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Resumen.

En este trabajo se estudia la materia oscura utilizando el modelo de Materia Oscura Difu-
sa (FDM, por sus siglas en inglés). Se presentan simulaciones numéricas que describen la
formacion y evolucion de estructuras autogravitantes bajo este modelo. En primer lugar, se
analizan configuraciones basadas en FDM pura, enfocadas en el estudio de las primeras es-
tructuras formadas en el universo y en las estructuras galacticas que emergen a partir de ellas.

Posteriormente, se extiende el andlisis para incluir la contribucion de la materia visible, la
cual influye significativamente en la dindmica de los halos galécticos. Procesos como el en-
friamiento de gas, la formacidn estelar y la retroalimentacion se incorporan en las simulacio-
nes para evaluar su impacto en la distribucion de densidad y estabilidad de las estructuras.

Las simulaciones se desarrollaron utilizando un nuevo cédigo disefiado para acoplar de mane-
ra eficiente las ecuaciones de Schrodinger-Poisson (SP) que describen la materia oscura con
las ecuaciones hidrodindmicas que rigen la materia visible. Este enfoque permite una mode-
lacién mas precisa y detallada de los procesos de formacion de estructuras a escala local en
el universo.

Los resultados de este estudio proporcionan una mayor comprension sobre la interaccion
entre materia oscura y barionica, asi como sobre su influencia en la evolucion de galaxias y
cumulos galacticos, un resumen de las aportaciones de este trabajo son:

Asbtract.

In this work, dark matter is studied using the Fuzzy Dark Matter (FDM) model. Numerical
simulations are presented to describe the formation and evolution of self-gravitating structu-
res under this model. First, configurations based on pure FDM are analyzed, focusing on the
study of the earliest structures formed in the universe and the galactic structures that emerge
from them.

Subsequently, the analysis is extended to include the contribution of visible matter, which
significantly influences the dynamics of galactic halos. Processes such as gas cooling, star
formation, and feedback are incorporated into the simulations to evaluate their impact on the
density distribution and structural stability.

The simulations were carried out using a new code designed to efficiently couple the Schrodinger-
Poisson (SP) equations describing dark matter with the hydrodynamic equations governing
visible matter. This approach enables a more precise and detailed modeling of structure for-
mation processes at local scales in the universe.



The results of this study provide a deeper understanding of the interaction between dark and
baryonic matter, as well as their influence on the evolution of galaxies and galactic clusters.

Palabras clave: Condensados de Bose-Einstein, materia oscura, hidrodinamica, sistemas
autogravitantes, métodos numéricos
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Capitulo

Introduccion

La materia oscura es una componente fundamental del universo que no interactia directamen-
te con la radiacion electromagnética, lo que la hace invisible a los telescopios. Sin embargo,
su existencia ha sido inferida a partir de diversos efectos gravitacionales observados. El pri-
mer indicio significativo fue proporcionado por Fritz Zwicky en 1933, al estudiar la dindmica
del camulo de Coma. Zwicky noté que la masa visible en este cimulo no era suficiente para
explicar las altas velocidades de las galaxias en su interior, lo que lo llevé a sugerir la pre-
sencia de una “masa faltante” que generaba el campo gravitacional necesario para mantener
el cimulo unido [[1]].

Décadas después, estudios detallados de las curvas de rotacion de galaxias, realizados por
Vera Rubin y Kent Ford en la década de 1970, reforzaron esta hipdtesis [2]. En particular,
observaron que el gas en las regiones externas de las galaxias espirales se mueve con mayor
velocidad de lo esperado si solo se considera la materia visible. Esto sugiere la existencia
de un halo de materia oscura que extiende su influencia gravitacional més alld del disco
galactico. Alternativamente, algunos modelos han propuesto modificar las leyes de Newton,
como la Dindmica Newtoniana Modificada (MOND) [3]]. En este trabajo, nos inclinamos por
la validez de las leyes de Newton y la existencia de la materia oscura.

El modelo de Materia Oscura Fria (CDM, por sus siglas en inglés) surge como una solucién
a diversos problemas en la formacion de estructuras césmicas. En este marco, la materia
oscura no relativista desempefia un papel crucial al proporcionar la gravedad necesaria para
el colapso de las pequeias fluctuaciones de densidad en el plasma primordial, lo que da lugar
a la formacidon de galaxias y cimulos. Si la materia oscura fuera caliente, es decir, compuesta



por particulas relativistas en el universo temprano, su gran libre recorrido medio impediria la
formacion de estructuras a pequeiias escalas debido al efecto de free-streaming [4].

Observaciones de la distribucion de galaxias y del fondo cosmico de microondas indican que
la materia oscura debe ser fria o, en algunos modelos, tibia, permitiendo la formacion tem-
prana de halos de materia oscura que actdan como semillas gravitacionales para la evolucion
de galaxias [S)]. Ademds, simulaciones cosmoldgicas y datos de la mision Planck han revela-
do que aproximadamente el 27 % de la densidad de energia del universo corresponde a esta
componente invisible [6]. Sin la materia oscura, muchas de las estructuras astronoémicas ob-
servadas no habrian podido consolidarse en la escala temporal del universo, lo que refuerza
la necesidad de su existencia.

En este contexto, el comportamiento gravitacional de la materia oscura se modela bajo el
régimen newtoniano, dado que los potenciales gravitacionales son débiles y las velocidades
caracteristicas de las estructuras formadas son pequefias en comparacion con la velocidad
de la luz. Este enfoque ha permitido desarrollar simulaciones numéricas que reproducen con
gran precision la distribucion de materia a gran escala en el universo, proporcionando un
s6lido respaldo al modelo CDM.

Entre los modelos actuales, destaca el modelo de Materia Oscura Difusa (FDM, por sus siglas
en inglés), el cual postula que la materia oscura estd compuesta por bosones ultraligeros de
espin cero [[7,8]]. Este modelo ofrece soluciones a discrepancias clave del paradigma de CDM,
como el cusp-core problem [9]. En el interior de las estructuras colapsadas, la presion cudntica
generada por la naturaleza ondulatoria de la materia oscura evita la formacién de perfiles
cuspidales, dando lugar a un niicleo central cuya densidad coincide con el estado fundamental
del sistema [10, (11}, 12} (13} (14} 15,16} 17, 18, 19]. Esta caracteristica permite reproducir con
mayor precision las curvas de rotacion galdcticas [20]. Ademas, el modelo FDM mitiga el
missing satellites problem [21]], ya que la supresion de la formacion de estructuras a escalas
pequenas reduce el nimero de galaxias satélites esperadas en comparacién con el modelo
estandar de CDM.

El modelo FDM exhibe una serie de caracteristicas distintivas que lo diferencian del para-
digma estdndar de CDM, pero que, al mismo tiempo, lo hacen compatible con observaciones
cosmologicas a grandes escalas. Una de sus propiedades fundamentales es la granularidad en
los halos galacticos, que emerge debido a la interferencia cudntica de las ondas de materia
oscura. Esta estructura granular introduce fluctuaciones de densidad coherentes en escalas
de la longitud de onda de De Broglie, lo que podria tener implicaciones observacionales en
lentes gravitacionales débiles y en la dindmica de las galaxias enanas [22, 8, 23]].

Pese a estas diferencias, el modelo FDM es asintéticamente equivalente a CDM en escalas
suficientemente grandes, ya que la naturaleza ondulatoria de la materia oscura se vuelve irre-
levante en regiones donde la longitud de onda de De Broglie es mucho menor que las estruc-
turas colapsadas [8, 24]]. En consecuencia, la evolucion de las grandes estructuras césmicas



sigue las predicciones estdndar del modelo CDM, lo que permite que FDM sea consistente
con observaciones de lentes gravitacionales fuertes y la distribucién de ctimulos de galaxias
[22, 25]]. Ademas, la turbulencia cuantica en estos sistemas introduce efectos adicionales en
la dindmica de los halos y galaxias satélites, generando predicciones que pueden ser contras-
tadas con observaciones futuras [23} 26, 27]].

La masa del bosén m g en el modelo de FDM es un parametro clave, ya que debe ser lo sufi-
cientemente pequefia para abordar los problemas a pequefia escala del modelo CDM (como
la formacion de nucleos en halos y la supresion de la estructura a pequena escala), pero lo
suficientemente grande para reproducir el comportamiento de CDM en escalas cosmologicas.
Los estudios sugieren que esta masa debe estar en el rango mp ~ 10723 — 1072! eV. A partir
de la funcién de luminosidad de galaxias en alto corrimiento al rojo, se ha obtenido la restric-
cibn mp > 1.2 x 10722 eV [28], mientras que estudios del Lyman-« forest imponen un limite
més estricto de mp > 2 x 102! eV [29,30]. Para resolver los problemas a pequefia escala de
CDM, el valor mas comtinmente utilizado en simulaciones es mpz ~ 10722 eV. Desde un pun-
to de vista cosmologico, el anélisis del fondo cdsmico de microondas (CMB) y la distribucién
de galaxias ha establecido un limite inferior de mp > 10724 eV [31]], mientras que la funcién
de luminosidad en el ultravioleta y restricciones de reionizacion sugieren un valor minimo de
mp > 10723 eV [32]. Sin embargo, estos valores estdn en tensién con resultados que indican
mp > 1072 eV [33]], lo que refleja la falta de consenso sobre la masa exacta del boson ul-
traligero y la necesidad de exploraciones adicionales. Ademds, la auto-interaccion entre los
bosones es otro parametro relevante que puede modificar significativamente la construccion y
fenomenologia de las estructuras formadas en este marco tedrico, afectando las restricciones
actuales sobre la masa del boson [34, 35, 136 37, (38, (39, 140, 41| 42]].

En el caso de las galaxias enanas, como Eridanus II, se ha demostrado que los nicleos de los
halos de FDM presentan un movimiento aleatorio que puede afectar la estabilidad de cimulos
estelares [43]]. Esta dindmica en general estocdstica también ha sido explorada en el contexto
de fluctuaciones de campos bosénicos [44]. Ademds, la interaccion entre la materia oscura y
los pulsos de pilsares podria revelar modulaciones caracteristicas que no han sido estudiadas
en detalle [45]].

Por otro lado, la bisqueda de materia oscura mediante métodos experimentales ha avanzado
considerablemente. Sensores cudnticos espaciales han mejorado los limites de deteccion para
particulas ultraligeras vinculadas gravitacionalmente al Sol [46], mientras que observaciones
en la corona solar han identificado posibles conversiones resonantes de materia oscura en
seflales de radio [47]].

Detectores de ondas gravitacionales como LIGO y GEO 600 han establecido restricciones
significativas sobre las posibles interacciones entre la materia oscura escalar y la materia
ordinaria 48| 49]. Estos instrumentos, disefiados originalmente para la deteccién de ondas
gravitacionales provenientes de fusiones de objetos compactos, han demostrado ser herra-
mientas prometedoras para explorar nuevas propiedades de la FDM. En particular, su extrema



sensibilidad a perturbaciones en el espaciotiempo permite buscar sefiales que podrian delatar
la presencia de campos escalares ultraligeros, cuya interaccion con interferémetros terres-
tres podria manifestarse como oscilaciones coherentes en las mediciones de longitud o en la
frecuencia de los relojes atdmicos acoplados a estos experimentos. El uso de detectores de
ondas gravitacionales para este propdsito abre una nueva via en la bisqueda de materia os-
cura, proporcionando un complemento a las restricciones obtenidas a partir de observaciones
astrofisicas y cosmoldgicas, y permitiendo explorar escenarios en los que la materia oscura
exhiba interacciones débiles pero detectables con la materia visible.

La materia visible, compuesta por gas, estrellas y polvo, también es crucial para modelar
correctamente la estructura galdctica. Ejemplos como el Bullet Cluster muestran una sepa-
racion evidente entre la materia visible y la materia oscura, confirmando que esta tltima no
interactia directamente con la materia ordinaria, pero ejerce una influencia gravitacional de-
terminante [50]. Los procesos de formacidn estelar, retroalimentacién y enfriamiento de gas
modifican la distribucidén de masa dentro de los halos galdcticos de FDM y viceversa [S1]].

Los resultados de esta tesis han generado avances clave en la comprension y modelado de
la FDM y su interaccidén con la materia visible, impactando el estudio de la formacién y
evolucidn de estructuras en el universo.

En términos de desarrollo metodoldgico, se ha implementado un algoritmo genético para
la construccion de soluciones del estado fundamental del sistema Gross-Pitaevskii-Poisson
(GPP), demostrando su utilidad para problemas con multiples parametros [/, Asimismo, la
implementacién de la transformada rdpida de Fourier para la resolucién de ecuaciones dife-
renciales ha permitido abordar problemas computacionales complejos (]

A partir de estas herramientas, se han construido soluciones estacionarias tanto en el sistema
Schrodinger-Poisson como en el marco de Madelung, verificando que estas configuraciones
son estables e independientes del marco utilizado Ademais, se ha extendido el andlisis a
modelos con multiples bosones de masas iguales, demostrando que la estabilidad de estas
soluciones también se mantiene en escenarios con varios componentes [5

Se han construido soluciones estacionarias del sistema Schrodinger-Poisson-Euler (SPE),
proporcionando modelos de equilibrio que sirven como referencia para simulaciones numéri-
cas. Se ha demostrado que la estabilidad de estas soluciones depende criticamente de la ecua-
cion de estado utilizada para la materia visible, con estabilidad observada en configuraciones
politrépicas y relajacién hacia estados distintos en el caso de un gas ideal [I0] Ademis, se
ha comprobado que estas soluciones emergen como atractores del sistema a partir de con-
diciones iniciales aleatorias, lo que sugiere que pudieron haber sido las primeras estructuras
virializadas en formarse dentro del modelo FDM. Asimismo, se ha evidenciado que la in-
teraccion gravitacional entre la materia oscura y la visible puede sincronizar las oscilaciones
de ambos componentes, lo que podria proporcionar restricciones observacionales adiciona-
les al modelo FDM [I] Estos hallazgos permiten delimitar condiciones iniciales realistas para



simulaciones de formacién de galaxias y evolucién de estructuras en el marco de FDM.

Adicionalmente, se ha explorado la interaccién entre FDM y agujeros negros supermasivos,
encontrando que estos ultimos pueden actuar como puntos de condensacion de la materia
oscura, modificando la evolucién y distribucion de densidad del nicleo galéctico. Se ha iden-
tificado un mecanismo mediante el cual la oscilacién del agujero negro dentro del niicleo de
FDM redistribuye la densidad central, lo que podria proporcionar predicciones observacio-
nales clave para evaluar la viabilidad del modelo 2]

Estas soluciones de equilibrio, inicialmente virializadas, sirven como punto de partida para
estudiar escenarios mds complejos que describen la formacion de estructuras a escalas loca-
les, tales como las fusiones binarias Se ha demostrado que, en el interior de la estructura
resultante de una fusion, se forma un ndcleo que evoluciona hacia el estado base del sistema
debido al enfriamiento gravitacional. Un estudio detallado en [ 1] confirma que este proceso
estd ligado a la eleccion de condiciones de frontera aisladas, que permiten expulsar la masa
y energia cinética fuera del dominio numérico, relajando asi el sistema. En contraste, en un
dominio periddico, la energia total y la masa se conservan, permitiendo una dindmica mds
compleja y la formacién de halos alrededor del nicleo galdctico. Ademds, las condiciones de
frontera periddicas imponen restricciones adicionales, ya que permiten reescalar la energia
total sin alterar la dinamica del sistema, lo que sugiere que las férmulas empiricas utilizadas
en estos estudios deben ser cuidadosamente calibradas para garantizar su aplicabilidad en
diferentes simulaciones [8l

Estos hallazgos confirman ademads la naturaleza atractora de los nicleos formados en el in-
terior de los halos. Basado en esto, se ha desarrollado un método para la construccion de es-
tructuras nicleo-halo, combinando el estado base del sistema con una envoltura adicional que
permite ajustar curvas de rotacién mds alld de la region central [9] Estas estructuras iniciales
son inestables y evolucionan hacia configuraciones relajadas con una estructura nticleo-halo
bien definida.

El desarrollo de modelos de halos con perfiles multimodo ha permitido ajustar curvas de
rotacion de galaxias de baja luminosidad superficial [f] Sin embargo, se ha encontrado que,
aunque estas configuraciones pueden ser virializadas inicialmente, su evolucion en escalas de
tiempo cosmoldgicas genera acumulacion de materia en los ndcleos galécticos. Esto sugiere
que la evolucién natural de configuraciones FDM podria explicar ciertas caracteristicas ob-
servadas en galaxias, como la presencia de picos en sus curvas de rotacion a radios pequefios
3]

Otro resultado relevante ha sido la identificacion de comportamiento cadtico en trayectorias
de particulas de prueba dentro de estructuras nicleo-halo de FDM cuando se consideran sus
caracteristicas anisotropicas y su dependencia temporal [3| Se encontr6 que, mientras las 6rbi-
tas permanecen circulares bajo un potencial gravitacional promedio en el tiempo y dngulos,
la verdadera estructura fluctuante induce trayectorias erraticas, con mayor sensibilidad en la



region del nicleo que en el halo. Este comportamiento cadtico ha sido cuantificado a través
del célculo de exponentes de Lyapunov, mostrando que la dindmica de particulas de prueba es
inherentemente caodtica en todo el dominio, con exponentes mds altos en la region central. Es-
to sugiere que el comportamiento colectivo de particulas, como el de un gas acoplado a una
estructura nucleo-halo de FDM, podria exhibir correlaciones no triviales y potencialmente
evolucionar hacia un estado mds estacionario, lo que abre una nueva linea de investigacién
en la dindmica de materia visible en presencia de materia oscura bosénica.

Estos avances han sido posibles gracias al desarrollo del nuevo cédigo CAFE-FDM, pre-
sentado en |12| para simulaciones con condiciones de frontera aisladas y ampliado en (I 1| para
incluir condiciones de frontera periddicas. Este desarrollo numérico sienta las bases para si-
mulaciones mads eficientes de la dindmica de FDM en escenarios cosmoldgicos y astrofisicos.
En conjunto, estos resultados fortalecen la base tedrica y numérica para el estudio de la ma-
teria oscura bosonica ultraligera y ofrecen nuevas herramientas para evaluar su papel en la
evolucion de galaxias y estructuras cosmicas.

A partir de los avances numéricos alcanzados, es posible profundizar en el estudio de la
interaccion entre la materia oscura y la materia visible mediante simulaciones detalladas y
escenarios complejos. Con este propdsito, el presente documento se organiza de la siguiente
manera:

= En el Capitulo[2] se presentan las ecuaciones fundamentales que describen la dindmica
de la materia oscura difusa (FDM), asi como los acoplamientos relevantes que permiten
su interaccion con otros componentes del sistema.

= El Capitulo 3| detalla los métodos numéricos implementados para resolver el sistema
de ecuaciones, abarcando técnicas de discretizacion espacial, esquemas de evolucién
temporal y estrategias para optimizar la estabilidad y precision de las simulaciones.

= En el Capitulo[d] se analizan los resultados obtenidos en simulaciones de FDM pura,
centrandose en los procesos de condensacion, formacion de estructuras y la dindmica
resultante bajo diferentes condiciones de frontera.

= El Capitulo [5| amplia el analisis al incluir un gas ideal acoplado a la materia oscura,
lo que permite explorar la interaccidn entre materia oscura y materia bariénica en es-
cenarios galacticos y estudiar su impacto en la formacion y evolucion de estructuras
complejas.

= Por otro lado, en el Capitulo E] se extiende el estudio de la FDM para incluir la influen-
cia de agujeros negros, investigando cémo actiian como puntos de condensacién y su
efecto sobre la dindmica de la materia oscura en su entorno inmediato.

= Finalmente, en el Capitulo (7, se presentan las conclusiones generales del estudio, des-
tacando los hallazgos mas relevantes, las implicaciones en la formacién de estructuras
y las posibles lineas de investigacion futura.



Capitulo

Modelo y Ecuaciones

En este capitulo se presenta el modelo tedrico que describe la dindmica del sistema compuesto
por materia visible y materia oscura difusa. La materia visible, modelada como un fluido de
gas ideal compresible, se describe en la seccion[2. 1| mediante las ecuaciones de Euler. Por otro
lado, la materia oscura, representada por una condensacion de bosones ultraligeros, se aborda
en la seccion[2.2]utilizando las ecuaciones Schrodinger-Poisson (SP). Estos dos componentes

se acoplan gravitacionalmente, formando un sistema dindmico complejo, el cual se describe
en la seccién

Se abordan las ecuaciones para la materia visible, que incluyen la conservacion de la masa,
el momento y la energia, asi como su ecuacion de estado. Posteriormente, se analizan las
ecuaciones para la FDM y su acoplamiento con la materia visible, donde la gravedad juega
un papel fundamental en la evolucion de ambos componentes.

Este marco tedrico permite explicar las simulaciones que se mostrardn méas adelante, propor-
cionando una base para estudiar fendmenos como la formacion de estructuras y las curvas de
rotacion galictica.



Materia Visible

SECCION 2.1

Materia Visible

La dindmica de la materia visible puede modelarse, en el caso més simple, como un fluido
macroscopico autogravitante gobernado por las ecuaciones de Euler-Poisson (EP):

Op+V - (pt) = 0, 2.1)

O (pU)+ V- (pt @07+ pl) = —pVV, (2.2)
OE+V-[T(E+p)] = —pi-VV, (2.3)

ViV = 4nGp, (2.4)

donde p representa la densidad de materia, ¢ el campo de velocidades de un elemento de
fluido, p la presidn, e la energia interna especifica, 1/ el potencial gravitacional y £ =
p (e + %|17 |2) la energia total por unidad de volumen, siendo G la constante gravitacional
de Newton. Estas ecuaciones son fundamentales para modelar el comportamiento de los flui-
dos autogravitantes, los cuales se encuentran en una gran variedad de situaciones astrofisicas,
tales como en la dindmica de gas intergalactico, de las regiones de formacion estelar o incluso
de la materia que conforma los nicleos galacticos [52, 53]].

El sistema EP consta de seis ecuaciones diferenciales parciales: la primera ecuacion (2.1)
representa el principio de conservacion de la masa, el cual dicta como evoluciona la den-
sidad del fluido en el tiempo y asegura que la masa total dentro de un volumen cerrado se
conserve. La segunda ecuacion (2.2)) representa el principio de conservaciéon del momento,
proporcionando una ecuacion de evolucién para el momento volumétrico y considerando la
interaccion gravitacional que actua sobre el fluido. La tercera ecuacion representa la
conservacion de la energia, proporcionando la ecuacién de evolucion para la energia total
volumétrica, que incluye tanto la energia interna como la cinética del fluido. Finalmente, la
ecuacion de Poisson representa la restriccion del potencial gravitacional que debe satis-
facerse durante toda la evolucién del fluido, ligada a la distribucién de la masa a través de la
ley de gravitacion de Newton.

Dado que hay un total de siete variables, el sistema se encuentra indeterminado. Una manera
de cerrar el sistema es usando la termodinamica del gas, la cual proporciona una relacion
entre algunas variables macroscépicas del sistema mediante la eleccion de una ecuacion de
estado p = p(p, e), siendo en este documento una opcién el considerar un gas ideal cuya
ecuacion de estado es
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p=(y—1)pe, (2.5)

donde v es el indice adiabatico, que depende de las propiedades termodindmicas del gas, o
bien, se puede elegir una ecuacion de estado politrépica de la forma

p=Kpm, (2.6)

siendo K la constante politrépica y n el indice politrépico, el cual depende del tipo de flui-
do que se modela, caracterizando la relacion entre la presion y la densidad del fluido. Las
ecuaciones de estado proporcionan una herramienta util para conectar las propiedades ma-
croscopicas del fluido con sus variables termodindmicas, y permiten interpretar los procesos
termodindmicos que surgen de la dindmica del gas.

Este sistema de ecuaciones diferenciales parciales corresponde a un fluido sin conductividad
térmica, no viscoso, en el que las particulas no interactian entre si, lo cual es una aproxima-
cion védlida en muchos casos astrofisicos. No obstante, cabe resaltar que en algunos contextos
mas especificos, como en la dindmica de ciertos gases o en condiciones extremas de densidad
y temperatura, seria necesario considerar otros efectos como la viscosidad o la conductividad
térmica, lo que llevaria a un modelo mas complejo. Una descripciéon macroscopica detallada
de la deduccion de estas ecuaciones puede encontrarse en [54]. Este sistema de ecuaciones
definen un Problema de Valores Iniciales (PVI) el cual sera resuelto en un dominio cartesiano
3+1, donde se deben especificar los valores de las variables al tiempo inicial ¢ = 0:

p(0,7) = polT), 2.7)
¥(0,7) = 0(%), (2.8)
e(0,7) = eo(d), (2.9)

El resto de las variables se obtienen de la ecuacion de estado p(0,7) = p(po,€p) y de la
definicion de energia total £(0, &) = py (eg + 3|U5|?). Este conjunto de condiciones iniciales
es fundamental para la simulacién del comportamiento espacial y temporal del sistema, ya
que a partir de estos valores se resolveran las ecuaciones de EP en el tiempo y el espacio.

Si bien el uso de un fluido perfecto puede parecer limitante, en realidad, para muchos proble-
mas astrofisicos, un gas ideal proporciona una primera aproximacion suficientemente buena
que puede capturar las dindmicas principales sin necesidad de complicar excesivamente el
modelo. El uso de un gas ideal en el modelado de la dindmica de la materia visible mediante
el sistema de ecuaciones EP es una eleccion justificada por su simplicidad y aplicabilidad en
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muchas condiciones astrofisicas. Aunque los gases mds complejos pueden proporcionar deta-
lles adicionales, el gas ideal ofrece una primera aproximacion robusta que facilita el andlisis
y la comprension inicial del sistema estudiado.

En términos de simulaciones numéricas, el gas ideal no es necesariamente mas sencillo de
modelar, ya que puede generar choques hidrodindmicos, los cuales pueden dar lugar a la for-
macion de estructuras como brazos espirales en las galaxias. Un modelo sin viscosidad es
mads adecuado para capturar estos fendmenos, ya que permite la formacién y propagacion de
los choques sin suavizar sus efectos. Por otro lado, la inclusion de procesos radiativos intro-
duce escalas de tiempo adicionales y requiere un tratamiento detallado de la transferencia de
energia, lo que puede volver los cédlculos prohibitivos en términos de tiempo computacional
y complejidad. Al no considerar estos efectos radiativos, es posible realizar estudios preli-
minares que se enfoquen tinicamente en la hidrodindmica del sistema, permitiendo explorar
distintos escenarios de manera eficiente [53)]. En futuras investigaciones, la incorporacion de
efectos no ideales podria proporcionar una descripcion mas completa de estos sistemas, pero
el modelo actual sigue siendo una herramienta util para analizar la dindmica de la materia
visible en interaccion con la materia oscura.

Es fundamental conocer las ecuaciones que gobiernan la dindmica de la materia oscura, ya
que esta domina gravitacionalmente en escalas grandes, como las que se observan en las
estructuras galécticas. Sin embargo, dado que su naturaleza aun es desconocida, diferentes
modelos han sido propuestos para describir su comportamiento. En el paradigma de CDM, se
asume que estd compuesta por particulas masivas y no relativistas, cuyo efecto gravitacional
puede estudiarse mediante simulaciones tipo N-cuerpos, en las cuales la materia oscura se
trata como un fluido de particulas en un régimen colisionalmente frio.

Una alternativa interesante es la materia oscura bosonica ultraligera (FDM), que debido a su
longitud de onda de de Broglie macroscépica puede modelarse mediante una ecuacién de on-
da no lineal, permitiendo describir su evolucién como un gas de bosones a través del sistema
de Schrodinger-Poisson. Esta caracteristica introduce efectos cudnticos a escalas astrofisicas,
dando lugar a estructuras con propiedades distintas a las predichas por CDM, como ntcleos
soliténicos en halos galacticos y la supresion de la fragmentacion a escalas pequefias. El es-
tudio detallado de estas ecuaciones resulta crucial para comprender la dindmica de la materia
oscura y evaluar sus posibles manifestaciones observacionales en la formacion y evolucion
de galaxias.
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SECCION 2.2

Materia Oscura

Un Condensado de Bose-Einstein (BEC, por sus siglas en inglés) es un gas cuantico formado
por bosones, que son particulas de espin entero multiplo de la constante de Planck reducida
h [56]. Estas particulas, cuando se enfrian a temperaturas cercanas al cero absoluto, ocupan
el mismo estado cudntico fundamental, lo que da lugar a un fenémeno macroscépico en el
que las propiedades cudnticas se manifiestan a escalas macroscopicas. En este estado, todas
las particulas que forman el gas se encuentran en la misma fase cudntica, y se describen
mediante una dnica funcién de onda colectiva W (¢, Z'), conocida como el pardmetro de orden,
que representa el comportamiento global del sistema.

La dindmica de un BEC estd regida por la ecuacién de Gross-Pitaevskii (GP), una ecuacion
diferencial parcial no lineal que describe la evolucién temporal de la funcién de onda W (t, ).
Esta ecuacion se expresa como:

2

I3
hoU = — V32U + mgV¥ + g|V|* 0, (2.10)
27713

donde g = 47h?a, /mp es el coeficiente no lineal que describe la interaccion entre los boso-
nes, a, es la longitud de dispersion entre pares de bosones, mp es la masa del bosén, y V' es
el potencial externo que actia como una trampa que confina al gas de bosones, ayudando a
mantener atrapado el gas. La ecuacidon de GP es fundamental en la descripcion de sistemas
bosonicos ultrafrios y se usa extensamente en la investigacion de condensados, donde las
interacciones entre particulas pueden ser de diferentes tipos, dependiendo de los valores de
as [S7]. Este fendmeno fue observado por primera vez en un gas de Rubidio a temperaturas
extremadamente bajas [S8]].

El modelo de BEC de Materia Oscura (BECDM, por sus siglas en inglés) postula que la
materia oscura estd compuesta por particulas bosénicas de espin cero que, bajo condiciones
adecuadas, forman un BEC [359]]. En este modelo, la naturaleza cudntica de la materia oscura
puede explicarse como un condensado bosonico que se distribuye a gran escala en el universo.
En el caso del BECDM, el potencial externo que confina el gas de bosones no es impuesto
externamente, sino que es autogenerado por la propia densidad de materia del ensamble.
Esta interaccidon autogenerada se describe mediante la ecuaciéon de Poisson, que relaciona el
potencial gravitacional con la distribucion de materia [60]:
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V2V = 47Gmp|¥|?, 2.1

donde G es la constante gravitacional de Newton. Esta ecuacion muestra como la distribucién
de masa del BEC de materia oscura genera el potencial gravitacional necesario para mantener
atrapado el gas.

El modelo BECDM presenta dos parametros fundamentales que no se conocen con exactitud:
la masa del bosén mp y la longitud de dispersion a de las interacciones entre los bosones.
La longitud de dispersion as describe la fuerza de las interacciones entre las particulas del
BEC, y lamasa del bosén m g determina las caracteristicas cudnticas de la materia oscura. En
muchos estudios, se asume que las interacciones entre los bosones son muy débiles, lo que
implica que a podria ser pequefo o incluso cero.

En este modelo, se postula que los bosones son ultraligeros, con una masa del orden de 10~%2
eV [7, 161} 162, [8]. Esta pequefia masa implica que la longitud de onda de De Broglie Az
asociada con los bosones es de varias decenas de parsecs, lo que impide la formacién de
estructuras de materia oscura a escalas mas pequefias que ;5. En este contexto, la materia
oscura no tiene la capacidad de acumularse en estructuras densas. La longitud de onda de
De Broglie, que influye en la estabilidad de las estructuras colapsadas, es una consecuencia
directa de la naturaleza cuantica del sistema [63]].

Una simplificacién comtinmente utilizada es la suposiciéon de que la interaccién entre los
bosones es despreciable, lo que implica a;, = 0. Este caso recibe el nombre de FDM.

El modelo FDM es, en efecto, una simplificacion del modelo BECDM, donde se asume que
a, = 0. No obstante, en muchos estudios, ambos modelos se tratan de manera intercambiable
cuando se considera la dindmica de la materia oscura difusa. La principal diferencia radica
en la inclusién de las interacciones entre bosones, que en el caso del FDM se descartan.

En el marco del modelo FDM, las ecuaciones que gobiernan la dindmica de la materia oscura
se reducen al sistema SP, el cual describe la evolucion temporal de la funcién de onda ¥ y el
potencial gravitacional V. Este sistema es una aproximacion valida cuando las interacciones
entre las particulas son minimas. Existen dos enfoques clave para resolver este sistema, que
se describen desde dos marcos diferentes de referencia descritos a continuacion.

2.2.1 Marco de Schrodinger-Poisson

La dindmica de la FDM est4 gobernada por el sistema SP, que describe la interaccion entre
el parametro de orden y el potencial gravitacional autoinducido por su propia distribucion de
densidad [64, 10, 22]. Las ecuaciones que rigen este sistema son:



Materia Oscura 13

hQ

hoU = — VU +mpVU, (2.12)
27713

V2V = 4nGmg (prpum — €proum) (2.13)

donde W (¢, ¥) es la funcién de onda que describe el estado del gas de bosones, mp es la masa
del boson, y prpy = mB|\If|2 representa la densidad de masa del gas. El valor prpys es el
promedio de la densidad en un cierto dominio espacial D C R? dado por:

1

0 == .
PFDM fD B /D PFDMA"T

El parametro € toma el valor e = 0 si el gas se supone asilado y e = 1 en el que el PVI se
resuelve en un dominio periddico. Al igual que las ecuaciones de Euler-Poisson (2.1H2.4)), es
necesario especificar el valor inicial de la funcién de onda:

\I/(O, f) = ‘IIO(f)u

y con esto basta para determinar V' at = 0.

Una caracteristica clave del sistema es su invarianza ante el siguiente cambio de escala, lo
que significa que las soluciones de las ecuaciones pueden ser escaladas sin alterar la forma
general del comportamiento dindmico [65] cuando se aplica la transformacion:

{6, 2,9, V} — {2, 712, 20,02V (2.14)

donde A es un numero real. Esta propiedad de invarianza de escala es util y tiene varias
implicaciones importantes:

= Autosemejanza y escalabilidad fisica: La invarianza bajo un cambio de escala implica
que las soluciones del sistema pueden ser autosemejantes. Es decir, si se posee una so-
lucién para un conjunto de condiciones iniciales, es posible obtener una nueva solucion
para un sistema con diferentes escalas simplemente escalando el tiempo, el espacio y
las funciones de onda y potencial. Esto es particularmente relevante en el contexto de
la FDM, ya que permite estudiar el comportamiento del sistema a diferentes escalas
sin necesidad de resolver el problema completo en cada una de ellas, lo cual facilita el
andlisis en una amplia gama de contextos fisicos.
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= Conservacion de propiedades globales: La invarianza de escala asegura que ciertas
propiedades globales del sistema, como la masa total o la energia, permanecen propor-
cionales a las escalas elegidas. Esto proporciona una comprension mas clara de como
las propiedades globales del sistema varian cuando se modifican las caracteristicas es-
paciales o temporales del mismo. Por ejemplo, la longitud de onda de De Broglie, que
juega un papel fundamental en la FDM, puede cambiar dependiendo de la escala del
sistema.

En resumen, la invarianza de escala del sistema Schrodinger-Poisson facilita tanto el analisis
tedrico como las simulaciones numéricas. Esta propiedad no solo permite estudiar el com-
portamiento del sistema en diferentes escalas, sino que también proporciona una herramienta
poderosa para simplificar el tratamiento de sistemas complejos, asegurando que las propieda-
des globales y el comportamiento dindmico sean consistentes a través de las diversas escalas.
Ademads, la invarianza de escala ofrece una vision mds profunda sobre las propiedades fun-
damentales del sistema en multiples niveles de andlisis.

2.2.2 Marco de Madelung-Poisson

Una alternativa importante para expresar el sistema de SP es a través de la transformacion de
Madelung [66]], 1a cual permite representar la funcién de onda como una combinacién de una
magnitud y una fase. Esta transformacion se define de la siguiente manera:

U = \/prpu/mpe™", (2.15)

donde prpy = mp|¥|* es la densidad de materia del gas de bosones, y S representa la
fase, que esta relacionada con el momento del sistema. Al introducir esta transformacion en
el sistema de ecuaciones SP (2.1212.13), se obtienen nuevas ecuaciones en términos de las
variables macroscopicas, que simplifican en algunos escenarios el andlisis fisico y numérico
del problema.

Para la parte imaginaria de las ecuaciones, se obtiene la ecuacion de conservacién de la
densidad, que tiene la forma:

VS
Oprpm +V <PFDM—) =0, (2.16)
mp

Esta ecuacion expresa la conservacion de la masa del gas de bosones, considerando que el
flujo de la densidad estd dado por el producto de la densidad prpys y el gradiente de la fase
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S, dividido por la masa del bosén m .

