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Polarized neutron scattering is an indispensable tool for exploring a vast range of scientific phenomena. With its
dynamic scientific community and significant governmental support as well as the rapid economic growth, the Asia—
Pacific region has become a key player in the worldwide neutron scattering arena. From traditional research reac-
tors to cutting-edge spallation neutron sources, this region is home to a myriad of advanced instruments offering

a wide range of polarized neutron capabilities. This review aims to provide a comprehensive overview of the devel-
opment and current status of polarized neutron instruments and techniques in the Asia—Pacific region, emphasiz-
ing the important role of the Asia—Pacific region in shaping the landscape of global polarized neutron scattering

1 Introduction

Not too long after the discovery of the neutron by
James Chadwick [1], physicists realized that neutrons
could be a very useful tool to study condensed mat-
ter because the wavelength of slow neutrons is on the
order of interatomic distances and the energy is com-
parable to many excitations in condensed matter.
Therefore, neutron scattering can provide abundant
information on the chemical structure and the dynam-
ics of atoms. The neutron has no charge so it can pene-
trate deep into matter and directly interact with nuclei,
whereas X-rays mainly interact with orbital electrons in
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atoms. Following the world’s first nuclear reactor Chi-
cago Pile-1 reaching criticality in 1942 led by Enrico
Fermi, the nuclear age started. A year later in 1943, the
Graphite Reactor at the Oak Ridge National Laboratory
(ORNL) went critical. Physicist Ernest Wollan and Cliff
Shull quickly realized the great potential of the neu-
trons produced by the Graphite Reactor and embarked
on a series of neutron diffraction experiments includ-
ing the diffraction experiments showing the direct evi-
dence of antiferromagnetism in MnO below its Curie
temperature [2] and confirming the ferrimagnetic
model for Fe;O, [3]. These pioneering works opened
the gate to a new era in neutron scattering. Between
the 1950s and 1970s, a great number of research reac-
tors were built and put into use across the world, some
of which are still running nowadays. Table 1 lists the
major neutron research reactors built between this
time frame. Nuclear reactors provided a reliable way
of getting high-flux neutrons, which greatly advanced
the development of neutron scattering both in tech-
nique and instrumentation beyond diffraction. Ber-
tram Brockhouse developed neutron spectroscopy to
study the dynamics of a material by building the first
triple-axis spectrometer in the world at the Chalk River
Research Reactor in Canada. Both Shull and Brock-
house were awarded the Noble Physics Prize in 1994
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Table 1 Major reactor neutron sources built between the 1950s and 1970s

Reactor name Organization Country Power (MW) Startyear Operation status
High Flux Isotope Reactor (HFIR) Oak Ridge National Laboratory USA 85 1966 Yes
National Bureau of Standards Reactor (NBSR) National Institute of Standards and Technol- USA 20 1967 Yes
ogy
High Flux Beam Reactor (HFBR) Brookhaven National Laboratory USA 40 1965 Decommissioned
National Research Universal Reactor (NRU)  Chalk River laboratories Canada 135 1957 Decommissioned
High Flux Reactor (HFR) Institut Laue-Langevin France 58 1972 Yes
BERII Helmholtz-Zentrum Berlin Germany 10 1973 Decommissioned
High Flux Australian Reactor (HFIR) Australian Atomic Energy Commission Australia 10 1958 Decommissioned
JRR-3 Japan Atomic Energy Agency Japan 20 1962 Yes
IBR-2 Frank Laboratory of Neutron Physics Russia 4 (pulsed) 1978 Yes

Table 2 Major spallation neutron sources around the world

Source name Organization Country Proton beam power Start year Operation status
KENS High energy Japan 4.5 kW 1981 Decommissioned
Accelerator
Research
Organization
Japan Spallation Neutron Source J-PARC Japan 1MW 2008 Yes
(JSNS)
China Spallation Neutron Source Institute of High Energy Physics  China 100 kW, upgradable to 500 kW 2018 Yes
(CSNS)
Intense Pulsed Neutron Source (IPNS)  Argonne National Laboratory USA 7 kw 1981 Decommissioned
Los Alamos Neutron Science Center  Los Alamos National Laboratory USA 56 kW 1983 Yes

(LANSCE)

