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Abstract

In this thesis we study a large class of three-charge solutions of supergravity in vari-

ous dimensions and duality frames. The solutions have the same asymptotic structure,

supersymmetry and conserved charges as black holes and black rings with macroscopic

horizons and finite entropy. These supergravity solutions have neither horizons nor sin-

gularities and can be viewed as examples of the “geometric transition” mechanism of

string theory.

We also study the gravitational analog of spectral flow in conformal field theory and

use it as an efficient solution-generating technique in supergravity. This provides a use-

ful relation between two-charge and three-charge supergravity solutions which we study

in detail. By studying two-charge supertubes in the background of regular three-charge

solutions with dipole charges we uncover a novel mechanism for entropy enhancement

and discuss its implications for black-hole physics.

We generalize the well-known class of three-charge supersymmetric solutions in five

dimensions, based on Gibbons-Hawking spaces, by studying supergravity solutions with

less global symmetry. This is computationally challenging but we manage to present the

first examples of such solutions and discuss their relation to black holes and black rings.

We also study non-supersymmetric asymptotically flat supergravity solutions with a

four-dimensional Ricci-flat or Einstein-Maxwell base. These are solutions of string or

M-theory compactified to five dimensions and provide some of the very few examples

of regular non-supersymmetric gravity solutions.

xii



Introduction

The existence of black holes and cosmological singularities are some of the most dra-

matic consequences of General Relativity. They were first developed as theoretical pre-

dictions but recent astronomical observations provide strong evidence that the Big Bang

model of the Universe is correct and that black holes exist in Nature. Black holes and

Big Bang models have singularities - regions of space time with infinite curvature and

tidal forces. These singularities cannot be explained by General Relativity and point to

the existence of a more fundamental theory of gravity which should resolve them.

In the early 1970’s it was found that black holes have thermodynamic properties and

can emit thermal radiation [14, 18, 136]. Thus, in addition to the singularity behind the

horizon of a black hole, there are two more puzzles of black hole physics:

1) Understanding the origin of black hole thermodynamics from the point of view of

statistical mechanics and explaining why the entropy is proportional to the area of the

black hole.

2) Resolution of the information paradox - the fact that unitarity of quantum mechan-

ics seems to be violated by black holes, since a pure state can be absorbed by the black

hole and emitted as thermal radiation.

A fundamental theory of gravity should address and eventually resolve these puzzles.

String theory is a theory of quantum gravity and in the last fifteen years has led to a

better understanding of the physics of black holes and indeed, in some cases, provides

resolutions to some of the above problems.

The entropy of a black hole is proportional to the area of its horizon. This is puzzling

since entropy is an extensive quantity and one would expect it to scale with the volume.

Somehow the degrees of freedom of the black hole, and thus of gravity, are encoded in a

surface with one dimensions less than the dimension of the dynamical space-time. This
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is the basis of the holographic principle [1, 200] - the degrees of freedom of a gravita-

tional theory can be described by a theory without gravity living in one less dimension.

This idea was made more precise by the AdS/CFT [163, 128, 208] correspondence and

its further generalizations [2]. AdS/CFT also suggests that there is no information loss

since the theory on the boundary is unitary, however there is no detailed and satisfactory

explanation how the information is restored within the gravitational (bulk) theory.

For a class of supersymmetric black holes in string theory Stominger and Vafa

showed that the entropy of the black hole can be accounted for by counting bound

states of D-branes at vanishing gravitational coupling using results from string theory

and conformal field theory [198, 52]. At strong gravitational coupling these D-branes

form a black hole with finite entropy in supergravity. Supersymmetry then protects the

number of states as one changes the coupling and it was shown that the weak coupling

counting matches with the Bekenstein-Hawking entropy of the black hole at strong cou-

pling. This result was later generalized for other black holes in various dimensions and

for some non-supersymmetric black holes. This shows that indeed gravitational entropy

has statistical origin, however it provides no clue what is the fate of each individual

microstate as one increases the gravitational coupling.

Another way to understand the Strominger-Vafa entropy counting is via the

AdS/CFT correspondence1 [163, 128, 208]. One can make a black hole with macro-

scopic horizon in string theory by putting together N5 D5 branes and N1 D1 branes and

turning on Np units of momentum along the direction of the D1’s. If one takes a near

horizon limit of this system, one finds a bulk that is asymptotic to AdS3 × S3 × T 4.

The dual boundary theory is the two-dimensional conformal field theory that lives on

the intersection of the D1 branes and the D5 branes and is known as the D1-D5-P CFT

1Historically the AdS/CFT correspondence was found later.
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[73]. If one counts the states with momentum Np in this conformal field theory [199],

one obtains the entropy

S = 2π
√
N1N5Np , (1)

which precisely matches the entropy of the dual black hole [69] in the bulk.

A very important question, with deep implications for the physics of black holes,

is: “What is the fate of these microscopic brane configurations as the effective coupling

becomes large?” Alternatively, the question can be rephrased in AdS/CFT language as:

“What is the gravity dual of individual microstates of the D1-D5-P CFT?” More phys-

ically, “What do the black-hole microstates look like in a background that a relativist

would recognize as a black hole?”

In the last few years there has been substantial progress in answering these questions

and this will be the main topic of this thesis. We will by no means provide comprehen-

sive answers but we hope that the results of the research presented here will provide

some clues to the structure of the black hole microstates at strong gravitational coupling

and details of the resolution of the information paradox.

Chapters 1 and 2 of this dissertation are devoted to reviews of black hole physics,

supergravity, D-branes and the construction of regular three-charge geometries. Chap-

ters 3, 4, 5 and 6 are based on research that I did in collaboration with Iosif Bena,

Clément Ruef and Nick Warner and which was published in [31, 33, 34, 35, 45].

The dissertation is organized as follows:

In Chapter 1 we give a short review of black holes and black hole thermodynamics

in General Relativity. We discuss in some detail the Reissner-Nordström black hole,

which will serve as a toy model for other black holes studied in the dissertation. We

also provide a brief overview of some aspects of supergravity, string theory and D-

branes which are of relevance for black holes. At the end of this Chapter we outline the

counting of black hole microstates in string theory.
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Chapter 2 is devoted to a summary of three-charge solutions of eleven-dimensional

supergravity from intersecting M2 and M5 branes. We discuss how to construct black

hole and black ring solutions in eleven-dimensional supergravity, but the main emphasis

is on the construction on regular asymptotically flat solutions with non-trivial topology

and with no horizons. We also discuss the implications of the existence of these solutions

on the physics of black holes.

In Chapter 3, based on [33] and [35], we use string dualities to recast the eleven-

dimensional solutions of Chapter 2 in type IIA and IIB supergravity. We also discuss

“spectral flow” - a solution generating technique in supergravtiy, which we use to relate

two and three-charge supergravity solutions and study which of these solutions are true

bound states.

Using the results of Chapter 3 we continue in Chapter 4 with the study of probe

supertubes in the background of various three-charge supergravity solutions. We

uncover a novel mechanism for entropy enhancement due to the presence of non-trivial

dipole charges of the supergravity solutions [34, 35]. We discuss how this mechanism

may provide a better understanding of the black hole entropy and microstates in super-

gravity and string theory.

In Chapter 5 we relax the very special U(1) isometry of the well-known class of

explicit supergravity solutions discussed in Chapter 2 and present a new more general

class of three-charge supersymmetric solutions found in [31]. We present an explicit

example of such solution based on the Atiyah-Hitchin manifold. We also discuss some

interesting solutions based on the irregular Eguchi-Hanson manifold.

In the final Chapter we discuss two possible ways to break supersymmetry and study

a large class of non-supersymmetric supergravity solutions. We also present one of

the very few regular non-supersymmetric solutions based on the Euclidean Reissner-

Nordström manifold [45].
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In the Conclusions we discuss some open problems and directions for possible future

work based on the results of this thesis.
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Chapter 1

Black Holes, Supergravity and

D-branes

1.1 Black holes

Black holes are one of the most striking predictions of General Relativity [134, 203, 57].

In four-dimensional general relativity coupled to electro-magnetism there are unique-

ness theorems that state that the only axially symmetric asymptotically flat solution to

Einstein-Maxwell theory is the Kerr-Newman black hole [148, 172]. Thus, under some

reasonable assumptions, the black hole is uniquely specified by its mass,M , electric and

magnetic charges Q and P and angular momentum J . This on the other hand implies

that if one is given the thermodynamic state functions of the black hole there is a unique

gravitational solution, i.e. there is only one corresponding state in General Relativity.

This uniqueness theorem is not valid in higher dimensional gravity and supergravity

and this fact will be discussed later in this dissertation. For the moment we will stick to

four space-time dimensions and illustrate the physics of black holes by studying the toy

example of the charged black hole in Einstein-Maxwell theory.

1.1.1 The Reissner-Nordström black hole

In this section we will present some details about the Reissner-Nordström solution of

Einstein-Maxwell theory [185, 173]. This solution will serve as an example of a black

6



hole and will capture the essential physics of the more complicated black holes that will

be discussed later in this thesis.

The equations of motion of general relativity coupled to matter are given by the

Einstein equations1

Rµν −
1

2
Rgµν = 8πG4Tµν , (1.1)

where G4 is the four-dimensional Newton constant, Rµν is the Ricci tensor and R is the

Ricci scalar of the dynamical metric. These equations can be derived from the action

S =
1

8πG4

∫
d4x
√
−gR + SM , (1.2)

where SM is the action of the matter fields. Note that we will use conventions in which

c = ~ = kB = 1 The energy-momentum tensor of the matter fields can be derived from

SM and is given by

Tµν = − 1√
−g

δSM
δgµν

. (1.3)

Here we will be interested in gravity coupled to electro-magnetism so the matter action

is simply given by the Maxwell action

SM =
1

α

∫
d4x
√
−gFµνF µν . (1.4)

The constant α depends on conventions, in this chapter we will use α = 8π. The energy-

momentum tensor for the Maxwell field is then

Tµν = − 2

α

(
FµσF

σ
ν −

1

4
gµνFρσF

ρσ

)
. (1.5)

1See [134, 203, 57] for some excellent reviews on General Relativity and black holes.
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In addition to the Einstein equations one also has the Maxwell equations for the electro-

magnetic field

∇µFµν = 0 , ∇[µFνσ] = 0 . (1.6)

A solution to these field equations is given by the following line element

ds2
4 = −

(
1− 2G4M

r
+
G4(p2 + q2)

r2

)
dt2 +

(
1− 2G4M

r
+
G4(p2 + q2)

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2) , (1.7)

and gauge field strength

F = − q

r2
dt ∧ dr + p sin θdθ ∧ dφ . (1.8)

This is the four-dimensional Reissner-Nordström solution, by setting p = q = 0 one

gets the Schwarzschild solution [191]. The metric coefficient of dt2 will vanish at

r± = G4M ±
√
G2

4M
2 −G4(p2 + q2) (1.9)

and it looks like the metric is singular at these points. However the curvature invariants

of the metric are regular at r = r±, so these loci are just coordinate singularities. One

can explicitly compute the Riemann and Ricci tensors of the Reissner-Nordström metric

and find that

R = gµνRµν = 0 , RµνR
µν =

4G2
4(p2 + q2)2

r8
. (1.10)

It is clear from these expressions that there is an essential singularity at r = 0 where

some curvature invariants blow up. A physical observer approaching r = 0 will expe-

rience infinite tidal forces. This is an example of the singularities that appear in black

8



hole physics. Their existence indicate that Einstein’s theory of General Relativity is only

an effective low energy theory and should not be valid at very small distances or high

energies.

It is clear that there are three distinct regions of parameter space to consider in the

Reissner-Nordström solution:

• G2
4M

2 < G4(p2 + q2)

In this case gtt never vanishes (since the radial coordinate is real) and the solution

is completely regular up to the singularity at r = 0. The singularity is not shielded

by a horizon and is known as “naked singularity”. The cosmic censorship conjec-

ture states that such singularities should not be the product of gravitational col-

lapse and therefore these solutions are generally considered unphysical in General

Relativity.2 One can intuitively understand the condition G2
4M

2 < G4(p2 + q2)

as stating that the total energy of the solution is less than the energy of the elec-

tromagnetic field. This would imply that the mass of the matter that carries the

charges is negative which is why such solutions are considered unphysical.

• G2
4M

2 > G4(p2 + q2)

This is the more physical situation when the energy of the solution is bigger than

the energy of the electromagnetic field. The surfaces r = r± are null and are the

two event horizons of the black hole. The singularity at r = 0 is time-like and is

shielded by the two horizons. This is the non-extremal Reissner-Nordström black

hole.

• G2
4M

2 = G4(p2 + q2)

2Naked singularities may be physically relevant in string theory or the gauge/gravity duality but this
will not concern us here.
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This is the extremal Reissner-Nordström black hole. It has a single horizon at r =

r+ = r− and a time-like singularity at r = 0. The mass of the black hole is exactly

balanced by its charge and in fact one can construct an arbitrary number of such

black holes, at different points in the space-time, which are stationary and stable.

One can show that the extremal Reissner-Nordström black hole is supersymmetric

and the near horizon geometry isAdS2×S2. This will be discussed in more detail

below.

The extremal RN black hole can serve as a good warm-up example for the solutions

that will be the main topic of this thesis so it is worth studying it in more detail. The

metric is

ds2
4 = −

(
1− G4M

r

)2

dt2 +

(
1− G4M

r

)−2

dr2 + r2(dθ2 + sin2 θdφ2) . (1.11)

At asymptotic infinity we have r →∞ and the metric approaches flat Minkowski space,

R1,3. The horizon is at r = G4M and it is instructive to study the solution near the

horizon. For this purpose define a new radial coordinate3 ρ = r − G4M , in which the

metric is

ds2
4 = − ρ2

(ρ+G4M)2
dt2 +

(ρ+G4M)2

ρ2
(dρ2 + ρ2(dθ2 + sin2 θdφ2)) . (1.12)

Now consider the near horizon limit ρ→ 0 and define yet another set of new coordinates

τ = G−2
4 M−2t, η = ρ−1. The background in this limit is

ds2
4 = G2

4M
2

(
−dτ 2 + dη2

η2
+ dθ2 + sin2 θdφ2

)
, (1.13)

3These coordinates are called isotropic.
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F =
q

η2
dτ ∧ dη + p sin θdθ ∧ dφ . (1.14)

This is the metric on AdS2 × S2 with constant electro-magnetic flux on it, indeed it is

elementary to show that

∫
S2

F = 4πp ,

∫
S2

?F = 4πq . (1.15)

This is also known as the Robinson-Bertoti solution [186, 44]. The extremal Reissner-

Nordström solution can be thought of as a soliton interpolating between two maximam-

lly symmetric spaces - four-dimensional Minkowski space-time at asymptotic infinity

and AdS2 × S2 near the horizon.

There is a simple generalization of the extremal Reissner-Nordström solution. To

find it first set the magnetic charge to zero, p = 0, and note the gtt and grr components

of the metric as well as the electric gauge potential are expressed in terms of 1 +
G4M

ρ
,

which is a harmonic function on R3 . This observation leads to the following general

solution of Einstein-Maxwell theory in four dimensions

ds2 = − 1

H2
dτ 2 +H2(dρ2 + ρ2(dθ2 + sin2 θdφ2)) , (1.16)

A = − 1

H
dτ . (1.17)

where H(~x) is a solution to the Poisson equation on the R3 spanned by

dx2
1 + dx2

2 + dx2
3 = dρ2 + ρ2(dθ2 + sin2 θdφ2) . (1.18)
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The functionH for the extremal Reissner-Nordström solution satisfies the Poisson equa-

tion with a delta function source

∇2

(
1 +

G4M

ρ

)
= −4πG4Mδ(ρ) = −4π

√
G4 q δ(ρ) . (1.19)

In the general solution the function H(~x) will satisfy the Poisson equation with some

general charge density σ(~x)

∇2H(~x) = σ(~x) . (1.20)

If the charge density is a continuos function one gets solutions of the Einstein-Maxwell

equations coupled to extremal dust4. These solutions will not have any singularities or

horizons and we will not discuss them further here. We will be interested in solutions

for which the charge density is a sum of delta functions:

H(~x) = 1 +
√
G4

N∑
j=1

qj
|~x− ~xj|

, ∇2H(~x) = −4π
√
G4

N∑
j=1

qjδ(~x− ~xj) .

(1.21)

This background is a superposition of N extremal Reissner-Nordström black holes and

is known as the Majumdar-Papapetrou solution [160, 176]. In the isotropic coordinates

used here the black hole horizons are located at the poles, ~x = ~xj , of the harmonic

function H(~x).

Extremality is quite important for the simple form of this class of solutions. It is only

in the extremal limit that the repulsion induced by the electric charge can “cancel” the

gravitational attraction so that the solution can remain static. If one adds any additional

energy to the solution, the non-linearities of gravity become more directly manifest.

4Extremal dust has the property that when two grains of dust are at rest, their electrostatic repulsion is
exactly sufficient to balance their gravitational attraction and they remain at rest.
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Note that the source in (1.19) lies at the origin of the coordinates (1.18); i.e., at the

horizon of the black hole (remember that we are in isotropic coordinates). However,

since the horizon of the black hole is in fact not just a single point in space, ~x = ~xk

is clearly a coordinate singularity. This means that although the support of the delta

function lies at ~x = ~xk, this should not be interpreted as the location of the black hole

charge. Rather, the role of this delta function is to enforce a boundary condition on the

electric flux emerging from the black hole so that the hole does indeed carry the proper

charge.

Of course, in four dimensions, we can also have magnetically charged black holes.

In fact, as for the single-center Reissner-Nordström black hole, we can have dyons,

carrying both electric and magnetic charge. The corresponding extremal solutions are

given directly by electro-magnetic duality rotations of the electric Majumdar-Papapetrou

solutions presented above.

As we have already noted, there is a coordinate singularity at the black hole horizon.

Thus, the isotropic coordinates does not allow us to see to what extent the black hole,

or even the horizon, is non-singular. However, if the black hole is to have a smooth

horizon, then the horizon should have non-zero (and finite) area. It is clear that this is

the case for the Majumdar-Papapetrou metrics since as ρ → ρj we have a finite size S2

of radius
√
G4qj . In fact as in the single center case we have an AdS2 × S2 throat near

each of the extremal black-hole horizons.

The Reissner-Nordström black hole, and its multi-center generalization, is a solution

to Einstein-Maxwell theory in any space-time dimension5 D > 3. There are also very

similar solutions of supergravity theories in various dimensions. These solutions are not

point-like but are sourced by extended objects known as D-branes (or M-branes) and

may look significantly more complicated. We will discuss them in detail below but it

5Of course, the dyonic Reissner-Nordström solution exists only in D = 4.

13



will be useful to always keep in mind the intuition from the simple Reissner-Nordström

solution in four dimensions.

1.1.2 Black-hole thermodynamics

The is a well-known theorem for black holes which states that in any physically allowed

process, the total area of all black holes in the universe cannot decrease [134, 203].

This law strongly resembles the second law of thermodynamics, which states that in any

physically allowed process the total entropy in the universe cannot decrease. This rela-

tion is not accidental and one can show that there is a correspondence between the laws

of black hole mechanics and the laws of thermodynamics [14]. By studying quantum

fields near the horizon of a black hole Hawking made this analogy precise and showed

that black holes are thermal objects and posses entropy and temperature [136]. Here we

will review the laws of black hole thermodynamics and will briefly discuss their physical

implications.

The zeroth law of black hole mechanics states that the surface gravity, κ, on the

horizon of an arbitrary stationary black hole is constant. This resembles the zeroth

law of thermodynamics which states that a physical system in thermal equilibrium has

constant temperature. This suggest that the surface gravity of the black hole horizon

should be identified with the temperature of the black hole

The first law of black hole mechanics for a charged, rotating black hole is

dM =
κ

8π
dA+ ΩHdJ + ΦHdQ , (1.22)

where M , Q and J are the mass, charge and angular momentum of the black hole, κ

is the surface gravity of the horizon, A is the area of the horizon, ΩH is the angular
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velocity of the horizon and ΦH is the electrostaic potential at the horizon. It is clear that

this relation bears a similarity with the first law of thermodynamics

dE = TdS + work terms . (1.23)

As already stated above the second law of black hole mechanics suggests that the

entropy of the black hole is proportional to its area

SBH =
A

4G4

. (1.24)

This is the Bekenstein-Hawking formula for black-hole entropy [18, 136].

It can be shown that it is impossible to make the surface gravity of a black hole to

vanish by any physical process. This is the the third law of black hole mechanics, which

again indicates that the surface gravity of the black hole horizon should be related to the

temperature of the black hole.

To summarize, the relations between thermodynamic and black-hole quantities are

[203]:

E ↔M , T ↔ κ

2π
, S ↔ A

4G4

. (1.25)

As an illustration we will present here some of the thermodynamic quantities of the

Reissner-Nordström black hole. For more details on the calculation see [203, 57]. The

temperature of the Reissner-Nordström black hole is given by

TRN =
r+ − r−

4πr2
+

=

√
G2

4M
2 −G4(q2 + p2)

2π
(
G4M +

√
G2

4M
2 −G4(q2 + p2)

)2 . (1.26)
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The extremal black hole has r+ = r− and therefore T = 0. The entropy of the Reissner-

Nordström black hole is (A is the area of the outer horizon)

SRN =
A

4G4

=
πr2

+

G4

=
π
(
G4M +

√
G2

4M
2 −G4(q2 + p2)

)2

G4

. (1.27)

It is clear that the extremal Reissner-Nordström black hole has finite entropy

SERN = π(q2 + p2) , (1.28)

despite it being at zero temperature. For p = q = 0 we have the Schwarzschild black

hole with temperature and entropy given by

TSch =
1

8πG4M
, SSch = 4πG4M

2 . (1.29)

The underlying physical reason why the entropy of a black hole is proportional to its

area is unclear in general relativity. The entropy of a conventional physical system is

proportional to the logarithm of the number of microscopic states with a given set of

macroscopic parameters. Therefore a statistical interpretation of the black hole entropy

will imply that in a full quantum theory of gravity the number of microscopic states with

the same conserved charges as a given black hole should be order

Nmicro ∼ eABH . (1.30)

The black hole uniqueness theorems in general relativity are at odds with this relation,

which is one more clue that one needs a quantum theory of gravity to understand the

entropy of black holes. String theory is a theory of quantum gravity and as such should

contain a microscopic explanation of the entropy of black holes. In the last fifteen years
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we have gained some detailed understanding of what the microstates of a large class of

black holes in string theory are and how to reproduce the Bekenstein-Hawking entropy

by counting them. However there are still many unsolved problems and this thesis is

devoted to some of them.

1.2 Supergravity, String Theory and D-branes

String theory grew out of attempts to construct a fundamental theory of the strong

nuclear interactions. It turned out that non-Abelian gauge theories are better suited

for this task but nevertheless string theory has had a life of its own since then (and

recently via the gauge/gravity duality has taught us some important lessons about

nuclear physics). It was realized that there are massless spin two excitations in the

spectrum of the closed string which can be interpreted as gravitons. Thus string theory

is a theory of quantum gravity. There are also low energy excitations in string theory

which resemble the standard model of particle physics. This has lead to a great research

effort to construct a unified theory of all fundamental interaction based on string theory,

see [125, 126, 179, 180, 16] for comprehensive reviews on string theory. As a quan-

tum theory of gravity string theory has also one more challenging task - to explain and

resolve the puzzles of black hole physics.

By now it is well established that there are five consistent string theories in ten

dimensions, all of which involve supersymmetry - type I string theory with gauge group

SO(32) , two heterotic string theories with gauge groups E8×E8 and SO(32) and type

IIA and type IIB string theories. These theories were first constructed perturbatively but

it was later revealed that there are various string dualities which relate the five consistent

string theories. There is also a conjectured non-perturbative theory in eleven-dimensions
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known as M-theory which is believed to be related to the five string theories by a web

of dualities [141, 206].

All five string theories have a low energy excitation spectrum which yields super-

gravity theories - i.e. supersymmetric extensions of general relativity in ten-dimensions.

There are two supergravity theories with maximal supersymmetry in ten dimensions

- type IIA and type IIB supergravity. As the names suggest they can be obtained by

restricting to the low energy modes of the type IIA and IIB superstring theory. There is

also a unique supergravity theory in eleven dimensions which is conjectured to be the

low energy limit of M-theory. We will use these supergravity theories and their com-

pactifications to lower dimensions throughout this thesis and we will review them briefly

in Sections 1.2.2 and 1.2.3.

In type IIA and IIB string theory as well as in M-theory there are massive objects

called branes which can form black holes in the supergravity limit. When supersym-

metry is preserved these black holes can be thought of as ground states of the theory

and can use different tools to study them. This has lead to a successful counting of

the microstates of a large class of black holes in string theory which we will review in

Section 1.2.4.

1.2.1 BPS states

Most of the supergravity solutions studied in this thesis are supersymmetric and saturate

a Bogomol’nyi-Prasad-Sommerfield (BPS) bound, so it is useful to briefly review this

here. The concept of a BPS bound and its saturation can be illustrated by massive

particles in four dimensions [182, 47, 207]. The N extended supersymmetry algebra

restricted to particles of mass M > 0 at rest in four dimensions is

{QI
α, Q

†J
β } = 2MδIJδαβ + 2iZIJΓ0

αβ . (1.31)
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Here QI
α are the fermionic supercharges, I, J = 1, . . .N label the supersymmetries and

α, β = 1, . . . , 4 are Majorana spinor indices of the supercharges. The matrix ZIJ is

antisymmetric and is called the central charge matrix, clearly it is non-vanishing only

for N ≥ 2. The central charges are conserved quantities that commute with all other

generators of the algebra. They can be also thought of as electric and magnetic charges

that couple to the gauge fields in the supergravity multiplet. For simplicity we will

concentrate on the case N = 2. It is clear from (1.31) that the matrix

 M Z

Z† M

 , (1.32)

should be positive definite, which implies that

M ≥ |Z| . (1.33)

States that have M = |Z| are said to saturate the BPS bound. The similarity with the

extremal Reissner-Nordström black hole is clear. There we had, after setting G4 = 1,

M = q. Indeed the similarity can be made precise and one can show that the Reissner-

Nordström black hole is a BPS state ofN = 2 minimal supergravity in four dimensions

[111].

In the case of maximal, N = 8, supersymmetry in four dimensions there are four

eigenvalues of the matrix ZIJ and one has four different possible BPS states:

• M = |Z1| = |Z2| = |Z3| = |Z4|

This state is called half-BPS and preserves 16 of the 32 real supercharges.

• M = |Z1| = |Z2| = |Z3| > |Z4|

This state is called quarter-BPS and preserves 8 of the 32 real supercharges.
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• M = |Z1| = |Z2| > |Z3| > |Z4|

This state is called eighth-BPS and preserves 4 of the 32 real supercharges.

• M = |Z1| > |Z2| > |Z3| > |Z4|

This state is called sixteenth-BPS and preserves 2 of the 32 real supercharges.

For a large portion of this thesis we will discuss eighth-BPS states in four, five, ten

and eleven-dimensional supergravity. There are black holes with macroscopic horizons

which are eighth-BPS and can be thought of as generalizations of the extremal Reissner-

Nordström black hole discussed in some detail in Section 1.1. Black holes with more

than four supercharges usually do not have macroscopic horizons and look like naked

singularities which should be resolved by higher order supergravity or string theory

effects.

1.2.2 Eleven-dimensional supergravity

Eleven-dimensional supergravity is the unique supergravity in eleven dimensions and

is therefore of fundamental nature [67]. The field content of eleven-dimensional super-

gravity is relatively simple. There is the graviton, which is a symmetric traceless tensor

of the little group in eleven dimensions - SO(9). It has 44 independent physical degrees

of freedom which are encoded in the metric gµν (or the vielbein eaµ). There is also a

fermionic partner of the graviton - the gravitino. This is a 32-component Majorana

spinor which also transforms as a space-time vector, ψαµ . The gravitino transforms as

a vector of SO(9) and as a 16-component real spinor of Spin(9). Naively there are

9 × 16 = 144 physical degrees of freedom in the gravitino, however there is a local

gauge symmetry ψαµ → ψαµ + ∂µχ
α, where χα is an arbitrary spinor. This reduces the

number of physical degrees of freedom in the gravitino to 144− 16 = 128. In order for

the eleven-dimensional theory to be supersymmetric there should be an equal number of
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fermionic and bosonic degrees of freedom. The extra bosonic degrees of freedom come

from a 3-form field A(3). The theory has the usual gauge invariance A(3) → A(3) +dΛ(2)

for an arbitrary 2-form Λ(2). The 3-form is a massless completely antisymmetric field

and thus has 84 degrees of freedom, which adds up to a total of 128 bosonic degrees of

freedom as required by supersymmetry.

The bosonic part of the action of eleven-dimensional supergravity is [16]

S11 =
1

2κ2
11

∫
d11x

(
R− 1

48
Fµ1µ2µ3µ4F

µ1µ2µ3µ4

)
− 1

12κ2
11

∫
A(3) ∧ F(4) ∧ F(4) ,

(1.34)

where

2κ2
11 = 16πG11 =

(2πlp)
9

2π
, F(4) = dA(3) , (1.35)

and G11 and lp are the eleven-dimensional Newton constant and Planck length. The

full action of eleven-dimensional supergravity is invariant under local supersymmetry

transformations. These transformations are parametrized by a 32-component Majorana

spinor, ε, and the infinitesimal transformations of the fields are6

δeaµ = ε̄Γaψµ ,

δAµνρ = −3ε̄Γ[µνψρ] , (1.36)

δψµ = ∇µε+
1

12

(
1

4!
ΓµFνρσλΓ

νρσλ − 1

2
FµρσλΓ

ρσλ

)
ε .

Here Greek letters denote space-time (“curved”) indices and Latin letters denote tangent

space (“flat”) indices. We have also used the standard notation

Γµ = eaµΓa , Γµ1µ2...µn = Γ[µ1Γµ2 . . .Γµn] , (1.37)

6The spinor index of fermions will be suppressed from now on.
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and the covariant derivative on spinors is given by

∇µε = ∂µε+
1

4
ωµabΓ

abε . (1.38)

Given a supersymmetric solution, there exist spinors, called Kiling spinors, that char-

acterize the supersymmetries of the solutions. These are similar to the Killing vectors

which characterize bosonic symmetries of a gravitational background. Killing spinors

are spinors that parametrize infinitesimal supersymmetry transformations under which

the fields are invariant for a specific field configuration. Since the supersymmetry vari-

ations of the bosonic fields always contain one or more fermionic fields, which vanish

classically, these variations are guaranteed to vanish. Thus in exploring supersymmetry

of bosonic solutions one has to look only at the variations of the fermionic fields. In

other words to have a supersymmetric bosonic background we need a solution to the

following equations

δψµ = ∇µε+
1

12

(
1

4!
ΓµFνρσλΓ

νρσλ − 1

2
FµρσλΓ

ρσλ

)
ε = 0 (1.39)

Solutions to this equations, ε(x), are the Killing spinors.

The presence of a three-form gauge potential, A(3) in eleven-dimensional supergr-

vaity suggests the existence of a fundamental two-dimensional extended object present

in the theory. Indeed this turns out to be the case and this object is called M2 brane

[42]. The M2 brane has a magnetic dual M5 brane which sources the six-form gauge

potential Hodge dual to A(3). Unlike the situation in string theory, the fundamental

theory living on the world-volume of these membranes is still somewhat mysterious7.

Nevertheless it is known that the M2 and M5 branes are massive and can backreact on

the eleven-dimensional space-time to produce solutions of supergravity. We will discuss

7See [8, 3] for some recent progress in this direction.
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extensively a large class of such solution in Chapter 2. For illustration here we will just

present the supergravity solution sourced by N M2 branes.

The M2 brane solution is [81]

ds2
M2 = H−2/3(r)(−dt2 + dx2

1 + dx2
2) +H1/3(r)(dr2 + r2dΩ2

7) ,

A(3) = −H−1(r)dt ∧ dx1 ∧ dx2 , (1.40)

where dΩ2
7 is the unit radius S7 and H(r) is a harmonic function on the R8 transverse to

the worldvolume of the M2 brane

H(r) = 1 +
32π2l6pN

r6
. (1.41)

The similarity between this solution and the extremal Reissner-Nordström solution in

four dimensions is obvious. One can easily study the near horizon limit of the M2 brane

and show that the resulting space isAdS4×S7 withN units of flux. This is again similar

to the extremal Reissner-Nordström solution where the near horizon limit is AdS2×S2.

One can also similarly construct the solution for a stack of M5 branes [133]. It is

again determined by a single harmonic function on the space transverse to the branes.

Not surprisingly its near horizon limit is AdS7 × S4.

1.2.3 Type IIA and Type IIB supergravity

Eleven-dimensional supergravity is related to the various ten-dimensioal supergravities

which are the low-energy limits of superstring theories. The most direct connection

is between eleven-dimension supergravity and type IIA supergravity [108, 53]. Type

IIA supergravity can be constructed by a dimensional reduction of eleven-dimensional

supergravity on a circle. This is the low-energy version of the statement that M-theory
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compactified on a circle of radius R corresponds to type IIA superstring theory in ten

dimensions with string coupling gs = Rα′−1/2, where α′ = 1
2πT

and T is the string

tension. The details of how this reduction is done (at least for the bosonic sector of the

theory) are discussed in Appendix A. Here we will only describe the field content of the

theory and will refrain from presenting its action and supersymmetry transformations.

By reducing along a circle to ten dimensions the eleven-dimensional metric decom-

poses into a ten-dimenisonal metric g(10)
µν , a U(1) gauge field described by the 1-form

C(1) and a scalar Φ called the dilaton. The three-form in eleven dimensions reduces to a

2-form,B(2), and a 3-form, C(3), in ten dimensions. There are again 128 bosonic degrees

of freedom - 35 in g(10)
µν , 8 in C(1), 1 in Φ, 28 in B(2) and 56 in C(3). The first ten compo-

nents of the eleven-dimensional gravitino become two ten-dimensional Majorana-Weyl

gravitini of opposite chirality, ψ(1)
µ and ψ(2)

µ . Each of the two ten-dimensional gravitini

has 56 physical degrees of freedom. There are also two ten-dimensional Majorana-Weyl

spinors, the dialtini, which are the fermionic partners of the dilaton and each of them has

8 degrees of freedom. It is clear that by reducing on a circle we have kept the same num-

ber of degrees of freedom in the ten dimensional theory as we had in eleven dimensions.

This is a general feature of dimensional reduction on flat manifolds.

One can keep on doing the same exercise and reduce type IIA supergravity further

to lower dimensions by compactifying on circles or torii and keeping only the mass-

less degrees of freedom. This is a well established procedure which leads to maximally

supersymmetric supergravity theories in various dimensions. For example, if we reduce

eleven-dimensional supergravity on T 7 and keep all massless degrees of freedom we
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will get the maximally supersymmetric,N = 8 supergravity in four dimensions. In gen-

eral when one reduces eleven dimensional supergravity on TD there is a global ED(D)

internal symmetry which is called the U-duality group8.

There is another supergravity theory in ten dimensions with maximal supersymmetry

- type IIB supergravity [190, 140]. Its field content can be deduced from the massless

spectrum of type IIB string theory. It can also be constructed as a ten dimensional

supergravity theory using guidance from the supersymmetric representation theory, as

well as gauge and diffeomorphism invariance. Unlike type IIA supergravity it cannot

be obtained from a reduction of eleven-dimensional supergravity. There is however a

string theory duality, T-duality, which relates type IIA and Type IIB superstring theory

and thus IIA and IIB supergravity. Some details of how this duality works will be

discussed in Appendix A. The field content of the theory is - the metric gµν , the 2-

form B(2), the dilaton Φ, the axion C(0), a 2-form C(2) and a 4-form C(4). The field

strength of C(4) should be self-dual under Hodge duality. It is notoriously difficult to

construct a ten-dimensional supergravity action that incorporates this self-duality and it

is usually imposed by hand as an addition to the equations of motion [190, 140]. Type

IIB supergravity has an SL(2,R) global symmetry9 under which C(4) and the metric

are invariant. The dilaton and axion (Φ, C(0)) and the 2-forms (B(2), C(2)) transform

as doublets. The theory has two ten-dimensional Majorana-Weyl gravitini of the same

chirality as well as two dilatini. There are again 128 bosonic and 128 fermionic degrees

of freedom.

The bosonic fields (gµν ,Φ, B(2)) are common to type IIA and IIB supergravity.

These are actually the massless bosonic excitations in the NS-NS sector of the closed

8Strictly speaking string/M- theory will break this symmetry to a discrete subgroup ofED(D) and thus
the U-duality group is discrete.

9This is broken down to SL(2,Z) in the full string theory.
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type IIA and IIB string theory. The R-R sector of the two theories is different which

explains the different dimensions of the forms, C(n), in the two ten-dimensional super-

gravities.

As shown in [71] type II open superstrings can have Dirichlet boundary conditions

and can end on extdended objects in the ten-dimensional space time. These objects are

called D-branes. It was later shown that in fact these D-branes are sources for the various

R-R gauge potentials, C(n), appearing in IIA and IIB string theory and the corresponding

supergravities [178]. See [145] for a review of the physics of D-branes.

In type IIB theory we have D1, D3, D5, D7 and D9 branes. The D1 and D5 branes

couple to the C(2) and it dual C(6) gauge potentials and are related by electric-magnetic

duality. The D3 branes couple to C(4) and are self-dual. The D7 and the space-time

filling D9 branes are somewhat exotic and we will not discuss them here, see [179, 180,

145] for more details.

In type IIA theory we have D0, D2, D4, D6 and D8 branes. The D0 and D6 branes

couple to the C(1) and it dual C(7) gauge potentials and are related by electric-magnetic

duality. The D2 and D4 branes couple to the C(3) and its dual C(5) gauge potentials and

are also related by electric-magnetic duality. The D8 branes couple to C(9) which has

a ten-form field strength, dual to a non-dynamical scalar known as the Romans mass

[187, 178].

There are two more types of extended objects in string theory - the fundamental

string, F1, and the NS5 brane which is the magnetic dual object to the fundamental

string. The fundamental string couples electrically to the two-form potential B(2) and

the NS5 brane couple magnetically to B(2).
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All D-branes and the NS5 brane are massive non-perturbative objects in string the-

ory10. They source non-trivial supergravity solutions, akin to the Reissner-Nordström

black hole and the M2 brane solution of eleven-dimensional supergravity [100, 138].

Many of these D-brane supergravity solutions are related by a combination of duali-

ties and dimensional reduction to the M2 and M5 brane solutions in eleven-dimensional

supergravity. We will use these relations throughout this thesis and will explain them

along the way.

1.2.4 Black hole entropy from string theory

One of the great success of string theory, which came out of studying the physics of the

non-perturbative D-branes, is the microscopic counting of the entropy of a certain class

of black holes. Strominger and Vafa counted the ground state degeneracy of a certain

bound state of D1-D5 branes and momentum [198]. At strong gravitational coupling

this configuration is a five-dimensional BPS black hole. The calculation was done by

considering type IIB string theory on K3 × S1, where the D5-branes wrap the whole

compact manifold11 and the D1 branes are wrapped along the S1. The original counting

of Strominger-Vafa uses some advanced technology involving a non-linear sigma model

and the cohomology of the target space manifold of this sigma model. We will not

review the calculation here but rather present a short overview of a more intuitive (and

less rigorous) approach followed by Callan and Maldacena [52], see also [161].

The configuration studied in [52] is a bound state of D5 and D1 branes in IIB string

theory. The D5 branes wrap a T 5, the D1 branes are bound to the world-volume of

the D5 branes and wrap an S1 in T 5. The other five space-time dimensions are simply

10See Appendix D for our conventions about the tensions of the extended objects in string and M-
theory.

11K3 is the unique non-trivial compact Calabi-Yau manifold in two complex dimensions.
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five-dimensional Minkowski space. In addition to the D-branes there is also an ensem-

ble of open strings with one end attached to the D1 and the other attached to the D5

branes12, these strings move along the S1 and the solution carries a large momentum in

this internal direction.

The gravitational backreaction of this configuration leads to the following metric:

ds2
IIB =

1√
H1H5

(−dt2+dx2
5+(Hp−1)(dt−dx5)2)+

√
H1H5(dx2

1+dx2
2+dx2

3+dx2
4)

+

√
H1

H5

(dx2
6 + dx2

7 + dx2
8 + dx2

9) , (1.42)

where the T 4×S1 is spanned by (x5, x6, x7, x8, x9), the functions (H1, H5, Hp) are three

harmonic functions on the transverse space to the branes spanned by (x1, x2, x3, x4)

H1 = 1 +
Q1

r2
, H5 = 1 +

Q5

r2
, Hp = 1 +

Qp

r2
, (1.43)

and r2 = x2
1 + x2

2 + x2
3 + x2

4. The solution has also a non-trivial dilaton and R-R

two-form field but we will not present them here13. Upon dimensional reduction on the

T 4 × S1 one obtains a BPS black hole with three charges and four supercharges (i.e. an

eighth-BPS state) which is very similar to the extremal Reissner-Nordström black hole:

ds2
5 = − 1

(H1H5Hp)2/3
dt2 + (H1H5Hp)

1/3(dx2
1 + dx2

2 + dx2
3 + dx2

4) . (1.44)

12Open strings stretching between a Dm and a Dn brane are called (m,n) strings.

13See Chapter 3 and Appendix B for the full D1-D5-P type IIB supergravity solution. The solution
presented there is more general and is in slightly different notation.
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The three charges of the black hole correspond to the D1 and D5 brane charges, Q1 and

Q5, and the momentum charge Qp. One can easily calculate the horizon area of this

black hole and find its Bekenstein-Hawking entropy

SBH =
A

4G5

= 2π
√
Q1Q5Qp . (1.45)

Now, following [52], we will reproduce this entropy by counting the ground state degen-

eracy of the D1-D5-P system. We will assume that the string coupling (and therefore

the gravitational coupling) is small so that one can use perturbative string theory. One

can show that the massless supersymmetric excitations of the systems are described by

the (1, 5) and (5, 1) strings. One can describe these excitations effectively as a two-

dimensional conformal field theory (CFT) living on the cylinder (t, x5). One can also

argue that for each string momentum mode one has 4Q1Q5 bosons and 4Q1Q5 fermions

in the CFT. The total central charge of this system is

c = 1× 4Q1Q5 +
1

2
× 4Q1Q5 = 6Q1Q5 . (1.46)

The degeneracy for level Qp >> 1 states in a CFT of central charge, c, is given by the

Cardy formula [55]

d(Qp) ∼ e2π

q
cQp
6 . (1.47)

Taking the logarithm of this and using (1.46) we find the entropy of the system to be

SD1−D5−P = log(d(Qp)) = 2π
√
Q1Q5Qp , (1.48)

which precisely matches the Bekenstein-Hawking entropy of the black hole (1.45). This

counting was also done for the near extremal D1-D5-P black hole [52] as well as for

more general black holes [199].

29



It is remarkable that one can reproduce the Bekenstein-Hawking entropy of a black

hole by counting bound states of strings and branes. However one should remember that

this is just counting of the microstates for large charges of the black hole and it was done

at weak string (and gravitational) coupling. When one varies the string coupling one

will interpolate between a configuration of strings and branes described by field theory

and a black hole described by supergravity. There is a general argument that during

this process the number of microstates should stay the same [139] (up to coefficient

of order one), this argument applies to supersymmetric and non-supersymmetric black

holes in string theory and is one of the explanataions of the success of the calculations

in [198, 52, 144, 199]. Another reason for the correct entropy counting is probably the

universality of the Cardy formula and the presence of an AdS near horizon region in the

class of black hole constructed in string theory.

Despite the fact that we can count the microstates of the black hole in string theory

we still lack information about their structure at strong gravitational coupling, the details

of the resolution of black hole singularities and the information paradox. In the next

Chapters we will present some recent advances in our understanding of these issues in

black hole physics.
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Chapter 2

Three-charge solutions and microstate

geometries

The counting of black hole microstates which matches with the Bekenstein-Hawking

entropy is a remarkable success of string theory as a theory of quantum gravity. However

we still do not understand what is the structure of the black hole microstates at strong

gravitational coupling and how this relates to the possible resolution of black hole sin-

gularities and the formation of horizons. It is usually thought that quantum gravity will

become important at distance of the order of the Planck length away from the black hole

singularity. Recent studies, however, suggest that quantum gravity effects do not stay

confined to the region near the black hole singularity and can indeed extend to macro-

scopic distances all the way to the black hole horizon. This implies some important

consequences for the physics of black holes in string theory and this Chapter is devoted

to a review of some of the recent advances in the subject.

The core question is given a set of boundary conditions at asymptotic infinity for a

supergravity black hole what are the possible solutions of string or M-theory that will fit

these boundary conditions. We will call such solutions, with some abuse of terminology,

microstate geometries. One of the surprising advances in the last few years is that there

is a vast number of such solutions within supergravity which are completely regular

and without horizons. It still remains to be seen whether these solutions can provide a

semiclassical accounting of the entropy.
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Independent of the microscopic counting issue, the study of microstate geometries

is interesting for other reasons. It is important to understand the failure of black hole

uniqueness in string theory and to classify all possible solutions with the same asymp-

totics as a given black hole. Given that there are vast numbers of regular solutions

without horizons that are within the validity of supergravity and have the same struc-

ture at infinity as a black hole one should understand their implication for black-hole

physics. It seems that within string theory the black hole singularity is an artifact of the

symmetry and the microstate geometries discussed here will resolve the singularity.

It is important to emphasize that the program of constructing all microstate geome-

tries for a black hole with finite entropy and temperature is not completed. One can

separate the solution of the big problem in three smaller problems:

There should be solutions of supergravity (or string theory) which resolve the black

hole singularity and are completely smooth and regular. The solutions discussed in this

Chapter achieve precisely this for a large class of supersymmetric black holes and black

rings. A crucial ingredient in the singularity resolution is the geometric transition mech-

anism. This mechanism is common to many systems in string theory and is intuitively

simple to understand. There are certain branes wrapping a topologically trivial cycle,

there is also a dual, Gaussian, cycle that “measures” the charge of the branes. The branes

have tension and they collapse the cycle which they wrap and the geometry looks singu-

lar. The resolution that string theory provides is a new geometry with two topologically

non-trivial cycles - one corresponding to the cycle that the branes wrapp and the other

to the Gaussian cycle. We explain the geometric transition mechanism in more detail

in Section 2.2.9, but it is important to note that for the black-hole singularity resolution

the geometric transition happens on the non-compact space-time. This is crucial for our

construction and is a novel feature, different from all other brane systems which undergo

geometric transition [124, 202, 51].

32



Another problem is to show that the set of microstate geometries which resolve the

black hole singularity account for a macroscopic part of the entropy of the black hole.

In other words one needs to show that the moduli space of regular supergravity solutions

is large enough and upon quantization it can store the vast entropy of a black hole. For

the one- and two-charge BPS systems in string theory this has been already done and

is reviewed in Section 2.1. However these black holes have Planck scale horizons and

do not have finite entropy in supergravity. The simplest system with macorscopic hori-

zon for which one can construct microstate geometries is the three-charge system, this

system is supersymmetric which somewhat simplifies the construction of supergravity

solutions. There are BPS black holes and black rings with three charges which have

finite entropy and one can construct vast numbers of regular solutions with the same

charges and supersymmetry which we review in Section 2.2. It is still unclear whether

these solutions are enough to account for the entropy of the black hole and black ring

but in Chapters 3 and 4 we present some strong arguments in favor of this proposal.

