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Abstract 

Polarized neutron scattering is an indispensable tool for exploring a vast range of scientific phenomena. With its 
dynamic scientific community and significant governmental support as well as the rapid economic growth, the Asia–
Pacific region has become a key player in the worldwide neutron scattering arena. From traditional research reac-
tors to cutting-edge spallation neutron sources, this region is home to a myriad of advanced instruments offering 
a wide range of polarized neutron capabilities. This review aims to provide a comprehensive overview of the devel-
opment and current status of polarized neutron instruments and techniques in the Asia–Pacific region, emphasiz-
ing the important role of the Asia–Pacific region in shaping the landscape of global polarized neutron scattering 
development.

1  Introduction
Not too long after the discovery of the neutron by 
James Chadwick [1], physicists realized that neutrons 
could be a very useful tool to study condensed mat-
ter because the wavelength of slow neutrons is on the 
order of interatomic distances and the energy is com-
parable to many excitations in condensed matter. 
Therefore, neutron scattering can provide abundant 
information on the chemical structure and the dynam-
ics of atoms. The neutron has no charge so it can pene-
trate deep into matter and directly interact with nuclei, 
whereas X-rays mainly interact with orbital electrons in 

atoms. Following the world’s first nuclear reactor Chi-
cago Pile-1 reaching criticality in 1942 led by Enrico 
Fermi, the nuclear age started. A year later in 1943, the 
Graphite Reactor at the Oak Ridge National Laboratory 
(ORNL) went critical. Physicist Ernest Wollan and Cliff 
Shull quickly realized the great potential of the  neu-
trons produced by the Graphite Reactor and embarked 
on a series of neutron diffraction experiments includ-
ing the diffraction experiments showing the direct evi-
dence of antiferromagnetism in MnO below its Curie 
temperature [2] and confirming the ferrimagnetic 
model for Fe3O4 [3]. These pioneering works opened 
the gate to a new era in neutron scattering. Between 
the 1950s and 1970s, a great number of research reac-
tors were built and put into use across the world, some 
of which are still running nowadays. Table  1 lists the 
major neutron research reactors built between this 
time frame. Nuclear reactors provided a reliable way 
of getting high-flux neutrons, which greatly advanced 
the development of neutron scattering both in tech-
nique and instrumentation beyond diffraction. Ber-
tram Brockhouse developed neutron spectroscopy to 
study the dynamics of a material by building the first 
triple-axis spectrometer in the world at the Chalk River 
Research Reactor in Canada. Both Shull and Brock-
house were awarded the Noble Physics Prize in 1994 
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for their significant contributions in neutron scatter-
ing. The construction of research reactors has slowed 
down or even stopped in most part of the world since 
1980. Meanwhile, accelerator-based spallation neutron 
sources have gained popularity among the neutron 
community. All major spallation neutron sources since 
the 1980s are listed in Table 2. Unlike reactor sources, 
which produce a continuous and constant neutron flux, 
the spallation neutron sources usually send out neu-
trons in pulses with typical frequencies between 10 and 
60  Hz. The time-averaged flux in today’s pulsed neu-
tron sources is still lower than that of a high-flux reac-
tor source, but the peak flux is often much higher. For 
example, the neutron brightness at 1 Å of the High Flux 
Isotope Reactor (HFIR) at ORNL is about 200 times 
higher than the time-averaged brightness of the Spalla-
tion Neutron Source (SNS), but the SNS’s peak bright-
ness at the same wavelength is about 10 times that of 
HFIR. By taking advantage of the time-of-flight (TOF) 

technique and optimized instrumentation, a pulsed 
neutron beamline can provide higher wavelength reso-
lution, access broader (Q, ω) space, and generally have 
lower background. Over the last 70  years or so, neu-
tron scattering has made huge progress in every aspect 
including the source, instrumentation, techniques, and 
applications. Today, neutron scattering has become an 
indispensable tool in many disciplines of science and 
technology including physics, biology, chemistry, mate-
rials science, engineering, and many interdisciplinary 
fields.

Compared to X-rays, a unique feature of the neutron 
is that it has a magnetic moment, which allows the neu-
tron to interact with other magnetic moments and thus 
serve as an ideal probe of magnetic properties in mag-
netic materials. The fact that neutrons can be polarized 
further enhances the capability of neutron scattering in 
studying magnetism. The first polarized neutron experi-
ment was performed in 1959 by Nathans et  al. to study 

Table 1  Major reactor neutron sources built between the 1950s and 1970s

Reactor name Organization Country Power (MW) Start year Operation status

High Flux Isotope Reactor (HFIR) Oak Ridge National Laboratory USA 85 1966 Yes

National Bureau of Standards Reactor (NBSR) National Institute of Standards and Technol-
ogy

