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partido que enriqueció este proceso de investigación.

Quisiera reconocer también a la Universidad Michoacana de San Nicolás de Hidalgo y al
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11. Álvarez-Rios, I., Guzmán, F. S., & Shapiro, P. R. (2023). Effect of boundary condi-
tions on structure formation in fuzzy dark matter. Physical Review D, 107(12), 123524.
DOI:10.1103/PhysRevD.107.123524.

https://arxiv.org/abs/2412.13382
https://arxiv.org/abs/2412.15465
https://arxiv.org/abs/2412.12308
https://doi.org/10.1103/PhysRevD.110.063502
https://doi.org/10.3390/universe10080309
https://doi.org/10.1103/PhysRevD.110.023530
https://doi.org/10.1103/PhysRevD.108.063519
https://doi.org/10.1016/j.physletb.2023.137984
https://doi.org/10.1103/PhysRevD.107.123524


II
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Resumen.

En este trabajo se estudia la materia oscura utilizando el modelo de Materia Oscura Difu-
sa (FDM, por sus siglas en inglés). Se presentan simulaciones numéricas que describen la
formación y evolución de estructuras autogravitantes bajo este modelo. En primer lugar, se
analizan configuraciones basadas en FDM pura, enfocadas en el estudio de las primeras es-
tructuras formadas en el universo y en las estructuras galácticas que emergen a partir de ellas.

Posteriormente, se extiende el análisis para incluir la contribución de la materia visible, la
cual influye significativamente en la dinámica de los halos galácticos. Procesos como el en-
friamiento de gas, la formación estelar y la retroalimentación se incorporan en las simulacio-
nes para evaluar su impacto en la distribución de densidad y estabilidad de las estructuras.

Las simulaciones se desarrollaron utilizando un nuevo código diseñado para acoplar de mane-
ra eficiente las ecuaciones de Schrödinger-Poisson (SP) que describen la materia oscura con
las ecuaciones hidrodinámicas que rigen la materia visible. Este enfoque permite una mode-
lación más precisa y detallada de los procesos de formación de estructuras a escala local en
el universo.

Los resultados de este estudio proporcionan una mayor comprensión sobre la interacción
entre materia oscura y bariónica, ası́ como sobre su influencia en la evolución de galaxias y
cúmulos galácticos, un resumen de las aportaciones de este trabajo son:

Asbtract.

In this work, dark matter is studied using the Fuzzy Dark Matter (FDM) model. Numerical
simulations are presented to describe the formation and evolution of self-gravitating structu-
res under this model. First, configurations based on pure FDM are analyzed, focusing on the
study of the earliest structures formed in the universe and the galactic structures that emerge
from them.

Subsequently, the analysis is extended to include the contribution of visible matter, which
significantly influences the dynamics of galactic halos. Processes such as gas cooling, star
formation, and feedback are incorporated into the simulations to evaluate their impact on the
density distribution and structural stability.

The simulations were carried out using a new code designed to efficiently couple the Schrödinger-
Poisson (SP) equations describing dark matter with the hydrodynamic equations governing
visible matter. This approach enables a more precise and detailed modeling of structure for-
mation processes at local scales in the universe.
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The results of this study provide a deeper understanding of the interaction between dark and
baryonic matter, as well as their influence on the evolution of galaxies and galactic clusters.

Palabras clave: Condensados de Bose-Einstein, materia oscura, hidrodinámica, sistemas
autogravitantes, métodos numéricos
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Capı́tulo1
Introducción

La materia oscura es una componente fundamental del universo que no interactúa directamen-
te con la radiación electromagnética, lo que la hace invisible a los telescopios. Sin embargo,
su existencia ha sido inferida a partir de diversos efectos gravitacionales observados. El pri-
mer indicio significativo fue proporcionado por Fritz Zwicky en 1933, al estudiar la dinámica
del cúmulo de Coma. Zwicky notó que la masa visible en este cúmulo no era suficiente para
explicar las altas velocidades de las galaxias en su interior, lo que lo llevó a sugerir la pre-
sencia de una “masa faltante” que generaba el campo gravitacional necesario para mantener
el cúmulo unido [1].

Décadas después, estudios detallados de las curvas de rotación de galaxias, realizados por
Vera Rubin y Kent Ford en la década de 1970, reforzaron esta hipótesis [2]. En particular,
observaron que el gas en las regiones externas de las galaxias espirales se mueve con mayor
velocidad de lo esperado si solo se considera la materia visible. Esto sugiere la existencia
de un halo de materia oscura que extiende su influencia gravitacional más allá del disco
galáctico. Alternativamente, algunos modelos han propuesto modificar las leyes de Newton,
como la Dinámica Newtoniana Modificada (MOND) [3]. En este trabajo, nos inclinamos por
la validez de las leyes de Newton y la existencia de la materia oscura.

El modelo de Materia Oscura Frı́a (CDM, por sus siglas en inglés) surge como una solución
a diversos problemas en la formación de estructuras cósmicas. En este marco, la materia
oscura no relativista desempeña un papel crucial al proporcionar la gravedad necesaria para
el colapso de las pequeñas fluctuaciones de densidad en el plasma primordial, lo que da lugar
a la formación de galaxias y cúmulos. Si la materia oscura fuera caliente, es decir, compuesta
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por partı́culas relativistas en el universo temprano, su gran libre recorrido medio impedirı́a la
formación de estructuras a pequeñas escalas debido al efecto de free-streaming [4].

Observaciones de la distribución de galaxias y del fondo cósmico de microondas indican que
la materia oscura debe ser frı́a o, en algunos modelos, tibia, permitiendo la formación tem-
prana de halos de materia oscura que actúan como semillas gravitacionales para la evolución
de galaxias [5]. Además, simulaciones cosmológicas y datos de la misión Planck han revela-
do que aproximadamente el 27 % de la densidad de energı́a del universo corresponde a esta
componente invisible [6]. Sin la materia oscura, muchas de las estructuras astronómicas ob-
servadas no habrı́an podido consolidarse en la escala temporal del universo, lo que refuerza
la necesidad de su existencia.

En este contexto, el comportamiento gravitacional de la materia oscura se modela bajo el
régimen newtoniano, dado que los potenciales gravitacionales son débiles y las velocidades
caracterı́sticas de las estructuras formadas son pequeñas en comparación con la velocidad
de la luz. Este enfoque ha permitido desarrollar simulaciones numéricas que reproducen con
gran precisión la distribución de materia a gran escala en el universo, proporcionando un
sólido respaldo al modelo CDM.

Entre los modelos actuales, destaca el modelo de Materia Oscura Difusa (FDM, por sus siglas
en inglés), el cual postula que la materia oscura está compuesta por bosones ultraligeros de
espı́n cero [7, 8]. Este modelo ofrece soluciones a discrepancias clave del paradigma de CDM,
como el cusp-core problem [9]. En el interior de las estructuras colapsadas, la presión cuántica
generada por la naturaleza ondulatoria de la materia oscura evita la formación de perfiles
cuspidales, dando lugar a un núcleo central cuya densidad coincide con el estado fundamental
del sistema [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Esta caracterı́stica permite reproducir con
mayor precisión las curvas de rotación galácticas [20]. Además, el modelo FDM mitiga el
missing satellites problem [21], ya que la supresión de la formación de estructuras a escalas
pequeñas reduce el número de galaxias satélites esperadas en comparación con el modelo
estándar de CDM.

El modelo FDM exhibe una serie de caracterı́sticas distintivas que lo diferencian del para-
digma estándar de CDM, pero que, al mismo tiempo, lo hacen compatible con observaciones
cosmológicas a grandes escalas. Una de sus propiedades fundamentales es la granularidad en
los halos galácticos, que emerge debido a la interferencia cuántica de las ondas de materia
oscura. Esta estructura granular introduce fluctuaciones de densidad coherentes en escalas
de la longitud de onda de De Broglie, lo que podrı́a tener implicaciones observacionales en
lentes gravitacionales débiles y en la dinámica de las galaxias enanas [22, 8, 23].

Pese a estas diferencias, el modelo FDM es asintóticamente equivalente a CDM en escalas
suficientemente grandes, ya que la naturaleza ondulatoria de la materia oscura se vuelve irre-
levante en regiones donde la longitud de onda de De Broglie es mucho menor que las estruc-
turas colapsadas [8, 24]. En consecuencia, la evolución de las grandes estructuras cósmicas
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sigue las predicciones estándar del modelo CDM, lo que permite que FDM sea consistente
con observaciones de lentes gravitacionales fuertes y la distribución de cúmulos de galaxias
[22, 25]. Además, la turbulencia cuántica en estos sistemas introduce efectos adicionales en
la dinámica de los halos y galaxias satélites, generando predicciones que pueden ser contras-
tadas con observaciones futuras [23, 26, 27].

La masa del bosón mB en el modelo de FDM es un parámetro clave, ya que debe ser lo sufi-
cientemente pequeña para abordar los problemas a pequeña escala del modelo CDM (como
la formación de núcleos en halos y la supresión de la estructura a pequeña escala), pero lo
suficientemente grande para reproducir el comportamiento de CDM en escalas cosmológicas.
Los estudios sugieren que esta masa debe estar en el rango mB ∼ 10−23− 10−21 eV. A partir
de la función de luminosidad de galaxias en alto corrimiento al rojo, se ha obtenido la restric-
ciónmB > 1.2×10−22 eV [28], mientras que estudios del Lyman-α forest imponen un lı́mite
más estricto demB & 2×10−21 eV [29, 30]. Para resolver los problemas a pequeña escala de
CDM, el valor más comúnmente utilizado en simulaciones esmB ∼ 10−22 eV. Desde un pun-
to de vista cosmológico, el análisis del fondo cósmico de microondas (CMB) y la distribución
de galaxias ha establecido un lı́mite inferior de mB > 10−24 eV [31], mientras que la función
de luminosidad en el ultravioleta y restricciones de reionización sugieren un valor mı́nimo de
mB > 10−23 eV [32]. Sin embargo, estos valores están en tensión con resultados que indican
mB > 10−25 eV [33], lo que refleja la falta de consenso sobre la masa exacta del bosón ul-
traligero y la necesidad de exploraciones adicionales. Además, la auto-interacción entre los
bosones es otro parámetro relevante que puede modificar significativamente la construcción y
fenomenologı́a de las estructuras formadas en este marco teórico, afectando las restricciones
actuales sobre la masa del bosón [34, 35, 36, 37, 38, 39, 40, 41, 42].

En el caso de las galaxias enanas, como Eridanus II, se ha demostrado que los núcleos de los
halos de FDM presentan un movimiento aleatorio que puede afectar la estabilidad de cúmulos
estelares [43]. Esta dinámica en general estocástica también ha sido explorada en el contexto
de fluctuaciones de campos bosónicos [44]. Además, la interacción entre la materia oscura y
los pulsos de púlsares podrı́a revelar modulaciones caracterı́sticas que no han sido estudiadas
en detalle [45].

Por otro lado, la búsqueda de materia oscura mediante métodos experimentales ha avanzado
considerablemente. Sensores cuánticos espaciales han mejorado los lı́mites de detección para
partı́culas ultraligeras vinculadas gravitacionalmente al Sol [46], mientras que observaciones
en la corona solar han identificado posibles conversiones resonantes de materia oscura en
señales de radio [47].

Detectores de ondas gravitacionales como LIGO y GEO 600 han establecido restricciones
significativas sobre las posibles interacciones entre la materia oscura escalar y la materia
ordinaria [48, 49]. Estos instrumentos, diseñados originalmente para la detección de ondas
gravitacionales provenientes de fusiones de objetos compactos, han demostrado ser herra-
mientas prometedoras para explorar nuevas propiedades de la FDM. En particular, su extrema
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sensibilidad a perturbaciones en el espaciotiempo permite buscar señales que podrı́an delatar
la presencia de campos escalares ultraligeros, cuya interacción con interferómetros terres-
tres podrı́a manifestarse como oscilaciones coherentes en las mediciones de longitud o en la
frecuencia de los relojes atómicos acoplados a estos experimentos. El uso de detectores de
ondas gravitacionales para este propósito abre una nueva vı́a en la búsqueda de materia os-
cura, proporcionando un complemento a las restricciones obtenidas a partir de observaciones
astrofı́sicas y cosmológicas, y permitiendo explorar escenarios en los que la materia oscura
exhiba interacciones débiles pero detectables con la materia visible.

La materia visible, compuesta por gas, estrellas y polvo, también es crucial para modelar
correctamente la estructura galáctica. Ejemplos como el Bullet Cluster muestran una sepa-
ración evidente entre la materia visible y la materia oscura, confirmando que esta última no
interactúa directamente con la materia ordinaria, pero ejerce una influencia gravitacional de-
terminante [50]. Los procesos de formación estelar, retroalimentación y enfriamiento de gas
modifican la distribución de masa dentro de los halos galácticos de FDM y viceversa [51].

Los resultados de esta tesis han generado avances clave en la comprensión y modelado de
la FDM y su interacción con la materia visible, impactando el estudio de la formación y
evolución de estructuras en el universo.

En términos de desarrollo metodológico, se ha implementado un algoritmo genético para
la construcción de soluciones del estado fundamental del sistema Gross-Pitaevskii-Poisson
(GPP), demostrando su utilidad para problemas con múltiples parámetros 7. Asimismo, la
implementación de la transformada rápida de Fourier para la resolución de ecuaciones dife-
renciales ha permitido abordar problemas computacionales complejos 4.

A partir de estas herramientas, se han construido soluciones estacionarias tanto en el sistema
Schrödinger-Poisson como en el marco de Madelung, verificando que estas configuraciones
son estables e independientes del marco utilizado 13. Además, se ha extendido el análisis a
modelos con múltiples bosones de masas iguales, demostrando que la estabilidad de estas
soluciones también se mantiene en escenarios con varios componentes 5.

Se han construido soluciones estacionarias del sistema Schrödinger-Poisson-Euler (SPE),
proporcionando modelos de equilibrio que sirven como referencia para simulaciones numéri-
cas. Se ha demostrado que la estabilidad de estas soluciones depende crı́ticamente de la ecua-
ción de estado utilizada para la materia visible, con estabilidad observada en configuraciones
politrópicas y relajación hacia estados distintos en el caso de un gas ideal 10. Además, se
ha comprobado que estas soluciones emergen como atractores del sistema a partir de con-
diciones iniciales aleatorias, lo que sugiere que pudieron haber sido las primeras estructuras
virializadas en formarse dentro del modelo FDM. Asimismo, se ha evidenciado que la in-
teracción gravitacional entre la materia oscura y la visible puede sincronizar las oscilaciones
de ambos componentes, lo que podrı́a proporcionar restricciones observacionales adiciona-
les al modelo FDM 1. Estos hallazgos permiten delimitar condiciones iniciales realistas para
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simulaciones de formación de galaxias y evolución de estructuras en el marco de FDM.

Adicionalmente, se ha explorado la interacción entre FDM y agujeros negros supermasivos,
encontrando que estos últimos pueden actuar como puntos de condensación de la materia
oscura, modificando la evolución y distribución de densidad del núcleo galáctico. Se ha iden-
tificado un mecanismo mediante el cual la oscilación del agujero negro dentro del núcleo de
FDM redistribuye la densidad central, lo que podrı́a proporcionar predicciones observacio-
nales clave para evaluar la viabilidad del modelo 2.

Estas soluciones de equilibrio, inicialmente virializadas, sirven como punto de partida para
estudiar escenarios más complejos que describen la formación de estructuras a escalas loca-
les, tales como las fusiones binarias 14. Se ha demostrado que, en el interior de la estructura
resultante de una fusión, se forma un núcleo que evoluciona hacia el estado base del sistema
debido al enfriamiento gravitacional. Un estudio detallado en 11 confirma que este proceso
está ligado a la elección de condiciones de frontera aisladas, que permiten expulsar la masa
y energı́a cinética fuera del dominio numérico, relajando ası́ el sistema. En contraste, en un
dominio periódico, la energı́a total y la masa se conservan, permitiendo una dinámica más
compleja y la formación de halos alrededor del núcleo galáctico. Además, las condiciones de
frontera periódicas imponen restricciones adicionales, ya que permiten reescalar la energı́a
total sin alterar la dinámica del sistema, lo que sugiere que las fórmulas empı́ricas utilizadas
en estos estudios deben ser cuidadosamente calibradas para garantizar su aplicabilidad en
diferentes simulaciones 8.

Estos hallazgos confirman además la naturaleza atractora de los núcleos formados en el in-
terior de los halos. Basado en esto, se ha desarrollado un método para la construcción de es-
tructuras núcleo-halo, combinando el estado base del sistema con una envoltura adicional que
permite ajustar curvas de rotación más allá de la región central 9. Estas estructuras iniciales
son inestables y evolucionan hacia configuraciones relajadas con una estructura núcleo-halo
bien definida.

El desarrollo de modelos de halos con perfiles multimodo ha permitido ajustar curvas de
rotación de galaxias de baja luminosidad superficial 6. Sin embargo, se ha encontrado que,
aunque estas configuraciones pueden ser virializadas inicialmente, su evolución en escalas de
tiempo cosmológicas genera acumulación de materia en los núcleos galácticos. Esto sugiere
que la evolución natural de configuraciones FDM podrı́a explicar ciertas caracterı́sticas ob-
servadas en galaxias, como la presencia de picos en sus curvas de rotación a radios pequeños
8.

Otro resultado relevante ha sido la identificación de comportamiento caótico en trayectorias
de partı́culas de prueba dentro de estructuras núcleo-halo de FDM cuando se consideran sus
caracterı́sticas anisotrópicas y su dependencia temporal 3. Se encontró que, mientras las órbi-
tas permanecen circulares bajo un potencial gravitacional promedio en el tiempo y ángulos,
la verdadera estructura fluctuante induce trayectorias erráticas, con mayor sensibilidad en la
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región del núcleo que en el halo. Este comportamiento caótico ha sido cuantificado a través
del cálculo de exponentes de Lyapunov, mostrando que la dinámica de partı́culas de prueba es
inherentemente caótica en todo el dominio, con exponentes más altos en la región central. Es-
to sugiere que el comportamiento colectivo de partı́culas, como el de un gas acoplado a una
estructura núcleo-halo de FDM, podrı́a exhibir correlaciones no triviales y potencialmente
evolucionar hacia un estado más estacionario, lo que abre una nueva lı́nea de investigación
en la dinámica de materia visible en presencia de materia oscura bosónica.

Estos avances han sido posibles gracias al desarrollo del nuevo código CAFE-FDM, pre-
sentado en 12 para simulaciones con condiciones de frontera aisladas y ampliado en 11 para
incluir condiciones de frontera periódicas. Este desarrollo numérico sienta las bases para si-
mulaciones más eficientes de la dinámica de FDM en escenarios cosmológicos y astrofı́sicos.
En conjunto, estos resultados fortalecen la base teórica y numérica para el estudio de la ma-
teria oscura bosónica ultraligera y ofrecen nuevas herramientas para evaluar su papel en la
evolución de galaxias y estructuras cósmicas.

A partir de los avances numéricos alcanzados, es posible profundizar en el estudio de la
interacción entre la materia oscura y la materia visible mediante simulaciones detalladas y
escenarios complejos. Con este propósito, el presente documento se organiza de la siguiente
manera:

En el Capı́tulo 2, se presentan las ecuaciones fundamentales que describen la dinámica
de la materia oscura difusa (FDM), ası́ como los acoplamientos relevantes que permiten
su interacción con otros componentes del sistema.

El Capı́tulo 3 detalla los métodos numéricos implementados para resolver el sistema
de ecuaciones, abarcando técnicas de discretización espacial, esquemas de evolución
temporal y estrategias para optimizar la estabilidad y precisión de las simulaciones.

En el Capı́tulo 4, se analizan los resultados obtenidos en simulaciones de FDM pura,
centrándose en los procesos de condensación, formación de estructuras y la dinámica
resultante bajo diferentes condiciones de frontera.

El Capı́tulo 5 amplı́a el análisis al incluir un gas ideal acoplado a la materia oscura,
lo que permite explorar la interacción entre materia oscura y materia bariónica en es-
cenarios galácticos y estudiar su impacto en la formación y evolución de estructuras
complejas.

Por otro lado, en el Capı́tulo 6 se extiende el estudio de la FDM para incluir la influen-
cia de agujeros negros, investigando cómo actúan como puntos de condensación y su
efecto sobre la dinámica de la materia oscura en su entorno inmediato.

Finalmente, en el Capı́tulo 7, se presentan las conclusiones generales del estudio, des-
tacando los hallazgos más relevantes, las implicaciones en la formación de estructuras
y las posibles lı́neas de investigación futura.



Capı́tulo2
Modelo y Ecuaciones

En este capı́tulo se presenta el modelo teórico que describe la dinámica del sistema compuesto
por materia visible y materia oscura difusa. La materia visible, modelada como un fluido de
gas ideal compresible, se describe en la sección 2.1 mediante las ecuaciones de Euler. Por otro
lado, la materia oscura, representada por una condensación de bosones ultraligeros, se aborda
en la sección 2.2 utilizando las ecuaciones Schrödinger-Poisson (SP). Estos dos componentes
se acoplan gravitacionalmente, formando un sistema dinámico complejo, el cual se describe
en la sección 2.3.

Se abordan las ecuaciones para la materia visible, que incluyen la conservación de la masa,
el momento y la energı́a, ası́ como su ecuación de estado. Posteriormente, se analizan las
ecuaciones para la FDM y su acoplamiento con la materia visible, donde la gravedad juega
un papel fundamental en la evolución de ambos componentes.

Este marco teórico permite explicar las simulaciones que se mostrarán más adelante, propor-
cionando una base para estudiar fenómenos como la formación de estructuras y las curvas de
rotación galáctica.
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SECCIÓN 2.1

Materia Visible

La dinámica de la materia visible puede modelarse, en el caso más simple, como un fluido
macroscópico autogravitante gobernado por las ecuaciones de Euler-Poisson (EP):

∂tρ+∇ · (ρ~v) = 0, (2.1)
∂t (ρ~v) +∇ · (ρ~v ⊗ ~v + pI) = −ρ∇V, (2.2)

∂tE +∇ · [~v (E + p)] = −ρ~v · ∇V, (2.3)
∇2V = 4πGρ, (2.4)

donde ρ representa la densidad de materia, ~v el campo de velocidades de un elemento de
fluido, p la presión, e la energı́a interna especı́fica, V el potencial gravitacional y E =
ρ
(
e+ 1

2
|~v|2
)

la energı́a total por unidad de volumen, siendo G la constante gravitacional
de Newton. Estas ecuaciones son fundamentales para modelar el comportamiento de los flui-
dos autogravitantes, los cuales se encuentran en una gran variedad de situaciones astrofı́sicas,
tales como en la dinámica de gas intergaláctico, de las regiones de formación estelar o incluso
de la materia que conforma los núcleos galácticos [52, 53].

El sistema EP consta de seis ecuaciones diferenciales parciales: la primera ecuación (2.1)
representa el principio de conservación de la masa, el cual dicta cómo evoluciona la den-
sidad del fluido en el tiempo y asegura que la masa total dentro de un volumen cerrado se
conserve. La segunda ecuación (2.2) representa el principio de conservación del momento,
proporcionando una ecuación de evolución para el momento volumétrico y considerando la
interacción gravitacional que actúa sobre el fluido. La tercera ecuación (2.3) representa la
conservación de la energı́a, proporcionando la ecuación de evolución para la energı́a total
volumétrica, que incluye tanto la energı́a interna como la cinética del fluido. Finalmente, la
ecuación de Poisson (2.4) representa la restricción del potencial gravitacional que debe satis-
facerse durante toda la evolución del fluido, ligada a la distribución de la masa a través de la
ley de gravitación de Newton.

Dado que hay un total de siete variables, el sistema se encuentra indeterminado. Una manera
de cerrar el sistema es usando la termodinámica del gas, la cual proporciona una relación
entre algunas variables macroscópicas del sistema mediante la elección de una ecuación de
estado p = p(ρ, e), siendo en este documento una opción el considerar un gas ideal cuya
ecuación de estado es
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p = (γ − 1)ρe, (2.5)

donde γ es el ı́ndice adiabático, que depende de las propiedades termodinámicas del gas, o
bien, se puede elegir una ecuación de estado politrópica de la forma

p = Kρ1+1/n, (2.6)

siendo K la constante politrópica y n el ı́ndice politrópico, el cual depende del tipo de flui-
do que se modela, caracterizando la relación entre la presión y la densidad del fluido. Las
ecuaciones de estado proporcionan una herramienta útil para conectar las propiedades ma-
croscópicas del fluido con sus variables termodinámicas, y permiten interpretar los procesos
termodinámicos que surgen de la dinámica del gas.

Este sistema de ecuaciones diferenciales parciales corresponde a un fluido sin conductividad
térmica, no viscoso, en el que las partı́culas no interactúan entre sı́, lo cual es una aproxima-
ción válida en muchos casos astrofı́sicos. No obstante, cabe resaltar que en algunos contextos
más especı́ficos, como en la dinámica de ciertos gases o en condiciones extremas de densidad
y temperatura, serı́a necesario considerar otros efectos como la viscosidad o la conductividad
térmica, lo que llevarı́a a un modelo más complejo. Una descripción macroscópica detallada
de la deducción de estas ecuaciones puede encontrarse en [54]. Este sistema de ecuaciones
definen un Problema de Valores Iniciales (PVI) el cual será resuelto en un dominio cartesiano
3+1, donde se deben especificar los valores de las variables al tiempo inicial t = 0:

ρ(0, ~x) = ρ0(~x), (2.7)
~v(0, ~x) = ~v0(~x), (2.8)
e(0, ~x) = e0(~x), (2.9)

El resto de las variables se obtienen de la ecuación de estado p(0, ~x) = p(ρ0, e0) y de la
definición de energı́a total E(0, ~x) = ρ0

(
e0 + 1

2
|~v0|2

)
. Este conjunto de condiciones iniciales

es fundamental para la simulación del comportamiento espacial y temporal del sistema, ya
que a partir de estos valores se resolverán las ecuaciones de EP en el tiempo y el espacio.

Si bien el uso de un fluido perfecto puede parecer limitante, en realidad, para muchos proble-
mas astrofı́sicos, un gas ideal proporciona una primera aproximación suficientemente buena
que puede capturar las dinámicas principales sin necesidad de complicar excesivamente el
modelo. El uso de un gas ideal en el modelado de la dinámica de la materia visible mediante
el sistema de ecuaciones EP es una elección justificada por su simplicidad y aplicabilidad en
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muchas condiciones astrofı́sicas. Aunque los gases más complejos pueden proporcionar deta-
lles adicionales, el gas ideal ofrece una primera aproximación robusta que facilita el análisis
y la comprensión inicial del sistema estudiado.

En términos de simulaciones numéricas, el gas ideal no es necesariamente más sencillo de
modelar, ya que puede generar choques hidrodinámicos, los cuales pueden dar lugar a la for-
mación de estructuras como brazos espirales en las galaxias. Un modelo sin viscosidad es
más adecuado para capturar estos fenómenos, ya que permite la formación y propagación de
los choques sin suavizar sus efectos. Por otro lado, la inclusión de procesos radiativos intro-
duce escalas de tiempo adicionales y requiere un tratamiento detallado de la transferencia de
energı́a, lo que puede volver los cálculos prohibitivos en términos de tiempo computacional
y complejidad. Al no considerar estos efectos radiativos, es posible realizar estudios preli-
minares que se enfoquen únicamente en la hidrodinámica del sistema, permitiendo explorar
distintos escenarios de manera eficiente [55]. En futuras investigaciones, la incorporación de
efectos no ideales podrı́a proporcionar una descripción más completa de estos sistemas, pero
el modelo actual sigue siendo una herramienta útil para analizar la dinámica de la materia
visible en interacción con la materia oscura.

Es fundamental conocer las ecuaciones que gobiernan la dinámica de la materia oscura, ya
que esta domina gravitacionalmente en escalas grandes, como las que se observan en las
estructuras galácticas. Sin embargo, dado que su naturaleza aún es desconocida, diferentes
modelos han sido propuestos para describir su comportamiento. En el paradigma de CDM, se
asume que está compuesta por partı́culas masivas y no relativistas, cuyo efecto gravitacional
puede estudiarse mediante simulaciones tipo N-cuerpos, en las cuales la materia oscura se
trata como un fluido de partı́culas en un régimen colisionalmente frı́o.

Una alternativa interesante es la materia oscura bosónica ultraligera (FDM), que debido a su
longitud de onda de de Broglie macroscópica puede modelarse mediante una ecuación de on-
da no lineal, permitiendo describir su evolución como un gas de bosones a través del sistema
de Schrödinger-Poisson. Esta caracterı́stica introduce efectos cuánticos a escalas astrofı́sicas,
dando lugar a estructuras con propiedades distintas a las predichas por CDM, como núcleos
solitónicos en halos galácticos y la supresión de la fragmentación a escalas pequeñas. El es-
tudio detallado de estas ecuaciones resulta crucial para comprender la dinámica de la materia
oscura y evaluar sus posibles manifestaciones observacionales en la formación y evolución
de galaxias.
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SECCIÓN 2.2

Materia Oscura

Un Condensado de Bose-Einstein (BEC, por sus siglas en inglés) es un gas cuántico formado
por bosones, que son partı́culas de espı́n entero múltiplo de la constante de Planck reducida
~ [56]. Estas partı́culas, cuando se enfrı́an a temperaturas cercanas al cero absoluto, ocupan
el mismo estado cuántico fundamental, lo que da lugar a un fenómeno macroscópico en el
que las propiedades cuánticas se manifiestan a escalas macroscópicas. En este estado, todas
las partı́culas que forman el gas se encuentran en la misma fase cuántica, y se describen
mediante una única función de onda colectiva Ψ(t, ~x), conocida como el parámetro de orden,
que representa el comportamiento global del sistema.