One should remember that BPS black holes have vanishing temperature and thus do

not emit Hawking radiation. Ideally one would like to construct many non-BPS regular

supergravity solutions with the same charges and asymptotics as a non-BPS black hole

(or black ring). Then it should be possible to study the details of the Hawking radia-

tion of the black hole (or black ring) using these microstate geometries. One possible

mechanism is that the regular microstate geometries are unstable and their decay rate

matches with the rate of Hawking emission from the corresponding black hole. Very

little is known about regular non-BPS solutions so it is still unclear whether this mecha-

nism will work, see [63, 64, 65, 6, 7] for some recent work on this problem. In Chapter

6 we will describe a way to overcome the technical difficulties associated with the con-

struction of non-BPS microstate geometries and will present one of the first examples of

such a regular non-BPS solution. Our results suggest that the large number of microstate
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geometries and geometric transition mechanism for singularity resolution established

for the BPS black holes and black rings may as well be features of their non-BPS black

counterparts.

2.1 Systems with microscopic horizons

To address some of the questions in black hole physics Mathur and collaborators con-

sidered a simple two-charge system in string theory - a bound state of D1 and D5 branes

[155, 156, 157]. Two-charge black holes in string theory appear singular and do not

have macroscopic horizons, thus their entropy vanishes in the classical (supergravity)

approximation. However one can consider higher derivative corrections to the Einstein-

Hilbert action and show that these systems in fact develop effective horizons with radius

of the order of the Planck scale (called also “stretched horizons”) [192]. The entropy of

the two-charge system is

S = 2π
√

2
√
Q1Q2 − J (2.1)

where Q1 and Q2 are the two conserved charges and J is the angular momentum.

As shown by Mathur and collaborators (see [168] for a review) this entropy can be

accounted for by counting regular supergravity solutions specified by an arbitrary closed

curve in R4. These solutions can be thought of as U-duals to another well-known two

charge system in string theory - supertubes. Supertubes are tubular D2 branes with

worldvolume D0 and F1 fluxes which are responsible for the two electric charges [166].

Although the two-charge result is quite appealing it applies only to black holes with

effective, Planck scale, horizons.

It is natural to conjecture that a similar picture will arise for the three-charge case,

namely that there are enough regular, classical supergravity solutions which will account

for (a significant part of) the black hole entropy. This is often referred to as the “fuzzball
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proposal.” If this conjecture is true one will have a resolution to the information paradox

- the horizon is just a coarse grained description of individual regular microstate geome-

tries and thus all scattering processes are unitary; and will have an explanation of the

entropy of black holes as statistical average over microstate geometries. To prove (or

disprove) this conjecture one has to find large classes of regular, three charge, BPS solu-

tions in five dimensions, which have the same supersymmetries, asymptotic structure

and macroscopic charges as BPS black obejcts1.

Another system for which all BPS supergravity solutions with the same asymptotic

charges as a given black hole are constructed is the BPS D3 brane in IIB supergrvaity

[153]. The Lin-Lunin-Maldacena solutions are half-BPS (i.e. preserving 16 of the 32

supercharges) have the same asymptotic structure as the D3 brane background and have

non-trivial topology in the bulk. The system does not have a macroscopic horizon due

the the large number of supersymmetry preserved by the solution. Nevertheless one

can map each regular geometry to a half-BPS state of the dual N = 4 supersymmetric

Yang-Mills (SYM) and on has a complete description of the half-BPS states of N = 4

SYM in terms of supergravity solutions. It is still unclear whether one can have a similar

description of all eighth-BPS states of the D1-D5-P CFT, dual to the three-charge black

hole, in terms of regular supergravity solutions but there is clear evidence that this is

the case for a large part of these states. An interesting technical point is that the Lin-

Lunin-Maldacena solutions are determined by solving a Laplace equation on a certain

subspace of the ten-dimensional space-time. We will see a similar structure emerging in

the three-charge, eighth-BPS solutions discussed below.

It is remarkable that one can construct all supergravity solutions with the same

charges and asymptotic structure as in the half-BPS and quarter-BPS systems discussed

1In five dimensions apart from black holes, with S3 horizon topology, there are black rings with
S1 × S2 topology of the horizon [92, 93].
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above. The crucial difference between the half- and quarter-BPS systems and the eighth-

BPS system is that the latter generically has a macroscopic horizon, whereas the former

have no horizon or only have an effective horizon at the Planck or string scale. Indeed,

historically, the link between microstate counting and Bekenstein-Hawking entropy (at

vanishing string coupling) was first investigated by Sen [192] for the two-charge system.

While this work was extremely interesting and suggestive, the result became compelling

only when the problem was later solved for the three-charge system by Strominger and

Vafa [198]. Similarly, the work on the microstate geometries of the one- and two-charge

systems is extremely interesting and suggestive, but to be absolutely compelling, it must

be extended to the three-charge problem. This would amount to establishing that the

boundary D1-D5-P CFT microstates are dual to bulk microstates – configurations that

have no horizons or singularities, and which look like a black hole from a large dis-

tance, but start differing significantly from the black hole solution at the location of the

would-be horizon. String theory would then indicate that a black hole solution should

not be viewed as a fundamental object in quantum gravity, but rather as an effective

thermodynamic description of an ensemble of horizonless configurations with the same

macroscopic charges and asymptotic properties [168]. The black hole horizon would

be the place where these configurations start differing from each other, and the classi-

cal thermodynamic description of the physics via the black hole geometry stops making

sense.

2.2 The three-charge system

Two-charge supertubes in the probe limit are described by the Dirac-Born-Infeld (DBI)

action. In a similar way one can study supertubes with three charges and one or two
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dipole charges using the DBI action [19]. This provides useful intuition about the three-

charge system and the exact supergravity solutions one can expect to find.

The radial size of a three-charge supertube with angular momentum J and all three

charges of the same order, Q1 ≈ Q2 ≈ Q3 ≈ Q is

r2
ST ∼ gs

J2

Q2
, (2.2)

where gs is the string coupling constant2. One can also compute the proper length of the

circumference of the horizon of the three-charge spinning black hole (sometimes called

the BMPV black hole[49] ) to be

r2
BH ∼ gs

Q3 − J2

Q2
. (2.3)

The most important aspect of the equations (2.2) and (2.3) is that for comparable charges

and angular momenta, the black hole and the three-charge supertube have comparable

sizes. Moreover, these sizes grow with gs in the same way. This is a somewhat counter-

intuitive behavior, most massive physical objects one can think about tend to become

smaller when gravity is made stronger and this is consistent with the fact that gravity is

an attractive force. The only well-known object that becomes larger with stronger grav-

ity is a black hole. Nevertheless, three-charge supertubes also become larger as gravity

becomes stronger. The size of a tube is determined by a balance between the angular

momentum of the system and the tension of the tubular brane. As the string coupling is

increased, the D-brane tension decreases, and thus the size of the tube grows, at exactly

the same rate as the Schwarzschild radius of the black hole3. This is the distinguishing

2See Appendix D for more details, and [30] for a review of these calculations.

3Note that this is a feature only of three-charge supertubes; ordinary (two-charge) supertubes have a
growth that is duality-frame dependent.
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feature that makes the three-charge supertubes, as well as the smooth geometries that

we will obtain from their geometric transitions, unlike any other configuration that one

counts in studying black hole entropy.

To be more precise, let us consider the Strominger-Vafa counting of states that leads

to the correct black hole entropy. One counts microscopic configurations of branes and

strings at weak coupling where the system’s size is of string scale, and its Schwarzschild

radius is even smaller. One then imagines increasing the gravitational coupling; the

Schwarzschild radius grows, becoming comparable to the size of the brane configuration

at the “correspondence point” [139], and larger thereafter. When the Schwarzschild

radius is much larger than the Planck scale, the system can be described as a black

hole. There are thus two very different descriptions of the system: as a microscopic

string theory configuration for small gs, and as a black hole for large gs. One then

compares the entropy in the two regimes and as we summarized in Section 1.2.4 one

finds agreement between the two calculations.

Three-charge supertubes behave differently. Their size grows at the same rate as the

Schwarzschild radius, and thus they have no “correspondence point.” Their supergravity

description is valid in the same regime as the description of the black hole. If by counting

such configurations one could reproduce the entropy of the black hole, then one should

think about the supertubes as the large gs continuation of the microstates counted at

small gs in the string/brane picture, and therefore as the microstates of the corresponding

black hole.

It is interesting to note that if the supertubes did not grow with exactly the same rate

with gs as the size of the black hole horizon, they would not be good candidates for

being black hole microstates, and Mathur’s conjecture would not seem very plausible.

The fact that there exists a huge number of configurations that do have the same growth
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with gs as the black hole is a non-trivial confirmation that these configurations may well

represent black-hole microstates for the three-charge system.

The existence of supersymmetric three-charge supertubes with arbitrary shape sug-

gests the existence of a large number of regular supergravity solutions build out of the

same branes that source the supertube. In addition to that, three-charge supertubes point

to the existence of supersymmetric black rings. As we will review in this Chapter there

are indeed supersymmetric black rings with three electric and threep dipole charges as

well as a large class of regular three-charge supergravity solutions.

In the following Sections we will summarize the construction of asymptotically flat

supersymmetric solutions of M-theory on T 6 and the physics of these solutions. Most

of the material presented in this Chapter is well known, see [168, 193, 13, 66] for some

reviews . The presentation here is based on [30].

2.2.1 Supersymmetric configurations

We will consider brane configurations that preserve the same supersymmetries and have

the same asymptotic structure as the five-dimensional, asymptotically flat, three-charge

black hole. In M-theory, these solutions can be constructed by compactifying on a six-

torus, T 6, and wrapping three sets of M2 branes on three orthogonal two-tori. One can

also add three sets of M5 branes while preserving the same supersymmetries. Each set

of M5 branes can be thought of as magnetically dual to a set of M2 branes in that the M5

branes wrap the four-torus, T 4, orthogonal to the T 2 wrapped by the M2 branes. The

remaining spatial direction of the M5 brane’s worldvolume wraps a non-intersecting

closed curve, yµ(σ), in the five-dimensional space-time. We will take this curve to be

the same for all three sets of M5 branes, but in principle one can choose three different

curves for the three sets of M5 branes and one can construct such supergravity solutions

by following similar procedure as the one outlined here. In [21] it was argued that this
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was the most general three-charge brane configuration consistent with the supersymme-

tries of the three-charge black-hole.

One can view these backgrounds as solutions to the STU model of five-dimensional

ungauged N = 2 supergravity. This is the minimal ungauged supergravity theory in

five-dimensions coupled to two vector multiplets. The bosonic degrees of freedom are

the metric, three vector fields (one from the gravity multiplet and two from the vector

multiplets) and two independent real scalars. The STU model is a consistent trunca-

tion to a subset of the fields of the maximal, N = 8, ungauged supergravity in five

dimensions [129]. This five-dimensional description of supersymmetric black holes is

often used in the literature. Here we will emphasize the eleven-dimensional origin of

the solutions and their interpretation as intersecting branes. This will provide some intu-

ition about their physics and will allow for comparison to solutions of type IIA and IIB

supergravity.

The metric corresponding to this brane configuration can be written as

ds2
11 = ds2

5 +
(
Z2Z3Z

−2
1

) 1
3 (dx2

5 + dx2
6) +

(
Z1Z3Z

−2
2

) 1
3 (dx2

7 + dx2
8)

+
(
Z1Z2Z

−2
3

) 1
3 (dx2

9 + dx2
10) , (2.4)

where the five-dimensional space-time metric has the form:

ds2
5 ≡ − (Z1Z2Z3)−

2
3 (dt+ k)2 + (Z1Z2Z3)

1
3 ds2

4 , (2.5)

for some one-form, k, defined on the spatial section of this metric. Since we want the

metric to be asymptotic to flat R4,1 × T 6, we require

ds2
4 ≡ hµνdy

µdyν , (2.6)
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to limit to the flat, Euclidean metric on R4 at spatial infinity and we require the warp

factors, ZI , to limit to constants at infinity. To fix the normalization of the corresponding

Kaluza-Klein U(1) gauge fields, we will take ZI → 1 at infinity.

The supersymmetry, ε, consistent with the brane configuration discussed above, must

satisfy: (
1l − Γ056) ε =

(
1l − Γ078) ε =

(
1l − Γ09 10) ε = 0 , (2.7)

where Γa are eleven-dimensional, tangent space gamma matrices and we use the stan-

dard notation Γa1...an = Γ[a1 . . .Γan]. Since we have

Γ012345678910 = 1 , (2.8)

this implies (
1l − Γ1234) ε = 0 , (2.9)

which means that one of the four-dimensional helicity components of the supersymme-

try must vanish identically. The holonomy of the metric, (2.6), acting on the spinors is

determined by

[∇µ , ∇ν ] ε = 1
4
R

(4)
µνcd Γcd ε , (2.10)

where R(4)
µνcd is the Riemann tensor of (2.6). Observe that (2.10) vanishes identically as

a consequence of (2.9) if the Riemann tensor is self-dual:

R
(4)
abcd = 1

2
εcd

ef R
(4)
abef . (2.11)
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Such four-metrics are called “half-flat” [86]. The holonomy of these four-dimensional

metrics is SU(2), which means that the base space has to be hyper-Kähler4.

Thus we can preserve the supersymmetry if and only if we take the four-metric to

be hyper-Kähler. However, there is a theorem, [110], that states that any metric that

is (i) Riemannian (signature +4) and regular, (ii) hyper-Kähler and (iii) asymptotic to

the flat metric on R4, must be globally the flat metric on R4. The obvious conclusion,

which we will follow for the moment, is that we simply take (2.6) to be the flat metric

on R4. However, there are very important exceptions. First, we require the four-metric

to be asymptotic to flat R4 because we want to interpret the object in asymptotically

flat, five-dimensional space-time. If we want something that can be interpreted in terms

of asymptotically flat, four-dimensional space-time then we want the four-metric to be

asymptotic to the flat metric on R3 × S1. This allows for a lot more possibilities, and

includes the multi-Taub-NUT metrics [135]. Using such Taub-NUT metrics provides

a straightforward technique for reducing the five-dimensional solutions to four dimen-

sions [24, 96, 97, 90, 25].

The other exception will be discussed in the following Sections: The requirement

that the four-metric be globally Riemannian is too strong. The four-metric can be

allowed to change overall sign since this can be compensated by a sign change in the

warp factors of (2.5). For the moment, however, we will suppose that the four-metric is

simply that of flat R4.

4Hyper-Kähler manifolds are complex 4n-dimensional manifolds (n ∈ N) with Sp(n) holonomy
and three integrable complex structures, which satisfy the quaternionic algebra. Note that in four (real)
dimensions Calabi-Yau manifolds have SU(2) ∼= Sp(1) holonomy and are thus hyper-Kähler.
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2.2.2 The BPS equations

For the class of solutions of interest here the Maxwell three-form potential in eleven

dimensions is given by

C(3) = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 + A(3) ∧ dx9 ∧ dx10 , (2.12)

where the six coordinates, xi, parameterize the compactification torus, T 6, and A(I),

I = 1, 2, 3, are one-form Maxwell potentials in the five-dimensional space-time and

depend only upon the coordinates, yµ, that parameterize the spatial directions. It is

convenient to introduce the Maxwell dipole field strengths, Θ(I), obtained by removing

the contributions of the electrostatic potentials

Θ(I) ≡ dA(I) + d
(
Z−1
I (dt+ k)

)
. (2.13)

With this Ansatz in hand one can try to solve the first order differential equations coming

from imposing the vanishing of the gravitino variation in eleven-dimensional supergrav-

ity (1.39). It turns out that these first order equations are not enough to determine all

functions in the solution and one should also use the equations of motion for the three-

form potential [101, 21]. We will not present the details of the calculation here but one

can show that the most general supersymmetric configuration is obtained by solving the

following BPS equations:

Θ(I) = ?4 Θ(I) , (2.14)

∇2ZI =
1

2
CIJK ?4 (Θ(J) ∧Θ(K)) , (2.15)

dk + ?4 dk = ZI Θ(I) , (2.16)
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where ?4 is the Hodge dual and∇2 is the Laplacian on the four-dimensional base metric

hµν , and CIJK ≡ |εIJK |. It is important to note that if these equations are solved in the

order presented above, then one is solving a linear system.

At each step in the solution-generating process one has the freedom to add homoge-

neous solutions of the equations. Since we are requiring that the fields fall off at infinity,

this means that these homogeneous solutions must have sources in the base space and

since there is no topology in the R4 base, these sources must be singular. One begins

by choosing the profiles, in R4, of the three types of M5 branes that source the Θ(I).

These fluxes then give rise to the explicit sources on the right-hand side of (2.15), but

one also has the freedom to choose singular sources for (2.15) corresponding to the den-

sities, ρI(σ), of the three types of M2 branes. The M2 branes can be distributed at the

same location as the M5 profile, and can also be distributed away from this profile. The

functions, ZI , then appear in the final solution as warp factors and as the electrostatic

potentials. There are thus two contributions to the total electric charge of the solution:

The localized M2 brane sources described by ρI(σ) and the induced charge from the

fields, Θ(I), generated by the M5 branes. It is in this sense that the solution contains

electric charges that are dissolved in the fluxes generated by M5 branes. This is much

like in the well-known Klebanov-Strassler or Klebanov-Tseytlin solutions of type IIB

supergravity [149, 150].

The final step is to solve the last BPS equation, (2.16), which is sourced by a cross

term between the magnetic and electric fields. Again there are homogeneous solutions

that may need to be added, however they need to be adjusted so as to ensure that (2.5)

has no closed time-like curves (CTC’s). Roughly one must make sure that the angular

momentum at each point does not exceed what can be supported by local energy density.

These solutions can be generalized further by allowing the compact manifold to

be an arbitrary six-dimensional Calabi-Yau manifold, CY3. Since Calabi-Yau manifolds
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are Kähler and Ricci-flat the solutions will preserve the same amount of supersymmetry.

The constants CIJK are then the triple intersection numbers of the CY3. The number of

Maxwell fields is h1,1, where h1,1 is one of the Hodge numbers of the CY3. This leads

to h1,1 conserved charges at inifity. Such solutions were discussed in [60].

It is worth making some comments about the asymptotic charges of the BPS solu-

tions. Even though the generic solution is build from six sets of branes, there are only

three conserved electric charges that can be measured at infinity. These are obtained

from the three vector potentials, A(I), defined in (2.12), by integrating ?5dA
(I) over

the three-sphere at spatial infinity. Since the M5 branes wrap a closed curve, they do

not directly contribute to the electric charges. The electric charges are determined by

electric fields at infinity, and hence by the functions ZI

ZI ∼ 1 +
QI

ρ2
, ρ→∞ . (2.17)

Note that while the M5 branes do not directly contribute to the electric charges, they do

contribute indirectly via charges dissolved in fluxes, that is, through the source terms on

the right-hand side of (2.15).

There are two commuting angular momenta, J1 and J2, corresponding to the com-

ponents of rotation in the two orthogonal planes in R4 = R2 × R2. One can read off

the angular momenta of the solution by making an expansion at infinity of the angular

momentum one-fomrm, k, in (2.5):

k ∼
(
J1

u2dϕ1

(u2 + v2)2
+ J2

v2dϕ2

(u2 + v2)2

)
+ . . . , u, v →∞ , (2.18)

where the metric on R4 is

ds2
4 = dρ2 + ρ2(dϑ2 + sin2 ϑdϕ2

1 + cos2 ϑdϕ2
2) = du2 + u2dϕ2

1 + dv2 + v2dϕ2
2 . (2.19)
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The charges, QI , and the angular momenta, J1, J2, need to be correctly normalized in

order to express them in terms of the quantized charges. The normalization depends

upon the eleven-dimensional Planck length, `p, and the volume of the compactifying

torus, T 6. See Appendix D for more details on the units and conventions used in this

thesis.

2.2.3 BMPV black hole

The simplest example of a three-charge supergravity solution in the class discussed

above is the BMPV black hole [49]. This is a three-charge, black hole with two equal

angular momenta, J1 = J2 = J . When written in the Ansatz of Section 2.2.1 the BMPV

black hole is given by

Θ(I) = 0 , ZI = 1 +
QI

ρ2
, k =

J

ρ2
(sin2 ϑdϕ1 + cos2 ϑdϕ2) , (2.20)

where the base is R4 with the metric (2.19). Another interesting supersymmetric solu-

tion with a horizon is the three-charge black ring with three dipole charges [87, 21]. The

Ansatz of Section 2.2.1 also easily incorporates an arbitrary superposition of BMPV

black holes as well as concentric black rings with a BMPV black hole in the center

[21, 103, 104]. One can also use the methods above to study processes in which black

holes and black rings are brought together and ultimately merge [27]. Such processes are

interesting in their own right, but they can also be very useful in the study of microstate

geometries [28, 29].

Our main interest in this thesis is the construction of regular supergravity solutions

with no horizons, therefore in the next Sections we will study a large class of such

solutions.
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2.2.4 Gibbons-Hawking Metrics

In Section 2.2.1 we noted that supersymmetry allows us to take the base-space metric to

be any hyper-Kähler metric. There is a well-known class of interesting four-dimensional

hyper-Kähler metrics - the multi-centered Gibbons-Hawking metrics [109]. These pro-

vide examples of asymptotically locally Euclidean (ALE) and asymptotically locally

flat (ALF) spaces, which are asymptotic to R4/Zn and R3×S1 respectively [85]. Using

ALF metrics provides a smooth way to transition between a five-dimensional and a

four-dimensional interpretation of a certain configurations. Indeed, the size of the S1

is usually a modulus of a solution, and thus is freely adjustable. When this size is

large compared to the size of the source configuration, this configuration is essentially

five-dimensional; if the radius of the S1 is small, then the configuration has a four-

dimensional description.

We noted earlier that a regular, Riemannian, hyper-Kähler metric that is asymptotic

to flat R4 is necessarily flat R4 globally. The non-trivial ALE metrics get around this

by having a discrete identification at infinity but, as a result, do not have an asymptotic

structure that lends itself to a space-time interpretation. However, there is an important

loophole in this line of reasoning. One should remember that only the five-dimensional

metric (2.5) should be regular and Lorentzian and this might be achievable if singu-

larities of the four-dimensional base space were canceled by the warp factors. More

specifically, we are going to consider base-space metrics (2.6) whose overall sign is

allowed to change in interior regions. That is, we are going to allow the signature to flip

from +4 to −4. Such metrics were dubbed ambipolar [26].

The potentially singular regions could actually be regular if the warp factors, ZI , all

flip sign whenever the four-metric signature flips. We will show below that this can be

done for ambipolar Gibbons-Hawking metrics. One of the results of this thesis presented

47



in Chapter 5 is that one can use more general ambipolar hyper-Kähler metrics and still

produce regular five-dimensional supergravity solutions.

Below we give a review of Gibbons-Hawking geometries [135, 109] and their

ambipolar generalization. Gibbons-Hawking metrics have the form of a U(1) fibration

over a flat R3 base:

hµνdx
µdxν = V −1

(
dψ + ~A · d~y

)2
+ V (dy2

1 + dy2
2 + dy2

3) , (2.21)

where we write ~y = (y1, y2, y3). The function, V , is harmonic on the flat R3 while the

connection, A = ~A · d~y, is related to V via

~∇× ~A = ~∇V . (2.22)

This family of metrics is the unique set of hyper-Kähler metrics with a tri-holomorphic

U(1) isometry5. Moreover, four-dimensional hyper-Kähler manifolds with U(1)×U(1)

symmetry must, at least locally, be Gibbons-Hawking metrics with an extra U(1) sym-

metry around an axis in the R3 [113].

Before we continue the general discussion of Gibbons-Hawking spaces we will

present two simple examples of well known four-dimensional metrics in this class.

Euclidean R4 is given by V =
1

r
and

ds2
R4 = r(dψ + (1 + cos θ)dφ)2 +

1

r
(dr2 + r2dθ2 + r2 sin2 θdφ2) . (2.23)

5Tri-holomorphic means that the U(1) isometry preserves all three complex structures of the hyper-
Kähler metric.
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To go from the Gibbons-Hawking coordinates to the more familiar forms of the metric

on R4 (2.19), one has to perform the following change of coordinates

r =
u2 + v2

4
≡ ρ2

4
, θ = 2 arctan(u/v) = 2ϑ , ψ = 2ϕ1 , φ = −ϕ1 − ϕ2 (2.24)

Another well-known example of a GH metric is the Taub-NUT metric [201, 171]. This

is a solution of the Euclidean vacuum Einstein equations and is given by V = ε0 +
QTN

r
and

ds2
TN =

(
ε0 +

QTN

r

)−1

(dψ + (1 +QTN cos θ)dφ)2

+

(
ε0 +

QTN

r

)
(dr2 + r2dθ2 + r2 sin2 θdφ2) . (2.25)

The metric is asymptotic to R3 × S1 for r → ∞ and QTN is called the NUT charge

[110].

After this short digression let us contiune with the general Gibbons-Hawking met-

rics. In the standard form of the Gibbons-Hawking metrics one takes V to have a finite

set of isolated sources. That is, let ~y(j) be the positions of the source points in the R3

and let rj ≡ |~y − ~y(j)|. Then one takes:

V = ε0 +
N∑
j=1

qj
rj
, (2.26)

where one usually takes qj ≥ 0 to ensure that the metric is Riemannian (positive defi-

nite). We will relax this restriction later. There appear to be singularities in the metric

at rj = 0, however, if one changes to polar coordinates centered at rj = 0 with radial

coordinate ρ = 2
√
|~y − ~y(j)|, then the metric is locally of the form:

ds2
4 ∼ dρ2 + ρ2 dΩ2

3 , (2.27)
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where dΩ2
3 is the standard metric on S3/Z|qj |. In particular, this means that one must

have qj ∈ Z and if |qj| = 1 then the space looks locally like R4. If |qj| 6= 1 then there

is an orbifold singularity. Orbifold singularities are allowed in string theory so we will

view such backgrounds as regular.6

If ε0 6= 0, then V → ε0 at infinity and so the metric (2.21) is asymptotic to flat

R3 × S1, that is, the base is asymptotically locally flat (ALF). The five-dimensional

space-time is thus asymptotically compactified to a four-dimensional space-time. This

a standard Kaluza-Klein reduction and the vector field, ~A, yields a non-trivial, four-

dimensional Maxwell field whose sources, from the point of view of type IIA super-

gravity, are simply D6 branes. Later on we will use the fact that introducing a constant

term into V yields a further compactification and we can relate five-dimensional to four-

dimensional physics.

For the moment suppose that one has ε0 = 0. At infinity in R3 one has V ∼ q0/r,

where r ≡ |~y| and

q0 ≡
N∑
j=1

qj . (2.28)

Hence spatial infinity in the Gibbons-Hawking metric also has the form (2.27), where

r = 1
4
ρ2 and dΩ2

3 is the standard metric on S3/Z|q0|. For the Gibbons-Hawking metric

to be asymptotic to the positive definite, flat metric on R4 one must have q0 = 1. Note

that for the Gibbons-Hawking metrics to be globally positive definite one would also

have to take qj ≥ 0 and thus the only such metric would have to have V ≡ 1
r
. The

metric (2.21) is then the flat metric on R4 globally, as can be seen by using the change

of variables (2.24). The only way to get non-trivial metrics that are asymptotic to flat

R4 is by taking some of the qj ∈ Z to be negative. We will see how this works later in

this Chapter.

6We will see later that for the essential physical points it will be sufficient to take |qj | = 1 so one can
avoid the orbifold singularities.
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Figure 2.1: This figure depicts some non-trivial cycles of the Gibbons-Hawking geom-
etry. The behaviour of the U(1) fiber is shown along curves between the sources of the
potential, V . Here the fibers sweep out a pair of intersecting homology spheres.

It is instructive to discuss the topology, homology and cohomology of the Gibbons-

Hawking metrics. They contain 1
2
N(N − 1) topologically non-trivial two-cycles, ∆ij ,

that run between the GH centers. These two-cycles can be defined by taking any curve,

γij , between ~y(i) and ~y(j) and considering the U(1) fiber of (2.21) along the curve. This

fiber collapses to zero size at the GH centers, and so the curve and the fiber sweep out

a 2-sphere (up to Z|qj | orbifolds), see Fig. 2.1. These spheres intersect one another at

the common points ~y(j). There are (N−1) linearly independent homology two-spheres,

and the set ∆i (i+1) represents a basis.

It is also convenient to introduce a set of frames

ê1 = V −
1
2 (dψ + A) , êa+1 = V

1
2 dya , a = 1, 2, 3 . (2.29)

and two sets of two-forms:

Ω
(a)
± ≡ ê1 ∧ êa+1 ± 1

2
εabc ê

b+1 ∧ êc+1 , a = 1, 2, 3 . (2.30)
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The two-forms, Ω
(a)
− , are anti-self-dual, harmonic and non-normalizable and they are

the three complex structures of the hyper-Kähler base. They also close the quaternionic

algebra

(Ω
(a)
− )µρ(Ω

(b)
− )ρν = −δabδµν + εabc(Ω

(c)
− )µν , (2.31)

as required for any hyper-Kähler manifold.

The forms, Ω
(a)
+ , are self-dual and can be used to construct harmonic fluxes that are

dual to the two-cycles. Consider the self-dual two-form:

Θ ≡ −
3∑

a=1

(
∂a
(
V −1H

))
Ω

(a)
+ . (2.32)

Then Θ is closed (and hence co-closed and harmonic) if and only ifH is harmonic in R3,

i.e. ∇2H = 0. We now have the choice of how to distribute sources ofH throughout the

R3 base of the GH space; such a distribution may correspond to having multiple black

rings and black holes in this space. Nevertheless, if we want to obtain a geometry that

has no singularities and no horizons, Θ has to be regular, and this happens if and only if

H/V is regular, which in turn happens only if H has the form:

H = h0 +
N∑
j=1

hj
rj
. (2.33)

Also note that the “gauge transformation:”

H → H + c V , (2.34)

for some constant, c, leaves Θ unchanged, and so there are only N independent param-

eters in H . In addition, if ε = 0 then one must take h0 = 0 for Θ to remain finite at

infinity. The remaining (N − 1) parameters then describe harmonic forms that are dual
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to the non-trivial two-cycles. If ε 6= 0 then the extra parameter is that of a Maxwell field

whose gauge potential gives the Wilson line around the S1 at infinity.

It is straightforward to find a local potential such that Θ = dB:

B ≡ V −1H (dψ + A) + ~ξ · d~y , (2.35)

where

~∇× ~ξ = − ~∇H . (2.36)

Hence, ~ξ is a vector potential for magnetic monopoles located at the singular points of

H .

To determine how these fluxes thread the two-cycles we need the explicit forms for

the vector potential, B, and to find this we first need the vector fields, ~vi, that satisfy:

~∇× ~vi = ~∇
(

1

ri

)
. (2.37)

One then has:

~A =
N∑
j=1

qj ~vj , ~ξ =
N∑
j=1

hj ~vj . (2.38)

If we choose coordinates so that ~y(i) = (0, 0, a) and let φ denote the polar angle in the

(y1, y2)-plane, then:

~vi · d~y =
((y3 − a)

ri
+ ci

)
dφ , (2.39)

where ci are constants. The vector field, ~vi, is regular away from the y3-axis, but has

a Dirac string along the y3-axis. By choosing ci appropriately we can cancel the string

along the positive or negative y3-axis, and by moving the axis we can arrange these

strings to run in any direction we choose, but they must start or finish at some ~y(i), or

run out to infinity.
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Now consider what happens toB in the neighborhood of ~y(i). Since the circles swept

out by ψ and φ are shrinking to zero size, the string singularities near ~y(i) are of the form:

B ∼ hi
qi

(
dψ + qi

((y3 − a)

ri
+ ci

)
dφ
)
− hi

((y3 − a)

ri
+ ci

)
dφ ∼ hi

qi
dψ . (2.40)

This shows that the vector, ~ξ, in (5.16) cancels the string singularities in the R3. The

singular components of B thus point along the U(1) fiber of the GH metric.

Choose any curve, γij , between ~y(i) and ~y(j) and define the two-cycle, ∆ij , as in Fig.

2.1. If one has V > 0 then the vector field, B, is regular over the whole of ∆ij except

at the end-points, ~y(i) and ~y(j). Let ∆̂ij be the cycle ∆ij with the poles excised. Since Θ

is regular at the poles, then the expression for the flux, Πij , through ∆ij can be obtained

as follows:

Πij ≡ 1

4π

∫
∆ij

Θ =
1

4 π

∫
b∆ij

Θ =
1

4π

∫
∂ b∆ij

B

=
1

4π

∫ 4π

0

dψ
(
B|y(j) − B|y(i)

)
=

(
hj
qj
− hi

qi

)
. (2.41)

We have normalized these periods for later convenience.

On an ambipolar GH space where the cycle runs between positive and negative GH

points, the flux, Θ, and the potentialB are both singular when V = 0 and so this integral

is a rather formal object. However, we will see in Section 2.2.11 that when we extend to

the five-dimensional metric, the physical flux of the complete Maxwell field combines

Θ with another term so that the result is completely regular. Moreover, the physical

flux through the cycle is still given by (2.41). We will therefore refer to (2.41) as the

magnetic flux even in ambipolar metrics and we will see that such fluxes are directly

responsible for holding up the cycles
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2.2.5 Solving the BPS equations on a Gibbons-Hawking base

Our task now is to solve the BPS equations (2.14)–(2.16) but now with a Gibbons-

Hawking base metric. Such solutions have been derived before for positive-definite

Gibbons-Hawking metrics [101], and it is trivial to generalize them to the ambipolar

form. For the present we will not impose any conditions on the sources of the BPS

equations.

In the previous Section we saw that there was a simple way to obtain self-dual two-

forms, Θ(I), that satisfy (2.14). That is, we introduce three harmonic functions, KI , on

R3 that satisfy∇2KI = 0, and define Θ(I) as in (2.32) by replacing H with KI . We will

not, as yet, assume any specific form for KI .

Using the two-forms ΘI one can show that the second BPS equation is solved by

(2.15):

ZI = 1
2
CIJK V

−1KJKK + LI , (2.42)

where LI are three more independent harmonic functions on R3.

We now write the one-form, k, as:

k = µ (dψ + A) + ω , (2.43)

with ω = ~ω · d~y, then (2.16) becomes:

~∇× ~ω = (V ~∇µ − µ~∇V ) − V
3∑
I=1

ZI ~∇
(
KI

V

)
. (2.44)

Taking the divergence yields the following equation for µ:

∇2µ = V −1 ~∇ ·
(
V

3∑
I=1

ZI ~∇
KI

V

)
, (2.45)
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which is solved by:

µ = 1
6
CIJK

KIKJKK

V 2
+

1

2V
KILI + M , (2.46)

where M is yet another harmonic function on R3. The function M determines the anti-

self-dual part of dk that cancels out of (2.16). Substituting this result for µ into (2.44)

we find that ω satisfies:

~∇× ~ω = V ~∇M − M~∇V + 1
2

(KI ~∇LI − LI ~∇KI) . (2.47)

The integrability condition for this equation is simply the fact that the divergence of both

sides vanish, which is true because KI , LI ,M and V are harmonic.

2.2.6 Properties of the solution

The solution is thus characterized by the harmonic functions KI , LI , V and M . The

gauge invariance, (2.34), extends in a straightforward manner to the complete solution:

KI → KI + cI V ,

LI → LI − CIJK c
J KK − 1

2
CIJK c

J cK V ,

M → M − 1
2
cI LI +

1

12
CIJK

(
V cI cJ cK + 3 cI cJ KK

)
, (2.48)

where the cI are three arbitrary constants7.

7Note that this gauge invariance exists for any CIJK coming from a compactifaction of M-theory on
a Calabi-Yau three-fold. Of course the number of constants cI is then h1,1.
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The eight functions that give the solution may also be identified with the eight inde-

pendent parameters in the 56 of the E7(7) duality group of four-dimensional N = 8

ungauged supergravity [22]:

x12 = L1 , x34 = L2 , x56 = L3 , x78 = − V ,

y12 = K1 , y34 = K2 , y56 = K3 , y78 = 2M . (2.49)

With these identifications, the right-hand side of (2.47) is the symplectic invariant of the

56 of E7(7):

~∇× ~ω = 1
4

8∑
A,B=1

(yAB ~∇xAB − xAB ~∇yAB) . (2.50)

We also note that the quartic invariant of the 56 of E7(7) is determined by:

J4 = −1

4
(x12y

12 + x34y
34 + x56y

56 + x78y
78)2 − x12x34x56x78

−y12y34y56y78 + x12x34y
12y34 + x12x56y

12y56 + x34x56y
34y56

+x12x78y
12y78 + x34x78y

34y78 + x56x78y
56y78 , (2.51)

and we will see that this plays a direct role in the expression for the scale of the U(1)

fibration. It also plays a central role in the expression for the horizon area of the four-

dimensional supersymmetric black hole [146] and the five-dimensional supersymmetric

black ring [22].

In principle we can choose the harmonic functions KI , LI and M to have sources

that are localized anywhere on the base. These solutions then have localized brane

sources, and include, for example, supertubes and black rings in Taub-NUT [24, 97, 90,

25]. Such solutions also include more general multi-center black hole configurations in

four dimensions, of the type considered by Denef and collaborators [77, 15, 78].
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Nevertheless, our focus for the moment is on obtaining smooth horizonless solu-

tions, which correspond to microstates of black holes and black rings and we choose

the harmonic functions so that there are no brane charges anywhere, and all the charges

come from the smooth cohomological fluxes that thread the non-trivial cycles.

2.2.7 Closed time-like curves

To make sure that we are dealing with physically reasonable space-times we have to

ensure that causality is preserved, i.e. there should be no closed time-like curves in

the solutions. To look for the presence of closed time-like curves in the metric one

considers the space-space components of the metric given by (2.4), (2.5) and (2.21).

That is, one goes to the space-like slices obtained by taking t to be a constant. The T 6

directions immediately yield the requirement that ZIZJ > 0 while the metric on the

four-dimensional base reduces to:

ds2
4 = −W−4

(
µ(dψ + A) + ω

)2

+ W 2V −1
(
dψ + A

)2
+W 2V

(
dr2 + r2dθ2 + r2 sin2 θ dφ2

)
, (2.52)

where we have chosen to write the metric on R3 in terms of a generic set of spherical

polar coordinates, (r, θ, φ) and where we have defined the warp-factor, W , by:

W ≡ (Z1 Z2 Z3)1/6 . (2.53)

There is some potentially singular behavior arising from the fact that the ZI , and hence

W , diverge on the locus, V = 0 (see (2.42)). However, one can show that if one expands

the metric (2.52) and uses the expression, (2.46), then all the dangerous divergent terms

cancel and the metric is regular. We will discuss this further below and in Section 2.2.8.
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Expanding (2.52) leads to:

ds2
4 = W−4 (W 6V −1 − µ2)

(
dψ + A− µω

W 6V −1 − µ2

)2

− W 2 V −1

W 6V −1 − µ2
ω2

+ W 2V
(
dr2 + r2dθ2 + r2 sin2 θ dφ2

)
=

Q
W 4V 2

(
dψ + A− µV 2

Q
ω
)2

+ W 2V
(
r2 sin2 θ dφ2 − ω2

Q

)
+ W 2V (dr2 + r2dθ2) , (2.54)

where we have introduced the quantity:

Q ≡ W 6 V − µ2 V 2 = Z1Z2Z3V − µ2 V 2 . (2.55)

Upon evaluating Q as a function of the harmonic functions that determine the solution

one obtains the following result:

Q = −M2 V 2 − 1
3
M CIJKK

I KJ Kk −M V KI LI − 1
4

(KILI)
2

+1
6
V CIJKLILJLK + 1

4
CIJKCIMNLJLKK

MKN (2.56)

with CIJK ≡ CIJK . We can straightforwardly see that when we consider M-theory

compactified on T 6, then CIJK = |εIJK |, and Q is nothing other than the E7(7) quartic

invariant (2.51) where the x’s and y’s are identified as in (2.49). This is expected from

the fact that the solutions on a GH base have an extra U(1) invariance, and hence can be

thought of as four-dimensional. The four-dimensional supergravity obtained by com-

pactifying M-theory on T 7 is N = 8 supergravity, which has an E7(7) symmetry group.

Of course, the analysis above and in particular equation (2.56) are valid for solutions of

arbitrary five-dimensional U(1)N ungauged supergravities on a GH base. More details

on the explicit relation for general theories can be found in [17].
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Note that Q is invariant under the gauge transformation (2.48). Observe that the

metric coefficients in (2.54) only involve V in the combinations W 2V and Q and both

of these are regular as V → 0. Thus, at least the spatial metric is regular at V = 0. In

Section 2.2.8 we will show that the complete solution is regular as one passes across the

surface V = 0.

From (2.54) and (2.4) we see that to avoid CTC’s, the following inequalities must be

true everywhere:

Q ≥ 0 , W 2 V ≥ 0 ,
(
ZJ ZK Z

−2
I

) 1
3 = W 2Z−1

I ≥ 0 , I = 1, 2, 3 . (2.57)

The last two conditions can be subsumed into:

V ZI = 1
2
CIJK K

J KK + LI V ≥ 0 , I = 1, 2, 3 . (2.58)

The obvious danger arises when V is negative. We will show in the next sub-section that

all these quantities remain finite and positive in a neighborhood of V = 0, despite the

fact that W blows up. Nevertheless, these quantities could possibly be negative away

from the V = 0 surface, we will comment about this further below. One should also

note that Q ≥ 0 requires
∏

I(V ZI) ≥ µ2V 4, and so, given (2.58), the constraint Q ≥ 0

is still somewhat stronger.

Also note that there is a danger of CTC’s arising from Dirac-Misner strings in ω.

That is, near θ = 0, π the −ω2 term could be dominant unless ω vanishes on the polar

axis. We will analyze this issue completely when we consider bubbled geometries in

Section 2.2.10.

Finally, one can also try to argue [41] that the complete metric is stably causal and

that the t coordinate provides a global time function [134]. In particular, t will then be
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monotonic increasing on future-directed non-space-like curves and hence there can be

no CTC’s. The coordinate t is a time function if and only if

− gµν∂µt ∂νt = −gtt = (W 2V )−1(Q− ω2) > 0 , (2.59)

where ω is squared using the R3 metric. This is obviously a slightly stronger condition

than Q ≥ 0 in (2.57).

2.2.8 Regularity of the solution and critical surfaces

As we have seen, the general solutions we will consider have functions, V , that change

sign on the R3 base of the GH metric. Our purpose here is to show that such solutions are

completely regular, with positive definite metrics, in the regions where V changes sign.

As we will see the “critical surfaces,” where V vanishes are simply a set of completely

harmless, regular hypersurfaces in the full five-dimensional geometry.

The most obvious issue is that if V changes sign, then the overall sign of the metric

(2.21) changes and there might be whole regions of closed time-like curves when V < 0.

However, we remarked above that the warp factors, in the form of W , prevent this from

happening. Specifically, the expanded form of the complete, eleven-dimensional metric

when projected onto the GH base yields (2.54). Moreover

W 2 V = (Z1 Z2 Z3 V
3)

1
3 ∼ ((K1K2K3)2)

1
3 (2.60)

on the surface V = 0. Hence W 2V is regular and positive on this surface, and therefore

the space-space part (2.54) of the full eleven-dimensional metric is regular.

There is still the danger of singularities at V = 0 for the other background fields.

We first note that there is no danger of such singularities being hidden implicitly in the

~ω terms. Even though (2.44) suggests that the source of ~ω is singular at V = 0, we see
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from (2.47) that the source is regular at V = 0 and thus there is nothing hidden in ~ω. We

therefore need to focus on the explicit inverse powers of V in the solution.

The factors of V cancel in the torus warp factors, which are of the form (ZIZJZ
−2
K )

1
3 .

The coefficient of (dt+k)2 isW−4, which vanishes as V 2. The singular part of the cross

term, dt k, is µ dt (dψ+A), which, from (2.46), diverges as V −2, and so the overall cross

term, W−4dt k, remains finite at V = 0.

So the metric is regular at critical surfaces. The inverse metric is also regular at

V = 0 because the dt dψ part of the metric remains finite and so the determinant is

non-vanishing.

This surface is therefore not an event horizon even though the time-like Killing vec-

tor defined by translations in t becomes null when V = 0. Indeed, when a metric is

stationary but not static, the fact that gtt vanishes on a surface does not make it an event

horizon (the best known example of this is the boundary of the ergosphere of the Kerr

metric). The necessary condition for a surface to be a horizon is rather to have grr = 0,

where r is the coordinate transverse to this surface. This is clearly not the case here.

Hence, the surface given by V = 0 is like a boundary of an ergosphere, except that

the solution has no ergosphere because this Killing vector is time-like on both sides and

does not change character across the critical surface. In the Kerr metric the time-like

Killing vector becomes space-like and this enables energy extraction by the Penrose

process. Here there is no ergosphere and so energy extraction is not possible, as is to be

expected from a BPS geometry.

At first sight, it does appear that the Maxwell fields are singular on the surface V =

0. Certainly the “magnetic components,” Θ(I), (see (2.32)) are singular when V = 0.

However, one must remember that the complete Maxwell fields are the A(I), and these

are indeed non-singular at V = 0. One finds that the singularities in the “magnetic

terms” of A(I) are canceled by singularities in the “electric terms” of A(I), and this is
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possible at V = 0 precisely because gtt goes to zero, and so the magnetic and electric

terms can communicate. Specifically, one has, from (2.13) and (2.35):

dA(I) = d

(
B(I) − (dt+ k)

ZI

)
. (2.61)

Near V = 0 the singular parts of this behave as:

dA(I) ∼ d

(
KI

V
− µ

ZI

)
(dψ + A)

∼ d

(
KI

V
− K1K2K3

1
2
V CIJK K

J KK

)
(dψ + A) ∼ 0 . (2.62)

The cancellations of the V −1 terms here occur for much the same reason that they do in

the metric (2.54).

Therefore, even if V vanishes and changes sign and the base metric becomes neg-

ative definite, the complete eleven-dimensional solution is regular and well-behaved

around the V = 0 surfaces. It is this fact that gets us around the uniqueness theorems

for asymptotically Euclidean hyper-Kähler metrics in four dimensions, and as we will

see, there are now a vast number of candidates for the base metric.

2.2.9 The geometric transition

It is natural to try to obtain microstates by starting with brane configurations that do

not develop a horizon at large effective coupling, or alternatively to consider a black

ring solution in the limit where its entropy decreases and becomes zero. However, the

geometry of a zero-entropy black ring (or three charge supertube) is singular [21]. This

singularity is not a curvature singularity, since the curvature is bounded above by the

inverse of the dipole charges. Rather, the singularity is caused by the fact that the size of

the S1 of the horizon shrinks to zero size and the result is a “null orbifold.” One can also
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Figure 2.2: Geometric transitions: The branes wrap the large (blue) cycle; the flux
through the Gaussian (small, red) cycle measures the brane charge. In the open-string
picture the small (red) cycle has non-zero size, and the large (blue) cycle is contractible.
After the geometric transition the size of the large (blue) cycle becomes zero, while the
small (red) cycle becomes topologically non-trivial.

think about this singularity as caused by the gravitational back-reaction of the branes

that form the three-charge supertube, which causes the S1 wrapped by these branes to

shrink to zero size.