Por otro lado, la parte real del sistema da lugar a una ecuacién que describe la evolucién
temporal de la fase S, la cual se presenta como:

1
S + ——|VSP?+mpV +mpQ =0, (2.17)
2mB

Aqui, V es el potencial gravitacional, y () es el denominado potencial cudntico, el cual estd
definido como:

W2 V2 /prpa
Q=—— ~ YOEDM (2.18)
2my  \/PFDM

El potencial cudntico () puede interpretarse como una correccién cudntica a la dindmica del
gas, que surge debido a los efectos de interferencia y dispersion de la funcion de onda [67]].
De manera equivalente, el gradiente del potencial cudntico se puede escribir como:

V@ = — V- po. (2.19)

donde pg, es el tensor de presion cudntico, que se define como:

h 2
P = — (_) V& Vinprpy. (2.20)

2mB

Este tensor describe las fuerzas cudnticas que actian sobre el sistema debido a las fluctuacio-
nes en la densidad.

Si tomamos el gradiente de la ecuacién que describe la evolucion de la fase S y defini-
mos el campo de velocidad como ¢ = V.S/mp, entonces podemos reescribir las ecuaciones
de conservacion de la masa, la conservacion del momento y la ecuacién de Poisson del siste-
ma Schrodinger-Poisson en el marco de Madelung-Poisson (MP) de la siguiente manera:

Owrpm + V- (prpom?) = 0, (2.21)
O (prom®) +V - (prpMT @ U+ pg) = —promVYV, (2.22)
VQV = 4nG (pFDM — 55FDM) . (223)
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De esta forma, podemos observar que el sistema de ecuaciones (2.21{2.23) es equivalente al
sistema de Euler acoplado a la ecuacién de Poisson, lo que lo convierte en un sistema hidro-
dindmico cuantico [64]. Este sistema es conocido como el marco de Madelung-Poisson (MP),
y proporciona una descripcion mds accesible y fisica del comportamiento del gas de bosones,
utilizando variables macroscopicas como la densidad prpys y el campo de velocidades v

En este marco, es més sencillo entender la dindmica del gas de bosones, ya que se puede
interpretar el comportamiento del sistema en términos de las propiedades macroscépicas de
fluido. Ademas, este formalismo permite una mayor claridad a la hora de analizar las inter-
acciones y la evolucion del gas de bosones a lo largo del tiempo. Esto resulta de gran utilidad
tanto en el andlisis teérico como en la simulaciéon numérica de la dindmica de la materia
oscura bosonica y otros sistemas cudnticos de particulas.

SECCION 2.3

Acoplamiento Materia Visible y Materia Oscura

En los modelos anteriores, hemos tratado tanto el modelo de materia visible como el modelo
de materia oscura como dos componentes independientes, cada una con su propia dindmica.
Sin embargo, un aspecto fundamental que debemos considerar es la interaccion gravitacional
entre estas dos formas de materia. Dado que la materia oscura no interactda directamente con
el espectro electromagnético, no puede ser observada a través de los medios tradicionales de
la astronomia, como la radiacién electromagnética [S0]]. Sin embargo, se sabe que la materia
oscura ejerce una influencia gravitacional significativa sobre la materia visible, afectando la
evolucion y distribucion de las galaxias y otras estructuras astrofisicas.

En este contexto, la materia oscura y la materia visible deben ser consideradas como un siste-
ma acoplado que interactda Unicamente a través de la gravedad [[68]]. Por lo tanto, el modelo
adecuado para describir la dindmica de este sistema es el sistema acoplado de ecuaciones
Schrodinger-Poisson-Euler (SPE), que modela tanto el comportamiento de la materia visible,
representada generalmente por un fluido de gas ideal, como la materia oscura, descrita por
una funcién de onda asociada a particulas bosonicas. Este sistema de ecuaciones incorpora las
interacciones gravitacionales entre las dos especies de materia, permitiendo una descripcién
mds completa de la dindmica galactica.

El sistema completo de ecuaciones que rige la evolucion del sistema acoplado es el siguiente:
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Op+V-(pt) = 0, (2.24)
O (p0) + V- (pt@vU+pl) = —pVV, (2.25)
OE+V - -[U(E+p)] = —pv-VV, (2.26)
p = p(ﬂ? 6), (227)
hoU = — e V20U + mpVU, (2.28)
2mB
V2V = 47G (pr —epr), (2.29)

donde pr = p + prpa s la densidad total y el resto de variables tienen la misma interpreta-
cion que hemos descrito anteriormente.

Una caracteristica importante de este sistema es su invariancia bajo transformaciones de esca-
la. Es decir, el sistema mantiene su forma funcional cuando se realiza un cambio de escala .
Bajo este cambio, las variables del sistema se transforman de acuerdo con la siguiente regla:

{t,Z,p,7,e,p, 0, V} = {X2t, AT, N, A\T10, A e, Np, UL NV (2.30)

Esta transformacion afecta las distintas variables del sistema, lo que permite estudiar la evo-
lucién del sistema en diferentes escalas. En particular, la energia total £ = p(e + %|17 %) se
transforma como £ — A\?FE, lo que implica que la energia total aumenta o disminuye con
el cambio de escala. Este comportamiento es consistente con la forma de las ecuaciones de
conservacion de la energia y el momento.

Si cerramos el sistema mediante una ecuacién de estado politrdpica, la constante politrépica
K debe transformarse de la siguiente manera:

K — "2 (2.31)

lo que asegura que la ecuacion de estado siga siendo vélida bajo transformaciones de escala.
Este tipo de invariancia es util para estudiar el comportamiento auto-similar de las estructuras
a gran escala, como los halos de materia oscura, y permite hacer predicciones sobre como
éstas estructuras evolucionan con el tiempo.

En resumen, el sistema SPE proporciona una herramienta poderosa para estudiar la interac-
cion gravitacional entre la materia visible y oscura, permitiendo modelar fendmenos como la
distribucién conjunta de materia a escalas locales [69].
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2.3.1 Diagnéstico

En cualquier sistema macroscopico, existen varias cantidades fisicas fundamentales que de-
ben ser diagnosticadas a lo largo de su evolucion para caracterizar correctamente el estado
del sistema. En la Tabla 2.1 se muestran las definiciones de diversas cantidades clave para
la materia visible y la materia oscura difusa, incluyendo las masas My, rpas, 1as energias
cinéticas K, par, las energias potenciales Wus ppas, 1os momentos lineales Pgas mpas, 1os
momentos angulares [jga& rpum Y la energia interna Ug,, de la materia visible. Estas cantidades
no solo nos proporcionan informacién sobre el estado dinamico del sistema, sino que también
nos permiten evaluar la evolucion temporal de la materia visible y oscura.

Ademads, a partir de estas definiciones, es posible calcular las energias totales de ambos com-
ponentes del sistema. La energia total de la materia visible estd dada por Eys = Kgas +
Was + Usas, mientras que la energia total de la materia oscura difusa se define como Erpyr =
Krpy + Wepa. También se pueden calcular los factores de virializacion, que ofrecen una
medida de la relacion entre las energias cinética, potencial e interna. Los factores de viriali-
zacion estdn dados por Qeas = 2K ga + Was +3Ugss parael gasy Qrpyr = 2Kppy +Wepwr
para la materia oscura difusa.

Estas cantidades de diagnostico transforman bajo el cambio de escala A de la siguiente ma-
nera:

{M, K. W,7, E} - {)\M, N, N, A2, AE}, (2.32)

donde hemos omitido los subindices que especifican si las cantidades corresponden al gas o
a la materia oscura difusa (FDM).

2.3.2 Adimensionalizacion del Sistema

La transformacion del sistema en un sistema de coordenadas adimensional garantiza la uni-
formidad de las unidades y evita problemas derivados de escalas dispares al realizar calculos
numéricos. Para lograrlo, realizamos las siguientes transformaciones: t = tty, £ = Txo,
p = ppo, U= Tvo, p = ppo, V = VVy, E = EE,, é = eey, U = U, donde las variables sin
tilde son adimensionales y se dice que son unidades de cédigo, mientras que las que tienen
tilde son fisicas. Los factores de escala adecuados para el sistema GPP son:
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Diagnéstico para el gas | Diagnéstico para la FDM

Mgas = fD pd390 Mvyo = mp fD |‘1/|2d31‘
| h? .

Ky = %fD p|o2d3z Kepy = me\IJ V2Udix

Wgas - 5 fD de?)x WFDM = % D \I/*V\Ifd3x

Daas = fD pud*z Prom = —ih fD (AAVA\AZY

Lys = [ppfxid’z Lrpy = —ih [, V% x VUdz

Ups = [pped’x

Cuadro 2.1: En la parte izquierda y derecha se muestra el diagnostico para el gas y la materia
oscura difusa, respectivamente. En ambos sistemas, M es la masa, K la energia cinética,
W la energia potencial, p'el momento lineal y L el momento angular. Por dltimo, solo se
tiene energia interna, Uy, para el gas. Las cantidades de diagndstico se miden en el dominio
D C R

2
o = M 5096 x 1072 (52 Gy
I
- ~19.20 (2 ks, (2.33)
mB2!E0 )3\4
h
- ———— ~6:820x10° ([ =~ ) Mg /kpc?
£o 47TG’ITLQBZE61 X (mg2> @/ pc,

el resto se puede calcular como ey = Vo = v, Ey = pg = povi y ¥o = /po/mp, y se definié
el factor de escala de longitud 2o = A~! kpc y la masa del bos6n mp = mgs x 10722eV /2.

De esta forma, el sistema posee efectivamente un tinico grado de libertad, que expresamos en
términos de un factor de escala )\, equivalente a la transformacién (2.30) y (2.32)). Con estas
nuevas variables, el sistema SPE puede reescribirse en unidades adimensionales como:

Op+V - (pt) = 0, (2.34)

O (pV) + V- (pr@T+pI) = —pVV, (2.35)
OE+YV - -[0(E+p)| = —pv-VV, (2.36)

p = plpe), (2.37)

i,V = —%VZ\IJ + VU, (2.38)

V2V = pr—epr, (2.39)

En general el PVI asociado al sistema (2.2412.39)) queda formulado especificando las condi-
ciones de frontera y las condiciones iniciales para las variables {p, U, e, ¥} del sistema SPE.
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Capitulo

Meétodos Numeéricos

La solucién del sistema SPE se plantea como un Problema de Valores Inicia-
les (PVI) de evolucidn restringida. En este sistema, las ecuaciones de Euler y Schrodinger
describen la dinamica de las variables macroscopicas del fluido y del pardmetro de orden,
respectivamente, mientras que la ecuacion de Poisson impone una restriccion que debe satis-
facerse en cada instante de tiempo.

El dominio de integracion se define como [0, ¢¢] X D, donde D = [T, Tmax) X [Ymins Ymax] X
[Zmin, Zmax)» ¥ se discretiza en una malla uniforme de tamaiio finito:

D¢ = {(xi,yj,2x) € D}

con

Ti = Tmm + ZAJ:; Yj = Ymin + ]Ay; Zk = Zmn T kAZ,

parat=0,...,N, —1,7=0,...,N, — 1,k =0,..., N, — 1. Las resoluciones espaciales
estan dadas por

Lméx — Tmin
Ar= ———

]V&[7 ) Ta Z = Tu
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y, para simplificar la implementacién numérica, se adopta Az = Ay = Az = h. La discreti-
zacion temporal se define como el conjunto discreto t" = nAt con

At = Ch?,

donde C' es un factor CFL cuyo valor regula la estabilidad del esquema numérico.

Dada la naturaleza del sistema SPE, se emplean distintos métodos numéricos segun la ecua-
cion a resolver. En particular, la ecuacion de Schrodinger y la ecuacion de Poisson se re-
suelven mediante métodos pseudoespectrales, descritos en la Seccion mientras que las
ecuaciones de Euler se discretizan con esquemas de volimenes finitos, abordados en la Sec-
cién Finalmente, en la Seccién se detalla la implementacién computacional, inclu-
yendo estrategias de paralelizaciéon y manejo de datos.

SECCION 3.1

Meétodos Pseudoespectrales

Los métodos numéricos pseudo-espectrales son una herramienta poderosa para resolver EDPs
[70], combinando las ventajas de los métodos espectrales con la eficiencia computacional
de los métodos basados en transformadas rapidas. A diferencia de los métodos espectrales
tradicionales, en los cuales las derivadas se calculan directamente en el espacio espectral, los
métodos pseudo-espectrales realizan la transformacion al espacio de Fourier para aprovechar
la convergencia exponencial, pero evalian las funciones y sus derivadas en puntos fisicos
distribuidos en el dominio.

3.1.1 Transformada Discreta de Fourier

En esta seccion, describimos la aproximacion de la transformada de Fourier, comenzando con
el caso unidimensional y extendiendo el método a dimensiones superiores. Estas aproxima-
ciones se basan en definir funciones sobre un dominio discreto y encontrar representaciones
aritméticas de los operadores de Fourier en dicho dominio. Antes de adentrarnos en la aplica-
cion practica, es fundamental introducir un teorema clave en la teoria de sefales: el teorema
de muestreo.
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Teorema de Muestreo y sus Implicaciones

Consideremos una funcién continua p(t) muestreada en intervalos regulares de longitud At.
Si su transformada de Fourier

F{p(t)} = p(f) = / " pt)em dt, G.1)

oo

tiene un ancho de banda finito, es decir, que p(f) = 0 para frecuencias | f| > f., donde f. =

1
AL es la frecuencia de Nyquist, entonces la funcién p(t) estd completamente determinada

por sus valores muestreados p,, = p(t,), con t, = nAt paran = —o0,...,—1,0,1,..., 0.
En este caso, p(t) se puede reconstruir exactamente a partir de sus muestras mediante la
siguiente formula de interpolacion:

= in 27 f.(t — nAt
pt)=At > p, [ﬂ(t—<nAt) ] 3.2)

n=—oo

La demostracion de este resultado involucra la transformada de Fourier tanto de la funcién
peine de Dirac como de la funcién rectingulo. Aunque no nos centraremos en la demostra-
cion detallada aqui, discutiremos las implicaciones clave de este teorema para las sefiales
muestreadas.

En primer lugar, cualquier funcion que se construya a partir de muestras discretas tomadas
en intervalos regulares At tendré un espectro de Fourier limitado al ancho de banda | f| < f...
En segundo lugar, si el intervalo de muestreo At es demasiado grande, ocurrira un fenémeno
conocido como aliasing. El aliasing provoca que las frecuencias superiores a la frecuencia de
Nyquist se representen incorrectamente, moviéndose falsamente al intervalo |f| < f., lo que
genera distorsion en la sefial muestreada.

Teniendo esto en cuenta, cualquier método numérico u observacién basado en una muestra
finita de una funcion solo podré capturar un espectro limitado de frecuencias. Como conse-
cuencia, puede fallar en detectar frecuencias de interés fuera de este espectro. Una estrategia
para mitigar el aliasing es usar conjuntos multiples de muestras con intervalos mas pequefios,
asegurando que las sefiales se muestreen de manera consistente y que las frecuencias altas se
representen con precision.

Con esta comprension, estamos ahora preparados para aplicar una version discreta de la trans-
formada de Fourier (3.1J).
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Transformada Discreta de Fourier en 1D

Para construir la version discreta de la transformada de Fourier (TF), comenzamos definiendo
un dominio discreto y finito:

t, = nAt, n=20,1,2,..., N —1, (3.3)

donde N es el nimero de puntos en la malla, y la funcién p(¢) evaluada en estos puntos se
denota como p,,. De esta manera, la integral en la ecuacién (3.1]) se puede aproximar mediante
una suma de Riemann:

N-1

p(f) =~ Z pjeszjAtAt. (3.4)

Jj=0

A continuacion, para establecer una correspondencia entre los dominios temporal y frecuen-
cial, definimos un dominio discreto de frecuencias, en lugar de tratar f como continuo:

fo=——0 k=0,1,2,...,N — 1, (3.5)

donde la transformada de Fourier se evalda en los puntos fy, es decir, pr = p(fx). En conse-
cuencia, la transformada de Fourier toma la forma:

N-1
Pr=>_ pie™ N AL+ O(AP). (3.6)

J=0

De este modo, la Transformada Discreta de Fourier (DFT, por sus siglas en inglés) de la

funcién discreta 7 = (po, p1, P2, - - -, Pn-1)" se define como:
N-1
ik
Pe= ) pjwk, (3.7)
§=0

donde wy := >N Esto es equivalente a la expresion matricial:
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P = DFT(p) := Wy, (3.8)

donde la matriz W se define como:

W?VO WO u}?\}(N—l)
Wl Wil wl'(N—l)
W = N N N (3.9)
u)](\71\1—1).0 WJ(VN—1)-1 WJ(VN—l)-(N—l)

De estas formulaciones se derivan dos propiedades importantes de la DFT":

1. La DFT es periddica, es decir, Py, ny = P.

1
2. Lainversa de la matriz W estd dada por W1 = NWT, donde W' es la transpuesta
conjugada de W.

La segunda propiedad nos permite recuperar la funcién original a partir de sus componentes
de Fourier mediante la DFT inversa (iDFT, por sus siglas en inglés):

1 .
pi=~ > P, (3.10)

o0, de forma equivalente, en notacién matricial:

p'=iDFT(P) := LDFT(P")" = NWTP, (3.11)

donde el simbolo * denota el conjugado complejo. Es importante sefialar que el calculo directo
de la DFT requiere O(N?) operaciones, lo cual puede ser costoso en términos computacio-
nales. Sin embargo, Danielson y Lanczos desarrollaron un algoritmo mads eficiente, conocido
como la Transformada Répida de Fourier (FFT, por sus siglas en inglés), que reduce signifi-
cativamente el costo computacional [[71].
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Transformada Rapida de Fourier

Dado un conjunto de datos p;, donde j = 0,1,2,..., N — 1 y suponiendo que N es par, la
DFT P, se puede expresar como la suma de dos DFTs, cada una de longitud N/2:

N/2-1 N/2-1

)k +1)k

B, = Z ijW](\?]) + Z p2j+1w](\?]+1)
J=0 Jj=0

N/2-1 N/2-1
_ jk ik k
= E , P2jWijg + E , D2j+1Wx oW -
j=0 7=0

Aqui, w¥; es independiente de j, por lo que se puede factorizar fuera de la segunda suma. Asf,

podemos reescribir la ecuacién como:

P.=P’+whkPl, k=0,1,2,...,N/2 -1, (3.12)

donde PPy P/ representan las DFTs de los componentes pares e impares de la secuencia,
respectivamente. En esta descomposicion, k& toma N/2 valores tanto para las transformadas
pares como para las impares, lo que reduce efectivamente el problema original en dos DFT's
mas pequenas.

Para estas DFT's mas pequeiias, se aplican las siguientes condiciones de periodicidad:

Pki—N/Q = Plfv

I I
B, k+N/2  — By
Ademis, el factor w¥; cumple con la siguiente identidad importante:

Wit N2 = ok (3.13)

Los N/2 términos restantes se pueden calcular utilizando:

Peinp =Pl —WkPl, k=01,2,... N/2-1. (3.14)
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Este proceso reduce la complejidad computacional de O(N?) en el caso de una DFT directa
a O(N log N), haciendo que la FFT sea mucho més eficiente para valores grandes de V.

Transformada Rapida de Fourier en 3D

La FFT en tres dimensiones extiende el concepto de la FFT en 1D para datos tridimen-
sionales. El principio bésico sigue siendo el mismo: descomponer el célculo de la DFT en
operaciones mds pequeiias y eficientes, lo que permite reducir la complejidad computacional
para datos en un volumen.

Dado un conjunto tridimensional de datos p; j , = p(z;, y;, zi) los cuales denotan los valores
de la funcién p : D C R? — R? en el dominio discreto D?, la DFT tridimensional P n s€
puede escribir como la suma de tres transformadas de Fourier unidimensionales aplicadas a
lo largo de cada eje , y, y z:

N—-1N-1N-1

Pimn =33 prjuwwly 7, (3.15)

i=0 j=0 k=0

donde wy = e~ ?™/N es el factor de peso. Para simplificar este calculo y aprovechar la efi-

ciencia de la FFT, se realiza en tres pasos:

1. Primero se calcula una FFT 1D alo largo de la direccién z para cada par de y y z fijos:
N-1
Pk = Z Pijk wf\lr-
i=0

2. Luego, se calcula una FFT 1D a lo largo de la direccién y para cada par de x y z fijos:

N-1

_ E Jm
Pl’m’k - Pl7j7k wN :

J=0

3. Finalmente, se realiza una FFT 1D a lo largo de la direccion z para cada parde z y y
fijos:

N-1

kn

B,m,n - § -Pl,m,k Wy -
k=0

Este enfoque divide el problema tridimensional en tres problemas unidimensionales conse-
cutivos, lo que permite aprovechar la estructura eficiente de la FFT en cada dimension. La
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implementacién de la FFT en 3D puede ser especialmente util para el andlisis de datos de-
finidos en dominios que corresponden a paralelepipedos rectangulares en campos como la
fisica, la astronomia y la simulacién de fluidos.

Ademas, la FFT en 3D también conserva la periodicidad en las tres direcciones espaciales,
por lo que es adecuada para sistemas de ecuaciones definidos en dominios periddicos. Esto
es particularmente util en la resolucién numérica de ecuaciones diferenciales parciales, como
en la ecuacion de Schrodinger o en la simulacién de flujos de fluidos incomprensibles en este
trabajo.

En resumen, los métodos pseudo-espectrales con FFT representan una herramienta eficiente
y precisa para resolver EDPs en dominios periddicos, aprovechando la estructura espectral
del problema para mejorar tanto la precision como el rendimiento computacional. Cuando
se presentan otro tipo de condiciones de frontera como lo son de Dirichlet o Neumann, es
posible redefinir este concepto para seguir aprovechando la eficiencia de la FFT.

3.1.2 Transformadas Discretas del Seno y Coseno de Fourier usando
FFT

La Transformada Discreta del Seno (DST, por sus siglas en inglés) y la Transformada Discreta
del Coseno (DCT, por sus siglas en inglés) son versiones modificadas de la TF, utilizadas
para descomponer sefales en componentes sinusoidales (seno y coseno, respectivamente).
A diferencia de la TF tradicional, que utiliza funciones exponenciales complejas, tanto la
DST como la DCT emplean funciones seno y coseno como elementos base, lo que las hace
especialmente ttiles en ciertos tipos de problemas que involucran condiciones de frontera
especificas.

Transformada Discreta del Seno (DST)

La DST es ideal para situaciones en las que la funcion que estamos analizando cumple con
condiciones de frontera de Dirichlet, es decir, donde la funcién se anula en los extremos del
intervalo, como es el caso de una cuerda vibrante con ambos extremos fijos. En este contexto,
la sefial se puede extender de forma impar, lo que hace que se use la funcién seno, ya que el
seno tiene la propiedad de ser impar.

La DST descompone una sefial en componentes sinusoidales de la forma:
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N-1

p(t) = HZ:O o, sin (”T”) |

Para calcular la DST usando la FFT, se extiende la sefial original de forma impar. Es decir,
se duplican los datos originales de forma que los valores a la derecha del final del intervalo
original son negativos y reflejan los valores a la izquierda. Luego, se calcula la FFT de esta
senal extendida, y finalmente, se toma la parte imaginaria del resultado para obtener la DST:

- ) Pk si0 <k <N,
e —pon_k_1, SIN <k <2N.

P.=FFT(p), k=0,1,...,N—1.
DST(p)y, = Im(F).

Transformada Discreta del Coseno (DCT)

Por otro lado, la DCT es mas adecuada cuando la funcion cumple con condiciones de frontera
de Neumann, es decir, donde la derivada de la funcidn se anula en los extremos del intervalo.
Esta es una situacién comun en problemas donde la solucion debe ser continua en los bordes.

La DCT descompone la sefal en componentes cosenoidales, que son funciones pares:

Para implementar la DCT utilizando la FFT, la sefal se extiende de manera par. Es decir, los
valores a la derecha del final del intervalo original son una copia de los valores originales re-
flejados. Después, se calcula la FFT de la senal extendida y se toma la parte real del resultado
para obtener la DCT:

- )Pk si0 <k <N,
PR pon iy, siN <k < 2N.

P,=FFT(p)s, k=0,1,...,N—1.
DOT(p)k = Re(Pk)
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Estos enfoques permiten utilizar la eficiencia de la FFT para realizar transformadas de seno
y coseno sin tener que implementar directamente las transformadas discretas.

3.1.3 Solucion de la ecuacion de Poisson

La ecuacion de Poisson en tres dimensiones se expresa como:

V3V = pr, 7= (x,y,2) €D CR? (3.16)

donde V' es el potencial gravitacional y pr es la densidad total que genera el potencial. Esta
ecuacion puede resolverse aplicando condiciones de frontera apropiadas en dD. Para abor-
dar la ecuacion de Poisson en el espacio de Fourier, aplicamos la transformada de Fourier,
denotada por JF, obteniendo:

— W F{V} = Flpr}, (3.17)

donde w? = &+ & con W = (w,, wy, w,) es el vector de frecuencias espaciales. Esta expresion
surge de la propiedad de diferenciacion de la transformada de Fourier, que establece:

]—“ {‘2’%} — (—iw) F{V}.

Para calcular la transformada de Fourier de V, es fundamental garantizar que se cumplan
ciertas condiciones. En particular, es crucial que la funcion fuente py sea regular. En los
métodos numéricos empleados, es necesario que F{V }(w = 0) sea finita. Esta condicién
implica que el lado izquierdo de la ecuacién debe anularse, lo que lleva a la conclusién
de que el lado derecho también debe ser cero.

Con el fin de cumplir esta condicidn, introducimos una nueva funcidn:

g = pr — Pr,

donde pr representa el valor medio de la densidad fuente p; sobre el dominio D, definido
como:
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1 —
pr = m/})pgp(t,x) d*x, (3.18)
D

siendo f D d3x el volumen del dominio D. Asi, podemos reformular la ecuacién de Poisson
como:

ViV = pr — pr. (3.19)

La solucién de esta ecuacion puede escribirse como:

w?

v_f—l{——F{pT_pT}}, (3.20)

Sin embargo, esta expresion solo puede calcularse de manera exacta en situaciones particula-
res. En aplicaciones practicas, reemplazamos el operador de Fourier F por la FFT en el caso
de condiciones de frontera periddicas, o por los operadores DST o DCT si las condiciones de
frontera son de tipo Dirichlet o Neumann, respectivamente.

Es importante notar que el uso de la DST implica que el potencial gravitacional se anule

en la frontera del dominio D. Si deseamos imponer otro tipo de condiciones de frontera,
planteamos el problema de la siguiente manera:

V2V (%) = g(2), feD, (3.21)

V(7) = Vo(@), &eaD. (3.22)

Para aplicar correctamente la DST, reescribimos este problema en términos de la variable
u =V — Vj, que satisface:

Vu(Z) = g(Z) — go(¥),  TeD, (3.23)

W@ =0, Te€oD, (3.24)
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donde gy = V?V}. Resolver este nuevo problema es adecuado para la aplicacién de la DST,
y una vez solucionado, podemos recuperar el potencial original mediante V' = u + V4. En
nuestro caso particular, imponemos condiciones de frontera monopolares, es decir, Vy ~

= Sin embargo, este potencial es inapropiado numéricamente debido a que diverge en
mr
el origen. Para evitar este inconveniente, lo reemplazamos por un potencial regularizado:

M

Vo= e,
0 41?2 + €2

donde elegimos el pardmetro € = 3h, siendo h la resolucién del dominio discreto. Entonces,
el término g, se expresa como:

B 3Me?
9o = (r2 + e2)52”

Con esta formulacion, hemos establecido los pasos necesarios para resolver numéricamente la
ecuacion de Poisson en el sistema SPE (2.2442.29)). A continuacién, procederemos a describir
los métodos empleados para la evolucion del pardmetro de orden W.

3.1.4 Solucion de la ecuacion de Schrodinger

La evolucién temporal del parametro obedece la ecuacién de Schrodinger:

(3.25)

donde H = —%V2 + V es el operador Hamiltoniano, V? = 9,, + Oyy + 0. es el operador
laplaciano en coordenadas cartesianas (z, y, z) y V es el potencial gravitacional. Para abordar
numéricamente la evolucién de WV, es necesario discretizar el operador Henel espacio D%y
el tiempo t", lo que nos permitird implementar diferentes métodos de solucion.

Métodos Explicitos

Los métodos explicitos para la evolucién de la ecuacion de Schrodinger se destacan por su
simplicidad y facilidad de implementacion, lo que los hace particularmente atractivos para
simulaciones numéricas. En este enfoque, la funcién de onda en el tiempo "' se calcula
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utilizando dnicamente los valores de la funcién de onda en el tiempo anterior ¢". Esto se
traduce en una formulacion clara y directa del proceso de evolucion.

Un método comun para describir esta evolucion se basa en el operador de evolucion tem-
poral, que estd dado por e~*#*. Formalmente, la solucién a la ecuacién de Schrodinger para
potenciales que no dependen del tiempo se escribe como

U(7,t) = e H(ZF, 0). (3.26)

Sin embargo, es posible demostrar que para potenciales que dependen del tiempo es valida la
aproximacion [72]:

Pl = AL (3.27)

siendo ¥™ y U Jas funcién de onda evaluda en los tiempos t" y "1, respectivamente
y H™ el Hamiltoniano al tiempo ¢". Calcular el operador de evolucién temporal e—H"A!
de manera directa puede ser complicado, especialmente para Hamiltonianos que involucran
términos no triviales. Para facilitar este calculo, se puede hacer una aproximacién mediante
la descomposicion del operador en dos partes: el término cinético y el término potencial. Esto
permite escribir:

\IjnJrl — eiVZAt/2efiVnAt‘Pn + O(Atz), (328)

Aqui, U y U™ ! representan a las funciones de onda al tiempo t" y t"*! = " + At, res-
pectivamente, mientras que V" representa el potencial y V? es el operador laplaciano que
corresponde a la parte cinética del Hamiltoniano al tiempo ¢" en todo punto (z;,y;, zx) € D?.
La expresion anterior implica que primero se aplica el operador de potencial e='V" 4!, seguido
del operador cinético eVPAL/2 Bgta estrategia, conocida como split-step, permite realizar el
calculo en el espacio de Fourier, lo cual es computacionalmente eficiente, y se describe en
detalle como:

nt+a __ —iVAt\yn
U = e LUACH

gl - p-1 {6—1(2wk)2/2]_—<\pn+a)} (3.29)

donde k2 = k - k es el nimero de onda.
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Otra variante de esta clase de métodos es el strang splitting. El principio fundamental con-
siste en descomponer el operador de evolucién temporal e 7”2 en tres partes: potencial-
cinética-potencial. Esta descomposicion permite aplicar el operador de manera secuencial y
aprovechar las propiedades de cada parte.

Formalmente, el operador se puede expresar como:

e_iﬁnm _ 6—1V"At/26iv2At/Qe—iV”At/2 + O(At2), (3.30)

y se describe en detalle como:

prte — e—iV”At/2\I;n7
T {efi@wk)?/z F (\Ijn+a)} 3.31)
pntl eIV AL/2\yn+b

La ventaja de estas aproximaciones es que, al descomponer el operador de evolucidén, se
puede aplicar el potencial y el término cinético de manera mas manejable, lo que lleva a una
mejora en la estabilidad y precision del método. Sin embargo, es importante notar que estas
aproximaciones introducen un error de orden O(At?), lo que significa que el error se reduce
cuadraticamente a medida que disminuye el tamafio del paso de tiempo.

En resumen, los métodos explicitos ofrecen un enfoque intuitivo y eficiente para la evolu-
cion temporal de la ecuacion de Schrodinger, siendo ampliamente utilizados en simulaciones
numeéricas donde se requiere una rapida implementacion y un cdlculo directo de la funcién
de onda.

A pesar de su simplicidad y facilidad de implementacién, los métodos explicitos para la
evolucion de la ecuacion de Schrodinger presentan varias desventajas:

1. Estabilidad Condicional: Los métodos explicitos son generalmente inestables para
ciertos tamafios de paso de tiempo. La estabilidad del método depende del tamaio de
At en relacién con las caracteristicas del sistema. Si At es demasiado grande, pueden
surgir oscilaciones no fisicas o el método puede diverger.

2. Acumulacion de Errores: A medida que se avanza en el tiempo, los errores numéricos
se acumulan, afectando la precision de la solucion conforme avanza el tiempo. Esto
puede ser particularmente problemético en simulaciones a largo plazo.

En general, aunque los métodos explicitos son intuitivos y faciles de implementar, sus li-
mitaciones en estabilidad y eficiencia pueden hacer que sean menos adecuados para ciertos
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problemas en comparacién con métodos implicitos, que, aunque mas complejos, a menudo
son mads estables y permiten pasos de tiempo mds grandes.

Métodos Implicitos

Los métodos implicitos, en contraste con los explicitos, calculan la funcién de onda en el
tiempo " utilizando también valores en el tiempo t" . Esto implica la resolucién de un
sistema de ecuaciones algebraicas en cada paso de tiempo, lo que puede aumentar significa-
tivamente el costo computacional. Sin embargo, estos métodos son mds estables y permiten
elegir pasos de tiempo mds grandes sin comprometer la precision.

Un ejemplo de un esquema implicito es el método de Crank-Nicolson, que se puede formular
utilizando el operador de evolucién temporal de la siguiente manera:

P2 = THTAZGR g bjen Pt/ = GHTTAY2gnL (3.32)
Igualando estas dos expresiones, se obtiene:
eiI:I"+1At/2\Iln+1 — e—iﬁ"At/Q\I}n‘ (333)

Al realizar una expansion hasta segundo orden, se tiene lo siguiente:

At - At -
(1 + iTH”“) prtt = (1 — 17[-[”> U™ + O(A?), (3.34)
que se puede reescribir como:

N .
R [H"pr"“ n H”\If"} + O(AB), (3.35)

Este enfoque combina la informacion del tiempo anterior y del futuro, proporcionando una
excelente estabilidad y precision en la evolucion de la funcién de onda.

En particular, nosotros resolvemos esta ecuacion (3.35) no lineal mediante el método de punto
fijo. Para ello, denotamos el lado derecho como la funcién g(¥"!) y el método consiste en
iterar segun la relacion:
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Ut = g(Upth), (3.36)

hasta que se cumpla la condicién || ¥} 7] — W} "], < ¢, donde || - || representa la norma 2.
Comenzamos las iteraciones tomando ¥§! = U™,

Con esto hemos descrito como resolver tanto la ecuacién de Poisson como la ecuacion de
Schrodinger. Por lo tanto, para abordar la resolucion del sistema completo (2.24}2.29)), solo
nos queda detallar los métodos numéricos necesarios para la resolucion de las ecuaciones de
Euler, los cuales se describen en la siguiente seccion.

SECCION 3.2

Métodos de Volumenes Finitos

3.2.1 Analisis Caracteristico de las Ecuaciones de Euler

El sistema de ecuaciones de Euler ( 2.36) puede expresarse en forma vectorial como:

%—Ij + V.- F(U)=S(U), (3.37)

—

donde U es un vector de variables conservadas, F = (F* F¥ F?) representa los flujos con-
servativos y S el vector de fuentes. Estos elementos se definen como:

p pv’ 0
pu® PUVT + i —p0,V
U= |p¥ |, Fi=|poy+6,p]|, S=]| —po,V [, (3.38)
pU* pUvF + 8ip —pd.,V
E v'(E + p) —pv-VV

donde i € {z,y, 2}y d;; es la delta de Kronecker.

Alternativamente, el sistema ( [3.37)) se puede reescribir en forma matricial como:
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My adl_sw) (3.39)

donde las matrices A’ := Oy F? son las matrices jacobianas de los flujos. Estas matrices son
diagonalizables con valores propios dados por la matriz diagonal:

v,—¢cs 0 0 O 0
0 v; 0 0 0
A = 0 0 v 0 0 : (3.40)
0 0 0 v 0
0 0 0 0 wv+cs
y las matrices de eigenvectores derechos son:
1 1 0 0 1
Uy — Cs Vg 0 0 w,+cs
R* = vy Uy 1 0 vy , (3.41)
v, v, 0 1 v,
H—uvyes 5|V]* vy v, H+ v,
1 1 0 O 1
Vg (. 1 0 (o
RY=1| v, —cs vy 0 0 wy+es |, (3.42)
v, v, 0 1 v,
H—uvyes 3Iv[* v, v, HA+ vy
1 1 0 O 1
(. (o 1 0 Vg
R? = vy Uy 0 1 vy , (3.43)
V, — Cg v, 0 0 wv,4+c

1
H—v.e, 3V v, vy H4uv.c

donde H = % es la entalpia total y ¢, = ,/g—i + ,.%% es la velocidad local del sonido.
Estas matrices satisfacen la relacion de diagonalizacion:

Al — RIAS (Ri)_l ' (3.44)
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Como resultado, el sistema de Euler es hiperbdlico, ya que posee cinco valores caracteristicos
reales y un conjunto completo de eigenvectores linealmente independientes en cada direccién
espacial, lo que garantiza que el PVI que obedece estas ecuaciones esté bien planteado [54].