Spallation Neutron Source (SNS) Oak Ridge National Laboratory ~ USA 1.7 MW, upgradable to 2 MW 2006 Yes
ISIS ISIS Neutron and Muon Source UK 160 kW 1984 Yes
SINQ Paul Scherrer Institute Switzerland 1 MW (continuous) 1996 Yes
European Spallation Neutron Source  European Research Infrastruc- ~ Sweden Up to 5 MW Under construction

ture Consortium

for their significant contributions in neutron scatter-
ing. The construction of research reactors has slowed
down or even stopped in most part of the world since
1980. Meanwhile, accelerator-based spallation neutron
sources have gained popularity among the neutron
community. All major spallation neutron sources since
the 1980s are listed in Table 2. Unlike reactor sources,
which produce a continuous and constant neutron flux,
the spallation neutron sources usually send out neu-
trons in pulses with typical frequencies between 10 and
60 Hz. The time-averaged flux in today’s pulsed neu-
tron sources is still lower than that of a high-flux reac-
tor source, but the peak flux is often much higher. For
example, the neutron brightness at 1 A of the High Flux
Isotope Reactor (HFIR) at ORNL is about 200 times
higher than the time-averaged brightness of the Spalla-
tion Neutron Source (SNS), but the SNS’s peak bright-
ness at the same wavelength is about 10 times that of
HFIR. By taking advantage of the time-of-flight (TOF)

technique and optimized instrumentation, a pulsed
neutron beamline can provide higher wavelength reso-
lution, access broader (Q, w) space, and generally have
lower background. Over the last 70 years or so, neu-
tron scattering has made huge progress in every aspect
including the source, instrumentation, techniques, and
applications. Today, neutron scattering has become an
indispensable tool in many disciplines of science and
technology including physics, biology, chemistry, mate-
rials science, engineering, and many interdisciplinary
fields.

Compared to X-rays, a unique feature of the neutron
is that it has a magnetic moment, which allows the neu-
tron to interact with other magnetic moments and thus
serve as an ideal probe of magnetic properties in mag-
netic materials. The fact that neutrons can be polarized
further enhances the capability of neutron scattering in
studying magnetism. The first polarized neutron experi-
ment was performed in 1959 by Nathans et al. to study
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magnetic scattering by iron and nickel in which the inci-
dent neutron beam was polarized [4]. The method is now
often referred to as the “half-polarized” or “flipping ratio”
method, which greatly increases the sensitivity of probing
small magnetic scattering amplitudes. In 1969, Moon et al.
pioneered the polarization analysis method by adding a
neutron polarization analyzer after the sample [5]. This
method is now called longitudinal polarization analy-
sis (LPA) because the scattered beam polarization is
only measured along the same direction as the incident
polarization. LPA provides a convenient way to separate
nuclear, magnetic, and spin-incoherent scattering com-
ponents, which are otherwise hard to decouple. With the
advances in neutron optics over the last 50 years, LPA has
become the most widely used polarized neutron tech-
nique in the world. In the 1970s, Mezei developed the
neutron spin echo (NSE) technique based upon Larmor
precession of the neutron spin in magnetic fields [6].
NSE encodes the neutron energy transfer in the Larmor
precession angle of the neutron polarization to achieve
the highest energy resolution in neutron spectroscopy
and thus is ideal to study systems with slow dynam-
ics. In the 1980s and 1990s, the polarization analysis
method was extended to three-dimensional polarimetry
by Tasset [7, 8], now known as spherical neutron pola-
rimetry (SNP). Compared to LPA, SNP exploits the vec-
torial nature of the neutron polarization and measures
the full polarization change in the scattering process,
which has found use in determining complex magnetic
structures that are otherwise hard to determine unam-
biguously using other methods [9-12]. There are also
many other notable development of polarized neutron
techniques including but not limited to XYZ polariza-
tion analysis [13], neutron resonance spin echo [14-16],
Larmor diffraction [17-19], polarized neutron imaging
[20-22], and dynamic nuclear polarization (DNP) [23,
24]. The diverse applications of polarized neutrons in
today’s neutron scattering highlight the importance of
developing polarized neutron capabilities in modern
neutron facilities.