USA 20 1967 Yes

High Flux Beam Reactor (HFBR) Brookhaven National Laboratory USA 40 1965 Decommissioned

National Research Universal Reactor (NRU) Chalk River laboratories Canada 135 1957 Decommissioned

High Flux Reactor (HFR) Institut Laue-Langevin France 58 1972 Yes

BER II Helmholtz-Zentrum Berlin Germany 10 1973 Decommissioned

High Flux Australian Reactor (HFIR) Australian Atomic Energy Commission Australia 10 1958 Decommissioned

JRR-3 Japan Atomic Energy Agency Japan 20 1962 Yes

IBR-2 Frank Laboratory of Neutron Physics Russia 4 (pulsed) 1978 Yes

Table 2  Major spallation neutron sources around the world

Source name Organization Country Proton beam power Start year Operation status

KENS High energy
Accelerator
Research
Organization

Japan 4.5 kW 1981 Decommissioned

Japan Spallation Neutron Source 
(JSNS)

J-PARC​ Japan 1 MW 2008 Yes

China Spallation Neutron Source 
(CSNS)

Institute of High Energy Physics China 100 kW, upgradable to 500 kW 2018 Yes

Intense Pulsed Neutron Source (IPNS) Argonne National Laboratory USA 7 kW 1981 Decommissioned

Los Alamos Neutron Science Center 
(LANSCE)

Los Alamos National Laboratory USA 56 kW 1983 Yes

Spallation Neutron Source (SNS) Oak Ridge National Laboratory USA 1.7 MW, upgradable to 2 MW 2006 Yes

ISIS ISIS Neutron and Muon Source UK 160 kW 1984 Yes

SINQ Paul Scherrer Institute Switzerland 1 MW (continuous) 1996 Yes

European Spallation Neutron Source European Research Infrastruc-
ture Consortium

Sweden Up to 5 MW Under construction
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magnetic scattering by iron and nickel in which the inci-
dent neutron beam was polarized [4]. The method is now 
often referred to as the “half-polarized” or “flipping ratio” 
method, which greatly increases the sensitivity of probing  
small magnetic scattering amplitudes. In 1969, Moon et al.  
pioneered the polarization analysis method by adding a 
neutron polarization analyzer after the sample [5]. This 
method is now called longitudinal polarization analy-
sis (LPA) because the scattered beam polarization is 
only measured along the same direction as the incident 
polarization. LPA provides a convenient way to separate 
nuclear, magnetic, and spin-incoherent scattering com-
ponents, which are otherwise hard to decouple. With the 
advances in neutron optics over the last 50 years, LPA has 
become the most widely used polarized neutron tech-
nique in the world. In the 1970s, Mezei developed the 
neutron spin echo (NSE) technique based upon Larmor 
precession of the neutron spin in magnetic fields [6]. 
NSE encodes the neutron energy transfer in the Larmor 
precession angle of the neutron polarization to achieve 
the highest energy resolution in neutron spectroscopy 
and thus is ideal to study systems with slow dynam-
ics. In the 1980s and 1990s, the polarization analysis 
method was extended to three-dimensional polarimetry 
by Tasset [7, 8], now known as spherical neutron pola-
rimetry (SNP). Compared to LPA, SNP exploits the vec-
torial nature of the neutron polarization and measures 
the full polarization change in the scattering process, 
which has found use in determining complex magnetic 
structures that are otherwise hard to determine unam-
biguously using other methods [9–12]. There are also 
many other notable development of polarized neutron 
techniques including but not limited to XYZ polariza-
tion analysis [13], neutron resonance spin echo [14–16], 
Larmor diffraction [17–19], polarized neutron imaging 
[20–22], and dynamic nuclear polarization (DNP) [23, 
24]. The diverse applications of polarized neutrons in 
today’s neutron scattering highlight the importance of 
developing polarized neutron capabilities in modern 
neutron facilities.

Neutron scattering has a long history in the Asia–
Pacific region as well, although it started slightly later 
than in Europe and North America. Japan emerged 
as a major player in neutron research in the region in 
the early 1960s following the completion of the Japan 
Research Reactor No. 2 (JRR-2) and the Japan Research 
Reactor No. 3 (JRR-3). Japan also commissioned the 
world’s first pulsed neutron facility KENS in 1981. With 
the increasing demand for higher neutron fluxes in 
the user community, JRR-3 was replenished to run at 
20 MW in the 1990, and the new 1-MW Japan Spallation 
Neutron Source (JSNS) was built to replace KENS and 
started operation in 2008 at the Japan Proton Accelerator 

Research Complex (J-PARC). Other countries in the 
region like Australia, China, India, and Korea have also 
made significant strides in the development and applica-
tion of neutron scattering. Today, the Asia–Pacific region 
has developed a robust neutron scattering community 
marked by advanced facilities and active international 
collaborations. Because of the unique power of polarized 
neutrons, the development of polarized neutron capabili-
ties is also an integral part of the major neutron facili-
ties in the region. In this review, we will survey polarized 
neutron development in the Asia–Pacific region, high-
lighting advancements and progress in polarized neutron 
techniques and instrumentation in the major neutron 
sources in the region.