3.22 Método HLLE

Los métodos numéricos basados en volumenes finitos buscan resolver un problema algebrai-
co basado en los valores promedio de las celdas dentro del dominio discreto D?. Para ello, se
define el volumen de control como

Qijp =i —Ax/2, x;+Ax /2] x [y; — Ay /2, y;+ Ay /2] X [2p — Az/2, 2, + Az /2], (3.45)

el cual tiene un volumen AQ2 = AxAyAz. Al integrar el sistema de Euler (3.37) sobre el
volumen de control y dividir por su volumen, se obtiene la siguiente forma discreta:

dﬁi,j,k: + Fix+1/2,j,k - Ff—1/2,j,k i sz+1/2,k - Fi'/,j—l/zk 4 F
dt Ax Ay Az

z _ F*
05, k+1/2 Wk-1/2 g
= ik

(3.46)

donde se ha aplicado el teorema de la divergencia y se han definido los valores promediados
de las funciones U y S en el volumen de control como:

U, x(t) = ﬁ /Q U(t, %) d’x, (3.47)

.5,k

_ 1
Suklt) = ag /Q S(UL) (3.48)

.5,k

De manera andloga, los flujos en cada direccion se definen como

ie1250 = F (Uixi/251), (3.49)

y de forma similar para las demds direcciones. Para simplificar el cdlculo, se asume que la
fuente promedio se puede aproximar como S; ;, = S(U, ;).
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xT

El método HLLE reemplaza los flujos F7, /2,4, €O flujos numéricos definidos por:

eriie ATFT (Ui ) = NFP (U, ) + XUk — Uiy i)
+1/2,5,k Afr . /\:i )

F (3.50)

donde A% representan las velocidades caracteristicas minima y médxima del sistema, calcula-
das como:

A? = min(0, min(A7;)), (3.51)

A% = miax(0, méx(A? ). (3.52)

Siguiendo este procedimiento en todas las direcciones, se obtiene la version discreta del sis-
tema:

vHLLE o HLLE y,HLLE y,HLLE z,HLLE 2 HLLE

dfjijk i+1/2,5,k i—1/2,5,k ij4+1/2,k T aj—1/2.k i3,k+1/2 T T i k—1/2 =
2J _|_ 1Jy 1Jy _|_ 2, ) 2, k] 2J 2 S U B ,
dt Ax Ay Az (Uisn)

_l’_ =
(3.53)

el cual se resuelve numéricamente utilizando un método de Runge-Kutta explicito de tercer
orden.

Para aproximar U en el esquema de volimenes finitos, se emplean técnicas de reconstruccion
de flujos en las interfaces, como los esquemas de Godunov y Minmod.

El esquema de Godunov asume que U es constante en cada volumen de control y calcula los
flujos en las interfaces resolviendo un problema de Riemann entre celdas adyacentes. Este
método es robusto pero limitado a precision de primer orden.

El esquema Minmod, en cambio, emplea una reconstruccion lineal de U dentro de cada celda
para mejorar la precision. Usa una interpolacion limitada que previene oscilaciones no fisicas
y garantiza estabilidad. La funcién Minmod selecciona la pendiente més conservadora entre
las opciones disponibles, proporcionando un esquema de primer orden en presencia de cho-
ques y de segundo orden en regiones suaves. En estas ultimas, su precision coincide con la
de diferencias finitas de segundo orden [54]].

Un comentario importante es que en las ecuaciones de Euler aparecen términos proporciona-
lesa 1/p, lo que implica que si la densidad se anula, pueden surgir problemas numéricos debi-
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do a singularidades. Para evitar esto, se emplea un artificio numérico: el uso de una atmdsfera,
que consiste en imponer una densidad minima que permea todo el dominio numérico. Para
un ejemplo més detallado de esta técnica, puede consultarse el apéndice

SECCION 3.3

Implementaciéon Computacional

La implementacién numérica se desarrolla en Fortran, empleando bibliotecas disefiadas des-
de cero, especializadas en el andlisis de métodos espectrales y de volimenes finitos. Ademas,
se optimiza la gestion de datos mediante la biblioteca HDFS. Las simulaciones de prueba
se ejecutan en arquitecturas paralelas, utilizando la biblioteca MPI para la paralelizacion,
y se validan mediante la comparacion con soluciones analiticas y otros métodos numéricos,
incluidos los de diferencias finitas. La evolucion de los sistemas fisicos se visualiza con herra-
mientas graficas como GNUPlot, Matplotlib y Vislt. El resultado es el c6digo CAFE-FDM,
presentado en [69, 73]



Capitulo

Simulaciones de Materia Oscura Difusa

En este capitulo se presentan distintas simulaciones numéricas que modelan configuraciones
de FDM cuya evolucién obedece del sistema SP (2.12}2.13). Se abordan tanto soluciones
estacionarias como dindmicas, explorando su estabilidad y comportamiento en distintos es-
cenarios astrofisicos.

En la Seccion [.1] se analizan soluciones estacionarias de la materia oscura bosénica, in-
cluyendo la formacion de nucleos galacticos y el estudio de su estabilidad y atractoriedad.
Posteriormente, en la Seccioni4.2|se investigan procesos dinamicos de fusion de estos nticleos
galécticos, considerando sistemas binarios y configuraciones multintcleo.

Finalmente, en la Seccion |4.3|se estudian soluciones esféricas con estructura nicleo-halo con
perfiles que describen la distribucién de materia oscura en galaxias.

SECCION 4.1

Nucleos galacticos

Los nucleos galacticos, cominmente conocidos como estrellas de bosones Newtonianas, son
soluciones cudntico-gravitacionales del sistema Schrodinger-Poisson que describen distribu-
ciones estables de FDM que surgen de la evolucion en la formacion de estructura 114112} 13}
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14,116,117, 118, [19].

Estas soluciones, caracterizadas por una densa concentracién central de bosones, exhiben
propiedades tnicas de estabilidad, lo que las convierte en un excelente modelo para los cen-
tros de halos galécticos y otras estructuras cosmologicas. Ademds, aunque los nticleos pue-
den formarse a partir de configuraciones arbitrarias, su evolucién muestra que tienden a ser
asintoticamente, en promedio, soluciones estacionarias del sistema. Esto significa que, tras
un periodo de relajacion debido a interacciones gravitacionales y cudnticas, la estructura del
nucleo converge hacia una configuracion estable que es bien descrita por soluciones de equi-
librio.

La estabilidad de estas configuraciones ha sido ampliamente estudiada y depende de la re-
lacién entre los efectos gravitacionales y cudnticos [37, 34, 43| [74) 75, (76, 169, 7'/, [78]. En
particular, los nuicleos galacticos en su estado fundamental, o solucién de equilibrio, pueden
resistir colapsos o dispersiones bajo ciertas condiciones iniciales de energia y masa.

Ademas, estos nucleos son atractores gravitacionales en el espacio de configuraciones, lo
que significa que, bajo una variedad de perturbaciones externas o colisiones, tienden a evolu-
cionar de manera natural hacia una configuracion de equilibrio estable [22}, 25,123, 79,80, 8 11].
Estos nicleos que emergen de forma natural en simulaciones de formacion de estructura, en
realidad, se aproximan al estado base del sistema en promedio espacial y temporal [73]].

El interés en los nucleos galdcticos no solo radica en su estabilidad, sino también en su rol
potencial como unas de las primeras estructuras formadas en el universo primigenio. Se cree
que estas configuraciones pudieron actuar como semillas gravitacionales, atrayendo y acu-
mulando materia alrededor de ellas, lo que posteriormente llevaria a la formacién de galaxias
y otras estructuras a gran escala. En este sentido, la atractoriedad de los nucleos galédcticos
sugiere que estos objetos desempefian un papel clave en la evolucién de la estructura cosmica.

4.1.1 Soluciones estacionarias

Las ecuaciones estacionarias del sistema SP se construyen asumiendo que el
pardmetro de orden puede reescribirse como V(t,7) = ¢ (r)e ™", con w un eigenvalor y
Y (r) una funcion real de la coordenada radial . Con estas suposiciones, el sistema SP se
escribe de la siguiente manera, segin [64} 65]]:

1 d [ ,dy

—_— 2— pr
— 55 (r dr) + VY = wih, 4.1)
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1d (ﬂﬂ) _ . 4.2)
dr

r2 dr

Para asegurar soluciones fisicamente aceptables, imponemos ciertas condiciones de fronte-
ra. Para el pardmetro de orden estacionario v, requerimos que ¥ (0) = ., ¥'(0) = 0y
lim, o ¥ = lim,_,, ¥" = 0. Esto garantiza la regularidad en el origen y la desaparicion en
el infinito, convirtiendo el problema en un problema de Sturm-Liouville para el eigenvalor w.

Para el potencial gravitacional V/, establecemos V' (0) = V. y V’(0) = 0. La eleccién de V..
puede ser arbitraria, ya que cambiar esta condicion a V. + V, es equivalente a encontrar un
eigenvalor w + V,, para algun valor arbitrario V,. Estas condiciones de frontera aseguran so-
luciones fisicamente significativas que satisfacen los requisitos de regularidad y aislamiento.

Dado que este conjunto de ecuaciones se resuelve numéricamente, es conveniente escribirlo

como un sistema de primer orden definiendo las variables ¢ = TQ% y m = r?9Y El sistema

dr *
anterior se reescribe entonces como:

% = % 4.3)
% = 2 (V —w) ¥, (4.4)
Z—‘: = 5 (4.5)
R (4.6)

con las condiciones de frontera ¢)(0) = 1., (0) = 0,V (0) = V., M(0) = 0y lim, o ¥(r) =
lim, o ¢(r) = 0.

Abhora bien, si vemos este mismo sistema desde el marco de MP (2.21), el sistema se redu-
ce al siguiente conjunto de ecuaciones para un gas de bosones en equilibrio hidrostitico y
esféricamente simétrico:

d
0 = —p - (V+0Q). @)
dm
== (48)
wo_om (4.9)
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entonces podemos decir que un pardmetro de orden estacionario es equivalente al equilibrio
hidrostatico en un gas de bosones. La ecuacion (.7) puede integrarse una vez

Q+V=uw, (4.10)

. . V2
donde w es una constante de integracién. Recordemos que QQ = —1 /P

2 Vp
d . [ . 4. I . .
rzd—‘f’j el sistema en equilibrio hidrostatico puede escribirse como un sistema de primer orden
en la coordenada radial como

, si definimos ¢ =

dyp _ ¢

- @.11)
d

e N (4.12)
dm e (4.13)
dr

av m

e (4.14)

La solucién del sistema (4.314.6) es equivalente a la solucién del sistema (. 1TH4.13)) como
se muestra en [/7/]. Esto suele resolverse mediante el método de shooting, ver por ejem-
plo [64]. Otra estrategia empleada es el uso de Algoritmos Genéticos presentados en [76].
Independientemente del método utilizado, las soluciones se construyen en un dominio fi-
nito D = [0, max], donde las condiciones de frontera se redefinen aproximadamente como
Y (Tmax) = ¥ (rmax) ~ 0. Es decir, utilizamos un valor finito r,,,,x en el cual se busca satisfacer
las condiciones de frontera aproximadamente en la frontera externa ..

La construccion de una tnica solucion estacionaria con ). = 1 en el marco SP o bien p. = 1
en el MP es suficiente para producir toda la familia de soluciones del sistema utilizando la
transformacion de escala (2.14). Por lo que en la Figura {.1] se muestra el estado base del
sistema en ambos marcos (también llamada esta solucién como estrella de bosones, soliton o
incluso el nucleo), junto al perfil empirico [22]:

r

2
Psoliton(T) = pe |1+ (21/8 - 1) (—) , (4.15)

Te

donde p. es la densidad central y r. es el radio del nicleo, definido como el radio donde
la densidad del soliton es un medio de la densidad central. Numéricamente se encuentra el
valor del radio del nucleo r. ~ 1.30 para p. = 1. Usando la transformacion de escala (2.14)
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14 T T
Formula empirica
091l marcoMP ~ » ]
marco SP -
0.8 i
0.7 R
0.6 i
o

205} i
04 R
0.3 R
0.2+ i
0.1 i
0% 1 2 3 4 5

r/re

Figura 4.1: Densidades [1)|? y p de la solucién de equilibrio del estado base en los marcos SP
y MP, respectivamente. En el marco SP se resuelven las ecuaciones (4.3))-(4.6) para la funcién
de onda central ¢, = 1. En el marco MP se usan las ecuaciones (#.11)-(.14) con la densidad
central p. = 1. La soluciones numéricas se construyen en el dominio » € D = [0, 10]
discretizado con una resolucién espacial Ar = 2.5 x 10~%. De igual manera se muestra la
formula empirica normalizando respecto al radio del nucleo p. = 1y el radio del
nucleo r, = 1.30.

es posible escribir la relacién p, ~ (1.30/r.)* para un radio del nicleo arbitrario, o bien en
unidades fisicas:

h2 1.30\* kpc*
De ( ) z1.983><107< b )M@, (4.16)

~ 2 4
ArGmy \ 1. M55

donde mys estd definido como mqy = mp x 10722eV 1, y las unidades del radio del nucleo
son [r.] = kpc.

4.1.2 Estabilidad

Una consideracion adicional entre las soluciones en los marcos SP y MP es como evolucionan
estas configuraciones. De hecho, optar por un marco u otro justifica el uso de diferentes
métodos numéricos. En el marco SP, es habitual emplear métodos de Diferencias Finitas o
bien métodos pseudoespectrales, con una variedad de integradores de tiempo, tanto explicitos
como implicitos, debido a que la ecuacién de Schrodinger es dispersiva y evita la formacién
de discontinuidades. En contraste, las ecuaciones en el marco MP es cuasilineal, lo que puede
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resultar en la formacién de discontinuidades y choques, incluso cuando se parte de datos
iniciales suaves, requiriendo asi otros enfoques numéricos como los discutidos en la Sec.[3.2]
para las ecuaciones de Euler.

Un aspecto muy importante es la diferenciacion de la funcion de onda W, ya que, en general,
se puede considerar que las configuraciones de equilibrio involucran funciones suaves. Por
otro lado, en el marco de MP, algunas de las variables no son continuas. Esto se observa en
la definicion de .S, es decir, el argumento de la funcién W, que no estd definido en el origen.
Por lo tanto, en todos los casos donde S no es espacialmente constante, se generaran datos
iniciales con velocidades discontinuas que tenderdn a producir ondas de choque, las cuales no
aparecen en el marco SP. Una discontinuidad en la velocidad conduce a una discontinuidad
en la densidad y, en consecuencia, () y V) no estdn definidos en el lado derecho de la
ecuacién (2.18)). Solo en casos donde la funcién S es constante, la evolucién puede llevar a
una solucion, incluso una solucién débil.

Por lo tanto, consideramos que los problemas en los que se pueden comparar los marcos SP
y MP deben ser aquellos con un campo de velocidad constante. A continuacion, describimos
una comparacién de la evolucion de la configuracion del estado base en cada uno de los
marcos.

Para simular la evolucién, interpolamos las soluciones de equilibrio de la Figura cons-
truidas en coordenadas esféricas. En el dominio cibico D? = [—20, 20}* con una resolucién
h = 0.4 y un nimero de Courant CFL = (.25, donde serdn evolucionados.

Una vez que las configuraciones de equilibrio en el marco SP se interpolan en el dominio 3D
descrito en coordenadas cartesianas, resolvemos el sistema @[)—@ para evolucionar la
configuracion en el marco SP usando métodos numéricos en diferencias finitas. Del mismo
modo, cuando la configuracion de equilibrio construida dentro del marco de MP se interpola
en el dominio 3D, resolvemos las ecuaciones (2.21)-(2.23)) mediante volimenes finitos.

Para comparar los aspectos esenciales de las configuraciones estas soluciones del estado base,
evolucionamos las configuraciones de equilibrio y seguimos su comportamiento durante 200
unidades de tiempo. Utilizando los métodos numéricos descritos anteriormente para la evolu-
cion, integramos en el tiempo las ecuaciones para estas configuraciones centradas en el origen
de coordenadas, y en la Figura u mostramos el valor central de la densidad, |¥ (¢, 0)|2, en
el marco SPy p(t, 6) en el marco de MP. El resultado indica que la configuracién permanece
oscilando con un modo consistente con el modo esférico dominante de la configuracién, con
un periodo 7" = 21.64 como se sefiala en [82] utilizando el marco SP. Cuando se utiliza el
marco de MP, hay una reduccién del periodo en el tiempo. Estas oscilaciones son esencial-
mente producidas por el error de truncamiento inherente de los métodos desde la construccion
del perfil inicial. Es decir, el perfil encontrado al resolver numéricamente el problema de los
eigenvalores es solo una aproximacion del estado base exacto del sistema SP. Por lo tanto,
la configuracion inicial podria interpretarse como el estado base de la solucidén exacta mas
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Figura 4.2: Densidad central | ¥ (¢, 0)|? para la solucién en el marco SP'y p(t, 0) en el marco de
MP, en funcién del tiempo. Este grafico muestra que el primer modo de oscilacion es similar,
aunque no es perfectamente igual en ambos marcos. En el marco SP, el periodo coincide con
el reportado en [82], mientras que en el marco de MP el periodo se reduce con el tiempo
debido a disipacion numérica.

una perturbacion esférica debido al uso de métodos numéricos. Asi, podemos observar que
ambos marcos mantienen la estructura inicial estable, lo que sugiere que la estabilidad es una
propiedad del perfil soliténico y no del método numérico utilizado.

En la Figura mostramos la evolucién de la masa M y la energia total ¥ = K + W
de las soluciones en funcion del tiempo. Podemos observar que en el marco MP, la masa
es ligeramente mayor que en el marco SP, debido a la contribucién de la atmoésfera. Dado
que esta atmdsfera es del orden de pym ~ 107, contribuye con una masa del orden de
Mym ~ 1073. Por otro lado, la masa en el marco SP disminuye al utilizar el método MoL,
debido a la disipacion de la integracion temporal con el método explicito RK3.

En cuanto a la energia total, los valores en los dos marcos no coinciden debido a la diferencia
en la masa, lo que contribuye a la energia gravitacional 1. Por esta razon, en el marco de
MP, la energia total £/ es menor que en el marco SP.

En el contexto de la solucién de las ecuaciones SP, los métodos de diferencias finitas y los
métodos pseudoespectrales se muestran como los mas adecuados debido a su capacidad para
manejar de manera eficiente las complejidades inherentes a la evolucién de las soluciones
en este marco. Por otro lado, los métodos de volimenes finitos, cominmente utilizados en
el marco MP, tienen limitaciones importantes, ya que se restringen a casos donde la fase S
es constante. Dado esto, a partir de ahora, todas las simulaciones seran realizadas exclusiva-
mente dentro del marco SP, aprovechando las ventajas de los métodos de diferencias finitas y
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Figura 4.3: Evolucion de la energia total £ = K + W y la masa M de la configuracion de
equilibrio en los dos marcos.

pseudoespectrales para una mayor precision y estabilidad en las soluciones obtenidas.

4.1.3 Atractoriedad

Como se ha demostrado previamente, los nucleos galacticos son soluciones estables del siste-
ma SP 65, 10]. No obstante, una caracteristica importante de estas soluciones es que actian
como atractores en el tiempo, lo que significa que cualquier configuracién inicial de un mi-
nicimulo de densidad tiende a colapsar y formar una estrella de bosones. Para entender este
proceso en detalle, consideremos el caso mas general [13,|19].

Supongamos inicialmente una funcién de onda en el espacio de momentos descrita por
F(¥) = %1//426*1"2/ 2¢15 donde S es una fase aleatoria en cada punto del espacio de mo-
mentos, entre 0y 27, y M es la masa total del gas de bosones en n dominio numérico D. Es
decir, el médulo de la funcién de onda esté localizado en el espacio de momentos, mientras
que, debido al principio de incertidumbre de Heisenberg, se encuentra disperso en el espacio
de posiciones. Este comportamiento es consistente con lo propuesto en [83]], donde se sugiere
que la formacion de una estrella de bosones es un proceso robusto e independiente del perfil

inicial de la funcién de onda.

En este contexto, la estructura resultante puede identificarse como un minicimulo bosoénico,
una concentracion densa de materia oscura ultraligera que emerge debido a la autoatraccién
gravitacional del gas de bosones. A diferencia de halos galacticos mas extendidos, estos mi-
nicimulos corresponden a configuraciones compactas que se forman en las primeras etapas
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del universo y pueden persistir como subestructuras dentro de galaxias o cdmulos de materia
oscura.

La formacion de estos objetos sigue un proceso de condensacion gravitacional, en el cual las
interacciones cudnticas y gravitacionales llevan a la estabilizacion de un nucleo soliténico
rodeado por una envolvente extendida. Este mecanismo ha sido estudiado en simulaciones
cosmoldgicas donde se observa que, a través de colisiones y fusiones, los minicimulos pue-
den contribuir a la evolucion de la estructura a gran escala. El tiempo caracteristico de con-
densacion de un nicleo 7,4, puede deducirse mediante la teoria de relajacion del sistema SP o
de la ecuacion de Landau. Este tiempo estd dado en términos del radio del minicimulo R, la
velocidad caracteristica v y la densidad promedio p del minicumulo [83] como:

b2 mpv®
9T 1218 G2 ’ @17)
donde A = log(mpvR) es el logaritmo Coulombiano, y b es un coeficiente determinado a
partir de simulaciones numéricas.

Para estudiar la evolucion del sistema, simulamos este perfil en el dominio cibico D =
[~L/2,L/2]%, donde L > 27/ky, con k;y = (4p)'/* el niimero de Jeans adimensional. El
objetivo es observar la condensacion de la nube de gas en un tnico nucleo, lo que nos permite
analizar el proceso de condensacion a detalle.

Como validacién de nuestro c6digo, reproducimos los resultados de [[19]] para un minicimulo
con masa M = 1005.3, en un dominio de longitud L = 18, usando N = 128 puntos de malla
en el dominio discreto con condiciones de frontera periddicas. En la Figura[d.4] se muestran
ocho instantaneas del perfil de densidad, centradas en el maximo de la densidad, en tiempos
t =0, 10, 20, 30, 40, 50, 60 y 70 (en unidades de c6digo). Estas imdgenes ilustran el proceso
de condensacién que lleva a la formacién de un nicleo galactico.

Para un andlisis mas detallado, la Figura 4.5] muestra el promedio angular de la densidad
Pavg(t, ) calculado como:

1
Pavg(t,T) = E/deQ, (4.18)

donde Q = [0, 7] x [0, 27] es el dngulo sélido, y dS2 = sin 6 df d¢ son los elementos diferen-
ciales de las coordenadas esféricas (, 0, ¢). Los resultados se comparan con el perfil ajustado
de un solitén mediante la férmula empirica (4.13)), que se muestra con lineas continuas en las
instantdneas correspondientes a los tiempos ¢ = 20, 40 y 100. Estos resultados confirman
que, a partir de ¢ = 20, la estructura formada en el maximo de la densidad corresponde al
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Figura 4.4: Instantaneas del perfil de densidad tomadas cada ¢ = 10 unidades de tiempo, cen-
tradas en el punto donde se localiza el mdximo valor de la densidad. Se observa la formacion
de un solitén en el origen.

estado base solucién del sistema SP (2.1212.13)), lo que confirma la naturaleza atractora de
estéd solucidn.

Ademas de este proceso de condensacion, en [19] se demostro que el nicleo formado en el
centro del minicimulo acreta masa inicialmente a un ritmo de crecimiento proporcional a
t1/2, que eventualmente disminuye a un ritmo mads lento de t'/®. En la Figura 4.6, mostramos
el crecimiento de la densidad maxima en funcién del tiempo, que sigue este comportamiento.

Como comentario adicional, es relevante considerar el comportamiento de la densidad fuera
del nucleo, es decir, en la region més alld de un radio de transicion r,. En esta zona, el
comportamiento de la funcién de onda cambia respecto al del estado base, y el decaimiento
de la densidad deja de ser exponencial para volverse polinomial. Especificamente, el perfil de
densidad en esta region, fuera de la esfera de radio r, sigue el comportamiento descrito por
la férmula empirica de Navarro-Frenk-White (NFW) [[84]] obtenida en simulaciones de CDM
y costituyo el perfil estandar:

Ps
r r 27
— (1 - —)
ry ry

donde 7; y r5 son dos pardmetros que deben ser determinados. El pardmetro de densidad p;
se obtiene imponiendo la continuidad entre el perfil del nicleo y el perfil NFW (el perfil
del halo). Esto se traduce en la condicion pgoicon(7:) = pnew(7:), asegurando una transicion

pNFW(T) = (419)
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Figura 4.5: Instantdneas a los tiempos ¢ = 20, 40 y 100 del promedio de la densidad sobre el
angulo sdlido (4.18)), mostradas mediante puntos junto al ajuste del perfil del solitén (4.15]),
representado por lineas continuas.

Figura 4.6: Crecimiento de la densidad maxima en funcién del tiempo. Inicialmente, el ritmo
de crecimiento es proporcional a t'/2, que eventualmente disminuye a ¢/%.
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Figura 4.7: Instantdnea en el tiempo ¢ = 100 del promedio de la densidad sobre el dngulo
solido (4.18)), mostrada mediante puntos. El ajuste del perfil del solitén (4.15)) se representa
con la linea continua azul, mientras que el ajuste del perfil NFW se muestra con una
linea discontinua roja. El radio de transicion entre el nicleo y el halo es 7, ~ 3.2r..

continua entre ambos perfiles.

Para visualizar este fendmeno con mayor detalle, en la Figura|4.7| se muestra el promedio de
la densidad p,,4 en el tiempo ¢ = 100. En esta figura, ademads del ajuste correspondiente al
soliton previamente presentado, se enfatiza el ajuste en la regién del halo, donde r > r;. El
valor de r; ~ 3.2r. fue ajustado con alta precision utilizando el perfil NFW, como se observa
en la figura.

Este ajuste sugiere un hecho importante: los efectos cuanticos presentes en el sistema Schrodinger-

Poisson tienen una mayor relevancia en las regiones donde se forma el niicleo. En contraste,
en las zonas externas del halo, el comportamiento promedio se asemeja al observado en si-
mulaciones de Cold Dark Matter (CDM), lo que indica que en estas regiones los efectos
cudnticos se vuelven menos dominantes.

Sin embargo, es crucial notar que esta conclusion se obtiene al considerar el promedio an-
gular de la densidad {4.18] Si en lugar de este promedio se analiza la densidad puntual, se
observa que las regiones externas exhiben una estructura granular, producto de la interferen-
cia de ondas superpuestas en esta zona. Esto implica que, aunque el perfil global del halo
pueda parecer similar al caso clasico de CDM en promedio, la granularidad cuantica sigue
desempefiando un papel en la dindmica del sistema.

Como comentario final, es importante destacar que, segin el modelo de FDM, las prime-
ras estructuras estables formadas en el universo a partir de materia oscura habrian sido los
nucleos galacticos. Esto sugiere que estructuras mayores, como las galaxias, podrian haber
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surgido a través de la fusion de estos. Por tanto, en la siguiente seccion, abordaremos la
dindmica de estas fusiones y analizaremos sus implicaciones en la formacién de estructuras
a gran escala en el universo.

SECCION 4.2

Fusiones de Nucleos Galacticos

Los sistemas binarios y las fusiones multinucleares de solitones proporcionan una perspectiva
fascinante sobre la materia oscura ultraligera y su impacto en la evolucion cosmica temprana.

En los sistemas binarios, dos nicleos de FDM interactdan gravitacionalmente, orbitando
entre si mientras sus efectos cudnticos, como la presion cudntica y la gravedad, estabilizan la
dindmica del sistema [85) |86]. Estos sistemas proporcionan una plataforma tnica para estu-
diar el comportamiento de las estructuras galacticas en presencia de perturbaciones externas,
revelando informacion sobre su evolucion a lo largo del tiempo. Comprender la dindmica de
los sistemas binarios de nticleos galacticos es esencial para desentrafiar su rol en la formacion
y evolucién de estructuras cosmoldgicas a gran escala, como las galaxias y los cimulos de
galaxias, particularmente en las etapas tempranas del universo.

Las fusiones multinucleares son otro proceso relevante, donde maltiples nicleos galacticos
colisionan y se fusionan en una Unica estructura mas masiva. En estos eventos, la configura-
cion final depende principalmente de la masa y la energia totales [11, [12]. Estos procesos de
fusién podrian haber sido cruciales para la formacion de halos galécticos y otras estructuras
de materia oscura en las primeras etapas del universo. Ademads, las fusiones multinuclea-
res ayudan a entender cdmo estos nicleos galacticos alcanzan su estabilidad y qué factores
determinan su configuracion final.

Ambos fendmenos, tanto los sistemas binarios como las fusiones multinucleares, juegan un
papel fundamental en la comprension de como los nicleos galacticos podrian haber sido las
primeras estructuras gravitacionales en el universo temprano. Estas primeras fusiones y siste-
mas binarios podrian haber actuado como semillas gravitacionales, atrayendo y acumulando
materia a su alrededor, lo que finalmente permitio la formacion de galaxias y cumulos.
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Figura 4.8: Tlustracion del escenario inicial para la fusion binaria de ntcleos solitonicos.

4.2.1 Sistemas Binarios

Para analizar la fusién binaria ilustrada en la Figura[4.8] consideramos el siguiente escenario:
el primer nucleo, ubicado a la izquierda, tiene una masa M; = M (Tc,1), una posicion inicial
71 = (21,v1,0) y una velocidad inicial v; = (v,,,0,0). El segundo nicleo, a la derecha,
tiene una masa My = M(r.2), una posicion inicial 75 = —MpzZ; y una velocidad inicial
Uy = — Mgy, donde Mp = M, /M, es la razon de masas entre los nicleos soliténicos de la
izquierda y la derecha. De este modo, el pardmetro de orden inicial es:

lIl(Ov *f) = \/psoliton(‘f - fl‘)eﬁl'f + \/psoliton(‘f - fQ‘)eiJQ'f- (420)

La masa total de cada nucleo galéctico estd dada por la expresion:

o 33.95
M = 4xn / Psoliton (T)72d1 = . 4.21)
0

Te
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Efecto de las condiciones de frontera

Un aspecto de vital importancia es explorar los efectos de las condiciones de frontera en la
evolucion de sistemas binarios de ndcleos galdcticos. Analizaremos las diferencias clave entre
las condiciones de frontera periddicas y aisladas durante la fusién de dos nucleos en equili-
brio. Las condiciones periddicas, frecuentemente utilizadas en simulaciones cosmoldgicas de
formacion de estructuras, introducen interacciones adicionales entre las imdgenes periddicas
de los nucleos a lo largo de cada eje del dominio, lo que influye en la dindmica de la fusion.
Por otro lado, las condiciones aisladas permiten que la energia y la masa se disipen fuera del
sistema, imitando mejor un entorno cerrado y sin perturbaciones externas.

Se estudiard como estos dos enfoques afectan la evolucién gravitacional de los nicleos, des-
de su interaccion inicial hasta la configuracion final resultante, con especial atencién en la
formacion de colas de materia y la redistribucion de energia en el sistema.

Dividimos este estudio en dos casos: el primero para dos ndcleos que se fusionan tinicamente
por efecto de la gravedad, y el segundo para dos nicleos con momento angular distinto de
cero.

Fusion frontal en caida libre. Para ilustrar este escenario, realizamos una serie de simulacio-
nes en dominios [—20, 20]% y [—40, 40]3, utilizando la misma resolucién espacial y temporal
que en los ejemplos anteriores. Elegimos tres configuraciones iniciales para los nicleos, con
posiciones en A) (£5,0,0), B) (£10,0,0) y C) (£15,0,0). Esperamos que el dominio fuera
de la caja, plagado de imagenes periddicas de las configuraciones binarias, afecte la dindmica
de la colision. Para comparar, también simulamos la fusion usando condiciones de frontera
aisladas.

Los resultados de las simulaciones para el Caso A se resumen en la Figura[d.T1] A la izquierda
se presenta el potencial gravitacional inicial a lo largo del eje x, y a la derecha, el momento
frontal (p,) integrado en los semidominios = < 0y > 0. En la primera fila, se incluyen los
resultados usando condiciones de frontera aisladas, donde el tiempo de fusion es ¢t ~ 14.9,
definido como el momento en que se alcanza el mdximo momento frontal. En las filas segunda
y tercera se muestran los resultados con condiciones periddicas en los dominios [—20, 20]?
y [—40, 40]3, respectivamente. El tiempo de fusion se ve afectado por el tamafio del dominio
periddico: el dominio mds pequeiio retrasa la fusion debido a la atraccién entre las imagenes
gravitacionales periddicas. Ademas, la magnitud del momento frontal también se ve alterada.

El Caso B es notablemente diferente. Aqui, las condiciones de frontera periddicas implican
la existencia de configuraciones binarias idénticas en los dominios vecinos, separadas exac-
tamente por 20 unidades de longitud a lo largo del eje = y por 40 unidades en los ejes y y z.
Esta disposicidn genera una matriz infinita de nicleos a lo largo del eje z, y se espera que los
campos gravitacionales se compensen en esa direccion.



56 Fusiones de Niicleos Galdcticos

x<0 ——
x>0 e
t~14.9 b
> i
50 100 150 200
t
x<0 ——
x>0 e
t~15.2 |
>
50 100 150 200
t
x<0 ——
x>0 oo
t~14.8 |
>
16 . . . . . . . 15 . . .
-40 -30 -20 -10 0 10 20 30 40 0 50 100 150 200
X t

Figura 4.9: Caso A. A la izquierda se muestra el potencial gravitacional inicial a lo largo
del eje z, ilustrando sus minimos locales y comportamiento en los limites. A la derecha, se
presenta el momento frontal (p,), integrado en los semidominios * < 0y z > 0, como
funcion del tiempo. La primera fila corresponde al escenario con condiciones de frontera
aisladas, mientras que la segunda y tercera muestran resultados para dominios periddicos
[—20,20)® y [—40, 40]3, respectivamente.
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Los resultados para el Caso B se presentan en la Figura d.11] A la izquierda se muestra el
potencial gravitacional inicial a lo largo del eje x, y a la derecha (p,. ), desde arriba hacia abajo,
para los dominios aislado, periédico [—20, 20]2, y periédico [—40, 40]?, respectivamente.

En la segunda fila, los nicleos tardan significativamente mds en fusionarse. Aunque podria
esperarse que los nicleos no se fusionaran debido a la compensacion de los campos gravita-
cionales a lo largo del eje =, una sutil asimetria en el potencial gravitacional en el centro del
dominio permite que finalmente se fusionen después de 115 unidades de tiempo.

La tercera fila de resultados, con un dominio peridédico mas grande, muestra un tiempo de
colisién més cercano al del caso aislado, ya que los pozos potenciales de los niicleos vecinos
estdn mas distanciados.

El Caso C revela una contribucion mads significativa de las condiciones de frontera periddicas.
En lugar de ser atraidos entre si, los nicleos son atraidos hacia sus imdgenes periddicas a lo
largo del eje x. Los resultados se muestran en la Figura En el escenario aislado, los
nucleos colisionan frontalmente, mientras que en el dominio periddico colisionan “desde
atrds”, como lo indica el momento lineal, que es positivo para x > 0 y negativo para z < 0,
lo que sugiere una separacion inicial entre los nicleos.

Fusion en orbita. Este caso estudia la colision de dos solitones con momento angular orbital.
Como ejemplo ilustrativo, tomamos las condiciones iniciales con los solitones centrados en
(—10,10,0) y (10, —10,0), con velocidades iniciales de (0.1,0,0) y (—0.1, 0, 0), respectiva-

mente. Evolucionamos el sistema en el dominio D = [—40, 40]* con condiciones de frontera
aisladas, y en los dominios D = [—20,20]* y D = [—40, 40]? con condiciones de frontera
periddicas.

En el sistema aislado, se observa que parte de la materia y del momento angular es radiada,
como se ha reportado en [87, [88]]. Bajo condiciones periddicas, la materia y el momento
angular reingresan al dominio, interactuando nuevamente con el sistema binario. En la Figura
4.12| se muestran instantaneas de los isocontornos de la densidad |¥|? en los tiempos ¢ =
0, 100, 200, 300,400 y 500, de izquierda a derecha.

En la parte superior de la figura, se muestran los resultados con el dominio aislado, donde la
configuracion final tiene rotacion y se mantiene estable. La fila central muestra la evolucion
con condiciones de frontera periddicas en el dominio pequefio, simulando una red infinita
de configuraciones en equilibrio. La simetria y el tamafio del dominio hacen que las fuerzas
externas sobre cada configuracion se compensen, resultando en movimiento rectilineo uni-
forme. En la fila inferior, las instantdneas en el dominio periddico grande muestran que la
reentrada de materia, expulsada durante la fusion, permite la formacion de perfiles de cola.
Este fenémeno es clave para comprender las distribuciones de densidad extendidas.

Con condiciones de frontera aisladas y periddicas en D = [—40, 40], se forma una tnica
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Figura 4.10: Caso B. De arriba hacia abajo, se muestran los resultados para el dominio
aislado [—20, 203, el dominio periddico [—20, 203, y el dominio periédico [—40, 40]3.
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Figura 4.11: Caso C. De arriba hacia abajo, se presentan los resultados para el dominio
aislado [—20, 203, el dominio periddico [—20, 203, y el dominio periédico [—40, 40]3.
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Figura 4.12: Instantidneas de los contornos de densidad |¥|*> en los tiempos t =
0,100, 200, 300,400 y 500, para condiciones de frontera aisladas en el dominio D
[—40,40]? (arriba), condiciones de frontera periddicas en D = [—20,20]* (medio) y D =
[—40,40]? (abajo).

distribucion de densidad en el origen, cuyo perfil promediado se muestra en la Figura 4.13
a lo largo del eje =. Este perfil es consistente con el perfil de niicleo (4.13)). Nétese que bajo
condiciones de frontera periddicas, el perfil de cola no sigue un decaimiento exponencial,
sino polindmica, un comportamiento relevante que no ocurre en el caso aislado.