String theory is very good at resolving this kind of singularities, and the mechanism

by which it does is that of “geometric transition.” To understand what a geometric tran-

sition is, consider a collection of branes wrapped on a certain cycle. At weak effective

coupling one can describe these branes by studying the open strings that live on them.

One can also find the number of branes by integrating the corresponding flux over a

Gaussian cycle dual to that wrapped by the branes. However, when one increases the

coupling, the branes back-react on the geometry, and shrink the cycle they wrap to zero

size. At the same time, the Gaussian cycle becomes large and topologically non-trivial.

(See Fig. 2.2.) The resulting geometry has a different topology, and no brane sources.

The only information about the branes is now in the integral of the flux over the blown-

up dual Gaussian cycle. Hence, even if in the open-string (weakly coupled) description

we had a configuration of branes, in the closed-string (large effective coupling) descrip-

tion these branes have disappeared and have been replaced by a non-trivial topology

with flux.

Geometric transitions appear in many systems [124, 150, 202, 153]. A classic exam-

ple of such system are the brane models that break an N = 2 superconformal field
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Figure 2.3: The geometric transition of the black ring: Before the transition the branes
wrap the large (blue) S1; the flux through the Gaussian S2 (small, red) cycle measures
the brane charge. After the transition the Gaussian S2 (small, red) cycle is topologically
non-trivial and of finite size and a new (green) S2 appears, coming from the fact that the
blue S1 shrinks to zero so that the disk spanning the S1 becomes an S2. The resulting
geometry has two non-trivial S2’s and no brane sources.

theory down to an N = 1 supersymmetric field theory [150, 51]. Typically, the N = 2

superconformal field theory is realized on a stack of D3 branes on some Calabi-Yau

three-fold. One can then break the supersymmetry to N = 1 by introducing extra

D5 branes that wrap a two-cycle. When one investigates the closed-string picture, the

two-cycle collapses and the dual three-cycle blows up (this is also known as a conifold

transition). The D5 branes disappear and are replaced by non-trivial fluxes on the three-

cycle. The resulting geometry has no more brane sources, and has a different topology

than the one we started with.

Our purpose here is to argue that geometric transitions resolve the singularity of the

zero-entropy black ring. Here the ring wraps a curve yµ(σ), that is topologically an S1

inside R4. (In Fig. 2.3 this S1 is depicted as a large, blue cycle.) The Gaussian cycle for

this S1 is a two-sphere around the ring (illustrated by the red small cycle in Fig. 2.3). If

one integrates the field strengths Θ(I) on the red Gaussian two-cycle one obtains the M5

brane dipole charges of the ring, qI .

After the geometric transition the large (blue) S1 becomes of zero length, and the red

S2 becomes topologically non-trivial. Moreover, because the original topology is triv-

ial, the curve yµ(σ) was the boundary of a disk. When after the transition this boundary
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curve collapses, the disk becomes a (topologically non-trivial) two-sphere. Alterna-

tively, one can think about this two-sphere (shown in Fig. 2.3 in green) as coming from

having an S1 that has zero size both at the origin of the space r = 0 and at the location

of the ring. Hence, before the transition we had a ring wrapping a curve of arbitrary

shape inside R4, and after the transition we have a manifold that is asymptotically R4,

and has two non-trivial two-spheres, and no brane sources.

We can now try to determine the geometry of this manifold. If the curve has an

arbitrary shape the only information about this manifold is that it is asymptotically R4

and that it is hyper-Kähler, as required by supersymmetry. If the curve wrapped by the

supertube has arbitrary shape, this is not enough to determine the space that will come

out after the geometric transition. However, if one considers a circular supertube, the

solution before the transition has a U(1)×U(1) invariance, and so one naturally expects

the solution resulting from the transition should also have this invariance.

With such a high level of symmetry we do have enough information to determine

what the result of the geometric transition is. By a theorem of Gibbons and Ruback

[113], a hyper-Kähler manifold that has a U(1) × U(1) invariance must have a transla-

tional U(1) invariance and hence, must be Gibbons-Hawking. We also know that this

manifold should have two non-trivial two-cycles, and hence, as we have discussed in

Section 2.2.4 it should have three centers. Each of these centers must have integer GH

charge. The sum of the three charges must be 1, in order for the manifold to be asymp-

totically R4. Moreover, we expect the geometric transition to be something that happens

locally near the ring, and so we expect the region near the center of the ring (which is

also the origin of our coordinate system) to remain the same. Hence, the GH center at

the origin of the space must have charge + 1.

The conclusion of this argument is that the space that results from the geometric tran-

sition of a U(1)×U(1) invariant three-charge supertube must be a GH space with three
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Figure 2.4: Geometric transition of supertube: The first diagram shows the geometry
before the transition. The second shows the resolved geometry, where a pair of GH
charges has nucleated at positions a and b.

centers, that have charges 1, + Q, − Q, where Q is any integer. In the “transitioned”

solution, the singularity of the zero-entropy black ring is resolved by the nucleation, or

“pair creation,” of two equal and oppositely charged GH points.

This process is depicted in Fig. 2.4. The nucleation of a GH pair of oppositely-

charged centers blows up a pair of two-cycles. In the resolved geometry there are no

more brane sources, only fluxes through the two-cycles. The charge of the solution does

not come from any brane sources, but from having non-trivial fluxes over intersecting

two-cycles (or “bubbles”).

Similarly, if one considers the geometric transition of multiple concentric black

rings, one will nucleate one pair of GH points for each ring, resulting in a geometry with

no brane sources, and with a very large number of positive and negative GH centers. As

we will see, these centers are not restricted to be on a line, but can have arbitrary posi-

tions in the R3 base of the GH space, as long as certain algebraic equations (discussed

in Section 2.2.11) are satisfied.

There is one further piece of physical intuition that is extremely useful in under-

standing these bubbled geometries. As we have already remarked, GH points can be

interpreted, from a ten-dimensional type IIA perspective, as D6 branes. Since these

branes are mutually BPS, there should be no force between them. On the other hand, D6

branes of opposite charge attract one another, both gravitationally and electromagneti-

cally. If one simply compactifies M-theory to an ambipolar GH space, one can only hold
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in equilibrium GH points of opposite charge at the cost of having large regions where

the metric has the wrong signature and CTC’s. To eliminate these singular regions, one

must hold the GH points apart by some other mechanism. In the geometries we seek,

this is done by having fluxes threading the bubbles: Collapsing a bubble concentrates

the energy density of the flux and increases the energy in the flux sector. Thus a flux

tends to blow up a cycle. The regular, ambipolar BPS configurations that we construct

come about when these two competing effects - the tendency of oppositely charged GH

points to attract each other and the tendency of the fluxes to make the bubbles large - are

in balance. We will see precisely how this happens in Section 2.2.11.

Hence, we have arrived at the following conclusion: The singularity of the zero-

entropy black ring is resolved by the nucleation of GH centers of opposite charge. The

solutions that result, as well as other three-charge microstate solutions, are topologi-

cally non-trivial, have no brane sources, and are smooth despite the fact that they are

constructed using an ambipolar GH metric with regions where the metric is negative-

definite.

2.2.10 The bubbling solutions

We now proceed to construct the general form of bubbling solutions constructed using an

ambipolar Gibbons-Hawking base [26, 41, 120]. Remember that the harmonic function

that determines the geometry of the GH base is

V = ε0 +
N∑
j=1

qj
rj
. (2.63)
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In Section 2.2.4 we saw that the two-forms, Θ(I), will be regular, self-dual, harmonic

two-forms, and thus representatives of the cohomology dual to the two-cycles, provided

that the KI have the form:

KI = kI0 +
N∑
j=1

kIj
rj
. (2.64)

Moreover, from (2.41), the flux of the two-form, Θ(I), through the two-cycle ∆ij is given

by

Π
(I)
ij =

(
kIj
qj
− kIi

qi

)
, 1 ≤ i, j ≤ N . (2.65)

The functions, LI and M , must similarly be chosen to ensure that the warp factors,

ZI , and the function, µ, are regular as rj → 0. This means that we must take:

LI = `I0 +
N∑
j=1

`Ij
rj
, M = m0 +

N∑
j=1

mj

rj
, (2.66)

with

`Ij = −1
2
CIJK

kJj k
K
j

qj
, j = 1, . . . , N ; (2.67)

mj = 1
12
CIJK

kIj k
J
j k

K
j

q2
j

= 1
2

k1
j k

2
j k

3
j

q2
j

, j = 1, . . . , N . (2.68)

Since we have now fixed the eight harmonic functions, all that remains is to solve

for ω in equation (2.47). The right-hand side of (2.47) has two kinds of terms:

1

ri
~∇ 1

rj
− 1

rj
~∇ 1

ri
and ~∇ 1

ri
. (2.69)

Hence ω will be built from the vectors ~vi of (2.37) and some new vectors, ~wij , defined

by:

~∇× ~wij =
1

ri
~∇ 1

rj
− 1

rj
~∇ 1

ri
. (2.70)
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To find a simple expression for ~wij it is convenient to use the coordinates outlined

earlier with the z-axis running through ~y(i) and ~y(j). Indeed, choose coordinates so that

~y(i) = (0, 0, a) and ~y(j) = (0, 0, b) and one may take a > b. Then the explicit solutions

may be written very simply:

wij = − (y2
1 + y2

2 + (y3 − a)(y3 − b))
(a− b) ri rj

dφ . (2.71)

This is then easy to convert to a more general system of coordinates. One can then add

up all the contributions to ω from all the pairs of points.

There is, however, a more convenient basis of vector fields that may be used instead

of the wij . Define:

ωij ≡ wij + 1
(a−b)

(
vi − vj + dφ

)
= − (y2

1 + y2
2 + (y3 − a+ ri)(y3 − b− rj))

(a− b) ri rj
dφ ,

(2.72)

These vector fields then satisfy:

~∇× ~ωij =
1

ri
~∇ 1

rj
− 1

rj
~∇ 1

ri
+

1

rij

(
~∇ 1

ri
− ~∇ 1

rj

)
, (2.73)

where

rij ≡ |~y(i) − ~y(j)| (2.74)

is the distance between the ith and jth center in the Gibbons-Hawking metric.

We then see that the general solution for ~ω may be written as:

~ω =
N∑
i,j

aij ~ωij +
N∑
i

bi ~vi , (2.75)

for some constants aij , bi.
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The important point about the ωij is that they have no string singularities whatsoever.

They can be used to solve (2.47) with the first set of source terms in (2.69), without

introducing Dirac-Misner strings, but at the cost of adding new source terms of the form

of the second term in (2.69). If there are N source points, ~y(j), then using the wij

suggests that there are 1
2
N(N − 1) possible string singularities associated with the axes

between every pair of points ~y(i) and ~y(j). However, using the ωij makes it far more

transparent that all the string singularities can be reduced to those associated with the

second set of terms in (2.69) and so there are at most N possible string singularities and

these can be arranged to run in any direction from each of the points ~y(j).

Finally, we note that the constant terms in (2.26), (2.64) and (2.66) determine the

behavior of the solution at infinity. If the asymptotic geometry is Taub-NUT, all these

constants can be non-zero, and they correspond to combinations of the moduli. How-

ever, in order to obtain solutions that are asymptotic to five-dimensional Minkowski

space, R4,1, one must take ε0 = 0 in (2.26), and kI0 = 0 in (2.64). Moreover, µ must

vanish at infinity, and this fixes m0. For simplicity we also fix the asymptotic values of

the moduli that give the size of the three T 2’s, and take ZI → 1 as r → ∞. Hence, the

solutions that are asymptotic to five-dimensional Minkowski space have:

ε0 = 0 , kI0 = 0 , lI0 = 1 , m0 = −1
2
q−1

0

N∑
j=1

3∑
I=1

kIj . (2.76)

It is straightforward to generalize these results to solutions with different asymptotics,

and in particular to Taub-NUT. We will do this in Chapter 3.
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2.2.11 The bubble equations

In Section 2.2.7 we examined the conditions for the absence of CTC’s and in general

the following must be true globally:

Q ≥ 0 , V ZI = 1
2
CIJK K

J KK + LI V ≥ 0 , I = 1, 2, 3 . (2.77)

As yet, we do not know how to verify these conditions in general, but one can learn a

great deal by studying the limits in which one approaches a Gibbons-Hawking point,

i.e. rj → 0. From this one can derive some simple, physical conditions (the bubble

equations) that in some examples ensure that (2.77) are satisfied globally.

To study the limit in which rj → 0, it is simpler to use (2.52) than (2.54). In

particular, as rj → 0, the functions, ZI , µ and W limit to finite values while V −1

vanishes. This means that the circle defined by ψ will be a CTC unless we impose the

additional condition:

µ(~y = ~y(j)) = 0 , j = 1, . . . , N . (2.78)

There is also potentially another problem: The small circles in φ near θ = 0 or θ = π

will be CTC’s if ω has a finite dφ component near θ = 0 or θ = π. Such a finite dφ

component corresponds precisely to a Dirac-Misner string in the solution and so we

must make sure that ω has no such string singularities.

It turns out that these two sets of constraints are exactly the same. One can check

this explicitly, but it is also rather easy to see from (2.44). The string singularities in ~ω

potentially arise from the ~∇(r−1
j ) terms on the right-hand side of (2.44). We have already

arranged that the ZI and µ go to finite limits at rj = 0, and the same is automatically

true ofKIV −1. This means that the only term on the right hand side of (2.44) that could,

and indeed will, source a string is the µ~∇V term. Thus removing the string singularities

is equivalent to (2.78).
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One should note that by arranging that µ, ω and ZI are regular one has also guar-

anteed that the physical Maxwell fields, dA(I), in (2.61) are regular. Furthermore, by

removing the Dirac strings in ω and by requiring µ to vanish at GH points one has guar-

anteed that the physical flux of dA(I) through the cycle ∆ij is still given by (2.41) (and

(2.65)). This is because the extra terms, d(Z−1
I k), in (2.61), while canceling the singu-

lar behaviour when V = 0, as in (2.62), give no further contribution in (2.41). Thus

the fluxes, Π
(I)
ij , are well-defined and represent the true physical, magnetic flux in the

five-dimensional extension of the ambipolar GH metrics.

Performing the expansion of µ using (2.46), (2.64), (2.66) and (2.68) around each

Gibbons-Hawking point one finds that (2.78) becomes the bubble equations:

1

6
CIJK

N∑
j=1, j 6=i

Π
(I)
ij Π

(J)
ij Π

(K)
ij

qiqj
rij

= 2(ε0mi −m0qi) +
3∑
I=1

(kI0l
I
i − lI0kIi ) (2.79)

for i = 1, . . . , N , and where rij ≡ |~y(i) − ~y(j)|. Summing both sides of this equation

and using the skew-symmetry of Π
(I)
ij leads to:

m0 = q−1
0

(
ε0mi −

1

2

N∑
j=1

∑
I

(
lI0 k

I
j − kI0 `Ij

))
. (2.80)

This is the generalization of (2.76) for general values of ε0 and kI0 , which is simply the

condition µ→ 0 as r →∞ and means that there is no Dirac-Misner string running out

to infinity. Thus there are only (N − 1) independent bubble equations.

We refer to (2.79) as the bubble equations because they relate the flux through each

bubble to the physical size of the bubble, represented by rij . Note that for a generic

configuration, a bubble size can only be non-zero if and only if all three of the fluxes

are non-zero. Thus the bubbling transition will only be generically possible for the

three-charge system. We should also note that from a four-dimensional perspective
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these equations describe a collection of BPS stacks of branes, and are thus particular

case of a collection of BPS black holes. Such configurations have been constructed in

[77, 15, 78], and the equations that must be satisfied by the positions of the black holes

are called “integrability equations” and reduce to the bubble equations when the charges

are such that the five-dimensional solution is smooth.

While the bubble equations are necessary to avoid CTC’s near the Gibbons-Hawking

points, they are not sufficient to guarantee the absence of CTC’s globally. It has been

shown numerically in some non-trivial examples that the bubble equations do indeed

ensure the global absence of CTC’s. It is an open question as to how and when a bubbled

configuration that satisfies (2.79) is globally free of CTC’s, see [30] for a more detailed

discussion on this issue.

2.2.12 Asymptotic charges

One can obtain the electric charges and angular momenta of bubbled geometries by

expanding ZI and k at infinity. It is, however, more convenient to translate the asymp-

totics into the standard coordinates of the Gibbons-Hawking spaces. Thus, remembering

that r = 1
4
ρ2, one has

ZI ∼ 1 +
QI

4 r
+ . . . , ρ→∞ , (2.81)

and from (2.42) one easily obtains

QI = − 2CIJK

N∑
j=1

q−1
j k̂Jj k̂

K
j , (2.82)

where

k̂Ij ≡ kIj − qj N kI0 , and kI0 ≡
1

N

N∑
j=1

kIj . (2.83)
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Note that k̂Ij is gauge invariant under (2.34).

One can read off the angular momenta using an expansion like that of (2.18). How-

ever, it is easiest to re-cast this in terms of the Gibbons-Hawking coordinates. The flat

GH metric (near infinity) has V = 1
r

and using the change of variables (2.24) in (2.18)

one finds that

k ∼ 1

4 ρ2

(
(J1 + J2) + (J1 − J2) cos θ

)
dψ + . . . . (2.84)

Thus, one can get the angular momenta from the asymptotic expansion of gtψ, which is

given by the coefficient of dψ in the expansion of k, which is proportional to µ. There

are two types of such terms, the simple 1
r

terms and the dipole terms arising from the

expansion of V −1KI . Following [41], define the dipoles

~Dj ≡
∑
I

k̂Ij ~y
(j) , ~D ≡

N∑
j=1

~Dj , (2.85)

and then the expansion of k takes the form (2.84) if one takes ~D to define the polar axis

from which θ is measured. One then finds the “left” and “right” angular momenta of the

five-dimensional solutions

JR ≡ J1 + J2 = 4
3
CIJK

N∑
j=1

q−2
j k̂Ij k̂

J
j k̂

K
j , (2.86)

JL ≡ J1 − J2 = 8
∣∣ ~D∣∣ . (2.87)
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One can use the bubble equations to obtain another, rather more intuitive expression

for J1−J2. One should first note that the right-hand side of the bubble equation, (2.79),

may be written as −
∑

I k̂
I
i . Multiplying this by ~y(i) and summing over i yields:

~JL ≡ 8 ~D = − 4
3
CIJK

N∑
i,j=1
j 6=i

Π
(I)
ij Π

(J)
ij Π

(K)
ij

qi qj ~y
(i)

rij

= −2
3
CIJK

N∑
i,j=1
j 6=i

qi qj Π
(I)
ij Π

(J)
ij Π

(K)
ij

(~y(i) − ~y(j))∣∣~y(i) − ~y(j)
∣∣ , (2.88)

where we have used the skew symmetry Πij = −Πji to obtain the second identity. This

result suggests that one should define an angular momentum flux vector associated with

the ijth bubble:

~JL ij ≡ − 4
3
qi qj CIJK Π

(I)
ij Π

(J)
ij Π

(K)
ij ŷij , (2.89)

where ŷij are unit vectors,

ŷij ≡
(~y(i) − ~y(j))∣∣~y(i) − ~y(j)

∣∣ . (2.90)

This means that the flux terms on the left-hand side of the bubble equation actually have

a natural spatial direction, and once this is incorporated, it yields the contribution of the

bubble to JL.

2.3 Summary and open problems

In this Chapter we have reviewed the construction of a large class of regular asymptot-

ically flat supergravtiy solutions with four supercharges. The solutions are determined

by fixing a GH base with non-trivial two-cycles and distributing cohomological fluxes

on these two-cycles. The solution is then completely fixed by imposing regularity and

causality. It was shown in [28, 29] that a generic distribution of fluxes on the two-cycles
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will result in a regular solution with charges that are the same as those of a black hole or

black ring with vanishing entropy. To get microstate geometries corresponding to black

holes and rings with non-zero entropy one needs “scaling solutions” [29, 32]. These are

regular solutions with a GH base in which the fluxes are distributed in such a way that

a subset of the GH points can come arbitrarily close together on the four dimensional

base and still obey the bubble equations (2.79). In the five-dimensional solution the GH

points are still finite metric distance apart and the topological cycles are of finite size.

Such scaling solutions develop long AdS throats and look very much like a black hole

or black ring. One can also show that the lowest energy excitations in the sclaing solu-

tion have energy of the same order as the mass gap in the dual CFT [29]. This suggests

that scaling solutions correspond to the typical microstates of the three-charge super-

symmetric black hole (or black ring). In [79] it was also shown, following a completely

different approach, that the scaling solutions will play an important role in accounting

for the entropy of the three-charge black hole. The authors of [79] studied at weak (but

non-zero) coupling the quiver quantum field theory on the world-volume of the D-branes

that form the black hole and found that only quiver theories which corresponds to a scal-

ing solutions in supergravity have large enough ground state degeneracies to account for

the black hole entropy.

It is clear from the results presented in this Chapter that black-hole uniqueness is

violated in string theory and M-theory. Microstate geometries provide large families of

interesting smooth solutions with no horizons that have the same asymptotics at innity

as a supersymmetric black hole or black ring. While this is interesting in its own right,

it is also possible that there might be enough microstate geometries to account for the

classical black-hole entropy. It is clear that it will not be possible to use the supergravity

approximation to describe every black hole microstate but it is yet not clear whether

supergravity is able to sample enough of the states in the Hilbert space to account for
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a macroscopic of the black hole entropy. To establish this one needs a proper way to

quantize the moduli space of regular supergravity solutions which will in turn provide

an effective way to compute how much entropy they can account for. There were some

recent attempts to do this [74, 75, 13, 76] using techniques from geometric quantization

[68]. However the results of this counting are not conclusive because the authors studied

only a restrictive class of regular solutions.

The regular solutions with a GH base represent only a limited subset of all possi-

ble three-charge BPS solutions. The GH metrics are hyper-Kähler metrics with a very

special U(1) isometry and a general black hole microstate geometry will not have this

isometry. In Chapter 5 we will dsicuss how to construct supergravity solutions with a

U(1) isometry that is less restrictive. More generally one would expect a large num-

ber of BPS solutions with no isometry, this expectation is based on the fact that there

are three-charge supertubes of arbitrary shape in the probe approximation, which after

backreacting on the geometry, should yield supergravity solutions with no isometry. To

construct these more general BPS solutions one has to use hyper-Kähler metrics with

no isometries. To the best of our knowledge there are no such explicit metrics known

in the literature and this present a formidable technical difficulty. However one can use

a combination of string dualities and the physics of supertubes to make some progress

in constructing new microstate geometries and counting them, this will be discussed in

Chapters 3 and 4.

An important open problem in the study of microstate geometries is how to con-

struct large number of regular non-supersymmetric solutions with the same charges and

asymptotic structure as non-supersymmetric black holes and black rings. After all the

black holes that are observed in Nature are not supersymmetric and ultimately one would

like to understand their structure. After one breaks supersymmetry one loses a lot of

technical simplifications. This usually means that it is very hard to construct explicit
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gravitational solutions due to the non-linearities of the gravitaional equations of motion.

Nevertheless, there has been some recent progress in the construction of regular non-

supersymmetric solutions and we will discuss this in Chapter 6.
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Chapter 3

Spectral flow from supergravity

In the quest to understand black hole entropy in terms of microstate geometries, two

problems appear to be most difficult to overcome. The first is to determine which of

the microstate solutions are more “typical” than others. The second is to construct very

large classes of microstate solutions whose counting can give the black hole entropy.

Spectral flow has proven to be a useful tool in addressing these kinds of questions.

In the dual conformal field theory the spectral flow operation is initiated by redefining

the R-charge current by mixing it with some other conserved U(1) current. This then

requires a modification of the Hamiltonian in order to preserve the supersymmetry. In

the bulk gravity theory, theU(1)R-current and the other conservedU(1) current are dual

to isometries of the background and spectral flow can be achieved simply by a change of

coordinates that mixes these two U(1) directions. One can then add an asymptotically

flat region to this new geometry to obtain a geometry that has different charges from the

original. This is an effective method of obtaining some five-dimensional three-charge

and four-dimensional four-charge microstate geometries from two-charge geometries

[159, 118, 119, 120, 24, 143]. In addition, spectral flow can be used to determine exactly

the CFT state dual to the black hole microstate one constructs, and hence is a useful tool

in determining how typical a certain microstate geometry is.

Despite its usefulness, spectral flow appears to be a rather cumbersome operation

on asymptotically flat five-dimensional geometries: One must first strip the geome-

try of its asymptotically-flat region, then perform the spectral flow, and then add back
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the aysmptotically-flat geometry. The last step can be quite non-trivial, especially for

geometries that do not have a large number of isometries (see, for example [95]).

In this Chapter, based on [33] , we explore a simpler way to use spectral flow to

generate asymptotically four-dimensional geometries starting from other asmptotically

four-dimensional geometries, without stripping away the asymptotically flat region.

This method has two immediate applications which we believe are quite useful in the

program of constructing microstate geometries and finding their CFT dual. First, it

allows us to use a known microstate solution to generate a huge number of other smooth

microstate solutions. Secondly, it gives us new insights into which microstate geome-

tries represent bound states in the CFT. Since a configuration that consists purely of con-

centric, two-charge supertubes is unbound, any spectral flow of this will give unbound

states. In particular, we expect such solutions will not correspond to CFT states in the

sector that is primarily responsible for the entropy. We will use this observation to

examine the status of some of the microstate geometries that have been studied in the

past.

The fact that one can relate bubbling solutions with a Gibbons-Hawking, multi-

centered base to solutions with a supertube in a bubbling background also indicates

that in the vicinity of the black hole microstates with a GH base there exists a very large

family of other, less symmetric microstate solutions with the same macroscopic charges.

Indeed, we know from the Dirac-Born-Infeld (DBI) action that two-charge supertubes

can have arbitrary shapes [166], and that these arbitrary shapes correspond (upon dual-

izing to the D1-D5-P duality frame) to smooth geometries [156, 158]. Hence, one can

use spectral flow to transform a GH center into a supertube, wiggle the supertube, and

undo the spectral flow, to obtain bubbling three-charge solutions that depend classically

on several arbitrary continuous functions. Hence the dimension of the moduli space of

smooth black hole microstate solutions is classically infinite. If, upon counting these
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solutions, one finds a black-hole-like entropy, this will be, in our opinion, compelling

evidence that the microstates of black holes are given by horizonless configurations. In

Chapter 4 we will indeed argue that for the deep, smooth microstate solutions of [29, 32]

one can obtain an entropy with the correct charge dependence using the methods out-

lined here.

To clarify the relationship of the solutions discussed here with some earlier results,

we note that it was shown in [101, 21] that general BPS configurations with the same

supersymmetries as a black hole or black ring require that the four-dimensional spatial

base of the solution be hyper-Kähler. It should be remembered that in establishing this

result it was assumed that the solution was independent of the internal directions of the

compactification tori. The solutions that we discuss here, which come from the spectral

flow of supertubes of arbitrary shape, necessarily depend upon one of these internal

directions. Hence, they are more general than those considered in [21], corresponding

to solutions of ungauged supergravity in six dimensions [131], and their base space is

not hyper-Kähler but almost hyper-Kähler.

3.1 A chain of dualities

Three-charge solutions with four supercharges are most simply written in the M-theory

duality frame in which the three charges are treated most symmetrically and correspond

to three types of M2 branes wrapping three T 2’s inside T 6 [21]. These solutions were

presented in some detail in the previous Chapter. Here we will use string theory dualities

to transform the solutions to solutions of type IIA and IIB supergravity.

In order to study spectral flow as well as two-charge supertubes in three-charge back-

grounds, it is useful to dualize to a frame in which the two-charge supertube action is
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simple. One such frame is where the three electric charges of the background corre-

spond to D0 branes, D4 branes and F1 strings and the supertube carries D0 and F1

electric charges and D2 dipole charge [166]. On the other hand, in order to study the

supergravity solutions describing supertubes in black-ring or bubbling backgrounds, it

is useful to work in a duality frame in which the supergravity solution for the supertubes

is smooth. In this frame the electric charges of the background correspond to D1 branes,

D5 branes, and momentum P, and the supertube carries D1 and D5 charges, with KKM

dipole charge. We therefore dualize the foregoing M-theory solution to these frames and

give all the details of the solutions explicitly. More details about this procedure can be

found in Appendix A and B.

3.1.1 Three-charge solutions in the D0-D4-F1 duality frame

Here we will present the three-charge solutions in the duality frame in which they have

electric charges corresponding to D0 branes, D4 branes, and F1 strings, and dipole

charges corresponding to D6, D2 and NS5 branes. We use the T-duality rules (given in

Appendix A) to transform field-strengths. It should be emphasized that our results are

correct for any three-charge solution (including those without a tri-holomorphic U(1)

[31]), however, finding the explicit form of the RR and NS-NS potentials (which is cru-

cial if we want to investigate this solution using probe supertubes) is straightforward

only when the solution can be written in Gibbons-Hawking form.

Label the coordinates by (x0, . . . , x8, z)1. The electric charges N1, N2 and N3 of the

solution then correspond to:

N1 : D0 N2 : D4 (5678) N3 : F1 (z) (3.1)

1See Appendix A for more details about the brane configuration that we use.
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where the numbers in the parentheses refer to spatial directions wrapped by the branes

and z ≡ x10. The magnetic dipole moments of the solutions correspond to:

n1 : D6 (y5678z) n2 : D2 (yz) n3 : NS5 (y5678) , (3.2)

where y denotes the brane profile in the spatial base, (x1, . . . , x4). The metric of the

solution is:

ds2
IIA = − 1

Z3

√
Z1Z2

(dt+k)2+
√
Z1Z2ds

2
4+

√
Z1Z2

Z3

dz2+

√
Z1

Z2

(dx2
5+dx2

6+dx2
7+dx2

8) .

(3.3)

The dilaton and the Kalb-Ramond fields are:

Φ =
1

4
log

(
Z3

1

Z2Z2
3

)
, B = −dt ∧ dz − A(3) ∧ dz . (3.4)

The RR field strengths are

F (2) = −F (1) , F̃ (4) = −
(

Z5
2

Z3
1Z

2
3

)1/4

?5 (F (2)) ∧ dz , (3.5)

where we define F (I) ≡ dA(I) and ?5 is the Hodge dual with respect to the five dimen-

sional metric:

ds2
5 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 . (3.6)

The foregoing results are valid for any three-charge solution with an arbitrary hyper-

Kähler base. As we show in Appendix B, when the base has a Gibbons-Hawking metric

one can easily find the RR 3-form potential:

C(3) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− ∧dz−

(
Z−1

3 (dt+k)∧B(1) + dt∧A(3)
)
∧dz , (3.7)
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where ξ(1)
a and ζa are defined by equations (2.35) and (B.29). Thus we have the full

three-charge supergravity solution in the D0-D4-F1 duality frame.

3.1.2 Three-charge solutions in the D1-D5-P duality frame

One can T-dualize the solution above along z to obtain a solution with D1, D5 and

momentum charges:

N1 : D1 (z) N2 : D5 (5678z) N3 : P (z) (3.8)

and dipole moments corresponding to wrapped D1 branes, D5 branes and Kaluza Klein

Monopoles (kkm) [194]:

n1 : D5 (y5678) n2 : D1 (y) n3 : kkm (y5678z) . (3.9)

The metric is

ds2
IIB = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2 ds

2
4 +

Z3√
Z1Z2

(dz + A(3))2

+

√
Z1

Z2

(dx2
5 + dx2

6 + dx2
7 + dx2

8) (3.10)

and the dilaton and the Kalb-Ramond field are:

Φ =
1

2
log

(
Z1

Z2

)
, B = 0 . (3.11)

The only non-zero RR three-form field strength is:

F (3) = −
(

Z5
2

Z3
1Z

2
3

)1/4

?5 (F (2))−F (1) ∧ (dz − A(3)) . (3.12)
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If we specialize our general result to the supersymmetric black ring solution in the D1-

D5-P frame then it agrees (up to conventions) with [88]. It is also elementary to find

the RR two-form potential for a general BPS solution with GH base in D1-D5-P frame.

This can be done by T-dualizing the IIA D0-D4-F1 result (3.7), to obtain:

C(2) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)

+A(1) ∧ (A(3) − dz − dt) + dt ∧ (A3 − dz) , (3.13)

where again ξ
(1)
a and ζa are defined in equations (2.35) and (B.29). This is the full

three-charge supergravity solution in the D1-D5-P duality frame. As shown in [158],

two-charge supertubes in flat space are regular only in this duality frame, so our general

result can be used to analyze the regularity of two charge supertubes in a general three-

charge solution. This will be the subject of the next section.

3.2 Spectral flow

In this Section we discuss the three-charge BPS solutions in IIB duality frame, their

relation to solutions of six-dimensional supergravity, and the way in which the spectral

flow transformation acts on solutions with a U(1) isometry on the base. In Section

3.2.3 we specialize this to a translational U(1) isometry where the solution has a multi-

centered Gibbons-Hawking base. We show that spectral flow acts by interchanging

the harmonic functions underlying these solutions, while keeping the solutions smooth.

The explicit transformation is given in equations (3.26) and (3.27). We also show that

spectral flow is part of a larger SL(2,Z)3 subgroup of the four-dimensional E7(7) U-

duality group, and this particular subgroup of E7(7) is distinguished because, for generic

parameters, it generates orbits of smooth solutions.
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In Section 3.2.6 we show that spectral flow can transform a configuration contain-

ing one or several supertubes in Taub-NUT into a multi-center bubbling solution; con-

versely, it can transform such a solution into a solution where at least one of the centers is

replaced by a two-charge supertube. This demonstrates that the black hole microstates

with a GH base constructed so far in the literature are part of an infinite-dimensional

moduli space of smooth supersymmetric solutions. In Section 3.2.7 we explore the

action of generalized spectral flow on multi-center D6-D4-D2-D0 configurations and

use the physics of supertubes to argue that some multi-center configurations that appear

bound from a four-dimensional perspective are in fact not bound when seen as full ten-

dimensional solutions.

3.2.1 From six to five dimensions

As shown in Section 3.1.2 one can dualize the three-charge BPS solutions in a IIB frame

in which the three fundamental charges are those of the D1-D5-P system. In this form,

the D5-brane wraps a four-torus, T 4, while the D1-brane, the remaining spatial part

of the D5-brane and the momentum follow a common S1. The metric thus naturally

decomposes into a six-dimensional part and the T 4-part (3.10). To facilitate comparison

with some previous result in the literature [131] it is useful to rewrite the six-dimensional

part of the metric as

ds2
6 = − 2

H
(dv + β)

(
du+ k +

1

2
F (dv + β)

)
+H hµνdx

µdxν , (3.14)

where

H =
√
Z1Z2 , F = − Z3 , dβ = Θ(3) . (3.15)
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In this formulation there is obviously no longer a symmetry between the three funda-

mental charges and, with the foregoing choices, Z1 corresponds to the D1-charge, Z2 to

the D5-charge and Z3 to the KK-momentum charge.

We have cast the six-dimensional metric in the form (3.14) because it affords the

easiest comparison with previous work on the classification of all supersymmetric solu-

tions of six-dimensional minimal supergravity, obtained in [131]. In the minimal theory,

two of the U(1) Maxwell fields, Θ(I), are set equal and they appear in a three-form field

strength:

G(3) = d(H−1(dv + β) ∧ (du+ k)) + (dv + β) ∧ G+ + ?4dH (3.16)

with

G+ = Θ(1) = Θ(2) dβ = Θ(3) . (3.17)

One also has Z1 = Z2. We will, however, not make this restriction here2 but this

earlier work is of relevance here because it allowed more general backgrounds that could

depend upon the extra background coordinate, v. The spectral flow operations that we

wish to consider could generate such v-dependent solutions. See, for example, [95].

The important point in this type IIB or six-dimensional form of the three-charge

solutions is that one of the U(1) gauge fields has been converted to a six-dimensional

Kaluza-Klein field, β. This then puts it on the same footing as a U(1) isometry on

the four-dimensional base. In particular, one can then mix these two directions with a

coordinate transformation and, as we will see, this generates a spectral flow transforma-

tion. One should also note that one has the freedom to choose which of the three U(1)

Maxwell fields in five dimensions will become the six-dimensional Kaluza-Klein field

2This corresponds to solutions of six-dimensional, ungauged supergravity with one tensor multiplet,
and was studied in [56].
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and so there are three independent ways of generating the spectral flow. We now discuss

this in detail.

3.2.2 Spectral flow

From the six-dimensional perspective the operation of spectral flow is simply a coor-

dinate change that mixes periodic coordinates on the base with the extra Kaluza-Klein

coordinate, v (see, for example [11, 164]). When the base is asymptotic to R4, the size

of the circles that are mixed with the Kaluza-Klein circle becomes infinite, and the spec-

tral flow operation changes the asymptotics of the solution. We will bypass this problem

by focusing on solutions that are asymptotically R3 × S1.

If the base metric has an isometry then one can adapt the coordinate system to that

isometry and take the metric to be invariant under translations of a coordinate, τ . In

particular, the base metric can be written in the form:

ds2
4 = hµνdx

µdxν = V −1(dτ + A)2 + V γijdx
idxj , (3.18)

where i, j = 1, 2, 3 and every component of the metric is independent of τ . The one-

form, A, and the three-metric, γij are, a priori, arbitrary3.

We will also assume that the complete six-dimensional solution is invariant under

τ -translations and for simplicity we will also assume that the six-dimensional solution

is independent of v but neither of these assumptions is essential to the spectral flow

transformations. It is convenient to decompose the one-forms, k and β, according to:

k = µ(dτ + A) + ω , β = ν(dτ + A) + σ , (3.19)

3However, the condition that the base metric be hyper-Kähler means that this metric can be completely
determined by solving the SU(∞) Toda equation [48, 72, 10, 31], see also Chapter 5. This fact will not
be needed here.
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where ω and σ are one-forms in the three-dimensional space.

A spectral flow is then generated by the change of coordinate:

τ → τ + γ v , (3.20)

for some real parameter, γ. For this to be a well-defined coordinate transformation on the

two circles, γ must be properly quantized4. More generally we could consider any global

diffeomorphism in the SL(2,Z) that acts on the two-torus defined by these U(1)’s.

We will return to this later. The important point is that because these mappings are

diffeomorphisms, they map regular solutions without closed time-like curves (CTC’s)

onto regular solutions without closed time-like curves.

Inserting (3.20) into (3.14), one can collect terms and restore the entire metric back

to its canonical form, (3.14). One finds that this coordinate transformation is equivalent

to:

ds2
6 → ds̃2

6 ≡ − 2H̃−1 (dv + β̃)
(
du+ k̃ + 1

2
F̃ (dv + β̃)

)
+ H̃ ds̃4 , (3.21)

where

Ṽ = (1 + γ ν)V , Ã = A− γ σ , H̃ = (1 + γ ν)−1H ,

β̃ = (1 + γ ν)−1β , F̃ = (1 + γ ν)F + 2γµ+ (1 + γ ν)−1V −1γ2H2 ,(3.22)

k̃ = k − γµ

(1 + γ ν)
β +

γ2H2

V (1 + γ ν)2
β − γH2

V (1 + γ ν)
(dτ + A) .

For a general hyper-Kähler metric with a rotational U(1) isometry, two of the three

complex structures depend explicitly upon τ [10, 31] and so, after the shift (3.20), these

4For a Gibbons-Hawking base τ has a period of 4π and v has a period of 2π so γ has to be an even
integer.
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two complex structures depend upon v. As a result, the metric, ds̃2
4 is almost-hyper-

Kähler [131] but not hyper-Kähler. On the other hand, if the U(1) isometry is transla-

tional then the hyper-Kähler metric may be put into Gibbons-Hawking form [109] and

all three complex structures are independent of τ and so ds̃2
4 will also be hyper-Kähler

with a translational U(1) isometry and hence must have Gibbons-Hawking form [113].

We now investigate this in more detail.

3.2.3 Spectral flow in Gibbons-Hawking metrics

We will now present the explicit spectral flow transformation on the three-charge solu-

tions with a GH base discussed in Chapter 2. It is useful to rewrite the six-dimensional

supergravity solution with a GH base (3.14) as [131]:

ds2
6 = −F

H

[
dv + β +

1

F
(du+ k)

]2

+
1

HF
(du+ k)2

+H

[
1

V
(dτ + A)2 + V (dx2 + dy2 + dz2)

]
, (3.23)

where one should recall that H =
√
Z1Z2 and F = −Z3. As before we define:

k = µ(dτ + A) + ω , β = ν(dτ + A) + σ . (3.24)

Starting from M-theory on T 6, one can choose to dualize to six dimensions so that

any one of theKI becomes the Kaluza-Klein potential, and if we take this to beK3 then

one has:

ν = V −1K3 , ~∇K3 = − ~∇× ~σ . (3.25)
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The spectral flow transformation (3.22) then corresponds to:

L̃3 = L3 − 2 γ M , L̃2 = L2 , L̃1 = L1 ,

K̃1 = K1 − γ L2 , K̃2 = K2 − γ L1 , K̃3 = K3 , (3.26)

Ṽ = V + γ K3 , M̃ = M , ~̃ω = ~ω .

We can also consider a more general process in which each of the KI’s is successively

chosen to be the special one, and a spectral flow, with parameter γI , is made. The result

is:

L̃I = LI − 2 γIM , M̃ = M , ~̃ω = ~ω ,

K̃I = KI − CIJK γJ LK + CIJK γJ γKM , (3.27)

Ṽ = V + γI K
I − 1

2
CIJK γI γJ LK + 1

3
CIJKγI γJ γKM ,

where CIJK ≡ CIJK ≡ |εIJK |. We will refer to the transformations (3.27) as

“generalized spectral flow.” Unlike the transformation (3.26), which transforms smooth

six-dimensional solutions into other smooth six-dimensional solutions, the generalized

spectral flow may, in some instances, transform a smooth solution to a duality frame

in which it is no longer smooth. We will discuss this further later, in the remainder of

this section we examine the SL(2,Z) actions in more detail and explicitly verify how

SL(2,Z) transformations preserve regularity.

3.2.4 SL(2,Z) transformations of bubbling solutions

The spatial part of the metric (3.23) may be thought of as a T 2 fibration over R3, where τ

and v define the T 2 fiber. As we have seen, spectral flows are generated by the coordinate

transformation (3.20). Similarly, it follows directly from (3.23) and (3.25) that the gauge
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transformations (2.48) with c1 = c2 = 0, c3 = c can be obtained from the coordinate

transformation:

v → v + c τ . (3.28)

More generally, one can make any SL(2,Z) transformation in the global diffeomor-

phisms of the T 2 defined by (τ, v):

 τ̃

2ṽ

 =M

 τ

2v

 =

 m n

p q

 τ

2v

 , (3.29)

HereM ∈ SL(2,Z) and the factors of 2 insure the correct periodicities for the τ̃ and

ṽ coordinates. Since it is a diffeomorphism, any such transformation will take smooth

(CTC-free) solutions to smooth (CTC-free) solutions.

If one uses this transformation in (3.23) one can easily recast the metric back into

the same form:

ds̃2
6 = − F̃

H̃

[
dṽ + β̃ +

1

F̃
(du+ k̃)

]2

+
1

H̃F̃
(du+ k̃)2

+ H̃

[
1

Ṽ
(dτ̃ + Ã)2 + Ṽ (dx2 + dy2 + dz2)

]
, (3.30)

where

k̃ ≡ µ̃(dτ̃ + Ã) + ω̃ , β̃ ≡ ν̃(dτ̃ + Ã) + σ̃ , (3.31)

and

Ṽ = (m− 2nν)V, H̃ =
H

m− 2nν
,

F̃ = (m− 2nν)F − 4nµ− 4n2 H2

(m− 2nν)V
,

ν̃ = −
p
2
− qν

m− 2nν
, µ̃ =

1

m− 2nν

(
µ+ 2n

H2

(m− 2nν)V

)
,

Ã = mA+ 2nσ, σ̃ = qσ + p
2
A, ω̃ = ω.

(3.32)
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The effect of this SL(2,Z) transformation on the functions determining the under-

lying five-dimensional solutions is:

Ṽ = (m− 2nν)V, µ̃ =
V

Ṽ

(
µ+ 2n

Z1Z2

Ṽ

)
,

Z̃1 =
V

Ṽ
Z1, Z̃2 =

V

Ṽ
Z2, Z̃3 =

Ṽ

V
Z3 + 4nµ+ 4n2Z1Z2

Ṽ
.

(3.33)

Note that because the functions ZI are gauge invariant, their transformations only

depend upon the spectral flow parameter, γ = −2n.

Upon identifying the harmonic functions V , KI , LI and M that give the solution

with the eight E7(7) parameters x and y (2.49), the SL(2,Z) transformation becomes

simply

 ỹ12

2x̃34

 =M

 y12

2x34

 ,

 ỹ34

2x̃12

 =M

 y34

2x12


 x̃56

2ỹ78

 =M

 x56

2y78

 ,

 x̃78

2ỹ56

 =M

 x78

2y56


(3.34)

From the point of view of the five-dimensional solution, the transformation (3.34)

is simply a subgroup of the E7(7)(Z) duality group that takes solutions into solutions.

Nevertheless, the important feature of this transformation is that it takes smooth solu-

tions into smooth solutions. As we will discuss below, for generic parameters, (3.34)

transforms bubbling solutions into bubbling solutions, while for specific parameters it

can transform them into bubbling solutions that contain one or several two-charge super-

tubes, with charges corresponding to x12 and x34. As we will see, these solutions are

smooth in the six-dimensional duality frame (3.14), but not in five-dimensions.
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In order to arrive at the foregoing transformation we chose to dualize using the func-

tion K3 to get the six-dimensional background. One can obviously use the other two

functions, K1 and K2 and obtain two other SL(2,Z) subgroups of E7(7)(Z). Indeed,

these three SL(2,Z)’s commute with one another and thus form an SL(2,Z)3 subgroup

of E7(7)(Z). As could be expected this general SL(2,Z)3 transformation leaves the

quartic invariant J4 unchanged. This is discussed further in [33].