2 � Polarized neutron instrumentation in major 
neutron facilities in Asia Pacific

Over the last 60 years, the Asia–Pacific region has experi-
enced a remarkable surge in the advancement of neutron 
scattering instrumentation and techniques, reflecting the 
growing prominence of this region within the global neu-
tron scattering community. This progress can be ascribed 
to the establishment of world-class research facilities 
and the development of cutting-edge neutron sources 
throughout the region. Figure  1 shows the major neu-
tron sources in the region. Collaborative efforts among 
researchers, institutions, industries, and nations in the 
Asia Pacific have fostered a vibrant scientific community, 
leading to groundbreaking discoveries and advancements 
in diverse areas. Almost every neutron user facility has 
invested a significant number of resources in the devel-
opment of polarized neutron capabilities due to the 
unique advantages and insights that polarized neutron 
techniques offer in various fields of research.

2.1 � Australia
Australia has a rich history in the field of neutron scat-
tering. A major milestone in the history was the con-
struction of the 10-MW High Flux Australian Reactor 
(HIFAR) in 1958, which began to be utilized for neutron 
scattering research in the late 1960s until it was finally 
shut down in 2007 [25]. In response to the need for a new, 
state-of-the-art neutron scattering facility, the Australian 
government initiated the construction of the Open-Pool 
Australian Lightwater (OPAL) research reactor at the 
Australian Nuclear Science and Technology Organisation 
(ANSTO), which became operational in 2007. The OPAL 
reactor is a modern, 20-MW multipurpose research reac-
tor that provides a reliable and powerful neutron source 
for a diverse array of neutron scattering instruments. 
Currently, a total of 15 neutron instruments are avail-
able to users, six of which can perform polarized neutron 
experiments.
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•	 Platypus: As the first instrument at OPAL to offer 
polarized neutron capabilities, Platypus is a versa-
tile TOF neutron reflectometer that provides both 
unpolarized and polarized modes to cater to a wide 
variety of experiments [26, 27]. For polarized neu-
tron reflectometry (PNR), Platypus employs two 
SwissNeutronics Fe/Si supermirrors (m = 3.8) as the 
polarizer and analyzer, respectively. The wavelength 
band for PNR ranges from 2.5 to 13 Å, which is nar-
rower than the unpolarized band (1–21 Å) due to the 
limitations of the supermirrors [27]. Two RF gradient 
neutron spin flippers are placed before and after the 
sample position to realize polarization analysis for 
the whole polarized neutron wavelength band. PNR 
has become an integral part of the beamline, enabling 

researchers to explore magnetic properties of various 
materials [28–33].

•	 Taipan: Taipan is a versatile thermal triple-axis spec-
trometer with a high-flux thermal neutron beam 
[34–36]. Both inelastic and diffraction experiments 
can be performed on this instrument owing to its 
high flux and flexible configurations. In recent years, 
the polarization analysis capability has been added to 
the instrument by using ex situ polarized 3He neu-
tron spin filters as both the polarizer and analyzer 
[37]. Users have started to take advantage of this new 
capability for experiments [38–40].

•	 Pelican: As a direct geometry TOF cold neutron tri-
ple-axis spectrometer with a wide detector bank, Pel-
ican was designed with polarization analysis in mind 

Fig. 1  Major neutron sources in the Asia–Pacific region
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from the very beginning [41, 42]. The planned polar-
ized mode involves using a combination of a com-
pact solid-state supermirror bender as the polarizer 
and a wide-angle 3He neutron spin filter as the ana-
lyzer. Currently, the wide-angle 3He system is under 
development. Once completed, Pelican is expected 
to operate in the polarized mode for a significant 
amount of time  https://​www.​ansto.​gov.​au/​our-​facil​
ities/​austr​alian-​centre-​for-​neutr​on-​scatt​ering/​neutr​
on-​scatt​ering-​instr​uments/​pelic​an-​time.

Other instruments, including QUOKKA, a SANS 
instrument, SIKA, a cold neutron triple-axis spectrom-
eter, and WOMBAT, a neutron diffractometer, are also 
equipped with polarized neutron capabilities [37, 43, 
44]. Much of the polarized neutron instrumentation at 
ANSTO is focused on employing polarized 3He neutron 
spin filters. A metastability-exchange optical pumping 
(MEOP) station, developed by the Institut Laue-Langevin 
(ILL), is responsible of producing highly polarized 3He 
for instruments [37]. The MEOP station provides a fast 
method for producing large volumes of polarized 3He gas 
and thus is key to the successful deployment of 3He spin 
filters at ANSTO. As instrument development continues, 
polarized neutron scattering is expected to play a more 
significant role at ANSTO.