La dinámica de un BEC está regida por la ecuación de Gross-Pitaevskii (GP), una ecuación
diferencial parcial no lineal que describe la evolución temporal de la función de onda Ψ(t, ~x).
Esta ecuación se expresa como:

i~∂tΨ = − ~2

2mB

∇2Ψ +mBVΨ + g|Ψ|2Ψ, (2.10)

donde g = 4π~2as/mB es el coeficiente no lineal que describe la interacción entre los boso-
nes, as es la longitud de dispersión entre pares de bosones, mB es la masa del bosón, y V es
el potencial externo que actúa como una trampa que confina al gas de bosones, ayudando a
mantener atrapado el gas. La ecuación de GP es fundamental en la descripción de sistemas
bosónicos ultrafrı́os y se usa extensamente en la investigación de condensados, donde las
interacciones entre partı́culas pueden ser de diferentes tipos, dependiendo de los valores de
as [57]. Este fenómeno fue observado por primera vez en un gas de Rubidio a temperaturas
extremadamente bajas [58].

El modelo de BEC de Materia Oscura (BECDM, por sus siglas en inglés) postula que la
materia oscura está compuesta por partı́culas bosónicas de espı́n cero que, bajo condiciones
adecuadas, forman un BEC [59]. En este modelo, la naturaleza cuántica de la materia oscura
puede explicarse como un condensado bosónico que se distribuye a gran escala en el universo.
En el caso del BECDM, el potencial externo que confina el gas de bosones no es impuesto
externamente, sino que es autogenerado por la propia densidad de materia del ensamble.
Esta interacción autogenerada se describe mediante la ecuación de Poisson, que relaciona el
potencial gravitacional con la distribución de materia [60]:
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∇2V = 4πGmB|Ψ|2, (2.11)

dondeG es la constante gravitacional de Newton. Esta ecuación muestra cómo la distribución
de masa del BEC de materia oscura genera el potencial gravitacional necesario para mantener
atrapado el gas.

El modelo BECDM presenta dos parámetros fundamentales que no se conocen con exactitud:
la masa del bosón mB y la longitud de dispersión as de las interacciones entre los bosones.
La longitud de dispersión as describe la fuerza de las interacciones entre las partı́culas del
BEC, y la masa del bosón mB determina las caracterı́sticas cuánticas de la materia oscura. En
muchos estudios, se asume que las interacciones entre los bosones son muy débiles, lo que
implica que as podrı́a ser pequeño o incluso cero.

En este modelo, se postula que los bosones son ultraligeros, con una masa del orden de 10−22

eV [7, 61, 62, 8]. Esta pequeña masa implica que la longitud de onda de De Broglie λdB
asociada con los bosones es de varias decenas de parsecs, lo que impide la formación de
estructuras de materia oscura a escalas más pequeñas que λdB. En este contexto, la materia
oscura no tiene la capacidad de acumularse en estructuras densas. La longitud de onda de
De Broglie, que influye en la estabilidad de las estructuras colapsadas, es una consecuencia
directa de la naturaleza cuántica del sistema [63].

Una simplificación comúnmente utilizada es la suposición de que la interacción entre los
bosones es despreciable, lo que implica as = 0. Este caso recibe el nombre de FDM.

El modelo FDM es, en efecto, una simplificación del modelo BECDM, donde se asume que
as = 0. No obstante, en muchos estudios, ambos modelos se tratan de manera intercambiable
cuando se considera la dinámica de la materia oscura difusa. La principal diferencia radica
en la inclusión de las interacciones entre bosones, que en el caso del FDM se descartan.

En el marco del modelo FDM, las ecuaciones que gobiernan la dinámica de la materia oscura
se reducen al sistema SP, el cual describe la evolución temporal de la función de onda Ψ y el
potencial gravitacional V . Este sistema es una aproximación válida cuando las interacciones
entre las partı́culas son mı́nimas. Existen dos enfoques clave para resolver este sistema, que
se describen desde dos marcos diferentes de referencia descritos a continuación.

2.2.1 Marco de Schrödinger-Poisson

La dinámica de la FDM está gobernada por el sistema SP, que describe la interacción entre
el parámetro de orden y el potencial gravitacional autoinducido por su propia distribución de
densidad [64, 10, 22]. Las ecuaciones que rigen este sistema son:
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i~∂tΨ = − ~2

2mB

∇2Ψ +mBVΨ, (2.12)

∇2V = 4πGmB (ρFDM − ερ̄FDM) , (2.13)

donde Ψ(t, ~x) es la función de onda que describe el estado del gas de bosones, mB es la masa
del bosón, y ρFDM = mB|Ψ|2 representa la densidad de masa del gas. El valor ρ̄FDM es el
promedio de la densidad en un cierto dominio espacial D ⊂ R3 dado por:

ρ̄FDM :=
1∫

D
d3x

∫
D

ρFDMd
3x.

El parámetro ε toma el valor ε = 0 si el gas se supone asilado y ε = 1 en el que el PVI se
resuelve en un dominio periódico. Al igual que las ecuaciones de Euler-Poisson (2.1-2.4), es
necesario especificar el valor inicial de la función de onda:

Ψ(0, ~x) = Ψ0(~x),

y con esto basta para determinar V a t = 0.

Una caracterı́stica clave del sistema es su invarianza ante el siguiente cambio de escala, lo
que significa que las soluciones de las ecuaciones pueden ser escaladas sin alterar la forma
general del comportamiento dinámico [65] cuando se aplica la transformación:

{t, ~x,Ψ, V } → {λ2t, λ−1~x, λ2Ψ, λ2V }, (2.14)

donde λ es un número real. Esta propiedad de invarianza de escala es útil y tiene varias
implicaciones importantes:

Autosemejanza y escalabilidad fı́sica: La invarianza bajo un cambio de escala implica
que las soluciones del sistema pueden ser autosemejantes. Es decir, si se posee una so-
lución para un conjunto de condiciones iniciales, es posible obtener una nueva solución
para un sistema con diferentes escalas simplemente escalando el tiempo, el espacio y
las funciones de onda y potencial. Esto es particularmente relevante en el contexto de
la FDM, ya que permite estudiar el comportamiento del sistema a diferentes escalas
sin necesidad de resolver el problema completo en cada una de ellas, lo cual facilita el
análisis en una amplia gama de contextos fı́sicos.
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Conservación de propiedades globales: La invarianza de escala asegura que ciertas
propiedades globales del sistema, como la masa total o la energı́a, permanecen propor-
cionales a las escalas elegidas. Esto proporciona una comprensión más clara de cómo
las propiedades globales del sistema varı́an cuando se modifican las caracterı́sticas es-
paciales o temporales del mismo. Por ejemplo, la longitud de onda de De Broglie, que
juega un papel fundamental en la FDM, puede cambiar dependiendo de la escala del
sistema.

En resumen, la invarianza de escala del sistema Schrödinger-Poisson facilita tanto el análisis
teórico como las simulaciones numéricas. Esta propiedad no solo permite estudiar el com-
portamiento del sistema en diferentes escalas, sino que también proporciona una herramienta
poderosa para simplificar el tratamiento de sistemas complejos, asegurando que las propieda-
des globales y el comportamiento dinámico sean consistentes a través de las diversas escalas.
Además, la invarianza de escala ofrece una visión más profunda sobre las propiedades fun-
damentales del sistema en múltiples niveles de análisis.

2.2.2 Marco de Madelung-Poisson

Una alternativa importante para expresar el sistema de SP es a través de la transformación de
Madelung [66], la cual permite representar la función de onda como una combinación de una
magnitud y una fase. Esta transformación se define de la siguiente manera:

Ψ =
√
ρFDM/mBe

iS/~, (2.15)

donde ρFDM = mB|Ψ|2 es la densidad de materia del gas de bosones, y S representa la
fase, que está relacionada con el momento del sistema. Al introducir esta transformación en
el sistema de ecuaciones SP (2.12-2.13), se obtienen nuevas ecuaciones en términos de las
variables macroscópicas, que simplifican en algunos escenarios el análisis fı́sico y numérico
del problema.

Para la parte imaginaria de las ecuaciones, se obtiene la ecuación de conservación de la
densidad, que tiene la forma:

∂tρFDM +∇
(
ρFDM

∇S
mB

)
= 0, (2.16)

Esta ecuación expresa la conservación de la masa del gas de bosones, considerando que el
flujo de la densidad está dado por el producto de la densidad ρFDM y el gradiente de la fase
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S, dividido por la masa del bosón mB.

Por otro lado, la parte real del sistema da lugar a una ecuación que describe la evolución
temporal de la fase S, la cual se presenta como:

∂tS +
1

2mB

|∇S|2 +mBV +mBQ = 0, (2.17)

Aquı́, V es el potencial gravitacional, y Q es el denominado potencial cuántico, el cual está
definido como:

Q = − ~2

2m2
B

∇2√ρFDM√
ρFDM

, (2.18)

El potencial cuántico Q puede interpretarse como una corrección cuántica a la dinámica del
gas, que surge debido a los efectos de interferencia y dispersión de la función de onda [67].
De manera equivalente, el gradiente del potencial cuántico se puede escribir como:

∇Q = − 1

ρFDM
∇ · pQ, (2.19)

donde pQ es el tensor de presión cuántico, que se define como:

pQ = −
(

~
2mB

)2

∇⊗∇ ln ρFDM . (2.20)

Este tensor describe las fuerzas cuánticas que actúan sobre el sistema debido a las fluctuacio-
nes en la densidad.

Si tomamos el gradiente de la ecuación que describe la evolución de la fase S (2.17) y defini-
mos el campo de velocidad como ~v = ∇S/mB, entonces podemos reescribir las ecuaciones
de conservación de la masa, la conservación del momento y la ecuación de Poisson del siste-
ma Schrödinger-Poisson en el marco de Madelung-Poisson (MP) de la siguiente manera:

∂tρFDM +∇ · (ρFDM~v) = 0, (2.21)
∂t (ρFDM~v) +∇ · (ρFDM~v ⊗ ~v + pQ) = −ρFDM∇V, (2.22)

∇2V = 4πG (ρFDM − ερ̄FDM) . (2.23)
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De esta forma, podemos observar que el sistema de ecuaciones (2.21-2.23) es equivalente al
sistema de Euler acoplado a la ecuación de Poisson, lo que lo convierte en un sistema hidro-
dinámico cuántico [64]. Este sistema es conocido como el marco de Madelung-Poisson (MP),
y proporciona una descripción más accesible y fı́sica del comportamiento del gas de bosones,
utilizando variables macroscópicas como la densidad ρFDM y el campo de velocidades ~v.

En este marco, es más sencillo entender la dinámica del gas de bosones, ya que se puede
interpretar el comportamiento del sistema en términos de las propiedades macroscópicas de
fluido. Además, este formalismo permite una mayor claridad a la hora de analizar las inter-
acciones y la evolución del gas de bosones a lo largo del tiempo. Esto resulta de gran utilidad
tanto en el análisis teórico como en la simulación numérica de la dinámica de la materia
oscura bosónica y otros sistemas cuánticos de partı́culas.

SECCIÓN 2.3

Acoplamiento Materia Visible y Materia Oscura

En los modelos anteriores, hemos tratado tanto el modelo de materia visible como el modelo
de materia oscura como dos componentes independientes, cada una con su propia dinámica.
Sin embargo, un aspecto fundamental que debemos considerar es la interacción gravitacional
entre estas dos formas de materia. Dado que la materia oscura no interactúa directamente con
el espectro electromagnético, no puede ser observada a través de los medios tradicionales de
la astronomı́a, como la radiación electromagnética [50]. Sin embargo, se sabe que la materia
oscura ejerce una influencia gravitacional significativa sobre la materia visible, afectando la
evolución y distribución de las galaxias y otras estructuras astrofı́sicas.

En este contexto, la materia oscura y la materia visible deben ser consideradas como un siste-
ma acoplado que interactúa únicamente a través de la gravedad [68]. Por lo tanto, el modelo
adecuado para describir la dinámica de este sistema es el sistema acoplado de ecuaciones
Schrödinger-Poisson-Euler (SPE), que modela tanto el comportamiento de la materia visible,
representada generalmente por un fluido de gas ideal, como la materia oscura, descrita por
una función de onda asociada a partı́culas bosónicas. Este sistema de ecuaciones incorpora las
interacciones gravitacionales entre las dos especies de materia, permitiendo una descripción
más completa de la dinámica galáctica.

El sistema completo de ecuaciones que rige la evolución del sistema acoplado es el siguiente:
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∂tρ+∇ · (ρ~v) = 0, (2.24)
∂t (ρ~v) +∇ · (ρ~v ⊗ ~v + pI) = −ρ∇V, (2.25)

∂tE +∇ · [~v (E + p)] = −ρ~v · ∇V, (2.26)
p = p(ρ, e), (2.27)

i~∂tΨ = − ~2

2mB

∇2Ψ +mBVΨ, (2.28)

∇2V = 4πG (ρT − ερ̄T ) , (2.29)

donde ρT = ρ+ ρFDM es la densidad total y el resto de variables tienen la misma interpreta-
ción que hemos descrito anteriormente.

Una caracterı́stica importante de este sistema es su invariancia bajo transformaciones de esca-
la. Es decir, el sistema mantiene su forma funcional cuando se realiza un cambio de escala λ.
Bajo este cambio, las variables del sistema se transforman de acuerdo con la siguiente regla:

{t, ~x, ρ,~v, e, p,Ψ, V } →
{
λ−2t, λ−1~x, λ4ρ, λ−1~v, λ−2e, λ2p, λ2Ψ, λ2V

}
, (2.30)

Esta transformación afecta las distintas variables del sistema, lo que permite estudiar la evo-
lución del sistema en diferentes escalas. En particular, la energı́a total E = ρ(e + 1

2
|~v|2) se

transforma como E → λ2E, lo que implica que la energı́a total aumenta o disminuye con
el cambio de escala. Este comportamiento es consistente con la forma de las ecuaciones de
conservación de la energı́a y el momento.

Si cerramos el sistema mediante una ecuación de estado politrópica, la constante politrópica
K debe transformarse de la siguiente manera:

K → λ−2−4/nK, (2.31)

lo que asegura que la ecuación de estado siga siendo válida bajo transformaciones de escala.
Este tipo de invariancia es útil para estudiar el comportamiento auto-similar de las estructuras
a gran escala, como los halos de materia oscura, y permite hacer predicciones sobre cómo
éstas estructuras evolucionan con el tiempo.

En resumen, el sistema SPE proporciona una herramienta poderosa para estudiar la interac-
ción gravitacional entre la materia visible y oscura, permitiendo modelar fenómenos como la
distribución conjunta de materia a escalas locales [69].
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2.3.1 Diagnóstico

En cualquier sistema macroscópico, existen varias cantidades fı́sicas fundamentales que de-
ben ser diagnosticadas a lo largo de su evolución para caracterizar correctamente el estado
del sistema. En la Tabla 2.1, se muestran las definiciones de diversas cantidades clave para
la materia visible y la materia oscura difusa, incluyendo las masas Mgas,FDM , las energı́as
cinéticas Kgas,FDM , las energı́as potenciales Wgas,FDM , los momentos lineales ~pgas,FDM , los
momentos angulares ~Lgas,FDM y la energı́a interna Ugas de la materia visible. Estas cantidades
no solo nos proporcionan información sobre el estado dinámico del sistema, sino que también
nos permiten evaluar la evolución temporal de la materia visible y oscura.

Además, a partir de estas definiciones, es posible calcular las energı́as totales de ambos com-
ponentes del sistema. La energı́a total de la materia visible está dada por Egas = Kgas +
Wgas +Ugas, mientras que la energı́a total de la materia oscura difusa se define como EFDM =
KFDM + WFDM . También se pueden calcular los factores de virialización, que ofrecen una
medida de la relación entre las energı́as cinética, potencial e interna. Los factores de viriali-
zación están dados por Qgas = 2Kgas +Wgas +3Ugas para el gas y QFDM = 2KFDM +WFDM

para la materia oscura difusa.

Estas cantidades de diagnóstico transforman bajo el cambio de escala λ de la siguiente ma-
nera:

{
M,K,W, ~p, ~L

}
→
{
λM, λ3K,λ3W,λ2~p, λ~L

}
, (2.32)

donde hemos omitido los subı́ndices que especifican si las cantidades corresponden al gas o
a la materia oscura difusa (FDM).

2.3.2 Adimensionalización del Sistema

La transformación del sistema en un sistema de coordenadas adimensional garantiza la uni-
formidad de las unidades y evita problemas derivados de escalas dispares al realizar cálculos
numéricos. Para lograrlo, realizamos las siguientes transformaciones: t̃ = tt0, ~̃x = ~xx0,
ρ̃ = ρρ0, ~̃v = ~vv0, p̃ = pp0, Ṽ = V V0, Ẽ = EE0, ẽ = ee0, Ψ̃ = ΨΨ0, donde las variables sin
tilde son adimensionales y se dice que son unidades de código, mientras que las que tienen
tilde son fı́sicas. Los factores de escala adecuados para el sistema GPP son:
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Diagnóstico para el gas Diagnóstico para la FDM
Mgas =

∫
D
ρd3x MMO = mB

∫
D
|Ψ|2d3x

Kgas =
1

2

∫
D
ρ|~v|2d3x KFDM =

~2

2mB

∫
D

Ψ∗∇2Ψd3x

Wgas =
1

2

∫
D
ρV d3x WFDM =

mB

2

∫
D

Ψ∗VΨd3x

~pgas =
∫
D
ρ~vd3x ~pFDM = −i~

∫
D

Ψ∗∇Ψd3x
~Lgas =

∫
D
ρ~x× ~vd3x ~LFDM = −i~

∫
D

Ψ∗~x×∇Ψd3x
Ugas =

∫
D
ρed3x

Cuadro 2.1: En la parte izquierda y derecha se muestra el diagnóstico para el gas y la materia
oscura difusa, respectivamente. En ambos sistemas, M es la masa, K la energı́a cinética,
W la energı́a potencial, ~p el momento lineal y ~L el momento angular. Por último, solo se
tiene energı́a interna, Ugas, para el gas. Las cantidades de diagnóstico se miden en el dominio
D ⊂ R3.

t0 =
mBx

2
0

~
∼ 5.096× 10−2

(m22

λ2

)
Gyr,

v0 =
~

mBx0

∼ 19.20
(m22

λ

)
km/s,

ρ0 =
~2

4πGm2
Bx

4
0

∼ 6.820× 106

(
λ4

m2
22

)
M�/kpc3,

(2.33)

el resto se puede calcular como e0 = V0 = v2
0 ,E0 = p0 = ρ0v

2
0 y Ψ0 =

√
ρ0/mB, y se definió

el factor de escala de longitud x0 = λ−1 kpc y la masa del bosón mB = m22 × 10−22eV/c2.

De esta forma, el sistema posee efectivamente un único grado de libertad, que expresamos en
términos de un factor de escala λ, equivalente a la transformación (2.30) y (2.32). Con estas
nuevas variables, el sistema SPE puede reescribirse en unidades adimensionales como:

∂tρ+∇ · (ρ~v) = 0, (2.34)
∂t (ρ~v) +∇ · (ρ~v ⊗ ~v + pI) = −ρ∇V, (2.35)

∂tE +∇ · [~v (E + p)] = −ρ~v · ∇V, (2.36)
p = p(ρ, e), (2.37)

i∂tΨ = −1

2
∇2Ψ + VΨ, (2.38)

∇2V = ρT − ερ̄T , (2.39)

En general el PVI asociado al sistema (2.24-2.39) queda formulado especificando las condi-
ciones de frontera y las condiciones iniciales para las variables {ρ,~v, e,Ψ} del sistema SPE.
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Capı́tulo3
Métodos Numéricos

La solución del sistema SPE (2.34-2.39) se plantea como un Problema de Valores Inicia-
les (PVI) de evolución restringida. En este sistema, las ecuaciones de Euler y Schrödinger
describen la dinámica de las variables macroscópicas del fluido y del parámetro de orden,
respectivamente, mientras que la ecuación de Poisson impone una restricción que debe satis-
facerse en cada instante de tiempo.

El dominio de integración se define como [0, tf ]×D, dondeD = [xmı́n, xmáx]×[ymı́n, ymáx]×
[zmı́n, zmáx], y se discretiza en una malla uniforme de tamaño finito:

Dd = {(xi, yj, zk) ∈ D}

con

xi = xmı́n + i∆x, yj = ymı́n + j∆y, zk = zmı́n + k∆z,

para i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1, k = 0, . . . , Nz − 1. Las resoluciones espaciales
están dadas por

∆x =
xmáx − xmı́n

Nx

, ∆y =
ymáx − ymı́n

Ny

, ∆z =
zmáx − zmı́n

Nz

,
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y, para simplificar la implementación numérica, se adopta ∆x = ∆y = ∆z = h. La discreti-
zación temporal se define como el conjunto discreto tn = n∆t con

∆t = Ch2,

donde C es un factor CFL cuyo valor regula la estabilidad del esquema numérico.

Dada la naturaleza del sistema SPE, se emplean distintos métodos numéricos según la ecua-
ción a resolver. En particular, la ecuación de Schrödinger y la ecuación de Poisson se re-
suelven mediante métodos pseudoespectrales, descritos en la Sección 3.1, mientras que las
ecuaciones de Euler se discretizan con esquemas de volúmenes finitos, abordados en la Sec-
ción 3.2. Finalmente, en la Sección 3.3 se detalla la implementación computacional, inclu-
yendo estrategias de paralelización y manejo de datos.

SECCIÓN 3.1

Métodos Pseudoespectrales

Los métodos numéricos pseudo-espectrales son una herramienta poderosa para resolver EDPs
[70], combinando las ventajas de los métodos espectrales con la eficiencia computacional
de los métodos basados en transformadas rápidas. A diferencia de los métodos espectrales
tradicionales, en los cuales las derivadas se calculan directamente en el espacio espectral, los
métodos pseudo-espectrales realizan la transformación al espacio de Fourier para aprovechar
la convergencia exponencial, pero evalúan las funciones y sus derivadas en puntos fı́sicos
distribuidos en el dominio.

3.1.1 Transformada Discreta de Fourier

En esta sección, describimos la aproximación de la transformada de Fourier, comenzando con
el caso unidimensional y extendiendo el método a dimensiones superiores. Estas aproxima-
ciones se basan en definir funciones sobre un dominio discreto y encontrar representaciones
aritméticas de los operadores de Fourier en dicho dominio. Antes de adentrarnos en la aplica-
ción práctica, es fundamental introducir un teorema clave en la teorı́a de señales: el teorema
de muestreo.
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Teorema de Muestreo y sus Implicaciones

Consideremos una función continua p(t) muestreada en intervalos regulares de longitud ∆t.
Si su transformada de Fourier

F {p(t)} := p̂(f) =

∫ ∞
−∞

p(t)e2πift dt, (3.1)

tiene un ancho de banda finito, es decir, que p̂(f) = 0 para frecuencias |f | ≥ fc, donde fc =
1

2∆t
es la frecuencia de Nyquist, entonces la función p(t) está completamente determinada

por sus valores muestreados pn = p(tn), con tn = n∆t para n = −∞, . . . ,−1, 0, 1, . . . ,∞.
En este caso, p(t) se puede reconstruir exactamente a partir de sus muestras mediante la
siguiente fórmula de interpolación:

p(t) = ∆t
∞∑

n=−∞

pn
sin [2πfc(t− n∆t)]

π(t− n∆t)
. (3.2)

La demostración de este resultado involucra la transformada de Fourier tanto de la función
peine de Dirac como de la función rectángulo. Aunque no nos centraremos en la demostra-
ción detallada aquı́, discutiremos las implicaciones clave de este teorema para las señales
muestreadas.

En primer lugar, cualquier función que se construya a partir de muestras discretas tomadas
en intervalos regulares ∆t tendrá un espectro de Fourier limitado al ancho de banda |f | < fc.
En segundo lugar, si el intervalo de muestreo ∆t es demasiado grande, ocurrirá un fenómeno
conocido como aliasing. El aliasing provoca que las frecuencias superiores a la frecuencia de
Nyquist se representen incorrectamente, moviéndose falsamente al intervalo |f | < fc, lo que
genera distorsión en la señal muestreada.

Teniendo esto en cuenta, cualquier método numérico u observación basado en una muestra
finita de una función solo podrá capturar un espectro limitado de frecuencias. Como conse-
cuencia, puede fallar en detectar frecuencias de interés fuera de este espectro. Una estrategia
para mitigar el aliasing es usar conjuntos múltiples de muestras con intervalos más pequeños,
asegurando que las señales se muestreen de manera consistente y que las frecuencias altas se
representen con precisión.

Con esta comprensión, estamos ahora preparados para aplicar una versión discreta de la trans-
formada de Fourier (3.1).
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Transformada Discreta de Fourier en 1D

Para construir la versión discreta de la transformada de Fourier (TF), comenzamos definiendo
un dominio discreto y finito:

tn = n∆t, n = 0, 1, 2, . . . , N − 1, (3.3)

donde N es el número de puntos en la malla, y la función p(t) evaluada en estos puntos se
denota como pn. De esta manera, la integral en la ecuación (3.1) se puede aproximar mediante
una suma de Riemann:

p̂(f) ≈
N−1∑
j=0

pje
2πifj∆t∆t. (3.4)

A continuación, para establecer una correspondencia entre los dominios temporal y frecuen-
cial, definimos un dominio discreto de frecuencias, en lugar de tratar f como continuo:

fk =
k

N∆t
, k = 0, 1, 2, . . . , N − 1, (3.5)

donde la transformada de Fourier se evalúa en los puntos fk, es decir, p̂k = p̂(fk). En conse-
cuencia, la transformada de Fourier toma la forma:

p̂k =
N−1∑
j=0

pje
2πijk/N∆t+O(∆t2). (3.6)

De este modo, la Transformada Discreta de Fourier (DFT, por sus siglas en inglés) de la
función discreta ~p = (p0, p1, p2, . . . , pN−1)T se define como:

Pk =
N−1∑
j=0

pjω
jk
N , (3.7)

donde ωN := e2πi/N . Esto es equivalente a la expresión matricial:
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~P = DFT(~p) := W~p, (3.8)

donde la matriz W se define como:

W =


ω0·0
N ω0·1

N · · · ω
0·(N−1)
N

ω1·0
N ω1·1

N · · · ω
1·(N−1)
N

...
... . . . ...

ω
(N−1)·0
N ω

(N−1)·1
N · · · ω

(N−1)·(N−1)
N

 . (3.9)

De estas formulaciones se derivan dos propiedades importantes de la DFT:

1. La DFT es periódica, es decir, Pk+N = Pk.

2. La inversa de la matriz W está dada por W−1 =
1

N
W†, donde W† es la transpuesta

conjugada de W.

La segunda propiedad nos permite recuperar la función original a partir de sus componentes
de Fourier mediante la DFT inversa (iDFT, por sus siglas en inglés):

pj =
1

N

N−1∑
k=0

Pkω
−jk
N , (3.10)

o, de forma equivalente, en notación matricial:

~p = iDFT(~P ) :=
1

N
DFT(~P ∗)∗ =

1

N
W† ~P , (3.11)

donde el sı́mbolo ∗ denota el conjugado complejo. Es importante señalar que el cálculo directo
de la DFT requiere O(N2) operaciones, lo cual puede ser costoso en términos computacio-
nales. Sin embargo, Danielson y Lanczos desarrollaron un algoritmo más eficiente, conocido
como la Transformada Rápida de Fourier (FFT, por sus siglas en inglés), que reduce signifi-
cativamente el costo computacional [71].
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Transformada Rápida de Fourier

Dado un conjunto de datos pj , donde j = 0, 1, 2, ..., N − 1 y suponiendo que N es par, la
DFT Pk se puede expresar como la suma de dos DFTs, cada una de longitud N/2:

Pk =

N/2−1∑
j=0

p2jω
(2j)k
N +

N/2−1∑
j=0

p2j+1ω
(2j+1)k
N

=

N/2−1∑
j=0

p2jω
jk
N/2 +

N/2−1∑
j=0

p2j+1ω
jk
N/2ω

k
N .

Aquı́, ωkN es independiente de j, por lo que se puede factorizar fuera de la segunda suma. Ası́,
podemos reescribir la ecuación como:

Pk = P P
k + ωkNP

I
k , k = 0, 1, 2, . . . , N/2− 1, (3.12)

donde P P
k y P I

k representan las DFTs de los componentes pares e impares de la secuencia,
respectivamente. En esta descomposición, k toma N/2 valores tanto para las transformadas
pares como para las impares, lo que reduce efectivamente el problema original en dos DFTs
más pequeñas.

Para estas DFTs más pequeñas, se aplican las siguientes condiciones de periodicidad:

P P
k+N/2 = P P

k ,

P I
k+N/2 = P I

k .

Además, el factor ωkN cumple con la siguiente identidad importante:

ω
k+N/2
N = −ωkN . (3.13)

Los N/2 términos restantes se pueden calcular utilizando:

Pk+N/2 = P P
k − ωkNP I

k , k = 0, 1, 2, . . . , N/2− 1. (3.14)
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Este proceso reduce la complejidad computacional de O(N2) en el caso de una DFT directa
a O(N logN), haciendo que la FFT sea mucho más eficiente para valores grandes de N .

Transformada Rápida de Fourier en 3D

La FFT en tres dimensiones extiende el concepto de la FFT en 1D para datos tridimen-
sionales. El principio básico sigue siendo el mismo: descomponer el cálculo de la DFT en
operaciones más pequeñas y eficientes, lo que permite reducir la complejidad computacional
para datos en un volumen.

Dado un conjunto tridimensional de datos pi,j,k = p(xi, yj, zk) los cuales denotan los valores
de la función p : D ⊂ R3 → R3 en el dominio discreto Dd, la DFT tridimensional Pl,m,n se
puede escribir como la suma de tres transformadas de Fourier unidimensionales aplicadas a
lo largo de cada eje x, y, y z:

Pl,m,n =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

pi,j,k ω
(il+jm+kn)
N , (3.15)

donde ωN = e−2πi/N es el factor de peso. Para simplificar este cálculo y aprovechar la efi-
ciencia de la FFT, se realiza en tres pasos:

1. Primero se calcula una FFT 1D a lo largo de la dirección x para cada par de y y z fijos:

Pl,j,k =
N−1∑
i=0

pi,j,k ω
il
N .