Neutron scattering has a long history in the Asia—
Pacific region as well, although it started slightly later
than in Europe and North America. Japan emerged
as a major player in neutron research in the region in
the early 1960s following the completion of the Japan
Research Reactor No. 2 (JRR-2) and the Japan Research
Reactor No. 3 (JRR-3). Japan also commissioned the
world’s first pulsed neutron facility KENS in 1981. With
the increasing demand for higher neutron fluxes in
the user community, JRR-3 was replenished to run at
20 MW in the 1990, and the new 1-MW Japan Spallation
Neutron Source (JSNS) was built to replace KENS and
started operation in 2008 at the Japan Proton Accelerator
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Research Complex (J-PARC). Other countries in the
region like Australia, China, India, and Korea have also
made significant strides in the development and applica-
tion of neutron scattering. Today, the Asia—Pacific region
has developed a robust neutron scattering community
marked by advanced facilities and active international
collaborations. Because of the unique power of polarized
neutrons, the development of polarized neutron capabili-
ties is also an integral part of the major neutron facili-
ties in the region. In this review, we will survey polarized
neutron development in the Asia—Pacific region, high-
lighting advancements and progress in polarized neutron
techniques and instrumentation in the major neutron
sources in the region.

2 Polarized neutron instrumentation in major
neutron facilities in Asia Pacific

Over the last 60 years, the Asia—Pacific region has experi-
enced a remarkable surge in the advancement of neutron
scattering instrumentation and techniques, reflecting the
growing prominence of this region within the global neu-
tron scattering community. This progress can be ascribed
to the establishment of world-class research facilities
and the development of cutting-edge neutron sources
throughout the region. Figure 1 shows the major neu-
tron sources in the region. Collaborative efforts among
researchers, institutions, industries, and nations in the
Asia Pacific have fostered a vibrant scientific community,
leading to groundbreaking discoveries and advancements
in diverse areas. Almost every neutron user facility has
invested a significant number of resources in the devel-
opment of polarized neutron capabilities due to the
unique advantages and insights that polarized neutron
techniques offer in various fields of research.

2.1 Australia

Australia has a rich history in the field of neutron scat-
tering. A major milestone in the history was the con-
struction of the 10-MW High Flux Australian Reactor
(HIFAR) in 1958, which began to be utilized for neutron
scattering research in the late 1960s until it was finally
shut down in 2007 [25]. In response to the need for a new,
state-of-the-art neutron scattering facility, the Australian
government initiated the construction of the Open-Pool
Australian Lightwater (OPAL) research reactor at the
Australian Nuclear Science and Technology Organisation
(ANSTO), which became operational in 2007. The OPAL
reactor is a modern, 20-MW multipurpose research reac-
tor that provides a reliable and powerful neutron source
for a diverse array of neutron scattering instruments.
Currently, a total of 15 neutron instruments are avail-
able to users, six of which can perform polarized neutron
experiments.
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Neutron Sources in the Asia Pacific Region
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Fig. 1 Major neutron sources in the Asia—Pacific region

o Platypus: As the first instrument at OPAL to offer

polarized neutron capabilities, Platypus is a versa-
tile TOF neutron reflectometer that provides both
unpolarized and polarized modes to cater to a wide
variety of experiments [26, 27]. For polarized neu-
tron reflectometry (PNR), Platypus employs two
SwissNeutronics Fe/Si supermirrors (m=3.8) as the
polarizer and analyzer, respectively. The wavelength
band for PNR ranges from 2.5 to 13 A, which is nar-
rower than the unpolarized band (1-21 A) due to the
limitations of the supermirrors [27]. Two RF gradient
neutron spin flippers are placed before and after the
sample position to realize polarization analysis for
the whole polarized neutron wavelength band. PNR
has become an integral part of the beamline, enabling

OPAr(ZO MW)

researchers to explore magnetic properties of various
materials [28—33].

Taipan: Taipan is a versatile thermal triple-axis spec-
trometer with a high-flux thermal neutron beam
[34-36]. Both inelastic and diffraction experiments
can be performed on this instrument owing to its
high flux and flexible configurations. In recent years,
the polarization analysis capability has been added to
the instrument by using ex situ polarized *He neu-
tron spin filters as both the polarizer and analyzer
[37]. Users have started to take advantage of this new
capability for experiments [38—40].

o Pelican: As a direct geometry TOF cold neutron tri-

ple-axis spectrometer with a wide detector bank, Pel-
ican was designed with polarization analysis in mind
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from the very beginning [41, 42]. The planned polar-
ized mode involves using a combination of a com-
pact solid-state supermirror bender as the polarizer
and a wide-angle *He neutron spin filter as the ana-
lyzer. Currently, the wide-angle *He system is under
development. Once completed, Pelican is expected
to operate in the polarized mode for a significant
amount of time https://www.ansto.gov.au/our-facil
ities/australian-centre-for-neutron-scattering/neutr
on-scattering-instruments/pelican-time.