Los diagndsticos de masa y momento angular para este sistema se presentan en la Figura
La masa total se conserva bien en el dominio periddico, mientras que en el caso aislado
se pierde aproximadamente el 28 % debido a la radiacién. Similarmente, el momento angular
es radiado fuera del dominio aislado, mientras que bajo condiciones periddicas, observamos
la reentrada de momento angular en el dominio pequefio. No se encuentra una tendencia clara
del L, en funcién del tamafno del dominio.

Los resultados de estas simulaciones muestran aspectos importantes de la dindmica de sis-
temas binarios de solitones con momento angular orbital. En el caso aislado, se pierde una
fraccion significativa de la masa y el momento angular, lo que lleva a una reduccion del 28 %
de la masa total y a la formacién de una estructura rotante con menor energia. En contraste,
bajo condiciones periddicas, la reentrada de materia y energia permite que se conserven.
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Figura 4.13: Promedio temporal de la densidad en el intervalo ¢ € [250, 500], tras la fusion
de las configuraciones en equilibrio. Simulado en el dominio [—40, 40]3. A la izquierda, con
condiciones de frontera aisladas; a la derecha, con condiciones periddicas.
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Figura 4.14: Evolucién de la masa total M y del momento angular L, para un sistema binario
con momento angular no nulo, bajo condiciones de frontera aisladas en D = [—40,40]3
(Iineas negras sélidas), y condiciones periddicas en D = [—20, 20]® (Iineas rojas punteadas)
y D = [—40, 40]? (lineas azules discontinuas).
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Determinacion de la masa final del nacleo

Los resultados obtenidos muestran el impacto crucial que tienen las condiciones de frontera
en la evolucion de sistemas binarios con momento angular. Mientras que las condiciones
aisladas promueven la pérdida de masa y energia total, las condiciones periddicas permiten la
preservacion de estas cantidades, resultando en configuraciones mas complejas y dindmicas.
A partir de estos hallazgos, proponemos utilizar condiciones periddicas sobre el pardmetro
de orden para preservar la masa y energia total del sistema, lo que facilita una dindimica mds
rica fuera del nicleo formado tras la fusion. Esto permite que el sistema se comporte de
manera andloga al caso aislado, asegurando una evolucién comparable al sistema aislado y
conservando dichas cantidades.

La evolucién de este sistema tiene lugar en el dominio espacial D = [—20, 203, discretizado
con N = 128 puntos, y se desarrolla durante 250 unidades de tiempo de cddigo, con una
resolucion temporal de At = 0.01. La densidad del solitén izquierdo se fija en p.; = 1,
con una posicion inicial ¥; = (=5, yo, 0), donde yo toma los valores 5 y 10. El componente
no nulo de la velocidad inicial toma los valores v,, = 0.05, 0.1, 0.15, 0.2 y 0.25. El solitén
derecho tiene valores de densidad central de p.» = 1.5y 2.0, lo que da lugar a un total de 20
simulaciones de fusiones de solitones.

En el caso en que el pardmetro de orden se implemente con condiciones de frontera aisladas,
mediante una esponja que elimina los modos salientes de la funcién de onda por medio de
un potencial imaginario [87, [88]], originalmente implementado en [65]], se sugiere que las
estructuras formadas a partir de la fusién generan un nicleo galactico virializado en el interior
de la estructura, el cual estd rodeado por un halo que disminuye gradualmente debido al
enfriamiento gravitacional. Este fendmeno es consecuencia de la pérdida de masa y momento
angular por las condiciones de frontera aisladas [73]], como se mostré previamente.

Ademads, en [87] se determind que la masa del nicleo resultante es aproximadamente el 70 %
de la suma de las masas de los nicleos iniciales, independientemente de la configuracién
inicial. Este resultado destaca la robustez del proceso de fusion, sugiriendo que una fraccion
significativa de la masa se mantiene concentrada en el nicleo central, mientras que el halo
exterior pierde progresivamente masa. Para confirmar este resultado, monitoreamos la masa
del nicleo correspondiente a la configuracién de densidad maxima con la que se obtiene la
densidad promedio p,s. De este modo, podemos calcular la masa de este niicleo como:

M, = 4x / Pavg T2 . (4.22)
0

Asi, definimos la razén de masa entre el nicleo resultante de la fusién y la suma de las masas
de los nucleos iniciales como:
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Figura 4.15: Relaciones de masa del nucleo M., para distintas configuraciones iniciales. La
linea punteada representa el valor promedio M, o = 0.7685"51212, donde la banda mide la

amplitud promedio maxima y minima de estas oscilaciones.

M,

Mcr - m, (423)

donde M! y M? son las masas de las configuraciones iniciales ubicadas a la izquierda y
derecha del dominio, respectivamente. Los resultados obtenidos para este conjunto de simu-
laciones se muestran en la Figura donde se ilustra la evolucion de esta cantidad tras la
fusion. La linea punteada representa el valor promedio M., v = 0.768501272, y la banda de
error corresponde a las amplitudes promedio méximas y minimas de oscilacion respecto al

valor promedio.

4.2.2 Sistemas multinucleos

Efecto de las condiciones de frontera

Investigamos un dltimo problema, mas complejo, relacionado con la formacién de nucleos.
Inspirdndonos en estudios previos [89, 87, 25], simulamos la fusién de 30 configuraciones de
equilibrio con una masa bosénica ultraligera de mp = 10722 €V /c?. Estas configuraciones
de equilibrio tienen masas aleatorias en el rango de 2.6 x 103M, a 26 x 10%M,, y estdn
posicionadas inicialmente de manera aleatoria dentro de un cubo de lado de 30kpc, lo que



64 Fusiones de Niicleos Galdcticos

permite la comparacién entre condiciones de frontera periddicas y aisladas. En el caso del
dominio periddico, evolucionamos el sistema tanto en un dominio ctibico pequeilo como
en un dominio cubico grande, con lados de 80 kpc y 100 kpc, respectivamente. Usamos las
mismas posiciones iniciales, configuraciones y resoluciéon en ambos casos, lo que nos permite
aislar los efectos del tamafio del dominio sobre la dindmica del sistema.

Los resultados se resumen en la Figura[d.16] A la izquierda/derecha mostramos los resultados
obtenidos en las simulaciones en el dominio pequefio/grande. En la parte superior, mostramos
algunas instantdneas de la densidad proyectada sobre el eje x, que muestran el comportamien-
to dindmico y los patrones de interferencia que cambian con el tiempo. En la fila del medio,
mostramos una instantdnea de la densidad en tres dimensiones, en un momento en que el
nucleo ya estd formado. Finalmente, calculamos un promedio de la densidad en el tiempo y
en varias direcciones desde el centro del nicleo, para ajustar la estructura nicleo-halo que
mostramos en la tercera fila. El niicleo se ajusta utilizando la funcion (#.15) mediante dos
métodos. En el primer método, ajustamos el nucleo con 7. y p. como parametros libres,
obteniendo los mejores ajustes con (r, ~ 0.228kpc, p. ~ 2.42 x 10°M /kpc®) y (1. ~
0.223kpc, p. ~ 2.51 x 10° M, /kpc?) en los dominios pequefio y grande, respectivamente,
representados con la linea azul. En el segundo método, se impone que la relacion de escala-
miento Mr,. ~ constante se mantenga, lo que implica una restriccién en los dos pardmetros
libres; en este caso, los parametros ajustados son (. ~ 0.311kpc, p, ~ 2.13 x 10° M, /kpc?)
y (re ~ 0.309kpc, p. ~ 2.19 x 10° M, /kpc®) en los dominios pequefio y grande, respectiva-
mente, cuyos perfiles estan representados con lineas rojas. Finalmente, la cola se ajusta con el
perfil NFW [84]. Los pardmetros de ajuste son p, ~ 4.6525 x 10° M, /kpc®, 7y ~ 7.473kpc
para el dominio pequefio y p, ~ 3.3 x 10°M /kpc®, r, ~ 8.67kpc para el dominio grande.
La simulacién tiene una duracion de ~ 12.7 Gyr, un intervalo de tiempo dentro del cual nin-
guna de las configuraciones ha alcanzado el estado de virializacion, lo que explica por qué,
en el caso del dominio periddico, la restriccion M. ~ constante atin no se cumple, como se
esperaba de acuerdo a [87].

Para comparacion, simulamos este escenario utilizando condiciones de aislamiento, donde
se espera que el enfriamiento gravitacional lleve la configuracion hacia un perfil soliténico
de equilibrio en tiempo asintotico. Utilizamos los mismos parametros numéricos que en la
simulacién con condiciones de frontera periodicas, con un dominio de lado 80 kpc y 30 soli-
tones distribuidos inicialmente en una caja de lado 30 kpc alrededor del centro del dominio.
Los resultados se resumen en la Figura que incluye algunas instantdneas de la densi-
dad a lo largo del eje z, ilustrando la concentracion de densidad restringida por la presencia
de la esponja. Ademas, una vista volumétrica de las instantdneas resalta la concentracion de
densidad y el perfil soliténico de la misma.

Los parametros de ajuste para el perfil de densidad promedio del nicleo en la ec. (4.15]) uti-
lizando el primer método, con los dos parametros de ajuste libres, son (r. = 2.64 kpc; p. =
4.74x10° M, /kpc?), mientras que al utilizar el segundo método se obtienen (1. = 2.54kpc; p, =
4.81 x 10° M, /kpc®) al imponer la condicién Mr, ~ constante. Cabe destacar que, a dife-
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rencia del dominio peridédico, en este caso los perfiles de ajuste son muy similares, como se
ilustra con las curvas azules y rojas en la parte inferior de la Figura Finalmente, para
completar, los pardmetros de una cola con el perfil NFW son p, ~ 1.74 x 10° M, /kpc® y
rs ~ 6.26 kpc.

Esta simulacién ilustra la dindmica del enfriamiento gravitacional en 3D a partir de condi-
ciones iniciales que estdn lejos de ser esféricamente simétricas. Trabajos previos (ver, por
ejemplo, [10]]) demostraron que cuando las condiciones iniciales son esféricamente simétri-
cas, el enfriamiento gravitacional lleva a la configuracién asintéticamente hacia la solucién de
estado fundamental del nticleo solitonico, con un perfil de densidad que disminuye abrupta-
mente fuera del nicleo. También se encontrd que algunas no esfericidades fueron expulsadas
en escenarios simples axisimétricos [90]. Como resultado, se ha hipotetizado que el nicleo
soliténico correspondiente al estado fundamental es la solucién atractora para un rango mas
amplio de condiciones iniciales, siempre que se permita que ocurra el enfriamiento gravita-
cional y se dé tiempo suficiente al sistema para alcanzar un estado de relajacion.

Nuestra simulacién aqui representa un intento de demostrar esto de manera explicita en 3D,
a partir de condiciones iniciales que se apartan claramente de la simetria esférica, con control
del enfriamiento gravitacional implementado a través de los efectos aislantes de las condi-
ciones de frontera tipo esponja. Si bien el tiempo simulado, del orden de 12.7 Gyr, no es
lo suficientemente largo como para permitir que el sistema complete su relajacion hacia el
estado asintotico de la solucion de estado fundamental, claramente se estd moviendo en esa
direccion con el tiempo. Por el contrario, cuando la misma configuracion inicial se simul6
con condiciones de frontera periddicas, sin esponja para absorber la masa y energia expulsa-
das por el enfriamiento gravitacional, el perfil de densidad se ajusta con un ntcleo solitonico
rodeado por un halo. Aunque no estd completamente relajado al final del tiempo simulado, el
caso aislado (es decir, con esponja) ya muestra un nucleo solitonico rodeado por un perfil que
disminuye exponencialmente hacia radios grandes, mucho mds pronunciadamente que en el
caso con condiciones de frontera periddicas.

Relacion de escalamiento de masa

En [22]], basado en los resultados de Simulaciones de Formacién de Estructuras (SES), se
encontrd una relacion de escalamiento entre las siguientes cantidades:

£\ 2
M, = constante (M) , (4.24)

donde ). es la masa central integrada del perfil de densidad de solitén (4.15) desde el origen
hasta el radio del core r. (4.22), E = K 4 IV es la energia total y M la masa total. La relacién
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Figura 4.16: A la izquierda/derecha mostramos los resultados para el dominio pe-
queno/grande. En la primera fila mostramos algunas instantdneas de la densidad a lo largo
de una linea paralela al eje x que pasa por la posiciéon de maxima densidad, lo que muestra
cuan dindmico es el sistema. En la segunda fila mostramos una vista en volumen de la densi-
dad que ilustra la distribucion de la nube bosonica. En la tercera fila mostramos el ajuste de
la densidad usando la férmula (4.15)) para el nicleo y para la cola NFW.
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Figura 4.17: Parte superior: Instantaneas de la densidad a lo largo del eje = que ilustran cudn
localizada estd la densidad. Parte media: Vista tridimensional de la densidad que muestra la
concentracion de materia dentro de la region esponja. Parte inferior: Perfil de densidad y su
comparacion con los ajustes en las regiones del nicleo y la cola; nétese que los ajustes del
nicleo concuerdan.
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de escalamiento (4.24) asocia la masa del niicleo en el lado izquierdo con la dispersion del
halo en el lado derecho. Este resultado fue confirmado mediante un conjunto controlado de

simulaciones locales de fusiones multinicleos que colapsan para formar estructuras nicleo-
halo [91].

Posteriormente, en [[87]], se propuso una relacién de escalamiento diferente, donde la masa del
nucleo se normaliza con M, dejando una relacién de escalamiento invariante bajo la escala
lambda[2.14] La relacién de escalamiento propuesta es:

M, |B| hoO\?
=fE* == 4.25
MR M3 (GmB> ’ (4.25)

donde « y 5 son constantes determinadas a partir de simulaciones. Esta relacion se obtuvo a
partir de fusiones binarias y se encontrd que en varias simulaciones con diferentes condicio-
nes iniciales v ~ 1/4 en el caso de fusiones en 6rbita y ov ~ 1/6 para colisiones frontales.
Para fusiones multicore similares a las de [91]], se encontré que « estd entre 1/6 y 1/2. Una
firma importante de este andlisis es que se utilizaron condiciones de frontera de aislamiento
en las simulaciones.

En [25]], un estudio similar basado en fusiones multisolionicas encuentra que o ~ 1/3, mds
precisamente en el rango de 1/4 a 1/2. La diferencia con los resultados de [87]] podria deberse
a las condiciones de frontera utilizadas, aisladas en [87] y periédicas en [25]], lo que ayuda a
preservar la energia y la masa en todo el dominio durante las simulaciones.

Otros estudios basados en diferentes historias de formacién de nicleos encuentran o ~ 1/5—
1/4 como resultado del ajuste de nicleo-halos finales, y o ~ 1/3 cuando la relacién de
escalamiento se promedia espacialmente [15]. A partir del colapso esférico se encontré que
a ~ 1/3 [92] [14]. Més recientemente, en [93], la construccién de soluciones nicleo-halo
con simetria esférica muestra & ~ 1/3, mientras que al relajarse v ~ 1/2. Las diferencias
entre las diversas relaciones de escalamiento llevaron al analisis en [94]], donde se identifica
la diversidad de o con diferentes historias de formacion usando varias simulaciones bajo
diversos escenarios fisicos [12]].

Exploramos la posibilidad de que esta diversidad se deba a algunos detalles de implemen-
tacién no completamente especificados en las simulaciones de FDM, especificamente las
condiciones de frontera para el potencial gravitacional. En enfoques Lagrangianos que invo-
lucran, por ejemplo, métodos SPH, las condiciones de frontera no son un gran problema, ya
que es suficiente cambiar la topologia del dominio imponiendo condiciones periddicas sin
imponer valores de referencia para el potencial gravitacional en ninguna frontera Euleriana.
Sin embargo, cuando se utilizan simulaciones en el marco Euleriano para la dindmica FDM,
como en las referencias principales [91, 87, [25]], el potencial de referencia parece ser sutil e
importante.
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Para explicar nuestro punto, explotamos la invariancia de gauge V|, del sistema SP, que per-
mite establecer valores de referencia arbitrarios del potencial en las fronteras del dominio
numérico. Luego producimos simulaciones de fusiones multicore en un dominio periédico y
estudiamos el efecto de usar diferentes valores de referencia del potencial gravitacional sobre
el valor de a.

Podemos distinguir entre dos escenarios considerados en las simulaciones de FDM. Uno de
ellos asume que el sistema bajo estudio permanece aislado y las condiciones de frontera im-
plementadas en el limite numérico simulan una superficie transparente que permite la salida
de materia. En este caso, las cantidades M y E, integradas en el dominio [, cambian en el
tiempo debido a la pérdida de materia expulsada durante el proceso de enfriamiento gravita-
cional [17,110], y la cantidad = no se conserva en el tiempo. En este escenario, como se hace
en [87], las condiciones de frontera son Unicas, en el sentido de que el potencial en las fronte-
ras estd dado por V' = — M /r+ términos multipolares, donde r es la distancia desde el centro
del dominio hasta cada punto en la frontera del dominio de simulacion D corresponiente al
caso aislado.

El segundo escenario, como se ha mencionado, corresponde al uso de condiciones de fron-
tera periddicas, las cuales reciclan los componentes de materia y energia dentro del dominio
numérico. De este modo, las propiedades globales, como la masa total M y la energia F, se
preservan a lo largo de la evolucion del sistema. En este caso, las condiciones de frontera ca-
recen de una especificacion clara, y el valor del potencial gravitacional en la frontera no esta
bien definido en varios andlisis que estudian la relacién de escala entre el nucleo y el halo.
Entre los dos tipos de condiciones de frontera existen una serie de efectos que pueden ser cu-
riosidades o tener implicaciones serias, como se discute en [[73]], los cuales pueden depender
del tipo de condicion de frontera combinada con el tamafio del dominio de simulacion.

El dominio periddico es en el que queremos enfocarnos, ya que es el més utilizado en la cons-
truccion de relaciones de escala nucleo-halo en simulaciones dindmicas de FDM. Comenza-
mos sefialando que el sistema de Schrodinger-Poisson es invariante bajo la transformacién de
norma Vj, definida por

{,V} — {WemsWl/h Yy 4+ V) (4.26)

lo cual deja invariantes a p, M y K, mientras que la energia gravitacional sufre la traslacion

W — W+ VoM. (4.27)

Como consecuencia, la energia total se transforma como £ — E + Vi M, lo cual a su vez
cambia el valor de =. Esto compromete la relacion de escala (4.23)), 1a cual depende de V4.
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Ilustramos este efecto utilizando un dnico escenario asequible, consistente en la fusién mul-
tinicleo que forma una configuracién final de nicleo-envolvente FDM. De manera similar a
[91} 877, 23], preparamos conjuntos de datos iniciales con entre 3 y 18 solitones, con masas
aleatorias que van desde 1.5 x 10®M, hasta 4 x 108M,,, distribuidos aleatoriamente dentro
de un cubo de 60 kpc de lado. Este cubo esta centrado dentro del dominio numérico, que es
un cubo de 80 kpc de lado. Asumimos una masa del bosén mp = 107*2eV/c?. Los datos
iniciales también estdn preparados de tal manera que no haya un momento angular neto, de
modo que la relacién de escala dependa solo de M y F, y no del momento angular, como
ocurre en las fusiones binarias.

Evolucionamos estas condiciones iniciales utilizando condiciones de frontera periddicas. Las
resoluciones de tiempo y espacio son h = 62.5 pc y At = 2.5x 1072 Gyr, y la evolucién dura
14 Gyr para permitir que el sistema se relaje. Utilizamos estas simulaciones para explorar el
comportamiento usando diferentes valores de V. Definimos tres valores diferentes para el
potencial gravitacional en la frontera:

Potencial A. En un primer escenario, fijjamos el potencial en las caras de la frontera como

M
Vi=V —méx(V) - G—, (4.28)

rmax

donde max(V') representa el valor maximo de V', que ocurre en las esquinas de la caja, y
Tmaz ‘= V'3 40 kpc es la mitad de la longitud diagonal del dominio ciibico. Este potencial
se utiliza como una aproximacion de las condiciones de frontera monopolares utilizadas en
sistemas aislados.

Potencial B. Aiadimos un valor constante 1 a V4

Ve =Va+W, (4.29)

lo que corresponde a un simple cambio de referencia de V4 a través de la constante V), y
en principio, de acuerdo con la invarianza (4.26), deberia dar la misma dindmica que con
V4, excepto por una fase en W. Para este ejercicio usamos dos valores de la constante V; =
1843, 3685km?*/s?, o equivalentes a Vj = 5, 10 en unidades del cédigo.

Como ilustracion de la evolucién de estas fusiones multicore, en la Fig. mostramos
instantdneas de la densidad p, Re(WV) y la fase de W durante la evolucion para una de nuestras
simulaciones. Las instantdneas corresponden a 0, 3, 9 y 14 Gyr de izquierda a derecha, y
se toman en un plano perpendicular al eje y que pasa por el centro del nicleo final. Estas
graficas muestran el proceso de acumulacion de materia durante la simulacion, asi como el
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Figura 4.18: Instantaneas de una de nuestras simulaciones, para la densidad p en la fila supe-
rior, la parte real de W en la fila del medio y la fase de ¥ en la fila inferior. Estas se toman,
de izquierda a derecha, en los momentos 0, 3, 9 y 14 Gyr, en un plano perpendicular al eje
y que pasa por el nicleo final. La densidad ilustra la acumulacion de varios nicleos iniciales
desde el inicio hasta el tiempo final. La parte real y la fase de W muestran los patrones de
interferencia y la evolucion de la funcion de onda en el dominio periddico.

comportamiento de la funcion de onda. Utilizamos esta ventana temporal de evolucion para
que se forme un niicleo, mientras que para nuestro andlisis calculamos promedios espaciales
y temporales de la densidad solo durante el intervalo entre 12 y 14 Gyr, como se detalla a
continuacion.

Simulamos las fusiones multinicleo y procesamos los datos como se describe para una simu-
lacion particular anteriormente, hasta obtener M, en funcion del tiempo. Este valor de M, se
calcula cada 0.05 Gyr entre los 12 y 14 Gyr. Luego calculamos el promedio de los 41 valores
de M. en esta ventana temporal, y la desviacion estandar de todos estos valores se utiliza para
definir una barra de error en el valor de M.. Este valor, junto con las integrales M y E en
todo el dominio, define puntos en un diagrama M,./M vs =. Estos puntos se ajustan con el
ansatz para encontrar los mejores valores de ajuste de o'y /3.
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Figura 4.19: Graficamos M,./M vs = para cada una de las simulaciones, y para los tres casos
con Vy = 0, 5, 10 en azul, rojo y negro respectivamente. Cada punto corresponde al promedio
de los valores de M, durante los dltimos 2 Gyr de cada simulacidn, mientras que las barras de
error son la desviacion estdndar de los valores utilizados para calcular dicho promedio. Las
lineas continuas son los mejores ajustes utilizando la férmula @

Los resultados se resumen en la Figura donde mostramos los ajustes de la relacion de
escala nicleo-halo con la férmula (4.25)) obtenida de nuestras simulaciones utilizando los
potenciales V4 y los dos casos Vp, especificamente para Vy = 0, 5, 10. Los valores del
exponente « son respectivamente o = 0.407 £ 0.008, 0.237 £ 0.011, 0.212 £ 0.017.

Para el potencial V, es decir V) = 0, correspondiente a la condicion de frontera monopolar
aproximada, encontramos que la relacién de escala ndcleo-halo tiene un exponente o ~
0.4, consistente con las fusiones multinticleo reportadas en [25] y las estructuras generales
construidas en casos de simetria esférica [93]], donde la condicién de frontera monopolar se
impone por construccion. Por otro lado, para el potencial Vi con Vy = 5, 10, « es cercano
a ~ 1/4. Aunque dindmicamente es el mismo sistema, mostramos cémo, redefiniendo el
potencial de referencia, encontramos una relacion de escala diferente.

En resumen, en esta seccion se describieron simulaciones de fusiones de nicleos galacticos
que dieron lugar a la formacién de las primeras galaxias. Se enfatiz6 la importancia de las
condiciones de frontera y sus implicaciones en la dindmica de estos sistemas. Se destaco que,
en el caso de simulaciones con condiciones de frontera aisladas, el efecto de enfriamiento
gravitacional eventualmente lleva al sistema a su estado base, mientras que las condiciones
de frontera periddicas, al mantener cantidades globales como la masa y la energia total con-
servadas, simulan un escenario que conduce a estructuras mas dindmicas fuera del nicleo
galactico, adoptando un perfil tipo NFW @.19).



Soluciones estéricas con estructura nticleo-halo 73

Encontramos que la relacién de escala nicleo-halo puede variar dependiendo del valor de
referencia del potencial gravitacional. En dominios periddicos, esto podria ser el factor res-
ponsable de la aparicidn de distintos valores de « en diferentes escenarios de simulacién y
tamafos de dominio. Ilustramos este resultado utilizando la invariancia de calibracién en
dentro del escenario particular de fusiones de multiples nicleos.

Especulamos que la falta de estandarizacién en la eleccion del potencial gravitacional de
referencia en diversas simulaciones podria ser una de las razones detrds de la dispersion y
diversidad observada en la relacion de escala, como se ha estudiado en, por ejemplo, [80, 94]].

Es importante destacar que los resultados de este trabajo aplican al caso en el que el domi-
nio es periddico y se impone un valor del potencial en las caras del dominio. En contraste,
el desplazamiento del potencial no es relevante cuando se emplean condiciones de frontera
aisladas, como en [87]].

SECCION 4.3

Soluciones esféricas con estructura nucleo-halo

En las secciones anteriores hemos descrito el proceso en el cual se crearon las primeras
estrellas de bosones a partir de una densidad homogénea e is6tropa. Con estas estrellas se
formaron las primeras galaxias a partir de fusiones, dando como resultado galaxias con un
perfil promedio descrito mediante

PNH = Psoliton (7)O(r — 7¢) + phato(1)O (11 — 1), (4.30)

donde psoiiton corresponde al perfil empirico de los solitones [4.15|que se originan en el centro
de las galaxias, de acuerdo al modelo FDM. Este perfil esta descrito por el radio del nicleo
r. y se extiende hasta un radio de transicion r;, que oscila entre los valores ~ 2r. y 4r,
(11,195, 120]. El nucleo es envuelto por el perfil pha0, usualmente descrito por el perfil de NFW
Sin embargo, este perfil es solo un promedio espacial y también temporal, por lo que
si deseamos describir la dindmica de este tipo de galaxias, es necesario construir una funcién
de onda consistente con el modelo. En esta seccién exploraremos dos métodos distintos para
lograrlo.
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4.3.1 Soluciones nucleo-halo no diferenciables

Proponemos un método para construir configuraciones de equilibrio nucleo-halo, que son
soluciones del sistema de ecuaciones de SP asumiendo simetria esférica e independencia
temporal. Estas configuraciones cubren el dominio [0, 7max] = [0, 7] U [y, Tmayx], €5 decir, la
region del ndcleo unida con la regién del halo, donde r; es un radio de transicion entre ambas
regiones. En el nicleo asumimos que hay una solucién soliténica, y desde r; en adelante
integramos las ecuaciones estacionarias de SP asumiendo ciertas condiciones de frontera en
T+ Y Tmax- La familia de soluciones estd parametrizada por la masa total de la configuracion, y
el perfil de densidad del halo se ajusta para cumplir con el valor de la masa total.

Se encuentran soluciones de equilibrio no triviales para una velocidad radial no nula de la
FDM en la regién del halo, lo cual compromete su estabilidad. Para estudiar los efectos de
la velocidad del halo, evolucionamos las soluciones de equilibrio y encontramos que, tras un
tiempo transitorio inicial, la densidad se redistribuye y forma una nueva configuracion que
llamamos solucién relajada, ya que resulta de la evolucion de una solucion de equilibrio que
de alguna manera estd en un estado de equilibrio fenso. La solucién relajada oscila cerca
de un estado virializado y, en promedio, también presenta la estructura ndcleo-halo. Este no
es un efecto nuevo; también ocurre en soluciones multimodales construidas en [96], donde
la suposicion de estacionariedad es solo una aproximacion que permite la construccion de
estados iniciales, aunque después de la evolucion la configuracion se redistribuye y oscila en
el tiempo.

Un andlisis adicional incluye la curva de rotacién (RC) asociada tanto a las configuracio-
nes de equilibrio como a las relajadas. Medimos como la RC de estas dltimas se desvia de
las primeras. Encontramos que la desviacion es de porcentajes menores al 15 % incluso para
razones de masa nucleo-halo del orden de ~ 0.2, lo cual corresponde a configuraciones domi-
nadas por el halo, mientras que para configuraciones dominadas por el nicleo, la desviacién
deberia ser atin menor.

Asumiendo simetria esférica, independencia temporal de la densidad y que la fase puede
escribirse como S(t,7) = —wt + S(r), donde r es la coordenada radial, las ecuaciones se
reducen al siguiente conjunto de ecuaciones diferenciales ordinarias en el marco de MP de la
Seccion 2.2k

1 d
ﬁa(?"%()'l}) = O, (431)
1

2

1d [ ,dV
=5 4.
r2 dr (T dr) P, (4.33)
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donde la velocidad radial es v := %. El nucleo solitonico de las estructuras encontradas
en simulaciones coincide con soluciones de equilibrio construidas asumiendo v = 0 y ais-
lamiento asint6tico e = 0 como se describe en [77], que son equivalentes a aquellas en el
marco SP [64}165]. Estas soluciones se aproximan con el perfil de densidad soliténico (4.15])
obtenido empiricamente a partir de simulaciones de formacion de estructuras [22, 25]. Donde
w ~ —0.6922, po nucieo = 1 con 1. &= 1.30569.

Ahora, lo que hacemos es construir una solucién del sistema (4.31)-(#.33)) en el dominio
r € [0, rmax] dividido en dos regiones. En la region central del niicleo r € [0, 74], 1 < T'max
asumimos que hay un nticleo con el perfil de densidad (4.15), mientras que en el dominio
r € [re, "max)> que llamamos la regién del halo, habra un perfil de densidad resultante de la
implementacién de condiciones de frontera. Llamamos 7; al radio de transicion entre nuicleo
y el halo. Dado que la densidad del nicleo estd prescrita por la ecuacién @.15)), solo se tiene
que resolver el sistema (4.31)-(4.33)) en la regi6n del halo r € [ry, rmax], que escrito como un
sistema de primer orden es:

p;mlo = Uhalo, (4.34)
1
thato = 4(Vhato + 5hato = Vo) Phato (4.35)
2Uhqlo 2
_ Zhalo | Zhalo (4.36)
r 2phalo
Mhalo
/
Vhalo = r2 (437)
I/wlo = T2phal07 (438)
g;lalo = Uhalo, (439)

donde ’ y Vhalo = o es prescrito, con A constante, como sugiere la condicién en
la ecuacién - Para la integracion, imponemos las siguientes condiciones de frontera el

radio de transicion ry:

Phato(Tt) = Prucieo(Tt);
Uhato(Tt) = Unucleo(Tt),
Vhato(Tt) = Vaueteo(Tt),
Mhato(re) = Muucteo(Tt),
Shalo (7" i) = 0,
Mhato(Tmax) = Mmaz,

donde V,ucico Y Miucieo corresponden a la solucidn de la ecuacion de Poisson (4.33]) con den-
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sidad . Nétese que la parte espacial de la fase S es continua en 7, pero no es necesario
que sea diferenciable, lo que implica que v tiene una discontinuidad en r;. Ademads, el sub-
sistema ({4.34)-(4.38) es invariante bajo el cambio de signo en la velocidad v, excepto por
la ecuacién (@.39), lo que implica que se pueden construir dos soluciones que satisfacen las
condiciones de frontera, una con velocidad radial hacia adentro y otra con velocidad radial
hacia afuera.

Resolvemos estas ecuaciones utilizando el método de shooting con un integrador de Runge-
Kutta de cuarto orden que busca el valor de A, comenzando con una suposicién inicial hasta
que se cumple la condicion Mp,qo(Tmax) = Monaee dentro de una tolerancia. Los resultados
son el perfil de densidad radial, el campo de velocidad radial, el potencial gravitacional y el
perfil de masa del halo.

Una vez que se ha resuelto el sistema (4.34)-(.39), es posible escribir la funcién de onda en
todo el dominio nucleo-halo (NH) de la siguiente manera:

—Voit
pnucleo(r)e ot r< T,

Unp(t,r) =~ ) (4.40)
Dhato(r)e Vot HiShato () >

Algunos ejemplos ilustrativos son los siguientes. Si el radio de transicién es r; = 3.51, ~
4.58 en unidades del sistema de ecuaciones, un valor consistente con los de [25]], asumiendo
tres valores de la masa total M,,,, = 10, 20, 40 y usando el dominio con 7,,,, = 100, el
pardmetro de disparo converge a los valores A ~ £8.61x 1072, £1.51 x 10~y £2.08 x 10!
respectivamente. En la Figura [4.20] mostramos el perfil de densidad de estas tres soluciones
representativas. La densidad tiene el perfil del nicleo para r < r;, mientras que para
r > 1 las lineas punteadas corresponden a la solucidn en la zona de la halo de las Ecuaciones
(4.34)-(.39). El perfil de densidad muestra las tipicas oscilaciones de los modos excitados
con { = 0 explorados en [96]. En nuestro caso, el perfil de densidad resultante admite un
ajuste con el perfil NFW:

PO,NFW
Phato(r) = — . (4.41)
& (+%)
Notese que la materia en la region del halo tiene una velocidad finita dada por vy, = T

La solucién resultante en todo el dominio es, por tanto, un nucleo estacionario rodeado por
una halo con una estructura en capas de densidad y velocidad. A diferencia de [96], el obje-
tivo de la solucién no es el perfil NFW, sino M,,... Este es un aspecto conveniente, ya que
autométicamente tenemos una relaciéon de masa nicleo-halo como objetivo que describimos
mas adelante.



Soluciones estéricas con estructura nticleo-halo 77

1 0.8 ;
0.7 1
0.1 ¢ Y .
06 | T
0.01 | 05
O |
x 04
0.001 ¢ >
0.3
0.0001 0.2 Mpmax = 10 -~
0.1y Max = 20
1e-05 : 0 Mmay =40 -

orp 20 40 60 80 100

Figura 4.20: (Arriba) Perfil de densidad de las soluciones con masa total M,,,, = 10, 20,
40y Tpmae = 100. Para r < 1y, el perfil es solitonico. Fuera de esto, para r > ry, las lineas
punteadas corresponden al perfil obtenido para las soluciones de equilibrio, mientras que las
lineas solidas son los ajustes de ppq;, usando la formula NFW que mejor se ajusta a la
region del halo. (Abajo) Curvas de rotacion correspondientes a las tres soluciones, donde se
puede notar la tendencia de mayor velocidad para mayor masa.

Ademas de la densidad, en la Figura también mostramos la curva de rotacion (RC)
debida al nucleo-halo construido con la férmula

Mnucleo(r)/r r< T,
vre(r) = (4.42)
Myaio(r)/r T 2>14

y se puede notar la tendencia de una mayor velocidad de rotacién para una mayor masa total
M .- Estos tres casos ejemplifican el efecto de M, en el perfil de densidad y, por lo tanto,
en la curva de rotacion.

Ahora ilustramos los efectos del radio de transicion r;. En la Figura [4.21] mostramos los re-
sultados de tres soluciones con 7, = 2.57., 3.0r. y 3.57, un rango admisible segtn [97, 94],
mientras esta vez fijamos la masa total objetivo en M,,,, = 50. La densidad del nicleo es
inafectada, mientras que la densidad del halo es diferente en la fase y amplitud de la oscila-
cion. Dado que la diferencia en el perfil de densidad del halo es pequeiia, las curvas de rota-
cion también son muy similares para los tres valores del radio de transicion. Los resultados de
las Figuras y implican que las curvas de rotacién solo dependen significativamente
de la masa total objetivo M,,,, del sistema y no del radio de transicién r; que separa nicleo
de halo en nuestras soluciones.

Discontinuidad de v. Examinemos de cerca la condicion de continuidad en la fase S en r; que
se refleja en una discontinuidad del campo de velocidad v. Para ello mostramos las partes real
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Figura 4.21: (Arriba) Perfil de densidad de las soluciones con r; = 2.57., 3.0r. y 3.57 para la
masa M., = 50. (Abajo) Curvas de rotacion de las tres soluciones. Estos resultados indican
que r; no afecta el perfil del halo, y por lo tanto la curva de rotacién siempre y cuando la
masa total sea la misma.

e imaginaria de la funcién de onda de la solucién en la Figuram sabiendo que ¥V = \/ﬁeis ,
donde p y S son las soluciones del sistema (4.34)-(4.39) para el caso con Mj,(100) = 10.
Se puede observar que hay una no-diferenciabilidad en la esfera de radio r; donde el niicleo
y el halo estan unidos. Uno podria sentir la tentacion de evitar este problema manipulando la
fase de la funcién de onda del nicleo soliténico, ya que la funcién de onda W (r, t) = e“t)(r),
con w el valor propio de la solucién de equilibrio del estado fundamental [65]], y uno podria
manipular la fase con un ¢ apropiado para que Im(¥) no sea cero con la continuidad apropiada
en r = 7. Sin embargo, esto implicaria automaticamente que la fase .S dentro del nicleo no
es cero, y eso significaria que la velocidad alli tampoco seria cero, lo cual estd en desacuerdo
con la construccion de soluciones solitonicas [77]].