3.2.5 Regularity and the bubble equations

Suppose that the harmonic functions take their usual form for an ambi-polar Gibbons-

Hawking base

V = ε0 +
N∑
j=1

qj
rj
, KI = kI0 +

N∑
j=1

kIj
rj
,

(3.35)

LI = lI0 +
N∑
j=1

lIj
rj
, M = m0 +

N∑
j=1

mj

rj
, (3.36)

where rj ≡ |~y − ~y(j)| and ε0, qj , kIa, lIa, ma (a = 0, 1, . . . , N ) are, as yet, arbitrary

constants. As usual define:

q0 ≡
N∑
j=1

qj, k̃Ij ≡ kIj − q−1
0 qj

N∑
j=1

kIj , Π
(I)
ij ≡

(
kIj
qj
− kIi

qi

)
. (3.37)

Recall that for the functions ZI and µ to be regular as rj → 0, one must take:

lIj = − 1

2
CIJK

kJj k
K
j

qj
, mj =

1

12
CIJK

kIjk
J
j k

K
j

q2
j

, j = 1, . . . , N . (3.38)

The constant terms, ε0, kI0 , lI0 and m0, determine the asymptotic behaviour of the solu-

tion. The original M-theory geometry is generically asymptotic to R1,3 × S1 × (T 2)3
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and the constant terms determine the scales of the S1 and T 2 factors and fix the U(1)

Wilson lines around the S1 [25]. If one tunes the constants appropriately (e.g. if one

sets ε0 = 0) then various circles in the five-dimensional or six-dimensional metrics will

decompactify.

To remove closed time-like curves in the neighborhood of the points where rj → 0

one must impose that µ→ 0 as rj → 0. Explicitly this yields the bubble equations:

1

6
CIJK

N∑
j=1, j 6=i

Π
(I)
ij Π

(J)
ij Π

(K)
ij

qiqj
rij

= 2(ε0mi −m0qi) +
3∑
I=1

(kI0l
I
i − lI0kIi ) (3.39)

for i = 1, . . . , N , and where rij ≡ |~y(i) − ~y(j)|. Summing both sides of this equation

and using the skew-symmetry of Π
(I)
ij leads to:

m0 = q−1
0

(
ε0mi −

1

2

N∑
j=1

∑
I

(
lI0 k

I
j − kI0 `Ij

))
, (3.40)

where q0 is given by (3.37).

We expect that both the regularity of the six-dimensional solution and the bubble

equations are preserved under the simple spectral flow (3.26) and, more generally, under

the global diffeomorphisms (3.29) precisely because they are diffeomorphisms of the

torus. Moreover, these diffeomorphisms only involve the space-like sections of the met-

ric and hence they should not introduce new CTC’s. One can see this explicitly from

(3.33). Suppose that n is generic so that Ṽ and V have exactly the same singular points.

Then V ±1Ṽ ∓1 is regular and so if one starts with regular ZI and µ then one will end up

with regular Z̃I and µ̃. Moreover, if the bubble equations are satisfied then µ → 0 as

rj → 0 and hence µ̃→ 0 as rj → 0. Thus the bubble equations are satisfied in the new

solution.
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This argument obviously generalizes to any combination of transformations in

SL(2,Z)3 that do not change the singular structure of V . Therefore such transforma-

tions clearly map smooth bubbling solutions into smooth bubbling solutions and pre-

serve the bubble equations.

If the spectral flow parameter, n is not generic, then V and Ṽ can have different

sets of singular points, but the solution generated by the simple spectral flow will still

be smooth in six dimensions, and its physics is the subject of the next section. It turns

out that this feature does not generalize to non-generic many-parameter spectral flow

transformations (3.27). These flows will take multi-center black hole solutions into other

multi-center solutions, by preserving the bubble equations and not introducing closed

timelike curves. However, they may transform microstate solutions that are smooth in

supergravity into solutions that do not appear smooth in supergravity. This will be the

subject of Section 3.2.7.

3.2.6 Supertubes, bubbling geometries and spectral flow

Perhaps the most physically interesting spectral flow transformation occurs when V and

Ṽ have different sets of singular points. Suppose that we start with a regular, bubbled

solution and that we use the simple spectral flow (3.26) so that Ṽ has (at least) one less

singularity than V . It follows that Z̃1, Z̃2 and µ̃ now develop singularities, but these

singularities have a very special form. As we will show, these singularities correspond

exactly to having a two-charge supertube at the location of the old pole (or poles) of V .

Going in the opposite direction, one can start from a geometry containing one or sev-

eral two-charge supertubes and obtain a bubbling solution by doing the inverse spectral

flow5.

5This is exactly the way in which the first three-charge microstates were obtained by Lunin, [159] and
independently by Giusto, Mathur, and Saxena [118, 119].

97



It is well known that two-charge supertubes give smooth supergravity solutions when

in the duality frame in which they have D1 and D5 charges and KKM dipole charge, both

in flat space [156, 158] and in Taub-NUT [24]. Since the standard regularity conditions

only involve the local geometry around the supertube, one would expect two-charge

supertubes to be regular in more generic three-charge backgrounds [35]. Hence, the fact

that the spectral flow transformation (3.27) takes smooth solutions into smooth solutions

is not surprising; after all, from a six-dimensional perspective, the flow (3.27) is nothing

but a coordinate transformation.

The effect of the spectral flow transformation may, at first, appear surprising from

the geometric perspective of the four-dimensional base: GH-based solutions are bub-

bling geometries with fluxes threading topologically non-trivial cycles while supertubes

are thought of as rotating supersymmetric ensembles of branes that do not involve topol-

ogy. The spectral flow maps one picture into the other and, once again, from the six-

dimensional perspective it is easy to see how this happens. Consider the (spatial) U(1)

fiber parametrized by v in (3.14) over any disk that spans the closed loop of the super-

tube. At the supertube the function H in (3.14) becomes singular and pinches-off the

U(1) fiber. The result is a topologically non-trivial 3-sphere and the three-form, (3.16),

has a non-zero flux through this 3-cycle. In the metric with a GH base, this 3-cycle sim-

ply appears as a non-trivial U(1) fibration (parametrized by v) over a non-trivial 2-cycle

in the base. The spectral flow merely “undoes” the topology in the base at the cost of

introducing an apparent singularity but both perspectives are equivalent, and describe

the same, completely regular, six-dimensional solution.

It is useful to begin by illustrating the spectral-flow procedure on the solution cor-

responding to one supertube in Taub-NUT [24]. The smooth six-dimensional solution
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describing two-charge supertubes can be written as a solution with a GH base using the

following harmonic functions [25]:

V = ε0 +
1

r
, L1 = 1 +

Q1

4|~r − ~R|
, L2 = 1 +

Q2

4|~r − ~R|
, L3 = 1 ,

K1 = 0 , K2 = 0 , K3 = − q3

2|~r − ~R|
, M =

JT
16

(
1

R
− 1

|~r − ~R|

)
.(3.41)

where ~R defines the position of a round supertube that is wrapping the fiber of the Taub-

NUT metric. Not all the constant parts in the harmonic functions are independent. The

absence of closed timelike curves requires that

JT

(
ε0 +

1

R

)
= 4q3 (3.42)

Moreover, in six dimensions the metric constructed using (3.41) is smooth (up to

harmless Zq3 orbifold singularities) if [24]:

q3JT = Q1Q2 . (3.43)

This condition comes from the requirement that ω in (5.26) has no Dirac-Misner strings.

Before performing the spectral flow, we should observe that the harmonic functions

above can be shifted using a subset of the gauge transformation (2.48) that preserves

K1 = K2 = 0 and that sets the sum of the coefficients of the poles in K3 to be zero:

V = ε0 +
1

r
, L1 = 1 +

Q1

4|~r − ~R|
, L2 = 1 +

Q2

4|~r − ~R|
, L3 = 1 , K1 = 0 ,

K2 = 0 , K3 =
q3ε0

2
+
q3

2r
− q3

2|~r − ~R|
, M =

JT
16

(
1

R
− 1

|~r − ~R|

)
− q3

4
.(3.44)
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Under a spectral flow with parameter γ3 one obtains a new solution with the harmonic

functions:

V = ε0

(
1 +

γ3q3

2

)
+

1

r

(
1 +

γ3q3

2

)
− q3γ3

2|~r − ~R|
, K1 = −γ3 −

γ3Q2

4|~r − ~R|
,

K2 = −γ3 −
γ3Q1

4|~r − ~R|
, K3 =

q3ε0
2

+
q3

2r
− q3

2|~r − ~R|
,

L1 = 1 +
Q1

4|~r − ~R|
, L2 = 1 +

Q2

4|~r − ~R|
, (3.45)

L3 = 1 +
γ3q3

2
− γ3JT

8

(
1

R
− 1

|~r − ~R|

)
, M =

JT
16

(
1

R
− 1

|~r − ~R|

)
− q3

4
.

It is not hard to check that the harmonic functions above satisfy the condition (3.38),

and hence they give a smooth three-charge two-centered bubbling solution. Moreover,

the equation that gives the radius of the supertube in Taub-NUT (3.42) becomes exactly

the “bubble equation” (3.39) governing the two-center bubbling solution. Hence, a spec-

tral flow transformation can be used to change a smooth two-charge supertube in six

dimensions into a smooth three-charge bubbling solution. This solution has the same

singular parts as the four-dimensional microstate solution obtained in [189], but has

different constant parts in the harmonic functions.

Of course, to obtain asymptotically five-dimensional solutions from other asymp-

totically flat solutions using spectral flow is a little more complicated. These solutions

must not have any constant term in the KI [26, 41]. Nevertheless, the solution before

the spectral flow necessarily has all the ZI (and hence LI) limiting to constant values.

Hence, a spectral flow will necessarily introduce a constant term in at least one of the

KI . The way this problem is usually remedied [159, 118, 119, 24, 95] is to strip off the

asymptotically-flat region of the solution to obtain an asymptotically AdS3 geometry,

spectral flow this geometry, and then add back by hand the asymptotically-flat part of

the solution.
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On the other hand, by looking at the solutions that have four-dimensional asymp-

totics, there is no need to eliminate the constant terms in the KI harmonic function.

A spectral flow will simply match two solutions with different values of the moduli at

infinity.

We can generalize the foregoing example by starting with a solution describing N

two-charge supertubes in Taub-NUT. The solution is specified by eight harmonic func-

tions which have the form

V = ε0 +
1

r
, K1 = K2 = 0 , K3 = k3

0 −
N∑
i=1

qi3
2ri

,

L1 = l10 +
N∑
i=1

Qi
1

4 ri
, L2 = l20 +

N∑
i=1

Qi
2

4 ri
, L3 = l30 (3.46)

M = m0 −
N∑
i=1

Ji
16 ri

,

where ri = |~r−~ri| and ~ri are the locations of the supertubes in the base space. We will

also define Ri ≡ |~ri|.

If we choose all ~ri to lie on the negative z axis (in GH coordinates) this will cor-

respond to a configuration of N concentric supertubes of “radius6,” Ri. It is clear that

the straightforward generalization of the analysis in [24] will imply that, in the duality

frame where the two charges of the supertubes are D1 and D5 charges, the type IIB

supergravity solution will be smooth if (3.43) is satisfied for each center:

Qi
1Q

i
2 = qi3Ji . (3.47)

6This is the distance from the Taub-NUT center to the supertube as measured in the three-dimensional
base, and not the physical radius of the supertube.
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These N conditions guarantee that the full metric is completely regular (again up to Zqi3

orbifold singularities). The solution should be free of CTC’s and imposing this condition

at the locations of the supertubes and at the origin of the four-dimensional base yields

N + 1 equations: N expressions that give the radius of each supertube and generalize

(3.42), as well as a relation that fixes the parameter m0:

(
ε0 +

1

Ri

)
Ji = 4 l30 q

i
3 , m0 =

1

16

N∑
i=1

Ji
Ri

. (3.48)

We can use the gauge freedom (2.48) to fix a gauge in which
N+1∑
i=1

qi3 = 0:

V → V, K1 → K1 , K2 → K2 , K3 → K3 + c V ,

L1 → L1 − cK2 = L1 , L2 → L2 − cK1 = L2 , L3 → L3 , (3.49)

M → M − c

2
L3 ,

where

c =
N∑
i=1

qi3
2
. (3.50)

This will ensure that the sum of the GH charges of the solution will remain the same

after the spectral flow. After the gauge transformation, the harmonic functions take the

following form:

V = ε0 +
1

r
, K1 = K2 = 0 , K3 = k3

0 + c ε0 +
c

r
−

N∑
i=1

qi3
2ri

,

L1 = l10 +
N∑
i=1

Qi
1

4ri
, L2 = l20 +

N∑
i=1

Qi
2

4ri
, L3 = l30 (3.51)

M = m0 −
c l30
2

+
N∑
i=1

Ji
16ri

.
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To transform the solution corresponding to many supertubes to a bubbling solution with

an ambipolar Gibbons-Hawking base, we perform a spectral flow transformation (3.26)

with parameter γ to obtain.

Ṽ = V + γK3 , K̃1 = K1 − γL2 , K̃2 = K2 − γL1 , K̃3 = K3 ,

L̃1 = L1 , L̃2 = L2 , L̃3 = L3 − 2γM , M̃ = M . (3.52)

The GH base space of the transformed solution has N + 1 centers. The new harmonic

functions:

Ṽ = ε̃0 +
N+1∑
j=1

q̃j
rj
, K̃I = k̃I0 +

N+1∑
j=1

k̃Ij
rj
, (3.53)

L̃I = l̃I0 +
N+1∑
j=1

l̃Ij
rj
, M̃ = m̃0 +

N+1∑
j=1

m̃j

rj
,

can be found straightforwardly from (3.51) and (3.52). It is also straightforward to check

that (3.47), which insures the regularity of the supertubes, implies that the constants

in these harmonic functions satisfy (3.38) for any value of γ. Moreover, the bubble

equations (3.39) are equivalent to the N + 1 equations (3.48) that give the radii of the

N supertubes and the value of the m0 parameter. This establishes explicitly that for any

even integer γ the spectral flow transformation (3.52) maps smooth solutions containing

supertubes to smooth multi-center GH bubbling solutions.

Having shown that a solution corresponding to many concentric supertubes can be

transformed into a GH bubbling solutions, it is interesting to investigate the opposite

transformation - that of a bubbling solution into a solution containing supertubes.

It is not hard to see that given a generic smooth bubbling solution, whose parameters

respect (3.38) and (3.39), one can perform a spectral flow (3.26) with parameter γ =

− qi
k3
i

to obtain a solution in which there is no GH charge at the ith point. Equations
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(3.38) then insure that the functions K1, K2 and L3 will also not have a pole at the

position of the ith point. The poles of the other harmonic functions are

K3 ∼
k3
i

ri
, L1 ∼

−k2
i k

3
i

ri
, L2 ∼

−k2
i k

3
i

ri
, M ∼ k1

i k
2
i k

3
i

2ri
. (3.54)

This solution corresponds to an object with two charges, one dipole charge, and angular

momentum, and it is simply a circular7 two-charge supertube at position ~ri.

It is clear that this solution will be smooth from a six-dimensional perspective, sim-

ply because spectral flow takes smooth solutions into smooth solutions. Moreover, the

coefficients of the singular parts of L1, L2, K3 andM satisfy the same relation, (3.43), as

do the coefficients in the smooth two-charge supertube solutions in R4 or Taub-NUT. In

[35] we showed that the smoothness conditions coming from the supergravity analysis

coincide with the equations of motion for a two-charge supertube in a GH background

that one obtains using the Dirac-Born-Infeld action of the supertube. Hence, a spec-

tral flow transformation with a well-chosen parameter can transform any multi-center

Gibbons-Hawking solution to a solution where one (or several) of the centers has been

replaced by a two-charge supertube.

3.2.7 Generalized spectral flow

It is also interesting to consider generalized spectral flow transformations that can take

a GH center into an even simpler configuration. We begin by exploring the orbit of gen-

eralized spectral flow. We then use the physics of supertubes to argue that many multi-

center configurations that appear to be bound states from a four-dimensional perspective

do so only because of the limited supergravity Ansatz used to study their stability. When

7The circle is along the U(1) fiber of the ambi-polar Taub-NUT base.
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one explores them using a more complete supergravity Ansatz, based on the underlying

holographic dual, they are in fact unbound.

In order to describe generalized spectral flow on multi-center solutions it is conve-

nient to work in the five-dimensional duality frame in which the electric charges of the

solution are those of three sets of M2 branes (2.4). When the base space of these solu-

tions is ambi-polar, multi-center Taub-NUT, they can be reduced to four-dimensional

multi-center solutions. The M2 charges correspond to D2 charges, the M5 dipole

charges correspond to D4 charges, the Kaluza-Klein momentum along the Taub-NUT

fiber becomes the D0 charge and the geometric GH charges correspond to D6 branes.

The sources that appear in the eight harmonic functions that determine the solutions thus

correspond exactly to the four-dimensional D6, D4, D2 and D0 charges.

A smooth multi-center, five-dimensional solution corresponds, in four dimensions,

to a multi-center solution where each center is a “primitive” D6 brane, that is, a D6

brane that has non-trivial world-volume flux and locally preserves sixteen supercharges8.

From the perspective of the D-brane world-volume, primitivity places non-trivial con-

straints upon the fluxes. In the supergravity background these constraints amount to

imposing smoothness, which fixes the flux parameters as in (3.38) [26, 41]. In the same

manner, a two-charge supertube, which is also smooth in the D1-D5-P duality frame,

has D4, D2 and D0 charges that satisfy (3.43). Thus it corresponds to a “primitive”

D4 brane - a D4 brane with non-trivial world-volume flux that locally preserves sixteen

supercharges.

In Section 3.2.5 we have established that spectral flow generically takes multi-center,

primitive D6 configurations into other such configurations. Moreover, in Section 3.2.6

we have seen that for some specially-chosen parameters it can transform a primitive

8Only four of those supercharges are common to all the D6 branes, and thus common to the complete
multi-center solution.
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D6 center into a primitive D4 center. One can take this further, and consider two- and

three-parameter generalized spectral flow. A two-parameter spectral flow, with

γ1 = − q

k1
, γ2 = − q

k2
(3.55)

can take a GH center with GH charge q into a center with only two singular harmonic

functions, K3 and M . This corresponds to a set of primitive D2 branes that have a non-

trivial D0 brane charge. Furthermore, one can perform another spectral flow to take this

center into a center that only has a non-zero M , and hence corresponds to a collection

of D0 branes. The parameters of this flow are:

γ1 = − q

k1
, γ2 = − q

k2
, γ3 = − q

k3
. (3.56)

Since this last configuration consists of only a single species of D-brane, primitivity (the

local preservation of sixteen supercharges) is now manifest. One should note that each

successive spectral flow decreases the number of types of D-brane charge possessed by

the brane and that this reduction critically depends upon the selection of parameters,

(3.38), that made the original fluxed D6-brane smooth. By reversing these multiple

spectral flows one thus obtains another way to understand the primitivity of the original

D6-brane configuration.

Unlike the primitive D6 branes, which give smooth five-dimensional solutions in all

duality frames, or the primitive D4 branes, which are smooth in the D1-D5-P frame, the

primitive D2 and D0 branes are not smooth in supergravity in any duality frame. This is

not unexpected, because the U-duality group in four dimensions can take smooth solu-

tions into singular ones, and generalized spectral flow is nothing but a three-parameter

family of this group. This is also not in conflict with the fact that each spectral flow

can be realized by a six-dimensional coordinate change and therefore will preserve the
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regularity of six-dimensional solutions. The point is that one cannot realize all three

independent spectral flows as coordinate changes of a single regular metric and so con-

catenating spectral flows can generate singular solutions.

One can also extend spectral flow to U(1)N five-dimensional ungauged supergrav-

ities compactified on a GH space (or, after dimensional reduction, N = 2 supergrav-

ities in four dimensions), that come from M-theory compactified on a CY manifold.

The equation that gives generalized spectral flow (3.27) is written in a way that triv-

ially expands to such supergravities9. For such solutions a six-dimensional lift of the

solution, and the smooth supertube interpretation of the primitive D4 centers are not

straightforward (unless the CY is K3 × T 2). Nevertheless, for generic parameters the

generalized spectral flow still takes smooth solutions into smooth solutions, while for

special choices of parameters it can interpolate between solutions with primitive D6,

D4, D2 and D0 centers.

To recapitulate, from a five-dimensional perspective a spectral flow with one param-

eter can take a smooth GH solution into a smooth solution that contains a two-charge

supertube in a GH background. Furthermore, two-parameter and three-parameter gener-

alized spectral flows can transform a GH center into a singular configuration, that from

a four-dimensional perspective has D2-D0 and pure D0 charges respectively.

In studying the microstates of a black-hole one obviously wants to ensure that one

is studying a single black hole and not merely an ensemble, or gas, of unbound BPS

black holes and black rings. That is, one should only consider a system as being a

single black hole if there are no “separation moduli” that can be used to physically

deform the system into widely separated components without changing the energy or

other asymptotic charges.

9For a general CY compactification CIJK are the triple intersection numbers of the CY three-fold.
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Establishing whether a solution is bound or unbound can be rather subtle. Consider

for example an asymptotically-flat five-dimensional solution containing two two-charge

supertubes. These do not interact with each other, and one can move them arbitrary far

apart at no energy cost (without affecting the asymptotic charges and angular momenta).

Hence, this configuration has flat directions, and is unbound. However, when considered

as a four-dimensional multi-center solution, this solution has three centers that have a

nontrivial four-dimensional ~E× ~B interaction, and appears bound. Of course, the answer

to this puzzle is that the separation moduli of the five-dimensional solution break its tri-

holomorphic U(1) isometry, and hence are not visible in four dimensions.

If one’s purpose is to describe microstates of five-dimensional three-charge black

holes or black rings, the ultimate arbiter of whether a multi-center solution is bound

is to dualize it to the D1-D5-P duality frame, and take the limit in which it becomes

asymptotic to AdS3 × S3, see Appendix C and [35, 22]. If the six-dimensional solution

has separation moduli, the solution is not bound. As we will see below, these separation

modes are often not visible if one constructs and analyzes the solution using a more

limited four- or five-dimensional Ansatz.

It is also possible that a certain multi-center solution, which is unbound when embed-

ded in an asymptotically AdS3 × S3 spacetime, can become bound when embedded in

an asymptotically R3,1 × S1 × S1 spacetime. The simplest example is again that of two

concentric two-charge supertubes in Taub-NUT. These supertubes have no zero-modes

[195] because of the constraining nature of the Taub-NUT geometry. However, when

taking the limit in which their solution becomes asymptotically AdS3 × S3, the base

of the solution becomes R4, and the two supertubes become indistinguishable from two

supertubes in an asymptotically-flat five-dimensional space, which are unbound. The

same analysis extends trivially to more concentric supertubes in Taub-NUT.
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Hence, two or more supertubes in Taub-NUT do not form a true bound state. Rather

they are geometrically bound: their lack of separation moduli is a result of the compact-

ification geometry rather than of binding interactions. Intuitively, one should think of

such geometrically-bound configurations as being the analogue of an ideal gas in a box:

there is no binding energy between the atoms, but the system cannot be deformed into

widely separated components because of the walls of the box.

As we have seen in Section 3.2.6, using spectral flow one can transform a solution

that contains concentric two-charge supertubes to a bubbling multi-center solution. The

analysis above implies that such a bubbling multi-center solution is not a bound state.

Indeed, upon spectral flow, a solution where the supertubes are not concentric anymore

becomes a v-dependent six-dimensional solution (3.14) of the type described in Section

3.2.2, [131, 56]. Hence, as explained above, multi-center bubbling solutions that can be

obtained by spectral flow from a concentric-supertube configuration only appear bound

from a four- and five-dimensional perspective because of the limited supergravity Ansatz

used to describe them. Upon embedding it in the correct holographic background this

configuration has at least one zero-mode and this involves making the six-dimensional

lift of the solution (3.14) v-dependent.

It is also important to realize that starting from concentric supertubes, a spectral

flow transformation only generates a very specific type of bubbling geometries. Indeed,

spectral flow leaves the bubble equations invariant, and hence the bubble equations gov-

erning the unbound bubbling solutions do not contain any terms that depend on the

distance between any two of the GH centers that come from the supertubes. Hence,

from a four-dimensional perspective these GH points are free to move on two-spheres

of radius,Ri (given by (3.48)) around a central GH point. In the quiver language, used to

describe multi-center four-dimensional solutions [77, 15, 78], these bubbling solutions
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Figure 3.1: The “hedgehog” quiver corresponding to the unbound multi-center solution
generated from the spectral flow of many concentric supertubes.

can be depicted as “hedgehog” quivers, with all the arrows originating from one of the

nodes, and joining it to all the other nodes.

It is also possible to argue that, at least for a large enough number of centers, spectral

flow can be used to generate all the hedgehog multi-center GH solutions in Figure (3.1)

from two-charge round supertubes in flat space. Indeed, by simple parameter counting,

a solution with N + 1 GH centers has 4N + 1 parameters (three kIi ’s and one GH

charge qi for each point minus three gauge transformations). Requiring the vanishing

of Π
(1)
ij Π

(2)
ij Π

(3)
ij between any two of N centers naively imposes N(N − 1) constraints,

which, in general, cannot be satisfied. Nevertheless, since Π
(I)
ij are given by (3.37), it is

not hard to see that one can also have all of them zero if for one of the I , the value of

kIi /qi is the same for all the N points. Choosing, for example, I = 2, this implies

ki = (k1
i , qiκ

2, k3
i ) , (3.57)

and imposes N − 1 conditions, leaving 3N + 2 independent parameters. This is exactly

the number of parameters that describe all possible spectral flows ofN round supertubes
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of arbitrary charge in a Taub-NUT space: three independent parameters (Q1, Q2, d3) for

each supertube, one for the Taub-NUT center and one spectral flow parameter, γ. It is

not hard to see that a spectral flow with parameter γ2 = −1/κ2 transforms the foregoing

set of N GH centers into concentric two-charge supertubes.

There exists another way to make all the fluxes between the N GH points vanish:

one can divide them in three sets, A,B,C, that have fluxes

ki = (k1
i , qiκ

2, qiκ
3) , for i ∈ A

ki = (qiκ
1, k2

i , qiκ
3) , for i ∈ B (3.58)

ki = (qiκ
1, qiκ

2, k3
i ) , for i ∈ C

where κ1, κ2, κ3 are constants, and k1
i , k

2
i and k3

i can be arbitrary for the GH centers

in the A,B and C set respectively. A two-parameter spectral flow with parameters

γ1 = −1/κ1 and γ2 = −1/κ2 transforms the GH centers in the A and B sets into

two-charge supertubes of different type, and transforms the GH centers in the C set into

singular D2-D0 centers. Normally, different kinds of two-charge supertubes have an

~E × ~B-type electric-magnetic interaction, and cannot go arbitrarily far away from each

other without changing the asymptotic charges of the solution. Therefore such a solution

is generically a bound state. However, for the particular supertubes that are created from

the spectral flow of (3.58) the ~E× ~B-type interaction vanishes, and hence they can move

freely away from each other. Hence this type of configuration also corresponds to an

unbound state. It is quite clear that for N sufficiently large all hedgehog quivers can be

only of the type (3.57) or (3.58), and hence they are all unbound from the point of view

of six-dimensional supergravity.
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Another intuitive way to think of our formulation of bound state classification is as

follows. Bound states generically emerge through ~E × ~B interactions. In four dimen-

sions there are four independent U(1) Maxwell fields and thus many ways in which to

generate the interaction. In five dimensions there are only three U(1) Maxwell fields and

thus some of the four-dimensional ~E × ~B interactions become trivial upon oxidation to

five dimensions. Indeed, this is precisely what happens with the hedgehog quiver: One

can map the sources of the four-dimensional ~E × ~B interaction to a single D6 at the

center of the quiver and D0 charges on the nodes. Upon lifting to five dimensions, the

D6 brane disappears (becoming the “center of space”) and all the nodes become free.

One should note that our analysis here indicates that the hedgehog quiver describes

unbound states only when the center of the quiver is primitive. Indeed, one can con-

sider quivers in which the exterior nodes have charges corresponding to black rings,

and the center is a primitive (fluxed) D6 brane. This solution can be lifted to one or

many concentric black rings on an R4 base. As with supertubes, the absence of arrows

between the exterior nodes of the quiver is equivalent to the absence of ~E× ~B-like inter-

actions between the black rings. Hence, in the asymptotically five-dimensional solution,

these rings can slide away from each other, and the configuration has zero modes and is

unbound. However, if the center node is not a fluxed D6 brane, but a BMPV black hole,

the sliding away of the rings becomes impossible. Indeed, as shown in [27], one cannot

take a BMPV black hole away from the center of a black ring without modifying the

asymptotic angular momenta of the solution. In that case, the black ring and the black

hole interact via ~E × ~B-type interactions, that render the sliding-away mode massive.

To summarize, our arguments indicate that all asymptotically five-dimensional solu-

tions given by hedgehog quivers are unbound when their centers are primitive branes.

Although a more detailed analysis is needed, this also seems to be true for hedgehog
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quivers whose central node is primitive and the outside nodes are not. However, the

system may well be a bound state when the central node is not primitive.

A few examples of quivers describing unbound states include, for example the “Hall

halo” configurations with a primitive center discussed in [77, 15, 78], the three-center

configuration discussed in Section 6 of [41], and possibly also the “foaming quiver”

(with charges equal to those of a maximally-spinning BMPV black hole) considered in

[28]. As we stressed earlier, the unbound status of such geometrically bound systems

can only be seen when considering asymptotically-flat five-dimensional solutions, or

asymptotically AdS3 × S3 solutions in six dimensions.

This analysis of bound and unbound systems is also in agreement with the recent

findings that only quivers with closed loops can give solutions that have the charges

of black holes and black rings with classically large horizon radius [29, 32], and that

at weak coupling only these quivers give a macroscopic (black-hole-like) entropy [79].

Based on this, one expects that the closed, deep or scaling quivers describe bound states,

which they indeed do [29]. Intuitively, one can think about the microstates that come

from hedgehog quivers (and are necessarily “shallow”), and possibly about other “shal-

low” microstates as unbound or very weakly bound; conversely, the deep AdS throat,

which is the hallmark of the scaling solution, is a direct manifestation of the binding of

the geometric components of the microstate geometry.

3.3 Conclusions

We have investigated spectral flow - a transformation that takes multi-center solutions

into other multi-center solutions, by shifting the underlying harmonic functions. For

generic parameters, this transformation takes bubbling solutions that have multiple GH

centers into other bubbling solutions with GH centers. However, for specially-chosen
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parameters, a spectral flow transformation can take a bubbling solution into a smooth

solution that contains one or several supertubes in a GH multi-center background.

The fact that spectral flow can be used to interchange solutions containing two-

charge supertubes and bubbling solutions is a very powerful fact, which we have studied

in this Chapter, and will continue to use in Chapter 4.

The first problem we have addressed using this tool is to understand which of the

three-charge bubbling solutions constructed in the literature are bound states, and which

are not. We have found that the solutions that correspond to quivers without loops or

bifurcations can be transformed into solutions that in the five-dimensional lift can be

taken apart. Therefore they should not correspond to bound states in the dual CFT.

The second use of spectral flow has been to point to the existence of three-charge

smooth BPS solutions that depend on arbitrary functions in the vicinity of any multi-

center GH solution. Indeed, any GH center can be related to a round supertube via

spectral flow. Furthermore, supertubes can have arbitrary shape while still remaining

regular and supersymmetric. Hence the inverse spectral flow of a wiggly supertube

gives a new smooth black-hole microstate solution, that does not have a GH base, and

that can depend on arbitrary functions.

Even without knowing the explicit form of these BPS solutions, it is still possible to

investigate their physics (at least in the vicinity of GH solutions), analyze their moduli

space, and count their entropy by using supertube counting techniques [175, 9, 188].

The fact that GH solutions can be deformed to BPS solutions that depend on arbitrary

functions establishes the existence of families of black hole microstates that depend

on an infinite number of continuous parameters. In Chapter 4 we will explore these

microstates, and argue that they can have a macroscopically large (black-hole-like)

entropy.
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We have also explored a larger class of spectral flow transformations (called general-

ized spectral flow) that for generic parameters transform multi-center bubbling solutions

into other multi-center bubbling solutions, but for special parameters can transform one

or several of the centers of a bubbling solution into a two-charge supertube, D2-D0 or

D0 center.

By taking the limit of parameters in which the D2-D0, or the D0 branes do not

back-react on the geometry, one can study them using their (non-abelian) Born-Infeld

action, and count their entropy. In fact, such a counting has been performed in several

circumstances. For example, in [80, 115] it was found that the entropy coming from

D0 branes in a D6-D6 background (which lifts to a multi-center GH solution in five

dimensions) is of the same order as the would-be black hole entropy. One could then

use generalized spectral flow to transform the D0-D6-D6 system considered there into

a multi-center D6-D6 configuration, which (unlike the system with D0 branes) is well-

described by supergravity in the regime of parameters where the classical black hole

exists. It would be very interesting to follow the spectral flow, and find the description of

the D0 configurations that give the black-hole-like entropy [80, 115] in the multi-center

D6 frame, and to find whether these configurations are still smooth in supergravity.
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Chapter 4

Entropy enhancement

Supertubes [166] can have arbitrary shapes and give smooth supergravity solutions in

the duality frame in which they have D1 and D5 charges [156, 158]. This has been very

useful in matching the entropy of two-charge smooth supergravity solutions to that of

the dual CFT and served as one of the motivations of the formulation of the fuzzball

proposal. However, even if supertubes can have arbitrary shapes, and hence a lot of

entropy, their naive quantization cannot account for the entropy of a black hole with a

non-trivial, macroscopic horizon

SBH ∼
√
Q1Q2Q3 . (4.1)

Indeed, as found in [175, 9, 188], since supertubes only carry two charges, their entropy

scales like:

SST ∼
√
Q1Q2 . (4.2)

The new insight here, based on [34], comes from considering supertubes in the back-

ground of a scaling bubbling solution with large magnetic fluxes. We generalize the

analysis of [175], and use the supertube DBI–WZ action to count states of quantized

supertubes in non-trivial background geometries. We find that, for the purposes of

entropy counting, the supertube charges QI that appear in (4.2) are replaced by the

local effective charges of the supertube, Qeff
I , which are a combination of the supertube

charges and terms coming from the interaction between the supertube magnetic dipole

moment and the background magnetic dipole fields.
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If there are strong magnetic fluxes in the background, as there are in deep, bubbled

microstate geometries, these effective charges can be much larger than the asymptotic

charges of the configuration, and can thus lead to a very large entropy enhancement!

Indeed, one finds that if the supertube is put in certain deep scaling solutions, the effec-

tive charges can diverge if the supertube is suitably localized or if the length of the throat

goes to infinity. Of course, this divergence is merely the result of not considering the

back-reaction of the wiggly supertube on its background. Once this back-reaction is

taken into account, the supertube will delocalize and the fine balance needed to create

extremely deep scaling solutions might be destroyed if the tube wiggles too much.

Hence, we expect a huge range of possibilities in the semi-classical configuration

space, from very shallow solutions to very deep solutions. In very shallow solutions, the

supertubes can oscillate a lot, but they will not have their entropy enhanced and for very

deep solutions the supertube will have vastly enhanced charges but, if the solution is to

remain deep, the supertube will be very limited in its oscillations. One can thus imagine

that the solutions with most of the entropy will be intermediate, neither too shallow

(so as to obtain effective charge enhancement), nor too deep (to alow the supertube to

fluctuate significantly). To fully support this intuition one will need to construct the

full back-reacted supergravity solution for wiggly supertubes in bubbling three-charge

backgrounds. Even though we do not yet have such solutions, it is possible to use

the AdS/CFT correspondence to estimate the depth of the bulk microstate solutions

dual to states in the typical sector of the dual CFT [29]. We will use this result to

determine the depth of the typical throat and then argue that the effective supertube

charges corresponding to this throat depth yields an enhanced supertube entropy that is

macroscopic (4.1).

117



It is interesting to note that entropy enhancement is not just a red-shift effect. There

is no entropy enhancement unless there are strong background magnetic fluxes. A three-

charge BPS black hole will not enhance the entropy of supertubes: it is only solutions

that have dipole charges, like bubbled black holes or black rings that can generate super-

tube entropy enhancement.

The last ingredient that we use is the generalized spectral flow transformation of

Chapter 3, [33], that enables us to start from a simple, bubbled black hole microstate

geometry [26, 41] and generate a bubbled geometry in which one or several of the

Gibbons-Hawking (GH) centers are transformed into smooth two-charge supertubes.

One can then study the particular class of fluctuating microstate geometries that result

from allowing the supertube component to oscillate in the deep bubbled geometries. The

naive expectation is that one would recover an entropy of the form (4.2) but, as we indi-

cated, the QI are replaced by the enhanced Qeff
I , and the entropy of these supertubes

can become “macroscopic” in that it corresponds to the entropy of a black hole with a

macroscopic horizon. One can then “undo” the spectral flow to argue that this entropy is

present in the BPS fluctuations of three-charge bubbling solutions in any duality frame.

In fact, spectrally flowing configurations with oscillating supertubes into other duality

frames is not strictly speaking necessary for the purpose of illustrating entropy enhance-

ment and arguing that smooth solutions can give macroscopically large entropy. After

all, one could do the full analysis in the D1-D5-P duality frame and consider smooth

black hole microstates containing both GH centers and supertubes. Nevertheless, since

such solutions have not been studied in the past in great detail, it is easiest to construct

them by spectrally flowing multi-center GH solutions, which have been studied much

more and are better understood.
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We start this Chapter by studying probe supertubes in various backgrounds, then we

move on to calculate the entropy stored in the oscillations of the supertubes and uncover

the entropy enhancement mechanism.

4.1 Supertube probes in BPS solutions

We begin with a review of supertubes in the background of a three-charge rotating BPS

(BMPV) black hole and then extend this to more general three-charge backgrounds.

4.1.1 Supertubes in a three-charge black hole background

As a warm up exercise, we first consider a probe supertube with two charges and one

dipole charge in the background of a three-charge (BMPV) black hole. This example

was considered in [19, 165] and was generalized to a probe supertube with three charges

and two dipole charges in [94]. The full supergravity solution describing a BMPV black

hole on the symmetry axis of a black ring with three charges and three dipole charges

was found in [21, 104], and a more general solution in which the black hole is not at the

center of the ring was found in [27].

First, we need the BMPV black hole solution in the D0-D4-F1 duality frame. The

metric (in the string frame) is:

ds2
10 = − 1√

Z1Z2Z3

(dt+ k)2 +
√
Z1Z2 (dρ2 + ρ2(dϑ2 + sin2 ϑdϕ2

1 + cos2 ϑdϕ2
2))

+

√
Z1Z2

Z3

dz2 +

√
Z1

Z2

ds2
T 4 (4.3)

and the dilaton and the Kalb-Ramond field are given by:

Φ =
1

4
log

(
Z3

1

Z2Z2
3

)
, B = (Z−1

3 − 1)dt ∧ dz + Z−1
3 k ∧ dz . (4.4)
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The non-trivial RR potentials are:

C(1) = (Z−1
1 −1)dt+Z−1

1 k , C(3) = −(Z2−1)ρ2 cos2 ϑdϕ1∧dϕ2∧dz+Z−1
3 dt∧k∧dz .

(4.5)

The one-form k and the functions ZI are given by

k = k1dϕ1 + k2dϕ2 =
J

ρ2
(sin2 ϑdϕ1 − cos2 ϑdϕ2) , ZI = 1 +

QI

ρ2
, (4.6)

where J is the angular momentum of the black hole. The charges, Q1, Q2 and Q3

correspond to the respective D0 brane, D4 brane and F1 string charges of the black hole.

This solution is indeed a BPS, five-dimensional, rotating black hole [49] with an

event horizon at r = 0, whose area is proportional to
√
Q1Q2Q3 − J2. For J2 >

Q1Q2Q3 the solution has closed time-like curves and is unphysical.

We will denote the world-volume coordinates on the supertube by ξ0, ξ1 and ξ2 ≡ θ.

To make the supertube wrap z we take ξ1 = z and we will fix a gauge in which ξ0 = t.

Note that z ∈ (0, 2πLz). The profile of the tube, parameterized by θ, lies in the four-

dimensional non-compact R4 parameterized by (ρ, ϑ, ϕ1, ϕ2) and for a generic profile

all four of these coordinates will depend on θ. It is convenient to use polar coordinate

(u, ϕ1) and (v, ϕ2) in R4 = R2 × R2, where the R4 metric takes the form (2.19).

There is also a gauge field, F , on the world-volume of the supertube. Supersym-

metry requires that F essentially has constant components and we can then boost the

frames so that Ftθ = 0.

In this frame supersymmetry also requires Ftz = 1 [166]. For the present we take

2πα′F ≡ F = Ftzdt ∧ dz + Fzθdz ∧ dθ , (4.7)
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where the components are constant. Keeping Ftz as a variable will enable us to extract

the charges below.

The supertube action is a sum of the DBI and Wess-Zumino (WZ)actions:

S = −TD2

∫
d3ξe−Φ

√
−det

(
G̃ab + B̃ab + Fab

)
+TD2

∫
d3ξ[C̃(3) + C̃(1)∧ (F + B̃)] ,

(4.8)

where, as usual, G̃ab and B̃ab are the induced metric and Kalb-Ramond field on the

world-volume of the supertube. We have also chosen the orientation such that εtzθ = 1.

It is also convenient to define the following induced quantities on the world-volume:

∆µν = ∂µu∂νu+u2∂µϕ1∂νϕ1+∂µv∂νv+v2∂µϕ2∂νϕ2 , γµ = k1∂µϕ1+k2∂µϕ2 , (4.9)

where ∂µ ≡ ∂
∂ξµ

.

After some algebra, the DBI part of the action simplifies to:

SDBI = −TD2

∫
dtdzdθ{Z−2

1 (Fzθ − γθ(Ftz − 1))2

+ Z2Z
−1
1 ∆θθ[2(1−Ftz)− Z3(Ftz − 1)2]}1/2 , (4.10)

while the WZ piece of the action takes the form

SWZ = TD2

∫
dtdzdθ

[
(1−Ftz)γθZ−1

1 + Fzθ
(
Z−1

1 − 1
)]
. (4.11)

For a supersymmetric configuration (Ftz = 1) we have

SFtz=1 = SDBI + SWZ = −TD2

∫
dtdzdθFzθ (4.12)
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The foregoing supertube carries D0 and F1 “electric” charges, given by

NST
1 =

TD2

TD0

∫
dzdθ Fzθ, NST

3 =
1

TF1

∫
dθ

∂L
∂Ftz

∣∣∣∣
Ftz=1

. (4.13)

The Hamiltonian density is:

H|Ftz=1 =

[
∂L
∂Ftz

Ftz − L
]
Ftz=1

= TD2Fzθ +
∂L
∂Ftz

∣∣∣∣
Ftz=1

. (4.14)

One can easily integrate this to get the total Hamiltonian of the supertube1 (we assume

constant charge density Fzθ)

∫
dzdθ H|Ftz=1 = NST

1 +NST
3 . (4.15)

Thus the energy of the supertube is the sum of its conserved charges which shows that

the supertube is indeed a BPS object.

Now choose a static round supertube profile u′ = v′ = ϕ′2 = 0, ϕ1 = θ. One then

has:

γθ = k1 = J
u2

(u2 + v2)2
, ∆θθ = u2 (4.16)

and the supertube “electric” charges are:

NST
1 = nST2 Fzθ , NST

3 = nST2

Z2u
2

Fzθ
, (4.17)

where nST2 is the number of times the supertube wraps the angular variable θ, which in

our conventions is also the supertube dipole charge given by the number of “tubular” D2

branes. So we find

NST
1 NST

3 = (nST2 )2u2 Z2 . (4.18)

1See Appendix D for details about our units and conventions.
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This is an important relation in that it fixes the location of the supertube in terms of its

intrinsic charges.

This computation was used in [19] to study the merger of a supertube and a black

hole. In particular, a supertube can merge with a black hole if and only if NST
1 NST

3 ≤

(nST2 )2N2, where N2 is the number of D4 branes in the black hole. Moreover, the

supertube will “crown” the horizon of the black hole at “latitude”, ϑ = α, given by:

sinα =

√
NST

1 NST
3

(nST2 )2N2

. (4.19)

One can also show that one cannot violate chronology protection by throwing a super-

tube into the black hole, that is, one cannot over-spin the black hole and that the bound

J2 ≤ N1N2N3 is preserved after the merger.

In [35] we also studied various two- and three-charge supertubes in the background

of supersymetric black rings. We have also studied mergers of black rings and super-

tubes and showed that chronology is protected in such mergers. We will not present the

details of the calculation here but it is worth noting that there are new features due to

the dipole charges of the black ring which interact non-trivially with the dipole charge

of the supertube.

4.1.2 Supertubes in solutions with a Gibbons-Hawking base

We now consider two-charge supertubes probing a general three-charge BPS solution

with a Gibbons-Hawking base and we will again work in the D0-D4-F1 duality frame.

The general BPS solution with three charges and three dipole charges and a GH base

is given in Section 3.1.1 and we proceed as we did for the black-hole background in
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the previous Section. We denote the supertube coordinates as ξ0, ξ1 and ξ2 ≡ θ and

consider the simplified case of a circular supertube along the U(1) fiber of the GH base:

ξ0 = t , ξ1 = z , θ = ψ . (4.20)

The supertube action takes the explicit form

S = TD2

∫
d3ξ

{[(
1

Z1

− 1

)
Fzθ +

K3

Z1V
+

(
µ

Z1

− K1

V

)
(Ftz − 1)

]
−
[

1

V 2Z2
1

[
(K3−V (µ(1−Ftz)−Fzθ))2 +V Z1Z2(1−Ftz)(2−Z3(1−Ftz))

]]1/2}
.

(4.21)

For Ftz = 1 the tube is supersymmetric and, as before, the Hamiltonian density is

the sum of the charge densities (4.14). Due to the supersymmetry there is a constraint

similar to (4.19), which determines the location of the supertube in terms of its charges

[
NST

1 + nST2

K3

V

] [
NST

3 +
K1

V

]
= (nST2 )2Z2

V
, (4.22)

where the charges are still defined by (4.13). There is an important new feature here in

that there is a contribution from the interactions of the dipole charges of the supertube

and the background. This appears through the pull-back of the magnetic gauge poten-

tials, B(I) (given by the harmonic functions KI), to the world-volume of the supertube

and it gives an added contribution to the basic supertube charges to yield what we will

refer to as the local effective charges of the supertube. As we will see later in this Chap-

ter this will be essential when one computes the entropy of a fluctuating supertube in

backgrounds with non-trivial dipole charges.

Here we presented a brief review of probe supertubes in a general GH bubbling

solution. We have studied this configuration in greater detail in [35] and have shown
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that 2-charge supertubes are regular in any 3-charge bubbling solution. This was done

by studying both the exact supergravity solution and the probe action of the supertube.

4.2 Fluctuating supertubes and entropy enhancement

Our goal is to quantize the small oscillations about round two-charge supertubes in flat

space, black hole and generic three-charge backgrounds, and to examine the entropy

coming from these fluctuations. We find it convenient to work in the D0-D4-F1 duality

frame, and our approach follows that of [175, 34] (see also [9]).

As first reported in [34], in a generic three-charge background we find a non-trivial

enhancement of the entropy of a supertube when the dipole magnetic fields are large.

This enhancement arises because the entropy that can be stored in a supertube is gov-

erned not by the electric charges of the supertube (as in flat space or in a black hole

background) but by its locally-defined effective charges, that can get large contributions

from the interactions of the dipole moment of the supertube with the magnetic fluxes of

the background.