2. Luego, se calcula una FFT 1D a lo largo de la dirección y para cada par de x y z fijos:

Pl,m,k =
N−1∑
j=0

Pl,j,k ω
jm
N .

3. Finalmente, se realiza una FFT 1D a lo largo de la dirección z para cada par de x y y
fijos:

Pl,m,n =
N−1∑
k=0

Pl,m,k ω
kn
N .

Este enfoque divide el problema tridimensional en tres problemas unidimensionales conse-
cutivos, lo que permite aprovechar la estructura eficiente de la FFT en cada dimensión. La
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implementación de la FFT en 3D puede ser especialmente útil para el análisis de datos de-
finidos en dominios que corresponden a paralelepı́pedos rectangulares en campos como la
fı́sica, la astronomı́a y la simulación de fluidos.

Además, la FFT en 3D también conserva la periodicidad en las tres direcciones espaciales,
por lo que es adecuada para sistemas de ecuaciones definidos en dominios periódicos. Esto
es particularmente útil en la resolución numérica de ecuaciones diferenciales parciales, como
en la ecuación de Schrödinger o en la simulación de flujos de fluidos incomprensibles en este
trabajo.

En resumen, los métodos pseudo-espectrales con FFT representan una herramienta eficiente
y precisa para resolver EDPs en dominios periódicos, aprovechando la estructura espectral
del problema para mejorar tanto la precisión como el rendimiento computacional. Cuando
se presentan otro tipo de condiciones de frontera como lo son de Dirichlet o Neumann, es
posible redefinir este concepto para seguir aprovechando la eficiencia de la FFT.

3.1.2 Transformadas Discretas del Seno y Coseno de Fourier usando
FFT

La Transformada Discreta del Seno (DST, por sus siglas en inglés) y la Transformada Discreta
del Coseno (DCT, por sus siglas en inglés) son versiones modificadas de la TF, utilizadas
para descomponer señales en componentes sinusoidales (seno y coseno, respectivamente).
A diferencia de la TF tradicional, que utiliza funciones exponenciales complejas, tanto la
DST como la DCT emplean funciones seno y coseno como elementos base, lo que las hace
especialmente útiles en ciertos tipos de problemas que involucran condiciones de frontera
especı́ficas.

Transformada Discreta del Seno (DST)

La DST es ideal para situaciones en las que la función que estamos analizando cumple con
condiciones de frontera de Dirichlet, es decir, donde la función se anula en los extremos del
intervalo, como es el caso de una cuerda vibrante con ambos extremos fijos. En este contexto,
la señal se puede extender de forma impar, lo que hace que se use la función seno, ya que el
seno tiene la propiedad de ser impar.

La DST descompone una señal en componentes sinusoidales de la forma:
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p(t) =
N−1∑
n=0

an sin

(
nπt

L

)
.

Para calcular la DST usando la FFT, se extiende la señal original de forma impar. Es decir,
se duplican los datos originales de forma que los valores a la derecha del final del intervalo
original son negativos y reflejan los valores a la izquierda. Luego, se calcula la FFT de esta
señal extendida, y finalmente, se toma la parte imaginaria del resultado para obtener la DST:

p̃k =

{
pk, si 0 ≤ k < N,

−p2N−k−1, si N ≤ k < 2N.

Pk = FFT (p̃)k, k = 0, 1, . . . , N − 1.

DST (p)k = Im(Pk).

Transformada Discreta del Coseno (DCT)

Por otro lado, la DCT es más adecuada cuando la función cumple con condiciones de frontera
de Neumann, es decir, donde la derivada de la función se anula en los extremos del intervalo.
Esta es una situación común en problemas donde la solución debe ser continua en los bordes.

La DCT descompone la señal en componentes cosenoidales, que son funciones pares:

p(t) =
N−1∑
n=0

bn cos

(
nπt

L

)
.

Para implementar la DCT utilizando la FFT, la señal se extiende de manera par. Es decir, los
valores a la derecha del final del intervalo original son una copia de los valores originales re-
flejados. Después, se calcula la FFT de la señal extendida y se toma la parte real del resultado
para obtener la DCT:

p̃k =

{
pk, si 0 ≤ k < N,

p2N−k−1, si N ≤ k < 2N.

Pk = FFT (p̃)k, k = 0, 1, . . . , N − 1.

DCT (p)k = Re(Pk).



30 Métodos Pseudoespectrales

Estos enfoques permiten utilizar la eficiencia de la FFT para realizar transformadas de seno
y coseno sin tener que implementar directamente las transformadas discretas.

3.1.3 Solución de la ecuación de Poisson

La ecuación de Poisson en tres dimensiones se expresa como:

∇2V = ρT , ~x = (x, y, z) ∈ D ⊂ R3, (3.16)

donde V es el potencial gravitacional y ρT es la densidad total que genera el potencial. Esta
ecuación puede resolverse aplicando condiciones de frontera apropiadas en ∂D. Para abor-
dar la ecuación de Poisson en el espacio de Fourier, aplicamos la transformada de Fourier,
denotada por F , obteniendo:

− ω2F{V } = F{ρT}, (3.17)

donde ω2 = ~ω · ~ω con ~ω = (ωx, ωy, ωz) es el vector de frecuencias espaciales. Esta expresión
surge de la propiedad de diferenciación de la transformada de Fourier, que establece:

F
{
∂kV

∂xki

}
= (−iωi)

kF{V }.

Para calcular la transformada de Fourier de V , es fundamental garantizar que se cumplan
ciertas condiciones. En particular, es crucial que la función fuente ρT sea regular. En los
métodos numéricos empleados, es necesario que F{V }(ω = 0) sea finita. Esta condición
implica que el lado izquierdo de la ecuación (3.17) debe anularse, lo que lleva a la conclusión
de que el lado derecho también debe ser cero.

Con el fin de cumplir esta condición, introducimos una nueva función:

g = ρT − ρ̄T ,

donde ρ̄T representa el valor medio de la densidad fuente ρT sobre el dominio D, definido
como:
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ρ̄T =
1∫

D
d3x

∫
D

ρT (t, ~x) d3x, (3.18)

siendo
∫
D
d3x el volumen del dominio D. Ası́, podemos reformular la ecuación de Poisson

como:

∇2V = ρT − ρ̄T . (3.19)

La solución de esta ecuación puede escribirse como:

V = F−1

{
−F{ρT − ρ̄T}

ω2

}
, (3.20)

Sin embargo, esta expresión solo puede calcularse de manera exacta en situaciones particula-
res. En aplicaciones prácticas, reemplazamos el operador de Fourier F por la FFT en el caso
de condiciones de frontera periódicas, o por los operadores DST o DCT si las condiciones de
frontera son de tipo Dirichlet o Neumann, respectivamente.

Es importante notar que el uso de la DST implica que el potencial gravitacional se anule
en la frontera del dominio D. Si deseamos imponer otro tipo de condiciones de frontera,
planteamos el problema de la siguiente manera:

∇2V (~x) = g(~x), ~x ∈ D, (3.21)

V (~x) = V0(~x), ~x ∈ ∂D. (3.22)

Para aplicar correctamente la DST, reescribimos este problema en términos de la variable
u = V − V0, que satisface:

∇2u(~x) = g(~x)− g0(~x), ~x ∈ D, (3.23)

u(~x) = 0, ~x ∈ ∂D, (3.24)
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donde g0 = ∇2V0. Resolver este nuevo problema es adecuado para la aplicación de la DST,
y una vez solucionado, podemos recuperar el potencial original mediante V = u + V0. En
nuestro caso particular, imponemos condiciones de frontera monopolares, es decir, V0 ∼
− M

4πr
. Sin embargo, este potencial es inapropiado numéricamente debido a que diverge en

el origen. Para evitar este inconveniente, lo reemplazamos por un potencial regularizado:

V0 = − M

4π
√
r2 + ε2

,

donde elegimos el parámetro ε = 3h, siendo h la resolución del dominio discreto. Entonces,
el término g0 se expresa como:

g0 =
3Mε2

(r2 + ε2)5/2
.

Con esta formulación, hemos establecido los pasos necesarios para resolver numéricamente la
ecuación de Poisson en el sistema SPE (2.24-2.29). A continuación, procederemos a describir
los métodos empleados para la evolución del parámetro de orden Ψ.

3.1.4 Solución de la ecuación de Schrödinger

La evolución temporal del parámetro obedece la ecuación de Schrödinger:

i
∂Ψ

∂t
= ĤΨ, (3.25)

donde Ĥ = −1
2
∇2 + V es el operador Hamiltoniano, ∇2 = ∂xx + ∂yy + ∂zz es el operador

laplaciano en coordenadas cartesianas (x, y, z) y V es el potencial gravitacional. Para abordar
numéricamente la evolución de Ψ, es necesario discretizar el operador Ĥ en el espacio Dd y
el tiempo tn, lo que nos permitirá implementar diferentes métodos de solución.

Métodos Explı́citos

Los métodos explı́citos para la evolución de la ecuación de Schrödinger se destacan por su
simplicidad y facilidad de implementación, lo que los hace particularmente atractivos para
simulaciones numéricas. En este enfoque, la función de onda en el tiempo tn+1 se calcula
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utilizando únicamente los valores de la función de onda en el tiempo anterior tn. Esto se
traduce en una formulación clara y directa del proceso de evolución.

Un método común para describir esta evolución se basa en el operador de evolución tem-
poral, que está dado por e−iĤt. Formalmente, la solución a la ecuación de Schrödinger para
potenciales que no dependen del tiempo se escribe como

Ψ(~x, t) = e−iĤtΨ(~x, 0). (3.26)

Sin embargo, es posible demostrar que para potenciales que dependen del tiempo es válida la
aproximación [72]:

Ψn+1 = e−iĤn∆tΨn, (3.27)

siendo Ψn y Ψn+1 las función de onda evaluda en los tiempos tn y tn+1, respectivamente
y Ĥn el Hamiltoniano al tiempo tn. Calcular el operador de evolución temporal e−iĤn∆t

de manera directa puede ser complicado, especialmente para Hamiltonianos que involucran
términos no triviales. Para facilitar este cálculo, se puede hacer una aproximación mediante
la descomposición del operador en dos partes: el término cinético y el término potencial. Esto
permite escribir:

Ψn+1 = ei∇2∆t/2e−iV n∆tΨn +O(∆t2), (3.28)

Aquı́, Ψn y Ψn+1 representan a las funciones de onda al tiempo tn y tn+1 = tn + ∆t, res-
pectivamente, mientras que V n representa el potencial y ∇2 es el operador laplaciano que
corresponde a la parte cinética del Hamiltoniano al tiempo tn en todo punto (xi, yj, zk) ∈ Dd.
La expresión anterior implica que primero se aplica el operador de potencial e−iV n∆t, seguido
del operador cinético ei∇2∆t/2. Esta estrategia, conocida como split-step, permite realizar el
cálculo en el espacio de Fourier, lo cual es computacionalmente eficiente, y se describe en
detalle como:

Ψn+a = e−iV n∆tΨn,

Ψn+1 = F−1
{
e−i(2πk)2/2F (Ψn+a)

} (3.29)

donde k2 = ~k · ~k es el número de onda.
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Otra variante de esta clase de métodos es el strang splitting. El principio fundamental con-
siste en descomponer el operador de evolución temporal e−iĤn∆t en tres partes: potencial-
cinética-potencial. Esta descomposición permite aplicar el operador de manera secuencial y
aprovechar las propiedades de cada parte.

Formalmente, el operador se puede expresar como:

e−iĤn∆t = e−iV n∆t/2ei∇2∆t/2e−iV n∆t/2 +O(∆t2), (3.30)

y se describe en detalle como:

Ψn+a = e−iV n∆t/2Ψn,

Ψn+b = F−1
{
e−i(2πk)2/2F (Ψn+a)

}
Ψn+1 = e−iV n∆t/2Ψn+b.

(3.31)

La ventaja de estas aproximaciones es que, al descomponer el operador de evolución, se
puede aplicar el potencial y el término cinético de manera más manejable, lo que lleva a una
mejora en la estabilidad y precisión del método. Sin embargo, es importante notar que estas
aproximaciones introducen un error de orden O(∆t2), lo que significa que el error se reduce
cuadráticamente a medida que disminuye el tamaño del paso de tiempo.

En resumen, los métodos explı́citos ofrecen un enfoque intuitivo y eficiente para la evolu-
ción temporal de la ecuación de Schrödinger, siendo ampliamente utilizados en simulaciones
numéricas donde se requiere una rápida implementación y un cálculo directo de la función
de onda.

A pesar de su simplicidad y facilidad de implementación, los métodos explı́citos para la
evolución de la ecuación de Schrödinger presentan varias desventajas:

1. Estabilidad Condicional: Los métodos explı́citos son generalmente inestables para
ciertos tamaños de paso de tiempo. La estabilidad del método depende del tamaño de
∆t en relación con las caracterı́sticas del sistema. Si ∆t es demasiado grande, pueden
surgir oscilaciones no fı́sicas o el método puede diverger.

2. Acumulación de Errores: A medida que se avanza en el tiempo, los errores numéricos
se acumulan, afectando la precisión de la solución conforme avanza el tiempo. Esto
puede ser particularmente problemático en simulaciones a largo plazo.

En general, aunque los métodos explı́citos son intuitivos y fáciles de implementar, sus li-
mitaciones en estabilidad y eficiencia pueden hacer que sean menos adecuados para ciertos
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problemas en comparación con métodos implı́citos, que, aunque más complejos, a menudo
son más estables y permiten pasos de tiempo más grandes.

Métodos Implı́citos

Los métodos implı́citos, en contraste con los explı́citos, calculan la función de onda en el
tiempo tn+1 utilizando también valores en el tiempo tn+1. Esto implica la resolución de un
sistema de ecuaciones algebraicas en cada paso de tiempo, lo que puede aumentar significa-
tivamente el costo computacional. Sin embargo, estos métodos son más estables y permiten
elegir pasos de tiempo más grandes sin comprometer la precisión.

Un ejemplo de un esquema implı́cito es el método de Crank-Nicolson, que se puede formular
utilizando el operador de evolución temporal de la siguiente manera:

Ψn+1/2 = e−iĤn∆t/2Ψn, o bien Ψn+1/2 = eiĤn+1∆t/2Ψn+1. (3.32)

Igualando estas dos expresiones, se obtiene:

eiĤn+1∆t/2Ψn+1 = e−iĤn∆t/2Ψn. (3.33)

Al realizar una expansión hasta segundo orden, se tiene lo siguiente:

(
1 + i

∆t

2
Ĥn+1

)
Ψn+1 =

(
1− i

∆t

2
Ĥn

)
Ψn +O(∆t2), (3.34)

que se puede reescribir como:

Ψn+1 = Ψn − i
∆t

2

[
Ĥn+1Ψn+1 + ĤnΨn

]
+O(∆t2). (3.35)

Este enfoque combina la información del tiempo anterior y del futuro, proporcionando una
excelente estabilidad y precisión en la evolución de la función de onda.

En particular, nosotros resolvemos esta ecuación (3.35) no lineal mediante el método de punto
fijo. Para ello, denotamos el lado derecho como la función g(Ψn+1) y el método consiste en
iterar según la relación:
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Ψn+1
k+1 = g(Ψn+1

k ), (3.36)

hasta que se cumpla la condición ||Ψn+1
k+1 − Ψn+1

k ||2 < ε, donde || · ||2 representa la norma 2.
Comenzamos las iteraciones tomando Ψn+1

0 = Ψn.

Con esto hemos descrito cómo resolver tanto la ecuación de Poisson como la ecuación de
Schrödinger. Por lo tanto, para abordar la resolución del sistema completo (2.24-2.29), solo
nos queda detallar los métodos numéricos necesarios para la resolución de las ecuaciones de
Euler, los cuales se describen en la siguiente sección.

SECCIÓN 3.2

Métodos de Volúmenes Finitos

3.2.1 Análisis Caracterı́stico de las Ecuaciones de Euler

El sistema de ecuaciones de Euler ( 2.34-2.36) puede expresarse en forma vectorial como:

∂U

∂t
+∇ · ~F(U) = S(U), (3.37)

donde U es un vector de variables conservadas, ~F = (Fx,Fy,Fz) representa los flujos con-
servativos y S el vector de fuentes. Estos elementos se definen como:

U =


ρ
ρvx

ρvy

ρvz

E

 , Fi =


ρvi

ρvivx + δixp
ρvivy + δiyp
ρvivz + δizp
vi(E + p)

 , S =


0

−ρ∂xV
−ρ∂yV
−ρ∂zV
−ρ~v · ∇V

 , (3.38)

donde i ∈ {x, y, z} y δij es la delta de Kronecker.

Alternativamente, el sistema ( 3.37) se puede reescribir en forma matricial como:
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∂U

∂t
+
∑
i

Ai∂U

∂xi
= S(U), (3.39)

donde las matrices Ai := ∂UFi son las matrices jacobianas de los flujos. Estas matrices son
diagonalizables con valores propios dados por la matriz diagonal:

Λi =


vi − cs 0 0 0 0

0 vi 0 0 0
0 0 vi 0 0
0 0 0 vi 0
0 0 0 0 vi + cs

 , (3.40)

y las matrices de eigenvectores derechos son:

Rx =


1 1 0 0 1

vx − cs vx 0 0 vx + cs
vy vy 1 0 vy
vz vz 0 1 vz

H − vxcs 1
2
|v|2 vy vz H + vxcs

 , (3.41)

Ry =


1 1 0 0 1
vx vx 1 0 vx

vy − cs vy 0 0 vy + cs
vz vz 0 1 vz

H − vycs 1
2
|v|2 vx vz H + vycs

 , (3.42)

Rz =


1 1 0 0 1
vx vx 1 0 vx
vy vy 0 1 vy

vz − cs vz 0 0 vz + cs
H − vzcs 1

2
|v|2 vx vy H + vzcs

 , (3.43)

donde H = E+p
ρ

es la entalpı́a total y cs =
√

∂p
∂ρ

+ p
ρ2
∂p
∂e

es la velocidad local del sonido.
Estas matrices satisfacen la relación de diagonalización:

Ai = RiΛi
(
Ri
)−1

. (3.44)
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Como resultado, el sistema de Euler es hiperbólico, ya que posee cinco valores caracterı́sticos
reales y un conjunto completo de eigenvectores linealmente independientes en cada dirección
espacial, lo que garantiza que el PVI que obedece estas ecuaciones esté bien planteado [54].

3.2.2 Método HLLE

Los métodos numéricos basados en volúmenes finitos buscan resolver un problema algebrai-
co basado en los valores promedio de las celdas dentro del dominio discreto Dd. Para ello, se
define el volumen de control como

Ωi,j,k := [xi−∆x/2, xi+∆x/2]× [yj−∆y/2, yj+∆y/2]× [zk−∆z/2, zk+∆z/2], (3.45)

el cual tiene un volumen ∆Ω = ∆x∆y∆z. Al integrar el sistema de Euler (3.37) sobre el
volumen de control y dividir por su volumen, se obtiene la siguiente forma discreta:

dŪi,j,k

dt
+

Fx
i+1/2,j,k − Fx

i−1/2,j,k

∆x
+

Fy
i,j+1/2,k − Fy

i,j−1/2,k

∆y
+

Fz
i,j,k+1/2 − Fz

i,j,k−1/2

∆z
= S̄i,j,k,

(3.46)

donde se ha aplicado el teorema de la divergencia y se han definido los valores promediados
de las funciones U y S en el volumen de control como:

Ūi,j,k(t) :=
1

∆Ω

∫
Ωi,j,k

U(t, ~x) d3x, (3.47)

S̄i,j,k(t) :=
1

∆Ω

∫
Ωi,j,k

S(U(t, ~x)) d3x. (3.48)

De manera análoga, los flujos en cada dirección se definen como

Fx
i±1/2,j,k := Fx(Ūi±1/2,j,k), (3.49)

y de forma similar para las demás direcciones. Para simplificar el cálculo, se asume que la
fuente promedio se puede aproximar como S̄i,j,k = S(Ūi,j,k).
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El método HLLE reemplaza los flujos Fx
i±1/2,j,k con flujos numéricos definidos por:

Fx,HLLE
i+1/2,j,k =

λx−Fx(Ūi+1,j,k)− λx+Fx(Ūi,j,k) + λx−λ
x
+(Ūi,j,k − Ūi+1,j,k)

λx+ − λx−
, (3.50)

donde λx± representan las velocidades caracterı́sticas mı́nima y máxima del sistema, calcula-
das como:

λx− = mı́n(0,mı́n(Λx
i,j,k)), (3.51)

λx+ = máx(0,máx(Λx
i,j,k)). (3.52)

Siguiendo este procedimiento en todas las direcciones, se obtiene la versión discreta del sis-
tema:

dŪi,j,k

dt
+

Fx,HLLE
i+1/2,j,k − Fx,HLLE

i−1/2,j,k

∆x
+

Fy,HLLE
i,j+1/2,k − Fy,HLLE

i,j−1/2,k

∆y
+

Fz,HLLE
i,j,k+1/2 − Fz,HLLE

i,j,k−1/2

∆z
= S(Ūi,j,k),

(3.53)

el cual se resuelve numéricamente utilizando un método de Runge-Kutta explı́cito de tercer
orden.

Para aproximar Ū en el esquema de volúmenes finitos, se emplean técnicas de reconstrucción
de flujos en las interfaces, como los esquemas de Godunov y Minmod.

El esquema de Godunov asume que U es constante en cada volumen de control y calcula los
flujos en las interfaces resolviendo un problema de Riemann entre celdas adyacentes. Este
método es robusto pero limitado a precisión de primer orden.

El esquema Minmod, en cambio, emplea una reconstrucción lineal de U dentro de cada celda
para mejorar la precisión. Usa una interpolación limitada que previene oscilaciones no fı́sicas
y garantiza estabilidad. La función Minmod selecciona la pendiente más conservadora entre
las opciones disponibles, proporcionando un esquema de primer orden en presencia de cho-
ques y de segundo orden en regiones suaves. En estas últimas, su precisión coincide con la
de diferencias finitas de segundo orden [54].

Un comentario importante es que en las ecuaciones de Euler aparecen términos proporciona-
les a 1/ρ, lo que implica que si la densidad se anula, pueden surgir problemas numéricos debi-
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do a singularidades. Para evitar esto, se emplea un artificio numérico: el uso de una atmósfera,
que consiste en imponer una densidad mı́nima que permea todo el dominio numérico. Para
un ejemplo más detallado de esta técnica, puede consultarse el apéndice A.

SECCIÓN 3.3

Implementación Computacional

La implementación numérica se desarrolla en Fortran, empleando bibliotecas diseñadas des-
de cero, especializadas en el análisis de métodos espectrales y de volúmenes finitos. Además,
se optimiza la gestión de datos mediante la biblioteca HDF5. Las simulaciones de prueba
se ejecutan en arquitecturas paralelas, utilizando la biblioteca MPI para la paralelización,
y se validan mediante la comparación con soluciones analı́ticas y otros métodos numéricos,
incluidos los de diferencias finitas. La evolución de los sistemas fı́sicos se visualiza con herra-
mientas gráficas como GNUPlot, Matplotlib y VisIt. El resultado es el código CAFE-FDM,
presentado en [69, 73]



Capı́tulo4
Simulaciones de Materia Oscura Difusa

En este capı́tulo se presentan distintas simulaciones numéricas que modelan configuraciones
de FDM cuya evolución obedece del sistema SP (2.12-2.13). Se abordan tanto soluciones
estacionarias como dinámicas, explorando su estabilidad y comportamiento en distintos es-
cenarios astrofı́sicos.

En la Sección 4.1 se analizan soluciones estacionarias de la materia oscura bosónica, in-
cluyendo la formación de núcleos galácticos y el estudio de su estabilidad y atractoriedad.
Posteriormente, en la Sección 4.2 se investigan procesos dinámicos de fusión de estos núcleos
galácticos, considerando sistemas binarios y configuraciones multinúcleo.

Finalmente, en la Sección 4.3 se estudian soluciones esféricas con estructura núcleo-halo con
perfiles que describen la distribución de materia oscura en galaxias.

SECCIÓN 4.1

Núcleos galácticos

Los núcleos galácticos, comúnmente conocidos como estrellas de bosones Newtonianas, son
soluciones cuántico-gravitacionales del sistema Schrödinger-Poisson que describen distribu-
ciones estables de FDM que surgen de la evolución en la formación de estructura [11, 12, 13,
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14, 16, 17, 18, 19].

Estas soluciones, caracterizadas por una densa concentración central de bosones, exhiben
propiedades únicas de estabilidad, lo que las convierte en un excelente modelo para los cen-
tros de halos galácticos y otras estructuras cosmológicas. Además, aunque los núcleos pue-
den formarse a partir de configuraciones arbitrarias, su evolución muestra que tienden a ser
asintóticamente, en promedio, soluciones estacionarias del sistema. Esto significa que, tras
un periodo de relajación debido a interacciones gravitacionales y cuánticas, la estructura del
núcleo converge hacia una configuración estable que es bien descrita por soluciones de equi-
librio.

La estabilidad de estas configuraciones ha sido ampliamente estudiada y depende de la re-
lación entre los efectos gravitacionales y cuánticos [37, 34, 43, 74, 75, 76, 69, 77, 78]. En
particular, los núcleos galácticos en su estado fundamental, o solución de equilibrio, pueden
resistir colapsos o dispersiones bajo ciertas condiciones iniciales de energı́a y masa.

Además, estos núcleos son atractores gravitacionales en el espacio de configuraciones, lo
que significa que, bajo una variedad de perturbaciones externas o colisiones, tienden a evolu-
cionar de manera natural hacia una configuración de equilibrio estable [22, 25, 23, 79, 80, 81].
Estos núcleos que emergen de forma natural en simulaciones de formación de estructura, en
realidad, se aproximan al estado base del sistema en promedio espacial y temporal [73].

El interés en los núcleos galácticos no solo radica en su estabilidad, sino también en su rol
potencial como unas de las primeras estructuras formadas en el universo primigenio. Se cree
que estas configuraciones pudieron actuar como semillas gravitacionales, atrayendo y acu-
mulando materia alrededor de ellas, lo que posteriormente llevarı́a a la formación de galaxias
y otras estructuras a gran escala. En este sentido, la atractoriedad de los núcleos galácticos
sugiere que estos objetos desempeñan un papel clave en la evolución de la estructura cósmica.

4.1.1 Soluciones estacionarias

Las ecuaciones estacionarias del sistema SP (2.12-2.13) se construyen asumiendo que el
parámetro de orden puede reescribirse como Ψ(t, ~x) = ψ(r)e−iωt, con ω un eigenvalor y
ψ(r) una función real de la coordenada radial r. Con estas suposiciones, el sistema SP se
escribe de la siguiente manera, según [64, 65]:

− 1

2r2

d

dr

(
r2dψ

dr

)
+ V ψ = ωψ, (4.1)
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1

r2

d

dr

(
r2dV

dr

)
= ψ2. (4.2)

Para asegurar soluciones fı́sicamente aceptables, imponemos ciertas condiciones de fronte-
ra. Para el parámetro de orden estacionario ψ, requerimos que ψ(0) = ψc, ψ′(0) = 0 y
ĺımr→∞ ψ = ĺımr→∞ ψ

′ = 0. Esto garantiza la regularidad en el origen y la desaparición en
el infinito, convirtiendo el problema en un problema de Sturm-Liouville para el eigenvalor ω.

Para el potencial gravitacional V , establecemos V (0) = Vc y V ′(0) = 0. La elección de Vc
puede ser arbitraria, ya que cambiar esta condición a Vc + Va es equivalente a encontrar un
eigenvalor ω + Va para algún valor arbitrario Va. Estas condiciones de frontera aseguran so-
luciones fı́sicamente significativas que satisfacen los requisitos de regularidad y aislamiento.

Dado que este conjunto de ecuaciones se resuelve numéricamente, es conveniente escribirlo
como un sistema de primer orden definiendo las variables φ = r2 dψ

dr
y m = r2 dV

dr
. El sistema

anterior se reescribe entonces como:

dψ

dr
=

φ

r2
, (4.3)

dφ

dr
= 2r2 (V − ω)ψ, (4.4)

dV

dr
=

m

r2
, (4.5)

dm

dr
= r2ψ2, (4.6)

con las condiciones de fronteraψ(0) = ψc, φ(0) = 0, V (0) = Vc,M(0) = 0 y ĺımr→∞ ψ(r) =
ĺımr→∞ φ(r) = 0.

Ahora bien, si vemos este mismo sistema desde el marco de MP (2.21), el sistema se redu-
ce al siguiente conjunto de ecuaciones para un gas de bosones en equilibrio hidrostático y
esféricamente simétrico:

0 = −ρ d
dr

(V +Q) , (4.7)

dm

dr
= ρr2, (4.8)

dV

dr
=

m

r2
, (4.9)
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entonces podemos decir que un parámetro de orden estacionario es equivalente al equilibrio
hidrostático en un gas de bosones. La ecuación (4.7) puede integrarse una vez

Q+ V = ω, (4.10)

donde ω es una constante de integración. Recordemos que Q = −1
2

∇2√ρ
√
ρ

, si definimos φ =

r2 d
√
ρ

dr
el sistema en equilibrio hidrostático puede escribirse como un sistema de primer orden

en la coordenada radial como

d
√
ρ

dr
=

φ

r2
, (4.11)

dφ

dr
= 2r2(V − ω)

√
ρ, (4.12)

dm

dr
= ρr2, (4.13)

dV

dr
=

m

r2
. (4.14)

La solución del sistema (4.3-4.6) es equivalente a la solución del sistema (4.11-4.13) como
se muestra en [77]. Esto suele resolverse mediante el método de shooting, ver por ejem-
plo [64]. Otra estrategia empleada es el uso de Algoritmos Genéticos presentados en [76].
Independientemente del método utilizado, las soluciones se construyen en un dominio fi-
nito D = [0, rmax], donde las condiciones de frontera se redefinen aproximadamente como
ψ(rmax) ≈ ψ′(rmax) ≈ 0. Es decir, utilizamos un valor finito rmax en el cual se busca satisfacer
las condiciones de frontera aproximadamente en la frontera externa rmax.