Other instruments, including QUOKKA, a SANS
instrument, SIKA, a cold neutron triple-axis spectrom-
eter, and WOMBAT, a neutron diffractometer, are also
equipped with polarized neutron capabilities [37, 43,
44]. Much of the polarized neutron instrumentation at
ANSTO is focused on employing polarized *He neutron
spin filters. A metastability-exchange optical pumping
(MEOP) station, developed by the Institut Laue-Langevin
(ILL), is responsible of producing highly polarized He
for instruments [37]. The MEOP station provides a fast
method for producing large volumes of polarized *He gas
and thus is key to the successful deployment of *He spin
filters at ANSTO. As instrument development continues,
polarized neutron scattering is expected to play a more
significant role at ANSTO.

2.2 China

China’s research into neutron scattering dates back to the
1950s. In 1958, the 7-MW Heavy Water Research Reactor
(HWRR), the first nuclear reactor in China, reached criti-
cality. Soon after, Chinese researchers constructed a neu-
tron diffractometer at the HWRR [45, 46]. In 1960, they
observed and later reported on the effects of piezoelec-
tric oscillation, which resulted in an enhancement of neu-
tron scattering on quartz single crystals [47]. The HWRR
underwent several upgrades and reached up to 15 MW
in the 1980s. It was finally decommissioned in 2007 after
47 years of operation. China’s neutron scattering research
has experienced remarkable progress over the last two
decades and has rapidly emerged as a significant force in
the global neutron scattering community. Three sources
have been built during the last 15 years: the China
Advanced Research Reactor (CARR), the China Mian-
yang Research Reactor (CMRR), and the China Spallation
Neutron Source (CSNS). The CARR is a 60-MW research
reactor located in Beijing [48—-50], which went critical in
2010. The CMRR is a 20-MW research reactor in Mian-
yang, Sichuan province, and has started operation since
2014 [51, 52]. The CSNS, based in Dongguan, Guangdong
province, is the first spallation neutron source in China
and the second in the Asia—Pacific region [53-56], which
has been operating since 2018 and is currently running
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with a 100-kW proton beam power. The establishment
of the three neutron sources serves as a testament to
the country’s commitment to fostering innovation and
collaboration in neutron scattering. In addition to these
large-scale neutron sources, China has also constructed
a small accelerator-based source, known as the Compact
Pulsed Hadron Source (CPHS) at Tsinghua University
[57]. Beyond its research capabilities, the CPHS is a dedi-
cated platform for the education and training of the next-
generation neutron scattering users, making it an ideal
incubator for fostering future talents in the field, which
is an ideal place dedicated to education and training of
next-generation neutron scattering users.

The CMRR is a high-performance, multipurpose
research reactor with dedicated halls for thermal and
cold neutrons, supporting a diverse range of scientific
investigations through various experimental facilities
and instruments, including neutron radiography, radiop-
harmaceuticals neutron activation analysis, and neutron
scattering. Currently, 8 instruments have been built (4
in the reactor hall and 4 in the cold scattering hall) and
are open to users [52]. Among these instruments is a
polarized TOF neutron reflectometer, Diting, in the cold
scattering hall [58]. The TOF mode of the reflectometer
enables the individualized optimization of the instrument
flux and resolution for each experiment. Diting takes
advantages of a high-efficiency transmission supermir-
ror (m=2.7) to polarize the incident neutron beam and
another transmission supermirror (m=3.85) to analyze
the beam. Two adiabatic fast passage RF spin flippers are
implemented to flip the upstream and downstream neu-
tron polarizations and thus enact polarization analysis.
The polarized mode works over a wide wavelength band
from 2.5 to 12.5 A and covers a Q range from 0 to 0.5 A~1
[51, 52, 58], and users have started to perform polarized
neutron reflectometry (PNR) experiments at the instru-
ment to study various science cases [59-62]. Meanwhile,
the CMRR has established a dedicated polarized *He
team, which has played a significant role in advancing
polarized neutron capabilities in China by developing
polarized *He systems for neutron instruments [63—65].
The use of polarized He can realize the rapid deploy-
ment of polarized neutron capabilities on typically unpo-
larized neutron instruments. They have also performed
fundamental studies using relevant techniques to make
precision measurements in the search for exotic spin-
dependent interactions mediated by axion-like particles
[66—68]. The CMRR is still fast growing. New neutron
instruments are under construction and will join the user
program soon. A polarized SANS (PSANS) instrument
[52] and two neutron spin echo instruments, the longi-
tudinal neutron resonance spin echo (LNRSE) spectrom-
eter [69] and the spin echo SANS (SESANS) instrument
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[70], will be the latest additions to polarized neutron
scattering at the CMRR.