As discussed in [35] it is expected that supertube fluctuations will give rise to smooth

horizonless solutions. Hence, our analysis strongly supports the existence of smooth

horizonless three-charge solutions that depend on arbitrary continuous functions, and

whose entropy is much larger than their typical charge, and might even be as large as

the square root of the cube of their charge. That is, it might be black-hole-like.
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4.2.1 Flat space

In the absence of background fluxes, the WZ action of the supertube is zero, and the

DBI action (4.8) reduces to

S = −TD2

∫
dtdzdθ

√
R2(1−F2

tz) + F2
zθ , (4.23)

where R is the radius of the supertube and its embedding is

t = ξ0 , z = ξ1 , ϕ1 = θ . (4.24)

The charges of the tube are given by (4.13):

NST
1 = nST2 Fzθ , NST

3 = nST2

R2

Fzθ
, (4.25)

where the factors of nST2 come from multiple windings in θ. Similarly the radius relation

(4.22) reduces to:

NST
1 NST

3 =
(
nST2

)2
R2 . (4.26)

The angular momentum of the supertube is2:

JST =
NST

1 NST
3

nST2

= nST2 R2 . (4.27)

The foregoing results apply to round (maximally spinning) supertubes. Supertubes of

arbitrary shape will have more complicated expressions for their conserved quantities

and will generically have smaller angular momentum.

2See [35] for more details on how to compute this angular momentum.
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Now we will perform a simplified version of the analysis in [175], which will be

enough to give us the correct dependence of the entropy on the supertube charges. We

consider small fluctuations of the supertube in the six directions transverse to its world-

volume:

xi → xi + ηi(t, θ) , i = 1, . . . , 6 , (4.28)

where four of these fluctuations take place on the compact T 4 and the other two are radial

coordinates in the non-compact space. In general there are eight independent fluctuation

modes for the supertube, consisting of seven transverse coordinate motions and a charge

density fluctuation (which also affects the shape). To keep the computations simple here,

we have restricted to a representative sample of oscillations in both the compactification

space and in the space-time. Since we are only interested in BPS fluctuations we will

also restrict ηi to depend only upon t and θ [175]3.

The effective Lagrangian for the fluctuations is obtained by expanding the DBI

Lagrangian of the supertube

Lη = −TD2

[
(1−F2

tz − η̇iη̇i)(R2 + η′iη
′
i)− 2FtzFzθη̇iη′i + F2

zθ(1− η̇iη̇i) + (η̇iη
′
i)

2
]1/2

,

(4.29)

where the repeated index i is summed over. The canonical momenta conjugate to ηi are:

Πi =

∫ 2πLz

0

dz
∂Lη
∂η̇i

∣∣∣∣
η̇i=0 ,Ftz=1

=
1

2π
η′i , (4.30)

and the canonical commutation relations are:

[ηj(t, θ),Πk(t, θ
′)] = iδjkδ(θ − θ′) . (4.31)

3The time dependent modes will break supersymmetry. Hence, we will retain the time dependence of
ηi to compute momenta and quantize the system but then we will set ∂tηi ≡ η̇i = 0.
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The BPS modes ηi then can be expanded as:

ηi =
1√
2

[∑
k>0

eikθ/n
ST
2

(aik)
†√
|k|

+ h.c.
]
, (4.32)

where (aik)
† and aik are creation and annihilation operators for the kth harmonic. The

normalization has been chosen such that4:

[(aik)
†, ajk′ ] = δijδk,k′ (4.33)

It is not hard to see that the fluctuations do not change NST
1 and the angular momentum

JST . The charge NST
3 becomes:

NST
3 =

1

TF1

∫ 2πnST2

0

dθ
∂L
∂Ftz

∣∣∣∣
Ftz=1

=
TD2

TF1

∫ 2πnST2

0

dθ
(R2 + η′iη

′
i)

Fzθ
, (4.34)

from which one finds

6∑
i=1

∑
k>0

k(aik)
†aik = LzTD2

∫ 2πnST2

0

dθ

∫ 2πnST2

0

dθ′
6∑
i=1

η′iη
′
i (4.35)

= NST
1 NST

3 − (nST2 )2R2 = NST
1 NST

3 − nST2 JST . (4.36)

The left hand side of this expression can be thought of as the energy of a system

of six massless bosons in (1+1) dimensions (we have effectively (1+1) dimensional

dynamics in (t, θ) space). Due to supersymmetry there will also be six corresponding

4Technically, to get this normalization correct we need to include the mode expansion of the non-BPS
modes in (4.32). Ignoring the non-BPS modes gives an incorrect factor of

√
2 in the normalization of the

ηi. Here we have given the correctly normalized expressions that one would obtain if one included the
non-BPS modes.
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fermionic degrees of freedom. The total central charge of the system is thus c = 9, and

so the entropy of this system is given by the Cardy formula5 [55]:

S = 2π

√
c

6

√
NST

1 NST
3 − nST2 JST = 2π

√
3

2

√
NST

1 NST
3 − nST2 JST . (4.37)

If we had included all eight bosonic fluctuation modes then we would have had eight

bosons and eight fermions and hence a theory with c = 12 and with the entropy:

SST = 2π
√

2
√
NST

1 NST
3 − nST2 J . (4.38)

This is the correct central charge and it yields the correct supertube entropy [175]. By

restricting our analysis to six of the shape modes and ignoring the other supersym-

metric modes we have obtained a finite, but well understood, fraction of the supertube

entropy. Since our purpose here is to analyze when entropy enhancement happens, and

when it does not, we will only be interested on the dependence of the supertube entropy

on the macroscopic charges, and not pay particular attention to numerical coefficients.

Restricting our analysis in more general backgrounds to transverse BPS fluctuations and

counting the entropy coming from these modes will therefore be enough to illustrate the

physics of entropy enhancement.

4.2.2 The three-charge black hole

A two-charge round supertube in the background of a three-charge BPS rotating

(BMPV) black hole was discussed in section 4.1.1. Here we will use the metric and

background fields presented in section 4.1.1 and consider small shape fluctuations in the

5We are assuming that the electric and dipole charges of the supertube are large enough so that the use
of the Cardy formula is justified.
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directions transverse to the world-volume of the supertube. We are again interested only

in BPS excitations, which have the following form

xi → xi+ηi(t, θ) , i = 1, 2, 3, 4 , u→ u+η5(t, θ) , v → v+η6(t, θ) , (4.39)

where we have defined the metric on the four-torus to be

ds2
T 4 = dx2

1 + dx2
2 + dx2

3 + dx2
4 . (4.40)

and the supertube embedding is the same as (4.24). One can use the sum of the DBI

and WZ actions, find an effective action for the supertube fluctuations and compute the

momenta conjugate to η5, η6 and ηi:

Πη5 =

∫
dz

(
∂L
∂η̇5

)∣∣∣∣
BPS

=
Z2

2π
η′5 ,

Πη6 =

∫
dz

(
∂L
∂η̇6

)∣∣∣∣
BPS

=
Z2

2π
η′6 , (4.41)

Πηi =

∫
dz

(
∂L
∂η̇i

)∣∣∣∣
BPS

=
1

2π
η′i ,

where the subscript “BPS” means that we have evaluated everything “on shell,” which

means we have imposed the BPS conditions of no time dependence and Ftz = 1.
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The BPS modes ηi, η5 and η6 then can be expanded as

ηi =
1√
2

[ ∑
k>0

eikθ/n
ST
2

(aik)
†√
|k|

+ h.c.
]
,

η5 =
1√
2

[ ∑
k>0

eikθ/n
ST
2

(a5
k)
†√
|k|

+ h.c.
]
,

η6 =
1√
2

[ ∑
k>0

eikθ/n
ST
2

(a6
k)
†√
|k|

+ h.c.
]
.

(4.42)

At first glance, the physics of the ηi fluctuations along the torus appears very different

from that of the fluctuations in the spacetime direction, η5 and η6; indeed the latter have

a factor of Z2 in the denominator, and this factor becomes arbitrarily large when the

supertube is near the horizon of a black hole.

The charge NST
1 is the same as that of the round supertube in flat space, but the

charge NST
3 is modified to:

NST
3 =

1

TF1

∫
dθ

∂L
∂Ftz

∣∣∣∣
BPS

=
TD2

TF1Fzθ

∫
dθ

(
Z2u

2 + Z2[(η′5)2 + (η′6)2] +
4∑
i=1

(η′i)
2

)
.

(4.43)

Using similar arguments to those given for the flat space background one finds the

entropy of the BPS shape modes to be:

S = 2π

√
3

2

√
NST

1 NST
3 − (nST2 )2Z2u2 . (4.44)

Hence, despite the presence of the warp factor Z2 in the radius relation and in the mode

expansions (4.42), the entropy of the supertube depends on its electric charges in exactly

the same way as in flat space, and hence there is no entropy enhancement.
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4.2.3 General GH background

Now we consider the general situation of a probe supertube with D0 and F1 charges and

D2 dipole charge in the three-charge BPS solution with a Gibbons-Hawking base. We

choose the supertube world-volume coordinates ξ to be (t, θ = ψ, z = x5), where ψ is

the U(1) fiber of the GH base.

The DBI–WZ action of the supertube is:

S = TD2

∫
d3ξ

{[(
1

Z1

− 1

)
Fzθ +

K3

Z1V
+ (Ftz − 1)

(
µ

Z1

− K1

V

)]

−
[

1

V 2Z2
1

[
(K3−V (µ(1−Ftz)−Fzθ))2 +V Z1Z2(1−Ftz)(2−Z3(1−Ftz))

]]1/2}
,

(4.45)

where 2πα′F ≡ F = Ftzdt ∧ dz + Fzθdz ∧ dθ is the world-volume gauge field of

the D2 brane. Our goal is to semi-classically quantize BPS fluctuations around certain

supertube configurations, and compute their entropy. Supersymmetry requires that these

fluctuations be independent of t and z, and that Ftz = 1.

All the fluctuations of the supertube lead to similar values for the entropy, but for the

purpose of illustrating entropy enhancement it is best to focus on the fluctuations in the

four torus directions:

xi → xi + ηi(t, θ) i = 1 . . . 4. (4.46)

Since the BPS modes are independent of z, it is convenient to work with a Lagrangian

density that has already been integrated over the z direction, which gives the conjugate

momenta for the excitations ηi:

Πi =

(
∂

∂η̇i

∫ 2πLz

0

dz[LWZ + LDBI ]
)
η̇i=0, Ftz=1

= 2πLzTD2 η
′
i , (4.47)

132



where η̇i ≡ ∂ηi
∂t

and η′i ≡
∂ηi
∂θ

. To semi-classically quantize the BPS oscillations we

impose the canonical commutation relations:

[ηj(t, θ), Πk(t, θ
′)] = iδjkδ(θ − θ′) . (4.48)

To work with proper normalization one should remember that s supertube with dipole

charge nST2 can be thought of as wrapped nST2 times around the θ circle and that both

the BPS and non-BPS modes contribute to the delta-function in (4.48) and the inclusion

of both contributions is essential to the proper normalization of the modes. The result is

simply an extra factor of
√

2 in the coefficient of the BPS mode expansion compared to

the naive expansion that neglects non-BPS modes:

ηi = η BPS
i + η nonBPS

i =
1√

8π2TD2Lz

∑
k>0

[
eikθ/n2

(aik)
†√
|k|

+ h.c.

]
+ η nonBPS

i . (4.49)

The creation and annihilation operators, (aik)
† and aik, for the modes in the kth harmonic

satisfy canonical commutation relations:

[aik, (a
j
k′)
†] = δijδk,k′ . (4.50)

The D0 and F1 quantized charges of the supertube are:

NST
1 =

TD2

TD0

∫ 2πLz

0

dz

∫ 2πn2

0

dθFzθ = 4π2TD2

TD0

Lzn
ST
2 Fzθ (4.51)

NST
3 =

TD2

TF1

∫ 2πn2

0

dθ

[
−K

1

V
+

1

Fzθ + V −1K3

(
Z2

V
+ (η′)2

)]
(4.52)
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Substituting (4.49) into (4.52) and rearranging using (4.51) leads to:

4∑
i=1

∑
k>0

k(aik)
†aik = LzTD2

∫ 2πn2

0

dθ

∫ 2πn2

0

dθ′
4∑
i=1

η′iη
′
i

=

[
NST

1 + 2πTF1Lzn
ST
2

K3

V

] [
NST

3 +
2πTD2

TF1

nST2

K1

V

]
− 4π2TD2Lz(n

ST
2 )2Z2

V
,

(4.53)

where the integrals over θ and θ′ are precisely those appearing in each of (4.51) and

(4.52). This is the result we have been seeking. The left hand side of (4.53) can be

thought of as the total energy L0 of a set of four harmonic oscillators in 1+1 dimensions.

For large L0, the entropy coming from the different ways of distributing this energy to

various modes of these oscillators is given by the Cardy formula:

S = 2π

√
cL0

6
. (4.54)

Since we count BPS excitations, there will be also 4 fermionic degrees of freedom, and

the central charge associated to the torus oscillations will be c = 4 + 2 = 6, giving the

entropy:

S = 2π

√[
NST

1 + nST2

K3

V

] [
NST

3 + nST2

K1

V

]
− (nST2 )2

Z2

V

= 2π

√
Qeff

1 Qeff
3 − (nST2 )2

Z2

V
, (4.55)

where we have used the conventions presented in Appendix D and

Qeff
1 ≡ NST

1 + nST2

K3

V
, Qeff

3 ≡ NST
3 + nST2

K1

V
(4.56)
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Equation (4.53) has two important consequences. First, for a supertube with a given

set of BPS modes, this equation is nothing but a “radius formula” that determines its

size by fixing, in the spatial base, the location of the U(1) fiber that it wraps. When the

supertube is maximally spinning, and has no BPS modes, this equation simply becomes

the radius formula of the maximally spinning supertube [35]. The second result is that

this formula also determines the capacity of the supertube to store entropy: In flat space,

this capacity is determined by the asymptotic charges, QST
1 ≡ NST

1 and QST
3 ≡ NST

3 ,

whereas, in a more general background, the capacity to store entropy is determined by

Qeff
1 and Qeff

3 . In certain backgrounds, the latter can be made much larger than the

former and so a supertube of given asymptotic charges can have a lot more modes and

thus store a lot more entropy by the simple expedient of migrating to a location where

the effective charges are very large. We will discuss this further below.

Clearly, for bubbling backgrounds, and even for black ring backgrounds, the right

hand side of (4.53) can diverge, and one naively gets an infinite value for the entropy.

Nevertheless, as we mentioned in the introduction, this calculation is done in the approx-

imation that the supertube does not back-react on the background, and taking this back-

reaction into account will modify this naive conclusion.

We have also explicitly calculated the supertube entropy in a general three-charge

black-ring background, where the supertube oscillates both in the T 4, and in two of the

transverse R4 directions [35]. The result is identical to (4.55), except that now there

are six possible bosonic modes (and thus after we include the corresponding fermions

the central charge of the system is c = 9). Based on this result, we expect that upon

including the four bosonic shape modes in the transverse space, as well as the fermionic

counterparts of all the eight bosonic modes, the central charge c should jump from 6 to

12, and equation (4.55) to be modified accordingly. We have also explicitly computed

the entropy coming from arbitrary shape modes, and the formulas do display entropy
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enhancement. Our calculation agrees with the entropy of supertubes in flat space-time,

computed using similar methods in [175, 9], and using different methods in [188].

It is also possible to compute the angular momentum of the supertube along the GH

fiber

JST =
NST

1 NST
3

nST2

− Qeff
1 Qeff

3

nST2

+ nST2

Z2

V
. (4.57)

From this identity we may simply re-write (4.55) as

S = 2π

√
Qeff

1 Qeff
3 − (nST2 )2

Z2

V
= 2π

√
NST

1 NST
3 − nST2 JST . (4.58)

Hence, in a certain sense, (4.55) is the same as the entropy formula for a supertube in

empty space and it naively appears that entropy enhancement has gone away. It has

not. The important point is that (4.57) implies that it is possible for JST to become

extremely large and negative as the number of BPS modes on the tube increases6. In

flat space, |JST | is limited by |NST
1 NST

3 | but in a general background our Born-Infeld

analysis (equations (4.53) and (4.57)) imply that the upper bound is the same but there

is no lower bound.

From the supergravity perspective, the limits on JST usually emerge from requir-

ing that there are no CTC’s near the supertube. This is a local condition set by the

local behavior of the metric, and particularly by the ZI , near the supertube. Although

we do not have the explicit solution, our analysis suggests that the lower limit of the

angular momentum of the supertube is controlled by Qeff
1 and Qeff

3 as opposed to NST
1

and NST
3 . Thus entropy enhancement can occur if the supertube moves to a region

where Qeff
1 and Qeff

3 are extremely large and then a vast number of modes can be sup-

ported on a supertube (of fixed NST
1 and NST

3 ) by making JST large and negative. We

6This is not unexpected: As in flat space, every BPS mode on the supertube takes away one quantum
of angular momentum of the tube.
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therefore expect the corresponding supergravity solution to be CTC-free provided that

|nST2 JST | < Qeff
1 Qeff

3 .

One should thus think of a supertube of given nST2 , NST
1 and NST

3 as being able

to store a certain number of modes before it over-spins. The “storage capacity” of the

supertube is determined by the local conditions around the supertube and, specifically,

by nST2 , Qeff
1 and Qeff

3 . Magnetic dipole interactions, like those evident in bubbling

backgrounds, can thus greatly modify the capacity of a given supertube to store entropy.

4.2.4 Entropy Enhancement - the Proposal

As we have seen, the entropy of a supertube, and hence the entropy of a fluctuating

geometry, depends upon the local effective charges and not upon the asymptotic charges

measured at infinity. In the derivation of (4.53) we started with a maximally spinning,

round supertube with zero entropy and perturbed around it. For the maximally spin-

ning tube, the equilibrium position is determined by the vanishing of the right-hand

side. Upon adding wiggles to the tube, the right hand side no longer vanishes and the

imperfect cancelation is responsible for the entropy.

It is interesting to ask how much entropy can equation (4.53) accommodate. The

answer is not so simple. At first glance one might say that the both terms in the right

hand side of (4.53) can be divergent, and hence the entropy of the fluctuating tube is

infinite. Nevertheless, one can see that the leading order divergent terms in Qeff
1 Qeff

3

and in (nST2 )2Z2/V come entirely from bulk supergravity fields, and exactly cancel for

the supertube in a GH background.

It is likely that this partial cancelation is an artefact of the extremely symmetric form

of the solution, and that in a more general solution such cancellation may not take place.
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In particular, both Qeff
1 and Qeff

3 are integrals of “effective charge” densities on the

supertube world-volume, and the right hand side of equation (4.53) should be written as

Qeff
1 Qeff

3 − n2
2

Z2

V
=

∫
ρeff1 dθ

∫
ρeff3 dθ −

∫
ρeff1 ρeff3 dθ (4.59)

If this generalized formula is correct, certain density and shape modes will disturb the

balance between the product of integrals and the integral of the product, and the leading

behavior of the entropy will still be of the order

S ∼
√
Qeff

1 Qeff
2 . (4.60)

Regardless of this, the next-to-leading divergent terms in (4.55) are a combination

of supertube world-volume terms and bulk supergravity fields. In a scaling solution, or

when the tube is close to a black ring, these terms can diverge, giving naively an infinite

entropy. We expect the back-reaction of the supertubes to render this entropy finite.

The idea of entropy enhancement is that one can find backgrounds in which the

effective charges of a two-charge supertube can be made far larger than the asymptotic

charges of the solution, and that, in the right circumstances, the oscillations of this

humble supertube could give rise to an entropy that grows with the asymptotic charges

much faster than
√
Q2 (as typical for supertubes), and might even grow as fast as

√
Q3,

as typical for black holes in five dimensions.

To achieve such a vast enhancement requires a very strong magnetic dipole-dipole

interaction and this means that multiple magnetic fluxes must be present in the solu-

tion. It is not sufficient to have a large red-shift: BMPV black holes have infinitely long

throats and arbitrarily large red-shifts but have no magnetic dipole moments to enhance

the effective charges and thus increase the entropy that may be stored on a given super-

tube.
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Hence, the obvious places to obtain entropy enhancement are solutions with large

dipole magnetic fields, such as black ring or bubbling microstate solutions. Since we are

focussing on trying to obtain the entropy of black holes from horizonless configurations,

we will focus on the latter. These bubbling solutions are constructed using an ambi-

polar base GH metric, and near the “critical surfaces,” where V vanishes, the term KI

V
in

the effective charge diverges. It is therefore natural to expect entropy enhancement for

supertubes that localize near the critical (V = 0) surfaces.

We also believe that placing supertubes in deep scaling solutions [29, 32, 79] will

prove to be an equally crucial ingredient. Indeed, as we will see in the next section, in

a deep microstate geometry the KI at the location of the tube can also become large,

and hence there will be a double enhancement of the effective charge, both because of

the vanishing V in the denominator and because of the very large KI in the numerator.

There is another obvious reason for this: It is only the scaling microstate geometries that

have the same quantum numbers as black holes with macroscopic horizons [29] .

This must mean that the simple entropy enhancement one gets from the presence of

critical surfaces is not sufficient for matching the black hole entropy. The fundamental

reason for this may well be the following: Even if the round supertube can be brought

very close to the V = 0 surface, once the supertube starts oscillating it will necessarily

sample the region around this surface, and the charge enhancement will correspond to

the average Qeff
I in that region. For this to be very large the entire region where the

supertube oscillates must have a very significant charge enhancement. The only such

region in a horizonless solution is the bottom of a deep or scaling throat, where the

average of the KI is indeed very large.

All the issues we have raised here have to do with the details of the entropy enhance-

ment mechanism, and involve some very long and complex calculations that we intend

to pursue in future work. We believe their clarification is very important, as it will
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shed light on how the entropy of black holes can be realized at the level of horizonless

configurations.

Our goals here are rather more modest. We have shown via a Dirac-Born-Infeld

probe calculation that the entropy of supertubes is given by their effective charges, and

not by their brane charges, and that these effective charges can be very large. However,

because the supertube has been treated as a probe in our calculations, it is logically

possible that, once we take into account its back-reaction, the bubble equations may

forbid the supertube to get suitably close to the V = 0 surfaces, and to have a suitable

entropy enhancement.

In principle this is rather unlikely, as we know that in all the examples studied to

date, the solutions of the Born-Infeld action of supertubes always correspond to config-

urations that are smooth and regular in supergravity [35]. However, settling the issue

completely is not possible before constructing the full supergravity solutions corre-

sponding to wiggly supertubes. We recently made some progress in this direction [40].

In the remainder of this chapter we will show that at least for the maximally-spinning

supertubes, their effective charges in deep scaling solutions can lead to a black-hole-like

enhanced entropy.

4.2.5 Supertubes in scaling microstate geometries

As explained in Chapter 3 and [33], one can perform a spectral flow transformation on a

GH background withN GH points and obtaina bacground withN−1 GH points and one

two-charge supertube. The dipole charge and “bare” electric charges of the supertube are

given by the coefficients of the divergent terms in K̃2, L̃1 and L̃3
7. One can furthermore

7The harmonic functions after the spectral flow transformation are denoted with tilde. See Chapter 3
for more detials on the spectral flow transformation for GH bubbling solutions
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show that “effective” charges of the supertube are given by the divergence of the electric

potentials, ZI , near the supertube:

Qeff
1 ≡ 4 lim

rN→0
rN Z̃1 = 4 qN

(
Ṽ −1 Z1

)∣∣
rN=0

= 4˜̀1
N + 4k̃2

N(Ṽ −1K̃3)|rN=0 , (4.61)

and similarly for Qeff
3 .

To find bubbling solutions that contain supertubes with enhanced charges one could

look for solutions of the bubble equations (2.79) that describe scaling solutions where

some of the centers are GH points, and the other centers are supertubes. However, it

is more convenient to construct such solutions by spectrally flowing multi-center GH

solutions, which have been studied much more. The parameters of the equations are the

same as in Section 2.2.10. One obtains a scaling solution when a subset, S, of the GH

points approach one another arbitrarily closely, that is, rij → 0 for i, j ∈ S. In terms of

the physical geometry, these points are remaining at a fixed distance from each other, but

are descending a long AdS throat that, in the intermediate region, looks almost identical

to the throat of a black hole or black ring (depending upon the total GH charge in S). In

particular, in the intermediate regime, one has ZI ∼ Q̂I
4 r

, where we have taken S to be

centered at r = 0 and the Q̂I are the electric charges associated with S. Similarly, if S

has a non-zero total GH charge of q̂0, then one has V ∼ q̂0
r

. More precisely:

ZI V = lI0V + ε0 (LI − `I0) − 1
4
CIJK

N∑
i,j=1

Π
(J)
ij Π

(K)
ij

qi qj
ri rj

. (4.62)
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Suppose that we perform a spectral flow so that some point, p ∈ S, becomes a supertube.

Let Ṽp be the value of Ṽ at p. Then, from (4.61), the effective charges of this supertube

are dominated by terms from interactions with the magnetic fluxes in the throat:

Qeff
I ∼ − 2 qp Ṽ

−1
p CIJK

∑
j∈S , j 6=p

Π
(J)
jp Π

(K)
jp

qj
rjp

. (4.63)

However, observe that q̃j = (k2
p)
−1qpqjΠ

(2)
jp and so

q−1
p Ṽp ∼ (k2

p)
−1

N∑
j∈S , j 6=p

qjΠ
(2)
jp

rjp
. (4.64)

Therefore the numerator and denominator of (4.63) have the same naive scaling behavior

as rjp → 0 and so, in general, Qeff
I will attain a finite limit that only depends upon the

qj, k
I
j for j ∈ S. Indeed, the finite limit of Qeff

I scales as the square of the k’s for large

kIj parameters. This is no different from the typical values of asymptotic electric charges

in bubbled geometries.

However, since we are in a bubbled microstate geometry, V and Ṽ change sign

throughout the bubbled region. In particular, there are surfaces at the bottom of the

throat where Ṽ vanishes and there are regions around them where Ṽ remains finite and

bounded as rij → 0. Suppose that we can arrange for the supertube point p to be in such

a region of a scaling throat and at the same time we can arrange that ZI still diverges

as 1
r
. Then, in principle, the effective charges, of the supertube Qeff

I , could become

arbitrarily large.

As mentioned above, we expect the entropy of the system to come from wiggly

supertubes in throats that are neither very deep (to allow the tubes to wiggle), nor very

shallow (to give enhancement). We do not, as yet, know how to take the back-reaction of

the wiggly supertubes into account, and hence we do not have any supergravity argument
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about the length of these throats. However, we can use the AdS/CFT correspondence

and the fact that we know what the typical CFT microstates are, to argue [29] that the

typical bulk microstates are scaling solutions that have GH size rT given by

rT ∼ Q
−1/2 ∼ 1

k̄
, (4.65)

where Q is the charge and k̄ is the typical flux parameter.

If one takes this AdS/CFT result as given, and moreover assumes that the wiggling

supertube remains in a region of finite Ṽ in the vicinity of the Ṽ = 0 surface, one then

has:

Qeff
I ∼ (k̄)3 ∼ Q

3/2
(4.66)

because Π
(K)
jp ∼ k̄, and hence the entropy of the fluctuating supertube (4.60) would

depend upon the asymptotic charges as:

S ∼
√
Qeff

1 Qeff
2 ∼ Q

3/2
. (4.67)

which is precisely the correct behavior for the entropy of a classical black hole!

These simple arguments indicate that fluctuating supertubes at the bottom of deep

scaling microstate geometries can give rise to a black-hole-like macroscopic entropy,

provided that they oscillate in a region of bounded Ṽ .

Obviously there is a great deal to be checked in this argument, particularly about the

effect of the back-reaction of the supertube on its localization near the Ṽ = 0 surface.

We conclude this section by demonstrating that at least maximally spinning tubes, for

which we can construct the supergravity solution, have no problem localizing in a region

of finite Ṽ . As the solution scales, the effective charges diverge, as is needed for entropy

enhancement.
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4.2.6 An example

One can construct a very simple deep scaling solution using three GH centers with

charges q1, q2 and q3, and fluxes arranged so that |Γij| ≡ |qi qjΠ(1)
ij Π

(2)
ij Π

(3)
ij |, i, j =

1, 2, 3, satisfy the triangle inequalities. The GH points then arrange themselves asymp-

totically as a scaled version of this triangle:

rij → λ
∣∣Γij∣∣ , λ→ 0 . (4.68)

One can then take a spectral-flow of this solution so that the second GH point becomes

a two-charge supertube. For simplicity, we will choose q1 Π
(2)
12 = q3 Π

(2)
23 so that after

the flow the GH charges of the remaining two GH points will be equal and opposite:

q̃1 = − q̃3 . (4.69)

For Ṽp to remain finite in the scaling limit, the supertube must approach the plane

equidistant from the remaining GH points.

We have performed a detailed analysis of such solutions and used the absence of

CTC’s close to the GH points, in the intermediate throat and in the asymptotic region to

constrain the possible fluxes. We have found a number of such solutions that have the

desired scaling properties for Qeff
I and we have performed extensive numerical analysis

to check that there are no regions with CTC’s. In particular, we checked numerically

that the inverse metric component, gtt, is globally negative and thus the metric is stably

causal. We will simply present one example here.

Consider the asymptotically Taub-NUT solution with:

q1 = 16 , q2 = 96 , q3 = −40 , ε0 = 1 , Q0 ≡ q1 +q2 +q3 = 72 , (4.70)
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and

kI1 = (8,−88, 8) , kI2 = (0, 96, 0) , kI3 = (20, 64, 20) , (4.71)

where Q0 is the KK monopole charge of the solution. With these parameters one has

the following fluxes:

Π
(I)
12 = (−1

2
, 13

2
,−1

2
) , Π

(I)
23 = (−1

2
,−13

5
,−1

2
) , Π

(I)
13 = (−1, 39

10
,−1) ,

(4.72)

and

Γ12 = Γ23 = Γ31 = 2496 . (4.73)

In this scaling solution the GH points form an equilateral triangle and thus, after the

spectral flow, the supertube will tend to be equidistant from the two GH points of equal

and opposite charges (4.69), and therefore will approach the surface where Ṽ = 0.

The solution to the bubble equations yields

r12 =
11232 r13

11232 + 359 r13

, r23 =
11232 r13

11232 + 731 r13

, (4.74)

which satisfies the triangle inequalities for r13 ≤ 11232√
262429

≈ 21.9. After spectral flow the

value of Ṽ at the location of the supertube (point 2) is

Ṽ2 = 1 +
104

r12

− 104

r23

= − 22

9
, (4.75)

independent of r13. In particular, it remains finite and bounded as the three points scale

and the distances between them go to zero. The effective charges of the supertube are

given by

Qeff
1 = Qeff

3 = 384 Ṽ −1
2

(
1 +

52

r12

+
52

r23

)
, (4.76)
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and scale as λ−1 as λ → 0 in (4.68). We thus have effective charges that naively scale

to arbitrarily large values. As described earlier, we expect this scaling to stop as the

supertubes become more and more wiggly, and we expect the entropy to come from

configurations of intermediate throat depth.

4.3 Conclusions

The most important result presented in this Chapter is that the entropy of a supertube in a

given background is not determined by its charges, but rather by its “effective charges,”

which receive a contribution from the interaction of the magnetic dipole moment of the

tube with the magnetic fluxes in the background. As a result, one can get very dramatic

entropy enhancement if a supertube is placed in a suitable background. We have argued

that this enhancement can give rise to a macroscopic (black-hole-like) entropy, coming

entirely from smooth horizonless configurations.

Three ingredients are needed for this dramatic entropy enhancement:

• Deep or scaling solutions

• Ambi-polar base metrics

• BPS fluctuations that localize near the critical (V = 0) surfaces of the ambi-polar

metrics

These are also precisely the ingredients that have emerged from recent developments in

the study of finite-sized black-hole microstates in the regime of parameters where the

gravitational back-reaction of some of the branes is negligible. Indeed, deep scaling

ambi-polar configurations are needed both to get a macroscopic entropy in the quiver

quantum field theory regime’ [79], and to get smooth microstates of black holes with

macroscopic horizons [29]. Furthermore, the D0 branes that can give a black-hole-like
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entropy in a D6-D6 background [80] must localize near the critical surface of the ambi-

polar base, much like the supertubes in our analysis. It would be fascinating to find a

link between the microscopic configurations constructed in these papers, and those we

consider here.

We have referred to the entropy enhancement mechanism as a “proposal” because

a number of the details need to be checked by careful computation. Most importantly,

we have performed a classical calculation using a brane probe near a critical surface.

It is important to study the fluctuating supertubes in the full supergravity theory and

determine how the back-reaction of the fluctuations modifies the picture presented here.

One important issue is whether fluctuating supertubes can still remain in the region close

to the critical surface with V finite and bounded. Another is to understand the interplay

between how much a supertube wiggles and how long its throat can get or how much

the supergravity solution it sources can scale.

In [40] we found exact supergravity solutions corresponding to wiggling supertubes.

We were able to find the exact solution that corresponds to the backreaction of the charge

density mode along the supertube profile. The solution that we find is valid for a circular

supertube in a general GH background . Taking into account the backreaction of the

shape modes of the supertube seems to be technically challenging since one breaks

a lot of the symmetries of the background. The results of [40] however support the

general results of the entropy enhancement mechanism described in this Chapter for

probe supertubes. In particular we have shown in [40] that (4.59) is valid for the charge

density modes.

While some of the details need to be explored very carefully, we believe that the

mechanism and the approach of this Chapter may well provide the key to understanding

how fluctuating microstate geometries can provide a semi-classical description of black-

hole entropy in the regime of parameters where the black hole exists.
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Chapter 5

Going beyond triholomorphy

Despite the remarkable results that have been obtained using Gibbons-Hawking geome-

tries, such metrics represent a major restriction. In particular, they all have a translational

(tri-holomorphic) U(1) isometry [113], which is a combination of the two U(1)’s in the

R2 planes that make up the R4 in the asymptotic region1. Thus, bubbling solutions with a

GH base cannot capture quite a host of interesting physical processes that do not respect

this symmetry, like the merger of two BMPV black holes, or the geometric transition

of a three-charge supertube of arbitrary shape. In [26] it was argued that this geomet-

ric transition results in bubbling solutions that have an ambi-polar hyper-Kähler base,

and that depend on a very large number of arbitrary continuous functions. It is of great

interest to construct and understand such solutions since they will provide important

information about the structure of the microstates of supersymmetric black holes.

In this Chapter, based on [31], we will make a step in this direction by considering

metrics that have a general U(1) isometry which are much less restrictive than the GH

metrics. Moreover, they could also arise from the geometric transition of supertubes that

preserve a rotational U(1), and hence could also depend on an arbitrarily large number

of continuous functions. Even if the entropy in these symmetric configurations will be

smaller than the entropy of the black hole, it might give some insight into the structure

and charge dependence of the most general, non-symmetric configuration.

1Alternatively, one can see that the tri-holomorphic U(1) necessarily lies in one of the SU(2) factors
of SO(4) ≡ (SU(2)× SU(2))/Z2.
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An important feature of all bubbled solutions is that the ambi-polar base space and

the fluxes dual to the homology are singular on the critical surfaces where the metric

changes sign. As we discussed in Chapter 2, for ambi-polar GH spaces it was possible to

use the explicit solutions to show that all these singularities were canceled and the final

result was a regular, five-dimensional compactification of M-theory. Our analysis here

will illustrate how this happens for the general U(1)-invariant BPS bubbled background,

and this work suggests that the most general bubbling geometries will have also this

property.

Before beginning, we would like to stress that constructing solutions that only have

a rotational U(1) is a rather tedious and challenging task. For classical black holes

and black rings, only two such solutions exist: one describing a black ring with an

arbitrary charge density [23], and one describing a black ring with a black hole away

from the center of the ring [27]. In [31] we were able to construct the first explicit

bubbling solution in this class, using a base that is a generalization of the Atiyah-Hitchin

metric2. Nevertheless, the most general bubbling solutions that only have a rotational

U(1) invariance will be much more complicated, and perhaps even impossible to write

down explicitly.

In this Chapter we will follow [31] and present a general analysis of supergrav-

ity solutions on hyper-Kähler manifolds with no tri-holomorphic U(1) symmetry. The

solutions cannot be constructed as explicitly as for case of GH metrics but nevertheless

we are able to show that the general structure for the construction of bubbling solutions

is still present. We also present the explicit five-dimensional supergravity solution with

a four-dimensional Atiyah-Hitchin base and show how one can construct a bubbling

2Our solutions can also be used to construct black holes or black rings in the Atiyah-Hitchin space.
See [197, 105, 106, 107] for recent work in this direction.
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solution on it. We present also a curious construction of a five-dimensional supergr-

vaity solution based on the irregular Eguchi-Hanson metric, the result is the well-known

AdS2 × S3 solution in global coordinates with constant electro-magnetic flux.

5.1 Hyper-Kähler base with a general U(1)

5.1.1 Prelude

It has been known for a long time that hyper-Kähler metrics with a generic (rotational)

U(1) isometry can be obtained by solving the SU(∞) Toda equation [48, 72, 10]. The

coordinates can be chosen so that the metric takes the form:

ds2
4 = V −1 (dτ + Aidx

i)2 + V γij dx
idxj , (5.1)

with γij = 0 for i 6= j and

γ11 = γ22 = eν , γ33 = 1 , (5.2)

for some function, ν. The function, V , and the vector field, A, are given by

V = ∂zν , A1 = ∂yν , A2 = − ∂xν , A3 = 0 , (5.3)

and the function ν must satisfy:

∂2
x ν + ∂2

y ν + ∂2
z (eν) = 0 . (5.4)

This equation is called the SU(∞) Toda equation, and may be viewed as a continuum

limit of the SU(N) Toda equation. Even though the SU(∞) Toda equation is integrable,
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surprisingly little is know about its solutions, and there appears to be no known analog of

the known soliton solutions of the SU(N) Toda equation. On the other hand, the metric

is determined in terms of a single function and (5.1) is a relatively mild generalization

of the Gibbons-Hawking metrics.

Our purpose here is to construct three-charge solutions based upon ambi-polar

hyper-Kähler metrics with generic (non-tri-holomorphic) U(1) isometries. We will do

this in two different ways, first by building such solutions using a general metric of the

form (5.1) on the base space. We will then consider the Atiyah-Hitchin metric: This

metric has an SO(3) isometry, but none of the U(1) subgroups is tri-holomorphic. Just

as with the GH metric, the metric (5.1), is ambi-polar if we allow V = ∂zν to change

sign. Thus the primary issue of regularity in the five-dimensional metric arises on the

critical surfaces where V = 0. While we will not be able to construct general solutions

as explicitly as can be done for GH metrics, we will show that the five-dimensional

metric is regular and Lorentzian in the neighborhood of these critical surfaces.

The standard Atiyah-Hitchin metric [5] arises as the solution of a first order, non-

linear Darboux-Halphen system for the three metric coefficient functions. This system is

analytically solvable in terms of the solution of a single, second order linear differential

equation. Indeed, the solutions of the latter equation are expressible in terms of elliptic

functions. The standard practice is to choose the solution of this linear equation so

that the metric functions are regular, and the result is a smooth geometry that closes

off at a non-trivial “bolt,” or two-cycle in the center. We will show that if one selects

the most general solution of the linear differential equation, then one obtains an ambi-

polar generalization of the Atiyah-Hitchin metric. Moreover, one can set up regular,

cohomological fluxes on the two-cycle and the resulting warp factors render the five-

dimensional metric perfectly smooth and regular across the critical surface.
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The ambi-polar Atiyah-Hitchin metric actually continues through the bolt and ini-

tially appears to have two regions, one on each side of the bolt, that are asymptotic to

R3 × S1. It thus looks like a wormhole. Unfortunately, the solution cannot be made

regular on both its asymptotic regions. Indeed, upon imposing asymtotic flatness on one

side of the wormhole, one finds that the warp factors change sign twice, once on the

critical surface and again as one enters one of the asymptotic regions. Thus the critical

surface is regular, but there is another potentially singular region elsewhere. However,

we find that if we tune the flux through the bubble to exactly the proper value, one can

pinch off the metric just as the warp factors change sign for the second time. The result

is a Lorentzian metric, that extends smoothly through the critical surface (V = 0). The

pinching off of the metric does however result in a curvature singularity that is very sim-

ilar to the one encountered in the Klebanov-Tseytlin solution [149]. We will argue that

the singularity of our new, non-trivial BPS solution is also a consequence of the very

high level of symmetry, and that it should be resolved via a mechanism similar to that in

[150].

We also consider solutions based upon an ambi-polar generalization of the Eguchi-

Hanson metric, obtained by making an analytic continuation of the standard Eguchi-

Hanson metric, and extending the range of one of the coordinates3. The singular struc-

ture of this metric is precisely what is needed to render it ambi-polar. Hence, upon

adding fluxes and warp factors this metric gives us regular five-dimensional solutions

that have similar features to the bubling Atiyah-Hitchin solution. There is also one

surprise: One of the Eguchi-Hanson “wormhole” solutions is completely regular every-

where and is nothing other than the global AdS2 × S3 Robinson-Bertotti solution [44].

3The unextended version of this metric was also discussed in the original Eguchi-Hanson paper [83],
but was discarded because it is singular.
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We will start by discussing the general construction of supergravity solutions on

hyper-Kähler bases with a general U(1) symmetry and their ambipolar generalizations.

In the next Section we will present two explicit solutions on the Atiyah-Hitchin and the

singular Eguchi-Hanson spaces.

5.1.2 The BPS equations

We will use the same Ansatz for the metric and the 3-form gauge potential of eleven-

dimensional supergravity as in Chapter 2 and will study the system of BPS equations

(2.14), (2.15), (2.16) on a general hyper-Kähler manifold with a U(1) isometry.

The first step in solving the system of BPS equations is to identify the self-dual,

harmonic two-forms, Θ(I). In a Kähler manifold this is, at least theoretically, straight-

forward because such two-forms are related to the moduli of the metric. For a hyper-

Kähler metric there are three complex structures, J(i), i = 1, 2, 3, and given a harmonic

two-form, ω, one can define three symmetric tensors via:

h(i)
µν ≡ J(i)µ

ρ ωρν − J(i) ν
ρ ωµρ . (5.5)

These tensors may be viewed as metric perturbations and as such they represent pertur-

bations that preserve the hyper-Kähler structure. In particular, they are zero modes of

the Lichnerowicz operator.

For the metric (5.1) it is convenient to introduce vierbeins:

ê1 = V −1/2(dτ+Aidx
i) , ê2 = V 1/2eν/2dx , ê3 = V 1/2eν/2dy , ê4 = V 1/2dz ,

(5.6)
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and introduce a basis for the self-dual and anti-self dual two forms:

Ω
(1)
± = (dτ + A2dy) ∧ dx± V dy ∧ dz = e−ν/2(ê1 ∧ ê2 ± ê3 ∧ ê4) , (5.7)

Ω
(2)
± = (dτ + A1dx) ∧ dy ± V dz ∧ dx = e−ν/2(ê1 ∧ ê3 ± ê4 ∧ ê2) , (5.8)

Ω
(3)
± = (dτ + A1dx+ A2dy) ∧ dz ± eνV dx ∧ dy = (ê1 ∧ ê4 ± ê2 ∧ ê3) . (5.9)

The three Kähler forms are then given by [10]:

J(1) = eν/2 cos
(τ

2

)
Ω

(1)
− + eν/2 sin

(τ
2

)
Ω

(2) ,
− (5.10)

J(2) = eν/2 sin
(τ

2

)
Ω

(1)
− − eν/2 cos

(τ
2

)
Ω

(2)
− , (5.11)

J(3) = Ω
(3)
− , (5.12)

and one can check that they satisfy the proper quaternionic algebra:

J(i)µ
ρ J(j) ρ

ν = δij δ
ν
µ − εijk J(k)µ

ν . (5.13)

Following [26], we make an Ansatz for the harmonic, self-dual field strengths, Θ(I):

Θ(I) =
3∑

a=1

∂a(ν̇
−1KI) Ω

(a)
+ , (5.14)

where the dot represents derivative with respect to z. We then find that the KI must sat-

isfy the linearized Toda equation (it follows from (5.4) that ν̇ also solves this equation):

LT KI ≡ ∂2
xK

I + ∂2
yK

I + ∂2
z (e

νKI) = 0 . (5.15)
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For later convenience, we note that there are relatively simple vector potentials such that

Θ(I) = dB(I):

B(I) ≡ ν̇−1KI (dτ + A) + ~ξ (I) · d~x , (5.16)

where

(~∇× ~ξ (I))j = − ∂i
(
γijeνKI

)
. (5.17)

Hence, ~ξ (I) is a vector potential for magnetic monopoles located at the singular points

of KI .

Since the KI satisfy the linearized Toda equation, we see the direct relationship

between the harmonic forms and linearized fluctuations of the metric. In practice, (5.5)

and (5.14) do not yield exactly the same result as the direct substitution of fluctuations

in ν into (5.1) but they are equivalent up to infinitesimal diffeomorphisms. For example,

the metric fluctuation obtained from using (5.14) and J(3) in (5.5) is identical with the

metric fluctuation, ν → ν + εKI , combined with the infinitesimal diffeomorphism,

z → z − εν̇−1KI .

The second BPS equation (2.15) reduces to:

LZI = ν̇ eν CIJK γ
ij∂i

(KJ

ν̇

)
∂j

(KK

ν̇

)
, (5.18)

where γij is the three-metric in (5.2) and L is given by:

LF ≡ ν̇ eν ∇2
γF = ∂2

xF + ∂2
yF + ∂z(e

ν∂zF ) . (5.19)

The operator,∇2
γ , denotes the Laplacian in the metric γij .

The natural guess for the solution is to follow, once again, [26] and try:

ZI ≡ 1
2
CIJK ν̇

−1KJKK + Z
(0)
I . (5.20)
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One then finds that Z(0)
I is not a solution of the homogeneous equation, but

LZ(0)
I = − ∂z

(
1
2
eν CIJK K

JKK
)
. (5.21)

Intriguingly, one can also check that:

LT
(

1
2
CIJK ν̇

−1KJKK
)

= ν̇ eν CIJK γ
ij∂i

(KJ

ν̇

)
∂j

(KK

ν̇

)
, (5.22)

where LT is the linearized Toda operator (5.15) and so one has the explicit solution but

to the wrong equation.

The important point, however, is that the source on the right-hand side of (5.21) is

regular as ν̇ → 0, and so Z(0)
I is regular on any critical surface where one has ν̇ = 0.

To solve the last BPS equation (2.16) for the angular momentum vector, k, we make

the Ansatz:

k = µ (dτ + A) + ω , (5.23)

where ω is a one form in the three-dimensional space defined by (x, y, z). Define yet

another linear operator:

L̃F ≡ eνγij ∂i ∂jF = ∂2
xF + ∂2

yF + eν ∂2
zF , (5.24)

and then one finds that µ and ω must satisfy:

L̃µ = ν̇−1 ∂i

(
ν̇ eν γij

3∑
I=1

ZI ∂j

(KI

ν̇

))
, (5.25)

and

(~∇× ~ω)i = ν̇ eνγij∂jµ − µ ∂j(e
νγij ν̇) − ν̇ eν ZI γ

ij ∂j

(KI

ν̇

)
. (5.26)
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Note that the integrability of the equation for ω is precisely the equation (5.25) for µ,

provided that one also uses the fact that ν satisfies (5.4). The structure of these equations

also closely parallels those encountered for a GH base metric [26, 41].