Una vez que hemos visto que M,,,., es el pardmetro mds influyente en las soluciones, recopi-
lamos informacién que depende de su valor. Fijamos r; = 3.5, y construimos un conjunto de
soluciones para M,,., € [5,50]. En la Figura mostramos la dependencia de la constante
A como funcién de la condicién de frontera Mp,qo(Tmax = 100) = M40, donde la curva
sigue un perfil logaritmico.

Diagnéstico

Para monitorear la evolucion del sistema, calculamos la masa total definida como M =
[, |¥2d?z. Para verificar el comportamiento de la energia, calculamos la energia cinética
K = —3 [, U*V*Ud?z y la energfa potencial W = % [, V|U|?d3z, las cuales son utiles
para obtener la energia total X' + W y la funcion de virializacion 2K + W.
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Figura 4.22: En la parte izquierda/derecha mostramos la parte real/imaginaria de la funcion de
onda. Nétese la no-diferenciabilidad en r, = 3.5r, para la masa objetivo Mj,;,(100) = 10.
Esta condicion es el resultado de unir la solucién del niicleo en la regién » < 7, con la
solucioén del halo en la regién r > 7.
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Figura 4.23: Constante A como funcién de M, obtenida del método de shooting y el ajuste
con una funcién logaritmica.
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Figura 4.24: Instantdneas de la densidad |¥|? en los tiempos ¢ = 0 (fila superior) y ¢ = 600
(fila inferior) para la evolucidn de las configuraciones de equilibrio con M,,,, = 10 (columna
izquierda), M, = 20 (columna central) y M,,,, = 40 (columna derecha) con un radio de
transicion r; = 3.57.. El dominio utilizado es D = [—20, 20].

Evolucion de las configuraciones. Utilizamos las mismas tres soluciones de equilibrio des-
critas anteriormente, con M,,,., = 10, 20 y 40 y el radio de transicién en r; = 3.57., cuyos
perfiles de densidad se muestran en la Figura 4.20| La simulacion se lleva a cabo en dos
tamafios de dominio espacial D = [—20, 20]® y [—40, 40]3, utilizando resoluciones espacia-
les 40/63 y 80/127, respectivamente. El dominio temporal es ¢t € [0,600] y la resolucién
temporal es At = 0.1 en todos los casos.

En las Figuras y mostramos instantdneas de |¥|? en el tiempo inicial y ¢ = 600,
para la evolucion de las tres soluciones con M,,,, = 10, 20 y 40, ilustrando el desarrollo del
sistema en los dominios pequefio y grande. La dindmica es desencadenada por la velocidad
radial inicial de la materia en la region de la cola que perturba el nucleo y redistribuye la
cola que interactda consigo misma debido a las condiciones periddicas de frontera, lo que
produce la tipica interferencia observada en simulaciones de formacién de estructuras asi
como la colisiéon de maltiples nucleos [22, 25 23] [73]].

En la Figura [4.26| presentamos la evolucion de algunos escalares en funcién del tiempo. A la
izquierda/derecha mostramos diagnosticos utilizando el dominio pequefio/grande. La prime-
ra fila muestra la evolucion de la masa, que se conserva durante la evolucion. La segunda fila
muestra la energia total en funcién del tiempo, que después de un transitorio inicial perma-
nece aproximadamente constante en el tiempo. La tercera fila muestra la cantidad 2K + W,
que inicialmente es cero pero luego aumenta debido al transitorio inicial, después de lo cual
la cantidad empieza a oscilar cerca de cero, lo que indica que la configuracion tiende a acer-
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Figura 4.25: Instanténeas de la densidad |¥|? en los tiempos ¢ = 0 (fila superior) y ¢t = 600
(fila inferior) para la evolucidn de las configuraciones de equilibrio con M,,,, = 10 (columna
izquierda), M, = 20 (columna central) y M,,,, = 40 (columna derecha) con un radio de
transicion r; = 3.57.. El dominio utilizado es D = [—40, 40]3.

carse nuevamente a un estado virializado que llamamos configuracion relajada. Finalmente,
la cuarta fila muestra la densidad de masa en el origen en funcién del tiempo, que después
del transitorio inicial oscila regularmente. El transitorio inicial se debe al hecho de que es-
tablecemos la constante A como positiva, por lo que la velocidad de la cola apunta hacia el
nucleo, lo que produce un flujo entrante que comprime inicialmente el nicleo y la evolucion
es seguida por la expansion y estabilizacion alrededor de un estado virializado.

Evolucion

La idea ahora es estudiar la evolucion de estas soluciones. Sabiendo que la velocidad en la
cola no es nula, se espera que el movimiento afecte las propiedades de toda la configuracién
nucleo-halo. Encontramos que, de hecho, la velocidad afiade un impulso inicial a la solucién
y desencadena un comportamiento dindmico del FDM en todo el dominio. Lo que sigue es
que la configuracion se acomoda alrededor de un estado virializado, lo que llamamos una
version relajada de la solucion. Por lo tanto, por un lado queremos medir cuén lejos estd la
configuracion relajada de la solucién inicial en términos de distribucion de materia y, por otro
lado, determinar que estas soluciones relajadas son de larga duracién.

Para esto, interpolamos nuestra funcién de onda ¥y 5 f.40]en un dominio 3D, donde resol-
vemos el sistema SP.
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Figura 4.26: Escalares monitoreados durante la evolucion en el dominio pequefio (columna
izquierda) y el dominio grande (columna derecha). En la primera linea, la serie temporal de la
masa muestra que los métodos de espectro pseudoespectral conservan la masa. En la segun-
da linea, la serie temporal de la energia total muestra que cuando la evolucién comienza, la
energia total se disipa y luego permanece aproximadamente constante. En la tercera linea, la
serie temporal de la cantidad 2/ + W ilustra como el sistema inicialmente virializado sufre el
transitorio inicial y luego tiende a un estado casi virializado. En la cuarta linea, la serie tem-
poral de la densidad de masa en el origen muestra que inicialmente la configuracién colapsa
ligeramente, causando un aumento rapido en la densidad, que luego se expande nuevamente
y alcanza un valor cercano al inicial.
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Densidad. Investigamos la utilidad de las configuraciones de equilibrio estudiando su evolu-
cién y evaluando cudnto se desvia la distribucion de materia del perfil inicial. La evolucién de
la densidad se presenta en la Figura[4.27] donde la columna de la izquierda muestra la evolu-
cién en un dominio pequefio D = [—20, 20]?, y la columna de la derecha muestra la evolucién
en el dominio grande D = [—40,40]3. Las primeras tres filas corresponden a M,,,, = 10,
20 y 40, respectivamente. Las lineas negras corresponden a la densidad de la configuracién
de equilibrio, mientras que las lineas grises corresponden a una serie de instantdneas de la
densidad que ilustran la variacién del perfil a lo largo del tiempo. Las lineas punteadas co-
rresponden al promedio temporal de la densidad, que es similar al de la configuracién inicial.
Las diferencias entre los perfiles de equilibrio y relajados son mayores para M,,,, grandes y
menores cuando el sistema se evoluciona en el dominio grande.

Esto se puede explicar porque, segin la Figura [4.23] la constante objetivo del método de
shooting A es una funcién creciente de M,,.,, y por lo tanto, v,,, aumenta a medida que
crece A. Esto implica que cuanto mayor es la masa objetivo M,,,..., mayor es la velocidad
en la cola, y juntos impactan el nicleo menos dominante con un impulso mds fuerte. Al
final, la densidad y las curvas de rotacién de la configuracion relajada se desvian mas de la
configuracién de equilibrio para M,,,, mas grandes.

Curvas de rotacion. También analizamos la variacion en el tiempo de las curvas de rotacion
de las configuraciones de equilibrio. La Figura muestra las curvas de rotacion en la
columna de la izquierda para el dominio pequefio y en la columna de la derecha para el
dominio grande. Los paneles superior, medio e inferior corresponden a los datos iniciales de
nuestras soluciones con M,,., = 10, 20 y 40, respectivamente. Las lineas negras representan
la curva de rotacién de la configuracion de equilibrio inicial, mientras que los graficos en gris
son instantdneas de su evolucion a lo largo del tiempo. Las lineas punteadas son el promedio
temporal de la curva de rotacion. En la parte inferior de esta figura mostramos la desviacion
relativa del promedio temporal de la curva de rotacion con respecto a la curva de rotacién en
el tiempo inicial. También se puede observar que la desviacion es mayor para los valores mas
grandes de M,,,q;.

Relacion masa nucleo-halo

Esta relacion se establece entre varios escalares del sistema SP y se expresa en el exponente
« en la relacion entre la masa del nucleo M., la masa total del sistema nucleo-halo M y la
energia total £

M, (1E[\"
=0 (W) (4.43)
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Figura 4.27: La columna izquierda muestra la evolucién de la densidad de las soluciones de
equilibrio utilizando el dominio pequefio D = [—20, 20]%, mientras que la columna derecha
muestra la evolucion utilizando el dominio grande [—40, 40]3. Las primera, segunda y tercera
filas corresponden a las condiciones iniciales con M,,,, = 10, 20 y 40, respectivamente.
Las lineas negras corresponden a las condiciones iniciales, las lineas grises son instantdneas
durante la evolucién y la linea punteada es la densidad promedio en el tiempo de la solucién

relajada.
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Figura 4.28: La columna izquierda/derecha muestra la evolucion de las curvas de rotacion de
las soluciones de equilibrio utilizando el dominio pequefio/grande. Las primera, segunda y
tercera filas corresponden a las soluciones de equilibrio iniciales con M,,,, = 10, 20 y 40,
respectivamente. Las lineas negras corresponden a las condiciones iniciales, las lineas grises
son instantdneas durante la evolucién y las lineas punteadas son el promedio temporal de la
curva de rotacion de la solucidn relajada. En la parte inferior incluimos la diferencia relativa
entre la curva de rotacion inicial y la promedio para los tres valores de M,
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Figura 4.29: Relacién masa nicleo-halo para un nimero de soluciones de equilibrio, asi como
para las soluciones relajadas obtenidas de la evolucion de las seis simulaciones con las que
hemos estado trabajando. Ajustamos los datos con lineas que indican que las configuraciones
de equilibrio se escalan con o = 1/3, mientras que el conjunto de soluciones evolucionadas
decae en un conjunto que se escala con o = (.54.

en unidades del codigo. Se ha encontrado que el exponente « tiene diferentes valores, depen-
diendo del método utilizado para llegar a las configuraciones nucleo-halo.

Las soluciones N H construidas aqui tienen una escala tal que o ~ 1/3 como se ilustra en
la Figura Este comportamiento es consistente con la relacion nicleo-halo encontrada
en [25] a partir de la colisién de muchos solitones distribuidos al azar y también es consis-
tente con la colision de muchos solitones bajo condiciones especificas en [15]; también es
consistente con el exponente encontrado en [92, [14] resultante del colapso esférico.

Se espera que la relacién masa nuicleo-halo cambie para la solucién relajada como consecuen-
cia del impulso inicial del campo de velocidad de la cola sobre el nicleo y la cola misma,
ademads del efecto de las condiciones de frontera discutido previamente. El transitorio inicial
afecta a los escalares del sistema como se observa en la Figura @ Durante la evolucidn, el
valor de M. cambia en el tiempo debido a las oscilaciones del nicleo y M depende del tamafio
del dominio porque en el dominio pequefio [—20, 20]? la porcién de M,,,., que cabe dentro
del dominio es menor que la porcién en el dominio grande [—40, 40, algo que no afecta a
las soluciones de equilibrio integradas en coordenadas esféricas hasta r,,,, = 100, una esfera
mads grande que cualquiera de los dos dominios cibicos numéricos. De manera andloga, la in-
tegracion de la energia también depende del tamafio del dominio. Los resultados en la Figura
para la configuracion relajada indican que las configuraciones inicialmente en equilibrio
evolucionan hacia un conjunto de configuraciones que se escalan con o = (.54, mds similar
a la escala obtenida con SFS [91], aquellas encontradas a partir de la fusién de nicleos de

masas desiguales [87], asi como aquellas obtenidas utilizando argumentos termodindmicos
[98].
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Asi pues, hemos construido soluciones nucleo-halo del sistema SP con simetria esférica. La
familia de soluciones estd parametrizada por la masa total de la configuracién M, ..

Mientras que el nucleo es estacionario, similar a las soluciones de equilibrio en el estado fun-
damental, la halo tiene una velocidad no nula. De este modo, cuando se permite la evolucion
de las configuraciones, estas evolucionan y se ajustan alrededor de una configuracion relaja-
da que oscila cerca de un estado virializado. La densidad promedio de estas configuraciones
relajadas preserva el perfil de densidad nicleo-halo, aunque con una desviacién respecto a la
solucion inicial de equilibrio. Esta desviacion es mayor para masas totales mds grandes del
sistema M, ...

La motivacién para construir soluciones de equilibrio era usarlas como modelos realistas
de halos, mds simples que aquellos construidos con grandes superposiciones de modos en
[96], y mucho mads sencillos que los obtenidos en simulaciones de formacién de estructu-
ra. Sin embargo, entre las soluciones iniciales de equilibrio y las soluciones relajadas, estas
ultimas parecen ser mas consistentes con las observadas en simulaciones de formacion de
estructuras [91] y en fusiones multisoliton [25) 23], debido a la interferencia en la zona de
la halo; desafortunadamente, necesitan evolucionar y, por lo tanto, ya no son tan econémicas
computacionalmente. Este hecho limita la aplicabilidad original, mds optimista, de construir
facilmente grandes catdlogos de soluciones de equilibrio que podrian utilizarse para ajustar
curvas de rotacion. No obstante, las soluciones de equilibrio son similares a las relajadas
para masas pequefias de M,,,,. En nuestro espacio de parametros, las diferencias entre las
soluciones de equilibrio y las relajadas son pequenas para M,,,, = 10, un caso en el cual la
relacion masa nudcleo/halo es del orden de ~ 0.2, lo que atn es un régimen ttil y esperamos
que las soluciones sean provechosas en dicho régimen.

Finalmente, concluimos sobre la relacion masa nucleo/halo. Encontramos que las soluciones
de equilibrio escalan con un exponente &« = 1/3, mientras que el conjunto utilizado para
ilustrar la evolucion de las configuraciones de equilibrio decae hacia un conjunto que escala
con una potencia o = (.54, difiriendo posiblemente por las condiciones de frontera.

4.3.2 Construccion de perfiles nicleo-halo galacticos no esféricas

Queremos construir soluciones del sistema SP que sean consistentes con ciertas curvas de ro-
tacion galdcticas. Para construir la funcién de onda del niicleo-halo, seguimos una estrategia
similar a la descrita en [99] y [96]. Asumimos un perfil de densidad objetivo pr y nuestro
objetivo es construir una funcién de onda ¥ que sea consistente con este perfil de densidad
y satisfaga el sistema SP. Para ello, consideramos que la densidad objetivo es una funcién
esféricamente simétrica, dependiendo tnicamente de la coordenada radial r, lo cual permi-
te resolver la ecuacion de Poisson (2.11) en simetria esférica, expresada como el siguiente
sistema de primer orden:
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dv; M
d—TT = GT—QT, (4.44)
dM

drT = d7r?pr, (4.45)

donde pr es la densidad objetivo y My es la funcion de masa. Una vez resuelta la ecuacion
de Poisson, el potencial resultante V' depende de r. Este potencial se introduce en la version
estacionaria de la ecuacion de Schrodinger (2.12)), la cual recuerda al problema del dtomo de
hidrégeno, con la diferencia notable de que el potencial de Coulomb es reemplazado por el
potencial V7, escrito como un problema de Sturm-Liouville:

19 [ ,00\ K L2
" mprior ( W) T S 2 VT BV = Byt (+:40)
donde
19 o 18
2= |— 2 (sing )+ — & 4.47
Lmeaa (Smeae) * sin2ea¢2] (447

es el operador de momento angular al cuadrado y j denota el estado propio v; con energia
propia ;. Para resolver esta ecuacion, asumimos una separacion de variables para 1); =
Ynem (1,0, 0) = Ruu(r)Y;(6, ¢), donde Y, (6, ¢) son los arménicos esféricos y R, se ex-
presa como R,y := une/r, con u,, satisfaciendo la siguiente ecuacion radial:

2mp 7T

P Puy (B U+
2mB dr?

5+ mBVT(T)) Une = Epptin, (4.48)

donde n, £ y m son los "nimeros cudnticos”, y hemos usado la identidad LYy, = [(I1+1)Yz,.
Nombramos a la funcién de onda ¥, como aquella que ajusta la densidad objetivo, y que
puede expresarse como una combinacion lineal de las funciones propias v;:

J

El perfil de densidad asociado con la funcién de onda estd dado por |¥|?:
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“IJOIQ — (Z ajwjeiEjt/h) (Za w* ZEkt/h>
= Z\a;\ 2+ ajazpppe B, (4.50)
J#k

Al ajustar densidades en simulaciones de formacion de estructuras o colisiones multicimulos,
es fundamental asumir que pr es una cantidad promediada sobre el dngulo solido y el tiempo.
Por lo tanto, consideramos que la densidad objetivo se puede descomponer como:

T—oo 1

R N L
<|\I/0|2>T_)OO = hm—/o |Wo(t, Z)|*dt

1 i
- EZ@H 1)|ane|*| Rnel?, (4.51)
n,l

donde 7' es el intervalo temporal para calcular promedios en tiempo. Los coeficientes se
escriben como Gpem, = anee'©ntm, siendo ©,,, fases aleatorias entre 0 y 27. Para derivar la
Ecuacién (4.51)) usamos la identidad )" Y} (6, ¢)|* = (20 + 1)/4x. Alternativamente, un
promedio espacial sobre el dngulo sélido €2 := [0 7] x [0, 27] se calcula como:

(Wo|*),, = /ywo 7)|*dS

— EZ(2€+1)|C~LM’2|RM|2. (4.52)
n,l

Asi, los promedios temporal y espacial son equivalentes.

Descripcion del método de ajuste

La expansion de la funcion de onda (4.49) se determina utilizando un Algoritmo Genético
(AG), donde se asume que el ADN de cada organismo en la poblacién consiste en los co-
eficientes a,,. El nimero maximo de genes considerados es Npna = 7Mmaxfmax, donde los
ndmeros cudnticos toman los valores n = 1,2, ..., nn y £ = 0, 1, ..., ax — 1. La funcién de
aptitud de cada individuo se define por el escalar
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R A ), }
- | — M g (4.53)
7 1 + |QO| |:rmax /0 PT

donde el factor 1 4 |Q)y| es insignificante cuando |(Q)y| < 1, pero cuando |Qy| > 1, el valor
de la funcién de aptitud disminuye para perfiles que se alejan del estado de virializacion.
Finalmente, r,,x = 21y es el limite superior del dominio numérico donde se resuelve el
problema de autovalores ({.46)).

El funcionamiento del AG se basa en la generacion aleatoria de una poblacion inicial de N,
organismos. Calculamos la funcién de aptitud 7 para cada individuo, y seleccionamos los k
organismos mejor adaptados. Siguiendo un enfoque elitista, estos individuos seleccionados
persisten en la siguiente generacion. De estos & organismos, se eligen aleatoriamente NV oss
para cruzarse y producir descendientes para la siguiente generacion; en el contexto bioldgico,
uno tipicamente elige N;oss = 2, pero en un AG no hay tal limitacion, y N5 = 5 resulto ser
mas efectivo. Estos padres seleccionados comparten aleatoriamente su material genético, es
decir, los coeficientes de la expansion, para crear un nuevo individuo. Este proceso se repite
Norg — k veces hasta completar nuevamente el tamafio de la poblacion inicial Noy,.

Los organismos en la nueva generacion pueden adaptarse de manera mas eficaz mediante
un proceso de mutacion que funciona de la siguiente forma. Se genera un nuevo nimero
aleatorio [, en el rango de 0 a 1, que representa la probabilidad de que el gen a,, sufra
una mutacion. Cada gen tiene su propia probabilidad de cambio. Posteriormente, se genera
un nuevo nimero aleatorio 7,,, y la mutacién ocurre si v,, supera a (3,,. En tales casos, el
coeficiente a,, se modifica a aa,s, donde o es un nimero aleatorio seleccionado en el rango
de -1.5 a 1.5 para todos los valores de n y /.

Finalmente, se aplica un segundo tipo de mutacidn, conocida como mutacion diferencial. Esta
mutacion implica seleccionar el organismo i-ésimo con ADN definido por los coeficientes &53
y una aptitud 7", Posteriormente, se seleccionan aleatoriamente otros dos organismos con

(1) (2 . . . .
ADN ‘%(w) y agﬁ). Se crea un nuevo organismo combinando linealmente estos coeficientes

~(new,i) _ ~(i (1) ~(2 . . ;
como a2 = a% + §(at) — @), donde & es un nimero entre 0 y 1, con aptitud ™).
Si n®e%i) > p@ el organismo i-ésimo es reemplazado por el nuevo organismo. Este proceso
serepite parat = 1,2, ..., Nyy.

Obsérvese que la funcion de aptitud es una norma del error entre la densidad de la expansion
multipolar y la densidad objetivo. Considerando la aleatoriedad en varias etapas del algoritmo
genético (AG), puede suceder que diferentes conjuntos de coeficientes de la expansion, o
equivalentes individuos con diferentes ADN, puedan tener valores similares de 7. En este
sentido, la expansion del perfil puede ser degenerada.

Sin embargo, aunque la expansion pueda presentar degeneraciones, nuestro interés radica
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en identificar un minimo local que proporcione la mejor aproximacion al perfil de densidad
objetivo. En particular, buscamos una solucién que corresponda a un estado W, cercano al
equilibrio virial, asegurando asi que la configuracién obtenida sea fisicamente relevante y
estable dentro del marco del problema estudiado.

Nuestro objetivo es ajustar las densidades de materia oscura galactica. Inspirados por [99] y
[96]], utilizamos un tipo de perfil de densidad objetivo que discutimos a continuacion.

Evolucion de los perfiles galacticos

Investigamos la evolucion de los perfiles ndcleo-halo descritos en la seccién anterior, asi
como la del perfil pseudo-isotermo (PISO),

PPISO = LQ? (4.54)
Ly (_)
Tp

mediante la evolucién de la funcién de onda optimizada utilizando el algoritmo genétic, apli-
cado a los modelos niicleo-NFW 'y niicleo-PISO con los parametros de la Tabla[4.1] en el con-
texto del sistema Schrodinger-Poisson completamente dependiente del tiempo (2.1212.13)).
Para ello, utilizamos nuestro cédigo CAFE-FDM [69, [73]].

nucleo-NFW

Galaxy re (kpe) 1y (kpe) 1, (kpe) 1o (kpe) X (Mope?)
ESO4880049 2.157  1.102 1255  52.77 243
UGC11616  1.860  1.676  7.434  38.04 386
F730V1 1.867  1.841 8118  40.01 370

nucleo-PISO

Galaxy re (kpe) e (kpe) 1, (kpe) o (kpe) Yo (Mope™?)
ESO4880049 2269 3260  2.631  66.49 155
UGC11616 ~ 1.850 2474 1792 5282 294
F730V1 1.869  2.082  1.625 5441 345

Cuadro 4.1: Pardmetros de mejor ajuste para tres galaxias de bajo brillo superficial (LSB)
utilizando los perfiles de densidad nicleo-NFW y nicleo-PISO, obtenidos al fijar la masa del
bosén en mp = 10723 eV.
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Para evitar que la funcién de onda colapse hacia un perfil soliténico aislado, como se ha
reportado en [[10] y [90], implementamos condiciones de frontera periddicas. Estas garantizan
la persistencia de un nicleo rodeado por una envolvente, asi como la conservacion de la masa
y la energia total del sistema a lo largo de la evolucion.

Como condiciones iniciales, inyectamos la funcién de onda (4.49) en el tiempo ¢t = 0,
U (0,Z) = Uy, centrada en el cubo 3D D = [—rg,rg|3. Cabe destacar que cuando los co-
eficientes estdn fijos, la funcién de onda puede poseer un momento total distinto de cero,
calculado como pp = —ih Y, aza, [ ¥V 1h; dPx. Corregimos entonces la funcién de onda
inicial como W (0, %) = Upe #0%/M donde M := Ipp d®z representa la masa total en el do-
minio. Esta eleccién asegura que la funcion de onda inicial tenga momento lineal total cero,
permitiendo que la evolucién mantenga el nucleo cerca del centro del dominio. El dominio
fue discretizado con una resolucion espacial de A = r,/128 en las tres direcciones espa-
ciales. Para capturar la dindmica temporal, se empled una resolucién temporal que cumple
At/A < 0.25 en unidades de cddigo, y la evolucidn se realizé en una ventana de tiempo de
2 Gyr.

La evolucion de cada galaxia se ilustra a través de capturas de la densidad y el campo de
velocidad en el plano z = 0 en los tiempos ¢ = 0, 1 y 2 Gyr, en las Figuras §.30] y {.31]
Estas simulaciones utilizan las condiciones iniciales con los perfiles de densidad objetivo
nicleo-NFW y nucleo-PISO, respectivamente.

Es evidente que, aunque las configuraciones estdn inicialmente cerca de un estado de vi-
rializacién, evolucionan y no permanecen estacionarias, ni siquiera en promedio, sino que
desarrollan cierta dindmica. Para comprender mejor la evolucién de toda la configuracion,
analizamos la dependencia temporal de la masa del ndcleo para cada una de las galaxias de
la muestra de la Tabla La masa del nicleo M, es la integral de la densidad desde el
origen hasta 7., y su valor como funcién del tiempo se muestra en la Fig. para seis con-
figuraciones durante 7 Gyr. Notese que la masa del nicleo oscila con una tendencia general
creciente que puede entenderse como la acrecion de materia desde la envolvente granular, lo
cual indica que el aumento de masa se debe a efectos colisionantes [[100, [101]], interpretados
como condensacion en el régimen cinético [102] o condensacion de ondas [103]. Este cre-
cimiento lento pero constante de la masa del nucleo se ha mostrado como inevitable tras el
tiempo de saturacion [19]. Este crecimiento de masa del nucleo parece inevitable y es posi-
blemente la razén por la cual cualquier configuracion con estructura granular evolucionard y
el nucleo crecerd. Como resultado, la dindmica se ve influenciada y la densidad promedio en
la evolucién se desvia de los promedios de los datos iniciales, un efecto descrito también en
[96].

La implicacién es que la redistribucion de la densidad también distorsionard la curva de
rotacion. [lustramos esta diferencia calculando el promedio espaciotemporal de la densidad
(p), que ahora es solo una funcién de la coordenada radial. Una vez obtenida la densidad
promedio, calculamos la curva de rotacién radial como vge = /Gm(r)/r, donde m(r) es
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Figura 4.30: Las tres primeras filas muestran capturas de la densidad en el plano z = 0
para las galaxias ESO4880049, UGC11616 y F730V 1, respectivamente, asumiendo el perfil
objetivo nucleo-NFW. La primera columna corresponde al tiempo inicial, mientras que la
segunda y tercera columnas corresponden a los tiempos ¢t = 1y 2 Gyr, respectivamente. La
cuarta fila muestra capturas en 0, 1 y 2 Gyr del campo de velocidades para la galaxia F730V1,
a modo de ilustracion.
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Figura 4.31: Las tres primeras filas muestran capturas de la densidad en el plano z = 0
para las galaxias ESO4880049, UGC11616 y F730V 1, respectivamente, asumiendo el perfil
objetivo nucleo-PISO. La primera columna corresponde al tiempo inicial, mientras que la
segunda y tercera columnas corresponden a los tiempos t = 1y 2 Gyr, respectivamente. La
cuarta fila muestra capturas en 0, 1 y 2 Gyr del campo de velocidades para la galaxia F730V1,
a modo de ilustracion.
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Figura 4.32: Evolucion de M. como funcion del tiempo durante 7 Gyr. Las tres primeras
filas corresponden a las galaxias ESO4880049, UGC11616 y F730V 1, respectivamente. La
primera columna corresponde al perfil nicleo-NFW y la segunda columna corresponde al
perfil nicleo-PISO. Los graficos indican que el ndcleo acreta masa a largo plazo, lo que
implica una concentracién de materia dependiente del tiempo. Este proceso se interpreta
como la acrecidon de materia en la envolvente granular. Este crecimiento de masa ha sido
mostrado como inevitable después de la saturacion del nucleo tras la relajacion [19] y parece
ser universal en las estructuras ndcleo-halo que evolucionan [102].
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la densidad de masa integrada hasta el radio r. Para cada halo, los resultados se presentan en
la Figura[4.33] La discrepancia entre la configuracién inicial y la evolucionada es notable. La
concentracion de materia en la region del niicleo cambia definitivamente la curva de rotacion,
con un pico caracteristico de una masa concentrada.

SECCION 4.4

Particulas de Prueba

Las estructuras nucleo-halo en el modelo FDM parecen ser el componente esencial en la
formacion de la red cosmica, y por lo tanto, su estudio es esencial para el modelo. Las estruc-
turas FDM son dependientes del tiempo, y los perfiles de densidad también son resultado de
un promedio temporal adicional sobre los promedios angulares. Asi, cuando se presenta una
férmula para los perfiles nicleo-halo en funcién de r, esta se refiere a un promedio espacial
y temporal, sin implicar que la densidad sea estatica o esfericamente simétrica.

Esta dependencia angular y temporal implica que el potencial gravitacional también es anisétro-
po y dependiente del tiempo. Por lo tanto, exploramos el movimiento de particulas de prueba
mas alld de los perfiles universales idealizados esfericamente simétricos para FDM que ya
hemos discutido antes.

El objetivo de nuestro andlisis es estudiar el movimiento de particulas de prueba bajo el po-
tencial gravitacional de una estructura nucleo-halo formada, asumiendo que la configuracion
es anisotropa y dependiente del tiempo, evolucionando segtin las ecuaciones SP (2.12)-(2.13)).

44.1 Construcion del nicleo-halo que usaremos

Como se menciond anteriormente, la formacion de estas estructuras fue descubierta por pri-
mera vez en simulaciones de formacién de estructuras [22} 25} 23,79, 80, [81]]. Sin embargo,
poco después, fueron construidas en escenarios menos exigentes computacionalmente, es-
pecificamente mediante la fusion multiple de nucleos, como se describe en [91] y trabajos
posteriores [25, [87]. Mas alla de eso, las estructuras nicleo-halo se construyeron reciente-
mente ab initio, sin necesidad de evolucion de estructuras o multi-solitones, utilizando la
expansion multimodal.

De estos tres métodos, consideramos la estructura formada por la fusién de maltiples nicleos
que ha pasado por un proceso de relajacion, como se describe en [73]], cuya densidad se
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Figura 4.33: Curva de rotacion objetivo, ajustada y promedio de tres galaxias de la muestra.
Las tres primeras filas corresponden a ESO4880049, UGC11616 y F730V 1, respectivamen-
te. La primera columna corresponde al perfil niicleo-NFW, y la segunda columna al perfil
nucleo-PISO. La linea continua azul representa la curva de rotacién asociada con la densidad
objetivo, mientras que la linea punteada naranja ilustra la densidad ajustada obtenida en la
1000a generacion. La linea punteada verde representa el promedio temporal de los promedios
espaciales durante 7 Gyr de evolucion.
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muestra en la Figura Este es el resultado de la fusién de 10 nicleos soliténicos con
masas aleatorias, que dieron como resultado una masa final de ~ 2.598 x 10'* M. Estos
nucleos se encuentran inicialmente en reposo, ubicados aleatoriamente dentro de un dominio
cibico de 40 kpc, discretizado con una resolucién de & = 5/32 kpc. La evolucién para formar
este halo abarca 1.4 Gyr con una resolucién temporal de At = 10~* Gyr.

En la Figura se muestran los diagndsticos del sistema, incluyendo la densidad méxima
normalizada con la densidad promedio del nicleo, la energia cinética K := —% [ UV dPx,
la energia potencial W := % [ pV d*z, la energia total £ := K + W, la funci6n virial
Q) := 2K + W, normalizada con respecto al valor inicial de la energia total £(0) ~ —1.652 x
10'Mykm?/s?, y la masa total M = [ pd®z, normalizada con respecto al valor inicial
M(0) &~ 2.598 x 10! Mg,. El comportamiento de estas cantidades demuestra la relajacién
de la configuracién nicleo-halo, donde la densidad oscila alrededor de un valor especifico.
La funcién virial muestra que el nicleo-halo esta en equilibrio virial, es decir, () ~ 0. Las
energias cinética y potencial oscilan alrededor del valor de relajacion, y la energia y masa

totales indican que el método numérico las mantiene casi constantes.

La densidad del niicleo-halo oscila en el espacio y en el tiempo alrededor de un perfil prome-
dio calculado de la siguiente manera:

(p) = /t ! (p)adt, (4.55)

conl' = ty—t; siendo el intervalo temporal sobre el cual se calcula el promedio temporal, con
ti = 1.0y t; = 1.4 Gyr; siendo (p)q el promedio sobre el dngulo sélido calculado de acuerdo
a la expresion (#.52)). Este perfil de densidad radial genera un potencial gravitacional radial
(V) através de la ecuacion de Poisson . Este perfil estacionario se caracteriza por la for-
macién de un niicleo soliténico, rodeado por un perfil que decae como r~3, aproximadamente
descrito por un perfil de NFW, como se muestra en [25, [73]]. En la Figura [4.36] se presenta
la densidad promedio calculada segiin esta férmula (4.52), junto con un ajuste utilizando la
expresion empirica para pyy dada en la ec. (4.30)) con los valores de ajuste r. = 0.2621 kpc,
ry = 0.9427 kpc y rs = 1.844 kpc. Estos valores satisfacen la relacion r, ~ 3.597r,, que es

aproximadamente el valor reportado en [25]. La densidad central se obtiene a partir del radio
kpc .
2p 4) M. La densidad p, se
. . » . mQQTC .
determina asumiendo que la densidad nucleo-halo es continua en 7. Por lo tanto, se tiene
2

Ps = psoliton<7nt>:_z (1 + :—i> , como en [97]].

del niicleo mediante la expresion (4.16) p. ~ 1.983 x 107 (
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Figura 4.34: Densidad del nucleo-halo en el tiempo inicial en el plano z = 0, producido
por la fusion de multiples nucleos. Los ejes estan normalizados con respecto al radio del
nucleo 7. ~ 0.2621 kpc, mientras que la densidad estd normalizada con respecto a p. ~
4.201 x 10" Mg, /kpc®. El circulo representa el radio de transicién r,/r. ~ 3.597 entre el
nucleo y halo.
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Figura 4.35: Diagnéstico que muestra la densidad mdxima normalizada con respecto a la
densidad promedio del nucleo, la energia cinética (K), energia potencial (I1), energia total
(K = K + W)y funcién virial () = 2K + W) normalizada con respecto a la energia total
inicial £(0), asi como la masa total (}/) normalizada con respecto a la masa inicial. Estos
parametros destacan el proceso de relajacion del halo, con oscilaciones de densidad alrededor
de un valor promedio. La funcién virial indica virializacién (@) = 0), y la estabilidad de la
energia total y la masa demuestra la unitariedad del método numérico.

Figura 4.36: El area sombreada representa los perfiles instantdneos promedio radiales de
la densidad del nucleo-halo formado, calculados mediante la formula en el intervalo
temporal 7. La linea s6lida representa el perfil promedio espacio-temporal calculado con la
férmula la cual es el promedio de las curvas grises. La linea vertical denota el radio
de transicion 7;, que separa la region del nticleo solitonico (r < r), descrito por la ecuacién
(#.15), de la regi6n de la envolvente (r > 1), descrita por el perfil NFW (#.19).
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4.4.2 Escenarios donde se integran las particulas de prueba

Hasta ahora, hemos construido lo que sera nuestra estructura nucleo-halo de trabajo para
el modelo FDM. Ahora, el movimiento de las particulas de prueba serd estudiado en dos
escenarios claramente diferentes:

1. Un primer escenario de prueba de fondo para comparacién, en el cual asumimos que
la densidad promediada espacio-temporal, representada por la linea negra en la Figura
4.36] es independiente del tiempo y esféricamente simétrica, generando el potencial
gravitacional estacionario (V).

2. Un segundo escenario, en el que la estructura, aunque casi en equilibrio virial, evolu-
ciona en el tiempo, resultando en una densidad granular altamente cinética en el halo
y un nucleo oscilante, lo que implica un potencial gravitacional V verdaderamente
dependiente del tiempo.

En el primer escenario, se deben resolver las ecuaciones de movimiento para particulas de
prueba en un potencial estacionario esféricamente simétrico. Esta es una suposicion tipica,
por ejemplo, al ajustar curvas de rotacién galdcticas, donde se promedian las estructuras
granulares para simplificar los modelos, como se ilustra en la seccién anterior 4.3

En el segundo escenario, la estructura evoluciona de acuerdo con el sistema SP (2.12))-(2.13).
Para este caso, continuamos la evolucion del nucleo-halo durante 1.274 Gyrs adicionales,
durante los cuales integramos las ecuaciones de movimiento de las particulas de prueba con
el fin de estudiar los efectos de la verdadera dindmica de la FDM.

44.3 Ecuaciones de movimiento para particulas de prueba

A continuacién, escribimos las ecuaciones de movimiento de una particula de prueba en cada
uno de los dos escenarios.