La construcción de una única solución estacionaria con ψc = 1 en el marco SP o bien ρc = 1
en el MP es suficiente para producir toda la familia de soluciones del sistema utilizando la
transformación de escala (2.14). Por lo que en la Figura 4.1 se muestra el estado base del
sistema en ambos marcos (también llamada esta solución como estrella de bosones, soliton o
incluso el núcleo), junto al perfil empı́rico [22]:

ρsoliton(r) = ρc

[
1 +

(
21/8 − 1

)( r

rc

)2
]−8

, (4.15)

donde ρc es la densidad central y rc es el radio del núcleo, definido como el radio donde
la densidad del soliton es un medio de la densidad central. Numéricamente se encuentra el
valor del radio del núcleo rc ≈ 1.30 para ρc = 1. Usando la transformación de escala (2.14)
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Figura 4.1: Densidades |ψ|2 y ρ de la solución de equilibrio del estado base en los marcos SP
y MP, respectivamente. En el marco SP se resuelven las ecuaciones (4.3)-(4.6) para la función
de onda central ψc = 1. En el marco MP se usan las ecuaciones (4.11)-(4.14) con la densidad
central ρc = 1. La soluciones numéricas se construyen en el dominio r ∈ D = [0, 10]
discretizado con una resolución espacial ∆r = 2.5 × 10−4. De igual manera se muestra la
fórmula empı́rica (4.15) normalizando respecto al radio del nucleo ρc = 1 y el radio del
nucleo rc = 1.30.

es posible escribir la relación ρc ≈ (1.30/rc)
4 para un radio del núcleo arbitrario, o bien en

unidades fı́sicas:

ρc ≈
~2

4πGm2
B

(
1.30

rc

)4

≈ 1.983× 107

(
kpc4

m2
22r

4
c

)
M�, (4.16)

donde m22 está definido como m22 = mB × 10−22eV−1, y las unidades del radio del núcleo
son [rc] = kpc.

4.1.2 Estabilidad

Una consideración adicional entre las soluciones en los marcos SP y MP es cómo evolucionan
estas configuraciones. De hecho, optar por un marco u otro justifica el uso de diferentes
métodos numéricos. En el marco SP, es habitual emplear métodos de Diferencias Finitas o
bien métodos pseudoespectrales, con una variedad de integradores de tiempo, tanto explı́citos
como implı́citos, debido a que la ecuación de Schrödinger es dispersiva y evita la formación
de discontinuidades. En contraste, las ecuaciones en el marco MP es cuasilineal, lo que puede
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resultar en la formación de discontinuidades y choques, incluso cuando se parte de datos
iniciales suaves, requiriendo ası́ otros enfoques numéricos como los discutidos en la Sec. 3.2
para las ecuaciones de Euler.

Un aspecto muy importante es la diferenciación de la función de onda Ψ, ya que, en general,
se puede considerar que las configuraciones de equilibrio involucran funciones suaves. Por
otro lado, en el marco de MP, algunas de las variables no son continuas. Esto se observa en
la definición de S, es decir, el argumento de la función Ψ, que no está definido en el origen.
Por lo tanto, en todos los casos donde S no es espacialmente constante, se generarán datos
iniciales con velocidades discontinuas que tenderán a producir ondas de choque, las cuales no
aparecen en el marco SP. Una discontinuidad en la velocidad conduce a una discontinuidad
en la densidad y, en consecuencia, Q y ∇Q no están definidos en el lado derecho de la
ecuación (2.18). Solo en casos donde la función S es constante, la evolución puede llevar a
una solución, incluso una solución débil.

Por lo tanto, consideramos que los problemas en los que se pueden comparar los marcos SP
y MP deben ser aquellos con un campo de velocidad constante. A continuación, describimos
una comparación de la evolución de la configuración del estado base en cada uno de los
marcos.

Para simular la evolución, interpolamos las soluciones de equilibrio de la Figura 4.1, cons-
truidas en coordenadas esféricas. En el dominio cúbico Dd = [−20, 20]3 con una resolución
h = 0.4 y un número de Courant CFL = 0.25, donde serán evolucionados.

Una vez que las configuraciones de equilibrio en el marco SP se interpolan en el dominio 3D
descrito en coordenadas cartesianas, resolvemos el sistema (2.12)-(2.13) para evolucionar la
configuración en el marco SP usando métodos numéricos en diferencias finitas. Del mismo
modo, cuando la configuración de equilibrio construida dentro del marco de MP se interpola
en el dominio 3D, resolvemos las ecuaciones (2.21)-(2.23) mediante volúmenes finitos.

Para comparar los aspectos esenciales de las configuraciones estas soluciones del estado base,
evolucionamos las configuraciones de equilibrio y seguimos su comportamiento durante 200
unidades de tiempo. Utilizando los métodos numéricos descritos anteriormente para la evolu-
ción, integramos en el tiempo las ecuaciones para estas configuraciones centradas en el origen
de coordenadas, y en la Figura 4.2 mostramos el valor central de la densidad, |Ψ(t,~0)|2, en
el marco SP y ρ(t,~0) en el marco de MP. El resultado indica que la configuración permanece
oscilando con un modo consistente con el modo esférico dominante de la configuración, con
un perı́odo T = 21.64 como se señala en [82] utilizando el marco SP. Cuando se utiliza el
marco de MP, hay una reducción del perı́odo en el tiempo. Estas oscilaciones son esencial-
mente producidas por el error de truncamiento inherente de los métodos desde la construcción
del perfil inicial. Es decir, el perfil encontrado al resolver numéricamente el problema de los
eigenvalores es solo una aproximación del estado base exacto del sistema SP. Por lo tanto,
la configuración inicial podrı́a interpretarse como el estado base de la solución exacta más
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Figura 4.2: Densidad central |Ψ(t,~0)|2 para la solución en el marco SP y ρ(t,~0) en el marco de
MP, en función del tiempo. Este gráfico muestra que el primer modo de oscilación es similar,
aunque no es perfectamente igual en ambos marcos. En el marco SP, el perı́odo coincide con
el reportado en [82], mientras que en el marco de MP el perı́odo se reduce con el tiempo
debido a disipación numérica.

una perturbación esférica debido al uso de métodos numéricos. Ası́, podemos observar que
ambos marcos mantienen la estructura inicial estable, lo que sugiere que la estabilidad es una
propiedad del perfil solitónico y no del método numérico utilizado.

En la Figura 4.3 mostramos la evolución de la masa M y la energı́a total E = K + W
de las soluciones en función del tiempo. Podemos observar que en el marco MP, la masa
es ligeramente mayor que en el marco SP, debido a la contribución de la atmósfera. Dado
que esta atmósfera es del orden de ρatm ∼ 10−8, contribuye con una masa del orden de
Matm ∼ 10−3. Por otro lado, la masa en el marco SP disminuye al utilizar el método MoL,
debido a la disipación de la integración temporal con el método explı́cito RK3.

En cuanto a la energı́a total, los valores en los dos marcos no coinciden debido a la diferencia
en la masa, lo que contribuye a la energı́a gravitacional W . Por esta razón, en el marco de
MP, la energı́a total E es menor que en el marco SP.

En el contexto de la solución de las ecuaciones SP, los métodos de diferencias finitas y los
métodos pseudoespectrales se muestran como los más adecuados debido a su capacidad para
manejar de manera eficiente las complejidades inherentes a la evolución de las soluciones
en este marco. Por otro lado, los métodos de volúmenes finitos, comúnmente utilizados en
el marco MP, tienen limitaciones importantes, ya que se restringen a casos donde la fase S
es constante. Dado esto, a partir de ahora, todas las simulaciones serán realizadas exclusiva-
mente dentro del marco SP, aprovechando las ventajas de los métodos de diferencias finitas y
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Figura 4.3: Evolución de la energı́a total E = K + W y la masa M de la configuración de
equilibrio en los dos marcos.

pseudoespectrales para una mayor precisión y estabilidad en las soluciones obtenidas.

4.1.3 Atractoriedad

Como se ha demostrado previamente, los núcleos galácticos son soluciones estables del siste-
ma SP [65, 10]. No obstante, una caracterı́stica importante de estas soluciones es que actúan
como atractores en el tiempo, lo que significa que cualquier configuración inicial de un mi-
nicúmulo de densidad tiende a colapsar y formar una estrella de bosones. Para entender este
proceso en detalle, consideremos el caso más general [13, 19].

Supongamos inicialmente una función de onda en el espacio de momentos descrita por
F(Ψ) = M1/2

π3/4 e
−p2/2eiS , donde S es una fase aleatoria en cada punto del espacio de mo-

mentos, entre 0 y 2π, y M es la masa total del gas de bosones en n dominio numérico D. Es
decir, el módulo de la función de onda está localizado en el espacio de momentos, mientras
que, debido al principio de incertidumbre de Heisenberg, se encuentra disperso en el espacio
de posiciones. Este comportamiento es consistente con lo propuesto en [83], donde se sugiere
que la formación de una estrella de bosones es un proceso robusto e independiente del perfil
inicial de la función de onda.

En este contexto, la estructura resultante puede identificarse como un minicúmulo bosónico,
una concentración densa de materia oscura ultraligera que emerge debido a la autoatracción
gravitacional del gas de bosones. A diferencia de halos galácticos más extendidos, estos mi-
nicúmulos corresponden a configuraciones compactas que se forman en las primeras etapas
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del universo y pueden persistir como subestructuras dentro de galaxias o cúmulos de materia
oscura.

La formación de estos objetos sigue un proceso de condensación gravitacional, en el cual las
interacciones cuánticas y gravitacionales llevan a la estabilización de un núcleo solitónico
rodeado por una envolvente extendida. Este mecanismo ha sido estudiado en simulaciones
cosmológicas donde se observa que, a través de colisiones y fusiones, los minicúmulos pue-
den contribuir a la evolución de la estructura a gran escala. El tiempo caracterı́stico de con-
densación de un núcleo τg, puede deducirse mediante la teorı́a de relajación del sistema SP o
de la ecuación de Landau. Este tiempo está dado en términos del radio del minicúmulo R, la
velocidad caracterı́stica v y la densidad promedio ρ̄ del minicúmulo [83] como:

τg =
b
√

2

12π3

mBv
6

G2ρ̄2Λ
, b ∼ 1, (4.17)

donde Λ = log(mBvR) es el logaritmo Coulombiano, y b es un coeficiente determinado a
partir de simulaciones numéricas.

Para estudiar la evolución del sistema, simulamos este perfil en el dominio cúbico D =
[−L/2, L/2]3, donde L > 2π/kJ , con kJ = (4ρ̄)1/4 el número de Jeans adimensional. El
objetivo es observar la condensación de la nube de gas en un único núcleo, lo que nos permite
analizar el proceso de condensación a detalle.

Como validación de nuestro código, reproducimos los resultados de [19] para un minicúmulo
con masa M = 1005.3, en un dominio de longitud L = 18, usando N = 128 puntos de malla
en el dominio discreto con condiciones de frontera periódicas. En la Figura 4.4, se muestran
ocho instantáneas del perfil de densidad, centradas en el máximo de la densidad, en tiempos
t = 0, 10, 20, 30, 40, 50, 60 y 70 (en unidades de código). Estas imágenes ilustran el proceso
de condensación que lleva a la formación de un núcleo galáctico.

Para un análisis más detallado, la Figura 4.5 muestra el promedio angular de la densidad
ρavg(t, r) calculado como:

ρavg(t, r) =
1

4π

∫
Ω

ρ dΩ, (4.18)

donde Ω = [0, π]× [0, 2π] es el ángulo sólido, y dΩ = sin θ dθ dφ son los elementos diferen-
ciales de las coordenadas esféricas (r, θ, φ). Los resultados se comparan con el perfil ajustado
de un solitón mediante la fórmula empı́rica (4.15), que se muestra con lı́neas continuas en las
instantáneas correspondientes a los tiempos t = 20, 40 y 100. Estos resultados confirman
que, a partir de t = 20, la estructura formada en el máximo de la densidad corresponde al
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Figura 4.4: Instantáneas del perfil de densidad tomadas cada t = 10 unidades de tiempo, cen-
tradas en el punto donde se localiza el máximo valor de la densidad. Se observa la formación
de un solitón en el origen.

estado base solución del sistema SP (2.12-2.13), lo que confirma la naturaleza atractora de
está solución.

Además de este proceso de condensación, en [19] se demostró que el núcleo formado en el
centro del minicúmulo acreta masa inicialmente a un ritmo de crecimiento proporcional a
t1/2, que eventualmente disminuye a un ritmo más lento de t1/8. En la Figura 4.6, mostramos
el crecimiento de la densidad máxima en función del tiempo, que sigue este comportamiento.

Como comentario adicional, es relevante considerar el comportamiento de la densidad fuera
del núcleo, es decir, en la región más allá de un radio de transición rt. En esta zona, el
comportamiento de la función de onda cambia respecto al del estado base, y el decaimiento
de la densidad deja de ser exponencial para volverse polinomial. Especı́ficamente, el perfil de
densidad en esta región, fuera de la esfera de radio rt, sigue el comportamiento descrito por
la fórmula empı́rica de Navarro-Frenk-White (NFW) [84] obtenida en simulaciones de CDM
y costituyo el perfil estándar:

ρNFW(r) =
ρs

r

rs

(
1 +

r

rs

)2 , (4.19)

donde rt y rs son dos parámetros que deben ser determinados. El parámetro de densidad ρs
se obtiene imponiendo la continuidad entre el perfil del núcleo y el perfil NFW (el perfil
del halo). Esto se traduce en la condición ρsoliton(rt) = ρNFW(rt), asegurando una transición
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Figura 4.5: Instantáneas a los tiempos t = 20, 40 y 100 del promedio de la densidad sobre el
ángulo sólido (4.18), mostradas mediante puntos junto al ajuste del perfil del solitón (4.15),
representado por lı́neas continuas.

Figura 4.6: Crecimiento de la densidad máxima en función del tiempo. Inicialmente, el ritmo
de crecimiento es proporcional a t1/2, que eventualmente disminuye a t1/8.
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Figura 4.7: Instantánea en el tiempo t = 100 del promedio de la densidad sobre el ángulo
sólido (4.18), mostrada mediante puntos. El ajuste del perfil del solitón (4.15) se representa
con la lı́nea continua azul, mientras que el ajuste del perfil NFW (4.19) se muestra con una
lı́nea discontinua roja. El radio de transición entre el núcleo y el halo es rt ≈ 3.2rc.

continua entre ambos perfiles.

Para visualizar este fenómeno con mayor detalle, en la Figura 4.7 se muestra el promedio de
la densidad ρavg en el tiempo t = 100. En esta figura, además del ajuste correspondiente al
solitón previamente presentado, se enfatiza el ajuste en la región del halo, donde r > rt. El
valor de rt ≈ 3.2rc fue ajustado con alta precisión utilizando el perfil NFW, como se observa
en la figura.

Este ajuste sugiere un hecho importante: los efectos cuánticos presentes en el sistema Schrödinger-
Poisson tienen una mayor relevancia en las regiones donde se forma el núcleo. En contraste,
en las zonas externas del halo, el comportamiento promedio se asemeja al observado en si-
mulaciones de Cold Dark Matter (CDM), lo que indica que en estas regiones los efectos
cuánticos se vuelven menos dominantes.

Sin embargo, es crucial notar que esta conclusión se obtiene al considerar el promedio an-
gular de la densidad 4.18. Si en lugar de este promedio se analiza la densidad puntual, se
observa que las regiones externas exhiben una estructura granular, producto de la interferen-
cia de ondas superpuestas en esta zona. Esto implica que, aunque el perfil global del halo
pueda parecer similar al caso clásico de CDM en promedio, la granularidad cuántica sigue
desempeñando un papel en la dinámica del sistema.

Como comentario final, es importante destacar que, según el modelo de FDM, las prime-
ras estructuras estables formadas en el universo a partir de materia oscura habrı́an sido los
núcleos galácticos. Esto sugiere que estructuras mayores, como las galaxias, podrı́an haber
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surgido a través de la fusión de estos. Por tanto, en la siguiente sección, abordaremos la
dinámica de estas fusiones y analizaremos sus implicaciones en la formación de estructuras
a gran escala en el universo.

SECCIÓN 4.2

Fusiones de Núcleos Galácticos

Los sistemas binarios y las fusiones multinucleares de solitones proporcionan una perspectiva
fascinante sobre la materia oscura ultraligera y su impacto en la evolución cósmica temprana.

En los sistemas binarios, dos núcleos de FDM interactúan gravitacionalmente, orbitando
entre sı́ mientras sus efectos cuánticos, como la presión cuántica y la gravedad, estabilizan la
dinámica del sistema [85, 86]. Estos sistemas proporcionan una plataforma única para estu-
diar el comportamiento de las estructuras galácticas en presencia de perturbaciones externas,
revelando información sobre su evolución a lo largo del tiempo. Comprender la dinámica de
los sistemas binarios de núcleos galácticos es esencial para desentrañar su rol en la formación
y evolución de estructuras cosmológicas a gran escala, como las galaxias y los cúmulos de
galaxias, particularmente en las etapas tempranas del universo.

Las fusiones multinucleares son otro proceso relevante, donde múltiples núcleos galácticos
colisionan y se fusionan en una única estructura más masiva. En estos eventos, la configura-
ción final depende principalmente de la masa y la energı́a totales [11, 12]. Estos procesos de
fusión podrı́an haber sido cruciales para la formación de halos galácticos y otras estructuras
de materia oscura en las primeras etapas del universo. Además, las fusiones multinuclea-
res ayudan a entender cómo estos núcleos galácticos alcanzan su estabilidad y qué factores
determinan su configuración final.

Ambos fenómenos, tanto los sistemas binarios como las fusiones multinucleares, juegan un
papel fundamental en la comprensión de cómo los núcleos galácticos podrı́an haber sido las
primeras estructuras gravitacionales en el universo temprano. Estas primeras fusiones y siste-
mas binarios podrı́an haber actuado como semillas gravitacionales, atrayendo y acumulando
materia a su alrededor, lo que finalmente permitió la formación de galaxias y cúmulos.
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Figura 4.8: Ilustración del escenario inicial para la fusión binaria de núcleos solitónicos.

4.2.1 Sistemas Binarios

Para analizar la fusión binaria ilustrada en la Figura 4.8, consideramos el siguiente escenario:
el primer núcleo, ubicado a la izquierda, tiene una masa M1 = M(rc,1), una posición inicial
~x1 = (x1, y1, 0) y una velocidad inicial ~v1 = (vx1 , 0, 0). El segundo núcleo, a la derecha,
tiene una masa M2 = M(rc,2), una posición inicial ~x2 = −MR~x1 y una velocidad inicial
~v2 = −MR~v1, donde MR = M2/M1 es la razón de masas entre los núcleos solitónicos de la
izquierda y la derecha. De este modo, el parámetro de orden inicial es:

Ψ(0, ~x) =
√
ρsoliton(|~x− ~x1|)ei~v1·~x +

√
ρsoliton(|~x− ~x2|)ei~v2·~x. (4.20)

La masa total de cada núcleo galáctico está dada por la expresión:

M = 4π

∫ ∞
0

ρsoliton(r)r
2dr =

33.95

rc
. (4.21)
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Efecto de las condiciones de frontera

Un aspecto de vital importancia es explorar los efectos de las condiciones de frontera en la
evolución de sistemas binarios de núcleos galácticos. Analizaremos las diferencias clave entre
las condiciones de frontera periódicas y aisladas durante la fusión de dos núcleos en equili-
brio. Las condiciones periódicas, frecuentemente utilizadas en simulaciones cosmológicas de
formación de estructuras, introducen interacciones adicionales entre las imágenes periódicas
de los núcleos a lo largo de cada eje del dominio, lo que influye en la dinámica de la fusión.
Por otro lado, las condiciones aisladas permiten que la energı́a y la masa se disipen fuera del
sistema, imitando mejor un entorno cerrado y sin perturbaciones externas.

Se estudiará cómo estos dos enfoques afectan la evolución gravitacional de los núcleos, des-
de su interacción inicial hasta la configuración final resultante, con especial atención en la
formación de colas de materia y la redistribución de energı́a en el sistema.

Dividimos este estudio en dos casos: el primero para dos núcleos que se fusionan únicamente
por efecto de la gravedad, y el segundo para dos núcleos con momento angular distinto de
cero.

Fusión frontal en caı́da libre. Para ilustrar este escenario, realizamos una serie de simulacio-
nes en dominios [−20, 20]3 y [−40, 40]3, utilizando la misma resolución espacial y temporal
que en los ejemplos anteriores. Elegimos tres configuraciones iniciales para los núcleos, con
posiciones en A) (±5, 0, 0), B) (±10, 0, 0) y C) (±15, 0, 0). Esperamos que el dominio fuera
de la caja, plagado de imágenes periódicas de las configuraciones binarias, afecte la dinámica
de la colisión. Para comparar, también simulamos la fusión usando condiciones de frontera
aisladas.

Los resultados de las simulaciones para el Caso A se resumen en la Figura 4.11. A la izquierda
se presenta el potencial gravitacional inicial a lo largo del eje x, y a la derecha, el momento
frontal 〈px〉 integrado en los semidominios x < 0 y x > 0. En la primera fila, se incluyen los
resultados usando condiciones de frontera aisladas, donde el tiempo de fusión es t ∼ 14.9,
definido como el momento en que se alcanza el máximo momento frontal. En las filas segunda
y tercera se muestran los resultados con condiciones periódicas en los dominios [−20, 20]3

y [−40, 40]3, respectivamente. El tiempo de fusión se ve afectado por el tamaño del dominio
periódico: el dominio más pequeño retrasa la fusión debido a la atracción entre las imágenes
gravitacionales periódicas. Además, la magnitud del momento frontal también se ve alterada.

El Caso B es notablemente diferente. Aquı́, las condiciones de frontera periódicas implican
la existencia de configuraciones binarias idénticas en los dominios vecinos, separadas exac-
tamente por 20 unidades de longitud a lo largo del eje x y por 40 unidades en los ejes y y z.
Esta disposición genera una matriz infinita de núcleos a lo largo del eje x, y se espera que los
campos gravitacionales se compensen en esa dirección.
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Figura 4.9: Caso A. A la izquierda se muestra el potencial gravitacional inicial a lo largo
del eje x, ilustrando sus mı́nimos locales y comportamiento en los lı́mites. A la derecha, se
presenta el momento frontal 〈px〉, integrado en los semidominios x < 0 y x > 0, como
función del tiempo. La primera fila corresponde al escenario con condiciones de frontera
aisladas, mientras que la segunda y tercera muestran resultados para dominios periódicos
[−20, 20]3 y [−40, 40]3, respectivamente.
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Los resultados para el Caso B se presentan en la Figura 4.11. A la izquierda se muestra el
potencial gravitacional inicial a lo largo del eje x, y a la derecha 〈px〉, desde arriba hacia abajo,
para los dominios aislado, periódico [−20, 20]3, y periódico [−40, 40]3, respectivamente.

En la segunda fila, los núcleos tardan significativamente más en fusionarse. Aunque podrı́a
esperarse que los núcleos no se fusionaran debido a la compensación de los campos gravita-
cionales a lo largo del eje x, una sutil asimetrı́a en el potencial gravitacional en el centro del
dominio permite que finalmente se fusionen después de 115 unidades de tiempo.

La tercera fila de resultados, con un dominio periódico más grande, muestra un tiempo de
colisión más cercano al del caso aislado, ya que los pozos potenciales de los núcleos vecinos
están más distanciados.

El Caso C revela una contribución más significativa de las condiciones de frontera periódicas.
En lugar de ser atraı́dos entre sı́, los núcleos son atraı́dos hacia sus imágenes periódicas a lo
largo del eje x. Los resultados se muestran en la Figura 4.11. En el escenario aislado, los
núcleos colisionan frontalmente, mientras que en el dominio periódico colisionan ”desde
atrás”, como lo indica el momento lineal, que es positivo para x > 0 y negativo para x < 0,
lo que sugiere una separación inicial entre los núcleos.

Fusión en órbita. Este caso estudia la colisión de dos solitones con momento angular orbital.
Como ejemplo ilustrativo, tomamos las condiciones iniciales con los solitones centrados en
(−10, 10, 0) y (10,−10, 0), con velocidades iniciales de (0.1, 0, 0) y (−0.1, 0, 0), respectiva-
mente. Evolucionamos el sistema en el dominio D = [−40, 40]3 con condiciones de frontera
aisladas, y en los dominios D = [−20, 20]3 y D = [−40, 40]3 con condiciones de frontera
periódicas.

En el sistema aislado, se observa que parte de la materia y del momento angular es radiada,
como se ha reportado en [87, 88]. Bajo condiciones periódicas, la materia y el momento
angular reingresan al dominio, interactuando nuevamente con el sistema binario. En la Figura
4.12 se muestran instantáneas de los isocontornos de la densidad |Ψ|2 en los tiempos t =
0, 100, 200, 300, 400 y 500, de izquierda a derecha.

En la parte superior de la figura, se muestran los resultados con el dominio aislado, donde la
configuración final tiene rotación y se mantiene estable. La fila central muestra la evolución
con condiciones de frontera periódicas en el dominio pequeño, simulando una red infinita
de configuraciones en equilibrio. La simetrı́a y el tamaño del dominio hacen que las fuerzas
externas sobre cada configuración se compensen, resultando en movimiento rectilı́neo uni-
forme. En la fila inferior, las instantáneas en el dominio periódico grande muestran que la
reentrada de materia, expulsada durante la fusión, permite la formación de perfiles de cola.
Este fenómeno es clave para comprender las distribuciones de densidad extendidas.

Con condiciones de frontera aisladas y periódicas en D = [−40, 40]3, se forma una única
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Figura 4.10: Caso B. De arriba hacia abajo, se muestran los resultados para el dominio
aislado [−20, 20]3, el dominio periódico [−20, 20]3, y el dominio periódico [−40, 40]3.
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Figura 4.11: Caso C. De arriba hacia abajo, se presentan los resultados para el dominio
aislado [−20, 20]3, el dominio periódico [−20, 20]3, y el dominio periódico [−40, 40]3.
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Figura 4.12: Instantáneas de los contornos de densidad |Ψ|2 en los tiempos t =
0, 100, 200, 300, 400 y 500, para condiciones de frontera aisladas en el dominio D =
[−40, 40]3 (arriba), condiciones de frontera periódicas en D = [−20, 20]3 (medio) y D =
[−40, 40]3 (abajo).

distribución de densidad en el origen, cuyo perfil promediado se muestra en la Figura 4.13
a lo largo del eje x. Este perfil es consistente con el perfil de núcleo (4.15). Nótese que bajo
condiciones de frontera periódicas, el perfil de cola no sigue un decaimiento exponencial,
sino polinómica, un comportamiento relevante que no ocurre en el caso aislado.

Los diagnósticos de masa y momento angular para este sistema se presentan en la Figura
4.14. La masa total se conserva bien en el dominio periódico, mientras que en el caso aislado
se pierde aproximadamente el 28 % debido a la radiación. Similarmente, el momento angular
es radiado fuera del dominio aislado, mientras que bajo condiciones periódicas, observamos
la reentrada de momento angular en el dominio pequeño. No se encuentra una tendencia clara
del Lz en función del tamaño del dominio.

Los resultados de estas simulaciones muestran aspectos importantes de la dinámica de sis-
temas binarios de solitones con momento angular orbital. En el caso aislado, se pierde una
fracción significativa de la masa y el momento angular, lo que lleva a una reducción del 28 %
de la masa total y a la formación de una estructura rotante con menor energı́a. En contraste,
bajo condiciones periódicas, la reentrada de materia y energı́a permite que se conserven.
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Figura 4.13: Promedio temporal de la densidad en el intervalo t ∈ [250, 500], tras la fusión
de las configuraciones en equilibrio. Simulado en el dominio [−40, 40]3. A la izquierda, con
condiciones de frontera aisladas; a la derecha, con condiciones periódicas.
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Determinación de la masa final del núcleo

Los resultados obtenidos muestran el impacto crucial que tienen las condiciones de frontera
en la evolución de sistemas binarios con momento angular. Mientras que las condiciones
aisladas promueven la pérdida de masa y energı́a total, las condiciones periódicas permiten la
preservación de estas cantidades, resultando en configuraciones más complejas y dinámicas.
A partir de estos hallazgos, proponemos utilizar condiciones periódicas sobre el parámetro
de orden para preservar la masa y energı́a total del sistema, lo que facilita una dinámica más
rica fuera del núcleo formado tras la fusión. Esto permite que el sistema se comporte de
manera análoga al caso aislado, asegurando una evolución comparable al sistema aislado y
conservando dichas cantidades.

La evolución de este sistema tiene lugar en el dominio espacial D = [−20, 20]3, discretizado
con N = 128 puntos, y se desarrolla durante 250 unidades de tiempo de código, con una
resolución temporal de ∆t = 0.01. La densidad del solitón izquierdo se fija en ρc,1 = 1,
con una posición inicial ~x1 = (−5, y0, 0), donde y0 toma los valores 5 y 10. El componente
no nulo de la velocidad inicial toma los valores vx1 = 0.05, 0.1, 0.15, 0.2 y 0.25. El solitón
derecho tiene valores de densidad central de ρc,2 = 1.5 y 2.0, lo que da lugar a un total de 20
simulaciones de fusiones de solitones.