Once again one can try a form of the solution based upon the results for GH spaces.

Define µ0 by:

µ = 1
2
ν̇−1 ZI K

I − 1
12
ν̇−2CIJK K

IKJKK + µ0

= 1
2
ν̇−1 Z

(0)
I KI + 1

6
ν̇−2CIJK K

IKJKK + µ0 , (5.27)

and one then finds that µ0 must satisfy:

L̃µ0 = − 1
2
eν KI ∂zZ

(0)
I + 1

12
eν CIJK K

IKJKK . (5.28)

Again note that the source is regular as ν̇ → 0 and so µ0 will be similarly regular as

ν̇ → 0.

Finally, if one substitutes these expressions for ZI and µ into (5.26), one obtains:

(~∇× ~ω)i = ν̇ eνγij∂jµ0 − µ0 ∂j(e
νγij ν̇) + 1

2
KI∂j

(
eνγijZ

(0)
I

)
− 1

2
eνγijZ

(0)
I ∂jK

I

− 1
6
δi3 e

ν CIJK K
IKJKK , (5.29)

where the δi3 means that the last term only appears for i = 3. Note that ~ω has sources

that are regular as ν̇ → 0 and so ~ω will be regular on critical surfaces.

Therefore, in this more general class of metrics, we cannot find the solutions to the

BPS equations as explicitly as one can for GH base metrics. However, one can com-

pletely and explicitly characterize the singular parts of the solutions as one approaches

critical surfaces where ν̇ → 0.
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5.1.3 Regularity on the critical surfaces

Consider the behavior of the metric (2.5) as ν̇ → 0. The warp factors, ZI diverge as

ν̇−1, µ diverges as ν̇−2 and so the only potentially divergent part of the metric is:

−
(
Z1Z2Z3

)− 2
3µ2(dτ+A)2+

(
Z1Z2Z3

) 1
3 ν̇−1 (dτ+A)2 =

(
Z1Z2Z3 ν̇

3
)− 2

3 Q (dτ+A)2 ,

(5.30)

where

Q ≡ Z1 Z2 Z3 ν̇ − µ2 ν̇2 . (5.31)

Every other part of the metric has a finite limit as ν̇ → 0. Since (Z1Z2Z3 ν̇
3) is finite as

ν̇ → 0, we need to show that Q is finite. Using (5.20) and (5.27) one has

Q = ν̇−2
[(
K2K3 + ν̇ Z

(0)
1

)(
K1K3 + ν̇ Z

(0)
2

)(
K1K2 + ν̇ Z

(0)
3

)
−
(
K1K2K3 + 1

2
ν̇ Z

(0)
I KI + ν̇2µ0

)2
]

→
(
Z

(0)
1 Z

(0)
2 K1K2 + Z

(0)
1 Z

(0)
3 K1K3 + Z

(0)
2 Z

(0)
3 K2K3

)
− 1

4

(
ν̇ Z

(0)
I KI

)2 − 2 (K1K2K3)µ0 , (5.32)

as ν̇ → 0. Thus the metric is finite on the critical surfaces. To avoid CTC’s, Q must

also be positive everywhere and, as with solutions on GH base metrics, this will depend

upon the details of particular solutions.

The Maxwell fields are also regular on the critical surfaces. From (5.14) we see that

the Θ(I) are, in fact, singular on the critical surfaces, however from (2.13) and (5.16) we

see that the complete Maxwell fields are given by:

A(I) = − Z−1
I

(
dt+ µ (dτ + A) + ω

)
+ ν̇−1KI (dτ + A) + ~ξ (I) · d~x . (5.33)
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As we remarked earlier, ω is regular on the critical surfaces and the vectors, ~ξ (I), defined

by (5.17) are similarly regular. The only possible singular terms are thus

A(I) ∼
(
ν̇−1KI − Z−1

I µ
)

(dτ + A)

∼ ν̇−1
(
KI −

(
1
2
CIJK K

J KK
)−1

K1K2K3
)

(dτ + A) = 0 .(5.34)

Thus the A(I) are regular on the critical surfaces.

5.1.4 Asymptotia

We would like the four dimensional base metric to be asymptotic to R4 and there are

several ways to arrange this, depending upon how the U(1) defined by τ -translations

acts in R4. The simplest is to take ν ∼ log(z) and then:

ds2
4 ∼ z dτ 2 + z−1dz2 + dx2 + dy2 = dr2 + r2 dφ2 + dx2 + dy2 , (5.35)

where z = 1
4
r2 and τ = 2φ. This metric is that of R2×R2 provided that τ has period 4π

so that φ has period 2π. The U(1) acts in one of the R2 planes and so this is the natural

boundary condition appropriate to a system with this symmetry.

Another possible boundary condition at infinity is is to require:

ν ∼ log

(
z2(

1 + 1
8

(x2 + y2)
)2

)
, (5.36)

and then

ds2
4 ∼ 2 z−1dz2 + 1

2
z (dτ + A0)2 + z

dx2 + dy2(
1 + 1

8
(x2 + y2)

)2 , (5.37)
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where

A0 =
1

2

(xdy − ydx)(
1 + 1

8
(x2 + y2)

) . (5.38)

Now set x = tan θ
2

cosφ and y = tan θ
2

sinφ and one arrives at the metric:

ds2
4 ∼ 2 z−1dz2 + 1

2
z (dτ + 2 (1− cos θ) dφ)2 + 2 z

(
dθ2 + sin2 θdφ2

)
∼ dr2 + 1

4
r2
(
σ2

1 + σ2
2 + σ2

3

)
, (5.39)

where z = 1
8
r2, the σi are the SU(2) left invariant one-forms:

σ1 ≡ cosψ dθ + sinψ sin θ dφ ,

σ2 ≡ sinψ dθ − cosψ sin θ dφ , (5.40)

σ3 ≡ dψ + cos θ dφ ,

and τ = −2(ψ + φ). Once again, the U(1) generated by τ acts in one of the R2 planes

in R2 × R2 = R4.

With either of these asymptotic behaviors, the integral:

∫
√
γ γij ∂iν ∂jν d

3x . (5.41)

converges at infinity. The integrand is manifestly non-negative and if ν is regular every-

where then we may integrate by parts. This generates the Toda equation, (5.4), and so

the integral vanishes. We therefore conclude that the only solution that is regular on R3

is a constant. Hence, ν must have singularities on R3.

While general Toda metrics may have complicated singularities, we are interested in

metrics that, upon adding fluxes, give rise to smooth bubbling solutions. For Gibbons-

Hawking base metrics, one has positive and negative sources (GH points) for the metric
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function, V , and pairs of these GH points then define the homology cycles. If one moves

sufficiently close to one of these singular points of V in a GH metric, then the metric is,

in fact, regular and caps off into a piece of R4 (perhaps divided out by a discrete group)

with SO(4) rotation symmetry. Guided by this, it is natural to consider singularities in ν

that lead to local geometry that looks like R4/Zq for some integer, q, and which locally

has an SO(4) invariance about the singular point.

Equivalently, near the singularities of ν, the Toda metric has a U(1)×U(1) ⊂ SO(4)

symmetry and so can be mapped into a Gibbons-Hawking form. Thus the interesting

class of metrics for bubbling should be those that can be put into Gibbons-Hawking

form in the immediate vicinity of each singular point of ν. The non-trivial part of the

Toda solution then relates to the transitions between these special regions. One can thus

think of the Toda function as quilting together a collection of GH pieces.

It is elementary to see from the foregoing that, in the neighborhood of a singular

point of charge ±1, one must have:

ν ∼ log |z − α| , ±(z − α) > 0 . (5.42)

With these choices the metric becomes precisely that of R4 and is positive or negative

definite depending on the sign of the charge. By taking the z → 0 limit in (5.36) one

can also see that for a point of charge +2 one has ν ∼ 2 log |z − α|. One can continue

to higher charges via a series expansion in z but the geometry gets more complicated.

This is because a charge q leads to a local geometry that is R4/Zq. In GH spaces this

discrete identification was factored out of the U(1) fiber, but in a general Toda geometry

it will be factored out of the base and so the geometry near the singular points of ν will

involve orbifold points in R3. It is therefore simpler to restrict to geometric charges of
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±1 and take the view that other geometric charges can be obtained via mergers of the

more fundamental unit charges.

While we do not yet know how to progress beyond these simple observations, we

believe that similar considerations will apply to bubbled geometries constructed from

completely general ambi-polar, hyper-Kähler metrics. In the neighborhood of singular

points of the Kähler potential they will locally be of GH form and so one might at least

construct an approximate description as a quilt of GH patches with transition functions.

Indeed, with such an approximating metric one might be able to establish existence

theorems and perhaps even count moduli in the same manner that Yau established the

existence of Calabi-Yau metrics [209].

5.2 Some examples

5.2.1 The Atiyah-Hitchin metric

The Atiyah-Hitchin metric has the form [5, 10]:

ds2 = 1
4
a2b2c2 dη2 + 1

4
a2 σ2

1 + 1
4
b2 σ2

2 + 1
4
c2 σ2

3 , (5.43)

where the σi are defined in (5.40) and satisfy dσi = 1
2
εijkσj ∧ σk. For (5.43) to be

hyper-Kähler, the functions a(η), b(η) and c(η) must satisfy:

ȧ

a
= 1

2

(
(b− c)2 − a2

)
(5.44)

ḃ

b
= 1

2

(
(c− a)2 − b2

)
(5.45)

ċ

c
= 1

2

(
(a− b)2 − c2

)
, (5.46)

where the dot denotes d
dη

.
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5.2.2 The standard solution

This system of equations may be mapped onto a Darboux-Halphen system by introduc-

ing w1 = bc, w2 = ac and w3 = ab. One then finds

d

dη
(w1+w2) = −2w1w2,

d

dη
(w2+w3) = −2w2w3,

d

dη
(w1+w3) = −2w1w3 .

(5.47)

To solve this system one first defines a new coordinate, θ, via

dη =
dθ

u2(θ)
, (5.48)

where u is defined to be the solution of

d2u

dθ2
+

u

4 sin2 θ
= 0 . (5.49)

One then finds that the solutions are given by [5]:

w1 = −uu′ − 1
2
u2 csc θ ,

w2 = −uu′ + 1
2
u2 cot θ ,

w3 = −uu′ + 1
2
u2 csc θ , (5.50)

where the prime denotes derivative with respect to θ.

One can find the explicit solution for u in terms of elliptic functions:

u(θ) =
c1

π

√
sin θ K

(
sin2 θ

2

)
+

c2

π

√
sin θ K

(
cos2 θ

2

)
, (5.51)
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where c1 and c2 are constants and

K(x2) ≡
∫ π/2

0

(1− x2 sin2 ϕ)−1/2 dϕ . (5.52)

A first order system for three functions like (5.47) should involve three constants of

integration. These are represented by c1, c2 and the trivial freedom to shift η by a

constant. However, in order to get a regular, positive definite metric one must choose

only one of the non-trivial solutions, which is then canonically normalized to:

u(θ) =
1

π

√
sin θ K

(
sin2 θ

2

)
. (5.53)

With this choice, the function u(θ) is non-vanishing on (0, π) and so the change of

variables (5.48) is well-defined. Moreover one has w1 < 0, w2 < 0 and w3 > 0 on

(0, π) and so the metric coefficients:

a2 =
w2w3

w1

, b2 =
w1w3

w2

, c2 =
w1w2

w3

, (5.54)

are all positive.

5.2.3 The geometry of the Atiyah-Hitchin metric

The standard Atiyah-Hitchin geometry is asymptotic to R3 × S1 and has a non-trivial

two-cycle, or “bolt” in the center. To see this we first look at the structure at infinity,

which corresponds to θ → π. In this limit one has:

u(θ) ∼ − 1
π

√
2 cos θ

2
log(cos θ

2
) , dη ∼ π2 dθ

2 cos θ
2
(log(cos θ

2
))2

,

w1(θ) ∼ 1
π2 log(cos θ

2
) , w2(θ) ∼ 1

π2 log(cos θ
2
) , (5.55)

w3(θ) ∼ 1
π2 (log(cos θ

2
))2 ,
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which implies

a(θ) ∼ 1
π

log(cos θ
2
) , b(θ) ∼ 1

π
log(cos θ

2
) , c(θ) ∼ 1

π
. (5.56)

Define r = − log(cos θ
2
) and then the asymptotic form of the metric becomes:

ds2 ∼ 1
4π2

(
dr2 + r2(σ2

1 + σ2
2) + σ2

3

)
, (5.57)

which indeed has the structure of a U(1) fibration over R3.

At the other end of the interval, θ → 0, one finds:

u(θ) ∼ 1
2
θ

1
2 − 1

96
θ

5
2 + O(θ

7
2 ) , dη ∼ 4θ−1dθ

w1(θ) ∼ −1
4
− 1

2048
θ4 + O(θ6) , w2(θ) ∼ − 1

32
θ2 − 1

3072
θ4 + O(θ6) ,

w3(θ) ∼ 1
32
θ2 + 7

3072
θ4 + O(θ6) , a(θ) ∼ 1

16
θ2 + 1

384
θ4 + O(θ6),

b(θ) ∼ 1
2

+ 1
64
θ2 + O(θ4) , c(θ) ∼ 1

2
− 1

64
θ2 + O(θ4) (5.58)

Define ρ = 1
64
θ2 and the metric near θ = 0 has the form:

ds2 ∼ dρ2 + 4 ρ2 σ2
1 + 1

16

(
σ2

2 + σ2
3

)
(5.59)

Thus we see the “bolt” at the origin. Note that the scale of the metric has been fixed

and the radius of the bolt has been set to 1
4
. The fact that the coefficient of σ1 vanishes

as ∼ 4ρ2 also has important implications for the global geometry. There is a very nice

discussion of this in the appendices of [70].

For future reference, we will chose the constant of integration (5.48) so that η → 0

at infinity (θ = π) and take:

η ≡ −
∫ π

θ

dθ

u2
. (5.60)
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With this choice, η has the following asymptotic behavior:

η ∼ 4 log(θ) as θ → 0 ; η ∼ − π2

r
as θ → π , (5.61)

where r = − log(cos θ
2
).

Since there is a non-trivial two-cycle, there must be a non-trivial, dual element of

cohomology. That is, there must be precisely one square-integrable, harmonic two-form.

In particular, this means the two-form must be a singlet under SO(3). To determine this

two form, it is convenient to introduce the vierbeins:

e1 = − 1
2
abc dη , e2 = 1

2
a σ1 , e3 = 1

2
b σ2 , e4 = 1

2
c σ3 , (5.62)

and define some manifestly SO(3)-invariant, self-dual two-forms via:

Ω1 ≡ h1

(
a2 dη ∧ σ1 − σ2 ∧ σ3

)
,

Ω2 ≡ h2

(
b2 dη ∧ σ2 + σ1 ∧ σ3

)
,

Ω3 ≡ h3

(
c2 dη ∧ σ3 − σ1 ∧ σ2

)
, (5.63)

for some functions, hj(η). The condition that Ωj be closed, and hence harmonic is:

d

dη
log(hj) = − a2

i ⇔ d

dθ
log(hj) = − a2

i

u2
, (5.64)

where

(a1, a2, a3) ≡ (a, b, c) . (5.65)

These equations imply that there are obvious local potentials, Bj , for Ωj:

Ωj = dBj , where Bj ≡ − hj σj . (5.66)
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Remarkably enough, the equations for the hj are integrable in terms of u(θ) and we find:

h1 = 1
4
α1

u2

w1 sin( θ
2
)
, h2 = 1

4
α2

u2

w2

, h3 = 1
4
α3

u2

w3 cos( θ
2
)
, (5.67)

where the αj are constants of integration. One should note that these solutions follow

from (5.49) and (5.50) and do not depend upon the specific choice in (5.53). However

here we focus on the solutions that arise from (5.53). To determine which, if any, of the

hj gives the desired harmonic form, we look at the regularity of these two-forms and

examine their behavior as θ → 0 and θ → π.

As θ → 0 we have:

h1 ∼ − 1
2
α1 + O(θ4) , h2 ∼ −2α2 θ

−1 + O(θ) , h3 ∼ 2α3 θ
−1 + O(θ) ,

(5.68)

and as θ → π we have:

h1 ∼ 1
4
α1 r e

−r +O(e−r) , h2 ∼ 1
4
α2 r e

−r +O(e−r) , h3 ∼ 1
2
α3 +O(r−1) ,

(5.69)

where r = − log(cos θ
2
). It follows that h1 is regular at θ = 0 and falls off very fast at

infinity. The corresponding two-form, Ω1, is globally regular and square-integrable and

is thus the harmonic form we seek. Indeed, at θ = 0 one has Ω1 = 1
2
α1σ2 ∧ σ3 and

σ2 ∧ σ3 is the volume form on the bolt of unit radius, which means the period integral is

given by: ∫
Bolt

Ω1 = 1
2
α1

∫
Bolt

σ2 ∧ σ3 = 2π α1 . (5.70)

5.2.4 Ambi-polar Atiyah-Hitchin metrics

The most general SO(3) invariant metric governed by (5.47) requires one to use the

most general function, u(θ), in (5.51). As we will see, this possibility is usually ignored
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because it leads to ambi-polar metrics, and we will show, in the next section, how such

solutions can be used to make new Lorentzian BPS solutions in five dimensions.

To understand how the inclusion of the extra function changes the Atiyah-Hitchin

metric, define ũ(θ) ≡ u(π − θ) and let w̃j(θ) be defined by (5.50) with u replaced by

ũ. It is evident that ũ(θ) also solves (5.49), indeed, it simply interchanges c1 and c2 in

(5.51). Therefore the functions w̃j also solve the system (5.47). On the other hand, from

(5.50) one can easily see that:

w1(π−θ) = −w̃3(θ) , w2(π−θ) = −w̃2(θ) , w3(π−θ) = −w̃1(θ) . (5.71)

Thus allowing a non-zero value for c1 and c2 means that asymptotic behavior of the wj

at θ = 0 is related to the asymptotic behavior at θ = π. In particular, because we now

have

u(θ) ∼ − c1
π

√
2 cos θ

2
log(cos θ

2
) , θ → π ,

u(θ) ∼ − c2
π

√
2 sin θ

2
log(sin θ

2
) , θ → 0 , (5.72)

we therefore have, as θ → π:

w1(θ) ∼ c21
π2 log(cos θ

2
) , w2(θ) ∼ c21

π2 log(cos θ
2
) , w3(θ) ∼ c21

π2 (log(cos θ
2
))2 ,

(5.73)

and, as θ → 0:

w1(θ) ∼ − c22
π2 (log(sin θ

2
))2 , w2(θ) ∼ − c22

π2 log(sin θ
2
) , w3(θ) ∼ − c22

π2 log(sin θ
2
) .

(5.74)

This means that the metric now has two regions that are asymptotic to R3×S1 with a ∼ r

and b ∼ r as θ → π and with c ∼ r and b ∼ r as θ → 0. It therefore, naively looks like a
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“wormhole” geometry. The asymptotics also imply that if the metric is positive definite

in one asymptotic region then it is negative definite in the other: a2, b2 and c2 all change

sign as one goes from θ = 0 to θ = π. One also sees from the asymptotics of w2 that w2

must have at least one zero in (0, π) and so the metric is singular at such a point. It is for

all these reasons that the generalization of the Atiyah-Hitchin metric is usually ignored.

However, this metric is ambi-polar and, as we will show, all the pathologies itemized

here are not present in the five-dimensional solution that can be constructed from this

metric.

For simplicity, we will restrict our attention to ambi-polar metrics based upon:

u(θ) =
1

π

√
sin θ

(
K
(

sin2 θ
2

)
+ K

(
cos2 θ

2

))
, (5.75)

then one has

w1(π − θ) = −w3(θ) , w2(π − θ) = − w2(θ) , w3(π − θ) = − w1(θ) ,

a2(π − θ) = −c2(θ) , b2(π − θ) = − b2(θ) , c2(π − θ) = − a2(θ) .(5.76)

With this choice one has u > 0, w1 < 0 and w3 > 0 for θ ∈ [0, π] and w2 has a

simple zero at θ = π/2. See Fig. 5.1. This means that the metric coefficients, a2
j ,

simultaneously change sign at θ = π/2 and this is the only point at which this happens.

Moreover, a2 and c2 have simple zeroes while b2 has a simple pole at θ = π/2. This

behavior of the metric coefficients precisely mimics that of the ambi-polar GH metrics.

We note that the forms given by (5.63) and (5.67) are still “harmonic” in that they are

self-dual and closed. Moreover, Ω1 and Ω3 are non-singular in the wormhole geometry,

except that Ω1 remains finite as θ → 0 while Ω3 remains finite as θ → π. This means

that neither is square-integrable on the complete geometry. On the other hand, Ω2 falls

off exponentially at both θ = 0 and θ = π but is singular at θ = π/2, where the metric
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Figure 5.1: The three functions, wj , as a function of x = sin2 θ
2

when u is given by
(5.75). One has w1 < 0, w3 > 0 and w2 has a simple zero at θ = π/2. All three
functions diverge at both ends of the interval.

changes sign. Once again this last flux has a behavior precisely analogous to the two-

form fields that were essential building blocks for the regular five-dimensional solutions

that can be built from ambi-polar GH metrics.

Finally, we should comment that more general choices of u(θ), such as taking c1 =

−c2 = 1 in (5.51), can result in solutions with zeroes for w1, w2 and w3. We have not

studied these in detail.

5.2.5 The BPS solutions

Solving the BPS equations

Since there is only one independent harmonic form in the Atiyah-Hitchin metric, this

means that the two-forms, Θ(I), in (2.14) must all be proportional to one another for

I = 1, 2, 3. For simplicity, we will, in fact, take them all to be equal. We will also

take the three warp factor functions to be equal, ZI = Z, I = 1, 2, 3. Ignoring, for the
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present, issues of regularity, the SO(3) invariant solutions of (2.14) are given by the Ωi

of (5.63) and so we will take

Θ(I) = Θ = Ω1 + Ω2 + Ω3 . (5.77)

The functions, hj , in (5.67) contain integration constants, αj , that make this an arbitrary

linear combination. Note: One should not confuse the index, I = 1, 2, 3 on Θ(I) with

the index, i = 1, 2, 3 on Ωi. The former indexes the U(1) gauge groups of three-charge

system while the latter labels the three distinct type of two-form in (5.63) that satisfy

(2.14).

With this choice, the second BPS equation becomes:

d2Z

dη2
= 8

3∑
j=1

h2
j a

2
j . (5.78)

Given the form of Θ, there is a unique Ansatz for the angular momentum vector, k:

k =
3∑
j=1

µj σj , (5.79)

which means that the third BPS equation yields three equations:

dµj
dη
− a2

j µj = 3hj a
2
j Z , j = 1, 2, 3 . (5.80)

The factor of three comes from the sum over the U(1) label, I , in (2.16) and the choices:

Θ(I) = Θ, ZI = Z.
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These equations can, once again, be integrated explicitly in terms of the the elliptic

function, u. First, from (5.64) we have:

dZ

dη
= γ0 − 4

3∑
j=1

h2
j , (5.81)

for some constant, γ0. Using (5.49) and (5.50) one can easily show that

d

dη

α2
j

wj
= u2 d

dθ

α2
j

wj
= α2

j + 4 (−1)j h2
j , (5.82)

and hence:

Z = δ + γ η −
3∑
j=1

(−1)j
α2
j

wj
, (5.83)

where γ = γ0 +
∑3

j=1(−1)jα2
j .

The last BPS equation, (5.80), can be integrated to yield:

µj =
3

hj

∫
h2
j a

2
j Z dη =

3

hj

∫ (
− 1

2

d

dη
h2
j

)
Z dη , j = 1, 2, 3 . (5.84)

It is easy to integrate this explicitly. First, by integrating by parts one can show:

3

hj

∫
h2
j a

2
j

(
δ + γ η) dη = − 3

2
δ hj − 3

2
γ
[
hjη − (−1)j

α2
j

4hj

( 1

wj
− η
)]

+
βj
hj
,

(5.85)

where the βj are constants of integration. The other parts of the integrals for µj can be

obtained from:

3

hj

∫
h2
j a

2
j

wj
dη = (−1)j

α2
j

8hj

[ 2wiwk
w3
j

− wi + wk
w2
j

]
,

3

hj

∫
h2
j a

2
j

wi
dη = (−1)j+1

3α2
j

8hj

(wj − wk)
w2
j

, (5.86)
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where i, j, k ∈ {1, 2, 3} are all distinct.

Thus, rather surprisingly, we can obtain the complete solution analytically in terms

of elliptic functions.

The bubbled solution on the standard Atiyah-Hitchin base

The physical intuition underlying BPS solutions is that all charges have to be of the same

sign so that the electromagnetic repulsion balances the gravitational attraction. Bubbled

geometries generically have geometric charges of all signs and then the attractive forces

are balanced by threading cycles with fluxes that then resist the collapse of the bubbles.

The result is then a stable configuration where the sizes of some of the bubbles are fixed

in terms of the fluxes that thread them. Such relationships are typically embodied in a

system of “Bubble Equations” [26, 41]. If one insists that a solution is a BPS config-

uration but one does not have the forces properly balanced the result is the appearance

of CTC’s. Thus, when investigating BPS geometries one typically encounters the con-

straints of bubble equations through the process of eliminating CTC’s.

The standard Atiyah-Hitchin base metric is, in its own right, a well-behaved BPS

solution with no additional fluxes. Indeed, the addition of a flux through the non-trivial

two-cycle should drive the configuration out of equilibrium and expand the bubble. We

should therefore find irremovable CTC’s if we attempt to include a non-trivial flux. We

now show that this is precisely what happens.

As we remarked earlier, the only non-trivial, harmonic flux on the standard Atiyah-

Hitchin base is given by Ω1 and so we set α2 = α3 = 0 in the results of the previous

sub-section4. We then find:

Z = δ + γ η +
α2

1

w1

(5.87)

4If one is interested in solutions that are asymptoticallyAdS×S2, one could also investigate solutions
that contain the Ω3 component of the 2-form field strength Θ, which corresponds to constant flux on the
S2. Nevertheless, in our investigations this did not give any sensible solutions.
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and k = µσ1, where

µ = −3
2
δ h1 − 3

2
γ
[
h1η +

α2
1

4h1

( 1

w1

− η
)]

− α4
1

8h1

[ 2w2w3

w3
1

− w2 + w3

w2
1

]
+

β1

h1

. (5.88)

It is interesting to note that the part of Z corresponding to the flux sources in (5.87) (i.e.

the w−1
1 term) is always negative, and therefore at infinity this warp factor looks like it

is coming from an object of negative mass and charge. This is however not surprising,

considering that the Atiyah-Hitchin space also looks asymptotically as a negative-mass

Taub-NUT space.

The value of β1 is fixed by requiring that µ does not diverge, and indeed falls off at

infinity. We find that if we set:

β1 =
π2 α4

1

8
, (5.89)

then this removes all the terms that diverge at infinity and leaves only terms that fall off.

Indeed, there are two types of such terms: Those proportional to γ, which fall off as 1
r
,

and the remainder that fall off as re−r.

Near θ = 0 the function η is logarithmically divergent and so Z is logarithmically

divergent unless γ = 0. Physically, a non-zero value of γ corresponds to a uniform

distribution of M2 branes smeared over the bolt at θ = 0, with negative values of γ

corresponding to positive charge densities. If γ = 0 then Z = δ − 4α2
1 at θ = 0.

For constant time slices, the five-dimensional metric (2.5) becomes

ds2 =
(

1
4
a2 Z − µ2 Z−2

)
σ2

1 + 1
4
Z a2 b2 c2 dη2 + 1

4
Z b2σ2

2 + 1
4
Z c2σ2

3 , (5.90)
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and so to avoid CTC’s, one must have Z ≥ 0 and the quantity:

Q = 1
4
a2 Z3 − µ2 (5.91)

must be non-negative. The function a(θ) ∼ 1
16
θ2 as θ → 0 and Z diverges, at worst,

logarithmically. Thus we must have µ → 0 as θ → 0 in order to avoid CTC’s on the

bolt5. This means that we must take

γ = 1
4
δ − 2

3
α−2

1 β1 = 1
4
δ − 1

12
π2 α2

1 . (5.92)

For pure-flux solutions, which have no singular sources, one must take γ = 0 and

the CTC condition (5.92) reduces to δ = 1
3
π2 α2

1. Then one finds

1
4
a2 Z − µ2 Z−2 ∼ − 1

3072
(12− π2)α2

1 θ
4 < 0 , (5.93)

and so one necessarily has CTC’s in the immediate neighborhood of the bolt. This is

a signal that there is no physical BPS solution based upon the standard Atiyah-Hitchin

metric with pure flux: The flux will blow up the cycle and there is no gravitational

attraction holding the bubble back.

One might hope that one could stabilize the solution with a distribution of M2 branes

on the bolt. While this might be possible in general, it does not seem to be possible with

a uniform, SO(3) invariant distribution. For this, one must have γ < 0 for Z to remain

positive near θ = 0 and then (5.92) means that α2
1 >

3
π2 δ. In addition, we must have

δ ≥ 0 for Z > 0 at infinity. From (5.81) one has

dZ

dη
= γ + α2

1 − 4h2
1 = 1

4
δ + (1− 1

12
π2)α2

1 − 4h2
1 , (5.94)

5This is how the bubble equations arise on GH spaces.
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Figure 5.2: Plots of Z as a function of x = sin2 θ
2
. We have taken δ = 1, fixed γ in

terms of α1 using (5.92) and then we have chosen three values of α1 that ensure that γ is
negative: α1 = 0.6, α1 = 1.0 and α1 = 2.0. The steeper graphs at x = 0.5 correspond
to larger values of α1. Note that Z → 1 as x→ 1, but that Z is generically negative for
x > 0.6.

and since h1 = −1
2
α1 at θ = 0 and h1 → 0 at infinity (θ = π) we see that dZ

dη
is

negative at θ = 0 and positive at θ = π. Therefore, Z has a minimum for θ ∈ (0, π).

While we have not done an exhaustive analysis, we generally find that Z is negative at

this minimum value. Some examples are shown in Fig. 5.2. Obviously, the complete

five-dimensional metric is singular when Z < 0.

Adding the singular M2 brane sources does render Q positive in a region around

the bolt but, as one can see from (5.91), Q also goes negative shortly before Z goes

negative. Thus adding M2 branes sources moves CTC’s away from the bolt but at the

cost of more extensive singular behavior elsewhere in the solution.

Bubbling the ambi-polar Atiyah-Hitchin base

We now consider adding flux to one of the ambi-polar Atiyah-Hitchin metrics discussed

in Section 5.2.4. That is, we will start with the ambi-polar “wormhole” geometry that

arises from the choice (5.75), which therefore has the reflection symmetry given by
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(5.76). The solutions to the BPS equations have exactly the same functional form as

those given in Section 5.2.5 for the standard Atiyah-Hitchin background. However, the

underlying functions now have very different asymptotic behavior and this affects all of

the choices based upon regularity and square integrability.

Let r = − log(π − θ) and r̂ = − log(θ), then as θ → 0 one has

u(θ) ∼ 1
π
r̂ e−r̂/2 , η ∼ − η0 +

π2

r̂
,

w1(θ) ∼ − 1
π2 r̂

2 , w2(θ) ∼ 1
π2 r̂ , w3(θ) ∼ 1

π2 r̂ , (5.95)

which implies

a2(θ) ∼ − 1
π2 , b2(θ) ∼ − 1

π2 r̂
2 , c2(θ) ∼ − 1

π2 r̂
2 . (5.96)

The constant, η0, is defined by6:

η0 ≡
∫ π

0

1

u(θ)2
= 2π . (5.97)

As θ → π one has:

u(θ) ∼ 1
π
r e−r/2 , η ∼ − π2

r
,

w1(θ) ∼ − 1
π2 r , w2(θ) ∼ − 1

π2 r , w3(θ) ∼ 1
π2 r

2 , (5.98)

which implies

a2(θ) ∼ 1
π2 r

2 , b2(θ) ∼ 1
π2 r

2 , c2(θ) ∼ 1
π
. (5.99)

6While we haven’t proven that η0 = 2π analytically, we have checked numerically to over 100 signif-
icant figures.
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The metric in each of these asymptotic regions becomes:

ds2 ∼ − 1
4π2

(
dr̂2 + r̂2(σ2

2 + σ2
3) + σ2

1

)
, θ → 0 ,

ds2 ∼ 1
4π2

(
dr2 + r2(σ2

1 + σ2
2) + σ2

3

)
, θ → π . (5.100)

We thus have an ambi-polar metric with two regions that are asymptotic to different

U(1) fibrations over different R3 bases. The metric changes sign precisely at θ = π
2

at which point the metric function b2(θ) has a simple pole, while a2(θ) and c2(θ) have

simple zeroes.

This time the appropriate “harmonic” form is Ω2 because we have :

h1(θ) ∼ −1
2
α1 , h2(θ) ∼ 1

4
α2 r̂ e

−r̂ , h3(θ) ∼ 1
4
α3 r̂ e

−r̂ , θ → 0 ;

h1(θ) ∼ −1
4
α1 r e

−r , h2(θ) ∼ −1
4
α2 r e

−r , h3(θ) ∼ 1
2
α3 , θ → π;(5.101)

and so Ω2 is the only solution that falls off in both asymptotic regions. It is, however,

not really harmonic in that it is singular precisely on the critical surface where w2 = 0.

This is, however, the standard behavior for the flux that goes into making the complete,

five-dimensional solution and, as was noted in (5.34), the complete flux, C(3), is smooth

on the critical surface.

One now has

Z = δ + γ η − α2
2

w2

(5.102)

and k = µσ2, where

µ = −3
2
δ h2 − 3

2
γ
[
h2η −

α2
2

4h2

( 1

w2

− η
)]

− α4
2

8h2

[ 2w1w3

w3
2

− w1 + w3

w2
2

]
+

β2

h2

. (5.103)
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Recall that the vector potential for Ω2 is given in (5.66) and so the potential for the

complete Maxwell field is:

A = Z−1
(
dt+ µσ2

)
− h2 σ2 . (5.104)

and so the only potentially singular term is:

Z−1 µ − h2 ∼ − α2

4u2w2

(4w1w3 + u4) , (5.105)

as w2 → 0. However, from (5.50) one has

w1w3 + 1
4
u4 = w2 (w1 + w3)− w2

2 , (5.106)

and so the complete Maxwell field is regular.

The spatial sections of the complete five-dimensional metric are:

ds2 =
(

1
4
b2 Z − µ2 Z−2

)
σ2

2 + 1
4
Z a2 b2 c2 dη2 + 1

4
Z a2σ2

1 + 1
4
Z c2σ2

3 . (5.107)

First note that:

Z a2 =
w3

w1

((δ + γ η)w2 − α2
2) , Z c2 =

w1

w3

((δ + γ η)w2 − α2
2) ,

Z a2 b2 c2 = w1w3((δ + γ η)w2 − α2
2) . (5.108)

Since one has w1 < 0 and w3 > 0 everywhere (see Fig.5.1) it follows that these three

metric coefficients are regular and positive near w2 = 0.
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More generally, observe that δ + γη → δ and w2 → −∞ as θ → π and δ + γη →

δ− 2πγ and w2 → +∞ as θ → 0. This means that for the metric coefficients in (5.108)

to remain positive at infinity one must have:

γ ≥ δ

2π
≥ 0 . (5.109)

Indeed observe that the function, η+ 1
2
η0, is odd under θ → π− θ and so, for γ > 0, the

function

γ(η + 1
2
η0)w2 = γ(η + π)w2 (5.110)

is globally negative with a double zero at θ = π
2
. Thus the metric coefficients (5.108)

are globally positive when δ is the middle of the range specified by (5.109).

Now consider the remaining coefficient, Z−2Q, where

Q ≡ 1
4
b2 Z3 − µ2 . (5.111)

Near w2 = 0 one has Z−2 ∼ α−4
2 w2

2 and

Q ∼ α6
2 w1w3

u4w4
2

(
w2 (w1 + w3) − (w1w3 + 1

4
u4)
)

+ O(w−2
2 ) . (5.112)

However, it follows from (5.106) that, in fact,Q ∼ O(w−2
2 ) and so the metric coefficient

Z−2Q is regular around w2 = 0.

The regularity of the solution near the critical surface was, of course, guaranteed by

our general analysis of the Toda metrics in Section 5.1.3, but it is still useful to see how

it comes about here.
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Finally there is the angular momentum vector and the issue of global positivity of

Q. For this it is most convenient to consider the combination h2 µ:

h2 µ ∼ 3
8
γ η0 α

2
2 + β2 + 1

8
π2 α4

2 + O(θ2) , θ → 0 , (5.113)

h2 µ ∼ β2 − 1
8
π2 α4

2 + O((π − θ)2) , θ → π . (5.114)

Since h2 vanishes exponentially fast in r and r̂ in the two asymptotic regions (see

(5.101)), this means that µ will diverge exponentially in r and r̂ unless

β2 = 1
8
π2 α4

2 , γ = − 2
3
π2 η−1

0 α2
2 = − 1

3
π α2

2 . (5.115)

If these two conditions are met then µ also vanishes exponentially in r and r̂ in both of

the asymptotic regions.

Unfortunately this value of γ is inconsistent with (5.109). If one allows µ to diverge

exponentially in one of the asymptotic regions then Q will become negative in the

asymptotic regions. This is because Z limits to a finite value and b2 diverges as a power

of r or r̂. Therefore there is no way to arrange the metric to be positive definite in the

asymptotic regions on both sides of the wormhole: Either one has (5.109) and arranges

that three coefficients in (5.108) to be globally positive, or one arranges thatQ > 0 only

to have the three coefficients in (5.108) to change sign in one of the asymptotic regions.

Thus we have a beautifully regular metric across the critical surface, but it fails to

be globally well-behaved as a “wormhole” metric. We suspect that the problem is due

to the high level of symmetry. With more bubbles and thus more parameters we believe

that one could simultaneously control behavior in both asymptotic regions. Even with

the very high level of symmetry, there is another way to remove the regions of CTC’s.
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Pinching off the wormhole

One way to remove the region of CTC’s is to pinch off the wormhole before one

encounters the region where CTC’s occur. Here we will consider the ambi-polar metric

described exactly as above with the asymptotic regions as θ → π arranged to be regular

and asymptotic to the U(1) fibration over R3 as in (5.100). This requires one to take:

β2 = 1
8
π2 α4

2 , δ > 0 . (5.116)

The metric coefficients, a2
i , are non-vanishing away from the critical surface, and

so to pinch off the complete metric away from the critical surface we must arrange that

the function Z vanish at some point. To avoid CTC’s one must also ensure that Q is

non-negative near the pinch-off and so one must arrange that µ vanishes simultaneously

with Z. Thus we are looking for a point, θ0, such that

Z
∣∣
θ=θ0

= 0 , µ|θ=θ0 = 0 . (5.117)

Given these conditions, the equation of motion, (5.80), for µ then implies that d
dθ
µ must

also vanish at θ0. Therefore, near the pinching-off point we have:

Z ∼ z0 (θ− θ0) , µ ∼ µ0 (θ− θ0)2 ,
(

1
4
b2 Z − µ2 Z−2

)
∼ 1

4
b2

0 z0(θ− θ0) .

(5.118)

This means that the spatial part of the complete metric (5.107) is indeed pinching off

in every direction with surfaces of constant θ being a set of collapsing, squashed three-

spheres. The metric is not smooth at θ0: There is a curvature singularity in the spatial

part of the metric and the coefficient of dt2 is diverging as (θ − θ0)−2. This reflects a

similar divergence in the electric component of the Maxwell fields, A(I), (see (2.13)) at
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Figure 5.3: Plots of Z (on the left) and µ (on the right) as functions of x = sin2 θ
2

for
γ = 0, δ = 1 and α2 ≈ 0.4890. Both functions are singular at x = 0.5 and both vanish,
µ with a double root, at x ≈ 0.1837.

Z = 0. One should also note that the flux, Θ, is also singular at Z = 0 in that it remains

constant while the cycle that supports it is collapsing.

Define

γ̂ ≡ α−2
2 γ , δ̂ ≡ α−2

2 δ , (5.119)

then the conditions (5.117) relate γ̂ and δ̂ to θ0. Thus we can, in principle, choose

the pinching-off point and then (5.117) yields the corresponding values of γ̂ and δ̂. In

practice, there is the constraint that δ > 0. We know from the analysis above that we

cannot arrange for Z and µ to vanish simultaneously at θ = 0. Numerical analysis shows

that one cannot have Z and µ vanish simultaneously unless θ0 & 0.6158. Since we are

interested in solutions that contain the critical surface (w2 = 0), we have found a number

of solutions that pinch off for 0.6158 . θ0 <
π
2
. We also checked numerically that it

does not appear to be possible to have all three of µ, Z and dZ
dθ

vanish simultaneously

for θ ∈ (0, π
2
). Thus (5.118) appears to be the general behavior at a pinch-off: Z does

not appear to be able to have a double root.

We have verified in several numerical examples that the spatial metric is indeed

globally positive definite in the region at and to the right of the pinch. These solutions
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Figure 5.4: This graph shows the three metric coefficients in the angular directions, Za2,
Z−2Q and Zc2 (in this order from top to bottom on the right-hand side of the graph), as
functions of x = sin2 θ

2
for γ = 0, δ = 1 and α2 ≈ 0.4890. All of these functions vanish

at the pinching-off point, x ≈ 0.1837, and are positive-definite to the right of it.

still contain the critical surface where the a2
i and Z simultaneously change sign and

these solutions are perfectly regular across the critical surface. The cost of ensuring the

global absence of CTC’s is to include a non-standard, singular point-source at the center

of the solution.

To present an example, we considered the solution with γ = 0, δ = 1. Solving

(5.117) leads to α2 ≈ 0.4890 and the pinch-off at x = sin2( θ
2
) ≈ 0.1837. In Fig. 5.3

we show plots of the functions Z and µ for these parameter values. Note that both are

singular at x = 0.5 and that both vanish, µ with a double root, at x ≈ 0.1837. In Fig.

5.4 we have shown the three metric coefficients in the angular directions, Za2, Zc2 and

Z−2Q. All of them are positive and vanish exactly at the pinching-off point.

Before ending this section we should make a few more comments about the metric

that is pinching off. The singularity at the pinch-off point is caused by the fact that the

warp factors ZI go to zero. This causes the size of the two-cycles wrapped by fluxes

to shrink to zero size, and hence the energy density coming from these fluxes to be

infinite. A well-known solution with a similar type of singularity is the one obtained
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by Klebanov and Tseytlin [149]. However, for this solution it is well understood that

the singularity comes about because of the high level of symmetry in the Ansatz, and

that upon considering a less-symmetric base space the singularity is resolved [150].

Since the base space considered here also has a high level of symmetry, it is tempting

to conjecture that, in analogy to the Klebanov-Strassler solution [150], the pinching

off will be resolved by the blowing up of a two-cycle on the base, which will only be

possible in a less-symmetric, non-singular background.

We should also remark that in our discussion we have taken all three warp factors

to be equal, but generically we can also imagine pinching off the metric using only

one of the warp factors, and keeping the others finite. This will change the structure

of the metric near the singularity (some of the two-tori will blow up and some others

will shrink), but the singularity will also come from shrinking cycles on the base, and

will probably be resolved also by considering a less-symmetric base with a blown-up

two-cycle

5.2.6 Variations on the Eguchi-Hanson metric

Given the foregoing results, particularly those involving wormholes, it is interesting to

look at the corresponding story for the Eguchi-Hanson metric [84]. This metric has an

SO(3) × U(1) invariance and the diagonal U(1) action is triholomorphic. The metric

is equivalent to a GH metric with two GH points of equal charge [183]. The manifestly

SO(3)× U(1) invariant form of this metric is:

ds2 =

(
1− a4

ρ4

)−1

dρ2 +
ρ2

4

(
1− a4

ρ4

)
σ2

3 +
ρ2

4
(σ2

1 + σ2
2) . (5.120)

The space contains an S2 (bolt) at ρ = a and so the range of the radial coordinate is

a ≤ ρ <∞. At infinity this space is asymptotic to R4/Z2.
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To avoid closing off of the space at the bolt, we analytically continue by taking

a2 = ib, with b real, and introduce a new radial coordinate η = ρ2. One thereby obtains:

ds2 =

(
1 +

b2

η2

)−1
dη2

4η
+

η

4
(σ2

1 + σ2
2) +

η

4

(
1 +

b2

η2

)
σ2

3 . (5.121)

This metric was also considered by Eguchi and Hanson in [83], where it was called

“type I,” and was given in the form:

ds2 =

(
1 +

(
1− a4

r4

)−1/2
)2

dr2

4
+
r2

8

(
1 +

(
1− a4

r4

)1/2
)

(σ2
1 + σ2

2) +
r2

4
σ2

3 .

(5.122)

This may be mapped to (5.121) via the coordinate change

η = r2

(
1 +

√
1− a4

r4

)
. (5.123)

In terms of the Toda frame, (5.1)–(5.4), this metric was found in [72] and is given by

ν = log

(
z2 +

a4

16

)
− log(2)− 2 log

(
1 +

x2 + y2

8

)
. (5.124)

The reason why this metric was never studied in the past is that it is not geodesically

complete, and there is a singularity at η = 0. Nevertheless, we can extend the coor-

dinate η = ρ2 to negative values, and the resulting space (5.121) has two regions, one

where the signature is (+,+,+,+) and one where the signature is (−,−,−,−) . This

makes (5.121) into precisely an ambi-polar metric of the type that can give a good five-

dimensional BPS solution: The overall sign of the metric changes as one passes through

η = 0, with the coefficient of a U(1) fiber becoming singular at this critical surface.
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The BPS solutions

In order to solve the BPS equations, (2.14)–(2.16), it is convenient to introduce the basis

of frames given by:

ê1 = −
(

1 +
b2

η2

)−1/2
dη

2
√
η
, ê2 =

√
η

2
σ1 , ê3 =

√
η

2
σ2 , ê4 =

√
η

2

(
1 +

b2

η2

)1/2

σ3

(5.125)

One can then show that:

Θ =
α

η2
(ê1 ∧ ê4 + ê2 ∧ ê3) (5.126)

defines a harmonic, self-dual, “normalizable” two form for constant α. One also has

Θ = dB with B =
α

4η
σ3. As before, we take all three flux forms Θ(I) to be equal to Θ

and set ZI = Z. Then the equation for Z(η) becomes

d

dη

(
(η2 + b2)

dZ

dη

)
=

α2

2η3
(5.127)

which is solved by

Z(η) = γ +
α2

4b2η
+

(
α2

4b3
+
β

b

)
arctan

(η
b

)
, (5.128)

where β and γ are integration constants. The angular momentum vector, k, has a solu-

tion of the form k = µ(η)σ3 where the function µ(η) satisfies

η3dµ

dη
− η2µ+

3αγ

4
η +

3α

4

(
α2

4b3
+
β

b

)
arctan

(η
b

)
+

3α3

16b2
= 0 . (5.129)
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The solution to this equation is

µ(η) = δη +
3α

8b2

(
α2

4b2
+ β

)
+

3αγ

8

1

η
+

α3

16b2

1

η2
+

3α

8b3

(
α2

4b2
+ β

)
η arctan

(η
b

)
+

3α

8b

(
α2

4b2
+ β

)
1

η
arctan

(η
b

)
. (5.130)

To complete the solution we have to impose boundary condition on the functions Z and

µ.