Potencial estacionario

En este caso, para el potencial promediado en el espacio y el tiempo (V'), que es esférica-
mente simétrico e independiente del tiempo, las ecuaciones de movimiento de una particula
de prueba toman la forma
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d* (zp) d{V)| (T
= VW, .. =— P 4.56
dt? Va=gz,) dr |, o ’ (4.56)
o equivalentemente
d* (T,) S
dt;’ + w2 (i) =0, (4.57)
donde
1 d(V)
2.=C 4.58
T T r—r, ’ (4.58)
y 1, = | (%) |, donde (Z,) representa la trayectoria de la particula de prueba en el potencial
estacionario (V), y también definimos (v,) := %ﬁ como su velocidad. En este caso, tene-
mos un escenario bien conocido: una particula bajo la influencia de una fuerza central. Aqui,
la energia especifica total (E,) = 3| (0,) |* 4+ (V) |7=(z,) y el momento angular especifico to-

tal <Lp> = (@) x (¥,) se conservan. Esto implica que la trayectoria de la particula ocurrird
unicamente en el plano perpendicular a <Lp>, que elegimos ser el plano z = 0.

La construccién de trayectorias circulares en este potencial servird como un caso de control
para realizar comparaciones, ya que en el segundo escenario donde el potencial depende

del tiempo, las trayectorias pueden desviarse de la circularidad. Una particula en una 6rbita
circular de radio 7, tiene la siguiente trayectoria:

(@p) =1 <cos (27‘(‘%) ,sin (27‘(‘%) ,0) , (4.59)
p p

donde 7}, = 27 /w, es el periodo en el cual la particula completa una 6rbita circular.

Potencial dinamico

En este escenario, una particula de prueba experimenta la fuerza gravitacional debido al po-
tencial gravitacional dependiente del tiempo V. En consecuencia, la trayectoria de la particula
de prueba evoluciona simultineamente con la dindmica de la estructura FDM, siguiendo las
ecuaciones de movimiento:
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2—»
-z,

dt?

— vV (4.60)

o o
r=xp’

donde 7, representa la posicion de la particula de prueba, y definimos su velocidad como

—

d . . p .
Up 1= %. Es importante notar que, en este caso, la energia especifica total de la particula de

prueba F, = %|17p|2 + V] 7,y el momento angular especifico Ep = T, X U NO se conservan
debido a la naturaleza dependiente del tiempo del potencial gravitacional. Esto implica que

la trayectoria de la particula no ocurrird tinicamente en el plano perpendicular a <Lp> como
en el escenario estacionario.

Condiciones iniciales

Para estudiar las diferencias de movimiento en los dos escenarios, resolveremos las ecua-
ciones de movimiento para un nimero de particulas de prueba cuyas condiciones iniciales
corresponderdn a trayectorias circulares en diferentes radios. Al resolver numéricamente las
ecuaciones para diferentes radios, y verificar con la férmula (4.59)), encontramos el pe-
riodo como funcién del radio, ilustrado en la Figura para el potencial estacionario (V).
De esta grafica extraemos la férmula empirica:

r 1.392 r 2
T, =a (—) 1— ay (-) : 4.61)
TC TC

con los parametros de ajuste a; = 1.064 x 1073y ay = 1.668 x 1075,

Se definen tres conjuntos de N, = 100 particulas. Usamos condiciones iniciales para movi-
miento circular con Z,(0) = 7,(1,0,0) y velocidad v, = 2;%(O, 1,0), donde el periodo 7,
estd dado por la férmula (4.61). Definimos tres conjuntos de IV, = 100 particulas: el primer
conjunto con posiciones iniciales = distribuidas uniformemente en el intervalo r, € (0, 7o),
donde ry = 92.99r.. Observamos que estas particulas tienen posiciones iniciales tanto dentro
del nucleo como en la region del halo. Los conjuntos segundo y tercero tienen posiciones
iniciales = ligeramente desviadas de las del primer conjunto, de manera que para el segun-
do conjunto las posiciones se multiplican por un factor de 1.001, y para el tercero por 1.01.
La idea es estudiar posteriormente la sensibilidad a las condiciones iniciales para prever un
comportamiento cadtico.
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Figura 4.37: Periodo en el que una particula de prueba completa una 6rbita circular alrede-
dor del sistema para el potencial estacionario (1), donde los puntos negros representan la
solucion numérica y la linea punteada gris una féormula de ajuste.

Condiciones de frontera

Por lo general, las condiciones de frontera no se consideran necesarias para ecuaciones dife-
renciales ordinarias de particulas de prueba. Sin embargo, cuando se trabaja con el potencial
requerido en la segunda ley de Newton, que estd confinado al dominio numérico donde se co-
noce la solucion, es necesario aplicar las mismas condiciones de frontera que en el sistema SP
(2.10H2.11). En nuestro caso, se emplean condiciones de frontera periddicas. En consecuen-
cia, una particula que sale del dominio numérico por una cara, reingresa por la cara opuesta,
manteniendo asi la consistencia con el potencial gravitacional.

Finalmente, la integracion de las ecuaciones de movimiento se lleva a cabo con un método
de Runge-Kutta de cuarto orden.

444 Movimiento de particulas de prueba

Caso de potencial estacionario

Para comprobar que la integracién numérica de las trayectorias funciona correctamente, re-
solvemos las ecuaciones de movimiento para el potencial (V) y comparamos con
la solucion exacta (4.59). Los resultados de la integracion numérica son consistentes con
los resultados exactos, segun los cuales las posiciones de las particulas estan dadas por
(xp) = rcoswt], (yp) = 7sin[w,t], (z,) =0, donde la frecuencia angular y el periodo para

. . . . v
una particula que inicia en un radio r son, respectivamente, w, = %% y T, = 27 /w,.
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Figura 4.38: A laizquierda, trayectorias de una muestra de particulas de prueba en el potencial
estacionario en el plano z = 0, las cuales son circulares y, por lo tanto, consistentes con la
descripcion de las condiciones iniciales. A la derecha, la energia total en funcion del tiempo
para la misma muestra de particulas de prueba, lo que ilustra la conservacion de energia.

Los resultados se ejemplifican en la Figura para una muestra del conjunto completo
de condiciones iniciales. A la izquierda, se muestra que las trayectorias son verdaderamente
circulares, y a la derecha, que se satisface la conservacion de la energia dentro de la precision
numeérica, ya que las trayectorias se mantienen en el mismo camino durante los 1.4 Gyrs de
evolucion.

Potencial dependiente del tiempo

En este caso, resolvemos las ecuaciones de movimiento durante la evolucion de la es-
tructura niicleo-halo segin el sistema (2.10)-(2.11)), del cual extraemos V" en todos los instan-
tes. Integramos para todas las condiciones iniciales y finalmente rastreamos las trayectorias
de las particulas que eran circulares en el caso del potencial estacionario.

La Figura .39 ilustra la proyeccién de algunas trayectorias de particulas de prueba en di-
ferentes planos, bajo la influencia del potencial completamente dependiente del tiempo V.
Estas se comparan con las trayectorias bajo el potencial promedio estacionario (V). Las tra-
yectorias muestran un comportamiento erratico para radios iniciales pequefios, cercanos y
dentro del ndcleo, donde parecen ser cadticas. Para radios iniciales mds grandes, alejados del
nucleo, las trayectorias parecen ser mas uniformes, aunque también se desvian de los caminos
circulares.
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Figura 4.39: Las lineas azules representan las trayectorias de las particulas de prueba bajo
la influencia del potencial estacionario (V'), para algunas de las condiciones iniciales de la
Figura[d.38] Las lineas naranjas representan las trayectorias de las particulas bajo el potencial
completamente dependiente del tiempo V', para las mismas condiciones iniciales. Las tres
filas muestran las proyecciones de las trayectorias en los planos zy, zz y yz, respectivamente.
Cada columna corresponde a las condiciones iniciales z,(0) = 0.6000, 6.560, 12.53, 18.49 y
—15.27, de izquierda a derecha.

Para un andlisis mas detallado, la Figura presenta, a la izquierda, la distancia radial de
las particulas r, = /22 + y2 + 22 como funcién del tiempo. Se observa que para radios pe-
quenos, las trayectorias oscilan con diferentes modos, mientras que para radios mas grandes,
tienden a recuperar trayectorias circulares. Esta figura ilustra como V" acelera a las particulas
con diferentes modos e intensidades a lo largo del tiempo. A la derecha, mostramos la energia
especifica total de las particulas, la cual no se conserva, indicando como el potencial inyecta
energia en las trayectorias.

Trayectorias caéticas

La trayectoria de la particula parece ser cadtica en el caso del potencial completamente de-
pendiente del tiempo, mostrando un comportamiento marcadamente diferente al caso radial.
Sin embargo, ahora demostraremos que la trayectoria es cadtica en un sentido mas estricto.
Un sistema dindmico de primer orden se dice que exhibe caos si (ver, por ejemplo, [[104]):
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Figura 4.40: A la izquierda, la distancia al origen de las particulas de prueba como funcién
del tiempo, en el caso del potencial dindmico V. Estas difieren del radio constante corres-
pondiente al caso estacionario en la Figura[4.38] Estas diferencias surgen porque el potencial
dindmico acelera a las particulas y, en consecuencia, la energia especifica no se conserva,
como se ilustra a la derecha.

1. Es un sistema no lineal.
2. Es un sistema en al menos tres dimensiones.

3. Es sensible a las condiciones iniciales.

Las dos primeras condiciones se cumplen para las ecuaciones de evolucién de las particu-
las de prueba, ya que el potencial es no lineal y el sistema tiene dimension seis cuando se
considera como un sistema de primer orden en el tiempo. Para verificar la tercera condicion,
utilizamos las trayectorias de los tres conjuntos de condiciones iniciales para las particulas
definidas anteriormente. Las filas superior, intermedia e inferior de la Figura muestran
las proyecciones de las trayectorias de cinco particulas en los planos xy, 2 y yz, respecti-
vamente. Cada columna corresponde a un valor de las condiciones iniciales z,(0) = 1.19,
4.18,7.16, 10.14 y 13.42 kpc de izquierda a derecha. El segundo y tercer conjunto tienen una
coordenada inicial x modificada por un factor de 1.01 y 1.001, respectivamente. Observe que,
para las tres primeras columnas, correspondientes a posiciones iniciales cercanas al ntcleo,
las trayectorias son muy sensibles a las condiciones iniciales. Para las ultimas dos columnas,
correspondientes a posiciones mds alejadas del nucleo, las trayectorias se comportan de ma-
nera mds similar para las tres posiciones iniciales, aunque contindan desvidndose debido a la
diferencia en las condiciones iniciales.

Para comprobar si existe una desviacion exponencial entre trayectorias inicialmente muy
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Figura 4.41: Sensibilidad a la posicion inicial en la trayectoria de cinco particulas de prueba
con tres condiciones iniciales cercanas z,(0) = =z, 2,(0) = 1.01zg y 2,(0) = 1.001x.
Las filas superior, intermedia e inferior muestran las proyecciones de las trayectorias de las
particulas en los planos zy, rz y yz, respectivamente. Cada columna corresponde a las con-
diciones iniciales z,(0) = 1.19, 4.18, 7.16, 10.14 y 13.42 kpc, de izquierda a derecha.
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Figura 4.42: Exponente de Lyapunov maximo como funcién de la coordenada inicial x de las
particulas de prueba. Las lineas continuas corresponden a desviaciones entre las condiciones
iniciales x,(0) = o y 2,(0) = 1.01xz,. Las lineas punteadas corresponden a desviaciones
entre las condiciones iniciales ,(0) = zo y x,(0) = 1.001xy.

cercanas, calculamos el Exponente de Lyapunov Méaximo (ELM), definido como:

1 |0a(t)]
A=1i Jif -1 —_— 4.62
o0 |50 £ O (|5ﬂ’(0)| ’ (+:62)

donde @ = (%), U,) es la posicién en el espacio fase de la particula, que representa el estado
del sistema dindmico de seis dimensiones, y du es el desplazamiento entre dos soluciones que
se comparan, con una separacion inicial §%(0). Sin embargo, como no conocemos la solucién
en el dominio continuo, aproximamos el exponente ELM de la siguiente manera:

2 |0t(t/2)|
Ax —log ( 570 ) . (4.63)

La Figura 4.42| muestra el ELM para los vectores de desplazamiento entre el primer y el
segundo conjunto de condiciones iniciales, y entre el primero y el tercero. Observa dos co-
sas: primero, independientemente del desplazamiento inicial, el ELM es siempre positivo,
lo que indica la presencia de caos en todo el dominio numérico. Segundo, el caos es mds
pronunciado en una regién cercana al nucleo.

Hemos mostrado los efectos de la anisotropia y la dependencia temporal de una estructura
nucleo-halo FDM en las particulas de prueba.

Las condiciones iniciales de las particulas de prueba corresponden a trayectorias circulares,
las cuales verificamos que se mantienen circulares cuando el potencial gravitacional utilizado
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es el potencial promedio en el tiempo y en el dngulo sélido. Sin embargo, una vez que estas
mismas trayectorias se integran en la estructura anisotrépica y dependiente del tiempo, las
trayectorias no permanecen circulares, ni siquiera en el mismo plano. En su lugar, muestran
un comportamiento erratico, el cual es mds evidente para trayectorias dentro o cerca del
nucleo que en la region del halo.

Para cuantificar la sensibilidad de las trayectorias a las condiciones iniciales, integramos tra-
yectorias de particulas de prueba con posiciones iniciales cercanas y determinamos el ex-
ponente de Lyapunov de su divergencia. El resultado muestra que este siempre es positivo,
lo que indica que las trayectorias son cadticas en todo el dominio, con exponentes mayores
cerca del nucleo.

Una implicacién directa de este resultado es que las trayectorias de particulas de prueba obte-
nidas al considerar que la estructura FDM esta dada por las férmulas nicleo-halo estaciona-
rias y esféricamente simétricas, las cuales son promedios de la configuracién anisotrépica y
dependiente del tiempo, son muy diferentes de aquellas obtenidas al considerar la estructura
real, es decir, la configuracion no promediada, anisotrépica y dependiente del tiempo.

El comportamiento colectivo de las particulas, por ejemplo el de un gas sobre una estructura
ndcleo-halo FDM, puede revelar nuevas correlaciones y posiblemente un comportamiento
colectivo mds estacionario, como los obtenidos para sistemas colectivos en (e.g. [105, [106]).

Con estos resultados, hemos concluido el andlisis del comportamiento dinamico de particulas
de prueba bajo la influencia de una estructura nicleo-halo de FDM anisotrdpica y depen-
diente del tiempo. Las trayectorias muestran una sensibilidad significativa a las condiciones
iniciales, asi como un comportamiento cadtico generalizado, especialmente en las regiones
cercanas al nucleo.

Sin embargo, las particulas de prueba representan solo una aproximacion idealizada. En es-
cenarios fisicos mas realistas, la materia visible, como el gas baridnico, interactia dindmi-
camente con la materia oscura en estructuras galdcticas. Por lo tanto, es necesario estudiar
coémo se comporta un gas ideal cuando estd acoplado a las estructuras de FDM.

En el proximo capitulo, exploraremos esta interaccion dindmica entre la materia oscura difusa
y el gas visible. Analizaremos c6mo el potencial gravitacional dependiente del tiempo afecta
a la evolucion del gas, asi como las posibles correlaciones colectivas que puedan surgir en
este sistema combinado.



Capitulo

Simulaciones de Materia Oscura Difusa Acoplada a un Gas
Ideal

En el capitulo anterior (4), analizamos la dindmica y los estados estacionarios de la FDM
considerada como la tinica componente de una estructura. Esta eleccion se justifica por ra-
zones cosmoldgicas: aproximadamente el 72 % del contenido total de materia y energia del
universo corresponde a la energia oscura, la cual domina exclusivamente en escalas cos-
mologicas al ser responsable de la expansion acelerada del universo. Por otro lado, cerca del
24 % corresponde a la materia oscura, que desempefia un papel gravitacional fundamental
en la formacién y evolucion de estructuras. Finalmente, el 4 % restante estd compuesto por
materia visible.

Si bien en escalas galdcticas la materia oscura predomina en términos gravitacionales, la
materia visible es esencial, ya que es la que podemos observar directamente mediante teles-
copios. Por ello, en este capitulo extendemos el estudio al caso en el que la materia visible se
acopla gravitacionalmente a la materia oscura, utilizando el modelo de Schrodinger-Poisson-

Euler (2.34{2.39).

Ademas, el capitulo anterior sirve como una validacion del codigo implementado para la
evolucion de la FDM, mientras que una prueba independiente del c6digo para la solucion de
las ecuaciones de Euler se presenta en el apéndice

En este capitulo se presentan simulaciones numéricas que exploran la interaccién gravita-
cional entre la FDM y el gas, utilizando el modelo de SPE. Se abordan tanto soluciones
estacionarias como dindmicas, investigando su estabilidad y el impacto de la materia visible
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en la evolucion de la estructura galictica.

En la Seccién[5.1]se analizan las soluciones estacionarias del sistema acoplado de SPE, cono-
cidas como estrellas de fermiones y bosones Newtonianas (NFBS, por sus siglas en inglés),
en las que se estudian el equilibrio y la distribucion de la materia oscura junto con el gas
de fermiones. A continuacion, en la Seccion se exploran procesos dindmicos como las
fusiones de NFBS, prestando especial atencién a como estas fusiones afectan la evolucion de
los halos galécticos.

SECCION 5.1

Estrellas Newtonianas de Fermiones y Bosones

En esta seccion estudiamos la construccion de soluciones estacionarias del sistema SSPE
bajo simetria esférica, con el objetivo de describir configuraciones compuestas por materia
bosonica y fermionica. Estas soluciones, conocidas en relatividad general como estrellas de
bosones y fermiones, las denominamos en nuestro régimen newtoniano como NFBS (por sus
siglas en inglés).

Ademads de su construccidn, exploramos la estabilidad de estas configuraciones, ya que po-
seen un potencial interés astrofisico. En particular, su estabilidad es relevante para compren-
der su viabilidad en escenarios astrofisicos realistas, donde las interacciones entre la materia
bosénica y fermidnica pueden desempenar un papel clave en la evolucion de estas estructuras.

Finalmente, investigamos la atractoriedad de estas soluciones en el espacio de configura-
ciones. Al igual que las Estrellas de Bosones Newtonianas [635], estas configuraciones se
comportan como soluciones atractoras dentro de una regién de pardmetros cercana al equi-
librio. Las soluciones sin el componente fluido ya habian sido identificadas como atractoras
en escenarios simples [[10, [107] y como atractoras promedio en simulaciones de formacion
de estructuras [22} [108]]. Determinar si estas soluciones siguen siendo atractoras cuando se
incluye materia visible completamente acoplada a la FDM es un aspecto particularmente
interesante de este estudio.

5.1.1 Soluciones estacionarias

Las ecuaciones estacionarias del sistema SPE (2.34}{2.39) se derivan bajo dos supuestos prin-
cipales: el pardmetro de orden se encuentra en un estado estacionario y el fluido que obedece
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las ecuaciones de Euler estéd en equilibrio hidrostatico. Ademads, se impone simetria esférica.
Bajo estas condiciones, el sistema queda expresado como:

dp v
e 5.1
dr Par 1)
1 d [ ,d

- - = 5.2
272 dr (T dr) VY Y, (5-2)

1d (,dVY ,
= dr ( _dr) = PV )

Para reformular el sistema en un conjunto de ecuaciones de primer orden, introducimos las

variables ¢ = 7"2% yM = 7“2%, obteniendo:

dp B %

o= P (5.4)
)

% - 7’27 (55)
% = 2r3(V — w)y, (5.6)
av M
dM
W = r (p + 1/}2) ) (5.8)

donde 47 M (r) representa la masa total integrada hasta el radio r. Para cerrar el sistema,
utilizamos una ecuacion de estado politrpica:

p=Kp*m, (5.9)

donde K es la constante politrépica y n el indice politrépico.

Para obtener soluciones fisicamente aceptables, imponemos condiciones de regularidad en
el origen, como p(0) = p. y ¥(0) = 1., ademas de condiciones asintdticas, lim, ., 1 =
lim, .o ¥ = 0, lo que permite interpretar w como un autovalor del sistema. En el caso del
fluido, la presion se integra hasta un radio finito R, definido como el primer cero de p,
correspondiente al radio del componente fermionico.
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A diferencia del caso desacoplado, donde las transformaciones de escalamiento permiten
generar familias completas de soluciones, el sistema acoplado requiere resolver (5.4}{5.9)
para cada par (., p.), fijando K y n.

Sin embargo, la constante politropica puede eliminarse mediante la transformacion:

{r,p,p.b, 6, Vi, M} — {K "2, K"p, K"p, K"*¢, ¢, V, K "> M} , (5.10)

lo que mantiene invariante el sistema (5.4H5.8) y transforma (5.9) en p = p'*'/". Esto equi-
vale a resolver el sistema con K = 1, permitiendo explorar soluciones tnicamente variando

(e, pe) para un n fijo.

Por ejemplo, consideremos n = 1.5, donde v = 1 + 1/n = 5/3, apropiado para gases
monoatomicos en equilibrio isentrépico. Exploramos el espacio de parametros (¢, p.) €
(0,1.25] x (0, 20], excluyendo cero en ambas componentes, ya que corresponden a soluciones
ya analizadas en el capitulod]y el apéndice

En la Figura el panel superior muestra las compacidades M,/ Reas Y Mrpm /790 de cada
componente en funcién de la densidad central p. para distintos valores de ¢.: 0.25, 0.5, 0.75,
1.0y 1.25.

En el panel inferior, se presentan las razones de masa Mg,/ Mppy y de radios Rg,s/rg para
los mismos valores de .. Aqui, el radio rgy se define como el radio r dentro del cual se
encierra el 90 % de la masa total del sistema.

1. Compacidad de la componente fermionica (M 44 / Ryqs): La compacidad del politrépo
es una funcion creciente de p., lo que indica que el gas de fermiones tiende a ser mas
compacto a medida que su densidad central aumenta. Sin embargo, esta compacidad
disminuye con respecto a ., reflejando que, a medida que el componente bosénico se
vuelve mds dominante, el gas de fermiones se expande y pierde compacidad.

2. Compacidad del componente bosonico (Mppr/T90): El comportamiento de la compa-
cidad bosodnica es opuesto al del componente fermidnico. Es una funcién decreciente
de p. e incrementa con valores mayores de )., mostrando que el componente bosénico
tiende a ser menos compacto a medida que el gas de fermiones se densifica.

3. Razon de masas (M,,s/Mppas): Esta razén crece con p,, lo que sugiere que el compo-
nente fermidnico se vuelve mas masivo en comparacion con el bosénico a densidades
centrales mayores. Ademads, la razén disminuye con 1., reflejando la mayor contribu-
cién de la materia bosonica en sistemas con valores elevados de /..
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4. Razon de radios (R, /1T90): Este pardmetro aumenta con p., mostrando una expansion
relativa del gas de fermiones en comparacion con el componente bosénico. Para valores
de p. < 5, esta raz6én disminuye con ., pero para densidades centrales mayores, se
aproxima asintéticamente a una cota g, ~ 2.63ryj.

Es importante notar que estas cuatro cantidades son invariantes bajo la transformacion (5.10)).
Esto implica que las relaciones entre las propiedades fisicas de ambos componentes (fer-
miénico y bosénico) no dependen del valor especifico de la constante politrépica K, sino
tnicamente de los pardmetros iniciales (1., p.) y del indice politr6pico n.

Figura 5.1: Compacidades, razones de masa y radios. Panel superior: compacidad del com-
ponente fermiénico Mg,s/ Ry (izquierda) y del bosénico Mppas/reo (derecha) en funcién
de p. para ¢b. = 0.25,0.5,0.75, 1.0, 1.25. Panel inferior: razones Mg,s/Mppas (izquierda) y
Rygas /790 (derecha) en funcién de p.

Para analizar en mayor detalle la dependencia individual de cada componente en términos
de los valores iniciales del par (¢, p.), en la Figura se muestra del lado izquierdo la
desviacion porcentual del radio del nucleo r.. Este se define, al igual que en el capitulo
anterior, como el valor donde la densidad bosoénica es la mitad de su valor central, es decir,
¥?(r.) = 1)? /2. Se compara con el valor de 7. sin componente fermiénica, dado por 7.(p. =
0) ~ 0.130/v/4.. En el lado derecho de la figura, se presenta el radio del gas R,,s. Ambas
cantidades se muestran en funcién de la razén de masas Myqs/Mppys para los valores 1. =
0.25,0.5,0.75,1.0 y 1.25.
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Figura 5.2: Panel izquierdo: Desviacion porcentual del radio del nucleo r. del componente
bosdnico respecto a su valor cuando p. = 0. Panel derecho: Radio del gas, que presenta un
valor maximo en M,s/Mppa ~ 4.38. Ambas cantidades se presentan como funcion de este
invariante, para los valores de ¢, = 0.25,0.5,0.75,1.0 y 1.25.

1. Desviacion porcentual 100Ar./r.(p. = 0): Esta cantidad es una funcién creciente de
la raz6n de masas, lo que indica que la contribucién de materia fermidnica es significa-
tiva para nicleos donde M,/ Mppyr > 0.1. Para estos valores, el nicleo se comprime
cerca del 10 %, lo que sugiere que en niicleos donde la materia visible constituye apro-
ximadamente el 10 % de la materia oscura, los modelos que tratan ambos componentes
de forma independiente pueden presentar errores porcentuales mayores a este valor.

2. Radio del gas R,qs: Este radio alcanza un valor maximo, independiente del valor del
parametro central 1., cercano a M,;/Mppyr ~ 4.38. Este resultado, al ser un inva-
riante de [, es general para todas las NFBS. El punto donde la componente fermidnica
deja de expandirse y comienza a comprimirse ocurre cuando Myqs ~ 4.38Mppy.

Con esto podemos ver que el radio del niicleo bosonico 7. depende tanto del pardmetro de
orden central ). como de la densidad central p.. Por lo tanto, es de esperar que el perfil
empirico de la estrella de bosones también cambie, como ocurre en el caso de una estrella
de bosones con autointeraccion [76] o en el sistema de un agujero negro acoplado con una
estrella de bosones [75], donde el perfil empirico cambia respecto a la féormula

Sin embargo, aunque no proporcionemos un ajuste de 7. en términos de estas dos cantidades,
podemos ver que con el r. apropiado, el perfil empirico sin materia visible dado por 4.15
aun sigue siendo una buena aproximacion para la solucién numérica. Esto se muestra en el
panel izquierdo de la Figura [5.3] donde se presentan las densidades bosénicas de algunas de
las soluciones numéricas normalizadas respecto a su valor central ¢ en funcién del radio r
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Figura 5.3: Panel izquierdo: Densidades bosonicas de soluciones numéricas normalizadas
respecto a su valor central )2 en funcién del radio r normalizado respecto al radio del nicleo
7., junto con el ajuste empirico dado por 4.15] Panel derecho: Densidad del componente fer-
miénico normalizada respecto a su valor central p. en funcién del radio r, normalizado res-
pecto al radio del gas Ryq,. A diferencia del componente bosonico, el perfil del componente
fermidnico muestra un comportamiento mas complejo que dificulta establecer una férmula
empirica para describirlo. Notar que ambos perfiles son invariantes bajo la transformacion

normalizado respecto al radio del nticleo r., junto al ajuste empirico d.13]

Por otro lado, en el panel derecho se muestra la densidad del componente fermionico norma-
lizada respecto a su valor central p. en funcidn del radio r normalizado respecto al radio del
gas Ry, A diferencia del componente bosonico, este perfil tiene un comportamiento mds
exdtico respecto a esta normalizacidn, dificultando poder establecer una férmula empirica
que lo describa.

Notar que estos perfiles son independientes de la transformacion (5.10).

5.1.2 KEstabilidad

Un aspecto de vital importancia al analizar las soluciones estacionarias de cualquier sistema
es determinar si son soluciones estables. En este sentido, exploramos la estabilidad de estas
soluciones, de manera similar a como se hizo en el caso de las estrellas de bosones puras.1.2]
Consideramos que las soluciones obtenidas numéricamente ya estan perturbadas debido a la
aproximacion inherente a los métodos utilizados, por lo que investigamos si estas soluciones
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son estables bajo dicha perturbacion.

Para ello, establecemos commo caso de prueba K = 10, ya que otro valor puede obtenerse
tomando la transformacion . Estudiamos tres situaciones: en el primer caso, la materia
oscura bosonica domina sobre la materia visible; en el segundo caso, ambas contribuyen por
igual; y en el tercer caso, la materia visible domina sobre la componente oscura. En particular,
elegimos los invariantes M,,s/Mppy = 0.1, 1y 10 para estudiar estos tres escenarios,
respectivamente fijando el valor central ¢). = 1y el indice politrépico n = 1.5.

La evolucidn del sistema se analiza bajo dos escenarios distintos:

1. Evolucion isentropica: En el primer escenario, suponemos que la evolucion mantiene
al gas en un estado isentrépico, por lo que la evolucion se realiza utilizando la ecuacion

de estado politrépica

2. Evolucion libre: En el segundo escenario, suponemos que el politropo estd en un estado
isentropico al tiempo inicial, y se permite una evolucién libre mediante la ecuacion de
estado de un gas ideal

Configuracion de las Simulaciones

Para los propdsitos de las simulaciones realizadas en este capitulo, utilizamos un esquema
de integracion temporal de Runge-Kutta de tercer orden (RK3) e imponemos condiciones
de contorno periddicas en todas las variables. El término del lado derecho de la ecuacioén
de Schrodinger (2.28) se discretiza mediante la FFT, mientras que las ecuaciones de Euler
(2.24)-(2.26)) se resuelven con métodos de Captura de Choques de Alta Resolucidn, especifi-
camente con el esquema de flujos HLLE y el limitador minmod para la reconstruccién de
variables. La ecuacion de Poisson (2.29) se resuelve en cada paso de RK3 utilizando el méto-
do FFT. El paso temporal se establece para satisfacer la condicién de Courant:

At 1

— < —, 5.11

h? ~ om ( )
segun la recomendacion de [19]. Finalmente, el sistema de ecuaciones de SPE se cierra con
la ecuacion de estado del gas ideal (2.5)) durante la evolucion.

Las soluciones esféricamente simétricas se interpolan sobre el dominio espacial cartesiano
D = [—40,40]3, que se discretiza utilizando N = 128 puntos en cada direccion. La evolucién
se explora en el dominio temporal ¢ € [0,200], discretizado con resolucién temporal At =
CFLh? donde CFL = 0.1 y h = 5/16, utilizando condiciones de frontera aisladas.
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Evolucion isentropica

En la Figura la primera columna muestra la evolucion de la densidad central de ambas
distribuciones de materia, normalizadas con respecto a su valor inicial. La segunda columna
muestra la transformada de Fourier de estas series temporales, donde se obtiene la frecuencia
de oscilacion w,. = 0.3140, 0.3180 y 0.3142 para los casos con M R = 0.1, 1y 10, respectiva-
mente. Se observa que las soluciones oscilan cerca de la configuracion de equilibrio, lo que
indica estabilidad.

Evolucion libre

En la Figura 5.5 del lado izquierdo se presenta la evolucién de las densidades centrales
normalizadas respecto a sus valores centrales al tiempo inicial, mientras que del lado derecho
se muestran las transformadas de Fourier de estas sefiales. La primera, segunda y tercera
fila corresponden a los casos con M R = 0.1, 1 y 10, respectivamente. Con respecto a estos
resultados, es posible afirmar que las soluciones en una evolucién con una ecuacion de estado
de un gas ideal no permanecen estables; sin embargo, las soluciones convergen a otra solucidén
estable. El resultado de la evolucion isentrépica se mantiene, es decir, el gas adquiere los
mismos modos de oscilacion que la componente bosonica.

La Figura muestra instantdneas de la evolucién de la densidad del fluido y la funcién
de onda para los tres casos representativos. Se observa que al evolucionar una solucién en
equilibrio con una EoS de gas ideal, la distribucion de densidad del gas no se mantiene en
equilibrio, mientras que la de la funcion de onda si lo hace.

En la Figura se muestra la energifa interna total del gas en funcién del tiempo. Se ob-
serva un incremento, lo que indica una compresion y calentamiento del gas, seguido de una
expansion que lo enfria.

5.1.3 Atractoriedad

Condiciones iniciales. Para la FDM seguimos el enfoque presentado en la Seccion .1} en
la cual se demuestra que la condensacion es una caracteristica inherente del sistema FDM
en diversos escenarios, independientemente de la forma inicial de la nube [[19]]. En conse-
cuencia, la condicioén inicial para el componente FDM se define en el espacio de momentos
mediante el parametro de orden U(7) = Ae %%°¢*®, donde O es una fase aleatoria en el
intervalo [0, 27] en cada punto del espacio de momentos, y A es un factor de normalizacién
que garantiza una masa total Mpp,.
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Figura 5.4: Evolucion con la EoS politrépica. A la izquierda se muestra la evolucion de las
densidades centrales. A la derecha, la transformada de Fourier de estas densidades.
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Figura 5.5: Instantdneas de la densidad del gas y la funcion de onda. Se observa que la funcién
de onda oscila cerca de la configuracién inicial, mientras que el gas se redistribuye.
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Figura 5.6: Energia interna total del gas ideal en funcién del tiempo para los valores M R =
0.1,1y 10.

Para el gas ideal (IG, por sus siglas en inglés), seguimos una estrategia similar. Establecemos
las condiciones iniciales de las variables del fluido generando una funcién de onda auxiliar
andloga a la de FDM. Posteriormente, extraemos la densidad de masa y la velocidad a través
de la transformacién de Madelung (2.15)). Finalmente, establecemos la presion inicial usan-
do la ecuacion de estado politrépica y calculamos la energia interna especifica inicial
mediante la ecuacion de estado del gas ideal (2.5]).

El dominio espacial es un cubo discretizado con N = 128 puntos de malla por dimension, lo
que implica una resolucién espacial de h = L /128 = 9/64.

En el contexto cosmoldgico, esta configuracion puede interpretarse como un conjunto ho-
mogéneo idealizado de fluctuaciones de densidad y velocidad, formadas durante la relajacion
violenta de un halo colapsado. Los pardmetros libres v y K, que caracterizan el /G, permiten
estudiar la sensibilidad de la configuracién final a las propiedades del medio interestelar mul-
tifase de la galaxia. Un comportamiento mas complejo, como el enfriamiento dependiente de
la densidad o la retroalimentacion cinética, no se espera que altere los resultados cualitativos,
aunque deberd incluirse para obtener predicciones cuantitativas, lo cual dejamos para futuros
estudios.

Espacio de Pardmetros. Utilizamos un indice adiabatico v = 5/3, correspondiente a un indi-
ce politrépico n = 3/2 en procesos isentropicos. Dado que la energia interna especifica es
proporcional a la temperatura y, en este caso, también a la constante politropica i, explo-
ramos los efectos de temperatura del /G en el instante inicial fijando K a valores de 0.1, 1
y 10 en unidades de cddigo. La masa de la FDM se fija en Mppy; = 1005.3 dentro de un
dominio cubico de tamafio L = 18, pardmetros tomados de una simulacién estandar de for-
macién de nicleos [19]. La masa del componente /G se define mediante una razén de masa
Mg =MR - Mppy, tomando MR = 0.1y 0.2.
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Figura 5.7: Evolucién de las densidades prpys y p para las simulaciones con MR = 0.1,
descritas mediante mapas de colores y contornos respectivamente. Estos graficos estan cen-
trados en el maximo de la densidad de FDM para facilitar la ilustracion. Cada columna pre-
senta instantdneas en los tiempos ¢ = 0, 7, 14, 50 y 100, mientras que cada fila corresponde a
simulaciones con constantes politropicas K = 0.1, 1.0 y 10. Se obtienen resultados similares
para MR = 0.2.

Evolucion. La evolucion de las densidades de FDM y gas se ilustra en la Figura[5.7| para las
simulaciones con M R = 0.1. Se presentan instantidneas en los tiempos ¢t = 0, 7, 14, 50 y
100, de izquierda a derecha en cada columna; cada fila corresponde a un valor diferente de
la constante politrépica inicial K = 0.1, 1.0 y 10, respectivamente. La densidad de FDM
estd representada mediante el mapa de colores, mientras que los contornos indican la distri-
bucion del /G. Estos graficos revelan que la condensacion de FDM impulsa el colapso del
componente /G, lo que sugiere que la mezcla inicial de FDM-IG, partiendo de una distri-
bucién aleatoria de ambas componentes, lleva a un colapso final. Se sabe que la FDM se
condensa en una configuracion estable que, en promedio, se alinea con el estado fundamental
del sistema de Schrodinger-Poisson [73, [13]. Este comportamiento lleva al /G a condensarse
siguiendo el potencial gravitacional del nucleo de FDM, lo que indica la formacion de una
Estrella de Bosones Newtoniana [[19]. Para analizar con mayor detalle este comportamiento,
se presentan diagndsticos adicionales a continuacidn.