En el caso en que el parámetro de orden se implemente con condiciones de frontera aisladas,
mediante una esponja que elimina los modos salientes de la función de onda por medio de
un potencial imaginario [87, 88], originalmente implementado en [65], se sugiere que las
estructuras formadas a partir de la fusión generan un núcleo galáctico virializado en el interior
de la estructura, el cual está rodeado por un halo que disminuye gradualmente debido al
enfriamiento gravitacional. Este fenómeno es consecuencia de la pérdida de masa y momento
angular por las condiciones de frontera aisladas [73], como se mostró previamente.

Además, en [87] se determinó que la masa del núcleo resultante es aproximadamente el 70 %
de la suma de las masas de los núcleos iniciales, independientemente de la configuración
inicial. Este resultado destaca la robustez del proceso de fusión, sugiriendo que una fracción
significativa de la masa se mantiene concentrada en el núcleo central, mientras que el halo
exterior pierde progresivamente masa. Para confirmar este resultado, monitoreamos la masa
del núcleo correspondiente a la configuración de densidad máxima con la que se obtiene la
densidad promedio ρavg. De este modo, podemos calcular la masa de este núcleo como:

Mc = 4π

∫ rc

0

ρavg r
2 dr. (4.22)

Ası́, definimos la razón de masa entre el núcleo resultante de la fusión y la suma de las masas
de los núcleos iniciales como:
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Figura 4.15: Relaciones de masa del núcleo Mcr para distintas configuraciones iniciales. La
lı́nea punteada representa el valor promedio Mcr,avg = 0.7685+0.1272

−0.1052, donde la banda mide la
amplitud promedio máxima y mı́nima de estas oscilaciones.

Mcr =
Mc

M1
c +M2

c

, (4.23)

donde M1
c y M2

c son las masas de las configuraciones iniciales ubicadas a la izquierda y
derecha del dominio, respectivamente. Los resultados obtenidos para este conjunto de simu-
laciones se muestran en la Figura 4.15, donde se ilustra la evolución de esta cantidad tras la
fusión. La lı́nea punteada representa el valor promedio Mcr,avg = 0.7685+0.1272

−0.1052, y la banda de
error corresponde a las amplitudes promedio máximas y mı́nimas de oscilación respecto al
valor promedio.

4.2.2 Sistemas multinúcleos

Efecto de las condiciones de frontera

Investigamos un último problema, más complejo, relacionado con la formación de núcleos.
Inspirándonos en estudios previos [89, 87, 25], simulamos la fusión de 30 configuraciones de
equilibrio con una masa bosónica ultraligera de mB = 10−22 eV/c2. Estas configuraciones
de equilibrio tienen masas aleatorias en el rango de 2.6 × 108M� a 26 × 108M�, y están
posicionadas inicialmente de manera aleatoria dentro de un cubo de lado de 30 kpc, lo que
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permite la comparación entre condiciones de frontera periódicas y aisladas. En el caso del
dominio periódico, evolucionamos el sistema tanto en un dominio cúbico pequeño como
en un dominio cúbico grande, con lados de 80 kpc y 100 kpc, respectivamente. Usamos las
mismas posiciones iniciales, configuraciones y resolución en ambos casos, lo que nos permite
aislar los efectos del tamaño del dominio sobre la dinámica del sistema.

Los resultados se resumen en la Figura 4.16. A la izquierda/derecha mostramos los resultados
obtenidos en las simulaciones en el dominio pequeño/grande. En la parte superior, mostramos
algunas instantáneas de la densidad proyectada sobre el eje x, que muestran el comportamien-
to dinámico y los patrones de interferencia que cambian con el tiempo. En la fila del medio,
mostramos una instantánea de la densidad en tres dimensiones, en un momento en que el
núcleo ya está formado. Finalmente, calculamos un promedio de la densidad en el tiempo y
en varias direcciones desde el centro del núcleo, para ajustar la estructura núcleo-halo que
mostramos en la tercera fila. El núcleo se ajusta utilizando la función (4.15) mediante dos
métodos. En el primer método, ajustamos el núcleo con rc y ρc como parámetros libres,
obteniendo los mejores ajustes con (rc ∼ 0.228 kpc, ρc ∼ 2.42 × 109M�/kpc3) y (rc ∼
0.223 kpc, ρc ∼ 2.51 × 109M�/kpc3) en los dominios pequeño y grande, respectivamente,
representados con la lı́nea azul. En el segundo método, se impone que la relación de escala-
miento Mrc ∼ constante se mantenga, lo que implica una restricción en los dos parámetros
libres; en este caso, los parámetros ajustados son (rc ∼ 0.311 kpc, ρc ∼ 2.13×109M�/kpc3)
y (rc ∼ 0.309 kpc, ρc ∼ 2.19× 109M�/kpc3) en los dominios pequeño y grande, respectiva-
mente, cuyos perfiles están representados con lı́neas rojas. Finalmente, la cola se ajusta con el
perfil NFW [84]. Los parámetros de ajuste son ρs ∼ 4.6525× 105M�/kpc3, rs ∼ 7.473 kpc
para el dominio pequeño y ρs ∼ 3.3 × 105M�/kpc3, rs ∼ 8.67 kpc para el dominio grande.
La simulación tiene una duración de ∼ 12.7 Gyr, un intervalo de tiempo dentro del cual nin-
guna de las configuraciones ha alcanzado el estado de virialización, lo que explica por qué,
en el caso del dominio periódico, la restricción Mrc ∼ constante aún no se cumple, como se
esperaba de acuerdo a [87].

Para comparación, simulamos este escenario utilizando condiciones de aislamiento, donde
se espera que el enfriamiento gravitacional lleve la configuración hacia un perfil solitónico
de equilibrio en tiempo asintótico. Utilizamos los mismos parámetros numéricos que en la
simulación con condiciones de frontera periódicas, con un dominio de lado 80 kpc y 30 soli-
tones distribuidos inicialmente en una caja de lado 30 kpc alrededor del centro del dominio.
Los resultados se resumen en la Figura 4.17, que incluye algunas instantáneas de la densi-
dad a lo largo del eje x, ilustrando la concentración de densidad restringida por la presencia
de la esponja. Además, una vista volumétrica de las instantáneas resalta la concentración de
densidad y el perfil solitónico de la misma.

Los parámetros de ajuste para el perfil de densidad promedio del núcleo en la ec. (4.15) uti-
lizando el primer método, con los dos parámetros de ajuste libres, son (rc = 2.64 kpc; ρc =
4.74×105M�/kpc3), mientras que al utilizar el segundo método se obtienen (rc = 2.54 kpc; ρc =
4.81 × 105M�/kpc3) al imponer la condición Mrc ∼ constante. Cabe destacar que, a dife-
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rencia del dominio periódico, en este caso los perfiles de ajuste son muy similares, como se
ilustra con las curvas azules y rojas en la parte inferior de la Figura 4.17. Finalmente, para
completar, los parámetros de una cola con el perfil NFW son ρs ∼ 1.74 × 105M�/kpc3 y
rs ∼ 6.26 kpc.

Esta simulación ilustra la dinámica del enfriamiento gravitacional en 3D a partir de condi-
ciones iniciales que están lejos de ser esféricamente simétricas. Trabajos previos (ver, por
ejemplo, [10]) demostraron que cuando las condiciones iniciales son esféricamente simétri-
cas, el enfriamiento gravitacional lleva a la configuración asintóticamente hacia la solución de
estado fundamental del núcleo solitónico, con un perfil de densidad que disminuye abrupta-
mente fuera del núcleo. También se encontró que algunas no esfericidades fueron expulsadas
en escenarios simples axisimétricos [90]. Como resultado, se ha hipotetizado que el núcleo
solitónico correspondiente al estado fundamental es la solución atractora para un rango más
amplio de condiciones iniciales, siempre que se permita que ocurra el enfriamiento gravita-
cional y se dé tiempo suficiente al sistema para alcanzar un estado de relajación.

Nuestra simulación aquı́ representa un intento de demostrar esto de manera explı́cita en 3D,
a partir de condiciones iniciales que se apartan claramente de la simetrı́a esférica, con control
del enfriamiento gravitacional implementado a través de los efectos aislantes de las condi-
ciones de frontera tipo esponja. Si bien el tiempo simulado, del orden de 12.7 Gyr, no es
lo suficientemente largo como para permitir que el sistema complete su relajación hacia el
estado asintótico de la solución de estado fundamental, claramente se está moviendo en esa
dirección con el tiempo. Por el contrario, cuando la misma configuración inicial se simuló
con condiciones de frontera periódicas, sin esponja para absorber la masa y energı́a expulsa-
das por el enfriamiento gravitacional, el perfil de densidad se ajusta con un núcleo solitónico
rodeado por un halo. Aunque no está completamente relajado al final del tiempo simulado, el
caso aislado (es decir, con esponja) ya muestra un núcleo solitónico rodeado por un perfil que
disminuye exponencialmente hacia radios grandes, mucho más pronunciadamente que en el
caso con condiciones de frontera periódicas.

Relación de escalamiento de masa

En [22], basado en los resultados de Simulaciones de Formación de Estructuras (SFS), se
encontró una relación de escalamiento entre las siguientes cantidades:

Mc = constante
(
E

M

)1/2

, (4.24)

donde Mc es la masa central integrada del perfil de densidad de solitón (4.15) desde el origen
hasta el radio del core rc (4.22),E = K+W es la energı́a total yM la masa total. La relación
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Figura 4.16: A la izquierda/derecha mostramos los resultados para el dominio pe-
queño/grande. En la primera fila mostramos algunas instantáneas de la densidad a lo largo
de una lı́nea paralela al eje x que pasa por la posición de máxima densidad, lo que muestra
cuán dinámico es el sistema. En la segunda fila mostramos una vista en volumen de la densi-
dad que ilustra la distribución de la nube bosónica. En la tercera fila mostramos el ajuste de
la densidad usando la fórmula (4.15) para el núcleo y (4.19) para la cola NFW.
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Figura 4.17: Parte superior: Instantáneas de la densidad a lo largo del eje x que ilustran cuán
localizada está la densidad. Parte media: Vista tridimensional de la densidad que muestra la
concentración de materia dentro de la región esponja. Parte inferior: Perfil de densidad y su
comparación con los ajustes en las regiones del núcleo y la cola; nótese que los ajustes del
núcleo concuerdan.
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de escalamiento (4.24) asocia la masa del núcleo en el lado izquierdo con la dispersión del
halo en el lado derecho. Este resultado fue confirmado mediante un conjunto controlado de
simulaciones locales de fusiones multinúcleos que colapsan para formar estructuras núcleo-
halo [91].

Posteriormente, en [87], se propuso una relación de escalamiento diferente, donde la masa del
núcleo se normaliza con M , dejando una relación de escalamiento invariante bajo la escala
lambda 2.14. La relación de escalamiento propuesta es:

Mc

M
= βΞα, Ξ :=

|E|
M3

(
~

GmB

)2

, (4.25)

donde α y β son constantes determinadas a partir de simulaciones. Esta relación se obtuvo a
partir de fusiones binarias y se encontró que en varias simulaciones con diferentes condicio-
nes iniciales α ∼ 1/4 en el caso de fusiones en órbita y α ∼ 1/6 para colisiones frontales.
Para fusiones multicore similares a las de [91], se encontró que α está entre 1/6 y 1/2. Una
firma importante de este análisis es que se utilizaron condiciones de frontera de aislamiento
en las simulaciones.

En [25], un estudio similar basado en fusiones multisoliónicas encuentra que α ∼ 1/3, más
precisamente en el rango de 1/4 a 1/2. La diferencia con los resultados de [87] podrı́a deberse
a las condiciones de frontera utilizadas, aisladas en [87] y periódicas en [25], lo que ayuda a
preservar la energı́a y la masa en todo el dominio durante las simulaciones.

Otros estudios basados en diferentes historias de formación de núcleos encuentran α ∼ 1/5−
1/4 como resultado del ajuste de núcleo-halos finales, y α ∼ 1/3 cuando la relación de
escalamiento se promedia espacialmente [15]. A partir del colapso esférico se encontró que
α ∼ 1/3 [92, 14]. Más recientemente, en [93], la construcción de soluciones núcleo-halo
con simetrı́a esférica muestra α ∼ 1/3, mientras que al relajarse α ∼ 1/2. Las diferencias
entre las diversas relaciones de escalamiento llevaron al análisis en [94], donde se identifica
la diversidad de α con diferentes historias de formación usando varias simulaciones bajo
diversos escenarios fı́sicos [12].

Exploramos la posibilidad de que esta diversidad se deba a algunos detalles de implemen-
tación no completamente especificados en las simulaciones de FDM, especı́ficamente las
condiciones de frontera para el potencial gravitacional. En enfoques Lagrangianos que invo-
lucran, por ejemplo, métodos SPH, las condiciones de frontera no son un gran problema, ya
que es suficiente cambiar la topologı́a del dominio imponiendo condiciones periódicas sin
imponer valores de referencia para el potencial gravitacional en ninguna frontera Euleriana.
Sin embargo, cuando se utilizan simulaciones en el marco Euleriano para la dinámica FDM,
como en las referencias principales [91, 87, 25], el potencial de referencia parece ser sutil e
importante.
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Para explicar nuestro punto, explotamos la invariancia de gauge V0 del sistema SP, que per-
mite establecer valores de referencia arbitrarios del potencial en las fronteras del dominio
numérico. Luego producimos simulaciones de fusiones multicore en un dominio periódico y
estudiamos el efecto de usar diferentes valores de referencia del potencial gravitacional sobre
el valor de α.

Podemos distinguir entre dos escenarios considerados en las simulaciones de FDM. Uno de
ellos asume que el sistema bajo estudio permanece aislado y las condiciones de frontera im-
plementadas en el lı́mite numérico simulan una superficie transparente que permite la salida
de materia. En este caso, las cantidades M y E, integradas en el dominio D, cambian en el
tiempo debido a la pérdida de materia expulsada durante el proceso de enfriamiento gravita-
cional [17, 10], y la cantidad Ξ no se conserva en el tiempo. En este escenario, como se hace
en [87], las condiciones de frontera son únicas, en el sentido de que el potencial en las fronte-
ras está dado por V = −M/r+ términos multipolares, donde r es la distancia desde el centro
del dominio hasta cada punto en la frontera del dominio de simulación D corresponiente al
caso aislado.

El segundo escenario, como se ha mencionado, corresponde al uso de condiciones de fron-
tera periódicas, las cuales reciclan los componentes de materia y energı́a dentro del dominio
numérico. De este modo, las propiedades globales, como la masa total M y la energı́a E, se
preservan a lo largo de la evolución del sistema. En este caso, las condiciones de frontera ca-
recen de una especificación clara, y el valor del potencial gravitacional en la frontera no está
bien definido en varios análisis que estudian la relación de escala entre el núcleo y el halo.
Entre los dos tipos de condiciones de frontera existen una serie de efectos que pueden ser cu-
riosidades o tener implicaciones serias, como se discute en [73], los cuales pueden depender
del tipo de condición de frontera combinada con el tamaño del dominio de simulación.

El dominio periódico es en el que queremos enfocarnos, ya que es el más utilizado en la cons-
trucción de relaciones de escala núcleo-halo en simulaciones dinámicas de FDM. Comenza-
mos señalando que el sistema de Schrödinger-Poisson es invariante bajo la transformación de
norma V0, definida por

{Ψ, V } →
{

Ψe−imBV0t/~, V + V0

}
, (4.26)

lo cual deja invariantes a ρ, M y K, mientras que la energı́a gravitacional sufre la traslación

W → W + V0M. (4.27)

Como consecuencia, la energı́a total se transforma como E → E + V0M , lo cual a su vez
cambia el valor de Ξ. Esto compromete la relación de escala (4.25), la cual depende de V0.
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Ilustramos este efecto utilizando un único escenario asequible, consistente en la fusión mul-
tinúcleo que forma una configuración final de núcleo-envolvente FDM. De manera similar a
[91, 87, 25], preparamos conjuntos de datos iniciales con entre 3 y 18 solitones, con masas
aleatorias que van desde 1.5 × 108M� hasta 4 × 108M�, distribuidos aleatoriamente dentro
de un cubo de 60 kpc de lado. Este cubo está centrado dentro del dominio numérico, que es
un cubo de 80 kpc de lado. Asumimos una masa del bosón mB = 10−22eV/c2. Los datos
iniciales también están preparados de tal manera que no haya un momento angular neto, de
modo que la relación de escala dependa solo de M y E, y no del momento angular, como
ocurre en las fusiones binarias.

Evolucionamos estas condiciones iniciales utilizando condiciones de frontera periódicas. Las
resoluciones de tiempo y espacio son h = 62.5 pc y ∆t = 2.5×10−3 Gyr, y la evolución dura
14 Gyr para permitir que el sistema se relaje. Utilizamos estas simulaciones para explorar el
comportamiento usando diferentes valores de V0. Definimos tres valores diferentes para el
potencial gravitacional en la frontera:

Potencial A. En un primer escenario, fijamos el potencial en las caras de la frontera como

VA = V −máx(V )−G M

rmax
, (4.28)

donde máx(V ) representa el valor máximo de V , que ocurre en las esquinas de la caja, y
rmax :=

√
3 40 kpc es la mitad de la longitud diagonal del dominio cúbico. Este potencial

se utiliza como una aproximación de las condiciones de frontera monopolares utilizadas en
sistemas aislados.

Potencial B. Añadimos un valor constante V0 a VA

VB = VA + V0, (4.29)

lo que corresponde a un simple cambio de referencia de VA a través de la constante V0, y
en principio, de acuerdo con la invarianza (4.26), deberı́a dar la misma dinámica que con
VA, excepto por una fase en Ψ. Para este ejercicio usamos dos valores de la constante V0 =
1843, 3685km2/s2, o equivalentes a V0 = 5, 10 en unidades del código.

Como ilustración de la evolución de estas fusiones multicore, en la Fig. 4.18 mostramos
instantáneas de la densidad ρ, Re(Ψ) y la fase de Ψ durante la evolución para una de nuestras
simulaciones. Las instantáneas corresponden a 0, 3, 9 y 14 Gyr de izquierda a derecha, y
se toman en un plano perpendicular al eje y que pasa por el centro del núcleo final. Estas
gráficas muestran el proceso de acumulación de materia durante la simulación, ası́ como el
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Figura 4.18: Instantáneas de una de nuestras simulaciones, para la densidad ρ en la fila supe-
rior, la parte real de Ψ en la fila del medio y la fase de Ψ en la fila inferior. Estas se toman,
de izquierda a derecha, en los momentos 0, 3, 9 y 14 Gyr, en un plano perpendicular al eje
y que pasa por el núcleo final. La densidad ilustra la acumulación de varios núcleos iniciales
desde el inicio hasta el tiempo final. La parte real y la fase de Ψ muestran los patrones de
interferencia y la evolución de la función de onda en el dominio periódico.

comportamiento de la función de onda. Utilizamos esta ventana temporal de evolución para
que se forme un núcleo, mientras que para nuestro análisis calculamos promedios espaciales
y temporales de la densidad solo durante el intervalo entre 12 y 14 Gyr, como se detalla a
continuación.

Simulamos las fusiones multinúcleo y procesamos los datos como se describe para una simu-
lación particular anteriormente, hasta obtener Mc en función del tiempo. Este valor de Mc se
calcula cada 0.05 Gyr entre los 12 y 14 Gyr. Luego calculamos el promedio de los 41 valores
deMc en esta ventana temporal, y la desviación estándar de todos estos valores se utiliza para
definir una barra de error en el valor de Mc. Este valor, junto con las integrales M y E en
todo el dominio, define puntos en un diagrama Mc/M vs Ξ. Estos puntos se ajustan con el
ansatz (4.25) para encontrar los mejores valores de ajuste de α y β.
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Figura 4.19: Graficamos Mc/M vs Ξ para cada una de las simulaciones, y para los tres casos
con V0 = 0, 5, 10 en azul, rojo y negro respectivamente. Cada punto corresponde al promedio
de los valores deMc durante los últimos 2 Gyr de cada simulación, mientras que las barras de
error son la desviación estándar de los valores utilizados para calcular dicho promedio. Las
lı́neas continuas son los mejores ajustes utilizando la fórmula (4.25).

Los resultados se resumen en la Figura 4.19, donde mostramos los ajustes de la relación de
escala núcleo-halo con la fórmula (4.25) obtenida de nuestras simulaciones utilizando los
potenciales VA y los dos casos VB, especı́ficamente para V0 = 0, 5, 10. Los valores del
exponente α son respectivamente α = 0.407± 0.008, 0.237± 0.011, 0.212± 0.017.

Para el potencial VA, es decir V0 = 0, correspondiente a la condición de frontera monopolar
aproximada, encontramos que la relación de escala núcleo-halo tiene un exponente α ≈
0.4, consistente con las fusiones multinúcleo reportadas en [25] y las estructuras generales
construidas en casos de simetrı́a esférica [93], donde la condición de frontera monopolar se
impone por construcción. Por otro lado, para el potencial VB con V0 = 5, 10, α es cercano
a ∼ 1/4. Aunque dinámicamente es el mismo sistema, mostramos cómo, redefiniendo el
potencial de referencia, encontramos una relación de escala diferente.

En resumen, en esta sección se describieron simulaciones de fusiones de núcleos galácticos
que dieron lugar a la formación de las primeras galaxias. Se enfatizó la importancia de las
condiciones de frontera y sus implicaciones en la dinámica de estos sistemas. Se destacó que,
en el caso de simulaciones con condiciones de frontera aisladas, el efecto de enfriamiento
gravitacional eventualmente lleva al sistema a su estado base, mientras que las condiciones
de frontera periódicas, al mantener cantidades globales como la masa y la energı́a total con-
servadas, simulan un escenario que conduce a estructuras más dinámicas fuera del núcleo
galáctico, adoptando un perfil tipo NFW (4.19).
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Encontramos que la relación de escala núcleo-halo puede variar dependiendo del valor de
referencia del potencial gravitacional. En dominios periódicos, esto podrı́a ser el factor res-
ponsable de la aparición de distintos valores de α en diferentes escenarios de simulación y
tamaños de dominio. Ilustramos este resultado utilizando la invariancia de calibración en V0

dentro del escenario particular de fusiones de múltiples núcleos.

Especulamos que la falta de estandarización en la elección del potencial gravitacional de
referencia en diversas simulaciones podrı́a ser una de las razones detrás de la dispersión y
diversidad observada en la relación de escala, como se ha estudiado en, por ejemplo, [80, 94].

Es importante destacar que los resultados de este trabajo aplican al caso en el que el domi-
nio es periódico y se impone un valor del potencial en las caras del dominio. En contraste,
el desplazamiento del potencial no es relevante cuando se emplean condiciones de frontera
aisladas, como en [87].

SECCIÓN 4.3

Soluciones esféricas con estructura núcleo-halo

En las secciones anteriores hemos descrito el proceso en el cual se crearon las primeras
estrellas de bosones a partir de una densidad homogénea e isótropa. Con estas estrellas se
formaron las primeras galaxias a partir de fusiones, dando como resultado galaxias con un
perfil promedio descrito mediante

ρNH = ρsoliton(r)Θ(r − rt) + ρhalo(r)Θ(rt − r), (4.30)

donde ρsoliton corresponde al perfil empı́rico de los solitones 4.15 que se originan en el centro
de las galaxias, de acuerdo al modelo FDM. Este perfil está descrito por el radio del núcleo
rc y se extiende hasta un radio de transición rt, que oscila entre los valores ∼ 2rc y 4rc
[11, 95, 20]. El núcleo es envuelto por el perfil ρhalo, usualmente descrito por el perfil de NFW
4.19. Sin embargo, este perfil es solo un promedio espacial y también temporal, por lo que
si deseamos describir la dinámica de este tipo de galaxias, es necesario construir una función
de onda consistente con el modelo. En esta sección exploraremos dos métodos distintos para
lograrlo.
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4.3.1 Soluciones núcleo-halo no diferenciables

Proponemos un método para construir configuraciones de equilibrio núcleo-halo, que son
soluciones del sistema de ecuaciones de SP asumiendo simetrı́a esférica e independencia
temporal. Estas configuraciones cubren el dominio [0, rmax] = [0, rt] ∪ [rt, rmax], es decir, la
región del núcleo unida con la región del halo, donde rt es un radio de transición entre ambas
regiones. En el núcleo asumimos que hay una solución solitónica, y desde rt en adelante
integramos las ecuaciones estacionarias de SP asumiendo ciertas condiciones de frontera en
rt y rmax. La familia de soluciones está parametrizada por la masa total de la configuración, y
el perfil de densidad del halo se ajusta para cumplir con el valor de la masa total.

Se encuentran soluciones de equilibrio no triviales para una velocidad radial no nula de la
FDM en la región del halo, lo cual compromete su estabilidad. Para estudiar los efectos de
la velocidad del halo, evolucionamos las soluciones de equilibrio y encontramos que, tras un
tiempo transitorio inicial, la densidad se redistribuye y forma una nueva configuración que
llamamos solución relajada, ya que resulta de la evolución de una solución de equilibrio que
de alguna manera está en un estado de equilibrio tenso. La solución relajada oscila cerca
de un estado virializado y, en promedio, también presenta la estructura núcleo-halo. Este no
es un efecto nuevo; también ocurre en soluciones multimodales construidas en [96], donde
la suposición de estacionariedad es solo una aproximación que permite la construcción de
estados iniciales, aunque después de la evolución la configuración se redistribuye y oscila en
el tiempo.

Un análisis adicional incluye la curva de rotación (RC) asociada tanto a las configuracio-
nes de equilibrio como a las relajadas. Medimos cómo la RC de estas últimas se desvı́a de
las primeras. Encontramos que la desviación es de porcentajes menores al 15 % incluso para
razones de masa núcleo-halo del orden de∼ 0.2, lo cual corresponde a configuraciones domi-
nadas por el halo, mientras que para configuraciones dominadas por el núcleo, la desviación
deberı́a ser aún menor.

Asumiendo simetrı́a esférica, independencia temporal de la densidad y que la fase puede
escribirse como S(t, r) = −ωt + S̄(r), donde r es la coordenada radial, las ecuaciones se
reducen al siguiente conjunto de ecuaciones diferenciales ordinarias en el marco de MP de la
Sección 2.2:

1

r2

d

dr
(r2ρv) = 0, (4.31)

1

2
v2 +Q+ V = ω, (4.32)

1

r2

d

dr

(
r2dV

dr

)
= ρ− 〈ρ〉, (4.33)
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donde la velocidad radial es v := dS̄
dr

. El núcleo solitónico de las estructuras encontradas
en simulaciones coincide con soluciones de equilibrio construidas asumiendo v = 0 y ais-
lamiento asintótico ε = 0 como se describe en [77], que son equivalentes a aquellas en el
marco SP [64, 65]. Estas soluciones se aproximan con el perfil de densidad solitónico (4.15)
obtenido empı́ricamente a partir de simulaciones de formación de estructuras [22, 25]. Donde
ω ≈ −0.6922, ρ0,nucleo = 1 con rc ≈ 1.30569.

Ahora, lo que hacemos es construir una solución del sistema (4.31)-(4.33) en el dominio
r ∈ [0, rmax] dividido en dos regiones. En la región central del núcleo r ∈ [0, rt], rt < rmax,
asumimos que hay un núcleo con el perfil de densidad (4.15), mientras que en el dominio
r ∈ [rt, rmax], que llamamos la región del halo, habrá un perfil de densidad resultante de la
implementación de condiciones de frontera. Llamamos rt al radio de transición entre núcleo
y el halo. Dado que la densidad del núcleo está prescrita por la ecuación (4.15), solo se tiene
que resolver el sistema (4.31)-(4.33) en la región del halo r ∈ [rt, rmax], que escrito como un
sistema de primer orden es:

ρ′halo = uhalo, (4.34)

u′halo = 4(Vhalo +
1

2
v2
halo − V0)ρhalo (4.35)

−2uhalo
r

+
u2
halo

2ρhalo
, (4.36)

V ′halo =
Mhalo

r2
, (4.37)

M ′
halo = r2ρhalo, (4.38)
S̄ ′halo = vhalo, (4.39)

donde ′ := d
dr

y vhalo = A
r2ρhalo

es prescrito, con A constante, como sugiere la condición en
la ecuación (4.31). Para la integración, imponemos las siguientes condiciones de frontera el
radio de transición rt:

ρhalo(rt) = ρnucleo(rt),

uhalo(rt) = unucleo(rt),

Vhalo(rt) = Vnucleo(rt),

Mhalo(rt) = Mnucleo(rt),

S̄halo(rt) = 0,

Mhalo(rmax) = Mmax,

donde Vnucleo y Mnucleo corresponden a la solución de la ecuación de Poisson (4.33) con den-
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sidad (4.15). Nótese que la parte espacial de la fase S̄ es continua en rt, pero no es necesario
que sea diferenciable, lo que implica que v tiene una discontinuidad en rt. Además, el sub-
sistema (4.34)-(4.38) es invariante bajo el cambio de signo en la velocidad v, excepto por
la ecuación (4.39), lo que implica que se pueden construir dos soluciones que satisfacen las
condiciones de frontera, una con velocidad radial hacia adentro y otra con velocidad radial
hacia afuera.

Resolvemos estas ecuaciones utilizando el método de shooting con un integrador de Runge-
Kutta de cuarto orden que busca el valor de A, comenzando con una suposición inicial hasta
que se cumple la condición Mhalo(rmax) = Mmax dentro de una tolerancia. Los resultados
son el perfil de densidad radial, el campo de velocidad radial, el potencial gravitacional y el
perfil de masa del halo.

Una vez que se ha resuelto el sistema (4.34)-(4.39), es posible escribir la función de onda en
todo el dominio núcleo-halo (NH) de la siguiente manera:

ΨNH(t, r) ≈


√
ρnucleo(r)e

−V0it r < rt,√
ρhalo(r)e

−V0it+iS̄halo(r) r ≥ rt.