A regular “wormhole”

If the solution is to have two asymptotic regions corresponding to η → ±∞ then we

must require that the angular momentum vector falls off in these regions or there will

generically be CTC’s. This implies:

δ = 0 , β = − α
2

4b2
, (5.131)

and then the functions Z and µ simplify to:

Z(η) = γ +
α2

4b2η
, µ(η) =

3αγ

8

1

η
+

α3

16b2

1

η2
. (5.132)

If γ 6= 0, Z will have a zero at η = − α2

4b2γ
and thus we will inevitably have CTC’s unless

we pinch off the solution before, or at, this point.

We consider γ = 0 first, for which we have:

Z =
α2

4b2

1

η
, µ =

α3

16b2

1

η2
. (5.133)

Note that the angular momentum function µ is always positive and is diverging on the

critical surface η = 0. The Z also diverges and changes sign on the critical surface.
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This behavior ensures that the five-dimensional metric is regular and Lorentzian. The

explicit form of the space-time metric is:

ds2
5 = −16b4

α4
η2dt2 − 2b2

α
dt σ3 +

α2

16b2

dη2

(η2 + b2)
+

α2

16b2
(σ2

1 + σ2
2 + σ2

3) . (5.134)

This metric can be cast into a more familiar form by first diagonalizing the metric by

shifting the ψ-coordinate in (5.40) so that σ3 → σ3 +
16b4

α3
dt:

ds2
5 = −16b4

α4
(η2 + b2)dt2 +

α2

16b2

dη2

η2 + b2
+

α2

16b2
(σ2

1 + σ2
2 + σ2

3) . (5.135)

Change variables via η = b sinhχ, t̃ =
16b4

α3
t and then the metric becomes

ds2
5 =

α2

16b2
(− cosh2 χdt̃2 + dχ2 + σ2

1 + σ2
2 + σ2

3) , (5.136)

which is the well known metric for global AdS2 × S3. The complete Maxwell field on

this space is given by

dA = dΘ− d(Z−1(dt+ k)) , (5.137)

and, using Θ = dB with B =
α

4η
σ3, we find

A = − 4b2

α2
η dt , F =

4b2

α2
dt ∧ dη . (5.138)

The Maxwell field is thus proportional to the volume form on AdS2 and we have

obtained the global form of a Robinson-Bertotti solution [44]. The wormhole thus

reduces to the usual global AdS solution.

It is interesting to try to understand the reason for which we could find an Eguchi-

Hanson “wormhole” but not an Atiyah-Hitchin one. At an algebraic level, the problem
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comes from the form of µ, which in the Eguchi-Hanson background goes to zero on both

asymptotic regions (5.132), while in the Atiyah-Hitchin background µ, (5.88), diverges

in one region or in the other. If one relaxes the requirement that the Atiyah-Hitchin

solutions be asymptotically flat, one can choose a more generic Θ, containing all three

Ωi. However, this still does not give a µ that decays properly at the two asymptotic

regions.

A “pinch-off” solution

The other way to remove CTC’s is to allow γ 6= 0 in (5.128) and pinch-off the asymp-

totic region with η → −∞ at the point, η0, where Z vanishes. This means that we only

have to require that µ vanishes as η →∞ and this implies

δ = −3πα

16b3

(
β +

α2

4b2

)
(5.139)

in (5.130).

As with the Atiyah-Hitchin solution, the solution will have CTC’s near the pinching

off point unless we also require that µ vanishes at the same point. Specifically, the

constant time slices of the metric have the form:

ds2 = −µ
2

Z2
σ2

3 + Z

((
1 +

b2

η2

)−1
dη2

4η
+
η

4
(σ2

1 + σ2
2) +

η

4

(
1 +

b2

η2

)
σ2

3

)
(5.140)

and to avoid CTC’s we must have

Q ≡ Z3

(
η2 + b2

4η

)
− µ2 ≥ 0 . (5.141)

If Z vanishes then µ must vanish and this imposes a relationship, akin to the bubble

equations, on β, α and b. Unlike the corresponding solution in the Atiyah-Hitchin
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background, there is still a free parameter in the final result, and if one choses these

parameters in the proper ranges one can arrange that the pinch-off occurs at η0 < 0

and that there are no CTC’s in the region η > η0. There is still, however, a curvature

singularity in the metric at η = η0, similar to the one in the pinched-off Atiyah-Hitchin

solution, and probably caused also by the fact that the ansatz used is very symmetric.

It is quite likely that this singularity will also be resolved in the same manner as the

Klebanov-Tseylin/Klebanov-Strassler solutions [149, 150]

It is easy to find numerical examples that exhibit a “pinch off.” For example, one

can take the following values of the parameters:

α ≈ 4.2619 β ≈ −4.5358 γ = b = 1 and δ = −3πα

16b3

(
β +

α2

4b2

)
,

(5.142)

and the pinch off point is η0 ≈ −4.5721. Since η0 is negative this represents a solution

based upon a non-trivial ambi-polar base metric.

5.3 Concluding Remarks

We have investigated the construction of three-charge solutions that do not have a tri-

holomorphic U(1) isometry. We have found that the most general form of these solu-

tions, can be expressed in terms of several scalar functions. One of these functions

satisfies the (non-linear) SU(∞) Toda equation, while the other functions satisfy linear

equations that can be thought of as various linearizations of the SU(∞) Toda equation.

We have also shown generically that in the region where the signature of the four-

dimensional base space changes from (+,+,+,+) to (−,−,−,−, ), the fluxes, warp

factors, and the rotation vector diverge as well, but the overall five-dimensional (or

eleven-dimensional) solution is smooth. This is similar to what happens when the base-

space is Gibbons-Hawking, and strongly suggests that this phenomenon is generic: Any
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ambi-polar, four-dimensional, hyper-Kähler metric with at least one non-trivial two-

cycle can be used to construct a regular supersymmetric five-dimensional three-charge

solution upon adding fluxes, warp factors and rotation according to the BPS equations

(2.14), (2.15) and (2.16).

Since the most general form of hyper-Kähler, four-dimensional spaces with a rota-

tional U(1) isometry is not known explicitly, one cannot explicitly construct the most

general three-charge bubbling solution with this isometry. Nevertheless, we have been

able to construct the first explicit bubbling solution with a rotational U(1) starting from

an ambi-polar generalization of the Atiyah-Hitchin metric. For both the standard Atiyah-

Hitchin and Eguchi-Hanson metrics, it is not possible to construct regular three-charge

bubbling solutions. This reflects the fact that fluxes tend to stabilize cycles that would

shrink by themselves, and hence only “pathological” generalizations to ambi-polar met-

rics can be used as base-spaces to create bubbling solutions. We have obtained the

ambi-polar generalizations of both the Atiyah-Hitchin and the Eguchi-Hanson spaces,

and have constructed the full three-charge solutions based on these spaces.

As expected from our general analysis, the full solutions are completely regular at

the critical surface where the metric on the base space changes sign. Moreover, for the

ambi-polar Eguchi-Hanson space, one can construct the full solution, which, interest-

ingly enough, turns out to be global AdS2 × S3. We could also obtain solutions that

pinch off, and have a curvature singularity. We argued that this singularity has the same

structure as the one in the Klebanov-Tseytlin solution [149] and we believe the presence

of this singularity is a consequence of the high level of symmetry of the base space,

and that the singularity will similarly be resolved by considering a less-symmetric base

space.

This work opens several interesting directions of research. First, having shown that

singular, U(1)-invariant, ambi-polar, four-dimensional, hyper-Kähler metrics can give
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smooth five-dimensional solutions upon adding fluxes, it is important to go back to the

SU(∞) Toda equation and to construct more general solutions. A first step in this

investigation would be to find the solutions of the Toda equations that give the U(1) ×

U(1) invariant ambi-polar Gibbons-Hawking metrics, following perhaps the techniques

of [10]. One could then find other solutions in the vicinity of the latter, and count them

using the techniques of [175, 188].

Finally, we have seen that the ambi-polar generalization of the Eguchi-Hanson space

yields a geometry that is AdS2 × S3. Moreover, unlike in the case of usual bubbling

BPS solutions, the AdS2 solution is not the Poincaré patch, but the full global AdS

solution. While the distinction between global and Poincaré AdS2 is relatively trivial,

the appearance of something like a regular wormhole suggests that bubbling geometries

might be even richer and more interesting than was originally anticipated.
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Chapter 6

Leaving supersymmetry behind

Finding and understanding supersymmetric solutions of supergravity theories is a very

important task, and significant advances have been achieved in this direction. To find

and classify supersymmetric solutions one is typically utilizing the supersymmetry vari-

ations of the fermionic fields, which lead to first order differential equations that are

more tractable than the second order equations of motion. Undoubtedly, supersymmetric

gravity solutions have very interesting physics, some intriguing mathematical structure

and provide a good laboratory for testing new ideas on tractable examples. However,

one would ultimately like to construct and understand non-supersymmetric and non-

extremal solutions and it is important to have as much exact solutions as possible to

gain intuition about their structure and properties.

Of separate, albeit related, interest are asymptotically flat supergravity solutions with

no horizons and singularities. As we discussed in Chapter 2, such regular solutions may

represent possible microstates for black holes (or black rings) having the same charges

and asymptotic structure. In the supersymmetric case, large classes of two and three

charge BPS solutions with the same asymptotic structure as five-dimensional black holes

and black rings have been found. The solutions are typically constructed by first choos-

ing a four-dimensional hyper-Kähler base space with non-trivial topology. One then

constructs a five-dimensional supergravity solution by turning on magnetic fluxes on the

non-trivial cycles of the base. These fluxes stabilize the two-cycles and are ultimately

responsible for the non-trivial asymptotic charges. The homological two-cycles on the

base ensure that there are no singular sources and the solutions can be made regular and
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causal. To argue in favor of the validity of Mathur’s conjecture for non-supersymmetric,

and non-extremal, black holes, one needs to construct a large number of similar smooth,

horizonless gravity solutions which break supersymmetry and have the same charges

and asymptotics as the black holes. There are very few solutions of this kind found

so far, notable examples are the solutions of [143, 38]. Certainly it is of great interest

to find more examples of such solutions and understand the possible implications for

the resolution of black hole singularities and the information paradox. In this Chapter

we discuss how to construct certain classes of non-BPS solutions of eleven-dimensional

supergravity compactified on CY3.

6.1 Breaking supersymmetry

6.1.1 Almost BPS solutions

Implicit in the construction of the supersymmetric solutions of Chapter 2 is the choice of

an orientation for the hyper-Kähler four-dimensional base: The curvature tensor can be

arranged to be either self-dual or anti-self dual. For supersymmetry it is crucial that the

Riemann curvature of this base has the same duality as the three magnetic two-forms:

They must all be self-dual or anti-self-dual. The difference in choice merely amounts

to an overall reversal of orientation and is usually neglected. However, there has been

a very nice recent observation [123] that one can obtain extremal non-supersymmetric

solutions of the supergravity equations of motion by flipping the relative dualities of the

hyper-Kähler base and the magnetic two-forms1. This means that supersymmetries are

1We will consistently fix our hyper-Kähler base to be self-dual (i.e. with self-dual curvature) and so
this new prescription amounts to starting with anti-self-dual magnetic two-forms and solving the super-
symmetric BPS equations with flipped dualities.
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“locally preserved” by the sources but globally broken by the incompatible holonomy

of the background metric on the base.

The basic technique is also easily understood in terms of the underlying brane con-

struction. For example, an asymptotically five-dimensional black ring solution (with a

flat R4 base) preserves the four supersymmetries respected by its three constituent elec-

tric M2 branes. When one replaces the R4 base by a Taub-NUT space and considers

the solution from the IIA perspective, the M2 branes descend to D2 branes while the tip

of Taub-NUT descends to a D6 brane. In the BPS embedding, the four Killing spinors

preserved by the three sets of D2 branes are the same as those of the D6 brane, and thus

the solution is supersymmetric. In the non-BPS embedding the D6 brane has opposite

orientation, and hence it does not preserve any of the four Killing spinors of the D2

branes.

Note that if there are only two sets of D2 branes present, the D6 brane will be

mutually BPS with them irrespective of its orientation. Hence, a two-charge supertube

embedded in Taub-NUT in the “duality-matched” embedding [24] or in the “duality-

flipped” embedding [123] will still be supersymmetric.

Let us discuss in some detail how one can go about and construct these simple almost

BPS solutions. BPS solutions of eleven-dimensional supergravity with M2 and M5

branes wrapped on two- and four-cycles of a CY3 take the form discussed in Chapter 22.

It is useful to remember that the dipole field strengths are

Θ(I) = dB(I) , I = 1, 2, 3 , (6.1)

and the equations following from the supersymmetry variations for a self-dual hyper-

Kähler base metric are given in (2.14)-(2.16)

2For simplicity we will assume in this Chapter thatCY3 = T 6, most of the result are trivially extended
for arbitrary compact Calabi-Yau three-fold as long as one knows its triple interesection numbers CIJK .
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It was observed in [123] that a class of extremal solutions of the equations of motion

can be obtained by reversing the duality of the ΘI and of k relative to the duality of the

curvature of the four-dimensional base. That is, one preserves the metric, ds2
4, and the

duality of its Riemann tensor but flips ?4 → −?4 in (2.14)-(2.16):

Θ(I) = − ?4 Θ(I) ,

∇2ZI =
|εIJK |

2
?4 (Θ(J) ∧Θ(K)) , (6.2)

dk − ?4dk = ZIΘ
(I) .

When the base metric ds2
4 is flat R4, the flip of orientation can be re-written as a change

of coordinates, and solutions to equations(6.2) are still BPS. When ds2
4 is not flat, as in

Taub-NUT space, equations (6.2) determine, in general, non-BPS solutions, which were

named “almost BPS” in [123].

It is intuitively clear why this simple flip of orientation leads to new supergravity

solutions that break supersymmetry. The equations of motion are second order and

the flip of orientation does not affect them, the only thing affected are some of the

supersymmetry variations. There are now a number of examples of such solutions in the

literature - almost BPS black rings, black holes as well as multi-center configurations

of such objects [36, 37, 99, 116, 117, 59]. They are however always a superposition

of black holes, black rings and supertubes, i.e. they have singularities and/or horizons.

There are no analogs of the regular BPS bubbling geometries. To find such solutions one

has to completely relax the condition that the four-dimensional base is hyper-Kähler.

This will be the subject of the next Section.
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6.1.2 Non-BPS solutions and the floating brane Ansatz

Recently, there has been important progress in overcoming the difficulties of construct-

ing exact non-BPS solutions of N = 2 five-dimensional supergravity (or M-theory

compactified on CY3) [38, 123, 36, 39]. The underlying idea is to find a linear sys-

tem of differential equations yielding non-supersymmetic solutions. Motivated by these

advances the authors of [39] revisited the Ansatz and assumptions in the construction

of BPS solutions to five-dimensional N = 2 supergravity coupled to vector multiplets

[101, 21]. In this paper, the authors rederived the equations of motion, imposing a simple

relation between the warp factor in the metric and the gauge fields, dubbed the “floating

brane” Ansatz. This Ansatz greatly simplifies the equations of motion and allows one

not only to recover almost all known, BPS and non-BPS, classes of solutions, but also

to find a new linear system of equations. Using this result, new regular, horizonless and

non-supersymmetric solutions were found in [38]. These solutions were constructed by

solving the same linear system of equations as for BPS solutions, but on a Ricci-flat

(instead of hyper-Kähler) four-dimensional base. The particular examples discussed in

[38] were based on the Euclidean Schwarzschild and Kerr-Taub-Bolt black holes.

In [45] we found a five-parameter family of smooth, horizonless solutions with a

dyonic Euclidean Reissner-Nordström base. The solutions have general fluxes with no

definite self-duality and are asymptotic to R1,3 × S1. We then generalized these solu-

tions by including rotation and a NUT charge on the four-dimensional base, i.e. we

use the Kerr-Newman-NUT background as a base. This more general family of solu-

tions, still regular and horizonless, has six independent parameters, however their range

is constrained by imposing regularity and causality of the five-dimensional background.

Our solutions are not supersymmetric and have the same asymptotic structure as non-

extremal black holes. They are therefore of interest, not only by themselves as new

non-supersymmetric solutions, but also as candidates for microstates of non-extremal
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black holes. These solutions can be viewed as a generalization of the ones discussed in

[38] since we consider four-dimensional base spaces which are electrovac and are not

not Ricci-flat. A general feature of the solutions is that the mass is linearly dependent on

the electric charges. This property is due to the “floating brane” Ansatz of [39], which

relates the warp factors in the five-dimensional metric to the electric gauge potentials.

We also showed that some of the solutions based on the Euclidean four-dimensional

Kerr-Newman-NUT background exhibit ambipolar behavior: the four-dimensional base

is allowed to have regions of positive and negative signature while the five-dimensional

solution is everywhere completely regular and of definite Lorentzian signature. This

provides some evidence that non-supersymmetric ambipolar solutions may also be ubiq-

uitous like their BPS cousins [26, 41].

It should be emphasized that our solutions will have no singular M2 and M5 brane

sources. Because of the non-trivial topology of the four dimensional base the asymptotic

charges of the solution are due to “charges dissolved in fluxes”. This is essentially the

same geometric transition mechanism as the one discussed in Chapter 2 and in [26] for

BPS solutions. By using the results of Chapter 3 one can recast our solutions as six-

dimensional solutions of IIB supergravity compactified on T 4 [35]. This duality frame

may be useful for understanding the holographic dual field theory description of the

solutions.

The five-dimensional Ansatz

We will work withN =2, five-dimensional ungauged supergravity with two U(1) vector

multiplets and we use the conventions of [39]. This supergrvaity theory (known also as
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the STU model) comes from compactifying the M-theory configuration of Chapter 2 on

T 6. The bosonic action is

S =
1

2κ5

∫ √
−g d5x

(
R− 1

2
QIJF

I
µνF

Jµν −QIJ∂µX
I∂µXJ − 1

24
CIJKF

I
µνF

J
ρσA

K
λ ε̄

µνρσλ
)
,

with I, J = 1, 2, 3. The scalars XI satisfy the constraint

X1X2X3 = 1 , (6.3)

and there are therefore only two independent scalars. This is explained by the fact

that one of the vectors is in the gravity multiplet, and thus there are only two vector

multiplets. For convenience, we introduce three other scalar fields, ZI

X1 =

(
Z2 Z3

Z2
1

)1/3

, X2 =

(
Z1 Z3

Z2
2

)1/3

, X3 =

(
Z1 Z2

Z2
3

)1/3

. (6.4)

This automatically solves the constraint (6.3). The scalar kinetic term can be written as

QIJ =
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (6.5)

It is useful to introduce the scalar

Z ≡
(
Z1 Z2 Z3

)1/3
. (6.6)

If one reduces the theory to four dimensions this will be a third independent scalar field.

Having defined this new scalar, we will work with the following metric Ansatz

ds2
5 = − Z−2 (dt+ k)2 + Z ds2

4 , (6.7)
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We will denote the frames for (6.7) by eA, A = 0, . . . , 4 and let êa, a = 1, . . . , 4 denote

frames for ds2
4. Explicitly,

e0 ≡ Z−1 (dt+ k) , ea ≡ Z1/2 êa . (6.8)

We will assume also the “floating brane” Ansatz of [39], which means that we take the

metric coefficients to be related to the electrostatic potentials. The Maxwell field is thus

A(I) = − Z−1
I (dt+ k) +B(I) , (6.9)

where B(I) is a one-form on the base ds2
4. Upon uplifting this solutions to eleven-

dimensional supergravity, this Ansatz implies that M2 brane probes that have the same

charges as the M2 branes sourcing the solution will have equal and opposite Wess-

Zumino and Dirac-Born-Infeld terms and hence will not feel any force. Such brane

probes may be placed anywhere in the base and may thus be viewed as “floating.”

Equations of motion

The general equations of motion following from the above Ansatz were derived in [39]

and we will use their results and conventions. We introduce the magnetic two-from field

strengths

Θ(I) = dB(I) , (6.10)

and it will also be convenient to introduce the two-forms ω(I)
− defined by

1

2

(
Θ(I) − ∗4Θ(I)

)
≡ CIJKZJω

(K)
− , (6.11)
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where the ∗4 is the Hodge dual with respect to the four-dimensional metric ds2
4 in (6.7).

Note that in contrast to the discussion in Chapters 2-5 the magnetic fluxes do not have a

definite self-duality. Following [39] we will simplify the equations of motion by assum-

ing

dk + ∗4dk =
1

2

∑
I

ZI
(
Θ(I) + ∗4Θ(I)

)
, and ω

(1)
− = ω

(2)
− = 0 . (6.12)

The four-dimensional base space has to be a solution of Euclidean Einstein-Maxwell

theory3 with (symbols with a hat live on the four-dimensional base)

R̂µν =
1

2

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
, (6.13)

and

F = Θ(3) − ω(3)
− . (6.14)

The rest of the equations of motion reduce to4

∇̂2Z1 = ∗4(Θ(2) ∧Θ(3)) , (Θ(2) − ∗4Θ(2)) = 2Z1 ω
(3)
− , (6.15)

∇̂2Z2 = ∗4(Θ(1) ∧Θ(3)) , (Θ(1) − ∗4Θ(1)) = 2Z2 ω
(3)
− , (6.16)

∇̂2Z3 = ∗4[Θ(1) ∧Θ(2) − ω(3)
− ∧ (dk − ∗4dk)] , (6.17)

3The normalization of the flux in this equation is different from the one used in Chapter 1 and most
standard sources on general relativity, this choice is made so that the conventions in this Chapter agree
with the four-dimensional conventions in [39].

4It is important to note that we have fixed the constant ε used in [39] to be ε = 1, which amounts to a
particular self-duality convention for the fluxes. This choice is not restrictive and it is straightforward to
repeat all our calculations for ε = −1.
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dk + ∗4dk =
1

2

3∑
I=1

ZI(Θ
(I) + ∗4ΘI) . (6.18)

An important point about this system of equations is that it can be solved in a linear

fashion. In order to do that, one has to solve the equations in the right order. The

starting point is to choose a four-dimensional metric and its associated two-form field

strength that solve (6.13). Then using (6.14) one can read off Θ(3) and ω(3)
− from the field

strength. Knowing these fields, (6.15) and (6.16) become systems of two linear coupled

equations for Z1 and Θ(2) and Z2 and Θ(1) respectively. Finally, k and Z3 are solutions to

the system of linear equations (6.17) and (6.18). We will show in the next section how to

solve these equations starting from the Euclidean Reisner-Nordström backgrounds [45].

6.2 Examples of non-BPS solutions

Here we will discuss non-supersymmetric solutions of five-dimensional supergravity

with an Euclidean Reissner-Nordström base.

6.2.1 The four-dimensional background

Our starting point in this section will be the Euclidean dyonic Reissner-Nordström back-

ground [185, 173]

ds2
4 =

(
1− 2m

r
+
p2 − q2

r2

)
dτ 2+

(
1− 2m

r
+
p2 − q2

r2

)−1

dr2+r2(dθ2+sin2 θdφ2) ,

(6.19)

F =
2q

r2
dτ ∧ dr + 2p sin θ dθ ∧ dφ . (6.20)
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Where m corresponds to the mass, q to the electric charge and p to the magnetic

monopole charge of the solution. This background solves the four-dimensional Einstein

equations (6.13). It is useful to rewrite the metric as

ds2
4 =

(r − r+)(r − r−)

r2
dτ 2 +

r2

(r − r+)(r − r−)
dr2 + r2(dθ2 + sin2 θdφ2) . (6.21)

The constants r± are the Euclidean analogs of the inner and outer horizon of the

Reissner-Nordström black hole

r± = m±
√
m2 − p2 + q2 . (6.22)

To render r± real we restrict to the range of parameters5 m2 > p2 − q2. Near the outer

horizon one can set

r = r+ +
r+ − r−

4r2
+

ρ2 , χ =
r+ − r−

2r2
+

τ , (6.23)

and rewrite the metric as

ds2
NH = dρ2 + ρ2dχ2 + r2

+(dθ2 + sin2 θdφ2) , (6.24)

which means that for a regular solution we should restrict to r ≥ r+ and the coordinate

τ should be made periodic

τ ∼ τ +
4πr2

+

r+ − r−
. (6.25)

With this identification the metric is asymptotic to R2 × S2 for r → r+ (i.e. we have

a bolt of radius r+ [110]) and to R3 × S1 for r → ∞. The angles θ and φ are the

5The case m2 = p2 − q2 corresponds to the extremal Euclidean Reissner-Nordström black hole. We
discuss this case in Appendix E.
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coordinates on S2. In the next section we will solve the equations of motion of N = 2

five-dimensional supergravity with this Euclidean metric as a base space.

6.2.2 The five-dimensional supergravity solution

A convenient set of frames on the four-dimensional base is given by

ê1 =

(
1− 2m

r
+
p2 − q2

r2

)1/2

dτ , ê2 =

(
1− 2m

r
+
p2 − q2

r2

)−1/2

dr ,

ê3 = r dθ , ê4 = r sin θ dφ , (6.26)

and the usual self-dual and anti-self-dual two-forms are

Ω± = ê1 ∧ ê2 ± ê3 ∧ ê4 . (6.27)

With this in hand it is easy to show that

Θ(3) =
p+ q

r2
Ω+ , ω

(3)
− =

p− q
r2

Ω− . (6.28)

It will be useful to have the explicit expression for the potential B(3) satisfying Θ(3) =

dB(3)

B(3) =
(p+ q)

r
dτ − (p+ q) cos θ dφ . (6.29)

The solution to equations (6.15) and (6.16) is

Z1 = 1− 2q2(p+ q)

m

1

r
, Z2 = 1− 2q1(p+ q)

m

1

r
, (6.30)

Θ(1) = f1(r)Ω+ + g1(r)Ω− , Θ(2) = f2(r)Ω+ + g2(r)Ω− , (6.31)
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where

f1 =
2q1

r2
− 2q1(p2 − q2)

mr3
, f2 =

2q2

r2
− 2q2(p2 − q2)

mr3
, (6.32)

g1 =
(p− q)
r2

− 2q1(p2 − q2)

mr3
, g2 =

(p− q)
r2

− 2q2(p2 − q2)

mr3
. (6.33)

Note that with these functions fI(r) and gI(r) one can show that dΘ(I) = 0, which

means that locally one can express Θ(1) and Θ(2) in terms of potential one-forms, Θ(I) =

dB(I). Explicitly, these one-forms are

B(I) = KI dτ + bI dφ , (6.34)

with

K1 =
2q1 + p− q

r
− 2q1(p2 − q2)

mr2
, b1 = (−2q1 + p− q) cos θ , (6.35)

K2 =
2q2 + p− q

r
− 2q2(p2 − q2)

mr2
, b2 = (−2q2 + p− q) cos θ . (6.36)

To solve (6.17) and (6.18), we will use the Ansatz

k = µ(r)dτ + ν(θ)dφ . (6.37)

One can then show that

ν(θ) = ν0 + ξ cos θ , (6.38)

206



with ν0 and ξ constants. Then the problem reduces to a system of two coupled linear

ordinary differential equatons for µ(r) and Z3(r)

dµ

dr
= −

(
ξ

r2
+ Z1f1 + Z2f2 +

p+ q

r2
Z3

)
, (6.39)

∇̂2Z3 = 2

(
f1f2 − g1g2 +

ξ(p− q)
r4

− (p− q)
r2

dµ

dr

)
. (6.40)

A solution to these equations is given by

Z3 = 1−
(

4q1q2(m2 − p2 + q2)

m3
+

2(p− q)(q + q1 + q2)

m

)
1

r

+
4q1q2(p2 − q2)

m2

1

r2
, (6.41)

µ = (p+ q + 2(q1 + q2))

(
1

r
− 1

r+

)
−
(

2q1q2(p+ q)(3m2 − p2 + q2)

m3
+

(p2 − q2)(q + 2q1 + 2q2)

m

)(
1

r2
− 1

r2
+

)
+

4q1q2(p2 − q2)(p+ q)

m2

(
1

r3
− 1

r3
+

)
. (6.42)

To arrive at this particular solution we have chosen

ν0 = ξ = 0 , → ν = 0 , (6.43)

which ensures that there are no closed time-like curves (CTCs) coming from the dφ2

term in the five-dimensional metric, at θ = 0, π. We have also chosen the additive
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constant in the solution for µ such that µ(r+) = 0, which ensures the absence of CTCs

near the bolt. This implies that µ has a non vanishing value γ at infinity,

lim
r→∞

µ = γ ≡ − 1

r+

(p+ q + 2(q1 + q2))

+
1

r2
+

(
2q1q2(p+ q)(3m2 − p2 + q2)

m3
+

(p2 − q2)(q + 2q1 + 2q2)

m

)
− 1

r3
+

4q1q2(p2 − q2)(p+ q)

m2
, (6.44)

this will be important in the calculation of the asymptotic charges of the five-dimensional

solution. Note also that we have set the constants terms in ZI to 1 by which we fix the

asymptotic values of the scalar fields6.

An important difference between this solution and the magnetized Euclidean

Schwarzschild solution in [38] is that the fluxes here are not self-dual. It is clear that if

we set

q = p =
q̃3

2
, q1 =

q̃1

2
, q2 =

q̃2

2
, (6.45)

we will recover the five-dimensional solution based on the Euclidean Schwarzschild

black hole found in [38]. Note that all qI in [38] should be identified with q̃I , this is due

to the different conventions in the normalization of the fluxes.

An important step in the analysis of the five-dimensional solution constructed above

is to ensure the global absence of CTCs. This means that for constant time slices

one should make sure that the coefficient of dτ 2 in the five-dimensional metric is non-

negative and all ZI are positive definite. To analyze this condition in an explicit example

we will take

q = q1 = q2 = Q > 0 , p =
Q

2
. (6.46)

6In an eleven-dimensional uplift of our solution this choice will fix the asymptotic volumes of the
two-cycles of T 6.
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Figure 6.1: M as a function of ρ = r/r+ for four different values of Q/m. The curves
correspond to Q/m = (0.1, 0.2, 0.3, 0.4) from top to bottom.

Then we have

r± = m±
√
m2 +

3Q2

4
, (6.47)

and the condition that Z1 and Z2 are positive for r ≥ r+ imposes

0 <
Q

m
<

√
3

2
≈ 0.8660 . (6.48)

Requiring that Z3 is positive for r > r+ leads to

0 <
Q

m
/ 0.7783 , (6.49)

which is clearly a stronger constraint. Finally we have to make sure that the coefficient

of dτ 2 is non-negative

M≡ 1

r2(Z1Z2Z3)2/3
[Z1Z2Z3(r − r+)(r − r−)− µ2r2] ≥ 0 . (6.50)
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Expanding this expression for r → ∞ we find a sextic algebraic inequality in Q/m,

which can be solved numerically. The allowed range of parameters coming from this

constraint is

0 <
Q

m
/ 0.4118 , 0.8811 /

Q

m
/ 1.2587 . (6.51)

The bottom line is that for the choice of parameters (6.46) the five-dimensional solution

is completely regular and there are no CTCs (globally) if

0 <
Q

m
/ 0.4118 . (6.52)

Some plots of M for different values of Q/m are presented in Fig. 6.1. We have

performed a detailed numerical analysis for a number of other choices for the parameters

(p, q, q1, q2) and the conclusions are qualitatively the same. Namely, there is a region in

parameter space in which the five-dimensional solution is regular and has no global

CTCs.

6.2.3 The asymptotic charges

Having found a regular five-dimensional solution of N = 2 ungauged supergravity (or

alternatively M-theory on T 6), asymptotic to R1,3 × S1, it is instructive to compute its

asymptotic charges. The dipole charges , dI , of the solution are directly encoded in the

magnetic part of the gauge field, B(I). We thus have from (6.29), (6.35) and (6.36)

d1 = 2q1 − p+ q ,

d2 = 2q2 − p+ q , (6.53)

d3 = p+ q .
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If the solution is viewed as a compactification of eleven-dimensional supergravity on T 6

these will correspond to the M5 brane charges. The electric charges of the solution are

given by

QI =

∫
S1×S2

[
(XI)−2 ∗5 dA

I − 1
2
CIJKA

J ∧ dAK
]
, (6.54)

where the integral is computed over the S1 × S2 at spatial infinity, parameterized by

(τ, θ, φ). The Chern-Simons term gives a non-vanishing contribution to the charge,

due to the fact that the one-form k goes to a constant non-zero value at infinity. A

straightforward calculation yields

Q1 = −
16π2r2

+

r+ − r−

(
2(p+ q)q2

m
+ γ(q + q2)

)
,

Q2 = −
16π2r2

+

r+ − r−

(
2(p+ q)q1

m
+ γ(q + q1)

)
, (6.55)

Q3 = −
16π2r2

+

r+ − r−

(
4q1q2

m
+ γ(q1 + q2 + p− q) +

2(p− q)(q + q1 + q2)

m

−4q1q2(p2 − q2)

m3

)
.

To compute the mass and the Kaluza-Klein (KK) electric charge of the solution one

has to analyze the asymptotic form of the metric. The fact that the one-form, k, does

not vanish at infinity implies that the coordinates (τ, t) define a frame which is not

asymptotically at rest. One can go to an asymptotically static frame by casting the large

r limit of the metric in the form

ds2 ≈ (1− γ2)
(
dτ − γ

1− γ2
dt
)2

− 1

1− γ2
dt2 + dr2 + r2(dθ2 + sin2 θdφ2) , (6.56)

and redefining the coordinates as

τ̂ = (1− γ2)1/2
(
τ − γ

1− γ2
t
)
, t̂ = (1− γ2)−1/2t . (6.57)
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To compute the mass and KK charge, one needs to reduce our solution along the the τ̂

coordinate. The metric takes the form

ds2
5 =

g2

Z2
Î4

[
dτ̂ +

(
γ − µ

g2Î4

)
dt̂
]2

+
Z

gÎ
1/2
4

ds2
E , (6.58)

where we have defined,

g = 1− 2m

r
+
p2 − q2

r2
, Î4 =

1

1− γ2

(
g−1Z3 − g−2µ2

)
, (6.59)

and

ds2
E = −Î−1/2

4 dt̂2 + Î
1/2
4

[
dr2 + gr2(dθ2 + sin2 θdφ2)

]
(6.60)

is the four-dimensional Einstein metric. From the asymptotic behavior of the dt̂2 coeffi-

cient in the Einstein frame metric one can read off the mass of the solution

M =
1

G4(1− γ2)

[m
2

(1− 2γ2)−
q1q2 + pq1 + pq2 + q(p−q)

2

m

−γ(q1 + q2 +
p+ q

2
) +

q1q2(p2 − q2)

m3

]
. (6.61)

Here G4 is the four-dimensional Newton’s constant, whose relation to the five-

dimensional Newton’s constant G5 is

G4 =
G5

vol(τ)
=

G5

(1− γ2)1/2

(r+ − r−)

4πr2
+

, (6.62)
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and vol(τ) is the length of the S1 parametrized by τ . The KK electric charge, Qe, is

encoded in the KK gauge field7

AKK =

(
γ − µ

g2Î4

)
dt̂ , (6.63)

and is given by

Qe = − 1

G4(1− γ2)

[
γ
m

2
+ γ

q1q2 + pq1 + pq2 + q(p−q)
2

m

+
1 + γ2

2
(q1 + q2 +

p+ q

2
)− γ

q1q2(p2 − q2)

m3

]
. (6.64)

Finally it is instructive to compute the rest-mass, M0, of the solution, i.e. the mass with

respect to the (t, τ ) frame

M0 ≡ (1− γ2)−1/2(M − γQe) =
1

16πG5

(
32π2r2

+m

r+ − r−
+Q1 +Q2 +Q3

)
. (6.65)

It is clear from this expression that if we set the mass of the four-dimensional

Reissner-Nordström black hole to zero we will recover the usual relation between the

mass and the charges of a BPS black hole solution. Note also that despite the fact that

we start our construction from a four-dimensionnal black hole with a magnetic charge

p, AKK has a component only along dt̂, which implies that the final solution does not

carry any global magnetic charge.

6.3 Outlook

Starting from a four-dimensional Euclidean background that solves Einstein-Maxwell

equations, we found a five-parameter family of solutions to five-dimensional N = 2

7We use the conventions of [90].
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ungauged supergravity coupled to two vector multiplets. Our solutions are regular, hori-

zonless, do not preserve any supersymmetries and have the same charges at infinity as

a non-extremal black hole. They generalize substantially the solutions found in [38]

which were based on a Ricci-flat four-dimensional base and had only self-dual (or anti-

self-dual) fluxes. The key point of the construction, in both [38] and our work, is the

existence of a bolt (a topological S2) in the four-dimensional base [110], on which one

can put magnetic fluxes. These fluxes provide non-singular sources for the warp fac-

tors of the solution, ensure its regularity and are ultimately responsible for the charges

at spatial infinity. It would be interesting to construct other non-supersymmetric five-

dimensional supergravity solutions with a four-dimensional electrovac base. If this base

space has interesting topology one should be able to find regular solutions by putting

fluxes on it. In [45] we found a more general six-parametr family of solutions based on

the Kerr-Newman-NUT gravitational instanton. This is a generalization of the Euclidean

Reissner-Nordström solution which includes rotation and NUT charge. An important

aspect of this regular non-supersymmetric solution is that there is a range of parame-

ters for which it can be made ambipolar in much the same way as the BPS solutions

of Chapter 2 and the non-supersymmetric solution with a Kerr-Taub-bolt base found in

[38]. There are some other well-known backgrounds that could be used for constructing

non-supersymmetric supergrvity solutions. The ten-parameter family of solutions con-

structed by Carter [58] is a notable example, which includes the Kerr-Newman solution.

Another interesting example is the Euclidean Melvin solution [169]. This solution is

not asymptotically flat and may lead to non-supersymmetric solutions with interesting

asymptotic structure. Trying to build five-dimensional solutions on these spaces may be

challenging, but the presence of two commuting Killing vectors on the four-dimensional

base should render the problem tractable.
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In the supergravity action (6.3), the three gauge fields have symmetric roles. This

symmetry is explicitly broken by our assumptions (6.12), which leads to a linear system

of differential equations. A very natural question is whether one can put all three U(1)

gauge fields on the same footing, and find solutions which are symmetric under the

interchange of the three gauge fields. While the “floating brane” Ansatz presumably

allows for such solution, it seems to be a rather difficult task to find completely general

solutions in this Ansatz. Indeed, turning on ω
(1)
− and ω

(2)
− modifies the equations of

motion and they can no longer be solved in a linear way.

As we discussed above the solutions presented in this Chapter can be obtained by

compactifying eleven-dimensional supergravity on T 6 with three sets of M2 and M5

branes wrapping two- and four-cycles on the torus. It should be in principle straightfor-

ward to construct analogous compactifications replacing the T 6 by an arbitrary Calabi-

Yau threefold. These would correspond to solutions of five-dimensional N = 2

ungauged supergravity coupled to h1,1 − 1 vector multiplets, where h1,1 is one of the

Hodge numbers of the Calabi-Yau. In the BPS case such solutions were discussed in

[60].

Rather than finding new solutions by solving the equations of motion, a very fruitful

approach is the use of solution generating techniques. In this context, it is useful to

note that the solutions discussed in this Chapter have at least two commuting space-like

Killing vectors. This symmetry can be utilized to generate an even more general class of

non-extremal solutions by using spectral flow [33]. This may proceed in the following

way - first one has to use the results of Chapter 3 to dualize the eleven-dimensional

solution to IIB supergravity and then perform the spectral flow transformation of [33].

The action of spectral flow on non-BPS supergravity solutions has already shown its

efficiency [39], [4], and it is natural to expect that it will be useful for generating new

interesting solutions.
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The construction of our solutions relies on the “floating brane” Ansatz of [39], which

states that the metric warp factors and the electric potentials are related. All the solu-

tions found so far within this Ansatz have a mass that is linear in the sum of the electric

charges. It should be expected that for a generic non-supersymmetric supergravity solu-

tion this linear dependence should not be present. Very few such more general non-BPS

solutions are known [143, 89, 184, 151] and it would be quite interesting to find more

of them. It is also worth exploring the limitations on the types of solutions that can be

constructed via the “floating brane” Ansatz and to find new more general techniques for

constructing non-BPS solutions.

An interesting open question is whether the solutions presented in this Chapter are

stable. Since the solutions have the same asymptotics as a non-exrtremal black hole,

one can expect that they will be unstable, it will be very interesting to understand the

details of this putative instability. We have not performed the stability analysis of our

solutions and we expect this to be a non-trivial task, see [127] for a discussion of the

instability of the Schwarzschild instanton. It is known that the regular non-BPS solutions

found in [143] are unstable [54]. It was later shown that this instability has a natural

interpretation in terms of Hawking radiation [63, 64, 65, 6, 7]. It is tempting to speculate

that if the non-BPS solutions presented here are unstable their instability should also be

interpreted as Hawking radiation for the corresponding non-extremal black hole with

the same asymptotic charges.
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Conclusion

In this thesis we have studied in detail supersymmetric and non-supersymetric solutions

of supergravity. The solutions are regular, horizonless and with the same charges and

asymptotic structure as supersymmetric and non-supersymmetric black holes and black

rings. The existence of a large number of such solutions provides insights into the

structure of black hole microstates, the information paradox and the resolution of black

hole singularities in string theory.

We used spectral flow as a solution generating technique which also provides an effi-

cient way to related two and three charge solutions with a GH base. Using the physics of

supertubes and spectral flow we have also discussed which of the two and three charge

solutions with GH base are bound states. We also studied in detail probe supertubes

in the background of various supersymmetric three-charge solutions. Using the DBI

action we analyzed the fluctuations of the supertubes in a general three-charge solu-

tion with large magnetic dipole fluxes and uncovered a novel mechanism of entropy

enhancement. We also argued how via this mechanism one may account for a large

portion of the entropy of the three-charge black hole. In Chapter 5 we studied super-

gravity solutions with a four-dimensional base with a generic U(1) isometry. We pre-

sented the first explicit example of such more general solution and showed that the

use of ambipolar four-dimensional bases may be a general feature of the black hole

microstate geometries. Finally we studied a large class of non-supersymmetric and non-

extremal supergravity solutions by using a four-dimensional base which is a solution to

the Euclidean Einstein-Maxwell theory. We presented an explicit five-parameter family

of regular non-BPS solutions. Our construction suggests that there may be a large num-

ber of regular non-supersymmetric solutions with the same charges and asymptotics as
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non-supersymmetric black holes. These solutions will play an important role in under-

standing the microstates and singularity resolution of non-supersymmetric black holes.

Without trying to be comprehensive we will outline some interesting directions for

future work:

In addition to spectral flow there are more sophisticated solution-generating tech-

niques based on the U-duality groups of supergravities in four and five dimensions.

One can generalize spectral flow to the full U-duality group, for the STU model this is

SO(4, 4) [98, 130]. The general form of the BPS solutions with GH base is known and

it is unlikley that these more general solution generating techniques will teach us any-

thing new about the supersymmetric solutions. It is also not guaranteed that the orbit of

the SO(4, 4) U-duality group will preserve the regularity of the microstate geometries.,

which was one of the features of spectral flow. Nevertheless it will be very interesting

to apply the SO(4, 4) U-duality group to generate new non-BPS solutions starting from

the examples discussed in Chapter 6. Since the construction of new non-supersymmetric

solutions is technically challenging it will be beneficial to construct as many new solu-

tions as possible no matter if they are regular or not.

As pointed out in Chapter 4 it will be very interesting to find exact supergravity

solutions that take into account the back-reaction of the wiggling supertubes which we

studied only in the probe limit. Such a solution is hard to find for all oscillatory modes

since we break a lot of the symmetry. However one can find the full backreacted solution

for a supertube with fluctuating charge density. There is already some work in this

direction with encouraging results and support for the entropy enhancement proposal

[40].

One can also try to construct more general non-BPS solutions. One can use the

Euclidean Melvin universe as a four-dimensional Einstein-Maxwell base. It has the
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same number of commuting Killing vectors as the Reissner-Nordström solution so find-

ing the five-dimensional background should not be harder. It is interesting also to

see whether there are more general linear equations of motion in the non-BPS float-

ing brane Ansatz. Can one use four-dimensional Einstein-Maxwell-Dilaton solutions or

four-dimensional solutions with cosmological constant as a base for construction five-

dimensional non-supersymmetric solutions? There is a large class of metrics found by

LeBrun [152] which can be turned into four-dimensional Euclidean Einstein-Maxwell

solutions. These solutions are Kähler but not hyper-Kähler and have non-trivial two-

cycles akin to the GH solutions. It will be quite interesting if one can construct a large

number of non-BPS regular five-dimensional solutions with non-trivial topology based

on the LeBrun metrics. There is some recent work in progress which suggests that this

may indeed be possible [46].

It is well known that higher derivative corrections to the gravitational action intro-

duce corrections to the Bekenstein-Hawking entropy of a black hole [204]. It will be

very interesting to study supergravity actions with higher derivative terms and analyze

the effect of these corrections on the regular microstate geometries. Of course it will be

also desirable to find a way to count such geometries and reproduce the Wald formula

which incorporates all corrections to the Bekenstein-Hawking entropy.

It will be very interesting to clarify the implications for the OSV conjecture [174]

posed by the existence of the regular microstate geometries. It is established by now

that there should be some modifications to the original conjecture due to the presence of

the scaling solutions discussed in Chapter 2, see [79].

It may be fruitful to apply techniques from the theory of crystal melting, toric geom-

etry and Young diagrams [142] to count the solutions with a U(1) × U(1) invariant

hyper-Kähler base. It will be then be possible to compare the results of this approach to

the counting performed by geometric quantization in [74, 75, 13, 76].
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It will be interesting to apply the ideas that lead to the construction of the regular

microstates geometries to gauged supergravity in five dimensions and look for regular

asymptotically AdS solutions. These will be of interest for black holes in AdS and for

AdS/CFT. The BPS solutions of five-dimensional gauged supergravity were classified in

[102] where it was shown that they have a four-dimensional Kähler base. There is also

a known BPS black hole with finite entropy in gauged supergravity [132], which has a

simple Käler base. It remains to be seen whether one can construct ambipolar solutions

with a Kähler base with non-trivial topology which can be interpreted as microstates

of this black hole. Of course it will also be interesting to study non-BPS solutions of

gauged supergravity along the lines of Chapter 6.

It is clear that studying the puzzles of black hole physics has lead to a lot of advances

in theoretical physics and in our understanding of the nature of space-time and quantum

gravity. There is no doubt that pondering about black holes will uncover new surprises

and exciting physics. We hope that the results summarized in this thesis will be an

important step along the way.