2.2 � China
China’s research into neutron scattering dates back to the 
1950s. In 1958, the 7-MW Heavy Water Research Reactor 
(HWRR), the first nuclear reactor in China, reached criti-
cality. Soon after, Chinese researchers constructed a neu-
tron diffractometer at the HWRR [45, 46]. In 1960, they 
observed and later reported on the effects of piezoelec-
tric oscillation, which resulted in an enhancement of neu-
tron scattering on quartz single crystals [47]. The HWRR 
underwent several upgrades and reached up to 15  MW 
in the 1980s. It was finally decommissioned in 2007 after 
47 years of operation. China’s neutron scattering research 
has experienced remarkable progress over the last two 
decades and has rapidly emerged as a significant force in 
the global neutron scattering community. Three sources 
have been built during the last 15  years: the China 
Advanced Research Reactor (CARR), the China Mian-
yang Research Reactor (CMRR), and the China Spallation 
Neutron Source (CSNS). The CARR is a 60-MW research 
reactor located in Beijing [48–50], which went critical in 
2010. The CMRR is a 20-MW research reactor in Mian-
yang, Sichuan province, and has started operation since 
2014 [51, 52]. The CSNS, based in Dongguan, Guangdong 
province, is the first spallation neutron source in China 
and the second in the Asia–Pacific region [53–56], which 
has been operating since 2018 and is currently running 

with a 100-kW proton beam power. The establishment 
of the three neutron sources serves as a testament to 
the country’s commitment to fostering innovation and 
collaboration in neutron scattering. In addition to these 
large-scale neutron sources, China has also constructed 
a small accelerator-based source, known as the Compact 
Pulsed Hadron Source (CPHS) at Tsinghua University 
[57]. Beyond its research capabilities, the CPHS is a dedi-
cated platform for the education and training of the next-
generation neutron scattering users, making it an ideal 
incubator for fostering future talents in the field, which 
is an ideal place dedicated to education and training of 
next-generation neutron scattering users.

The CMRR is a high-performance, multipurpose 
research reactor with dedicated halls for thermal and 
cold neutrons, supporting a diverse range of scientific 
investigations through various experimental facilities 
and instruments, including neutron radiography, radiop-
harmaceuticals neutron activation analysis, and neutron 
scattering. Currently, 8 instruments have been built (4 
in the reactor hall and 4 in the cold scattering hall) and 
are open to users [52]. Among these instruments is a 
polarized TOF neutron reflectometer, Diting, in the cold 
scattering hall [58]. The TOF mode of the reflectometer 
enables the individualized optimization of the instrument 
flux and resolution for each experiment. Diting takes 
advantages of a high-efficiency transmission supermir-
ror (m = 2.7) to polarize the incident neutron beam and 
another transmission supermirror (m = 3.85) to analyze 
the beam. Two adiabatic fast passage RF spin flippers are 
implemented to flip the upstream and downstream neu-
tron polarizations and thus enact polarization analysis. 
The polarized mode works over a wide wavelength band 
from 2.5 to 12.5 Å and covers a Q range from 0 to 0.5 Å−1 
[51, 52, 58], and users have started to perform polarized 
neutron reflectometry (PNR) experiments at the instru-
ment to study various science cases [59–62]. Meanwhile, 
the CMRR has established a dedicated polarized 3He 
team, which has played a significant role in advancing 
polarized neutron capabilities in China by developing 
polarized 3He systems for neutron instruments [63–65]. 
The use of polarized 3He can realize the rapid deploy-
ment of polarized neutron capabilities on typically unpo-
larized neutron instruments. They have also performed 
fundamental studies using relevant techniques to make 
precision measurements in the search for exotic spin-
dependent interactions mediated by axion-like particles 
[66–68]. The CMRR is still fast growing. New neutron 
instruments are under construction and will join the user 
program soon. A polarized SANS (PSANS) instrument 
[52] and two neutron spin echo instruments, the longi-
tudinal neutron resonance spin echo (LNRSE) spectrom-
eter [69] and the spin echo SANS (SESANS) instrument 

https://www.ansto.gov.au/our-facilities/australian-centre-for-neutron-scattering/neutron-scattering-instruments/pelican-time
https://www.ansto.gov.au/our-facilities/australian-centre-for-neutron-scattering/neutron-scattering-instruments/pelican-time
https://www.ansto.gov.au/our-facilities/australian-centre-for-neutron-scattering/neutron-scattering-instruments/pelican-time
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[70], will be the latest additions to polarized neutron 
scattering at the CMRR.