The CSNS is large accelerator-based pulsed neu-
tron facility operating with a 1.6-GeV proton beam and
25-Hz proton pulses [55, 56]. It represents a significant
leap forward in China’s dedication to neutron scattering.
The proton beam power is running at 100 kW and can
be upgraded to 500 kW in the future. The current facil-
ity can accommodate up to 20 neutron instruments, with
four beamlines already in the user program and more
under construction or planning http://english.ihep.cas.
cn/csns/fa/in/. The multipurpose reflectometer (MR)
is one of the three day-1 instruments at the CSNS and
comes equipped with the polarized neutron reflectom-
etry (PNR) capability [71]. This reflectometer utilizes two
transmission Fe/Si supermirrors (m=4.4) as the polar-
izer and analyzer in PNR experiments, along with a pair
of RF spin flippers positioned before and after the sam-
ple. Since its commissioning, the MR instrument has
become one of the most productive instruments at the
CSNS with PNR experiments being routinely conducted
[72-78]. Additionally, the CSNS has a dedicated neutron
polarization group and a development beamline (BL-20)
contributing to the advancement of polarized neutron
devices and techniques [79]. The group has developed
both ex situ and in situ polarized *He neutron spin filters
[80—82], built and tested flippers [83], and realized TOF
polarized neutron imaging [84]. The development beam-
line BL-20, equipped with a V-cavity polarizing super-
mirror to provide a highly polarized incident neutron
beam, has become the go-to place for testing neutron
polarization devices and exploring new concepts. For the
future very small angle scattering (VSANS) instrument,
efforts are being made to develop a magnetic sextuple
lens to focus the incident polarized cold neutron beam
onto the sample position [85, 86].

The construction of the three neutron sources is far
from complete. Despite the rapid progress and achieve-
ments in neutron scattering research in China, there is
still considerable potential for further development and
expansion. As these facilities continue to expand, more
instruments with polarized neutron capabilities will
be added to the current instrument suite. The ongoing
advancements in polarized neutron scattering technol-
ogy will enable breakthroughs across a wide range of dis-
ciplines. With a steadfast commitment to innovation and
collaboration, China is poised to become a leading player
in neutron scattering research, pushing the boundaries of
scientific exploration and discovery.

2.3 India
India constructed Asia’s first research reactor, Apsara,
in 1956 at the Bhabha Atomic Research Centre (BARC)
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in Mumbai. Following Apsara’s successful operation,
Indian researchers began to explore the potential of
neutron scattering in various fields of study. The com-
missioning of the second, more powerful research reac-
tor, Cirus, in 1962 further accelerated the growth of
neutron scattering research in India. The demand for
higher neutron flux and better instruments propelled
India to build Dhruva, a 100-MW reactor that went
critical in 1985 and was designated as the National
Facility for Neutron Beam Research (NFNBR) https://
www.barc.gov.in/reactor#nav-4. Currently, Dhruva is
home to 12 neutron instruments, two of which have
polarized neutron capabilities [87].

o Polarized neutron spectrometer: This instrument is
housed in the reactor hall of Dhruva and is a polar-
ized neutron workhorse. It uses Heusler crystals as
both the monochromator and polarizer to provide
a polarized thermal neutron beam of 1.2 A and a
CoggyFeq g crystal as the polarization analyzer [88,
89]. Two RF spin flippers are employed to enable
polarization analysis at this beam line. Notably,
this instrument has been extensively utilized for
experiments employing the neutron depolariza-
tion technique, which is a well-established method
to study ferromagnetic materials [90-93]. The one-
dimensional neutron depolarization technique of
the instrument provides a way to investigate the
domain magnetization and magnetic inhomogene-
ity on a mesoscopic scale in the sample and serves
as a useful addition to conventional neutron dif-
fraction [88, 94—101].

o Polarized neutron reflectometer: As in other neu-
tron facilities, PNR has become an indispensable
tool in studies of magnetic thin films. Situated in
the cold guide laboratory next to the reactor hall,
the reflectometer at Dhruva can switch between
unpolarized and polarized modes and delivers an
incident neutron beam with a wavelength of 2.5 A
[102]. In the polarized mode, a polarizing super-
mirror is used to polarize the incident beam and a
Mezei flipper to flip the incident neutron polariza-
tion. Although the option to insert a supermirror
analyzer to perform polarization analysis is avail-
able, it is generally not implemented because of the
relatively low neutron flux of the instrument [102].
Nevertheless, the reflectometer remains produc-
tive, applying PNR to a diverse range of samples
[103-108].

