimed by Buchdahl
[70], the compactness factor of a stellar system for a four-
dimensional fluid sphere should be smaller than 2M

R < 8
9 ≈

0.8888 to be a stable configuration. So, to come up with the
compactness factor, in this section, we are fascinated to inves-
tigate the gravitational mass function for our stellar model
which can be given as

m (x) = 1

4

∫ x

0

√
ερ (ε) dε = 3δ

4

x3/2

1 + δx
. (53)

It should be noted here that the gravitational mass function
is influenced by δ.

From the above gravitational mass formula, the compact-
ness factor can be calculated as

u (x) = m (x)√
x

= 3δ

4
√
x

x3/2

1 + δx
. (54)

Therefore, the gravitational red-shift of our present model
correlating to the stated compactness factor is defined as fol-
lows,

Z (x) = 1√
1 − 2u (x)

− 1 =
√

1 − δx

1 − δ
2 x

− 1. (55)

The profile of the gravitational mass function, the compact-
ness factor and the gravitational red-shift are illustrated in
Fig. 4. The figure represents the three quantities viz., m (r),
u (r) and Z (x) being monotonic increasing functions with
the radial coordinate r and positive within the stellar system,
as well as the regularity of the gravitational mass function
at the origin, is ensured. With increasing gravitational mass
function, the compactness factor increases, and their corre-
sponding value u satisfies the maximum allowable mass-to-
radius ratio of Buchdahl [70], i.e., it cannot be greater than
8/9. According to the authors [56–61,71], the surface gravi-
tational red-shift for an anisotropic fluid sphere should be less
than Zs ≤ 5 or Zs ≤ 5.211. Based on these constraints, our
current stellar system reveals that Zs ≤ 0.301219, indicating
that cosmic structures are available.

The generated upshots corresponding to the physical
parameters viz., R, ρc, ρs , pc, 2M/R, Zs , along with the
constant parameters viz., α, β, γ and δ are illustrated in
Tables 1, and 2. From these numerical upshots, we confirm
that the chosen stellar objects have the values of high-redshift
and their surface densities are greater than the nuclear satura-
tion, 2.8 × 1014 g cm−3. Consequently, for the stellar model
parameters selected, the generated solutions comply with
the requirements of realistic stellar configurations and are
in good agreement with reported physical quantities deter-
mined by existing astronomical observations on some heavy
pulsars PSR J0348+0432 [8], PSR J0740+6620 [9] and PSR
J0030+0451 [62].
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Fig. 2 Behaviour of the energy conditions against the radial coordinate r of our stellar model for three heavy pulsars. For plotting these graphs,
we use the numerical values of the constant parameters given in Table 1

Fig. 3 Behaviour of the square of radial and transverse speeds of sound
(v2

r , v2
t ) and the difference between the square of radial and transverse

speeds of sound against the radial coordinate r of our stellar model for

three heavy pulsars. For plotting these graphs, we use the numerical
values of the constant parameters given in Table 1

Table 1 Constant parameters calculated for radii and mass for some heavy pulsars

PSR M [M�] R [km] α β δ γ

PSR J0348+0432 [8] 2.01+0.04
−0.04 14.85+0.11

−0.11 38.50 −0.1370 0.001 1

PSR J0030+0451 [62] 2.14+0.10
−0.09 13.42+0.24

−0.22 36.50 −0.1711 0.0015 1

PSR J0740+6620 [9] 1.44+0.15
−0.14 10.55+0.41

−0.40 34.50 −0.1865 0.002 1
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Fig. 4 Behaviour of the gravitational mass (m(r)), compactness parameter (u(r)), and gravitational red-shift (zs) against the radial coordinate r
of our stellar model for three heavy pulsars. For plotting these graphs, we use the numerical values of the constant parameters given in Table 1

Fig. 5 Behaviour of the M − ρc and M–R diagrams of our stellar model for three heavy pulsars. For plotting these graphs, we use the numerical
values of the constant parameters given in Table 1

Table 2 Some physical parameters calculated for radii and mass for some heavy pulsars

PSR ρ (0) [g cm−3] ρ (R) [g cm−3] pr (0) [dyne cm−3] 2M/R Zs

PSR J0348+0432 [8] 6.05970 × 1015 4.77709 × 1015 2.00765 × 1035 0.201302 0.118945

PSR J0030+0451 [62] 9.08955 × 1015 4.68407 × 1015 6.24307 × 1035 0.303351 0.198099

PSR J0740+6620 [9] 1.21194 × 1016 4.56457 × 1015 1.36876 × 1036 0.409392 0.301219

7 Static stability criterion and mass–radius diagram

In this section, we start by studying the static stability crite-
rion developed by Chandrasekhar [76] to analyze the stability
of stellar structures under radial disturbances. Furthermore,
Harrison et al. [77] and and Zeldovich and Novikov [78] sim-
plify this static stability criterion by imposing the following
constraints:

∂M

∂ρc
> 0 → stable configuration (56)

∂M

∂ρc
< 0 → unstable configuration (57)

To illustrate, we computed the total mass as a function of ρc,
which is given as

M (ρc) = 3R3

2

(
ρc

9 + 2R2ρc

)
. (58)

Figure 5 shows the variation of mass in accordance with the
central density. This leads to the conclusion that increasing
ρc improves stability. This is due to the range central den-
sity’s preference for saturating the mass. This means that
greater values of ρc improve the stable range of density dur-
ing radial oscillation. This leads to the conclusion that the
stellar solution is stable under radial disturbances.
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Further, we tested the state of the compact stellar objects
by studying the M–R diagram resulting from our stellar
model in the Fig. 5. In this regard, we provide a useful
description of the effects included by the appropriate param-
eters α, β, γ and δ, in order to give an efficient and more
realistic model. According to the effect of these parame-
ters, we can observe that the maximum value of mass M
in [M�] and associated radius R in [km] decreases, result-
ing in a more compact and less massive stellar system. We
also discovered a good agreement, represented by the hori-
zontal stripes with observational data on the M–R diagram
for three compact stellar objects, namely, PSR J0740+6620,
PSR J0348+0432, PSR J0030+0451, and many others can be
matched.

8 Concluding remarks

In this paper, we have focused on investigating the possibility
of providing a new well-behaved class of exact anisotropic
solutions for viable highly compact static spherically sym-
metric configurations as an alternative to NSs in the con-
text of general relativity. For this purpose, we considered
a non-linear form of modified Van der Waals EoS viz.,
pr = αρ2 + βρ

1+γρ
for the pressure and energy density rela-

tionship along with a gravitational potential Z(x) as a gen-
erating function via an anisotropic matter distribution which
formed the basis for building bounded stellar configurations.
The models under consideration are regular, viable, and sta-
ble under the influence generated by the parameters coming
from the nonlinear EoS and gravitational potential viz., α,
β, γ , δ, everywhere within the astral fluid. One captivating
observation is that the predicted radii for observed heavy pul-
sars are readily determined from the continuity of the second
fundamental form along with the maximum observed mass
and corresponding radii are achieved through fine-tuning of
parameters coming from theory.

Finally, it is worth mentioning here that the model admits
and shares all the required pivotal physical and mathematical
attributes in the compact stars study, which provide circum-
stantial evidence in favor of the evolution of realistic stel-
lar configurations in the investigated high-density regime. In
effect, our stellar model supports the existence of realistic
heavy pulsars such as PSR J0740+6620, PSR J0348+0432
and PSR J0030+0451.
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