The CSNS is large accelerator-based pulsed neu-
tron facility operating with a 1.6-GeV proton beam and 
25-Hz proton pulses [55, 56]. It represents a significant 
leap forward in China’s dedication to neutron scattering. 
The proton beam power is running at 100  kW and can 
be upgraded to 500 kW in the future. The current facil-
ity can accommodate up to 20 neutron instruments, with 
four beamlines already in the user program and more 
under construction or planning  http://​engli​sh.​ihep.​cas.​
cn/​csns/​fa/​in/.  The multipurpose reflectometer (MR) 
is one of the three day-1 instruments at the CSNS and 
comes equipped with the polarized neutron reflectom-
etry (PNR) capability [71]. This reflectometer utilizes two 
transmission Fe/Si supermirrors (m = 4.4) as the polar-
izer and analyzer in PNR experiments, along with a pair 
of RF spin flippers positioned before and after the sam-
ple. Since its commissioning, the MR instrument has 
become one of the most productive instruments at the 
CSNS with PNR experiments being routinely conducted 
[72–78]. Additionally, the CSNS has a dedicated neutron 
polarization group and a development beamline (BL-20) 
contributing to the advancement of polarized neutron 
devices and techniques [79]. The group has developed 
both ex situ and in situ polarized 3He neutron spin filters 
[80–82], built and tested flippers [83], and realized TOF 
polarized neutron imaging [84]. The development beam-
line BL-20, equipped with a V-cavity polarizing super-
mirror to provide a highly polarized incident neutron 
beam, has become the go-to place for testing neutron 
polarization devices and exploring new concepts. For the 
future very small angle scattering (VSANS) instrument, 
efforts are being made to develop a magnetic sextuple 
lens to focus the incident polarized cold neutron beam 
onto the sample position [85, 86].

The construction of the three neutron sources is far 
from complete. Despite the rapid progress and achieve-
ments in neutron scattering research in China, there is 
still considerable potential for further development and 
expansion. As these facilities continue to expand, more 
instruments with polarized neutron capabilities will 
be added to the current instrument suite. The ongoing 
advancements in polarized neutron scattering technol-
ogy will enable breakthroughs across a wide range of dis-
ciplines. With a steadfast commitment to innovation and 
collaboration, China is poised to become a leading player 
in neutron scattering research, pushing the boundaries of 
scientific exploration and discovery.

2.3 � India
India constructed Asia’s first research reactor, Apsara, 
in 1956 at the Bhabha Atomic Research Centre (BARC) 

in Mumbai. Following Apsara’s successful operation, 
Indian researchers began to explore the potential of 
neutron scattering in various fields of study. The com-
missioning of the second, more powerful research reac-
tor, Cirus, in 1962 further accelerated the growth of 
neutron scattering research in India. The demand for 
higher neutron flux and better instruments propelled 
India to build Dhruva, a 100-MW reactor that went 
critical in 1985 and was designated as the National 
Facility for Neutron Beam Research (NFNBR)  https://​
www.​barc.​gov.​in/​react​or#​nav-4.  Currently, Dhruva is 
home to 12 neutron instruments, two of which have 
polarized neutron capabilities [87].

•	 Polarized neutron spectrometer: This instrument is 
housed in the reactor hall of Dhruva and is a polar-
ized neutron workhorse. It uses Heusler crystals as 
both the monochromator and polarizer to provide 
a polarized thermal neutron beam of 1.2  Å and a 
Co0.92Fe0.08 crystal as the polarization analyzer [88, 
89]. Two RF spin flippers are employed to enable 
polarization analysis at this beam line. Notably, 
this instrument has been extensively utilized for 
experiments employing the neutron depolariza-
tion technique, which is a well-established method 
to study ferromagnetic materials [90–93]. The one-
dimensional neutron depolarization technique of 
the instrument provides a way to investigate the 
domain magnetization and magnetic inhomogene-
ity on a mesoscopic scale in the sample and serves 
as a useful addition to conventional neutron dif-
fraction [88, 94–101].

•	 Polarized neutron reflectometer: As in other neu-
tron facilities, PNR has become an indispensable 
tool in studies of magnetic thin films. Situated in 
the cold guide laboratory next to the reactor hall, 
the reflectometer at Dhruva can switch between 
unpolarized and polarized modes and delivers an 
incident neutron beam with a wavelength of 2.5 Å 
[102]. In the polarized mode, a polarizing super-
mirror is used to polarize the incident beam and a 
Mezei flipper to flip the incident neutron polariza-
tion. Although the option to insert a supermirror 
analyzer to perform polarization analysis is avail-
able, it is generally not implemented because of the 
relatively low neutron flux of the instrument [102]. 
Nevertheless, the reflectometer remains produc-
tive, applying PNR to a diverse range of samples 
[103–108].