(4.40)

Algunos ejemplos ilustrativos son los siguientes. Si el radio de transición es rt = 3.5rc ≈
4.58 en unidades del sistema de ecuaciones, un valor consistente con los de [25], asumiendo
tres valores de la masa total Mmax = 10, 20, 40 y usando el dominio con rmax = 100, el
parámetro de disparo converge a los valoresA ≈ ±8.61×10−2,±1.51×10−1 y±2.08×10−1

respectivamente. En la Figura 4.20 mostramos el perfil de densidad de estas tres soluciones
representativas. La densidad tiene el perfil del núcleo (4.15) para r < rt, mientras que para
r ≥ rt las lı́neas punteadas corresponden a la solución en la zona de la halo de las Ecuaciones
(4.34)-(4.39). El perfil de densidad muestra las tı́picas oscilaciones de los modos excitados
con ` = 0 explorados en [96]. En nuestro caso, el perfil de densidad resultante admite un
ajuste con el perfil NFW:

ρhalo(r) =
ρ0,NFW

r
Rs

(
1 + r

Rs

)2 . (4.41)

Nótese que la materia en la región del halo tiene una velocidad finita dada por vhalo = A
r2ρhalo

.
La solución resultante en todo el dominio es, por tanto, un núcleo estacionario rodeado por
una halo con una estructura en capas de densidad y velocidad. A diferencia de [96], el obje-
tivo de la solución no es el perfil NFW, sino Mmax. Este es un aspecto conveniente, ya que
automáticamente tenemos una relación de masa núcleo-halo como objetivo que describimos
más adelante.
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Figura 4.20: (Arriba) Perfil de densidad de las soluciones con masa total Mmax = 10, 20,
40 y rmax = 100. Para r < rt, el perfil es solitónico. Fuera de esto, para r ≥ rt, las lı́neas
punteadas corresponden al perfil obtenido para las soluciones de equilibrio, mientras que las
lı́neas sólidas son los ajustes de ρhalo usando la fórmula NFW (4.41) que mejor se ajusta a la
región del halo. (Abajo) Curvas de rotación correspondientes a las tres soluciones, donde se
puede notar la tendencia de mayor velocidad para mayor masa.

Además de la densidad, en la Figura 4.20 también mostramos la curva de rotación (RC)
debida al núcleo-halo construido con la fórmula

vRC(r) =


√
Mnucleo(r)/r r < rt,√
Mhalo(r)/r r ≥ rt

(4.42)

y se puede notar la tendencia de una mayor velocidad de rotación para una mayor masa total
Mmax. Estos tres casos ejemplifican el efecto de Mmax en el perfil de densidad y, por lo tanto,
en la curva de rotación.

Ahora ilustramos los efectos del radio de transición rt. En la Figura 4.21 mostramos los re-
sultados de tres soluciones con rt = 2.5rc, 3.0rc y 3.5rc, un rango admisible según [97, 94],
mientras esta vez fijamos la masa total objetivo en Mmax = 50. La densidad del núcleo es
inafectada, mientras que la densidad del halo es diferente en la fase y amplitud de la oscila-
ción. Dado que la diferencia en el perfil de densidad del halo es pequeña, las curvas de rota-
ción también son muy similares para los tres valores del radio de transición. Los resultados de
las Figuras 4.20 y 4.21 implican que las curvas de rotación solo dependen significativamente
de la masa total objetivo Mmax del sistema y no del radio de transición rt que separa núcleo
de halo en nuestras soluciones.

Discontinuidad de v. Examinemos de cerca la condición de continuidad en la fase S̄ en rt que
se refleja en una discontinuidad del campo de velocidad v. Para ello mostramos las partes real



78 Soluciones esféricas con estructura núcleo-halo
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Figura 4.21: (Arriba) Perfil de densidad de las soluciones con rt = 2.5rc, 3.0rc y 3.5rc para la
masa Mmax = 50. (Abajo) Curvas de rotación de las tres soluciones. Estos resultados indican
que rt no afecta el perfil del halo, y por lo tanto la curva de rotación siempre y cuando la
masa total sea la misma.

e imaginaria de la función de onda de la solución en la Figura 4.22, sabiendo que Ψ =
√
ρeiS ,

donde ρ y S son las soluciones del sistema (4.34)-(4.39) para el caso con Mhalo(100) = 10.
Se puede observar que hay una no-diferenciabilidad en la esfera de radio rt donde el núcleo
y el halo están unidos. Uno podrı́a sentir la tentación de evitar este problema manipulando la
fase de la función de onda del núcleo solitónico, ya que la función de onda Ψ(r, t) = eiωtψ(r),
con ω el valor propio de la solución de equilibrio del estado fundamental [65], y uno podrı́a
manipular la fase con un t apropiado para que Im(Ψ) no sea cero con la continuidad apropiada
en r = rt. Sin embargo, esto implicarı́a automáticamente que la fase S dentro del núcleo no
es cero, y eso significarı́a que la velocidad allı́ tampoco serı́a cero, lo cual está en desacuerdo
con la construcción de soluciones solitónicas [77].

Una vez que hemos visto que Mmax es el parámetro más influyente en las soluciones, recopi-
lamos información que depende de su valor. Fijamos rt = 3.5rc y construimos un conjunto de
soluciones para Mmax ∈ [5, 50]. En la Figura 4.23 mostramos la dependencia de la constante
A como función de la condición de frontera Mhalo(rmax = 100) = Mmax, donde la curva
sigue un perfil logarı́tmico.

Diagnóstico

Para monitorear la evolución del sistema, calculamos la masa total definida como M =∫
D
|Ψ|2d3x. Para verificar el comportamiento de la energı́a, calculamos la energı́a cinética

K = −1
2

∫
D

Ψ∗∇2Ψd3x y la energı́a potencial W = 1
2

∫
D
V |Ψ|2d3x, las cuales son útiles

para obtener la energı́a total K +W y la función de virialización 2K +W .
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Figura 4.24: Instantáneas de la densidad |Ψ|2 en los tiempos t = 0 (fila superior) y t = 600
(fila inferior) para la evolución de las configuraciones de equilibrio conMmax = 10 (columna
izquierda), Mmax = 20 (columna central) y Mmax = 40 (columna derecha) con un radio de
transición rt = 3.5rc. El dominio utilizado es D = [−20, 20]3.

Evolución de las configuraciones. Utilizamos las mismas tres soluciones de equilibrio des-
critas anteriormente, con Mmax = 10, 20 y 40 y el radio de transición en rt = 3.5rc, cuyos
perfiles de densidad se muestran en la Figura 4.20. La simulación se lleva a cabo en dos
tamaños de dominio espacial D = [−20, 20]3 y [−40, 40]3, utilizando resoluciones espacia-
les 40/63 y 80/127, respectivamente. El dominio temporal es t ∈ [0, 600] y la resolución
temporal es ∆t = 0.1 en todos los casos.

En las Figuras 4.24 y 4.25 mostramos instantáneas de |Ψ|2 en el tiempo inicial y t = 600,
para la evolución de las tres soluciones con Mmax = 10, 20 y 40, ilustrando el desarrollo del
sistema en los dominios pequeño y grande. La dinámica es desencadenada por la velocidad
radial inicial de la materia en la región de la cola que perturba el núcleo y redistribuye la
cola que interactúa consigo misma debido a las condiciones periódicas de frontera, lo que
produce la tı́pica interferencia observada en simulaciones de formación de estructuras ası́
como la colisión de múltiples núcleos [22, 25, 23, 73].

En la Figura 4.26 presentamos la evolución de algunos escalares en función del tiempo. A la
izquierda/derecha mostramos diagnósticos utilizando el dominio pequeño/grande. La prime-
ra fila muestra la evolución de la masa, que se conserva durante la evolución. La segunda fila
muestra la energı́a total en función del tiempo, que después de un transitorio inicial perma-
nece aproximadamente constante en el tiempo. La tercera fila muestra la cantidad 2K + W ,
que inicialmente es cero pero luego aumenta debido al transitorio inicial, después de lo cual
la cantidad empieza a oscilar cerca de cero, lo que indica que la configuración tiende a acer-
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Figura 4.25: Instantáneas de la densidad |Ψ|2 en los tiempos t = 0 (fila superior) y t = 600
(fila inferior) para la evolución de las configuraciones de equilibrio conMmax = 10 (columna
izquierda), Mmax = 20 (columna central) y Mmax = 40 (columna derecha) con un radio de
transición rt = 3.5rc. El dominio utilizado es D = [−40, 40]3.

carse nuevamente a un estado virializado que llamamos configuración relajada. Finalmente,
la cuarta fila muestra la densidad de masa en el origen en función del tiempo, que después
del transitorio inicial oscila regularmente. El transitorio inicial se debe al hecho de que es-
tablecemos la constante A como positiva, por lo que la velocidad de la cola apunta hacia el
núcleo, lo que produce un flujo entrante que comprime inicialmente el núcleo y la evolución
es seguida por la expansión y estabilización alrededor de un estado virializado.

Evolución

La idea ahora es estudiar la evolución de estas soluciones. Sabiendo que la velocidad en la
cola no es nula, se espera que el movimiento afecte las propiedades de toda la configuración
núcleo-halo. Encontramos que, de hecho, la velocidad añade un impulso inicial a la solución
y desencadena un comportamiento dinámico del FDM en todo el dominio. Lo que sigue es
que la configuración se acomoda alrededor de un estado virializado, lo que llamamos una
versión relajada de la solución. Por lo tanto, por un lado queremos medir cuán lejos está la
configuración relajada de la solución inicial en términos de distribución de materia y, por otro
lado, determinar que estas soluciones relajadas son de larga duración.

Para esto, interpolamos nuestra función de onda ΨNH 4.40 en un dominio 3D, donde resol-
vemos el sistema SP.
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Figura 4.26: Escalares monitoreados durante la evolución en el dominio pequeño (columna
izquierda) y el dominio grande (columna derecha). En la primera lı́nea, la serie temporal de la
masa muestra que los métodos de espectro pseudoespectral conservan la masa. En la segun-
da lı́nea, la serie temporal de la energı́a total muestra que cuando la evolución comienza, la
energı́a total se disipa y luego permanece aproximadamente constante. En la tercera lı́nea, la
serie temporal de la cantidad 2K+W ilustra cómo el sistema inicialmente virializado sufre el
transitorio inicial y luego tiende a un estado casi virializado. En la cuarta lı́nea, la serie tem-
poral de la densidad de masa en el origen muestra que inicialmente la configuración colapsa
ligeramente, causando un aumento rápido en la densidad, que luego se expande nuevamente
y alcanza un valor cercano al inicial.
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Densidad. Investigamos la utilidad de las configuraciones de equilibrio estudiando su evolu-
ción y evaluando cuánto se desvı́a la distribución de materia del perfil inicial. La evolución de
la densidad se presenta en la Figura 4.27, donde la columna de la izquierda muestra la evolu-
ción en un dominio pequeñoD = [−20, 20]3, y la columna de la derecha muestra la evolución
en el dominio grande D = [−40, 40]3. Las primeras tres filas corresponden a Mmax = 10,
20 y 40, respectivamente. Las lı́neas negras corresponden a la densidad de la configuración
de equilibrio, mientras que las lı́neas grises corresponden a una serie de instantáneas de la
densidad que ilustran la variación del perfil a lo largo del tiempo. Las lı́neas punteadas co-
rresponden al promedio temporal de la densidad, que es similar al de la configuración inicial.
Las diferencias entre los perfiles de equilibrio y relajados son mayores para Mmax grandes y
menores cuando el sistema se evoluciona en el dominio grande.

Esto se puede explicar porque, según la Figura 4.23, la constante objetivo del método de
shooting A es una función creciente de Mmax, y por lo tanto, vhalo aumenta a medida que
crece A. Esto implica que cuanto mayor es la masa objetivo Mmax, mayor es la velocidad
en la cola, y juntos impactan el núcleo menos dominante con un impulso más fuerte. Al
final, la densidad y las curvas de rotación de la configuración relajada se desvı́an más de la
configuración de equilibrio para Mmax más grandes.

Curvas de rotación. También analizamos la variación en el tiempo de las curvas de rotación
de las configuraciones de equilibrio. La Figura 4.28 muestra las curvas de rotación en la
columna de la izquierda para el dominio pequeño y en la columna de la derecha para el
dominio grande. Los paneles superior, medio e inferior corresponden a los datos iniciales de
nuestras soluciones con Mmax = 10, 20 y 40, respectivamente. Las lı́neas negras representan
la curva de rotación de la configuración de equilibrio inicial, mientras que los gráficos en gris
son instantáneas de su evolución a lo largo del tiempo. Las lı́neas punteadas son el promedio
temporal de la curva de rotación. En la parte inferior de esta figura mostramos la desviación
relativa del promedio temporal de la curva de rotación con respecto a la curva de rotación en
el tiempo inicial. También se puede observar que la desviación es mayor para los valores más
grandes de Mmax.

Relación masa núcleo-halo

Esta relación se establece entre varios escalares del sistema SP y se expresa en el exponente
α en la relación entre la masa del núcleo Mc, la masa total del sistema núcleo-halo M y la
energı́a total E:

Mc

M
= β

(
|E|
M3

)α
(4.43)
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Figura 4.27: La columna izquierda muestra la evolución de la densidad de las soluciones de
equilibrio utilizando el dominio pequeño D = [−20, 20]3, mientras que la columna derecha
muestra la evolución utilizando el dominio grande [−40, 40]3. Las primera, segunda y tercera
filas corresponden a las condiciones iniciales con Mmax = 10, 20 y 40, respectivamente.
Las lı́neas negras corresponden a las condiciones iniciales, las lı́neas grises son instantáneas
durante la evolución y la lı́nea punteada es la densidad promedio en el tiempo de la solución
relajada.
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Figura 4.28: La columna izquierda/derecha muestra la evolución de las curvas de rotación de
las soluciones de equilibrio utilizando el dominio pequeño/grande. Las primera, segunda y
tercera filas corresponden a las soluciones de equilibrio iniciales con Mmax = 10, 20 y 40,
respectivamente. Las lı́neas negras corresponden a las condiciones iniciales, las lı́neas grises
son instantáneas durante la evolución y las lı́neas punteadas son el promedio temporal de la
curva de rotación de la solución relajada. En la parte inferior incluimos la diferencia relativa
entre la curva de rotación inicial y la promedio para los tres valores de Mmax.
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Figura 4.29: Relación masa núcleo-halo para un número de soluciones de equilibrio, ası́ como
para las soluciones relajadas obtenidas de la evolución de las seis simulaciones con las que
hemos estado trabajando. Ajustamos los datos con lı́neas que indican que las configuraciones
de equilibrio se escalan con α = 1/3, mientras que el conjunto de soluciones evolucionadas
decae en un conjunto que se escala con α = 0.54.

en unidades del código. Se ha encontrado que el exponente α tiene diferentes valores, depen-
diendo del método utilizado para llegar a las configuraciones núcleo-halo.

Las soluciones NH construidas aquı́ tienen una escala tal que α ∼ 1/3 como se ilustra en
la Figura 4.29. Este comportamiento es consistente con la relación núcleo-halo encontrada
en [25] a partir de la colisión de muchos solitones distribuidos al azar y también es consis-
tente con la colisión de muchos solitones bajo condiciones especı́ficas en [15]; también es
consistente con el exponente encontrado en [92, 14] resultante del colapso esférico.

Se espera que la relación masa núcleo-halo cambie para la solución relajada como consecuen-
cia del impulso inicial del campo de velocidad de la cola sobre el núcleo y la cola misma,
además del efecto de las condiciones de frontera discutido previamente. El transitorio inicial
afecta a los escalares del sistema como se observa en la Figura 4.26. Durante la evolución, el
valor deMc cambia en el tiempo debido a las oscilaciones del núcleo yM depende del tamaño
del dominio porque en el dominio pequeño [−20, 20]3 la porción de Mmax que cabe dentro
del dominio es menor que la porción en el dominio grande [−40, 40]3, algo que no afecta a
las soluciones de equilibrio integradas en coordenadas esféricas hasta rmax = 100, una esfera
más grande que cualquiera de los dos dominios cúbicos numéricos. De manera análoga, la in-
tegración de la energı́a también depende del tamaño del dominio. Los resultados en la Figura
4.29 para la configuración relajada indican que las configuraciones inicialmente en equilibrio
evolucionan hacia un conjunto de configuraciones que se escalan con α = 0.54, más similar
a la escala obtenida con SFS [91], aquellas encontradas a partir de la fusión de núcleos de
masas desiguales [87], ası́ como aquellas obtenidas utilizando argumentos termodinámicos
[98].
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Ası́ pues, hemos construido soluciones núcleo-halo del sistema SP con simetrı́a esférica. La
familia de soluciones está parametrizada por la masa total de la configuración Mmax.

Mientras que el núcleo es estacionario, similar a las soluciones de equilibrio en el estado fun-
damental, la halo tiene una velocidad no nula. De este modo, cuando se permite la evolución
de las configuraciones, estas evolucionan y se ajustan alrededor de una configuración relaja-
da que oscila cerca de un estado virializado. La densidad promedio de estas configuraciones
relajadas preserva el perfil de densidad núcleo-halo, aunque con una desviación respecto a la
solución inicial de equilibrio. Esta desviación es mayor para masas totales más grandes del
sistema Mmax.

La motivación para construir soluciones de equilibrio era usarlas como modelos realistas
de halos, más simples que aquellos construidos con grandes superposiciones de modos en
[96], y mucho más sencillos que los obtenidos en simulaciones de formación de estructu-
ra. Sin embargo, entre las soluciones iniciales de equilibrio y las soluciones relajadas, estas
últimas parecen ser más consistentes con las observadas en simulaciones de formación de
estructuras [91] y en fusiones multisolitón [25, 23], debido a la interferencia en la zona de
la halo; desafortunadamente, necesitan evolucionar y, por lo tanto, ya no son tan económicas
computacionalmente. Este hecho limita la aplicabilidad original, más optimista, de construir
fácilmente grandes catálogos de soluciones de equilibrio que podrı́an utilizarse para ajustar
curvas de rotación. No obstante, las soluciones de equilibrio son similares a las relajadas
para masas pequeñas de Mmax. En nuestro espacio de parámetros, las diferencias entre las
soluciones de equilibrio y las relajadas son pequeñas para Mmax = 10, un caso en el cual la
relación masa núcleo/halo es del orden de ∼ 0.2, lo que aún es un régimen útil y esperamos
que las soluciones sean provechosas en dicho régimen.

Finalmente, concluimos sobre la relación masa núcleo/halo. Encontramos que las soluciones
de equilibrio escalan con un exponente α = 1/3, mientras que el conjunto utilizado para
ilustrar la evolución de las configuraciones de equilibrio decae hacia un conjunto que escala
con una potencia α = 0.54, difiriendo posiblemente por las condiciones de frontera.

4.3.2 Construcción de perfiles núcleo-halo galácticos no esféricas

Queremos construir soluciones del sistema SP que sean consistentes con ciertas curvas de ro-
tación galácticas. Para construir la función de onda del núcleo-halo, seguimos una estrategia
similar a la descrita en [99] y [96]. Asumimos un perfil de densidad objetivo ρT y nuestro
objetivo es construir una función de onda Ψ0 que sea consistente con este perfil de densidad
y satisfaga el sistema SP. Para ello, consideramos que la densidad objetivo es una función
esféricamente simétrica, dependiendo únicamente de la coordenada radial r, lo cual permi-
te resolver la ecuación de Poisson (2.11) en simetrı́a esférica, expresada como el siguiente
sistema de primer orden:
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dVT
dr

= G
MT

r2
, (4.44)

dMT

dr
= 4πr2ρT , (4.45)

donde ρT es la densidad objetivo y MT es la función de masa. Una vez resuelta la ecuación
de Poisson, el potencial resultante VT depende de r. Este potencial se introduce en la versión
estacionaria de la ecuación de Schrödinger (2.12), la cual recuerda al problema del átomo de
hidrógeno, con la diferencia notable de que el potencial de Coulomb es reemplazado por el
potencial VT , escrito como un problema de Sturm-Liouville:
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∂2

∂φ2

]
(4.47)

es el operador de momento angular al cuadrado y j denota el estado propio ψj con energı́a
propia Ej . Para resolver esta ecuación, asumimos una separación de variables para ψj :=
ψn`m(r, θ, φ) = Rn`(r)Y

m
` (θ, φ), donde Y m

` (θ, φ) son los armónicos esféricos y Rn` se ex-
presa como Rn` := un`/r, con un` satisfaciendo la siguiente ecuación radial:

− ~2

2mB

d2un`
dr2

+

(
~2

2mB

`(`+ 1)

r2
+mBVT (r)

)
un` = Enlunl, (4.48)

donde n, ` ym son los ”números cuánticos”, y hemos usado la identidadL2Y`m = l(l+1)Y`m.
Nombramos a la función de onda Ψ0 como aquella que ajusta la densidad objetivo, y que
puede expresarse como una combinación lineal de las funciones propias ψj:

Ψ0 =
∑
j

ajψje
−iEjt/~. (4.49)

El perfil de densidad asociado con la función de onda está dado por |Ψ0|2:
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|Ψ0|2 =
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ajψje
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Al ajustar densidades en simulaciones de formación de estructuras o colisiones multicúmulos,
es fundamental asumir que ρT es una cantidad promediada sobre el ángulo solido y el tiempo.
Por lo tanto, consideramos que la densidad objetivo se puede descomponer como:

〈
|Ψ0|2

〉
T→∞ := ĺım

T→∞

1

T

∫ T

0

|Ψ0(t, ~x)|2dt

=
1

4π

∑
n,`

(2`+ 1)|ãn`|2|Rn`|2, (4.51)

donde T es el intervalo temporal para calcular promedios en tiempo. Los coeficientes se
escriben como an`m = ãn`e

iΘn`m , siendo Θn`m fases aleatorias entre 0 y 2π. Para derivar la
Ecuación (4.51) usamos la identidad

∑
m |Ylm(θ, φ)|2 = (2l + 1)/4π. Alternativamente, un

promedio espacial sobre el ángulo sólido Ω := [0, π]× [0, 2π] se calcula como:

〈
|Ψ0|2

〉
Ω

:=
1

4π

∫
Ω

|Ψ0(t, ~x)|2dΩ

=
1

4π

∑
n,`

(2`+ 1)|ãn`|2|Rn`|2. (4.52)

Ası́, los promedios temporal y espacial son equivalentes.

Descripción del método de ajuste

La expansión de la función de onda (4.49) se determina utilizando un Algoritmo Genético
(AG), donde se asume que el ADN de cada organismo en la población consiste en los co-
eficientes ãn`. El número máximo de genes considerados es NDNA = nmax`max, donde los
números cuánticos toman los valores n = 1, 2, ..., nmax y ` = 0, 1, ..., `max − 1. La función de
aptitud de cada individuo se define por el escalar
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η =
1

1 + |Q0|

[
1

rmax

∫ rmax

0

(ρT − ρ)2

ρT
dr

]−1

, (4.53)

donde el factor 1 + |Q0| es insignificante cuando |Q0| < 1, pero cuando |Q0| > 1, el valor
de la función de aptitud disminuye para perfiles que se alejan del estado de virialización.
Finalmente, rmax = 2r0 es el lı́mite superior del dominio numérico donde se resuelve el
problema de autovalores (4.46).

El funcionamiento del AG se basa en la generación aleatoria de una población inicial de Norg

organismos. Calculamos la función de aptitud η para cada individuo, y seleccionamos los k
organismos mejor adaptados. Siguiendo un enfoque elitista, estos individuos seleccionados
persisten en la siguiente generación. De estos k organismos, se eligen aleatoriamente Ncross

para cruzarse y producir descendientes para la siguiente generación; en el contexto biológico,
uno tı́picamente elige Ncross = 2, pero en un AG no hay tal limitación, y Ncross = 5 resultó ser
más efectivo. Estos padres seleccionados comparten aleatoriamente su material genético, es
decir, los coeficientes de la expansión, para crear un nuevo individuo. Este proceso se repite
Norg − k veces hasta completar nuevamente el tamaño de la población inicial Norg.

Los organismos en la nueva generación pueden adaptarse de manera más eficaz mediante
un proceso de mutación que funciona de la siguiente forma. Se genera un nuevo número
aleatorio βn` en el rango de 0 a 1, que representa la probabilidad de que el gen ãn` sufra
una mutación. Cada gen tiene su propia probabilidad de cambio. Posteriormente, se genera
un nuevo número aleatorio γn`, y la mutación ocurre si γn` supera a βn`. En tales casos, el
coeficiente ãn` se modifica a αãn`, donde α es un número aleatorio seleccionado en el rango
de -1.5 a 1.5 para todos los valores de n y `.

Finalmente, se aplica un segundo tipo de mutación, conocida como mutación diferencial. Esta
mutación implica seleccionar el organismo i-ésimo con ADN definido por los coeficientes ã(i)

n`

y una aptitud η(i). Posteriormente, se seleccionan aleatoriamente otros dos organismos con
ADN ã

(1)
n` y ã

(2)
n` . Se crea un nuevo organismo combinando linealmente estos coeficientes

como ã(new,i)
n` = ã

(i)
n` + δ(ã

(1)
n` − ã

(2)
n` ), donde δ es un número entre 0 y 1, con aptitud η(new,i).

Si η(new,i) > η(i), el organismo i-ésimo es reemplazado por el nuevo organismo. Este proceso
se repite para i = 1, 2, . . . , Norg.

Obsérvese que la función de aptitud es una norma del error entre la densidad de la expansión
multipolar y la densidad objetivo. Considerando la aleatoriedad en varias etapas del algoritmo
genético (AG), puede suceder que diferentes conjuntos de coeficientes de la expansión, o
equivalentes individuos con diferentes ADN, puedan tener valores similares de η. En este
sentido, la expansión del perfil puede ser degenerada.

Sin embargo, aunque la expansión pueda presentar degeneraciones, nuestro interés radica
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en identificar un mı́nimo local que proporcione la mejor aproximación al perfil de densidad
objetivo. En particular, buscamos una solución que corresponda a un estado Ψ0 cercano al
equilibrio virial, asegurando ası́ que la configuración obtenida sea fı́sicamente relevante y
estable dentro del marco del problema estudiado.

Nuestro objetivo es ajustar las densidades de materia oscura galáctica. Inspirados por [99] y
[96], utilizamos un tipo de perfil de densidad objetivo que discutimos a continuación.

Evolución de los perfiles galácticos

Investigamos la evolución de los perfiles núcleo-halo descritos en la sección anterior, ası́
como la del perfil pseudo-isotermo (PISO),

ρPISO =
ρp

1 +

(
r

rp

)2 , (4.54)

mediante la evolución de la función de onda optimizada utilizando el algoritmo genétic, apli-
cado a los modelos núcleo-NFW y núcleo-PISO con los parámetros de la Tabla 4.1, en el con-
texto del sistema Schrödinger-Poisson completamente dependiente del tiempo (2.12-2.13).
Para ello, utilizamos nuestro código CAFE-FDM [69, 73].

núcleo-NFW
Galaxy rc (kpc) rt (kpc) rs (kpc) r0 (kpc) Σ0 (M�pc−2)

ESO4880049 2.157 1.102 12.55 52.77 243

UGC11616 1.860 1.676 7.434 38.04 386

F730V1 1.867 1.841 8.118 40.01 370

núcleo-PISO
Galaxy rc (kpc) rt (kpc) rp (kpc) r0 (kpc) Σ0 (M�pc−2)

ESO4880049 2.269 3.260 2.631 66.49 155

UGC11616 1.850 2.474 1.792 52.82 294

F730V1 1.869 2.082 1.625 54.41 345

Cuadro 4.1: Parámetros de mejor ajuste para tres galaxias de bajo brillo superficial (LSB)
utilizando los perfiles de densidad núcleo-NFW y núcleo-PISO, obtenidos al fijar la masa del
bosón en mB = 10−23 eV.
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Para evitar que la función de onda colapse hacia un perfil solitónico aislado, como se ha
reportado en [10] y [90], implementamos condiciones de frontera periódicas. Estas garantizan
la persistencia de un núcleo rodeado por una envolvente, ası́ como la conservación de la masa
y la energı́a total del sistema a lo largo de la evolución.

Como condiciones iniciales, inyectamos la función de onda (4.49) en el tiempo t = 0,
Ψ(0, ~x) = Ψ0, centrada en el cubo 3D D = [−r0, r0]3. Cabe destacar que cuando los co-
eficientes están fijos, la función de onda puede poseer un momento total distinto de cero,
calculado como ~p0 = −i~

∑
j,k a

∗
kaj
∫
D
ψ∗k∇ψj d3x. Corregimos entonces la función de onda

inicial como Ψ(0, ~x) = Ψ0e
−i~p0·~x/M , donde M :=

∫
D
ρ d3x representa la masa total en el do-

minio. Esta elección asegura que la función de onda inicial tenga momento lineal total cero,
permitiendo que la evolución mantenga el núcleo cerca del centro del dominio. El dominio
fue discretizado con una resolución espacial de ∆ = r0/128 en las tres direcciones espa-
ciales. Para capturar la dinámica temporal, se empleó una resolución temporal que cumple
∆t/∆ < 0.25 en unidades de código, y la evolución se realizó en una ventana de tiempo de
2 Gyr.

La evolución de cada galaxia se ilustra a través de capturas de la densidad y el campo de
velocidad en el plano z = 0 en los tiempos t = 0, 1 y 2 Gyr, en las Figuras 4.30 y 4.31.
Estas simulaciones utilizan las condiciones iniciales con los perfiles de densidad objetivo
núcleo-NFW y núcleo-PISO, respectivamente.