Neutron scattering in India continues to evolve. With
the ever-growing demand for better resolution, higher
neutron flux, and more modern neutron instruments,
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a new spallation neutron source has been proposed to
be built in India [109-111]. Polarized neutron capa-
bilities will be no doubt a significant part of the new
instruments at the spallation neutron source. With the
continued growth of the neutron scattering community
and enhanced international collaborations, neutron scat-
tering in India looks even brighter.

2.4 Japan

Japan has played a significant role in the development
and advancement of neutron scattering research since
the 1960s. Japan has also been a front-runner in devel-
oping and utilizing polarized neutron techniques. Cur-
rently, two major neutron facilities in Japan, the JRR-3
and JSNS, are providing neutron beams for users across
the world. The two sources are located within walking
distance to each other in Tokai, Japan, which helps users
take advantage of the complementary capabilities of both
facilities to perform more comprehensive and diverse
experiments. The research reactor JRR-3 first went
critical in 1962 with a power of 10 MW and was later
upgraded to 20 MW in 1990. JSNS at J-PARC is a 1-MW
accelerator-based pulsed neutron source debuted in
2008. Both facilities serve as hubs for regional and inter-
national collaboration in neutron scattering research,
attracting users from all over the world.

Currently, the JRR-3 has a total of 31 neutron instru-
ments currently running https://jrr3.jaea.go.jp/jrr3e/2/
21.htm, many of which have polarized neutron capabili-
ties. Here, we highlight several notable polarized neutron
instruments:

+ TAS-1: This instrument is a conventional thermal
triple-axis spectrometer with unpolarized and polar-
ized modes. The spectrometer utilizes doubly focus-
ing Heusler crystals (Cu,MnAl) in polarized mode to
polarize neutrons and analyze polarization, thereby
enabling longitudinal polarization analysis (LPA)
[112]. Moreover, TAS-1 has also been equipped with
an advanced spherical neutron polarimetry (SNP)
device called CRYOPAD, which was developed at the
Institut Laue-Langevin (ILL) [113]. The addition of
CRYOPAD, along with versatile sample environment,
has enabled the instrument to perform more compli-
cated experiments [114-116].

+ PONTA: PONTA is another thermal triple-axis spec-
trometer at JRR-3 with the polarization analysis capa-
bility. Like at TAS-1, Heusler crystals are used as the
polarizer and analyzer for PONTA [117]. In addition
to LPA, PONTA has also tested thermal neutron spin
echo spectroscopy [118-120]. Compared to clas-
sical triple-axis spectroscopy, the spin echo addi-
tion provides a unique way to achieve higher energy
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resolution without sacrificing neutron flux. Recently,
PONTA has added an option to use a V-cavity super-
mirror as the polarizer, which, in combination with
a pyrolytic graphite monochromator, can lead to
higher flux and incident neutron polarization.

+ SUIREN: SUIREN is a magnetic reflectometer dedi-
cated to studying magnetic films and solid-liquid
interfaces [121, 122]. SUIREN can choose to run
between the unpolarized mode and the polar-
ized mode. The polarized mode enables polarized
neutron reflectometry (PNR) by using one Fe/
Ge reflection supermirrors as the polarizer and
the other one as the analyzer [121, 123]. Together
with two Mezei flippers, one before and one after
the sample, four cross sections (++,+ —,— +, and
— —) can be measured, where the first + or —sign in
the cross sections represents the incident neutron
polarization direction and the second sign denotes
the analyzed neutron polarization direction.

o INSE: This is a conventional neutron spin echo
spectrometer designed to mainly study dynamics in
soft matter [124—127]. The two specially designed
symmetric main precession coils responsible for
spin echo provide homogeneous field integrals
as well as strong magnetic fields [124]. The neu-
tron beam is polarized by a polarizing supermir-
ror bender guide and analyzed by a multichannel
supermirror bender, both manufactured by Swiss-
Neutronics and working well for neutron from 4 to
15 A [126].

o SANS-J-II: This is a 20-m-long small angle neutron
scattering (SANS) instrument capable of doing
polarized neutron experiments [128, 129]. The
uniqueness of this beamline lies in utilizing focusing
lenses to achieve an accessible minimum scattering
vector Q,;, on the order of 10™* A~ and thus enable
ultra-small angle scattering [129, 130]. Polarization
analysis is available at high Q with a supermirror
analyzer and a high-angle detector, mainly used to
separate the coherent and incoherent signals [131].
In addition, a dynamics nuclear polarization (DNP)
device has been developed for SANS-J-II to polarize
sample nuclei [132], providing an increased signal-
to-noise ratio, especially in neutron crystallography
of proteins.