Diagnostico. La evolucion muestra que la distribucion de la materia se condensa en una con-
figuracion casi estable. Para investigar esto con mas detalle, calculamos una densidad prome-
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Figura 5.8: Promedio angular de prpjs y p en diferentes instantes, centrado en el maximo de
prpym paralas simulaciones con M R = 0.1. La linea roja sélida, la linea azul discontinua y
la linea negra punteada corresponden a valores iniciales de K = 0.1, 1 y 10, respectivamente.
Se obtienen resultados similares para M R;o = 0.2.
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Figura 5.9: Maximo de pgpjs (izquierda) y p (derecha) en funcién del tiempo. Las filas
superior, media e inferior corresponden a constantes politropicas iniciales K = 0.1, 1 y 10.

Las lineas azules solidas y anaranjadas discontinuas indican los casos con razones de masa
MR =01y MRic =0.2.
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Figura 5.10: Evolucién temporal de las propiedades del FDM-IG para las simulaciones con
MR = 0.1. Estos gréficos ilustran el proceso de virializacion del sistema FDM-IG, que con-
duce a la formacion de una Estrella de Bosones Newtoniana. Para el componente FDM, se
muestran la energia cinética K rpy, la energia gravitacional W)y, la energia total Erpys y
el factor de virial Q rps, todos normalizados por la energia total absoluta inicial | Erp(0)].
Para el componente /G, se presentan la energia cinética K, la energia gravitacional Wy,
la energia interna Uy, la energia total F;q y el factor de virial ();¢, cada uno normalizado
por la energia total absoluta inicial | E'7¢(0)|. Estos diagndsticos energéticos resaltan la esta-
bilizacién del sistema en una configuracién virializada, con ambos componentes alcanzando
valores de energia estables con el tiempo. Finalmente, Qrpy ~ 0y Q¢ ~ 0 con el tiempo,
lo que indica que ambas componentes evolucionan de manera cercana a un estado virializado
por separado. Se obtienen resultados similares para M R = 0.2.
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Figura 5.11: Promedio angular de prpys (izquierda) y p (derecha) para el caso MR =
0.1, K = 0.1 en t = 100, cuando el nuicleo se ha relajado. Estas densidades en el nicleo
se comparan con las densidades de una Estrella de Bosones Newtoniana. Considerando que
las NFBS se construyen usando una ecuacion de estado politropica [74]], encontramos que la
NFBS que ajusta estas densidades relajadas del nicleo FDM-IG tiene una constante politropi-
ca de aproximadamente 103.5. Estos resultados indican que el nicleo FDM-IG se aproxima
a una NFBS estable, en equilibrio hidrostético radial y con entropia casi conservada, lo que
respalda la naturaleza atractora de las NFBS. Todas las demds simulaciones presentan ajustes
similares. Para este ajuste, no se emple6 una férmula universal fenoménologica para describir
las densidades, sino que se resolvié el problema de autovalores de las NFBS repetidamente,
buscando los parametros de ajuste mediante un Algoritmo Genético.
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diada angularmente sobre el dngulo sélido Q = [0, 7] x [0, 2n], dada por fu, = & [,, f dS2,
que utilizamos para calcular las densidades promediadas. En nuestro caso, f serd pgpas y p.
La Figura[5.8| presenta las densidades promediadas angularmente de los componentes FDM-
IG para las simulaciones con M ;¢ = 0.1, mientras que se encuentran resultados similares
para M R;c = 0.2. Cada fila corresponde a promedios calculados en los tiempos ¢ = 0, 7, 14,
50 y 100. Las lineas rojas continuas, azules discontinuas y negras punteadas corresponden a
las constantes politropicas K = 0.1, 1 y 10, respectivamente, utilizadas en el tiempo inicial.
La FDM forma un nucleo soliténico rodeado de una cola extendida, mientras que el compo-
nente IG muestra que, después de 14 unidades de tiempo, su perfil de densidad se vuelve mas
compacto a medida que K es mds pequefio. Este comportamiento sugiere que temperaturas
iniciales més altas resultan en una menor densidad central de la configuracién final.

La evolucién de la condensacion, al menos la de la FDM, como se indica en [[13}[19], puede
seguirse a través del maximo de la densidad, que revela como el nicleo acumula masa de
los alrededores hasta su saturacion. En la Figura mostramos el maximo de prpy y p
como funcidn del tiempo, para los dos valores de M R = 0.1,0.2 y los tres valores de K =
0.1, 1, 10. Las lineas continuas azules y las discontinuas naranjas representan los resultados
para MR = 0.1 y MR = 0.2. En todos los casos, el maximo de prpj; crece como es tipico
sin el IG, comenzando en el tiempo de condensacion 7, [13,[19], en nuestro caso 7, ~ 7,y a
partir de ahi empieza a formarse la condensacion de un nucleo. Por otro lado, la densidad del
IG antes de 7, es errdtica e incluso disminuye, lo que indica una etapa de distribucion casi
uniforme; sin embargo, después de 7, la densidad del IG crece y se estabiliza, lo que indica
que, después de que la FDM comience a condensarse y su potencial gravitacional dominante
se profundice, el /G comienza a acumularse alrededor y se estabiliza. Esto se confirma con
las instantdneas de la Figura[5.7]

El proceso de condensacion resulta en un nucleo FDM-IG que se asienta en una configuracion
virializada del sistema SPE, como se muestra a continuacion. La Figura muestra la evo-
lucién de las diversas energias involucradas para las simulaciones con M R; = 0.1. Para el
componente FDM, estas energias incluyen la energia cinética Kppy = —3% [, U*V2U d°z,
la energia gravitacional Wrpy = 3 [, |¥[*V dx, laenergfa total Eppy = Kppy+Wrpa,
y el factor virial Qrpy = 2Kppy + Wepas. Para el componente gas, los escalares son
la energfa cinética K; = % [, p|v]? d*z, la energfa gravitacional Wi = 3 [, pV d®z, la
energia interna U = f pPe d3x, la energia total E;¢ = K;g + Wi+ Ujg, y el factor virial
Qrc = 2K + Wie + 3Uj¢. Resultados similares se encuentran para las simulaciones con

MR =0.2.

Los graficos ilustran dos aspectos clave de la evolucion. En primer lugar, el factor virial
Q = Qrpu + Q1 ~ 0 para tiempos t > 7, indica que el sistema ha alcanzado un equilibrio
dindmicamente estable. Este valor cercano a cero de () es un indicador confiable de virializa-
ciéon. Como resultado, la estructura general ya no experimenta cambios significativos, lo que
indica que el sistema se ha asentado alrededor de una configuracion estable.
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Una segunda pista es la disminucién de la energia cinética del /G hacia cero, lo que no so-
lo indica la aproximacion a un estado estacionario, sino también la aproximacion hacia un
equilibrio hidrostético. En el equilibrio hidrostético, la fuerza gravitacional hacia adentro se
balancea con las fuerzas de presion hacia afuera, lo que da como resultado una configuracion
estable contra el colapso y la expansion. La pequefia energia cinética sugiere un movimiento
interno minimo dentro del gas, lo que indica que la distribucion del gas se ha asentado en una
configuracion casi estable. En consecuencia, esta configuracion relajada de FDM-IG, forma-
da a través del proceso de condensacion, transita hacia una estructura que mantiene el equili-
brio bajo su propia gravedad y fuerzas de presion, caracteristicas de un sistema autogravitante
y balanceado hidrostiticamente, como es el caso de una estrella de bosones Newtoniana en
equilibrio [[74]].

En la Figura [5.11] comparamos las densidades promediadas angularmente de prpas y p des-
pués de la relajacion, con las densidades de una solucién de estado fundamental de una es-
trella de bosones Newtoniana para una de nuestras simulaciones con M R = 0.1 en el tiempo
t = 100. Una informacion adicional sobre las estrellas de bosones es que se construyen asu-
miendo una EoS politrépica, y en el caso de la Figura la estrella de bosones que se
ajusta a las densidades tiene una constante politrépica ~ 103.5. Este tipo de ajuste sugiere
no solo que el sistema FDM-IG alcanza un equilibrio radial hidrostatico, sino también que la
entropia se conserva casi completamente, lo que resalta la robustez de estas soluciones.

Con respecto a las propiedades de las configuraciones finales, los resultados se pueden re-
sumir de la siguiente manera. Para un valor dado de M R, la densidad central y el radio del
nucleo de la FDM son independientes de la constante politrdpica inicial K del /G dentro de
un margen de unos pocos por ciento; por otro lado, para el /G, encontramos que a medida
que K es mayor, la densidad central es mas pequefia, lo que indica que cuanto mayor es /,
menos compacta es la distribucion del /G dentro del nucleo de la FDM. Esta diversidad de
distribuciones de FDM-IG se encuentra dentro de un amplio rango de soluciones de estrellas
de bosones [74].

SECCION 5.2

Fusiones de NFBS

Las NFBS representan soluciones atractras del sistema SPE y son consideradas el estado base
en configuraciones mixtas de materia oscura bosénica y materia visible. Estas estructuras
combinan un nucleo central compuesto por un condensado bosénico con una envoltura de
gas baridnico, logrando un equilibrio gravitacional.
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En el contexto cosmoldgico, las NFBS actian como posibles semillas de estructuras galacti-
cas en el universo temprano. Durante la evolucion del sistema, las interacciones gravitacio-
nales entre multiples NFBS pueden llevar a fusiones binarias o multintcleo, un proceso en el
cual los nucleos individuales se combinan formando una nueva estructura mas masiva y esta-
ble. Estas fusiones estdn marcadas por la transferencia de masa, la redistribucion energética
y la formacion de perfiles de densidad compuestos por ambos tipos de materia.

5.2.1 Sistemas Binarios

Los sistemas binarios de NFBS constituyen una configuracion clave para estudiar las interac-
ciones gravitacionales y de materia en modelos mixtos de materia oscura bosénica y materia
visible. Entre las dindmicas mds relevantes se encuentran dos escenarios principales: la fu-
sién frontal y la fusién con momento angular. En la fusién frontal, dos nicleos colisionan
directamente en trayectorias opuestas, lo que da lugar a la formacién de ondas de choque y
una separacion de las componentes de materia. Por otro lado, en una fusién con momento
angular, los nucleos orbitan alrededor de un centro de masa comiin, generando una redistri-
bucién dindmica més compleja marcada por la transferencia de momento angular, posibles
estructuras en forma de disco y mayor estabilidad gravitacional en las etapas finales del pro-
ceso.

Fusion frontal

En un choque frontal entre dos NFBS, la materia bosénica, debido a su naturaleza condensada
y autogravitante, atraviesa el punto de colision con minima dispersion. Por el contrario, el gas
barionico experimenta un calentamiento significativo y una redistribucion, lo que da lugar a la
formacion de ondas de choque. Este comportamiento es andlogo al fendmeno observado en el
Bullet Cluster [30], donde se evidencia una separacion espacial entre los perfiles de densidad
de materia oscura y materia visible. Este proceso es especialmente relevante a escalas locales,
ya que permite explorar fendmenos similares a los eventos de colision gal4ctica a gran escala.

El estudio de la dindmica de una fusién frontal en sistemas binarios proporciona informacion
crucial sobre la interaccion gravitacional, la disipacion de energia en el gas baridnico y la
estabilidad de los nicleos bosénicos en entornos densos.

Condiciones iniciales. El sistema esta compuesto por dos NFBS:

- La primera NFBS, ubicada en (—10,0,0), tiene una funcién de onda central 1. = 1,
una razon de masa M Ry = 0.1 y una velocidad inicial v,g = 8.
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- La segunda NFBS, con ). = 2y M Ry = 0.5, se coloca de forma que el centro de masa
del sistema permanezca en el origen de coordenadas.

Aunque estas estructuras se generan con una ecuacion de estado politropica, su evolucion se
modela bajo la ecuacién de estado de gas ideal, donde emergen como soluciones atractoras.

Condiciones de frontera. Las condiciones de frontera se configuran para minimizar pertur-
baciones externas. La funcién de onda se resuelve con condiciones periddicas mediante la
FFT. Para mitigar la propagacion de modos fuera del dominio, se implementa una espon-
ja numérica. El potencial gravitacional se calcula con condiciones de Dirichlet utilizando la
DST, mientras que el gas ideal emplea condiciones de flujo saliente.

Efecto Bullet Cluster. La Figura muestra la evolucién de los perfiles de densidad en la
simulacién, con instantdneas tomadas en los tiempos ¢ = 0, 1, 2 y 3. Los contornos azules
representan la densidad de la componente FDM, mientras que los contornos y mapas de
color rojos corresponden a la componente de gas ideal (/G). En el tiempo ¢ = 3, se observa
como parte del gas adopta la forma caracteristica de una “bala”, reproduciendo los aspectos
esenciales del fendmeno Bullet Cluster.

Andlisis de las energias. El sistema hidrodindmico, regido por las ecuaciones de Euler, es
inherentemente no lineal, lo que puede generar ondas de choque. Este fendmeno se describe
mediante las condiciones de Rankine-Hugoniot [54], que establecen que una discontinuidad
en la velocidad provoca una transferencia de energia cinética K a energia interna Ujs. La
Figura[5.13|muestra que, durante este proceso, la energia gravitacional W y la energia total
E¢ permanecen aproximadamente constantes.

En contraste, la componente FDM, al carecer de procesos de disipacion térmica, no expe-
rimenta este tipo de transferencia de energia. Su energia total Erpjs permanece positiva,
clasificando al sistema como no ligado. En sistemas binarios, una configuracion se conside-
ra ligada si su energia total es negativa, permitiendo la estabilizacién gravitacional [85]. Sin
embargo, en este caso, la falta de ligadura impide la formacién de una estructura fusionada es-
table, lo que mantiene separadas las componentes de materia. Tanto la energia cinética K pp
como la gravitacional Wrp), se mantienen casi constantes, salvo en el intervalo ¢ € [1, 1.5],
donde ocurre la superposicion de solitones.

Fusiéon con momento angular

Condiciones iniciales. Para estudiar el proceso de fusiéon con momento angular, se utilizan
diferentes configuraciones iniciales variando el pardmetro de impacto ¥, y la velocidad inicial
v,0. Los valores de y, considerados son 5 y 10, mientras que la velocidad inicial v, se toma
en el rango 0.1, 0.2, 0.3, 0.4 y 0.5, en unidades de cddigo. Las propiedades de cada NFBS se
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Figura 5.12: Evolucién de los perfiles de densidad en el sistema FDM-IG durante una fusién
frontal. Las instantdneas corresponden a los tiempos ¢ = 0, 1, 2 y 3, presentadas de arri-
ba hacia abajo. Los paneles de la izquierda muestran los isocontornos de densidad, donde
los contornos azules representan la componente FDM y los contornos rojos la componente
de gas ideal (IG). Los paneles de la derecha muestran la proyeccion de estos perfiles en el
plano z = 0, con isocontornos para la FDM y mapas de color para el /G. Se observa como
la componente /G experimenta calentamiento y redistribucion, formando una estructura de
“bala” en la ultima etapa, mientras que la componente FDM mantiene una mayor coherencia
gravitacional.
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Figura 5.13: Evolucién de las energias normalizadas respecto a su valor inicial para ambas
componentes en una fusién no ligada. Las energias mostradas son: energia interna del gas
Uia, energia cinética del gas K¢, energia gravitacional del gas Wy, energia total del gas
Ejq, energia cinética de la FDM K rp), energia gravitacional de la FDM Wrp,, y energia
total de la FDM Erp,,. Todas las energias estdn normalizadas respecto a la energia total £
ent = 0.
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mantienen constantes:

= La NFBS izquierda tiene un pardmetro de orden central {). = 1 y una razén de masa
MRy =0.1.

= La NFBS derecha tiene ). = 1.2 y dos posibles configuraciones de razén de masa,
MRy =0.1y0.2.

Condiciones de frontera. Las condiciones de frontera aplicadas al sistema son periddicas para
las variables dindmicas, incluyendo el pardmetro de orden y las variables conservativas del
fluido. Esto garantiza la conservacion de masa y energia tanto en la componente FDM como
en el gas ideal (IG). Por otro lado, el potencial gravitacional utiliza condiciones de frontera
de tipo Dirichlet, lo cual permite reproducir escalas dindmicas similares a las de un sistema
aislado. Esta combinacion de condiciones de frontera asegura una evolucion dindmica cohe-
rente, al tiempo que permite la simulacion de perturbaciones externas de forma controlada.

SECCION 5.3

Fusiones entre nicleos FDM y nubes de gas

Un escenario particularmente interesante es la interaccion entre la materia oscura y el gas
barionico. Suponiendo que las estructuras FDM dominan el campo gravitacional de un pozo
potencial, y que una nube de gas se aproxima a dicho pozo, surge la posibilidad de analizar
la dindmica del fluido acoplada a la dindmica de la FDM. Para explorar este fendmeno, rea-
lizamos simulaciones de la fusién entre un nicleo FDM y una nube de gas, modelada tanto
como un gas politrépico como un gas sin presion. El objetivo es demostrar las capacidades del
codigo para simular estos escenarios y utilizar herramientas de diagndstico que monitorean
las propiedades evolutivas del sistema FDM+gas.

5.3.1 Condiciones iniciales

El nicleo FDM se asume como la configuracion de equilibrio del estado base, un nucleo
perfecto, con una densidad central ﬁ que define su masa como Mpp), = 2.06 en unidades
de codigo [63]. La configuraciéon de gas puede ser una estrella TOV o una esfera de polvo,
con una masa Mg, correspondiente al 10 % o 50 % de la masa de la FDM. Definimos la
razon de masa como M R = Mgas/MFDM.
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Figura 5.14: Esquema ilustrando las condiciones iniciales de la fusion entre el nicleo FDM
y el fluido en el plano xy, con el centro de masa en el origen.

Las posiciones iniciales de los centros del nicleo FDM y la configuracion de gas se establecen
en (MR - x9, MR - y0,0) y (9, y0,0), respectivamente, de modo que el centro de masa se
encuentra en el origen de coordenadas. El momento inicial se aplica a lo largo del eje =,
de manera que el centro de masa permanezca cerca del centro del dominio numérico. Si el
nicleo FDM tiene un momento inicial py ppar = (Pos /Mpgpar, 0,0), el gas tiene un momento
opuesto Py gas = —Po,Fpm- Este momento se implementa en la funcién de onda de equilibrio
mediante el escalado ¥, — e~ oa®/Mrpm V.., lo que garantiza que el valor esperado del
operador de momento p, sea (P,) = P

En resumen, las posiciones y velocidades iniciales del sistema se parametrizan mediante
el pardmetro de impacto y, de la esfera de gas y el momento inicial py, del nicleo FDM.
Estas condiciones se utilizan para integrar las ecuaciones SPE como un problema de valores
iniciales.

5.3.2 Espacio de parametros

Presentamos una muestra de fusiones entre nucleos FDM y configuraciones de fluido. Mos-
tramos resultados para dos escenarios principales: i) un gas ideal con indice adiabético v =
5/3 y ii) una esfera de polvo con p = 0. Para cada escenario, realizamos simulaciones va-
riando el pardmetro de impacto v, y el momento inicial p,, con dos valores de la razén de
masa MR =0.1y0.5.
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5.3.3 Gasideal

Exploramos la fusién entre un nicleo FDM y una estrella TOV con indice adiabatico 7 =
5/3. El espacio de pardmetros incluye una razén de masa M R = 0.1,0.5, un pardmetro de
impacto yo = 10, 15, 20 y velocidades iniciales v, = 0.1 y 0.2. Simulamos la evolucion de
estos encuentros en el dominio numérico [—100, 100] x [—100, 100] x [—50, 50], utilizando
refinamiento de malla (FMR) con dos niveles de refinamiento y una resolucién de h = 5/8
en el segundo nivel. En el nivel de mayor refinamiento se utiliza C' = 0.1.

La dinamica del sistema muestra que el gas tiende a orbitar el niicleo FDM en sentido horario.
Cuando la estrella TOV se encuentra con el nicleo, la presion del gas fragmenta la estrella
y el fluido circula alrededor del nicleo FDM desde ambos lados, lo que desencadena la
formacion de ondas de choque. Los diagndsticos sobre el comportamiento dindmico incluyen
la virializacion, la energia total, la liberacién de momento angular y la evolucién de la masa.
En la Figura se muestran estas variables hasta ¢ ~ 1000, para todas las combinaciones
de parametros.

Las observaciones generales son las siguientes. El gas se relaja hacia un estado virializado,
ya que 2K 5 + Wy, tiende a cero en todos los casos, y su masa también se estabiliza,
lo que indica que el fluido alcanza un equilibrio. El nicleo FDM oscila alrededor de un
estado virial con 2K ppys + Wrepas cercano a cero, mientras que su masa Mppy, disminuye
con el tiempo debido a que una esponja numérica absorbe la densidad FDM al aproximarse
a los limites del dominio. El momento angular del gas se estabiliza alrededor de un valor
finito, al igual que el momento angular del nicleo FDM en la mayoria de los casos. La
energia del gas Fg,s = Kyqs + Wy, también se estabiliza, mientras que la energia de la FDM
Erpy = Krppy + Wrepa, en esta escala temporal, se estabiliza.

La Figura[5.T6|muestra una instantdnea en tiempo tardio de las densidades del niicleo FDM y
del gas para todas las combinaciones de parametros. Estas simulaciones revelan una distribu-
cion de la densidad de gas en forma de disco en el plano ecuatorial, con diversas morfologias,
incluyendo en algunos casos brazos espirales y en otros discos mas uniformes. El movimiento
del gas es permanente, y aqui solo capturamos una instantanea.

Estas simulaciones se pueden observar mas de cerca. Por ejemplo, en la Figura mostra-
mos la densidad del nicleo FDM y del gas desde perspectivas superiores y laterales, para el
caso particular yy = 20, v,o = 0.2 y razén de masa M R = 0.1, 0.5. El gas se distribuye con
alta densidad cerca del plano ecuatorial, y también aparece una sobredensidad similar a un
bulbo. Por otro lado, el nicleo FDM mantiene una distribucidn casi esférica.
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Figura 5.15: Fusion entre el nicleo FDM y la estrella TOV. Para todas las combinaciones de
parametros se muestra en el panel superior izuierdo la cantidad 2K + W para la FDM y el
gas, en el panel superior derecho la energia total X' + W, en el panel inferior izquierdo el
momento angular total en la direccion z, y finalmente en el panel inferior derecho la masa

normalizada con la masa inicial de la FDM, M2, ~ 2.06, como funcién del tiempo.
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Figura 5.16: Fusion entre el nucleo FDM vy la estrella TOV. Instantanea en ¢ ~ 1000 de la
densidad del gas p y contornos de |¥|? en el plano z = 0 para todas las combinaciones de
pardmetros.



Fusiones entre niicleos FDM y nubes de gas 139

Figura 5.17: Instantdnea en tiempo tardio de la fusion entre el nicleo FDM y la estrella TOV,
para el caso v, = 0.2y yo = 20. (Arriba) Densidad del gas ideal vista desde el eje z, y
(abajo) vista desde el eje x. A la izquierda se muestra el caso con razén de masa M R = 0.1
y aladerecha M R = 0.5.
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5.3.4 Polvo

Ahora exploramos la fusién entre un nicleo FDM y una esfera de polvo utilizando el mismo
espacio de pardmetros que en el escenario anterior. A diferencia del caso TOV, que es en si
mismo una configuracion de equilibrio, en el caso del polvo simplemente usamos el perfil de
densidad de TOV pero establecemos la presion en cero durante toda la evolucion. Antes de la
fusion, ocurre una dindmica no trivial, que incluye el colapso libre del polvo hacia su propio
potencial gravitacional.

En este caso sin presion, utilizamos un dominio numérico D = [—50,50] x [—50,50] %
[—25, 25], més pequefio que en el caso anterior, y resolvemos el sistema utilizando un modo
de malla dnica (unigrid) con resolucion Ax = Ay = Az = 10/16. Para mantener la compa-
racion, el espacio de parametros incluye los mismos valores orbitales utilizados para la estre-
1la TOV, es decir, con razoén de masa M R = 0.1, 0.5, parametro de impacto yo = 10,15,20y
velocidades iniciales de la esfera de polvo v, = 0.1y 0.2.

En los diagnésticos de este escenario, se encontraron resultados similares a los del caso de
gas ideal en cuanto a virializacidn, energia total, masa y momento angular. Nuevamente, el
fluido se virializa, adquiere un momento angular finito y su masa se estabiliza. Por otro lado,
el nicleo FDM irradia el momento angular en la mayoria de los casos, no se virializa, pero
oscila alrededor de un estado virial y pierde masa de forma continua debido a la expulsién
durante el proceso de fusion.

La Figura muestra una instantanea en tiempo tardio de la fusion entre las densidades del
nucleo FDM vy la esfera de polvo para todas las combinaciones de pardmetros. En este caso,
nuevamente, la densidad del fluido se concentra en el plano ecuatorial. Aunque no hay pre-
sidn, en algunos casos se forman brazos espirales de alta densidad. El caso con M R = 0.5,
vz0 = 0.1, yo = 10 ilustra cémo el rapido colapso del polvo antes de la disrupcién genera un
pozo gravitacional profundo que también distorsiona la FDM, lo que eventualmente expulsa
ambos componentes del dominio. A diferencia del caso de gas ideal, en varias configuracio-
nes de polvo en la Figura la densidad del fluido se distribuye en estructuras con bordes
irregulares.

Una vista en tiempo tardio de las densidades para el caso y, = 20, v,o = 0.2 con razones
de masa M R = 0.1,0.5 se presenta en la Figura[5.19] Similar al caso de gas ideal, el polvo
se distribuye en brazos espirales, esta vez en una distribucién delgada concentrada cerca del
plano ecuatorial debido a la ausencia de presion. Por otro lado, el nicleo FDM recupera
una distribucion casi esférica. Cabe destacar que el gas ideal en la Figura para los
mismos pardmetros dindmicos iniciales, se distribuye en una estructura mas gruesa cerca del
plano ecuatorial en comparacién con la distribucion delgada del polvo, un comportamiento
esperado debido a los efectos de presion.
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Figura 5.18: Instantdnea en tiempo tardio (¢ ~ 1000) de la fusién entre el nicleo FDM y
la esfera de polvo. La densidad del gas p se muestra en blanco, con contornos de |¥|? en el
plano z = 0 para todas las combinaciones de pardmetros.
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Figura 5.19: Instantdnea en tiempo tardio de las densidades en la fusion entre el nicleo FDM
y la esfera de polvo. (Arriba) Vista desde el eje z y (abajo) vista desde el eje x, para el caso

U0 = 0.2y yo = 20. A la izquierda se muestra el caso con razén de masa M R = 0.1y ala
derecha M R = 0.5.




Rastreo de la materia oscura a través de la materia barionica 143

SECCION 5.4

Rastreo de la materia oscura a través de la materia barionica

En esta seccion, exploramos como la FDM, interactia dindmicamente con la materia baridni-
ca en diferentes condiciones energéticas. El objetivo es analizar la transferencia de energia
entre ambas componentes, asi como los efectos gravitacionales que estas interacciones gene-
ran en la evolucion del sistema.

Para este propdsito, consideramos un modelo donde un nucleo soliténico de FDM esté ro-
deado por un halo con un perfil tipo NFW. A este sistema se le afiade una distribucién de
gas bariénico que inicialmente estd en reposo y se caracteriza por una densidad uniforme.
Estudiamos tres escenarios diferentes, definidos por la energia interna del gas: baja, media y
alta. En cada caso, evaluamos la evolucion temporal de las densidades del gas y de la FDM,
asi como la transferencia de energia entre ambos componentes.

Los diagnésticos realizados incluyen el seguimiento de las masas totales, la energia potencial,
cinética e interna, y el andlisis de los patrones de colapso, redistribucion y estabilizacién
del gas. Los resultados proporcionan informacién crucial sobre cémo la materia oscura y la
materia baridnica influyen mutuamente en entornos gravitacionalmente dominados.

5.4.1 Condiciones iniciales de la funcion de onda

Como condiciones iniciales para la funcién de onda W (%), consideramos una configuracion
obtenida a partir de la evolucién de la fusién de 30 configuraciones de equilibrio en caida
libre del sistema Schrodinger-Poisson con condiciones de frontera periddicas (ref periodic).
En el panel izquierdo de la Figura[5.20] se muestra la densidad en el plano = —y, mientras que
en el panel derecho se presenta un perfil promedio, el cual tiene un niicleo soliténico descrito
por la ecuacion:

-8

2
Pcore = Po,core 1+40.091 (1> 5 (5.12)

Te

donde r. = 0.28 kpc ¥ po core = 109 M,/ kpc?. Este perfil corresponde a una configuracién de
equilibrio cuyo nicleo tiene una masa del orden de M ypi10n ~ 11.59por3 & 2.5x 103 M, y un
radio aproximado de r; ~ 3.5r. ~ 0.98 kpc. En la region del halo, para r 2 7soit0n, €l perfil
de densidad es ajustado mediante un perfil NFW, donde 7, = 5kpcy p, = 5.5x 10° My, /kpc®.
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Figura 5.20: En el panel izquierdo se muestra la densidad pgpy, de la funcion de onda en el
tiempo inicial en el plano x — y. El interior del circulo negro corresponde a la regién donde
se encuentra el nucleo solitonico, mientras que el exterior sigue un perfil NFW aproximado.
En el panel derecho se muestra el perfil promedio de densidad (linea negra continua) ajustado
al perfil soliténico descrito por la ecuacion (linea punteada roja) y al perfil NFW (2?)
(linea punteada azul), marcando la region de transicidn en 7syiton, ~ 3.57.

Asi, la configuracion inicial de la funcién de onda consiste en un nticleo soliténico ya formado
y un perfil NFW en la region exterior. A esta configuracion se le afiade materia baridnica para
analizar los efectos que produce sobre ella.

5.4.2 Condiciones iniciales del fluido

Las condiciones iniciales para las variables hidrodindmicas corresponden a un fluido inicial-
mente en reposo, con densidad y energia especificas uniformes en todo el dominio, es decir,
Uo(Z) = (0,0,0), po(Z) y eo(Z) son constantes en el dominio. De esta manera, el fluido co-
menzard a acumularse en los pozos de potencial generados por la distribucion de materia de
la funcién de onda. Inicialmente, no hay presion suficiente para detener el colapso, ya que el
gradiente de presion py = (7 — 1)poeo es nulo. Sin embargo, una vez iniciado el proceso, se
generard un gradiente que dependera de las condiciones iniciales de py o, equivalentemente,
de e para una densidad fija pg.

Dado que la interaccion entre ambas distribuciones de materia se produce a través de la gra-
vedad, se espera una transferencia de energia entre los componentes del sistema, aunque
la energia total debe conservarse. Ademds, como no hay transferencia de masa, esta debe
mantenerse separada para cada componente. Por ello, durante el proceso de evolucion, diag-
nosticamos las siguientes magnitudes.

Exploramos tres escenarios diferentes con una densidad de gas po(Z) = 256.2M /kpc®
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Figura 5.21: Instantdneas de la distribucion de densidad del gas (arriba) y de la FDM (abajo)
en los tiempos ¢t = 2,4, 6,8 y 10 Gyr, de izquierda a derecha, en el plano x — y para el caso
de energia interna baja.

y energias internas eo(Z) = 9.39,93.9 y 939 MJ/kg, denominadas respectivamente como
energia interna baja, media y alta. Los casos de energia baja y media corresponden a energias
totales del gas con E,,s(0) < 0, es decir, la energfa gravitacional domina sobre la energia
interna del gas. En el caso de alta energia, Egas(O) > (), la energia interna domina sobre la
gravitacional.

5.4.3 Energia interna baja

La Figura[5.21) muestra la evolucién de la densidad del gas (arriba) y la densidad de la FDM
(abajo) en los tiempos t = 2,4,6,8 y 10 Gyr. En este caso, podemos observar que la baja
energia especifica inicial provoca el colapso del fluido en diferentes regiones, generando una
dindmica que sigue los pozos de potencial creados por los patrones de interferencia en la
densidad de la FDM. Por otro lado, la densidad de la FDM mantiene el nicleo solitdénico
formado.

El diagnéstico de las cantidades globales se muestra en la Figura La parte superior de
esta figura muestra la conservacion de cada componente de las masas, que se mantiene con
alta precision. Por otro lado, en el panel derecho se observa una transferencia de energia desde
la materia oscura bosonica hacia la distribucion de gas. En este escenario, la energia total del
gas deja de conservarse, ya que esta aumenta mientras que la energia de la FDM permanece
constante. Esto indica que, en el caso de baja energia, el gas no afecta la dinamica de la
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FDM. Lo contrario ocurre con el gas, que, al tener tan poca energia, colapsa abruptamente,
comportidndose de manera similar a un polvo. Después del colapso, el gas se calienta, pero
pierde estabilidad numérica.

Para ver en detalle como ocurre esta transferencia, se muestra cada componente de la energia
total de ambas distribuciones de materia en la parte inferior. En el lado izquierdo se observa
como la energia cinética y la potencial oscilan, lo que indica una transferencia entre ambas
debido a las fluctuaciones en los patrones de interferencia de la densidad. Sin embargo, en
promedio, la energia total de la FDM se conserva. En el lado derecho, se observa como
tanto la energia cinética como la interna del gas aumentan, indicando que el gas adquiere
movimiento mientras se calienta, mientras que la energia potencial disminuye, sin compensar
el aumento de las otras dos formas de energia.

5.4.4 Energia interna media

La Figura [5.23] muestra la evolucion de la distribucién de densidad del gas (arriba) y de la
FDM (abajo) en los tiempos t = 2,4,6,8 y 10 Gyr. Se observa que un nucleo de materia
barionica se forma desde etapas tempranas, mientras que fuera de este nucleo, la densidad
adquiere una forma casi esférica, con algunos remanentes de densidad que se mueven dentro
y fuera del dominio periddico. Por otro lado, la densidad de la FDM permanece con el nuicleo
soliténico ya formado, al igual que en el caso anterior.

El diagnéstico de las cantidades globales se muestra en la Figura La parte superior de
esta figura muestra la conservacion de cada componente de las masas. En el panel derecho, se
observa una transferencia de energia desde la materia oscura bosénica hacia la distribucién
de gas, con un incremento cercano al 1.7 % respecto al valor inicial de la energia total E7(0).
Para analizar en detalle como ocurre esta transferencia, se presentan los componentes de la
energia total de ambas distribuciones en la parte inferior de la figura.

En el lado izquierdo, se observa como la energia cinética y la potencial oscilan, mostrando
que existe una transferencia entre ambas debido a las fluctuaciones generadas por los patrones
de interferencia en la densidad. Al final, se estima que la energia cinética aumenta aproxima-
damente un 1.3 %, mientras que la energia potencial disminuye en torno al 3.0 % respecto al
valor E7(0), lo que indica que la energia transformada es principalmente la energia poten-
cial. Por otro lado, los componentes de la energia del gas muestran un aumento de alrededor
del 2.4% en la energia interna especifica y del 0.7 % en la energia cinética, mientras que
la energia potencial disminuye un 1.4 %. Esto evidencia que la materia oscura bosénica ul-
traligera pierde energia potencial, la cual se transfiere al gas en forma de energia cinética e
interna.
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Figura 5.22: EIl panel superior derecho muestra la conservacion precisa de la masa de la
funcién de onda y del gas, asi como de la masa total en funcién del tiempo. A la derecha,
se observa que la energia total se conserva, mientras que la energia de la funcién de onda
disminuye en un 1.7 %, y la energia total del gas aumenta en el mismo porcentaje con respecto
a la energia inicial E7(0). En el panel inferior izquierdo, se muestra la conversion rapida y
oscilatoria entre energia cinética y potencial. En el panel derecho, se observa la conversion
entre los diferentes tipos de energia del gas, con un aumento en la energia cinética e interna
y una disminucion de la energia potencial con el tiempo.
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Figura 5.23: Instantdneas de la distribucion de densidad del gas (arriba) y de la FDM (abajo)
en los tiempos ¢t = 2,4, 6,8 y 10 Gyr, de izquierda a derecha, en el plano x — y para el caso
de energia interna media.

5.4.5 Energia interna alta

La Figura [5.25 muestra la evolucion de la distribucién de densidad del gas (arriba) y de la
FDM (abajo) en los tiempos ¢ = 2,4,6,8 y 10 Gyr. En este escenario de mayor energia, al
igual que en el caso anterior, se forma un nicleo de materia barionica, seguido por un halo
esférico. Sin embargo, la dindmica de la densidad de la FDM no muestra cambios significa-
tivos respecto a los casos de energia baja y media.

El diagnéstico de las cantidades globales se muestra en la Figura[5.26] La parte superior de
esta figura muestra la conservacion de cada componente de las masas. En el panel derecho, se
observa una transferencia de energia desde la materia oscura bosonica hacia la distribucion de
gas, con un incremento cercano al 0.32 % respecto al valor inicial de la energia total E7(0).
Para analizar en detalle como ocurre esta transferencia, se presentan los componentes de la
energia total de ambas distribuciones en la parte inferior de la figura.

En el lado izquierdo, se observa como la energia cinética y la potencial oscilan, mostrando
que existe una transferencia entre ambas debido a las fluctuaciones generadas por los patrones
de interferencia en la densidad. Se estima que la energia cinética aumenta aproximadamente
un 7.15 %, mientras que la energia potencial disminuye en torno al 7.34 % respecto al valor
Er(0), lo que indica que la energia transformada es principalmente la energfa potencial, con
una magnitud del 0.32 %.