Es evidente que, aunque las configuraciones están inicialmente cerca de un estado de vi-
rialización, evolucionan y no permanecen estacionarias, ni siquiera en promedio, sino que
desarrollan cierta dinámica. Para comprender mejor la evolución de toda la configuración,
analizamos la dependencia temporal de la masa del núcleo para cada una de las galaxias de
la muestra de la Tabla 4.1. La masa del núcleo Mc es la integral de la densidad desde el
origen hasta rc, y su valor como función del tiempo se muestra en la Fig. 4.32 para seis con-
figuraciones durante 7 Gyr. Nótese que la masa del núcleo oscila con una tendencia general
creciente que puede entenderse como la acreción de materia desde la envolvente granular, lo
cual indica que el aumento de masa se debe a efectos colisionantes [100, 101], interpretados
como condensación en el régimen cinético [102] o condensación de ondas [103]. Este cre-
cimiento lento pero constante de la masa del núcleo se ha mostrado como inevitable tras el
tiempo de saturación [19]. Este crecimiento de masa del núcleo parece inevitable y es posi-
blemente la razón por la cual cualquier configuración con estructura granular evolucionará y
el núcleo crecerá. Como resultado, la dinámica se ve influenciada y la densidad promedio en
la evolución se desvı́a de los promedios de los datos iniciales, un efecto descrito también en
[96].

La implicación es que la redistribución de la densidad también distorsionará la curva de
rotación. Ilustramos esta diferencia calculando el promedio espaciotemporal de la densidad
〈ρ〉, que ahora es solo una función de la coordenada radial. Una vez obtenida la densidad
promedio, calculamos la curva de rotación radial como vRC =

√
Gm(r)/r, donde m(r) es
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Figura 4.30: Las tres primeras filas muestran capturas de la densidad en el plano z = 0
para las galaxias ESO4880049, UGC11616 y F730V1, respectivamente, asumiendo el perfil
objetivo núcleo-NFW. La primera columna corresponde al tiempo inicial, mientras que la
segunda y tercera columnas corresponden a los tiempos t = 1 y 2 Gyr, respectivamente. La
cuarta fila muestra capturas en 0, 1 y 2 Gyr del campo de velocidades para la galaxia F730V1,
a modo de ilustración.
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Figura 4.31: Las tres primeras filas muestran capturas de la densidad en el plano z = 0
para las galaxias ESO4880049, UGC11616 y F730V1, respectivamente, asumiendo el perfil
objetivo núcleo-PISO. La primera columna corresponde al tiempo inicial, mientras que la
segunda y tercera columnas corresponden a los tiempos t = 1 y 2 Gyr, respectivamente. La
cuarta fila muestra capturas en 0, 1 y 2 Gyr del campo de velocidades para la galaxia F730V1,
a modo de ilustración.
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Figura 4.32: Evolución de Mc como función del tiempo durante 7 Gyr. Las tres primeras
filas corresponden a las galaxias ESO4880049, UGC11616 y F730V1, respectivamente. La
primera columna corresponde al perfil núcleo-NFW y la segunda columna corresponde al
perfil núcleo-PISO. Los gráficos indican que el núcleo acreta masa a largo plazo, lo que
implica una concentración de materia dependiente del tiempo. Este proceso se interpreta
como la acreción de materia en la envolvente granular. Este crecimiento de masa ha sido
mostrado como inevitable después de la saturación del núcleo tras la relajación [19] y parece
ser universal en las estructuras núcleo-halo que evolucionan [102].
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la densidad de masa integrada hasta el radio r. Para cada halo, los resultados se presentan en
la Figura 4.33. La discrepancia entre la configuración inicial y la evolucionada es notable. La
concentración de materia en la región del núcleo cambia definitivamente la curva de rotación,
con un pico caracterı́stico de una masa concentrada.

SECCIÓN 4.4

Partı́culas de Prueba

Las estructuras núcleo-halo en el modelo FDM parecen ser el componente esencial en la
formación de la red cósmica, y por lo tanto, su estudio es esencial para el modelo. Las estruc-
turas FDM son dependientes del tiempo, y los perfiles de densidad también son resultado de
un promedio temporal adicional sobre los promedios angulares. Ası́, cuando se presenta una
fórmula para los perfiles núcleo-halo en función de r, esta se refiere a un promedio espacial
y temporal, sin implicar que la densidad sea estática o esfericamente simétrica.

Esta dependencia angular y temporal implica que el potencial gravitacional también es anisótro-
po y dependiente del tiempo. Por lo tanto, exploramos el movimiento de partı́culas de prueba
más allá de los perfiles universales idealizados esfericamente simétricos para FDM que ya
hemos discutido antes.

El objetivo de nuestro análisis es estudiar el movimiento de partı́culas de prueba bajo el po-
tencial gravitacional de una estructura núcleo-halo formada, asumiendo que la configuración
es anisótropa y dependiente del tiempo, evolucionando según las ecuaciones SP (2.12)-(2.13).

4.4.1 Construción del núcleo-halo que usaremos

Como se mencionó anteriormente, la formación de estas estructuras fue descubierta por pri-
mera vez en simulaciones de formación de estructuras [22, 25, 23, 79, 80, 81]. Sin embargo,
poco después, fueron construidas en escenarios menos exigentes computacionalmente, es-
pecı́ficamente mediante la fusión múltiple de núcleos, como se describe en [91] y trabajos
posteriores [25, 87]. Más allá de eso, las estructuras núcleo-halo se construyeron reciente-
mente ab initio, sin necesidad de evolución de estructuras o multi-solitones, utilizando la
expansión multimodal.

De estos tres métodos, consideramos la estructura formada por la fusión de múltiples núcleos
que ha pasado por un proceso de relajación, como se describe en [73], cuya densidad se
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Figura 4.33: Curva de rotación objetivo, ajustada y promedio de tres galaxias de la muestra.
Las tres primeras filas corresponden a ESO4880049, UGC11616 y F730V1, respectivamen-
te. La primera columna corresponde al perfil núcleo-NFW, y la segunda columna al perfil
núcleo-PISO. La lı́nea continua azul representa la curva de rotación asociada con la densidad
objetivo, mientras que la lı́nea punteada naranja ilustra la densidad ajustada obtenida en la
1000a generación. La lı́nea punteada verde representa el promedio temporal de los promedios
espaciales durante 7 Gyr de evolución.
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muestra en la Figura 4.34. Este es el resultado de la fusión de 10 núcleos solitónicos con
masas aleatorias, que dieron como resultado una masa final de ∼ 2.598 × 1011 M�. Estos
núcleos se encuentran inicialmente en reposo, ubicados aleatoriamente dentro de un dominio
cúbico de 40 kpc, discretizado con una resolución de h = 5/32 kpc. La evolución para formar
este halo abarca 1.4 Gyr con una resolución temporal de ∆t = 10−4 Gyr.

En la Figura 4.35, se muestran los diagnósticos del sistema, incluyendo la densidad máxima
normalizada con la densidad promedio del núcleo, la energı́a cinéticaK := − ~2

2m

∫
Ψ∗∇2Ψ d3x,

la energı́a potencial W := 1
2

∫
ρV d3x, la energı́a total E := K + W , la función virial

Q := 2K+W , normalizada con respecto al valor inicial de la energı́a totalE(0) ≈ −1.652×
1016M�km2/s2, y la masa total M =

∫
ρ d3x, normalizada con respecto al valor inicial

M(0) ≈ 2.598 × 1011 M�. El comportamiento de estas cantidades demuestra la relajación
de la configuración núcleo-halo, donde la densidad oscila alrededor de un valor especı́fico.
La función virial muestra que el núcleo-halo está en equilibrio virial, es decir, Q ≈ 0. Las
energı́as cinética y potencial oscilan alrededor del valor de relajación, y la energı́a y masa
totales indican que el método numérico las mantiene casi constantes.

La densidad del núcleo-halo oscila en el espacio y en el tiempo alrededor de un perfil prome-
dio calculado de la siguiente manera:

〈ρ〉 =
1

T

∫ tf

ti

〈ρ〉Ω dt, (4.55)

con T = tf−ti siendo el intervalo temporal sobre el cual se calcula el promedio temporal, con
ti = 1.0 y tf = 1.4 Gyr; siendo 〈ρ〉Ω el promedio sobre el ángulo sólido calculado de acuerdo
a la expresión (4.52). Este perfil de densidad radial genera un potencial gravitacional radial
〈V 〉 a través de la ecuación de Poisson (2.11). Este perfil estacionario se caracteriza por la for-
mación de un núcleo solitónico, rodeado por un perfil que decae como r−3, aproximadamente
descrito por un perfil de NFW, como se muestra en [25, 73]. En la Figura 4.36, se presenta
la densidad promedio calculada según esta fórmula (4.52), junto con un ajuste utilizando la
expresión empı́rica para ρNH dada en la ec. (4.30) con los valores de ajuste rc = 0.2621 kpc,
rt = 0.9427 kpc y rs = 1.844 kpc. Estos valores satisfacen la relación rt ≈ 3.597rc, que es
aproximadamente el valor reportado en [25]. La densidad central se obtiene a partir del radio

del núcleo mediante la expresión (4.16) ρc ≈ 1.983 × 107

(
kpc
m2

22r
4
c

)
M�. La densidad ρs se

determina asumiendo que la densidad núcleo-halo es continua en rt. Por lo tanto, se tiene

ρs = ρsoliton(rt)
rt
rs

(
1 + rt

rs

)2

, como en [97].
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Figura 4.34: Densidad del núcleo-halo en el tiempo inicial en el plano z = 0, producido
por la fusión de múltiples núcleos. Los ejes están normalizados con respecto al radio del
núcleo rc ≈ 0.2621 kpc, mientras que la densidad está normalizada con respecto a ρc ≈
4.201 × 1011 M�/kpc3. El cı́rculo representa el radio de transición rt/rc ≈ 3.597 entre el
núcleo y halo.
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Figura 4.35: Diagnóstico que muestra la densidad máxima normalizada con respecto a la
densidad promedio del núcleo, la energı́a cinética (K), energı́a potencial (W ), energı́a total
(E = K + W ) y función virial (Q = 2K + W ) normalizada con respecto a la energı́a total
inicial E(0), ası́ como la masa total (M ) normalizada con respecto a la masa inicial. Estos
parámetros destacan el proceso de relajación del halo, con oscilaciones de densidad alrededor
de un valor promedio. La función virial indica virialización (Q ≈ 0), y la estabilidad de la
energı́a total y la masa demuestra la unitariedad del método numérico.

Figura 4.36: El área sombreada representa los perfiles instantáneos promedio radiales de
la densidad del núcleo-halo formado, calculados mediante la fórmula (4.52) en el intervalo
temporal T . La lı́nea sólida representa el perfil promedio espacio-temporal calculado con la
fórmula (4.55) la cual es el promedio de las curvas grises. La lı́nea vertical denota el radio
de transición rt, que separa la región del núcleo solitónico (r < rt), descrito por la ecuación
(4.15), de la región de la envolvente (r > rt), descrita por el perfil NFW (4.19).
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4.4.2 Escenarios donde se integran las partı́culas de prueba

Hasta ahora, hemos construido lo que será nuestra estructura núcleo-halo de trabajo para
el modelo FDM. Ahora, el movimiento de las partı́culas de prueba será estudiado en dos
escenarios claramente diferentes:

1. Un primer escenario de prueba de fondo para comparación, en el cual asumimos que
la densidad promediada espacio-temporal, representada por la lı́nea negra en la Figura
4.36, es independiente del tiempo y esféricamente simétrica, generando el potencial
gravitacional estacionario 〈V 〉.

2. Un segundo escenario, en el que la estructura, aunque casi en equilibrio virial, evolu-
ciona en el tiempo, resultando en una densidad granular altamente cinética en el halo
y un núcleo oscilante, lo que implica un potencial gravitacional V verdaderamente
dependiente del tiempo.

En el primer escenario, se deben resolver las ecuaciones de movimiento para partı́culas de
prueba en un potencial estacionario esféricamente simétrico. Esta es una suposición tı́pica,
por ejemplo, al ajustar curvas de rotación galácticas, donde se promedian las estructuras
granulares para simplificar los modelos, como se ilustra en la sección anterior 4.3.

En el segundo escenario, la estructura evoluciona de acuerdo con el sistema SP (2.12)-(2.13).
Para este caso, continuamos la evolución del núcleo-halo durante 1.274 Gyrs adicionales,
durante los cuales integramos las ecuaciones de movimiento de las partı́culas de prueba con
el fin de estudiar los efectos de la verdadera dinámica de la FDM.

4.4.3 Ecuaciones de movimiento para partı́culas de prueba

A continuación, escribimos las ecuaciones de movimiento de una partı́cula de prueba en cada
uno de los dos escenarios.

Potencial estacionario

En este caso, para el potencial promediado en el espacio y el tiempo 〈V 〉, que es esférica-
mente simétrico e independiente del tiempo, las ecuaciones de movimiento de una partı́cula
de prueba toman la forma
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d2 〈~xp〉
dt2

= − ∇〈V 〉|~x=〈~xp〉 = − d 〈V 〉
dr

∣∣∣∣
r=rp

〈~xp〉
rp

, (4.56)

o equivalentemente

d2 〈~xp〉
dt2

+ ω2
p 〈~xp〉 = 0, (4.57)

donde

ω2
p :=

1

r

d 〈V 〉
dr

∣∣∣∣
r=rp

, (4.58)

y rp = | 〈~xp〉 |, donde 〈~xp〉 representa la trayectoria de la partı́cula de prueba en el potencial
estacionario 〈V 〉, y también definimos 〈~vp〉 := d〈~xp〉

dt
como su velocidad. En este caso, tene-

mos un escenario bien conocido: una partı́cula bajo la influencia de una fuerza central. Aquı́,
la energı́a especı́fica total 〈Ep〉 = 1

2
| 〈~vp〉 |2 + 〈V 〉 |~x=〈~xp〉 y el momento angular especı́fico to-

tal
〈
~Lp

〉
= 〈~xp〉 × 〈~vp〉 se conservan. Esto implica que la trayectoria de la partı́cula ocurrirá

únicamente en el plano perpendicular a
〈
~Lp

〉
, que elegimos ser el plano z = 0.

La construcción de trayectorias circulares en este potencial servirá como un caso de control
para realizar comparaciones, ya que en el segundo escenario donde el potencial depende
del tiempo, las trayectorias pueden desviarse de la circularidad. Una partı́cula en una órbita
circular de radio rp tiene la siguiente trayectoria:

〈~xp〉 = rp

(
cos

(
2π

t

Tp

)
, sin

(
2π

t

Tp

)
, 0

)
, (4.59)

donde Tp = 2π/ωp es el periodo en el cual la partı́cula completa una órbita circular.

Potencial dinámico

En este escenario, una partı́cula de prueba experimenta la fuerza gravitacional debido al po-
tencial gravitacional dependiente del tiempo V . En consecuencia, la trayectoria de la partı́cula
de prueba evoluciona simultáneamente con la dinámica de la estructura FDM, siguiendo las
ecuaciones de movimiento:
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d2~xp
dt2

= − ∇V |~x=~xp
, (4.60)

donde ~xp representa la posición de la partı́cula de prueba, y definimos su velocidad como
~vp := d~xp

dt
. Es importante notar que, en este caso, la energı́a especı́fica total de la partı́cula de

prueba Ep = 1
2
|~vp|2 + V |~x=~xp

y el momento angular especı́fico ~Lp = ~xp×~vp no se conservan
debido a la naturaleza dependiente del tiempo del potencial gravitacional. Esto implica que
la trayectoria de la partı́cula no ocurrirá únicamente en el plano perpendicular a

〈
~Lp

〉
como

en el escenario estacionario.

Condiciones iniciales

Para estudiar las diferencias de movimiento en los dos escenarios, resolveremos las ecua-
ciones de movimiento para un número de partı́culas de prueba cuyas condiciones iniciales
corresponderán a trayectorias circulares en diferentes radios. Al resolver numéricamente las
ecuaciones (4.57) para diferentes radios, y verificar con la fórmula (4.59), encontramos el pe-
riodo como función del radio, ilustrado en la Figura 4.37 para el potencial estacionario 〈V 〉.
De esta gráfica extraemos la fórmula empı́rica:

Tp = a1

(
r

rc

)1.392
(

1− a2

(
r

rc

)2
)
, (4.61)

con los parámetros de ajuste a1 = 1.064× 10−3 y a2 = 1.668× 10−5.

Se definen tres conjuntos de Np = 100 partı́culas. Usamos condiciones iniciales para movi-
miento circular con ~xp(0) = rp(1, 0, 0) y velocidad ~vp = 2πrp

Tp
(0, 1, 0), donde el periodo Tp

está dado por la fórmula (4.61). Definimos tres conjuntos de Np = 100 partı́culas: el primer
conjunto con posiciones iniciales x distribuidas uniformemente en el intervalo rp ∈ (0, r0],
donde r0 = 92.99rc. Observamos que estas partı́culas tienen posiciones iniciales tanto dentro
del núcleo como en la región del halo. Los conjuntos segundo y tercero tienen posiciones
iniciales x ligeramente desviadas de las del primer conjunto, de manera que para el segun-
do conjunto las posiciones se multiplican por un factor de 1.001, y para el tercero por 1.01.
La idea es estudiar posteriormente la sensibilidad a las condiciones iniciales para prever un
comportamiento caótico.
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Figura 4.37: Periodo en el que una partı́cula de prueba completa una órbita circular alrede-
dor del sistema para el potencial estacionario 〈V 〉, donde los puntos negros representan la
solución numérica y la lı́nea punteada gris una fórmula de ajuste.

Condiciones de frontera

Por lo general, las condiciones de frontera no se consideran necesarias para ecuaciones dife-
renciales ordinarias de partı́culas de prueba. Sin embargo, cuando se trabaja con el potencial
requerido en la segunda ley de Newton, que está confinado al dominio numérico donde se co-
noce la solución, es necesario aplicar las mismas condiciones de frontera que en el sistema SP
(2.10-2.11). En nuestro caso, se emplean condiciones de frontera periódicas. En consecuen-
cia, una partı́cula que sale del dominio numérico por una cara, reingresa por la cara opuesta,
manteniendo ası́ la consistencia con el potencial gravitacional.

Finalmente, la integración de las ecuaciones de movimiento se lleva a cabo con un método
de Runge-Kutta de cuarto orden.

4.4.4 Movimiento de partı́culas de prueba

Caso de potencial estacionario

Para comprobar que la integración numérica de las trayectorias funciona correctamente, re-
solvemos las ecuaciones de movimiento (4.57) para el potencial 〈V 〉 y comparamos con
la solución exacta (4.59). Los resultados de la integración numérica son consistentes con
los resultados exactos, según los cuales las posiciones de las partı́culas están dadas por
〈xp〉 = r cos [ωrt], 〈yp〉 = r sin [ωrt], 〈zp〉 = 0, donde la frecuencia angular y el periodo para

una partı́cula que inicia en un radio r son, respectivamente, ωr =
√

1
r
d〈V 〉
dr

y Tr = 2π/ωr.
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Figura 4.38: A la izquierda, trayectorias de una muestra de partı́culas de prueba en el potencial
estacionario en el plano z = 0, las cuales son circulares y, por lo tanto, consistentes con la
descripción de las condiciones iniciales. A la derecha, la energı́a total en función del tiempo
para la misma muestra de partı́culas de prueba, lo que ilustra la conservación de energı́a.

Los resultados se ejemplifican en la Figura 4.38 para una muestra del conjunto completo
de condiciones iniciales. A la izquierda, se muestra que las trayectorias son verdaderamente
circulares, y a la derecha, que se satisface la conservación de la energı́a dentro de la precisión
numérica, ya que las trayectorias se mantienen en el mismo camino durante los 1.4 Gyrs de
evolución.

Potencial dependiente del tiempo

En este caso, resolvemos las ecuaciones de movimiento (4.60) durante la evolución de la es-
tructura núcleo-halo según el sistema (2.10)-(2.11), del cual extraemos V en todos los instan-
tes. Integramos para todas las condiciones iniciales y finalmente rastreamos las trayectorias
de las partı́culas que eran circulares en el caso del potencial estacionario.

La Figura 4.39 ilustra la proyección de algunas trayectorias de partı́culas de prueba en di-
ferentes planos, bajo la influencia del potencial completamente dependiente del tiempo V .
Estas se comparan con las trayectorias bajo el potencial promedio estacionario 〈V 〉. Las tra-
yectorias muestran un comportamiento errático para radios iniciales pequeños, cercanos y
dentro del núcleo, donde parecen ser caóticas. Para radios iniciales más grandes, alejados del
núcleo, las trayectorias parecen ser más uniformes, aunque también se desvı́an de los caminos
circulares.
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Figura 4.39: Las lı́neas azules representan las trayectorias de las partı́culas de prueba bajo
la influencia del potencial estacionario 〈V 〉, para algunas de las condiciones iniciales de la
Figura 4.38. Las lı́neas naranjas representan las trayectorias de las partı́culas bajo el potencial
completamente dependiente del tiempo V , para las mismas condiciones iniciales. Las tres
filas muestran las proyecciones de las trayectorias en los planos xy, xz y yz, respectivamente.
Cada columna corresponde a las condiciones iniciales xp(0) = 0.6000, 6.560, 12.53, 18.49 y
−15.27, de izquierda a derecha.

Para un análisis más detallado, la Figura 4.40 presenta, a la izquierda, la distancia radial de
las partı́culas rp =

√
x2
p + y2

p + z2
p como función del tiempo. Se observa que para radios pe-

queños, las trayectorias oscilan con diferentes modos, mientras que para radios más grandes,
tienden a recuperar trayectorias circulares. Esta figura ilustra cómo V acelera a las partı́culas
con diferentes modos e intensidades a lo largo del tiempo. A la derecha, mostramos la energı́a
especı́fica total de las partı́culas, la cual no se conserva, indicando cómo el potencial inyecta
energı́a en las trayectorias.

Trayectorias caóticas

La trayectoria de la partı́cula parece ser caótica en el caso del potencial completamente de-
pendiente del tiempo, mostrando un comportamiento marcadamente diferente al caso radial.
Sin embargo, ahora demostraremos que la trayectoria es caótica en un sentido más estricto.
Un sistema dinámico de primer orden se dice que exhibe caos si (ver, por ejemplo, [104]):
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Figura 4.40: A la izquierda, la distancia al origen de las partı́culas de prueba como función
del tiempo, en el caso del potencial dinámico V . Estas difieren del radio constante corres-
pondiente al caso estacionario en la Figura 4.38. Estas diferencias surgen porque el potencial
dinámico acelera a las partı́culas y, en consecuencia, la energı́a especı́fica no se conserva,
como se ilustra a la derecha.

1. Es un sistema no lineal.

2. Es un sistema en al menos tres dimensiones.

3. Es sensible a las condiciones iniciales.

Las dos primeras condiciones se cumplen para las ecuaciones de evolución de las partı́cu-
las de prueba, ya que el potencial es no lineal y el sistema tiene dimensión seis cuando se
considera como un sistema de primer orden en el tiempo. Para verificar la tercera condición,
utilizamos las trayectorias de los tres conjuntos de condiciones iniciales para las partı́culas
definidas anteriormente. Las filas superior, intermedia e inferior de la Figura 4.41 muestran
las proyecciones de las trayectorias de cinco partı́culas en los planos xy, xz y yz, respecti-
vamente. Cada columna corresponde a un valor de las condiciones iniciales xp(0) = 1.19,
4.18, 7.16, 10.14 y 13.42 kpc de izquierda a derecha. El segundo y tercer conjunto tienen una
coordenada inicial xmodificada por un factor de 1.01 y 1.001, respectivamente. Observe que,
para las tres primeras columnas, correspondientes a posiciones iniciales cercanas al núcleo,
las trayectorias son muy sensibles a las condiciones iniciales. Para las últimas dos columnas,
correspondientes a posiciones más alejadas del núcleo, las trayectorias se comportan de ma-
nera más similar para las tres posiciones iniciales, aunque continúan desviándose debido a la
diferencia en las condiciones iniciales.

Para comprobar si existe una desviación exponencial entre trayectorias inicialmente muy
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Figura 4.41: Sensibilidad a la posición inicial en la trayectoria de cinco partı́culas de prueba
con tres condiciones iniciales cercanas xp(0) = x0, xp(0) = 1.01x0 y xp(0) = 1.001x0.
Las filas superior, intermedia e inferior muestran las proyecciones de las trayectorias de las
partı́culas en los planos xy, xz y yz, respectivamente. Cada columna corresponde a las con-
diciones iniciales xp(0) = 1.19, 4.18, 7.16, 10.14 y 13.42 kpc, de izquierda a derecha.
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Figura 4.42: Exponente de Lyapunov máximo como función de la coordenada inicial x de las
partı́culas de prueba. Las lı́neas continuas corresponden a desviaciones entre las condiciones
iniciales xp(0) = x0 y xp(0) = 1.01x0. Las lı́neas punteadas corresponden a desviaciones
entre las condiciones iniciales xp(0) = x0 y xp(0) = 1.001x0.

cercanas, calculamos el Exponente de Lyapunov Máximo (ELM), definido como:

Λ = ĺım
t→∞

ĺım
|δ~u(0)|→0

1

t
log

(
|δ~u(t)|
|δ~u(0)|

)
, (4.62)

donde ~u = (~xp, ~vp) es la posición en el espacio fase de la partı́cula, que representa el estado
del sistema dinámico de seis dimensiones, y δ~u es el desplazamiento entre dos soluciones que
se comparan, con una separación inicial δ~u(0). Sin embargo, como no conocemos la solución
en el dominio continuo, aproximamos el exponente ELM de la siguiente manera:

Λ ≈ 2

tH
log

(
|δ~u(tH/2)|
|δ~u(0)|

)
. (4.63)

La Figura 4.42 muestra el ELM para los vectores de desplazamiento entre el primer y el
segundo conjunto de condiciones iniciales, y entre el primero y el tercero. Observa dos co-
sas: primero, independientemente del desplazamiento inicial, el ELM es siempre positivo,
lo que indica la presencia de caos en todo el dominio numérico. Segundo, el caos es más
pronunciado en una región cercana al núcleo.

Hemos mostrado los efectos de la anisotropı́a y la dependencia temporal de una estructura
núcleo-halo FDM en las partı́culas de prueba.

Las condiciones iniciales de las partı́culas de prueba corresponden a trayectorias circulares,
las cuales verificamos que se mantienen circulares cuando el potencial gravitacional utilizado
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es el potencial promedio en el tiempo y en el ángulo sólido. Sin embargo, una vez que estas
mismas trayectorias se integran en la estructura anisotrópica y dependiente del tiempo, las
trayectorias no permanecen circulares, ni siquiera en el mismo plano. En su lugar, muestran
un comportamiento errático, el cual es más evidente para trayectorias dentro o cerca del
núcleo que en la región del halo.

Para cuantificar la sensibilidad de las trayectorias a las condiciones iniciales, integramos tra-
yectorias de partı́culas de prueba con posiciones iniciales cercanas y determinamos el ex-
ponente de Lyapunov de su divergencia. El resultado muestra que este siempre es positivo,
lo que indica que las trayectorias son caóticas en todo el dominio, con exponentes mayores
cerca del núcleo.

Una implicación directa de este resultado es que las trayectorias de partı́culas de prueba obte-
nidas al considerar que la estructura FDM está dada por las fórmulas núcleo-halo estaciona-
rias y esféricamente simétricas, las cuales son promedios de la configuración anisotrópica y
dependiente del tiempo, son muy diferentes de aquellas obtenidas al considerar la estructura
real, es decir, la configuración no promediada, anisotrópica y dependiente del tiempo.

El comportamiento colectivo de las partı́culas, por ejemplo el de un gas sobre una estructura
núcleo-halo FDM, puede revelar nuevas correlaciones y posiblemente un comportamiento
colectivo más estacionario, como los obtenidos para sistemas colectivos en (e.g. [105, 106]).

Con estos resultados, hemos concluido el análisis del comportamiento dinámico de partı́culas
de prueba bajo la influencia de una estructura núcleo-halo de FDM anisotrópica y depen-
diente del tiempo. Las trayectorias muestran una sensibilidad significativa a las condiciones
iniciales, ası́ como un comportamiento caótico generalizado, especialmente en las regiones
cercanas al núcleo.

Sin embargo, las partı́culas de prueba representan solo una aproximación idealizada. En es-
cenarios fı́sicos más realistas, la materia visible, como el gas bariónico, interactúa dinámi-
camente con la materia oscura en estructuras galácticas. Por lo tanto, es necesario estudiar
cómo se comporta un gas ideal cuando está acoplado a las estructuras de FDM.

En el próximo capı́tulo, exploraremos esta interacción dinámica entre la materia oscura difusa
y el gas visible. Analizaremos cómo el potencial gravitacional dependiente del tiempo afecta
a la evolución del gas, ası́ como las posibles correlaciones colectivas que puedan surgir en
este sistema combinado.



Capı́tulo5
Simulaciones de Materia Oscura Difusa Acoplada a un Gas

Ideal

En el capı́tulo anterior (4), analizamos la dinámica y los estados estacionarios de la FDM
considerada como la única componente de una estructura. Esta elección se justifica por ra-
zones cosmológicas: aproximadamente el 72 % del contenido total de materia y energı́a del
universo corresponde a la energı́a oscura, la cual domina exclusivamente en escalas cos-
mológicas al ser responsable de la expansión acelerada del universo. Por otro lado, cerca del
24 % corresponde a la materia oscura, que desempeña un papel gravitacional fundamental
en la formación y evolución de estructuras. Finalmente, el 4 % restante está compuesto por
materia visible.

Si bien en escalas galácticas la materia oscura predomina en términos gravitacionales, la
materia visible es esencial, ya que es la que podemos observar directamente mediante teles-
copios. Por ello, en este capı́tulo extendemos el estudio al caso en el que la materia visible se
acopla gravitacionalmente a la materia oscura, utilizando el modelo de Schrödinger-Poisson-
Euler (2.34-2.39).

Además, el capı́tulo anterior sirve como una validación del código implementado para la
evolución de la FDM, mientras que una prueba independiente del código para la solución de
las ecuaciones de Euler se presenta en el apéndice A.