Some other instruments at JRR-3 also have polar-
ized neutron capability or have tested it. For example,
TOPAN is another triple-axis spectrometer with the
capability of polarization analysis, and the powder dif-
fractometer HERMES also tried polarized neutron
diffraction using a polarized He polarizer [133]. The
neutron optics beamline NOP has served as a test bed
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for the development of polarized *He neutron spin filters
[134—136] as well as other neutron optics like magnetic
neutron lenses [137, 138].

The JSNS is located at the Materials and Life Science
Experimental Facility (MLF) in J-PARC, which provides
high peak neutron brightness at 25 Hz to 21 currently
installed neutron instruments [139]. Since its inception
in 2008, several state-of-the-art instruments with polar-
ized neutron capabilities have been constructed, offering
unique capabilities to users:

o SHARAKU: SHARAKU is a TOF-polarized neutron
reflectometer. Compared to its counterpart at JRR-3,
SHARAKU enables the measurement of reflectiv-
ity profiles over a wide range of scattering vector Q
values. Polarizing Fe/Si supermirrors are installed as
the neutron polarizer and analyzer. A Drabkin two-
coil spin flipper effectively flips the incident neutron
polarization [140], and a Mezei flipper is used to flip
the downstream neutron polarization [141, 142].
Additionally, an in situ polarized *He system has also
been tested at the instrument to serve as an ana-
lyzer for off-specular scattering [143, 144]. The *He
analyzer can work as a high-efficiency spin flipper to
replace the original Mezei flipper.

« VIN ROSE: This instrument consists of two types of
spin echo spectrometers: a neutron resonance spin
echo (NRSE) beamline and a Modulated Intensity by
Zero Effort (MIEZE) beamline [145-148]. NRSE and
MIEZE are two variations of the neutron spin echo
technique. In NRSE, high-frequency spin flippers
replace the long, large, and strong magnetic preces-
sion coils as seen in the conventional spin echo setup
[14, 16], making NRSE instruments more compact
than conventional NSE ones. MIEZE is a single-arm
NRSE technique in which the polarization analyzer is
placed upstream before the sample to avoid polariza-
tion manipulation after the sample, and the modu-
lated signal would not be affected by a depolarizing
sample or high magnetic fields around the sample
[149-151]. At VIN ROSE, the TOF MIEZE beamline
is already in the user program [152-154], while the
NRSE beamline is still under tuning.

+ TAIKAN: This is a TOF SANS instrument that cov-
ers a wide Q range (0.0008-17 A™Y for unpolarized
neutrons at a single configuration setup [155, 156].
For polarized neutrons, TAIKAN has a V-cavity
transmission supermirror installed as the polarizer
[157, 158]. Polarization analysis is enabled by add-
ing a polarized *He analyzer or a supermirror ana-
lyzer to separate coherent and incoherent scattering
for organics samples [158, 159] or to study magnetic
phenomena in magnetic materials [160-162]. Half
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polarized diffraction experiments without polariza-
tion analysis have also been performed on magnetic
materials [163—165]. Moreover, DNP was also tested
on the instrument to provide spin contrast variation
for the sample [166].

+ POLANO: POLANO is a dedicated direct geometry
polarized neutron spectrometer with a wide detec-
tor bank aiming to perform polarization analysis for
neutrons up to 100 meV [145, 167-169]. An in situ
polarized *He neutron spin filter has been developed
as the neutron polarizer [170, 171], which can also
work as a neutron spin flipper. A wide-angle super-
mirror array has been made to serve as the polari-
zation analyzer for neutrons up to 40 meV with an
angle coverage of up to 40° [172]. In addition to the
supermirror analyzer, POLANO also plans to use a
wide angle polarized *He analyzer to reach higher
neutron energies, covering more science cases [173].