Neutron scattering in India continues to evolve. With 
the ever-growing demand for better resolution, higher 
neutron flux, and more modern neutron instruments, 

http://english.ihep.cas.cn/csns/fa/in/
http://english.ihep.cas.cn/csns/fa/in/
https://www.barc.gov.in/reactor#nav-4
https://www.barc.gov.in/reactor#nav-4
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a new spallation neutron source has been proposed to 
be built in India [109–111]. Polarized neutron capa-
bilities will be no doubt a significant part of the new 
instruments at the spallation neutron source. With the 
continued growth of the neutron scattering community 
and enhanced international collaborations, neutron scat-
tering in India looks even brighter.

2.4 � Japan
Japan has played a significant role in the development 
and advancement of neutron scattering research since 
the 1960s. Japan has also been a front-runner in devel-
oping and utilizing polarized neutron techniques. Cur-
rently, two major neutron facilities in Japan, the JRR-3 
and JSNS, are providing neutron beams for users across 
the world. The two sources are located within walking 
distance to each other in Tokai, Japan, which helps users 
take advantage of the complementary capabilities of both 
facilities to perform more comprehensive and diverse 
experiments. The research reactor JRR-3 first went 
critical in 1962 with a power of 10  MW and was later 
upgraded to 20 MW in 1990. JSNS at J-PARC is a 1-MW 
accelerator-based pulsed neutron source debuted in 
2008. Both facilities serve as hubs for regional and inter-
national collaboration in neutron scattering research, 
attracting users from all over the world.

Currently, the JRR-3 has a total of 31 neutron instru-
ments currently running  https://​jrr3.​jaea.​go.​jp/​jrr3e/2/​
21.​htm, many of which have polarized neutron capabili-
ties. Here, we highlight several notable polarized neutron 
instruments:

•	 TAS-1: This instrument is a conventional thermal 
triple-axis spectrometer with unpolarized and polar-
ized modes. The spectrometer utilizes doubly focus-
ing Heusler crystals (Cu2MnAl) in polarized mode to 
polarize neutrons and analyze polarization, thereby 
enabling longitudinal polarization analysis (LPA) 
[112]. Moreover, TAS-1 has also been equipped with 
an advanced spherical neutron polarimetry (SNP) 
device called CRYOPAD, which was developed at the 
Institut Laue-Langevin (ILL) [113]. The addition of 
CRYOPAD, along with versatile sample environment, 
has enabled the instrument to perform more compli-
cated experiments [114–116].

•	 PONTA: PONTA is another thermal triple-axis spec-
trometer at JRR-3 with the polarization analysis capa-
bility. Like at TAS-1, Heusler crystals are used as the 
polarizer and analyzer for PONTA [117]. In addition 
to LPA, PONTA has also tested thermal neutron spin 
echo spectroscopy [118–120]. Compared to clas-
sical triple-axis spectroscopy, the spin echo addi-
tion provides a unique way to achieve higher energy 

resolution without sacrificing neutron flux. Recently, 
PONTA has added an option to use a V-cavity super-
mirror as the polarizer, which, in combination with 
a pyrolytic graphite monochromator, can lead to 
higher flux and incident neutron polarization.

•	 SUIREN: SUIREN is a magnetic reflectometer dedi-
cated to studying magnetic films and solid–liquid 
interfaces [121, 122]. SUIREN can choose to run 
between the unpolarized mode and the polar-
ized mode. The polarized mode enables polarized 
neutron reflectometry (PNR) by using one Fe/
Ge reflection supermirrors as the polarizer and 
the other one as the analyzer [121, 123]. Together 
with two Mezei flippers, one before and one after 
the sample, four cross sections (+ + , + – ,– + , and 
– –) can be measured, where the first + or − sign in 
the cross sections represents the incident neutron 
polarization direction and the second sign denotes 
the analyzed neutron polarization direction.

•	 iNSE: This is a conventional neutron spin echo 
spectrometer designed to mainly study dynamics in 
soft matter [124–127]. The two specially designed 
symmetric main precession coils responsible for 
spin echo provide homogeneous field integrals 
as well as strong magnetic fields [124]. The neu-
tron beam is polarized by a polarizing supermir-
ror bender guide and analyzed by a multichannel 
supermirror bender, both manufactured by Swiss-
Neutronics and working well for neutron from 4 to 
15 Å [126].