220



Bibliography

[1] G. ’t Hooft, “Dimensional reduction in quantum gravity,” arXiv:gr-qc/9310026.

[2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N
field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-
th/9905111].

[3] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810,
091 (2008) [arXiv:0806.1218 [hep-th]].

[4] J. H. Al-Alawi and S. F. Ross, “Spectral Flow of the Non-Supersymmetric
Microstates of the D1-D5-KK System,” JHEP 0910, 082 (2009) [arXiv:0908.0417
[hep-th]].

[5] M. F. Atiyah and N. J. Hitchin, “Low-Energy Scattering Of Nonabelian
Monopoles,” Phys. Lett. A 107, 21 (1985).

[6] S. G. Avery, B. D. Chowdhury and S. D. Mathur, “Emission from the D1D5 CFT,”
JHEP 0910, 065 (2009) [arXiv:0906.2015 [hep-th]].

[7] S. G. Avery and B. D. Chowdhury, “Emission from the D1D5 CFT: Higher Twists,”
arXiv:0907.1663 [hep-th].

[8] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple
M2-Branes,” Phys. Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]].

[9] D. Bak, Y. Hyakutake and N. Ohta, “Phase moduli space of supertubes,” Nucl.
Phys. B 696, 251 (2004) [arXiv:hep-th/0404104].

[10] I. Bakas and K. Sfetsos, “Toda fields of SO(3) hyper-Kahler metrics and free field
realizations,” Int. J. Mod. Phys. A 12, 2585 (1997) [arXiv:hep-th/9604003].

[11] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S. F. Ross, “Supersymmetric
conical defects: Towards a string theoretic description of black hole formation,”
Phys. Rev. D 64, 064011 (2001) [arXiv:hep-th/0011217].

[12] V. Balasubramanian, E. G. Gimon and T. S. Levi, “Four dimensional black hole
microstates: From D-branes to spacetime foam,” arXiv:hep-th/0606118.

[13] V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, “Black Holes as
Effective Geometries,” Class. Quant. Grav. 25, 214004 (2008) [arXiv:0811.0263
[hep-th]].

221



[14] J. M. Bardeen, B. Carter and S. W. Hawking, “The four laws of black hole mechan-
ics,” Commun. Math. Phys. 31, 161 (1973).

[15] B. Bates and F. Denef, “Exact solutions for supersymmetric stationary black hole
composites,” arXiv:hep-th/0304094.

[16] K. Becker, M. Becker and J. H. Schwarz, “String theory and M-theory: A modern
introduction,” Cambridge, UK: Cambridge Univ. Pr. (2007) 739 p

[17] K. Behrndt, G. Lopes Cardoso and S. Mahapatra, “Exploring the relation between
4D and 5D BPS solutions,” Nucl. Phys. B 732, 200 (2006) [arXiv:hep-th/0506251].

[18] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333 (1973).

[19] I. Bena and P. Kraus, “Three charge supertubes and black hole hair,” Phys. Rev. D
70, 046003 (2004) [arXiv:hep-th/0402144].

[20] I. Bena, “Splitting hairs of the three charge black hole,” Phys. Rev. D 70, 105018
(2004) [arXiv:hep-th/0404073].

[21] I. Bena and N. P. Warner, “One ring to rule them all ... and in the darkness bind
them?,” Adv. Theor. Math. Phys. 9 (2005) 667-701 [arXiv:hep-th/0408106.]

[22] I. Bena and P. Kraus, “Microscopic description of black rings in AdS/CFT,” JHEP
0412, 070 (2004) [arXiv:hep-th/0408186].

[23] I. Bena, C. W. Wang and N. P. Warner, “Black rings with varying charge density,”
JHEP 0603, 015 (2006) [arXiv:hep-th/0411072].

[24] I. Bena and P. Kraus, “Microstates of the D1-D5-KK system,” Phys. Rev. D 72,
025007 (2005) [arXiv:hep-th/0503053].

[25] I. Bena, P. Kraus and N. P. Warner, “Black rings in Taub-NUT,” Phys. Rev. D 72,
084019 (2005) [arXiv:hep-th/0504142].

[26] I. Bena and N. P. Warner, “Bubbling supertubes and foaming black holes,” Phys.
Rev. D 74, 066001 (2006) [arXiv:hep-th/0505166].

[27] I. Bena, C. W. Wang and N. P. Warner, “Sliding rings and spinning holes,” JHEP
0605, 075 (2006) [arXiv:hep-th/0512157].

[28] I. Bena, C. W. Wang and N. P. Warner, “The foaming three-charge black hole,”
Phys. Rev. D 75, 124026 (2007) [arXiv:hep-th/0604110].

[29] I. Bena, C.W. Wang and N.P. Warner, “Mergers and typical black hole microstates,”
JHEP 0611, 042 (2006) [arXiv:hep-th/0608217].

222



[30] I. Bena and N. P. Warner, “Black holes, black rings and their microstates,”
arXiv:hep-th/0701216.

[31] I. Bena, N. Bobev and N. P. Warner, “Bubbles on Manifolds with a U(1) Isometry,”
JHEP 0708, 004 (2007) [arXiv:0705.3641 [hep-th]].

[32] I. Bena, C. W. Wang and N. P. Warner, “Plumbing the Abyss: Black Ring
Microstates,” arXiv:0706.3786 [hep-th].

[33] I. Bena, N. Bobev and N. P. Warner, “Spectral Flow, and the Spectrum of Multi-
Center Solutions,” Phys. Rev. D 77, 125025 (2008) [arXiv:0803.1203 [hep-th]].

[34] I. Bena, N. Bobev, C. Ruef and N. P. Warner, “Entropy Enhancement and Black
Hole Microstates,” arXiv:0804.4487 [hep-th].

[35] I. Bena, N. Bobev, C. Ruef and N. P. Warner, “Supertubes in Bubbling
Backgrounds: Born-Infeld Meets Supergravity,” JHEP 0907, 106 (2009)
[arXiv:0812.2942 [hep-th]].

[36] I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N. P. Warner, “Non-BPS Black
Rings and Black Holes in Taub-NUT,” JHEP 0906, 015 (2009) [arXiv:0902.4526
[hep-th]].

[37] I. Bena, S. Giusto, C. Ruef and N. P. Warner, “Multi-Center non-BPS Black Holes
- the Solution,” JHEP 0911, 032 (2009) [arXiv:0908.2121 [hep-th]].

[38] I. Bena, S. Giusto, C. Ruef and N. P. Warner, “A (Running) Bolt for New Reasons,”
JHEP 0911, 089 (2009) [arXiv:0909.2559 [hep-th]].

[39] I. Bena, S. Giusto, C. Ruef and N. P. Warner, “Supergravity Solutions from Float-
ing Branes,” JHEP 1003, 047 (2010) [arXiv:0910.1860 [hep-th]].

[40] I. Bena, N. Bobev, S. Giusto, C. Ruef and N. P. Warner, ”An Infinite-Dimensional
Family of Black-Hole Microstate Geometries,” to appear.

[41] P. Berglund, E. G. Gimon and T. S. Levi, “Supergravity microstates for BPS black
holes and black rings,” JHEP 0606, 007 (2006) [arXiv:hep-th/0505167].

[42] E. Bergshoeff, E. Sezgin and P. K. Townsend, “Supermembranes and eleven-
dimensional supergravity,” Phys. Lett. B 189, 75 (1987).

[43] E. Bergshoeff, C. M. Hull and T. Ortin, “Duality in the type II superstring effective
action,” Nucl. Phys. B 451, 547 (1995) [arXiv:hep-th/9504081].

[44] B. Bertotti, “Uniform electromagnetic field in the theory of general relativity,”
Phys. Rev. 116, 1331 (1959).

223



[45] N. Bobev and C. Ruef, “The Nuts and Bolts of Einstein-Maxwell Solutions,” JHEP
1001, 124 (2010) [arXiv:0912.0010 [hep-th]].

[46] N. Bobev and N. P. Warner, work in progress.

[47] E.B. Bogomol’nyi, Sov. J. Nucl. Phys. 24 (1976) 449

[48] C. P. Boyer and J. D. . Finley, “Killing Vectors In Selfdual, Euclidean Einstein
Spaces,” J. Math. Phys. 23, 1126 (1982).

[49] J. C. Breckenridge, R. C. Myers, A. W. Peet and C. Vafa, “D-branes and spinning
black holes,” Phys. Lett. B 391, 93 (1997) [arXiv:hep-th/9602065].

[50] T. H. Buscher, “A Symmetry of the String Background Field Equations,” Phys.
Lett. B 194, 59 (1987);

[51] F. Cachazo, K. A. Intriligator and C. Vafa, “A large N duality via a geometric
transition,” Nucl. Phys. B 603, 3 (2001) [arXiv:hep-th/0103067].

[52] C. G. Callan and J. M. Maldacena, “D-brane Approach to Black Hole Quantum
Mechanics,” Nucl. Phys. B 472, 591 (1996) [arXiv:hep-th/9602043].

[53] I. C. G. Campbell and P. C. West, “N=2 D=10 Nonchiral Supergravity And Its
Spontaneous Compactification,” Nucl. Phys. B 243, 112 (1984).

[54] V. Cardoso, O. J. C. Dias, J. L. Hovdebo and R. C. Myers, “Instability of non-
supersymmetric smooth geometries,” Phys. Rev. D 73, 064031 (2006) [arXiv:hep-
th/0512277].

[55] J. L. Cardy, “Operator Content Of Two-Dimensional Conformally Invariant Theo-
ries,” Nucl. Phys. B 270, 186 (1986).

[56] M. Cariglia and O. A. P. Mac Conamhna, “The general form of supersymmetric
solutions of N = (1,0) U(1) and SU(2) gauged supergravities in six dimensions,”
Class. Quant. Grav. 21, 3171 (2004) [arXiv:hep-th/0402055].

[57] S. M. Carroll, “Spacetime and geometry: An introduction to general relativity,”
San Francisco, USA: Addison-Wesley (2004) 513 p

[58] B. Carter, “Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s
equations,” Commun. Math. Phys. 10, 280 (1968).

[59] A. Ceresole, G. Dall’Agata, S. Ferrara and A. Yeranyan, “First order flows for
N=2 extremal black holes and duality invariants,” Nucl. Phys. B 824, 239 (2010)
[arXiv:0908.1110 [hep-th]].

[60] M. C. N. Cheng, “More bubbling solutions,” arXiv:hep-th/0611156.

224



[61] B. D. Chowdhury, S. Giusto and S. D. Mathur, “A microscopic model for the black
hole - black string phase transition,” arXiv:hep-th/0610069.

[62] B. D. Chowdhury and S. D. Mathur, “Fractional brane state in the early universe,”
arXiv:hep-th/0611330.

[63] B. D. Chowdhury and S. D. Mathur, “Radiation from the non-extremal fuzzball,”
Class. Quant. Grav. 25, 135005 (2008) [arXiv:0711.4817 [hep-th]].

[64] B. D. Chowdhury and S. D. Mathur, “Pair creation in non-extremal fuzzball
geometries,” Class. Quant. Grav. 25, 225021 (2008) [arXiv:0806.2309 [hep-th]].

[65] B. D. Chowdhury and S. D. Mathur, “Non-extremal fuzzballs and ergoregion emis-
sion,” Class. Quant. Grav. 26, 035006 (2009) [arXiv:0810.2951 [hep-th]].

[66] B. D. Chowdhury and A. Virmani, “Modave Lectures on Fuzzballs and Emission
from the D1-D5 System,” arXiv:1001.1444 [hep-th].

[67] E. Cremmer, B. Julia and J. Scherk, “Supergravity theory in 11 dimensions,” Phys.
Lett. B 76, 409 (1978).

[68] C. Crnkovic and E. Witten, “Covariant description of canonical formalism in geo-
metrical theories,”

[69] M. Cvetic and A. A. Tseytlin, “Solitonic strings and BPS saturated dyonic black
holes,” Phys. Rev. D 53, 5619 (1996) [arXiv:hep-th/9512031].

[70] M. Cvetic, G. W. Gibbons, H. Lu and C. N. Pope, “Orientifolds and slumps in G(2)
and Spin(7) metrics,” Annals Phys. 310, 265 (2004) [arXiv:hep-th/0111096].

[71] J. Dai, R. G. Leigh and J. Polchinski, “New Connections Between String Theo-
ries,” Mod. Phys. Lett. A 4, 2073 (1989).

[72] A. Das and J. Gegenberg, “Stationary Riemannian space-times with self-dual cur-
vature,” Gen. Rel. Grav. 16, (1984) 817.

[73] J. R. David, G. Mandal and S. R. Wadia, “Microscopic formulation of black holes
in string theory,” Phys. Rept. 369, 549 (2002) [arXiv:hep-th/0203048].

[74] J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, “Black
hole bound states in AdS3 × S2,” arXiv:0802.2257 [hep-th].

[75] J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, “Quantizing N=2
Multicenter Solutions,” JHEP 0905, 002 (2009) [arXiv:0807.4556 [hep-th]].

[76] J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, “A bound on the
entropy of supergravity?,” JHEP 1002, 062 (2010) [arXiv:0906.0011 [hep-th]].

225



[77] F. Denef, “Supergravity flows and D-brane stability,” JHEP 0008, 050 (2000)
[arXiv:hep-th/0005049].

[78] F. Denef, “Quantum quivers and Hall/hole halos,” JHEP 0210, 023 (2002)
[arXiv:hep-th/0206072].

[79] F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and halos,”
arXiv:hep-th/0702146.

[80] F. Denef, D. Gaiotto, A. Strominger, D. Van den Bleeken and X. Yin, “Black hole
deconstruction,” arXiv:hep-th/0703252.

[81] M. J. Duff and K. S. Stelle, “Multi-membrane solutions of D = 11 supergravity,”
Phys. Lett. B 253, 113 (1991).

[82] M. Dunajski and S. A. Hartnoll, “Einstein-Maxwell gravitational instantons
and five dimensional solitonic strings,” Class. Quant. Grav. 24, 1841 (2007)
[arXiv:hep-th/0610261].

[83] T. Eguchi and A. J. Hanson, “Asymptotically Flat Selfdual Solutions To Euclidean
Gravity,” Phys. Lett. B 74 (1978) 249.

[84] T. Eguchi and A. J. Hanson, “Gravitational Instantons,” Gen. Rel. Grav. 11, 315
(1979).

[85] T. Eguchi and A. J. Hanson, “Selfdual Solutions To Euclidean Gravity,” Annals
Phys. 120, 82 (1979).

[86] T. Eguchi, P. B. Gilkey and A. J. Hanson, “Gravitation, Gauge Theories And Dif-
ferential Geometry,” Phys. Rept. 66, 213 (1980).

[87] H. Elvang, R. Emparan, D. Mateos and H. S. Reall, “A supersymmetric black ring,”
Phys. Rev. Lett. 93, 211302 (2004) [arXiv:hep-th/0407065].

[88] H. Elvang, R. Emparan, D. Mateos and H. S. Reall, “Supersymmetric black
rings and three-charge supertubes,” Phys. Rev. D 71, 024033 (2005) [arXiv:hep-
th/0408120].

[89] H. Elvang, R. Emparan and P. Figueras, “Non-supersymmetric black rings as ther-
mally excited supertubes,” JHEP 0502 (2005) 031 [arXiv:hep-th/0412130].

[90] H. Elvang, R. Emparan, D. Mateos and H. S. Reall, “Supersymmetric 4D rotating
black holes from 5D black rings,” JHEP 0508, 042 (2005) [arXiv:hep-th/0504125].

[91] R. Emparan, D. Mateos and P. K. Townsend, “Supergravity supertubes,” JHEP
0107, 011 (2001) [arXiv:hep-th/0106012].

226



[92] R. Emparan and H. S. Reall, “A rotating black ring in five dimensions,” Phys. Rev.
Lett. 88, 101101 (2002) [arXiv:hep-th/0110260].

[93] R. Emparan and H. S. Reall, “Black rings,” Class. Quant. Grav. 23, R169 (2006)
[arXiv:hep-th/0608012].

[94] T. K. Finch, “Three-charge supertubes in a rotating black hole background,”
arXiv:hep-th/0612085.

[95] J. Ford, S. Giusto and A. Saxena, “A class of BPS time-dependent 3-charge
microstates from spectral flow,” Nucl. Phys. B 790, 258 (2008) [arXiv:hep-
th/0612227].

[96] D. Gaiotto, A. Strominger and X. Yin, “New connections between 4D and 5D
black holes,” JHEP 0602, 024 (2006) [arXiv:hep-th/0503217].

[97] D. Gaiotto, A. Strominger and X. Yin, “5D black rings and 4D black holes,” JHEP
0602, 023 (2006) [arXiv:hep-th/0504126].

[98] D. V. Gal’tsov and N. G. Scherbluk, “Generating technique for U(1)35D super-
gravity,” Phys. Rev. D 78, 064033 (2008) [arXiv:0805.3924 [hep-th]].

[99] P. Galli and J. Perz, “Non-supersymmetric extremal multicenter black holes with
superpotentials,” JHEP 1002, 102 (2010) [arXiv:0909.5185 [hep-th]].

[100] D. Garfinkle, G. T. Horowitz and A. Strominger, “Charged black holes in string
theory,” Phys. Rev. D 43, 3140 (1991) [Erratum-ibid. D 45, 3888 (1992)].

[101] J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis and H. S. Reall, “All super-
symmetric solutions of minimal supergravity in five dimensions,” Class. Quant.
Grav. 20, 4587 (2003) [arXiv:hep-th/0209114].

[102] J. P. Gauntlett and J. B. Gutowski, “All supersymmetric solutions of mini-
mal gauged supergravity in five dimensions,” Phys. Rev. D 68, 105009 (2003)
[Erratum-ibid. D 70, 089901 (2004)] [arXiv:hep-th/0304064].

[103] J. P. Gauntlett and J. B. Gutowski, “Concentric black rings,” Phys. Rev. D 71,
025013 (2005) [arXiv:hep-th/0408010].

[104] J. P. Gauntlett and J. B. Gutowski, “General concentric black rings,” Phys. Rev.
D 71, 045002 (2005) [arXiv:hep-th/0408122].

[105] A. M. Ghezelbash, “Supergravity Solutions Without Tri-holomorphic U(1)
Isometries,” Phys. Rev. D 78, 126002 (2008) [arXiv:0811.2244 [hep-th]].

[106] A. M. Ghezelbash, “Atiyah-Hitchin space in five-dimensional Einstein-Maxwell
theory,” Phys. Rev. D 79, 064017 (2009) [arXiv:0904.4691 [hep-th]].

227



[107] A. M. Ghezelbash, “Cosmological Solutions on Atiyah-Hitchin Space in Five
Dimensional Einstein-Maxwell-Chern-Simons Theory,” Phys. Rev. D 81, 044027
(2010) [arXiv:1001.5066 [hep-th]].

[108] F. Giani and M. Pernici, “N=2 Supergravity In Ten-Dimensions,” Phys. Rev. D
30, 325 (1984).

[109] G. W. Gibbons and S. W. Hawking, “Gravitational Multi - Instantons,” Phys. Lett.
B 78, 430 (1978).

[110] G. W. Gibbons and S. W. Hawking, “Classification Of Gravitational Instanton
Symmetries,” Commun. Math. Phys. 66, 291 (1979).

[111] G. W. Gibbons and C. M. Hull, “A Bogomolny Bound For General Relativity
And Solitons In N=2 Supergravity,” Phys. Lett. B 109, 190 (1982).

[112] G. W. Gibbons and K. i. Maeda, “Black Holes And Membranes In Higher Dimen-
sional Theories With Dilaton Fields,” Nucl. Phys. B 298, 741 (1988).

[113] G. W. Gibbons and P. J. Ruback, “The Hidden Symmetries of Multicenter Met-
rics,” Commun. Math. Phys. 115, 267 (1988).

[114] E. G. Gimon, T. S. Levi and S. F. Ross, “Geometry of non-supersymmetric three-
charge bound states,” JHEP 0708, 055 (2007) [arXiv:0705.1238 [hep-th]].

[115] E. G. Gimon and T. S. Levi, “Black Ring Deconstruction,” [arXiv:0706.3394
[hep-th]].

[116] E. G. Gimon, F. Larsen and J. Simon, “Black Holes in Supergravity: the non-BPS
Branch,” JHEP 0801, 040 (2008) [arXiv:0710.4967 [hep-th]].

[117] E. G. Gimon, F. Larsen and J. Simon, “Constituent Model of Extremal non-BPS
Black Holes,” JHEP 0907, 052 (2009) [arXiv:0903.0719 [hep-th]].

[118] S. Giusto, S. D. Mathur and A. Saxena, “Dual geometries for a set of 3-charge
microstates,” Nucl. Phys. B 701, 357 (2004) [arXiv:hep-th/0405017].

[119] S. Giusto, S. D. Mathur and A. Saxena, “3-charge geometries and their CFT
duals,” Nucl. Phys. B 710, 425 (2005) [arXiv:hep-th/0406103].

[120] S. Giusto and S. D. Mathur, “Geometry of D1-D5-P bound states,” Nucl. Phys. B
729, 203 (2005) [arXiv:hep-th/0409067].

[121] S. Giusto, S. D. Mathur and Y. K. Srivastava, “A microstate for the 3-charge black
ring,” arXiv:hep-th/0601193.

228



[122] S. Giusto, S. F. Ross and A. Saxena, “Non-supersymmetric microstates of the
D1-D5-KK system,” JHEP 0712, 065 (2007) [arXiv:0708.3845 [hep-th]].

[123] K. Goldstein and S. Katmadas, “Almost BPS black holes,” JHEP 0905, 058
(2009) [arXiv:0812.4183 [hep-th]].

[124] R. Gopakumar and C. Vafa, “On the gauge theory/geometry correspondence,”
Adv. Theor. Math. Phys. 3, 1415 (1999) [arXiv:hep-th/9811131].

[125] M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol.1: Intro-
duction,” Cambridge, Uk: Univ. Pr. ( 1987) 469 P. ( Cambridge Monographs On
Mathematical Physics)

[126] M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol. 2: Loop
Amplitudes, Anomalies And Phenomenology,” Cambridge, Uk: Univ. Pr. ( 1987)
596 P. ( Cambridge Monographs On Mathematical Physics)

[127] D. J. Gross, M. J. Perry and L. G. Yaffe, “Instability Of Flat Space At Finite
Temperature,” Phys. Rev. D 25, 330 (1982).

[128] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from
non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109].

[129] M. Günaydin, G. Sierra and P. K. Townsend, “The Geometry Of N=2 Maxwell-
Einstein Supergravity And Jordan Algebras,” Nucl. Phys. B 242, 244 (1984).

[130] M. Günaydin, ‘Lectures on Spectrum Generating Symmetries and U-duality in
Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Super-
space,” arXiv:0908.0374 [hep-th].

[131] J. B. Gutowski, D. Martelli and H. S. Reall, “All supersymmetric solutions of
minimal supergravity in six dimensions,” Class. Quant. Grav. 20, 5049 (2003)
[arXiv:hep-th/0306235].

[132] J. B. Gutowski and H. S. Reall, “General supersymmetric AdS(5) black holes,”
JHEP 0404, 048 (2004) [arXiv:hep-th/0401129].
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Appendix A: T-duality transformations

In this Appendix we summarize the T-duality transformation rules for type II theories

with non-zero R-R fields. These rules are derived in [43] and can be considered a gen-

eralization of the Buscher rules [50]. In the expressions below we will adopt the con-

ventions and notation of [170], the different R-R forms are denoted with C(n) and the

fields obtained after the T-duality transformations are denoted with a tilde, w = x9 is

the M-theory compactification direction and x is the T-duality direction.

The set of bosonic fields in the low energy limit of M-theory, i.e. eleven-dimensional

supergravity, are:

Gµν and Aµνρ . (A.1)

After the compactification along w = x9 we are left with type IIA supergravity with the

fields

gµν , C(3)
µνρ, Bµν , C(1)

µ , Φ , (A.2)

which are related to the eleven-dimensional fields as follows (note that we are working

in string frame):

gµν =
√
Gww

(
Gµν +

GµwGνw

Gww

)
, C

(1)
µ =

Gµw

Gww

,

C
(3)
µνρ = Aµνρ , Bµν = Aµνw , Φ =

3

4
log(Gww) .

(A.3)

The type IIB fields are:

gµν , Bµν , Φ, C(0), C(2)
µν , C(4)

µνρσ . (A.4)
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The T-duality rules for the metric and the NS-NS fields are:

g̃xx =
1

gxx
, g̃µx =

Bµx

gxx
, g̃µν = gµν −

gµxgνx −BµxBνx

gxx
,

B̃µx =
gµx
gxx

, B̃µν = Bµν −
Bµxgνx − gµxBνx

gxx
, Φ̃ = Φ− 1

2
log gxx .

(A.5)

The R-R forms transform under T-duality as:

C̃
(n)
µ...ναx = C

(n−1)
µ...να − (n− 1)

C
(n−1)
[µ...ν|xg|α]x

gxx
,

C̃
(n)
µ...ναβ = C

(n+1)
µ...ναβx + nC

(n−1)
[µ...ναBβ]x + n(n− 1)

C
(n−1)
[µ...ν|xB|α|xg|β]x

gxx
.

(A.6)

Alternatively one can transform the RR field strengths as follows (for a detailed deriva-

tion of these rules see Appendix A of [147])

F̃
(n)
µ1...µn−1x = F

(n−1)
µ1...µn−1 + (n− 1)(−1)n

gx[µ1F
(n−1)
µ2...µn−1]x

gxx
,

F̃
(n)
µ1...µn = F

(n+1)
µ1...µnx − n(−1)nBx[µ1F

(n−1)
µ2...µn] − n(n− 1)

Bx[µ1gµ2|x|F
(n−1)
µ3..µn]x

gxx
.

(A.7)

In the next Appendix we give the explicit transformations that take us from the M-

theory duality frame used in Chapter 2, to solutions in other useful duality frames.
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Appendix B: Three charge solutions in

different duality frames

Here we will present the three-charge BPS solutions, discussed throughout this thesis,

in different string theory duality frames. This is needed for the calculations presented in

Chapter 3 and 4. The results in this Appendix were presented in [35].

Compactification along x9

The first step is to compactify the eleven-dimensional solution, presented in Section

2, along x9, in this way we obtain the following combination of “electric”8

N1 : D2 (56) N2 : D2 (78) N3 : F1 (z) (B.1)

and “dipole” branes

n1 : D4 (y78z) n2 : D4 (y56z) n3 : NS5 (y5678) (B.2)

in Type IIA. The numbers in the parentheses refer to spatial directions wrapped by the

branes, Ni and ni denote the electric charges and dipole charges, respectively. The label

8We are choosing x9 to be the M-theory circle in order to match the conventions in the literature for the
global signs of the B-field and the RR potentials for the BMPV black hole [49] and the supersymmetric
black ring solutions [88].
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y refers to the brane profile on the spatial base and from now on we will denote x10 = z.

The ten-dimensional string frame metric is

ds2
10 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3

dz2 +

√
Z2

Z1

(dx2
5 + dx2

6)

+

√
Z1

Z2

(dx2
7 + dx2

8) (B.3)

The dilaton and the Kalb-Ramond field are

Φ =
1

4
log

(
Z1Z2

Z2
3

)
, B = −A(3) ∧ dz . (B.4)

The RR (“electric”) forms are

C(1) = 0 , C(3) = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 , (B.5)

and the four-form field strength is9

F̃ (4) = dC(3) + dB ∧ C(1) = A(1) ∧ dx5 ∧ dx6 + dA(2) ∧ dx7 ∧ dx8 (B.6)

= dF (1) ∧ dx5 ∧ dx6 + F (2) ∧ dx7 ∧ dx8 , (B.7)

where we have used the notation F (I) = dA(I). Now we will perform a chain of T-

dualities in order to arrive at the desired frame.

T-duality along x5

A T-duality along the x5 direction brings us to Type IIB with the following sets of

“electric”

N1 : D1 (6) N2 : D3 (578) N3 : F1 (z) (B.8)

9Note that we are using the notation of [180] F̃ (4) = dC(3) + dB ∧ C(1).
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and “dipole” branes

n1 : D5 (y578z) n2 : D3 (y6z) n3 : NS5 (y5678) . (B.9)

The metric is

ds2
10 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3

dz2 +

√
Z2

Z1

dx2
6

+

√
Z1

Z2

(dx2
5 + dx2

7 + dx2
8) . (B.10)

The other NS-NS fields are

Φ =
1

4
log

(
Z2

1

Z2
3

)
, B = −A(3) ∧ dz . (B.11)

The RR field strengths are

F (3) = −F (1) ∧ dx6 ,

F̃ (5) = F (2) ∧ dx5 ∧ dx7 ∧ dx8 + ?10(F (2) ∧ dx5 ∧ dx7 ∧ dx8) ,

(B.12)

where in the expression for F̃ (5) we have added the Hodge dual piece by hand to ensure

self-duality [190]. Note that if one is working in the “democratic formalism” (i.e. with

both electric and magnetic field strengths) F̃ (5) will be automatically self-dual, however

since we have chosen to T-dualize explicitly only the electric field strengths we have to

add the self-dual piece by hand whenever we encounter a five-form field strength after

T-dualizing a four-form field strength.
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Using the form of the ten-dimensional metric (B.10) one can show that

?10 (dA(2) ∧ dx5 ∧ dx7 ∧ dx8) = −
(

Z5
2

Z3
1Z

2
3

)1/4

?5 (dA(2) ∧ dz ∧ dx6) , (B.13)

where ?5 is the Hodge dual on the five-dimensional subspace given by the metric

ds2
5 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 . (B.14)

T-duality along x6

Now perform T-duality along x6 to get

N1 : D0 N2 : D4 (5678) N3 : F1 (z) (B.15)

“electric”

n1 : D6 (y5678z) n2 : D2 (yz) n3 : NS5 (y5678) (B.16)

and “dipole” branes in Type IIA. The metric is

ds2
10 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3

dz2

+

√
Z1

Z2

(dx2
5 + dx2

6 + dx2
7 + dx2

8) . (B.17)

The dilaton and the Kalb-Ramond fields are

Φ =
1

4
log

(
Z3

1

Z2Z2
3

)
, B = −A(3) ∧ dz . (B.18)
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The RR field strengths are

F (2) = −F (1) , F̃ (4) = −
(

Z5
2

Z3
1Z

2
3

)1/4

?5 (F (2)) ∧ dz . (B.19)

Since we are interested in studying probe two charge supertubes in this background,

we will also need the RR potentials since they enter the Wess-Zumino action of the

supertube.

Finding the RR and NS-NS potentials in the D0-D4-F1 frame

If everything is consistent, then the Bianchi identities for the field strengths should

be satisfied. For the solution given by (3.3)–(3.5), the non-trivial Bianchi identity is:10

dF̃ (4) = −F (2) ∧ dB . (B.20)

Indeed we can use the BPS equations to show that

dF̃ (4) = −d
((

Z5
2

Z3
1Z

2
3

)1/4

?5 (F (2))

)
∧ dz

= −
[
d

(
1

Z1Z3

)
∧ dk ∧ (dt+ k)− d

(
(dt+ k)

Z1

)
∧Θ3 (B.21)

−d
(

(dt+ k)

Z3

)
∧Θ1 + Θ3 ∧Θ1

]
∧ dz .

On the other hand

F (2) ∧ dB = dA(1) ∧ dA(3) ∧ dz

=

[
d

(
1

Z1Z3

)
∧ dk ∧ (dt+ k)− d

(
(dt+ k)

Z1

)
∧Θ3 (B.22)

−d
(

(dt+ k)

Z3

)
∧Θ1 + Θ3 ∧Θ1

]
∧ dz .

10See [180] p. 86.
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So the Bianchi identity is obeyed and it can be checked in a similar manner that the

equations of motion of type IIA supergravity are obeyed. This confirms the consistency

of our calculations.

We will now find the RR three-form potential C(3) in the same duality frame. It

satisfies the following differential equation

dC(3) ≡ F̃ (4) + C(1) ∧H(3) . (B.23)

Note that this depends upon a gauge choice for C(1), we choose a gauge in which C(1)

is vanishing at asymptotic infinity, namely11

C(1) = − A(1) − dt . (B.24)

Computing explicitly one finds

dC(3) =
[(
−?4dZ2 + B(1)∧Θ(3)

)
− d
(
Z−1

3 (dt+k)∧B(1) + dt∧A(3)
)]
∧dx5 , (B.25)

and hence

C(3) = −
(
γ + Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)
∧ dx5 , (B.26)

where

dγ =
(
?4 dZ2 − B(1) ∧Θ(3)

)
. (B.27)

So the calculation boils down to integrating for the 2-form γ. Up to this stage we have

not assumed any particular form of the four-dimensional base space. If this space is

11We have fixed ZI ∼ 1 +O(r−1).
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Gibbons-Hawking then the equation for γ can be integrated explicitly. Using the BPS

supergravity solutions presented in Chapter 2 it is not hard to show that

?4dZ2 − B(1) ∧Θ(3) =
(
−∂aZ2 +K1∂a(V

−1K3)
) 1

2
εabc(dψ + A) ∧ dyb ∧ dyc

− ξ(1)
a

(
∂b(V

−1K3)
)
(dψ + A) ∧ dya ∧ dyb

+ V
(
~ξ(1) · ~∇(V −1K3)

)
dy1 ∧ dy2 ∧ dy3 .

(B.28)

Recall that Z2 = L2 + V −1K1K3 and define ~ζ by:

~∇× ~ζ ≡ − ~∇L2 , (B.29)

then using

Ω
(a)
± = ê1 ∧ êa+1 ± 1

2
εabcê

b+1 ∧ êc+1 , (B.30)

one can show that:

?4dZ2 − B(1) ∧Θ(3) = d
[(
− ζa − V −1K3ξ(1)

a

)
Ω

(a)
−
]

−
(
V ~∇ · ~ζ + K3 ~∇ · ~ξ(1)

)
dy1 ∧ dy2 ∧ dy3 . (B.31)

The last term is a multiple of the volume form on R3 and so is necessarily exact, how-

ever, it can be simplified if we chose a gauge for ~ξ(1) and ~ζ:

~∇ · ~ζ = ~∇ · ~ξ(1) = 0 . (B.32)

Then one has:

γ = −
[(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
−
]
. (B.33)
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Finally, let ~ri = (y1 − ai, y2 − bi, y3 − ci) and let F ≡ 1
ri

and then define ~w by ~∇ ×

~w ≡ − ~∇F , then the standard solution for ~w is:

w = − y3 − ci
ri

(y1 − ai) dy2 − (y2 − bi) dy1

((y1 − ai)2 + (y2 − bi)2)
. (B.34)

It is elementary to verify that ~∇ · ~w = 0 and so this is the requisite gauge. Finally the

explicit form of the RR three-form potential for a solution with GH base in the D0-D4-

F1 frame is

C(3) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− ∧dz−

(
Z−1

3 (dt+k)∧B(1) + dt∧A(3)
)
∧dz . (B.35)

T-duality along z

Another T-duality along z transforms the system into D1-D5-P frame with

N1 : D1 (z) N2 : D5 (5678z) N3 : P (z) (B.36)

“electric”

n1 : D5 (y5678) n2 : D1 (y) n3 : kkm (y5678z) (B.37)

and “dipole” branes. The metric is

ds2
IIB = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

Z3√
Z1Z2

(dz + A3)2

+

√
Z1

Z2

(dx2
5 + dx2

6 + dx2
7 + dx2

8) . (B.38)

The dilaton and the Kalb-Ramond field are:

Φ =
1

2
log

(
Z1

Z2

)
, B = 0 . (B.39)
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The RR three-form field strength (it is the only non-zero field strength) is:

F (3) = −
(

Z5
2

Z3
1Z

2
3

)1/4

?5 (F (2))−F (1) ∧ (dz − A(3)) . (B.40)

We can also easily find the RR 2-form potential by T-dualizing (B.35)

C(2) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)

+ A(1) ∧ (A(3) − dz − dt) + dt ∧ (A3 − dz) . (B.41)
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Appendix C: Solutions in D1-D5-P

frame and a decoupling limit

In this Appendix we consider the decoupling limit of the three-charge metric in the

D1-D5-P duality frame (B.38). As shown in [22, 88], for a supersymmetric black ring,

such a limit takes an asymptotically-flat solution into a solution that is asymptotically

AdS3 × S3 × T 4, and is thus dual to a state or an ensemble of states in the D1-D5 CFT.

Like for three-charge black holes and black rings, one can take a similar limit for

any of the regular three-charge solutions with GH base discussed in this thesis. This

is achieved by sending α′ → 0 and scaling the coordinates and the parameters of the

solution in such a way that the type IIB metric scales as α′. At this point it is useful to

give the form of the “electric” charges QI in terms of the parameters of the harmonic

functions specifying the solution:

QI = −2CIJK

N∑
j=1

k̃Jj k̃
K
j

qj
where k̃Ij = kIj − qj

N∑
i=1

kIi . (C.1)

The angular momenta are obtained by expanding the one-form k at infinity and one

finds:

JR ≡ J1 + J2 = CIJK

N∑
j=1

k̃Ij k̃
J
j k̃

K
j

q2
j

, JL = J1 − J2 = 8
∣∣∣ N∑
j=1

3∑
I=1

k̃Ij~y
(j)
∣∣∣ ,

(C.2)

where the ~y(j) are the positions of the GH centers. The scaling with α′ of the coordinates

is the same as for the black hole solution

y1 ∼ y2 ∼ y3 ∼ (α′)2 , xa ∼ (α′)1/2, a = 5, 6, 7, 8 , t ∼ z ∼ ψ ∼ (α′)0 , (C.3)
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where we have written the four-dimensional base as a GH space (2.21).

The electric charges have also the same scaling as for the black hole:

Q1 ∼ Q2 ∼ α′, Q3 ∼ (α′)2 . (C.4)

Hence, to preserve the fact that the charges of bubbling solutions come entirely from

magnetic fluxes, the latter need to scale as

k1
j ∼ k2

j ∼ α′, k3
j ∼ (α′)0 (C.5)

In particular, we have r2 = y2
1 + y2

2 + y2
3 , so r ∼ (α′)2. At infinity in the M-theory

solution the functions ZI behave like

ZI ∼ 1 +
QI

4r
+ ... (C.6)

and so

Z1 ∼
1

α′
Z2 ∼

1

α′
Z3 ∼ const . (C.7)

So in the limit α′ → 0 we can ignore the constant in Z1 and Z2 but we should keep it in

Z3. It can be shown that k ∼ A3 ∼ (α′)0 which finally leads to the desired scaling

ds2
IIB ∼ α′ . (C.8)
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After we have taken the α′ → 0 limit we can take the large r =
ρ2

4
limit and switch to

four-dimensional spherical polar coordinates (2.19), with radial coordinate ρ, in which

we have:

ds2
IIB ∼

ρ2

√
Q1Q2

(−dt2 + dz2) +
√
Q1Q2

dρ2

ρ2

+
√
Q1Q2(dϑ2 + sin2 ϑdϕ2

1 + cos2 ϑdϕ2
2) +

√
Q1

Q2

ds2
T 4 (C.9)

where we have used the freedom to change A(3) by pure gauge transformations. This

metric is indeed that of the product space AdS3 × S3 × T 4, where the radii of the AdS3

and the S3 are the same and are equal to (Q1Q2)1/4. Therefore, the bubbling solutions

in the decoupling limit are asymptotic to AdS3 × S3 × T 4 and thus should be described

by the D1-D5 CFT as expected12.

Note that the asymptotic metric in the decoupling limit of any of the BPS solutions of

Chapter 2 is the same as the metric of the three-charge BPS black hole in the decoupling

limit. This implies that the ge=ometries we are analyzing have a field theory description

in the same D1-D5 CFT as the three-charge black hole with identical electric charge.

The same result was found for supersymmetric black rings [22, 88].

We should also emphasize that in the decoupling limit only the three-charge black

holes and the two-charge supertubes have metrics that are everywhere locally AdS3 ×

S3 × T 4. A general BPS solution like a black ring or a horizonless bubbling solution

will have non-trivial geometry and topology.

12See [74] for a discussion of a different decoupling limit in which some of these bubbling solutions
become dual to microstates of the MSW CFT [162]
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Appendix D: Units and conventions

Here we summarize some of the conventions used in the thesis (see [180, 177] for more

details).

The tensions of the extended objects in string and M-theory are:

TF1 =
1

2πα′
, TDp =

1

gs(2π)p(ls)p+1
, TNS5 =

1

g2
s(2π)5(ls)6

, (D.1)

TM2 =
1

(2π)2(l11)3
, TM5 =

1

(2π)5(l11)6
(D.2)

where α′ = l2s , ls is the string length, gs is the string coupling constant (in the particular

duality frame in which one works) and lD is the D-dimensional Planck length. The

Newton’s constant in different dimensions is

16πG11 = (2π)8(l11)9 , 16πG10 = (2π)7(gs)
2(ls)

8 , 16πGD = (2π)D−3(lD)D−2 .

(D.3)

One can show that

l11 = g1/3
s ls = g1/3

s (α′)1/2 . (D.4)

T-duality along a circle of radius R changes the coupling constants to:

R̃ =
α′

R
, g̃s =

ls
R
gs , l̃s = ls . (D.5)

where R̃ is the radius after T-duality.

When one compactifies M-theory on a circle of radius L9, the coupling constants of

the resulting type IIA string theory satisfy:

L9 = gsls . (D.6)
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If one compactifies M-theory on a T 6 (along the directions 5, 6, 7, 8, 9, 10) and the

radius of each circle is Li (i = {5, 6, 7, 8, 9, 10}), the five-dimensional Newton’s con-

stant is

G5 =
G11

vol(T 6)
=

G11

(2π)6L5L6L7L8L9L10

=
π

4

(l11)9

L5L6L7L8L9L10

. (D.7)

The relations between the number of M2 and M5 branes, NI and nI , and the physical

charges of the five-dimensional solution obtained by compactifying M-theory on a T 6,

QI and qI , are

Q1 =
(l11)6

L7L8L9L10

N1 , Q2 =
(l11)6

L5L6L9L10

N2 , Q3 =
(l11)6

L5L6L7L8

N3 , (D.8)

q1 =
(l11)3

L5L6

n1 , q2 =
(l11)3

L7L8

n2 , q3 =
(l11)3

L9L10

n3 . (D.9)

We will choose a system of units in which all three T 2 are of equal volume

L5L6 = L7L8 = L9L10 = (l11)3 ≡ gsl
3
s , (D.10)

note that this is a numerical identity and is not dimensionally correct since gs is dimen-

sionless. With this choice we will have

G5 =
π

4
, QI = NI , qI = nI . (D.11)

and these identities hold in every duality frame we use in the paper. Furthermore we

will choose

gsls = 1 . (D.12)
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Since we are compactifying M-theory on L9 we will have L9 = gsls = 1 and L10 = l2s ,

this implies (note that throughout the paper we put L10 ≡ Lz)

TD0 = 1 , 2πTF1L10 = 1 , and
2πTD2

TF1

= 1 . (D.13)

We have fixed ls = g−1
s so that a lot of the various brane tension factors, appearing in the

probe supertube calculations throughout the thesis, cancel. Note that with our choices

gs is still a free parameter but we have fixed the volume of the compactification torii.
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Appendix E: Extremal

Reissner-Nordström

An interesting limiting case of the solution presented in Section 6.2 is when the two

horizons of the four-dimensional base coincide. This is the extremal Euclidean dyonic

Reissner-Nordström background

ds2
4 =

(
1− m

r

)2

dτ 2 +
(

1− m

r

)−2

dr2 + r2(dθ2 + sin2 θdφ2) , (E.1)

F =
2q

r2
dτ ∧ dr + 2p sin θ dθ ∧ dφ . (E.2)

This background is a limit of the dyonic Reissner-Nordström black hole which is

obtained by taking m2 = p2 − q2. The two horizons degenerate and we have

r+ = r− = m. (E.3)

The near horizon limit of the Lorentzian extremal Reissner-Nordström black hole is the

Bertoti-Robinson solution which is AdS2 × S2 with electric and magnetic flux [44]. In

the Euclidean solution of interest the horizon has become a bolt of radius m and near

the bolt we can set

r = m+
m2

ρ2
, (E.4)

and rewrite the metric as

ds2
NH = m2

(
dρ2 + dτ 2

ρ2
+ dθ2 + sin2 θdφ2

)
. (E.5)
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This is the metric on H+
2 × S2, where H+

2 is the Poincaré half plane and we have the

following range of coordinates τ ∈ (−∞,∞) and ρ ∈ (0,∞). Note that we still have

a finite size bolt (S2) at r = m on which we can put flux13. At asymptotic infinity the

metric approaches the flat metric on R4. This should be contrasted with the case of the

non-extremal Euclidean Reissner-Nordström black hole of Section 6.2, where we had to

periodically identify the coordinate τ to get a regular metric near the outer horizon. The

five-dimensional supegravity solution based on this four-dimensional base has the same

warp factors and fluxes as the solution in Section 6.2, however one should remember

to set m2 = p2 − q2. The coordinate τ is non-compact but it is still an isometry of the

five-dimensional solution. This means that we have the electric charges corresponding

to the three U(1) gauge fields smeared along τ . What happens effectively is that in

the extremal limit the coordinate τ decompactifies and the five-dimensional solution

is asymptotic to R1,4 and corresponds to a smeared distribution of charges along τ .

With this in mind one can proceed in the same way as in Section 6.2 and compute the

asymptotic charges and mass densities of the five-dimensional solution14

Q1 = −4π

(
2(p+ q)q2

m
+ γ(q + q2)

)
,

Q2 = −4π

(
2(p+ q)q1

m
+ γ(q + q1)

)
, (E.6)

Q3 = −4π

(
4q1q2

m
+ γ(q1 + q2 + p− q) +

2(p− q)(q + q1 + q2)

m
− 4q1q2(p2 − q2)

m3

)
,

M0 =
1

16πG5

(8πm+Q1 +Q2 +Q3) .

13 Five dimensional solutions with anH+
2 ×S2 base are discussed in [82]. Note that since the construc-

tion in [82] is based on a four-dimensional Euclidean Israel-Wilson base the five-dimensional solutions
they find preserve some supersysmmetry. The four-dimensional solutions constructed here do not have
an Israel-Wilson base and have fluxes with no definite self-duality, therefore they are not BPS.

14Note that, since the τ coordinate is not compact anymore, we are now computing charge and mass
densities.
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It is clear from the dependence of the mass on the charges that we again have a non-

BPS five-dimensional solution that has the same asymptotic charges as a non-extremal

black hole. This may seem somewhat strange because we have started with an extremal

four-dimensional solution, which is also known to be BPS15. There is nothing puzzling

going on here, to get the five-dimensional solution we have added fluxes to the four-

dimensional base which break the supersymmetry completely. In addition the difference

between the mass and the sum of the electric charges corresponds to the “solitonic”

contribution of the bolt, and therefore one should not expect to have a solution with the

same charges as an extremal black hole.

15The Lorentzian extremal Reissner-Nordström solution is a BPS background interpolating between
AdS2 × S2 and R1,3. Going to the Euclidean regime does not spoil the supersymmetry of the solution
which now interpolates between H+

2 × S2 and R4, see for example [154].
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