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Abstract

Higher twist corrections to F; at small z are studied for the case of a flat initial
condition for the twist-two QCD evolution at next-to-leading order approximation.
We present an analytical parameterization of the contributions from the twist-two
and higher twist operators of the Wilson operator product expansion. Higher twist
terms are evaluated using two different approaches, one motivated by BFKL and the
other motivated by the renormalon formalism. The results of the latter approach
are in very good agreement with deep inelastic scattering data from HERA.

For more than a decade the various models of the behavior of quarks and gluons at
small = has been confronted by a large amount of experimental data from HERA on the
deep-inelastic scattering (DIS) structure function (SF) F [8, 2]. In the small z regime,
non-perturbative effects are expected to give a substantial contribution to I,. However,
what is observed up to very low Q* ~ 1 GeV? values, traditionally explained by soft
processes, is described reasonably by perturbative QCD evolution (see for example [3]).
Thus, it is important to find the kinematical region where the well-established perturbative
QCD formalism can be safely applied.

At small z the Q* dependence of quarks and gluons is usually obtained from the
numerical solution of the DGLAP equations [4]. The 2 profile of partons at some initial
Q3 and the QCD energy scale A are determined from a fit to experimental data.

On the other hand, when analyzing exclusively the small z region, a much simpler
analysis can be done by using some of the existing analytical approaches of DGLAP
equations in the small z limit. In Refs. [5, 6, 7] it was pointed out that HERA small
x data can be interpreted in terms of the so called doubled asymptotic scaling (DAS)
phenomenon related to the asymptotic behavior of the DGLAP evolution discovered many
years ago.

In the present talk we report the new results of [8] (reffered to as I hereafter) about the
incorporation of the contribution from higher twist (HT) operators of the Wilson operator *
product expansion to our previous analysis (7] (reffered to as II hereafter). The semian-
alytical solution of DGLAP equations obtained in Ref. IT using a flat initial condition, is
the next-to-leading order (NLO) extension of previous studies performed at the leading
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order (LO) in perturbative QCD [5, 6]. The flat initial conditions correspond to the case
when parton distributions tend to some constant value at z — 0 and at some initial value

Q3.
In Ref. II, both the gluon and quark singlet densities are presented in terms of the
diagonal '+’ and ‘~' components obtained from the DGLAP equations in the Mellin

moment space. The '—' components are constants at small z for any values of Q?, whereas
the '+ components grow for Q% > Q3 as

Nexp(z\/[a+1n(ZzEg§§) (b +a+51) (au(@D) - (@) | m (1)) )

where ay = 4C 4/ and b, = 8[23C4 — 26CF|Trf/(900). Hereafter we use the notation
as = ay/(4n). o

The first two coefficients of the QCD B-function in the MS-scheme are 8y = (11/3)Cs—
(4/3)Trf and B; = (2/3)[17C% — 10C4Trf — 6CrTrf] where f is the number of active
flavors. This new presentation as a function of the SU(N) group casimirs, with f active
flavors, C4 = N, Tp = 1/2, Tr = Trf and Cp = (N?—1)/(2N) permits one to apply our
results to, for example, the popular N = 1 supersymmetric model. Of course, for N = 3
one obtains the QCD result II.

The analysis performed in our previous work (see II) has shown very good agreement
with HERA 1994 data [8, 2] at Q2 > 1.5 GeV?. In Ref. I we added the contribution from
higher twist operators with the hope to describe also more modern 1996/97 data at lower

Q.

1. The basic results are the twist-four and twist-six corrections for the SF F;

Fy(z,Q") = F%(z,Q") + @ Ff'(z,Q") + & F’6($ Q) (2)
where for the higher twist parts F; *® BFKL-motivated evaluations [9] (in the case only
the twist-four correction has been estlmated) and the calculations LlO] in the framework
of the renormalon model (hereafter the results are marked like F; %) have been used.

The latter case is essentially more complete and the predicted HT corrections can be
expressed through the twist-two ones as follows

Rr4 z Qz) i Z r4~:4(z Q2)®f72(1: Q2) — Z F2 T4($ Qz) (3)

a=q,G a=q,G

where the symbol ® marks the Mellin convolution, the functions zZ%(z, Q?) are given in
[10] and e = (E" e?)/f is the average charge square for f active quarks. We mark the
parts of HT corrections proportional to the twist-two quark and gluon densities as F*
and FfZ!, respectively.

Note that the parton distributions f7?(x, @) are multiplied on z, ie., f7%(z, Q%) =
zq(z, Q%) and fF(z,Q?%) = zG(z,Q?). Note also that we neglect the nonsmglet quark
density fa(z,Q?) and the valent part fy(z, Q%) of the singlet quark distributions.

At the leading twist part we have (see II) at the LO and LO&NLO approximations,
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respectively,
zLo( Q) = qLO(I Q% , (4a)
@) = o (7@ + T a@pee) | (4b)

Let us to keep the LO&NLO relation (4b) beyond the leading twist approximation. Then
for the total SF F; (2) we obtain (see I)

T8 0@ fota, QZ)) | (5)

R@@) = ¢ (1) +
where f,(z,Q?%) are the total parton distributions containing both the twist-two part,
presented in II, and the twist-four and twist-six contributions,

ful# @) = [2(2,@) + f““(z @) + 14 fE8(2,Q?) . 6)

For the HT part £r45(z, Q?) calculations in the framework of the renormalon model have

been used *.
We would like to note that the each HT term fR48(z, Q%) can be chosen in quite

arbitrary form and only the combination

TR (@) 1540, ()

qu‘r4,6 (x' QQ) +

is uniqueness, because we keeped the originally twist-two relation (4b) to be same in the
case when HT corrections are incorporated (see Eq. (5)).