•	 SANS-J-II: This is a 20-m-long small angle neutron 
scattering (SANS) instrument capable of doing 
polarized neutron experiments [128, 129]. The 
uniqueness of this beamline lies in utilizing focusing 
lenses to achieve an accessible minimum scattering 
vector Qmin on the order of 10–4 Å−1 and thus enable 
ultra-small angle scattering [129, 130]. Polarization 
analysis is available at high Q with a supermirror 
analyzer and a high-angle detector, mainly used to 
separate the coherent and incoherent signals [131]. 
In addition, a dynamics nuclear polarization (DNP) 
device has been developed for SANS-J-II to polarize 
sample nuclei [132], providing an increased signal-
to-noise ratio, especially in neutron crystallography 
of proteins.

Some other instruments at JRR-3 also have polar-
ized neutron capability or have tested it. For example, 
TOPAN is another triple-axis spectrometer with the 
capability of polarization analysis, and the powder dif-
fractometer HERMES also tried polarized neutron 
diffraction using a polarized 3He polarizer [133]. The 
neutron optics beamline NOP has served as a test bed 

https://jrr3.jaea.go.jp/jrr3e/2/21.htm
https://jrr3.jaea.go.jp/jrr3e/2/21.htm
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for the development of polarized 3He neutron spin filters 
[134–136] as well as other neutron optics like magnetic 
neutron lenses [137, 138].

The JSNS is located at the Materials and Life Science 
Experimental Facility (MLF) in J-PARC, which provides 
high peak neutron brightness at 25  Hz to 21 currently 
installed neutron instruments [139]. Since its inception 
in 2008, several state-of-the-art instruments with polar-
ized neutron capabilities have been constructed, offering 
unique capabilities to users:

•	 SHARAKU: SHARAKU is a TOF-polarized neutron 
reflectometer. Compared to its counterpart at JRR-3, 
SHARAKU enables the measurement of reflectiv-
ity profiles over a wide range of scattering vector Q 
values. Polarizing Fe/Si supermirrors are installed as 
the neutron polarizer and analyzer. A Drabkin two-
coil spin flipper effectively flips the incident neutron 
polarization [140], and a Mezei flipper is used to flip 
the downstream neutron polarization [141, 142]. 
Additionally, an in situ polarized 3He system has also 
been tested at the instrument to serve as an ana-
lyzer for off-specular scattering [143, 144]. The 3He 
analyzer can work as a high-efficiency spin flipper to 
replace the original Mezei flipper.

•	 VIN ROSE: This instrument consists of two types of 
spin echo spectrometers: a neutron resonance spin 
echo (NRSE) beamline and a Modulated Intensity by 
Zero Effort (MIEZE) beamline [145–148]. NRSE and 
MIEZE are two variations of the neutron spin echo 
technique. In NRSE, high-frequency spin flippers 
replace the long, large, and strong magnetic preces-
sion coils as seen in the conventional spin echo setup 
[14, 16], making NRSE instruments more compact 
than conventional NSE ones. MIEZE is a single-arm 
NRSE technique in which the polarization analyzer is 
placed upstream before the sample to avoid polariza-
tion manipulation after the sample, and the modu-
lated signal would not be affected by a depolarizing 
sample or high magnetic fields around the sample 
[149–151]. At VIN ROSE, the TOF MIEZE beamline 
is already in the user program [152–154], while the 
NRSE beamline is still under tuning.

•	 TAIKAN: This is a TOF SANS instrument that cov-
ers a wide Q range (0.0008–17 Å−1) for unpolarized 
neutrons at a single configuration setup [155, 156]. 
For polarized neutrons, TAIKAN has a V-cavity 
transmission supermirror installed as the polarizer 
[157, 158]. Polarization analysis is enabled by add-
ing a polarized 3He analyzer or a supermirror ana-
lyzer to separate coherent and incoherent scattering 
for organics samples [158, 159] or to study magnetic 
phenomena in magnetic materials [160–162]. Half 

polarized diffraction experiments without polariza-
tion analysis have also been performed on magnetic 
materials [163–165]. Moreover, DNP was also tested 
on the instrument to provide spin contrast variation 
for the sample [166].

•	 POLANO: POLANO is a dedicated direct geometry 
polarized neutron spectrometer with a wide detec-
tor bank aiming to perform polarization analysis for 
neutrons up to 100 meV [145, 167–169]. An in  situ 
polarized 3He neutron spin filter has been developed 
as the neutron polarizer [170, 171], which can also 
work as a neutron spin flipper. A wide-angle super-
mirror array has been made to serve as the polari-
zation analyzer for neutrons up to 40  meV with an 
angle coverage of up to 40° [172]. In addition to the 
supermirror analyzer, POLANO also plans to use a 
wide angle polarized 3He analyzer to reach higher 
neutron energies, covering more science cases [173].