Rastreo de la materia oscura a través de la materia barionica 149

1.1 0
1] 0.1 |
03 i
07 | M+/M(0) 0.4 E+/|E+(0)]
081 Myas/Mr(0) —— 0.5 | Egas/|ET(0)] ——
04 | Mepp/M(0) -8.673 i Erow/|ET(0)]
0.3 | el
0:2 | 08
0.1 | 0.9
! 3
0o 2 4 6 8 10 0o 2 4 6 8 10
t(Gyr) t(Gyr)
) : 0.15 ‘ ‘
, 2 e Egas/|ET(O)] ——
0.5 Krow[ETO) | WESEO)
o) Wpp/[E(0)] j 0051  Moas Tl ]
-1 0r ]
1.5 | 1 -
2l 1 -0.05 + ]
-3 : : : : -0.1 ‘ ‘ ‘ ‘
o 2 4 6 8 10 0 2 4 6 8 10
t(Gyr) t(Gyr)

Figura 5.24: El panel superior derecho muestra la conservacion con alta precision de la masa
de la funcién de onda, la masa del gas y la masa total en funcién del tiempo. En el panel
derecho se observa que la energia total se conserva, mientras que la energia de la funcion de
onda disminuye en un 1.7 %, compensada por un incremento equivalente en la energia total
del gas respecto al valor inicial E7(0). En los paneles inferiores, el lado izquierdo muestra
la conversion oscilatoria rdpida entre energia cinética y potencial, mientras que en el lado
derecho se observa el incremento de la energia cinética e interna del gas, acompafiado de una
disminucién gradual de la energia potencial.
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Figura 5.25: Instantdneas de la distribucion de densidad del gas (arriba) y de la FDM (abajo)
en los tiempos ¢t = 2,4, 6,8 y 10 Gyr, de izquierda a derecha, en el plano x — y para el caso
de alta energia interna.

Por otro lado, los componentes de la energia del gas muestran que la energia interna especifica
y la energia cinética aumentan alrededor de 0.43 % y 0.05 %, respectivamente, mientras que
la energia potencial disminuye un 0.16 %. Esto evidencia que la materia oscura bosénica
ultraligera pierde energia potencial, la cual se transfiere al gas en forma de energia cinética e
interna.

Los resultados presentados en esta seccion muestran como la interaccion gravitacional entre
la materia oscura bosonica ultraligera (FDM) y el gas barionico depende fuertemente de las
condiciones iniciales de energia interna del gas. Adicionalmente, se evidencia la formacion
de una estructura NFBS en el centro del halo, donde el nicleo solitonico de FDM se encuentra
rodeado por una distribucién esférica de materia baridnica. Los principales hallazgos son los
siguientes:

= En el caso de baja energia interna, el gas colapsa rdpidamente hacia los pozos de po-
tencial generados por el nucleo soliténico de la FDM, formando una estructura NFBS
en el centro del sistema. Durante este proceso, el gas experimenta un calentamiento
significativo, aunque pierde estabilidad numérica debido a la rdpida transferencia de
energia. La dinamica de la FDM, en cambio, se mantiene practicamente inalterada.

= En el escenario de energia interna media, el gas forma un nicleo denso de materia
barionica desde etapas tempranas, manteniendo la estructura NFBS en el centro del
halo. Se observa una transferencia de energia de la FDM al gas cercana al 1.7 % de la
energia total inicial. Este escenario muestra un balance mads estable entre los distintos
tipos de energia, lo que permite una evolucion mas controlada del sistema.
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Figura 5.26: EIl panel superior derecho muestra la conservacion precisa de la masa de la
funcion de onda, la masa del gas y la masa total en funcién del tiempo. En el panel derecho
se observa que la energia total se conserva, mientras que la energia de la funcién de onda
disminuye en un 0.32 %, compensada por un incremento equivalente en la energia total del
gas respecto al valor inicial F7(0). En los paneles inferiores, el lado izquierdo muestra la
conversion rapida y oscilatoria entre energia cinética y potencial, mientras que en el lado
derecho se observa el incremento de la energia cinética e interna del gas, acompafiado de una
disminucion gradual de la energia potencial con el tiempo.
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= En el caso de alta energia interna, el gas desarrolla una estructura similar, con un nicleo
central rodeado de un halo esférico. La estructura NFBS persiste en el centro, pero la
transferencia de energia hacia el gas es menor, del orden del 0.32 %. En este escenario,
la energia interna del gas domina sobre la gravitacional, lo que ralentiza el colapso y
genera un equilibrio més sostenido.

= En todos los escenarios, se observa que la materia oscura ultraligera pierde energia po-
tencial, la cual es transferida al gas en forma de energia interna y cinética. Sin embar-
go, el grado de transferencia y la respuesta dindmica del sistema dependen del régimen
energético inicial del gas.

Estos resultados muestran como las NFBS se condensan en el interior del halo granular,
resaltando la importancia de la interaccion entre la materia oscura y la materia bariénica en
la formacion y evolucion de estructuras gravitacionales. La presencia de un nucleo soliténico
de FDM vy su interaccion con el gas son factores clave para comprender la dindmica galactica,
asi como la estabilizacion de estructuras tipo NFBS en el centro de los halos galdcticos.



Capitulo

Simulaciones de Materia Oscura Difusa acoplada a un Hoyo
Negro

Un elemento esencial introducido en la fenomenologia de la FDM es la presencia de agujeros
negros (BH, por sus siglas en inglés) y su comportamiento dentro de los nicleos de FDM. Por
ejemplo, en 109, 110] se estudian las propiedades del perfil de densidad del nicleo de FDM
bajo diversos regimenes del gas bosénico y escenarios que incluyen un agujero negro. En
[111] se analiza la interaccion entre el FDM y el agujero negro, enfocandose especialmente
en la friccién dindmica y el arrastre de la estela detrds del agujero mientras se desplaza. De
igual manera, en [112] se estudia la friccion dindmica de nicleos de FDM en escenarios de
fusiones con agujeros negros. En [113] se explora la fusién de agujeros negros binarios que
se mueven dentro de nicleos de FDM, en el contexto del problema del dltimo parsec durante
la fusion.

En contextos relacionados con ondas gravitacionales, se ha investigado la dindmica de aguje-
ros negros binarios inmersos en FDM para estimar la extraccién de momento angular debido
a los efectos dinamicos de cimulos de materia oscura dentro del nicleo [[114]. Por otro la-
do, en [113] se analiza la eyeccién de agujeros negros supermasivos (SMBH) debido a la
superposicion de modos y la acumulacion de efectos tipo caminata aleatoria dentro de halos
de FDM. Ademas, en [116]] se estudia el movimiento de una particula puntual masiva en un
entorno de FDM que incluye su granularidad, mientras que en [[112] se analiza la colisién
entre un nicleo de FDM y un BH super masivo (SMBH, por sus siglas en inglés).

Estos estudios consideran al agujero negro como un objeto newtoniano y se centran principal-
mente en los efectos dindmicos asociados a agujeros negros en movimiento. En un contexto
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relativista, también se ha explorado la coexistencia y fenomenologia de agujeros negros con
materia oscura bosonica ultraligera. Por ejemplo, en [[117,[118}119,1120] se estudian diversos
efectos de la dindmica de los agujeros negros sobre el campo escalar, incluyendo la friccién
dindmica. Por otro lado, en [121, [122] el analisis se centra en la posible deteccion de mate-
ria oscura ultraligera mediante su influencia en la fenomenologia de ondas gravitacionales,
considerando también el caso con autointeraccién [123]. En escenarios cosmoldgicos, se han
estudiado procesos como la nucleacién de nubes escalares [[124].

En este capitulo, se estudian los efectos de un agujero negro durante la condensacion del
nucleo de FDM, siguiendo el método de relajacion cinética desarrollado en [13 [125]. Es-
te método utiliza condiciones iniciales aleatorias, lo que permite que la granularidad de la
distribucién de FDM se forme en presencia del agujero negro desde el instante inicial.

En nuestro andlisis, se considera un agujero negro esférico simétrico en el régimen newto-
niano, incorporando sus efectos gravitacionales en el sistema de ecuaciones de Schrodinger-
Poisson que rige la dindmica del sistema FDM+BH. Sin embargo, se ignora la acrecion par-
cial de materia oscura ondulatoria, ya que esta depende de la longitud de onda y el grosor de
los paquetes de onda que se aproximan al agujero negro, como se demostré mediante relati-
vidad numérica completamente no lineal en [[126} [127]. También se omiten otros efectos de
acrecion no lineales en escenarios no simétricos [128]].

SECCION 6.1

Soluciones estacionarias

Construimos soluciones estacionarias para el problema FDM+BH siguiendo [27], cuyas
ecuaciones son equivalentes al sistema:

h2
ihov = — V2 +mp (V+V,) U, (6.1)
2m B
V2V = 4nG(prpm — Proum), (6.2)
donde V, = —GA{J representa el potencial gravitacional debido a un agujero negro de masa

Mpy. El problema se resuelve en unidades del c6digo, bajo simetria esférica y asumiendo
una dependencia temporal arménica del tipo ¥ = ¢ (r)e ™", donde v es una funcién real.
Estas suposiciones llevan a un problema de autovalores para el parametro w, imponiendo
condiciones de frontera aisladas en el infinito y regularidad en el origen.
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Este sistema exhibe invariancia bajo la transformacion:

{2 V! pepars Mgy — {2,020, A e, N2V, X prpar, A\Mpp b,

donde A es un pardmetro arbitrario. Para construir un modelo fenomenolégico de la densidad
de FDM, definimos el invariante & = M3, /1o bajo la transformacién ), el cual permite
parametrizar la familia de soluciones del problema de autovalores.

En el limite V, > V o, de forma equivalente, o > 1, el sistema se reduce al caso del &tomo
de hidrégeno, cuya solucion fundamental es:

3/2
v =2 () e

Qo

donde aq es el radio de Bohr. Por lo tanto, proponemos una formula que, en el limite de «
0
grande, se aproxima a esta solucién exponencial:

plr,a) = pee 2% (6.3)

donde p, es la densidad central, el radio r,. se define como el radio donde la densidad dismi-
nuye a la mitad de su valor central, y $ es una funcién dependiente de o que se determinard.

En escenarios puramente FDM, la soluciéon fundamental del sistema SP (e.g., [63]]) es dificil
de utilizar para ajustes fenomenoldgicos en estructuras que evolucionan en simulaciones. Por
ello, se propuso una formula prictica para modelar nicleos FDM de forma universal [22]].
En este capitulo, adoptamos un enfoque similar. Dado que las soluciones del problema de
autovalores FDM+BH no se pueden emplear directamente para monitorizar la formacién del
nucleo alrededor de un agujero negro, necesitamos un perfil de densidad prictico que permita
ajustar la densidad del ntcleo de la solucion.

Para ello, proponemos una funcién que ajusta las propiedades del nicleo. Por ejemplo, para

el radio del niicleo 7., consideramos la siguiente expresion:

re = 1.3p. Y4 (1 + ay In(aza + 1) + asa™) (6.4)

con los pardmetros: a; = —0.25355872, as = 0.46241994, a3 = 0.0663722y a, = 0.33407792.

Ademds, para cada valor de «, existe un valor asociado de [ que, segtn la féormula (6.3)),
ajusta la densidad obtenida de las ecuaciones (6.1)-(6.2). Este comportamiento se describe
mediante la siguiente ecuacion:
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Figura 6.1: (Izquierda) Arriba: autovalor w como funcién de . Medio e inferior: radio del
ntcleo 7. y la funcién 5 como funciones de o, donde los puntos representan soluciones exac-
tas del problema de autovalores y las lineas continuas corresponden a los valores obtenidos
mediante las férmulas y (6.5). (Derecha) Comparacién entre la solucion numérica del
problema de autovalores y la densidad resultante de las férmulas (6.3), (6.4) y (6.5) para
a = 0,10, 100.

+ bs, (6.5)

con by = —1.08334305, by = 0.77866182, by = 0.81228993, by = 6.72089826 y b =
1.84588407.

En la Figura se presenta el autovalor w en funcion de « (panel superior). Los paneles
intermedios e inferiores muestran el radio del niicleo r. y la funcién 3 respectivamente, com-
parando los valores exactos obtenidos del problema de autovalores con aquellos calculados
mediante las formulas propuestas (6.4) y (6.5).

En el panel derecho de la figura, se muestra la solucion numérica del problema de autovalores
junto con el perfil de densidad obtenido usando las férmulas (6.3)), y (6.5), demostran-
do que el modelo propuesto es consistente incluso para valores de o que difieren en varios
ordenes de magnitud (o = 0, 10, 100).

Estos resultados confirman que el modelo propuesto es capaz de reproducir adecuadamente
las soluciones del problema de autovalores y proporcionar un perfil practico para utilizar en
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simulaciones dindmicas que involucren nicleos de FDM en presencia de agujeros negros.

SECCION 6.2

Dinamica del sistema FDM+BH

El sistema de ecuaciones que rige la dindmica del sistema FDM+BH es el siguiente sistema
de ecuaciones de Schrodinger-Poisson (SP):

hor = — e V20U + mVU, (6.6)
2mp

VWV = 4nG(pr — pr), (6.7)

Tpn = —VVepur, (6.8)

V*Vepyu = 47G(prpym — prowm), (6.9)

donde V' es el potencial gravitacional debido al sistema combinado FDM+BH, mientras
que Vepys es el potencial generado tnicamente por la FDM. El agujero negro (BH) se
modela mediante una distribucion de densidad aproximada ppy = Mpyd(¥ — Fpy) ~
C'Mpge 1#-75ul*/2¢ donde C' es un factor de normalizacién tal que la integral de la dis-
tribucion corresponde a la masa total del agujero negro Mpy. La densidad total del sistema
es pr = p+ ppu y Ty es la posicion del agujero negro, el cual responde a la gravedad
generada por la FDM.

6.2.1 Meétodo numeérico

El sistema adimensional se resuelve utilizando nuestro cédigo CAFE-FDM [69], el cual
implementa un método pseudo-espectral para discretizar las derivadas espaciales, un esquema
de Runge-Kutta de cuarto orden (RK4) para la evolucién temporal de la funcién de onda, y
la FFT para resolver las ecuaciones de Poisson. Todas las simulaciones se realizan en un
dominio cuibico peridédico de lado L, con resolucién espacial .

Para la distribucion del BH, usamos ¢ = 0.1h, lo que reproduce resultados consistentes con
[112] en dominios no periddicos, donde se utiliza un potencial gravitacional del tipo V, =

—% en la ecuacion de Schrodinger. Definir el BH mediante la distribucion pppy
max(r4,e

permite trabajar también en dominios periodicos.
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6.2.2 Condiciones iniciales

El proceso de relajacion cinética que lleva a la condensacion del nicleo utiliza condiciones
iniciales aleatorias para el gas bosénico, permitiendo la formacién de sobredensidades que
posteriormente colapsan y facilitan la condensacion. Siguiendo [13, [125]], utilizamos una
distribucién gaussiana en el espacio de momentos:

U(p) = Ae~0-50" e,

donde S es una fase aleatoria en el rango [0, 27| para cada punto del espacio de momentos y
A es un factor de normalizacion.

6.2.3 Simulaciones

Se realizaron 32 simulaciones utilizando el mismo tipo de configuracion, pero con diferentes
semillas para generar condiciones iniciales aleatorias del sistema FF'DM y considerando distin-
tas masas de agujeros negros (BH): Mgy = M /256, M /128, M /64, M /32. Estas masas se
encuentran dentro del rango utilizado en estudios sobre friccién dindmica [111] y en escena-
rios relacionados con la nucleacion de estrellas de axiones por agujeros negros primordiales
(PBH) [124].

Las diferentes semillas para las condiciones iniciales generan evoluciones distintas del sis-
tema FDM en presencia de un BH. Sin embargo, los resultados de las simulaciones pueden
clasificarse en dos escenarios principales:

1. Formacion cercana al BH: Un miniclaster de FDM se forma cerca del agujero negro.
Este minicluster colapsa, se relaja y finalmente condensa su nucleo alrededor del BH.

2. Formacion lejana y fusion con el BH: Un minicldster de FDM se forma mads alla
del radio de marea del BH. Su evolucion incluye la fusion con el agujero negro, donde
finalmente ocurre la relajacién y la condensacion del nicleo.

De estos dos escenarios, el segundo es el caso mds interesante, ya que ilustra claramente
cémo el BH actia como punto de condensacion para la densidad de FDM.

Para ilustrar la evolucién de este caso genérico, se utiliz6 una semilla especifica para generar
la fase aleatoria del FDM en el espacio de Fourier. Esto permiti6 establecer las condiciones
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iniciales del sistema y estudiar su evolucion utilizando las cuatro masas de agujeros negros
mencionadas.

La evolucion de estas cuatro simulaciones se presenta en la Figura que contiene ins-
tantaneas de la densidad de FDM y la posicion del agujero negro en distintos tiempos. En
etapas tempranas (f ~ 7), se forma un miniclister cerca de la esquina inferior derecha del
dominio. Con el tiempo, este miniclister se fusiona con el BH, siguiendo trayectorias distin-
tas segin la masa del agujero negro, y la condensacién ocurre finalmente en la ubicacién del
BH.

6.2.4 Condensacion y dinamica del nicleo

Para analizar el proceso de condensacién, se monitorea la evolucion de la densidad méxima
Pmaz @ lo largo del tiempo. Los resultados se presentan en la Figura [6.3] donde se observa
que la condensacion ocurre: la densidad crece siguiendo una ley de potencias en funcion del
tiempo a partir de ¢ ~ 30, lo que marca el inicio del proceso de condensacion. Sin embargo,
en etapas posteriores, la densidad mixima disminuye o se estabiliza, en contraste con el
escenario de FDM puro, donde la densidad contintda creciendo indefinidamente [[13} [1235]].

La disminucién de p,,,. €s menos pronunciada para agujeros negros menos masivos y puede
interpretarse en términos del movimiento relativo entre el BH y el niicleo de materia oscura.
El agujero negro, al estar en movimiento, arrastra la materia oscura a su alrededor e impide
que la densidad siga aumentando. Este efecto es més fuerte para agujeros negros mas masivos.
En consecuencia, la presencia del BH tiende a aplanar la densidad del nicleo de FDM a largo
plazo.

Movimiento relativo del agujero negro

En la Figura se muestra la distancia entre el punto de densidad médxima y la posicion del
agujero negro para las cuatro masas consideradas. La evolucién de esta distancia no sigue
una tendencia clara debido al comportamiento no lineal y la dindmica granular del FDM.
Cada simulacion presenta fusiones entre el minicldster y el BH en diferentes condiciones,
posiciones y velocidades de fusion, lo que genera patrones variados.

También se analizé la velocidad del agujero negro. En la Figura [6.5] se presenta la compo-
nente x de la velocidad del BH, donde se observan oscilaciones similares a las descritas en
[112] para nucleos esféricos suaves. En las simulaciones actuales, estas oscilaciones son me-
nos regulares debido a que el nicleo no es inicialmente esférico ni suave, sino que presenta
granularidad y dependencia temporal desde su formacion.
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Figura 6.2: Instantdneas de la densidad proyectada en un plano que contiene la posicion
del agujero negro y es paralelo al plano xy del dominio numérico. La posicion del aguje-
ro negro se representa con una cruz amarilla en diferentes momentos de las simulaciones
con Mgy = M /256, M /128, M /64 y M/32. La evolucién muestra la formacién de un mi-
nicluster cerca de la esquina inferior derecha, el cual posteriormente se fusiona con el BH.
Durante la fusion, el agujero negro oscila con respecto al nicleo condensado, como se ob-
serva en las animaciones del material suplementario. Para ¢ ~ 60, la materia oscura difusa
alcanza el proceso de condensacion.
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Figura 6.3: Evolucién de p,,., para diferentes masas de agujeros negros Mpy =
M /256, M /128, M /64, M /32. Se observa que, para los agujeros menos masivos, la densidad
sigue creciendo hasta ¢ ~ 60, donde se estabiliza. En cambio, para los agujeros mds masi-

vos, la densidad maxima disminuye, evidenciando el efecto del BH sobre la condensacion del
nucleo.

Figura 6.4: Distancia entre el punto de méxima densidad de FDM y la posicion del agujero
negro para masas Mpy = M /256, M /128, M /64, M /32. La falta de una tendencia clara se
debe a que cada fusion ocurre en diferentes condiciones dindmicas y posiciones del dominio.
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Figura 6.5: Componente x de la velocidad del agujero negro para Mpy =
M /256, M /128, M /64, M /32. Las oscilaciones observadas son consistentes con aquellas
propuestas en [112], aunque menos regulares debido a la granularidad del nucleo de FDM.
Se observan pulsos de recalentamiento para Mpy = M /128 y M /64.

En los casos con Mpy = M /128 y M /64, se observan pulsos de recalentamiento.*" la velo-
cidad, fendmeno también descrito en [[112]. Las componentes y y 2z de la velocidad muestran
un comportamiento similar. Las animaciones incluidas en el material suplementario ilustran
completamente este proceso.

Ajuste del perfil de densidad del nicleo

A pesar de la dindmica compleja, se ajust6 el perfil de densidad del nicleo de FDM, no
solo en un instante fijo, sino promediando sobre una ventana temporal utilizando un modelo
fenomenoldgico. Este modelo emula la solucion estacionaria del problema de autovalores
FDM+BH descrita en [27] (véase Apéndice [6.1) y utiliza las ecuaciones (6.3)-(6.5) para el
ajuste.

La Figura[6.6| muestra los ajustes obtenidos al promediar el perfil de densidad en el intervalo
t € [70,100]. Se observa que la densidad central del nicleo disminuye a medida que aumenta
la masa del BH. Para agujeros negros menos masivos (Mpy = M /256, M /128), el perfil de
densidad es similar al del caso sin agujero negro (Mpy = 0), lo cual valida la consisten-
cia de las simulaciones. Sin embargo, incluso los agujeros negros pequefios influyen en la
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Figura 6.6: Ajuste del perfil de densidad promediado angular y temporalmente alrededor del
agujero negro, utilizando la férmula fenomenolégica (6.3). El intervalo temporal utilizado
es t € [70,100]. Se observa que a mayor masa del BH, menor es la densidad central del
nucleo. Para los casos con agujeros negros menos masivos, el perfil se asemeja al caso sin
BH, confirmando la validez de las simulaciones.

condensacion al actuar como puntos de atraccion para la materia oscura.

Los resultados de nuestras simulaciones demuestran que:

1. Los agujeros negros actian como puntos de condensacion para la materia oscura difusa.

2. La presencia del BH modifica la dindmica del nucleo formado, afectando la densidad
central y la estabilidad del sistema.

3. Los perfiles de densidad resultantes pueden ajustarse utilizando soluciones estaciona-
rias del problema de autovalores FDM+BH, lo que confirma que estos perfiles actian
como soluciones atractoras.

Estos hallazgos proporcionan evidencia adicional de la influencia significativa que los aguje-
ros negros pueden tener en la formacion de estructuras en escenarios de materia oscura difusa
y abren nuevas posibilidades para futuros estudios observacionales y tedricos.
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Capitulo

Conclusiones

= En este trabajo se ha desarrollado un nuevo software, creado desde cero. Este avance
consiste en un codigo que resuelve de manera acoplada el sistema de ecuaciones de SP
y las ecuaciones hidrodindmicas de Euler. Esta herramienta permite simular tanto es-
cenarios de FDM pura como la interaccion entre ésta y la materia baridnica, modelada
mediante un gas ideal. Los resultados obtenidos proporcionan informacién relevante
sobre la formacién y evolucion de estructuras galacticas.

= Las simulaciones de FDM realizadas han revelado informacién importante acerca del
modelo. En sistemas con escalas inferiores a la longitud de Jeans —donde la expansion
del universo no es determinante— se observa que nubes de gas bosonico se conden-
san, formando mini-cliisters. Estas estructuras iniciales se alinean con el estado base
del sistema, una solucidn estable. Estos nticleos galdcticos, posiblemente las primeras
estructuras formadas, dieron lugar a configuraciones mas complejas mediante fusio-
nes sucesivas. En particular, se encontré que en fusiones binarias la masa final del
nicleo es aproximadamente el 76.85 % de la suma de las masas iniciales. Este resul-
tado ofrece indicios sobre la formacion de galaxias primigenias, caracterizadas por un
nucleo solitonico rodeado de un perfil que decae polinomialmente, conocido como halo
galdctico.

= Las condiciones de frontera juegan un papel crucial en la dindmica del sistema y en
sus propiedades globales. El enfriamiento gravitacional y el acercamiento asint6tico
al estado base son fendmenos asociados a condiciones de frontera aisladas. Por otro
lado, bajo condiciones de frontera periddicas, se conservan magnitudes globales como
la masa y la energia total, lo que genera una redistribucion de materia que inhibe el
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enfriamiento gravitacional en la misma escala temporal que en el caso aislado.

Los perfiles de la estructura niicleo-halo pueden generarse a partir de soluciones esféri-
cas con una discontinuidad en la derivada en un punto denominado radio de transicion.
En este punto, la solucion del soliton se conecta de forma continua con un modelo esta-
cionario. Sin embargo, estas soluciones no son estables y tienden a relajarse hacia una
estructura dindmica similar. Alternativamente, al utilizar perfiles empiricos, se puede
resolver un problema inverso para encontrar una funcién de onda estacionaria que re-
produzca dicho perfil en un promedio espacial o temporal. A pesar de ello, se observa
que estos perfiles también son inestables, ya que el nicleo tiende a acumular masa
desde el halo, fendmeno conocido desde la formacidn de solitones en los mini-cliisters.

Las simulaciones han reproducido diversos resultados conocidos en la literatura, lo que
valida los métodos numéricos desarrollados para la FDM pura. La principal contribu-
cién de este trabajo es la inclusion de un gas ideal como modelo de materia visible,
permitiendo asi un estudio méds completo de la interaccion entre materia oscura y ba-
riénica en entornos galécticos.

Se encontré que el estado base del sistema SPE, denominado NFBS, es un atractor
del sistema. Esta solucion surge de manera natural a partir de condiciones iniciales
aleatorias. En este contexto, los solitones que actian como semillas de estructuras en el
universo primigenio deben contener una contribucion de materia barionica. Este hecho
es relevante, ya que dichos estados también se manifiestan en los centros galdcticos,
donde se forman los bulbos.

Los bulbos galécticos, estructuras densas compuestas mayormente por estrellas anti-
guas con poco gas, se explican en este modelo como una manifestaciéon conjunta de
materia visible y materia oscura bosonica. La formacion simultdnea de un nucleo ba-
riénico y un nucleo FDM explica la elevada densidad estelar observada en el centro de
las galaxias. Ademads, la contribucion baridnica mejora la capacidad del modelo para
reproducir caracteristicas observadas, como la distribuciéon de masa, el perfil de brillo
y la dindmica estelar de los bulbos.

Las simulaciones realizadas en este trabajo han permitido explorar en detalle la in-
fluencia de los agujeros negros sobre la materia oscura difusa (FDM) y su papel en los
procesos de condensacion y formacion de nucleos galdcticos. Los resultados muestran
que los BH actiian como puntos de atraccién para la materia oscura, promoviendo la
formacion de nticleos densos de FDM a su alrededor. Esta condensacién se ve modu-
lada por la masa del agujero negro y su dindmica relativa con respecto al nicleo en
formacion.

El andlisis revela que el movimiento del BH induce oscilaciones en el nicleo de FDM,
afectando la estabilidad del sistema y limitando la densidad maxima alcanzable. Los
agujeros negros mas masivos tienden a aplanar el perfil de densidad del niicleo al arras-
trar la materia oscura en su entorno, mientras que los menos masivos permiten una
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condensacion mds pronunciada. Ademds, se observa que incluso BH con masas re-
ducidas influyen significativamente en la dindmica del FDM, actuando como centros
de condensacién y promoviendo la formacién de miniclisters que eventualmente se
fusionan con el agujero.

La friccion dindmica generada por la interaccion entre el BH y el nucleo de FDM con-
duce a patrones de oscilacion complejos, especialmente en medios granulares donde
la estructura interna del FDM afecta la evolucion del sistema. Estos patrones se ali-
nean parcialmente con resultados previos en medios mas homogéneos, pero destacan
la importancia de considerar la granularidad en simulaciones detalladas.

Finalmente, los perfiles de densidad ajustados en torno al BH concuerdan con las solu-
ciones tedricas estacionarias del problema de autovalores FDM+BH, lo que confirma
que los agujeros negros no solo catalizan la condensacion inicial, sino que también
estabilizan la estructura del ndcleo a largo plazo. Estos hallazgos aportan una nueva
perspectiva sobre el papel de los BH en la evolucion galactica y abren posibilidades
para utilizar la dindmica de la materia oscura difusa como herramienta para estudiar la
presencia y caracteristicas de agujeros negros en entornos galacticos.

En conjunto, los avances presentados en este trabajo contribuyen significativamente a
una mejor comprension de los mecanismos que rigen la formacion y evolucién de es-
tructuras galacticas. Los resultados respaldan la hip6tesis de la materia oscura bosonica
como una explicacion viable para las propiedades observadas en galaxias de bajo brillo
superficial. Este estudio sienta las bases para futuras investigaciones en modelos mas
completos que consideren la evolucion galactica en escenarios mas realistas.
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Apéndice

SECCION A.1

Soluciones estacionarias y su estabilidad: Estrellas TOV

Suponemos un fluido autogravitante en equilibrio hidrostético y esféricamente simétrico. Ba-
jo estas consideraciones, las ecuaciones de EP (2.112.4)) se reducen a

dp dv

B A.l
=, (A2)
dr

av m

- - = A3
dr r2’ (A.3)

las cuales forman un conjunto de tres ecuaciones diferenciales ordinarias para cuatro varia-
bles: la presion p, la densidad p, el potencial gravitacional V' y la masa m encerrada en una
esfera de radio r. Para cerrar el sistema, se utiliza la ecuacion de estado politropica
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p=Kp*t/", (A4)

donde K se conoce como constante politropica y n es el indice politrépico. Este conjunto
de ecuaciones se resuelve especificando sus valores en la frontera: p(0) = p., p(0) = pe,
m(0) =0,V (0) = V.y p(R) = 0donde R > 0 se interpreta como el radio de la estrella TOV.
Notemos que el tnico valor que determina una solucion de este sistema es la densidad central
pe (para una constante politrépica K y un indice politrépico n fijos), ya que la presion central
pe se obtiene mediante la ecuacién de estado (A.4)), mientras que el potencial central V. se
puede elegir de manera arbitraria, ya que el sistema (A.IHA.3) es invariante bajo traslaciones
en el potencial V' — V + V..

El sistema (A.1HA.4) se puede escribir como una tnica ecuacién diferencial ordinaria de
segundo orden

d do

la cual es conocida como la ecuacion de Lane-Emden [130] y estd sujeta a las condiciones

de frontera 6(0) = 1, Z—Z(O) =0y 6(&) = 0, donde & es el primer cero de la solucién 6

y se interpreta como el radio del politrépo. Las nuevas variables se definen como p = p.0"
1-n

yr =a& cona? = K(n+1)p.” . La masa total M y el radio de la estrella R = a&; se

relacionan a través de la expresion

n n—1 47TK
R+ M= = A6
N (A.0)
donde
(47) ,db =
N, = —£°— " AT
ot \| Sl ) @ (AT)
y la densidad central se puede reescribir como
M &
= A.
dg §&=&61
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Figura A.1: A la izquierda se muestran soluciones numéricas de la ecuacion de Lane-Emden
(A.S)), destacando el caso n = 1.5 mediante una linea punteada. En el lado derecho, se pre-
senta el radio de la estrella TOV &; como funcién del indice politrépico n, siendo &; ~ 3.6554
paran = 1.5.

En el lado izquierdo de la Figura [A.T] se muestran algunas soluciones numéricas de la ecua-
cién de Lane-Emden (A.5]) para un indice politrépico en el rango n € [0, 5], con un caso de
especial interés para un valor de n = 1.5 representado mediante una linea punteada. En el
lado derecho se muestra el radio de la estrella TOV & como funcién del indice politrépico
n, siendo para n = 1.5, & ~ 3.6554. Obsérvese que esta es una funcién creciente. Existen
algunas soluciones exactas para los valores de n = 0, 1, 2 y 5 [131], en las cuales se muestra
que una estrella con n = 5 tiene un radio infinito, por lo que este valor es una cota para
soluciones fisicamente aceptables.

Una ecuacion de estado politropica no es mds que un gas ideal en un proceso isentropico, es
decir, un proceso adiabético reversible en el cual la entropia del sistema permanece constan-
te. Durante la evolucién de un fluido pueden ocurrir choques hidrodindmicos, lo que implica
una conversion de la energia cinética en energia interna en un proceso conocido como ca-
lentamiento por choques [132], en el cual se rompe el proceso isentropico y el gas deja de
comportarse como un politropo perfecto.

Bajo procesos isentrépicos, el indice adiabético de un gas ideal se relaciona con el indi-
ce politrépico mediante la expresién v = 1 + 1/n, y la constante politrépica con la en-
tropia especifica o mediante K = e°/“v, donde Cj es la capacidad calorifica del gas a
volumen constante. Para gases monoatémicos (como el helio y el hidrégeno, los elementos
mads abundantes en una estrella en la secuencia principal), se tiene un valor v = 5/3 o bien
n = 1.5. En este caso particular, las ecuaciones (A.6) y (A.8) tienen los valores aproximados
K ~ 0.4242GRM*'?y p. ~ 1.428 M/ R®.

Entonces, estudiamos la estabilidad de procesos isentropicos tomando como ejemplo la solu-
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cioén para n = 1.5 y considerando una estrella de masa M = 1y radio R = 10 en unidades
adimensionales. Para ello, la solucién numérica corresponde a los datos iniciales de las ecua-
ciones de EP (2.1}2.4). Recordemos que los métodos numéricos solo son una aproximacién
a las soluciones en el limite continuo; por lo tanto, este tipo de condiciones iniciales pue-
den tratarse como la solucién exacta del sistema estacionario més una perturbacion debida
al error de truncamiento de los métodos numéricos. Asi, la evolucion consiste en observar
cudnto afecta esta perturbacion a la solucion en el tiempo. La evolucién se lleva a cabo en el
dominio espacial D = [—2R, 2R]? durante 100 unidades de tiempo, utilizando una resolucién
espacial de h = R/16 y una resolucién temporal de At = 0.25h.

La Figura[A.2) muestra cinco instantdneas a los tiempos ¢ = 0, 33.33, 66.67 y 100.0 del perfil
de densidad a lo largo del eje z, en las que se presenta como evoluciona el gas bajo ambas
ecuaciones de estado. Podemos observar que el sistema se comporta de manera similar inde-
pendientemente de la eleccion de la ecuacion de estado, evolucionando hacia configuraciones
muy cercanas a la densidad inicial. De hecho, en ambos casos, la densidad central, es decir,
la densidad medida en el origen de coordenadas, decrece aproximadamente un 4 %, y no es
posible notar una desviacion significativa entre el caso isentrépico y el de un gas ideal, como
se muestra en la Figura[A.3]

Sin embargo, si existe una pequefia desviacién del proceso isentropico inicial, lo cual se
debe a los choques hidrodinamicos generados por un artificio numérico. Cabe destacar que la
solucion estacionaria solo es valida dentro de la region |¥| < R. En principio, fuera de esta
esfera la solucion para la densidad deberia ser nula. Sin embargo, numéricamente esto no
es posible, ya que en el lado derecho del sistema discretizado aparecen términos que varian
como 1/p, lo cual no estd definido fuera de esta esfera. Por esta razon, es necesario introducir
un artilugio numérico en dicha region, denominado atmdsfera, el cual establece un valor
minimo para la densidad, tipicamente dentro del rango de los errores de redondeo.

Lo que se ha mostrado hasta ahora es que una perturbacion, en este caso debida a la interfaz
atmosfera-estrella, puede interrumpir un proceso isentropico en un gas ideal y comenzar a
calentarlo mediante los llamados choques hidrodindmicos, como se ilustra en la Figura[A.4]
donde se presenta la constante politrépica definida como K = p/p? para un gas ideal. En
dicha figura, se observa que esta constante deja de ser constante, lo que indica que el proceso
deja de ser isentrépico.

Sin embargo, la dindmica en el interior de la estrella, aproximada mediante una ecuacién
de estado politrdpica, sigue siendo bastante similar a la de un gas ideal. Esta sensibilidad
es crucial, ya que los choques hidrodindmicos pueden ocurrir facilmente en presencia de
oscilaciones inducidas por una fuente externa, como se observa en estrellas compuestas por
fermiones y bosones.
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Figura A.2: Instantdneas a los tiempos ¢t = 0.00, 33.07, 66.14 y 100.0 del perfil de densidad
normalizado respecto al valor inicial p. a lo largo del eje x normalizado respecto al radio
de la estrella R. La linea continua negra corresponde a la evolucién mediante una ecuacién
de estado politropica mientras que la linea punteada roja a la evolucién con una ecuacion de
estado de un gas ideal.

Figura A.3: Densidad medida en el origen de coordenadas como funcién del tiempo. La linea
continua negra representa la evolucién mediante una ecuacion de estado politropica mientras
que la linea punteada roja con un gas ideal.
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Figura A.4: Instantdneas de la cantidad constante politropica p/p” para un gas ideal en los
tiempos ¢ = 0.00, 7.812, 15.62 y 23.44 en el plano z = 0. Se observa un incremento in-
mediato en su valor en la interfaz estrella-atmoésfera debido a los choques hidrodinamicos
provocados por el problema de Riemann en esta zona.
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