In the Ref. I we study the z and Q* dependences of the structures Fy, 9F;/0In Q>
and 8ln F3/01n(1/xz), that needs to define the parton densities in a proper way. So, we
take quite natural choice

quM,S(z Q2) — ar46~r4 6(.2‘ QZ) ®f72($ Q2) — FZ,RM'G(.’E Q2) ) (8&)
15,0 = L 3 0,0 0 170, Q) = 3({4(‘% FIS(,Q%) , (8b)

i.e., the HT quark (gluon) part of Fy relates only to the: corresponding quark (gluon)
twist-two density. This choice corresponds exactly to the Eq. (5), i.e. to generalization
of the standard twist-two relation (4b) between F, and parton densities at the LO&NLO
approximation with the purpose to include the HT contributions.

Note also that at any choices of parton densities the DGLAP equation will be violated
by the HT corrections.

2. As it has been already noted above it is useful to split the parton distributions in two
parts

fol2, Q) = fH@, @) + fi(z,Q%), 9

INote that twist-four corrections are studied in Ref. I in two approaches based on BFKL and DGLAP.
However, we give here the results only for the DGLAP approach based on the infrared renormalon model
because it contains a more complete calculation and the agreement with experimental data is much better.
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where the both ‘+" and '—’ components contain twist-two and HT parts. The two com-
ponent representation follows directly form the exact solution of DGLAP equation in the
Mellin moment space at the leading twist approximation.

The twist-two contribution is presented in the Ref. IT and the twist-four and twist-six
parts can be expressed through the twist-two one as follows (here for simplicity we restrict
our consideration by LO approximation):
for the (singlet) quark distribution

er4+(g; @% 64CFTRf ard {214_111 (_Qi) L&aﬁ)_} + O{pro) , (10a)

Jig(x Q%) 1565 | pto la34] / pro Ti(ov0)

(=, Q%) B 64CrTrf aqf4 {In (i) In (_Qz_> _p’(yq)} + O(z) . (10b)

lJL0<'T Q%) 15438 Zq g |agd]

for the gluon distribution

g7 @) _ 8 af [ 2 Diowo) ( Q? )
(=@ 58 al@) \poTewo) T e} [ T Olew) s (10)

H'r4—
(z,@% 8 af Q?
f§2L6(x,Q2) =58 (@ " (xg|ag> + 002, (10d)

where a]' are the magnitudes which should be extracted from the fits of the experimental
data. The variables z, = wexp[p(v,)], where p(v.) = [VU(1 + 1) — ¥(v,)] and v, are
the powers of the # — 1 asymptotics of the parton distributions, i, e. f, ~ (1 — 2)"
at # — 1. From the quark counting rules we know that », =~ 3 and vg = 4. Then,
we get p(r,) = 11/6 and p(rg) = 25/12, and there derivatives p'(1,) ~ —49/36 and
7 (1g) = —205/144 (see Ref. [ for further details).

The functions I, in Eqs. (104, 10c) are related to the modified Bessel function 1, and
to the Bessel function J, by:

- _ L(5), fe?=56%>0,
Lie) = { #I(3), fo?=—a2<0, (11)

o and p are the generalized Ball-Forte variables (see I). Note that the upper (down) line in
the r.h.s. of Eq. (11) corresponds to the solution of the DGLAP equation for the “direct”
(“backward”) evolution in the DAS approximation.

The twist-six part can be easy obtained from the corresponding twist-four one as

[ 0%) = - g R, Q%) with a7* — 7%, In (i2> —1In @&
a ’ 7 a ) a a ! I a':;‘ll \/m .

(12)
3. The typical fits for the SF Fy(z, Q%) as a function of z for different Q* bins are
presented on the figure below. The experimental points are from H1 [8] (open points) and
ZEUS [2] (solid points). The solid line represents the NLO fit alone with x*/n.d.f. = 1.31.
The dashed curve are obtained from the fit at the NLO, when the renormalon contribu-
tions of higher-twist terms have been incorporated. The corresponding x2/n.d.f. = 0.86.
The dash-dotted curve (hardly distinguished from the dashed one) represents the fit at the
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LO together with the renormalon contributions of higher-twist terms. The corresponding
x?/n.d.f. = 0.84. The results demonstrate excellent agreement between theoretical pre-
dictions and experimental data for the region @* > 0.5 GeV? as for SF Fy(z, Q?) as for
the effective slope (see I and diseussions therein).
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Discussion

Q. (J.Nassalski, SINS, Warsaw): The quality of LO and NLO fits is comparable (NLO

slightly worse). Can you comment it?

A: It looks so, that the perturbation theory works well in the small z regime, which
is in agreement with many other analysis, where it was shown, that the argument of the
strong coupling constant is effectively much larger than Q? in the small z domain.
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