In addition to these instruments dedicated to polarized
neutrons, several other instruments at JSNS can also be
utilized for polarized neutron experiments. The neutron
imaging beam line RADEN has an option to do polarized
neutron imaging to visualize magnetization distribution
[174—177]. Polarized neutron imaging can also be per-
formed at the instrument NOBORU [178-180], which
is a development and test beam line for new techniques
and devices. A 7 T DNP apparatus has been successfully
tested at the diffractometer iMATERIA by achieving high
proton polarizations and is now available for industrial
users [181, 182]. The neutron optics and fundamental
physics beamline NOP have a polarized neutron branch
by using a polarizing supermirror [183, 184], which has
been used to measure the neutron lifetime [185] and test
other neutron polarization devices [144, 186]. The neu-
tron-nucleus reaction measurement instrument ANNRI
has also utilized polarized neutrons for nuclear physics
[187, 188].

Japan has a long history of excellence in the field of neu-
tron scattering, contributing to groundbreaking research
across various disciplines. The development of polar-
ized neutron scattering instrumentation and techniques
has further expanded the scope of research conducted at
Japanese facilities. To date, the neutron facilities in Japan
have enabled polarized neutron capabilities in almost
every category, covering hard matter, soft matter, and
fundamental physics. Japan has expert teams dedicated
to developing new polarized techniques and instrumen-
tation. For example, the *He team has developed both
in situ and ex situ polarized *He systems for various
instruments [136, 144], and the supermirror team has the
capability to fabricate high-performance supermirrors
[123, 189]. As facilities like the JSNS and JRR-3 continue



Jiang AAPPS Bulletin (2023) 33:21

to invest in new polarized neutron instruments and
methodologies, Japan’s role as a leading player in neutron
scattering research is set to strengthen further.

2.5 Others

In addition to the aforementioned neutron facilities, both
the 30-MW High-flux Advanced Neutron Application
Reactor (HANARO) in South Korea [190, 191] and the
30-MW Reaktor Serba Guna G.A. Siwabessy (RSG-GAS)
in Indonesia [192, 193] are two major neutron sources in
the region. At HANARO, polarized neutron experiments
can be performed on the polarized neutron reflectom-
eter REF-V [191, 194] and the 40-m SANS instrument
[195]. Polarized 3He neutron spin filters have also been
developed at HARARO [196, 197] and will be applied to
the triple-axis spectrometers and the neutron imaging
beamline in the future [197, 198]. New instruments are
still being commissioned or constructed at HANARO,
which will expand the scope of applications for polarized
neutrons.

The neutron scattering program at RSG-GAS in Indo-
nesia is relatively small compared to other large neutron
facilities in Asia—Pacific, but it still managed to equip the
triple-axis spectrometer with the polarized neutron capa-
bility [193]. Despite the challenges often faced by devel-
oping countries like Indonesia, such as limited funding
and lack of experienced researchers in the field of neu-
tron scattering, the country has shown a strong commit-
ment to improving its research capabilities in this area,
which bodes well for its future advancements in neutron
scattering.

3 Conclusions

Over the years, polarized neutron scattering has emerged
as a powerful tool in a variety of scientific domains. Fields
ranging from physics, chemistry, and materials science
to earth science and biology have leveraged the capa-
bilities of polarized neutron scattering to gain signifi-
cant insights into their respective domains of study. For
instance, in the field of magnetism, polarized neutron
scattering has been invaluable in the study of magnetic
structures, spin dynamics, and magnetic phase transi-
tions, and in the field of soft matter, neutron spin echo
has been instrumental in studying the dynamics of poly-
mers and proteins.

The Asia—Pacific region, with its vibrant economic
growth and scientific advancements, has been seeing
rapid development and utilization of polarized neutron
techniques. The region, though a relatively late entrant,
has now become an active participant in the global neu-
tron scattering community. The extensive neutron facili-
ties across the region collectively demonstrate a broad
engagement in neutron scattering research. The region
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has embraced almost all polarized neutron techniques,
including longitudinal polarization analysis, spherical
neutron polarimetry, conventional and resonance neu-
tron spin echo, dynamic nuclear polarization, magnetic
lenses, and polarized neutron imaging. This impressive
breadth of technique adoption showcases the region’s
adaptability and eagerness to keep pace with the global
trends.

The government support within the region has been
vital to these advancements, with significant investment
in the construction of new facilities and the upgrading
of existing ones. For example, over the past two dec-
ades, this region has seen the construction and success-
ful operation of two new large state-of-the-art spallation
neutron sources. These facilities account for half of the
spallation neutron sources currently operating globally.
The increasing accessibility to these facilities, in turn, has
opened up many opportunities for collaboration both
within the region and with international partners.

In the coming years, as more new facilities and mod-
ern instruments come online, and as new polarized tech-
niques become more available, the Asia—Pacific region is
expected to play a leading role globally in the applications
of polarized neutron scattering.
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