In addition to these instruments dedicated to polarized 
neutrons, several other instruments at JSNS can also be 
utilized for polarized neutron experiments. The neutron 
imaging beam line RADEN has an option to do polarized 
neutron imaging to visualize magnetization distribution 
[174–177]. Polarized neutron imaging can also be per-
formed at the instrument NOBORU [178–180], which 
is a development and test beam line for new techniques 
and devices. A 7 T DNP apparatus has been successfully 
tested at the diffractometer iMATERIA by achieving high 
proton polarizations and is now available for industrial 
users [181, 182]. The neutron optics and fundamental 
physics beamline NOP have a polarized neutron branch 
by using a polarizing supermirror [183, 184], which has 
been used to measure the neutron lifetime [185] and test 
other neutron polarization devices [144, 186]. The neu-
tron-nucleus reaction measurement instrument ANNRI 
has also utilized polarized neutrons for nuclear physics 
[187, 188].

Japan has a long history of excellence in the field of neu-
tron scattering, contributing to groundbreaking research 
across various disciplines. The development of polar-
ized neutron scattering instrumentation and techniques 
has further expanded the scope of research conducted at 
Japanese facilities. To date, the neutron facilities in Japan 
have enabled polarized neutron capabilities in almost 
every category, covering hard matter, soft matter, and 
fundamental physics. Japan has expert teams dedicated 
to developing new polarized techniques and instrumen-
tation. For example, the 3He team has developed both 
in  situ and ex situ polarized 3He systems for various 
instruments [136, 144], and the supermirror team has the 
capability to fabricate high-performance supermirrors 
[123, 189]. As facilities like the JSNS and JRR-3 continue 
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to invest in new polarized neutron instruments and 
methodologies, Japan’s role as a leading player in neutron 
scattering research is set to strengthen further.

2.5 � Others
In addition to the aforementioned neutron facilities, both 
the 30-MW High-flux Advanced Neutron Application 
Reactor (HANARO) in South Korea [190, 191] and the 
30-MW Reaktor Serba Guna G.A. Siwabessy (RSG-GAS) 
in Indonesia [192, 193] are two major neutron sources in 
the region. At HANARO, polarized neutron experiments 
can be performed on the polarized neutron reflectom-
eter REF-V [191, 194] and the 40-m SANS instrument 
[195]. Polarized 3He neutron spin filters have also been 
developed at HARARO [196, 197] and will be applied to 
the triple-axis spectrometers and the neutron imaging 
beamline in the future [197, 198]. New instruments are 
still being commissioned or constructed at HANARO, 
which will expand the scope of applications for polarized 
neutrons.

The neutron scattering program at RSG-GAS in Indo-
nesia is relatively small compared to other large neutron 
facilities in Asia–Pacific, but it still managed to equip the 
triple-axis spectrometer with the polarized neutron capa-
bility [193]. Despite the challenges often faced by devel-
oping countries like Indonesia, such as limited funding 
and lack of experienced researchers in the field of neu-
tron scattering, the country has shown a strong commit-
ment to improving its research capabilities in this area, 
which bodes well for its future advancements in neutron 
scattering.

3 � Conclusions
Over the years, polarized neutron scattering has emerged 
as a powerful tool in a variety of scientific domains. Fields 
ranging from physics, chemistry, and materials science 
to earth science and biology have leveraged the capa-
bilities of polarized neutron scattering to gain signifi-
cant insights into their respective domains of study. For 
instance, in the field of magnetism, polarized neutron 
scattering has been invaluable in the study of magnetic 
structures, spin dynamics, and magnetic phase transi-
tions, and in the field of soft matter, neutron spin echo 
has been instrumental in studying the dynamics of poly-
mers and proteins.

The Asia–Pacific region, with its vibrant economic 
growth and scientific advancements, has been seeing 
rapid development and utilization of polarized neutron 
techniques. The region, though a relatively late entrant, 
has now become an active participant in the global neu-
tron scattering community. The extensive neutron facili-
ties across the region collectively demonstrate a broad 
engagement in neutron scattering research. The region 

has embraced almost all polarized neutron techniques, 
including longitudinal polarization analysis, spherical 
neutron polarimetry, conventional and resonance neu-
tron spin echo, dynamic nuclear polarization, magnetic 
lenses, and polarized neutron imaging. This impressive 
breadth of technique adoption showcases the region’s 
adaptability and eagerness to keep pace with the global 
trends.

The government support within the region has been 
vital to these advancements, with significant investment 
in the construction of new facilities and the upgrading 
of existing ones. For example, over the past two dec-
ades, this region has seen the construction and success-
ful operation of two new large state-of-the-art spallation 
neutron sources. These facilities account for half of the 
spallation neutron sources currently operating globally. 
The increasing accessibility to these facilities, in turn, has 
opened up many opportunities for collaboration both 
within the region and with international partners.

In the coming years, as more new facilities and mod-
ern instruments come online, and as new polarized tech-
niques become more available, the Asia–Pacific region is 
expected to play a leading role globally in the applications 
of polarized neutron scattering.
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