En este capı́tulo se presentan simulaciones numéricas que exploran la interacción gravita-
cional entre la FDM y el gas, utilizando el modelo de SPE. Se abordan tanto soluciones
estacionarias como dinámicas, investigando su estabilidad y el impacto de la materia visible
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en la evolución de la estructura galáctica.

En la Sección 5.1 se analizan las soluciones estacionarias del sistema acoplado de SPE, cono-
cidas como estrellas de fermiones y bosones Newtonianas (NFBS, por sus siglas en inglés),
en las que se estudian el equilibrio y la distribución de la materia oscura junto con el gas
de fermiones. A continuación, en la Sección 5.2, se exploran procesos dinámicos como las
fusiones de NFBS, prestando especial atención a cómo estas fusiones afectan la evolución de
los halos galácticos.

SECCIÓN 5.1

Estrellas Newtonianas de Fermiones y Bosones

En esta sección estudiamos la construcción de soluciones estacionarias del sistema SSPE
bajo simetrı́a esférica, con el objetivo de describir configuraciones compuestas por materia
bosónica y fermiónica. Estas soluciones, conocidas en relatividad general como estrellas de
bosones y fermiones, las denominamos en nuestro régimen newtoniano como NFBS (por sus
siglas en inglés).

Además de su construcción, exploramos la estabilidad de estas configuraciones, ya que po-
seen un potencial interés astrofı́sico. En particular, su estabilidad es relevante para compren-
der su viabilidad en escenarios astrofı́sicos realistas, donde las interacciones entre la materia
bosónica y fermiónica pueden desempeñar un papel clave en la evolución de estas estructuras.

Finalmente, investigamos la atractoriedad de estas soluciones en el espacio de configura-
ciones. Al igual que las Estrellas de Bosones Newtonianas [65], estas configuraciones se
comportan como soluciones atractoras dentro de una región de parámetros cercana al equi-
librio. Las soluciones sin el componente fluido ya habı́an sido identificadas como atractoras
en escenarios simples [10, 107] y como atractoras promedio en simulaciones de formación
de estructuras [22, 108]. Determinar si estas soluciones siguen siendo atractoras cuando se
incluye materia visible completamente acoplada a la FDM es un aspecto particularmente
interesante de este estudio.

5.1.1 Soluciones estacionarias

Las ecuaciones estacionarias del sistema SPE (2.34-2.39) se derivan bajo dos supuestos prin-
cipales: el parámetro de orden se encuentra en un estado estacionario y el fluido que obedece
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las ecuaciones de Euler está en equilibrio hidrostático. Además, se impone simetrı́a esférica.
Bajo estas condiciones, el sistema queda expresado como:

dp

dr
= −ρdV

dr
, (5.1)

− 1

2r2

d

dr

(
r2dψ

dr

)
+ V ψ = ωψ, (5.2)

1

r2

d

dr

(
r2dV

dr

)
= ρ+ ψ2. (5.3)

Para reformular el sistema en un conjunto de ecuaciones de primer orden, introducimos las
variables φ = r2 dψ

dr
y M = r2 dV

dr
, obteniendo:

dp

dr
= −ρM

r2
, (5.4)

dψ

dr
=

φ

r2
, (5.5)

dφ

dr
= 2r2(V − ω)ψ, (5.6)

dV

dr
=

M

r2
, (5.7)

dM

dr
= r2

(
ρ+ ψ2

)
, (5.8)

donde 4πM(r) representa la masa total integrada hasta el radio r. Para cerrar el sistema,
utilizamos una ecuación de estado politrópica:

p = Kρ1+1/n, (5.9)

donde K es la constante politrópica y n el ı́ndice politrópico.

Para obtener soluciones fı́sicamente aceptables, imponemos condiciones de regularidad en
el origen, como ρ(0) = ρc y ψ(0) = ψc, además de condiciones asintóticas, ĺımr→∞ ψ =
ĺımr→∞ ψ

′ = 0, lo que permite interpretar ω como un autovalor del sistema. En el caso del
fluido, la presión se integra hasta un radio finito Rgas, definido como el primer cero de ρ,
correspondiente al radio del componente fermiónico.
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A diferencia del caso desacoplado, donde las transformaciones de escalamiento permiten
generar familias completas de soluciones, el sistema acoplado requiere resolver (5.4-5.9)
para cada par (ψc, ρc), fijando K y n.

Sin embargo, la constante politrópica puede eliminarse mediante la transformación:

{r, p, ρ, ψ, φ, V,M} →
{
K−n/2r,Knp,Knρ,Kn/2ψ, φ, V,K−n/2M

}
, (5.10)

lo que mantiene invariante el sistema (5.4-5.8) y transforma (5.9) en p = ρ1+1/n. Esto equi-
vale a resolver el sistema con K = 1, permitiendo explorar soluciones únicamente variando
(ψc, ρc) para un n fijo.

Por ejemplo, consideremos n = 1.5, donde γ = 1 + 1/n = 5/3, apropiado para gases
monoatómicos en equilibrio isentrópico. Exploramos el espacio de parámetros (ψc, ρc) ∈
(0, 1.25]×(0, 20], excluyendo cero en ambas componentes, ya que corresponden a soluciones
ya analizadas en el capı́tulo 4 y el apéndice A.

En la Figura 5.1, el panel superior muestra las compacidades Mgas/Rgas y MFDM/r90 de cada
componente en función de la densidad central ρc para distintos valores de ψc: 0.25, 0.5, 0.75,
1.0 y 1.25.

En el panel inferior, se presentan las razones de masa Mgas/MFDM y de radios Rgas/r90 para
los mismos valores de ψc. Aquı́, el radio r90 se define como el radio r dentro del cual se
encierra el 90 % de la masa total del sistema.

1. Compacidad de la componente fermiónica (Mgas/Rgas): La compacidad del politrópo
es una función creciente de ρc, lo que indica que el gas de fermiones tiende a ser más
compacto a medida que su densidad central aumenta. Sin embargo, esta compacidad
disminuye con respecto a ψc, reflejando que, a medida que el componente bosónico se
vuelve más dominante, el gas de fermiones se expande y pierde compacidad.

2. Compacidad del componente bosónico (MFDM/r90): El comportamiento de la compa-
cidad bosónica es opuesto al del componente fermiónico. Es una función decreciente
de ρc e incrementa con valores mayores de ψc, mostrando que el componente bosónico
tiende a ser menos compacto a medida que el gas de fermiones se densifica.

3. Razón de masas (Mgas/MFDM ): Esta razón crece con ρc, lo que sugiere que el compo-
nente fermiónico se vuelve más masivo en comparación con el bosónico a densidades
centrales mayores. Además, la razón disminuye con ψc, reflejando la mayor contribu-
ción de la materia bosónica en sistemas con valores elevados de ψc.
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4. Razón de radios (Rgas/r90): Este parámetro aumenta con ρc, mostrando una expansión
relativa del gas de fermiones en comparación con el componente bosónico. Para valores
de ρc < 5, esta razón disminuye con ψc, pero para densidades centrales mayores, se
aproxima asintóticamente a una cota Rgas ∼ 2.63r90.

Es importante notar que estas cuatro cantidades son invariantes bajo la transformación (5.10).
Esto implica que las relaciones entre las propiedades fı́sicas de ambos componentes (fer-
miónico y bosónico) no dependen del valor especı́fico de la constante politrópica K, sino
únicamente de los parámetros iniciales (ψc, ρc) y del ı́ndice politrópico n.

Figura 5.1: Compacidades, razones de masa y radios. Panel superior: compacidad del com-
ponente fermiónico Mgas/Rgas (izquierda) y del bosónico MFDM/r90 (derecha) en función
de ρc para ψc = 0.25, 0.5, 0.75, 1.0, 1.25. Panel inferior: razones Mgas/MFDM (izquierda) y
Rgas/r90 (derecha) en función de ρc.

Para analizar en mayor detalle la dependencia individual de cada componente en términos
de los valores iniciales del par (ψc, ρc), en la Figura 5.2 se muestra del lado izquierdo la
desviación porcentual del radio del núcleo rc. Este se define, al igual que en el capı́tulo
anterior, como el valor donde la densidad bosónica es la mitad de su valor central, es decir,
ψ2(rc) = ψ2

c/2. Se compara con el valor de rc sin componente fermiónica, dado por rc(ρc =
0) ∼ 0.130/

√
ψc. En el lado derecho de la figura, se presenta el radio del gas Rgas. Ambas

cantidades se muestran en función de la razón de masas Mgas/MFDM para los valores ψc =
0.25, 0.5, 0.75, 1.0 y 1.25.
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Figura 5.2: Panel izquierdo: Desviación porcentual del radio del núcleo rc del componente
bosónico respecto a su valor cuando ρc = 0. Panel derecho: Radio del gas, que presenta un
valor máximo en Mgas/MFDM ∼ 4.38. Ambas cantidades se presentan como función de este
invariante, para los valores de ψc = 0.25, 0.5, 0.75, 1.0 y 1.25.

1. Desviación porcentual 100∆rc/rc(ρc = 0): Esta cantidad es una función creciente de
la razón de masas, lo que indica que la contribución de materia fermiónica es significa-
tiva para núcleos donde Mgas/MFDM > 0.1. Para estos valores, el núcleo se comprime
cerca del 10 %, lo que sugiere que en núcleos donde la materia visible constituye apro-
ximadamente el 10 % de la materia oscura, los modelos que tratan ambos componentes
de forma independiente pueden presentar errores porcentuales mayores a este valor.

2. Radio del gas Rgas: Este radio alcanza un valor máximo, independiente del valor del
parámetro central ψc, cercano a Mgas/MFDM ∼ 4.38. Este resultado, al ser un inva-
riante de K, es general para todas las NFBS. El punto donde la componente fermiónica
deja de expandirse y comienza a comprimirse ocurre cuando Mgas ∼ 4.38MFDM .

Con esto podemos ver que el radio del núcleo bosónico rc depende tanto del parámetro de
orden central ψc como de la densidad central ρc. Por lo tanto, es de esperar que el perfil
empı́rico de la estrella de bosones también cambie, como ocurre en el caso de una estrella
de bosones con autointeracción [76] o en el sistema de un agujero negro acoplado con una
estrella de bosones [75], donde el perfil empı́rico cambia respecto a la fórmula 4.15.

Sin embargo, aunque no proporcionemos un ajuste de rc en términos de estas dos cantidades,
podemos ver que con el rc apropiado, el perfil empı́rico sin materia visible dado por 4.15
aún sigue siendo una buena aproximación para la solución numérica. Esto se muestra en el
panel izquierdo de la Figura 5.3, donde se presentan las densidades bosónicas de algunas de
las soluciones numéricas normalizadas respecto a su valor central ψ2

c en función del radio r
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Figura 5.3: Panel izquierdo: Densidades bosónicas de soluciones numéricas normalizadas
respecto a su valor central ψ2

c en función del radio r normalizado respecto al radio del núcleo
rc, junto con el ajuste empı́rico dado por 4.15. Panel derecho: Densidad del componente fer-
miónico normalizada respecto a su valor central ρc en función del radio r, normalizado res-
pecto al radio del gas Rgas. A diferencia del componente bosónico, el perfil del componente
fermiónico muestra un comportamiento más complejo que dificulta establecer una fórmula
empı́rica para describirlo. Notar que ambos perfiles son invariantes bajo la transformación
(5.10).

normalizado respecto al radio del núcleo rc, junto al ajuste empı́rico 4.15.

Por otro lado, en el panel derecho se muestra la densidad del componente fermiónico norma-
lizada respecto a su valor central ρc en función del radio r normalizado respecto al radio del
gas Rgas. A diferencia del componente bosónico, este perfil tiene un comportamiento más
exótico respecto a esta normalización, dificultando poder establecer una fórmula empı́rica
que lo describa.

Notar que estos perfiles son independientes de la transformación (5.10).

5.1.2 Estabilidad

Un aspecto de vital importancia al analizar las soluciones estacionarias de cualquier sistema
es determinar si son soluciones estables. En este sentido, exploramos la estabilidad de estas
soluciones, de manera similar a como se hizo en el caso de las estrellas de bosones puras 4.1.2.
Consideramos que las soluciones obtenidas numéricamente ya están perturbadas debido a la
aproximación inherente a los métodos utilizados, por lo que investigamos si estas soluciones
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son estables bajo dicha perturbación.

Para ello, establecemos commo caso de prueba K = 10, ya que otro valor puede obtenerse
tomando la transformación (5.10). Estudiamos tres situaciones: en el primer caso, la materia
oscura bosónica domina sobre la materia visible; en el segundo caso, ambas contribuyen por
igual; y en el tercer caso, la materia visible domina sobre la componente oscura. En particular,
elegimos los invariantes Mgas/MFDM = 0.1, 1 y 10 para estudiar estos tres escenarios,
respectivamente fijando el valor central ψc = 1 y el ı́ndice politrópico n = 1.5.

La evolución del sistema se analiza bajo dos escenarios distintos:

1. Evolución isentrópica: En el primer escenario, suponemos que la evolución mantiene
al gas en un estado isentrópico, por lo que la evolución se realiza utilizando la ecuación
de estado politrópica 5.9.

2. Evolución libre: En el segundo escenario, suponemos que el politropo está en un estado
isentrópico al tiempo inicial, y se permite una evolución libre mediante la ecuación de
estado de un gas ideal 2.5.

Configuración de las Simulaciones

Para los propósitos de las simulaciones realizadas en este capı́tulo, utilizamos un esquema
de integración temporal de Runge-Kutta de tercer orden (RK3) e imponemos condiciones
de contorno periódicas en todas las variables. El término del lado derecho de la ecuación
de Schrödinger (2.28) se discretiza mediante la FFT, mientras que las ecuaciones de Euler
(2.24)-(2.26) se resuelven con métodos de Captura de Choques de Alta Resolución, especı́fi-
camente con el esquema de flujos HLLE y el limitador minmod para la reconstrucción de
variables. La ecuación de Poisson (2.29) se resuelve en cada paso de RK3 utilizando el méto-
do FFT. El paso temporal se establece para satisfacer la condición de Courant:

∆t

h2
<

1

6π
, (5.11)

según la recomendación de [19]. Finalmente, el sistema de ecuaciones de SPE se cierra con
la ecuación de estado del gas ideal (2.5) durante la evolución.

Las soluciones esféricamente simétricas se interpolan sobre el dominio espacial cartesiano
D = [−40, 40]3, que se discretiza utilizandoN = 128 puntos en cada dirección. La evolución
se explora en el dominio temporal t ∈ [0, 200], discretizado con resolución temporal ∆t =
CFLh2, donde CFL = 0.1 y h = 5/16, utilizando condiciones de frontera aisladas.
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Evolución isentrópica

En la Figura 5.4, la primera columna muestra la evolución de la densidad central de ambas
distribuciones de materia, normalizadas con respecto a su valor inicial. La segunda columna
muestra la transformada de Fourier de estas series temporales, donde se obtiene la frecuencia
de oscilación ωc = 0.3140, 0.3180 y 0.3142 para los casos con MR = 0.1, 1 y 10, respectiva-
mente. Se observa que las soluciones oscilan cerca de la configuración de equilibrio, lo que
indica estabilidad.

Evolución libre

En la Figura 5.5, del lado izquierdo se presenta la evolución de las densidades centrales
normalizadas respecto a sus valores centrales al tiempo inicial, mientras que del lado derecho
se muestran las transformadas de Fourier de estas señales. La primera, segunda y tercera
fila corresponden a los casos con MR = 0.1, 1 y 10, respectivamente. Con respecto a estos
resultados, es posible afirmar que las soluciones en una evolución con una ecuación de estado
de un gas ideal no permanecen estables; sin embargo, las soluciones convergen a otra solución
estable. El resultado de la evolución isentrópica se mantiene, es decir, el gas adquiere los
mismos modos de oscilación que la componente bosónica.

La Figura 5.5 muestra instantáneas de la evolución de la densidad del fluido y la función
de onda para los tres casos representativos. Se observa que al evolucionar una solución en
equilibrio con una EoS de gas ideal, la distribución de densidad del gas no se mantiene en
equilibrio, mientras que la de la función de onda sı́ lo hace.

En la Figura 5.6, se muestra la energı́a interna total del gas en función del tiempo. Se ob-
serva un incremento, lo que indica una compresión y calentamiento del gas, seguido de una
expansión que lo enfrı́a.

5.1.3 Atractoriedad

Condiciones iniciales. Para la FDM seguimos el enfoque presentado en la Sección 4.1, en
la cual se demuestra que la condensación es una caracterı́stica inherente del sistema FDM
en diversos escenarios, independientemente de la forma inicial de la nube [19]. En conse-
cuencia, la condición inicial para el componente FDM se define en el espacio de momentos
mediante el parámetro de orden Ψ̂(~p) = Ae−0.5p2eiΘ, donde Θ es una fase aleatoria en el
intervalo [0, 2π] en cada punto del espacio de momentos, y A es un factor de normalización
que garantiza una masa total MFDM .
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Figura 5.4: Evolución con la EoS politrópica. A la izquierda se muestra la evolución de las
densidades centrales. A la derecha, la transformada de Fourier de estas densidades.
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Figura 5.5: Instantáneas de la densidad del gas y la función de onda. Se observa que la función
de onda oscila cerca de la configuración inicial, mientras que el gas se redistribuye.
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Figura 5.6: Energı́a interna total del gas ideal en función del tiempo para los valores MR =
0.1, 1 y 10.

Para el gas ideal (IG, por sus siglas en inglés), seguimos una estrategia similar. Establecemos
las condiciones iniciales de las variables del fluido generando una función de onda auxiliar
análoga a la de FDM. Posteriormente, extraemos la densidad de masa y la velocidad a través
de la transformación de Madelung (2.15). Finalmente, establecemos la presión inicial usan-
do la ecuación de estado politrópica (2.6) y calculamos la energı́a interna especı́fica inicial
mediante la ecuación de estado del gas ideal (2.5).

El dominio espacial es un cubo discretizado con N = 128 puntos de malla por dimensión, lo
que implica una resolución espacial de h = L/128 = 9/64.

En el contexto cosmológico, esta configuración puede interpretarse como un conjunto ho-
mogéneo idealizado de fluctuaciones de densidad y velocidad, formadas durante la relajación
violenta de un halo colapsado. Los parámetros libres γ y K, que caracterizan el IG, permiten
estudiar la sensibilidad de la configuración final a las propiedades del medio interestelar mul-
tifase de la galaxia. Un comportamiento más complejo, como el enfriamiento dependiente de
la densidad o la retroalimentación cinética, no se espera que altere los resultados cualitativos,
aunque deberá incluirse para obtener predicciones cuantitativas, lo cual dejamos para futuros
estudios.

Espacio de Parámetros. Utilizamos un ı́ndice adiabático γ = 5/3, correspondiente a un ı́ndi-
ce politrópico n = 3/2 en procesos isentrópicos. Dado que la energı́a interna especı́fica es
proporcional a la temperatura y, en este caso, también a la constante politrópica K, explo-
ramos los efectos de temperatura del IG en el instante inicial fijando K a valores de 0.1, 1
y 10 en unidades de código. La masa de la FDM se fija en MFDM = 1005.3 dentro de un
dominio cúbico de tamaño L = 18, parámetros tomados de una simulación estándar de for-
mación de núcleos [19]. La masa del componente IG se define mediante una razón de masa
MIG = MR ·MFDM , tomando MR = 0.1 y 0.2.
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Figura 5.7: Evolución de las densidades ρFDM y ρ para las simulaciones con MR = 0.1,
descritas mediante mapas de colores y contornos respectivamente. Estos gráficos están cen-
trados en el máximo de la densidad de FDM para facilitar la ilustración. Cada columna pre-
senta instantáneas en los tiempos t = 0, 7, 14, 50 y 100, mientras que cada fila corresponde a
simulaciones con constantes politrópicas K = 0.1, 1.0 y 10. Se obtienen resultados similares
para MR = 0.2.

Evolución. La evolución de las densidades de FDM y gas se ilustra en la Figura 5.7 para las
simulaciones con MR = 0.1. Se presentan instantáneas en los tiempos t = 0, 7, 14, 50 y
100, de izquierda a derecha en cada columna; cada fila corresponde a un valor diferente de
la constante politrópica inicial K = 0.1, 1.0 y 10, respectivamente. La densidad de FDM
está representada mediante el mapa de colores, mientras que los contornos indican la distri-
bución del IG. Estos gráficos revelan que la condensación de FDM impulsa el colapso del
componente IG, lo que sugiere que la mezcla inicial de FDM-IG, partiendo de una distri-
bución aleatoria de ambas componentes, lleva a un colapso final. Se sabe que la FDM se
condensa en una configuración estable que, en promedio, se alinea con el estado fundamental
del sistema de Schrödinger-Poisson [73, 13]. Este comportamiento lleva al IG a condensarse
siguiendo el potencial gravitacional del núcleo de FDM, lo que indica la formación de una
Estrella de Bosones Newtoniana [19]. Para analizar con mayor detalle este comportamiento,
se presentan diagnósticos adicionales a continuación.

Diagnóstico. La evolución muestra que la distribución de la materia se condensa en una con-
figuración casi estable. Para investigar esto con más detalle, calculamos una densidad prome-
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Figura 5.8: Promedio angular de ρFDM y ρ en diferentes instantes, centrado en el máximo de
ρFDM para las simulaciones conMRIG = 0.1. La lı́nea roja sólida, la lı́nea azul discontinua y
la lı́nea negra punteada corresponden a valores iniciales deK = 0.1, 1 y 10, respectivamente.
Se obtienen resultados similares para MRIG = 0.2.
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Figura 5.9: Máximo de ρFDM (izquierda) y ρ (derecha) en función del tiempo. Las filas
superior, media e inferior corresponden a constantes politrópicas iniciales K = 0.1, 1 y 10.
Las lı́neas azules sólidas y anaranjadas discontinuas indican los casos con razones de masa
MRIG = 0.1 y MRIG = 0.2.
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Figura 5.10: Evolución temporal de las propiedades del FDM-IG para las simulaciones con
MR = 0.1. Estos gráficos ilustran el proceso de virialización del sistema FDM-IG, que con-
duce a la formación de una Estrella de Bosones Newtoniana. Para el componente FDM, se
muestran la energı́a cinética KFDM , la energı́a gravitacional WFDM , la energı́a total EFDM y
el factor de virial QFDM , todos normalizados por la energı́a total absoluta inicial |EFDM(0)|.
Para el componente IG, se presentan la energı́a cinética KIG, la energı́a gravitacional WIG,
la energı́a interna UIG, la energı́a total EIG y el factor de virial QIG, cada uno normalizado
por la energı́a total absoluta inicial |EIG(0)|. Estos diagnósticos energéticos resaltan la esta-
bilización del sistema en una configuración virializada, con ambos componentes alcanzando
valores de energı́a estables con el tiempo. Finalmente, QFDM ∼ 0 y QIG ∼ 0 con el tiempo,
lo que indica que ambas componentes evolucionan de manera cercana a un estado virializado
por separado. Se obtienen resultados similares para MR = 0.2.
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Figura 5.11: Promedio angular de ρFDM (izquierda) y ρ (derecha) para el caso MR =
0.1, K = 0.1 en t = 100, cuando el núcleo se ha relajado. Estas densidades en el núcleo
se comparan con las densidades de una Estrella de Bosones Newtoniana. Considerando que
las NFBS se construyen usando una ecuación de estado politrópica [74], encontramos que la
NFBS que ajusta estas densidades relajadas del núcleo FDM-IG tiene una constante politrópi-
ca de aproximadamente 103.5. Estos resultados indican que el núcleo FDM-IG se aproxima
a una NFBS estable, en equilibrio hidrostático radial y con entropı́a casi conservada, lo que
respalda la naturaleza atractora de las NFBS. Todas las demás simulaciones presentan ajustes
similares. Para este ajuste, no se empleó una fórmula universal fenoménologica para describir
las densidades, sino que se resolvió el problema de autovalores de las NFBS repetidamente,
buscando los parámetros de ajuste mediante un Algoritmo Genético.
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diada angularmente sobre el ángulo sólido Ω = [0, π] × [0, 2π], dada por favg = 1
4π

∫
Ω
f dΩ,

que utilizamos para calcular las densidades promediadas. En nuestro caso, f será ρFDM y ρ.
La Figura 5.8 presenta las densidades promediadas angularmente de los componentes FDM-
IG para las simulaciones con MRIG = 0.1, mientras que se encuentran resultados similares
paraMRIG = 0.2. Cada fila corresponde a promedios calculados en los tiempos t = 0, 7, 14,
50 y 100. Las lı́neas rojas continuas, azules discontinuas y negras punteadas corresponden a
las constantes politrópicas K = 0.1, 1 y 10, respectivamente, utilizadas en el tiempo inicial.
La FDM forma un núcleo solitónico rodeado de una cola extendida, mientras que el compo-
nente IG muestra que, después de 14 unidades de tiempo, su perfil de densidad se vuelve más
compacto a medida que K es más pequeño. Este comportamiento sugiere que temperaturas
iniciales más altas resultan en una menor densidad central de la configuración final.

La evolución de la condensación, al menos la de la FDM, como se indica en [13, 19], puede
seguirse a través del máximo de la densidad, que revela cómo el núcleo acumula masa de
los alrededores hasta su saturación. En la Figura 5.9 mostramos el máximo de ρFDM y ρ
como función del tiempo, para los dos valores de MR = 0.1, 0.2 y los tres valores de K =
0.1, 1, 10. Las lı́neas continuas azules y las discontinuas naranjas representan los resultados
para MR = 0.1 y MR = 0.2. En todos los casos, el máximo de ρFDM crece como es tı́pico
sin el IG, comenzando en el tiempo de condensación τg [13, 19], en nuestro caso τg ∼ 7, y a
partir de ahı́ empieza a formarse la condensación de un núcleo. Por otro lado, la densidad del
IG antes de τg es errática e incluso disminuye, lo que indica una etapa de distribución casi
uniforme; sin embargo, después de τg, la densidad del IG crece y se estabiliza, lo que indica
que, después de que la FDM comience a condensarse y su potencial gravitacional dominante
se profundice, el IG comienza a acumularse alrededor y se estabiliza. Esto se confirma con
las instantáneas de la Figura 5.7.

El proceso de condensación resulta en un núcleo FDM-IG que se asienta en una configuración
virializada del sistema SPE, como se muestra a continuación. La Figura 5.10 muestra la evo-
lución de las diversas energı́as involucradas para las simulaciones con MRIG = 0.1. Para el
componente FDM, estas energı́as incluyen la energı́a cinética KFDM = −1

2

∫
D

Ψ∗∇2Ψ d3x,
la energı́a gravitacionalWFDM = 1

2

∫
D
|Ψ|2V d3x, la energı́a totalEFDM = KFDM+WFDM ,

y el factor virial QFDM = 2KFDM + WFDM . Para el componente gas, los escalares son
la energı́a cinética KIG = 1

2

∫
D
ρ|~v|2 d3x, la energı́a gravitacional WIG = 1

2

∫
D
ρV d3x, la

energı́a interna UIG =
∫
D
ρe d3x, la energı́a total EIG = KIG +WIG +UIG, y el factor virial

QIG = 2KIG + WIG + 3UIG. Resultados similares se encuentran para las simulaciones con
MR = 0.2.

Los gráficos ilustran dos aspectos clave de la evolución. En primer lugar, el factor virial
Q = QFDM +QIG ≈ 0 para tiempos t > τg indica que el sistema ha alcanzado un equilibrio
dinámicamente estable. Este valor cercano a cero de Q es un indicador confiable de virializa-
ción. Como resultado, la estructura general ya no experimenta cambios significativos, lo que
indica que el sistema se ha asentado alrededor de una configuración estable.
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Una segunda pista es la disminución de la energı́a cinética del IG hacia cero, lo que no so-
lo indica la aproximación a un estado estacionario, sino también la aproximación hacia un
equilibrio hidrostático. En el equilibrio hidrostático, la fuerza gravitacional hacia adentro se
balancea con las fuerzas de presión hacia afuera, lo que da como resultado una configuración
estable contra el colapso y la expansión. La pequeña energı́a cinética sugiere un movimiento
interno mı́nimo dentro del gas, lo que indica que la distribución del gas se ha asentado en una
configuración casi estable. En consecuencia, esta configuración relajada de FDM-IG, forma-
da a través del proceso de condensación, transita hacia una estructura que mantiene el equili-
brio bajo su propia gravedad y fuerzas de presión, caracterı́sticas de un sistema autogravitante
y balanceado hidrostáticamente, como es el caso de una estrella de bosones Newtoniana en
equilibrio [74].

En la Figura 5.11 comparamos las densidades promediadas angularmente de ρFDM y ρ des-
pués de la relajación, con las densidades de una solución de estado fundamental de una es-
trella de bosones Newtoniana para una de nuestras simulaciones con MR = 0.1 en el tiempo
t = 100. Una información adicional sobre las estrellas de bosones es que se construyen asu-
miendo una EoS politrópica, y en el caso de la Figura 5.11, la estrella de bosones que se
ajusta a las densidades tiene una constante politrópica ∼ 103.5. Este tipo de ajuste sugiere
no solo que el sistema FDM-IG alcanza un equilibrio radial hidrostático, sino también que la
entropı́a se conserva casi completamente, lo que resalta la robustez de estas soluciones.

Con respecto a las propiedades de las configuraciones finales, los resultados se pueden re-
sumir de la siguiente manera. Para un valor dado de MR, la densidad central y el radio del
núcleo de la FDM son independientes de la constante politrópica inicial K del IG dentro de
un margen de unos pocos por ciento; por otro lado, para el IG, encontramos que a medida
que K es mayor, la densidad central es más pequeña, lo que indica que cuanto mayor es K,
menos compacta es la distribución del IG dentro del núcleo de la FDM. Esta diversidad de
distribuciones de FDM-IG se encuentra dentro de un amplio rango de soluciones de estrellas
de bosones [74].

SECCIÓN 5.2

Fusiones de NFBS

Las NFBS representan soluciones atractras del sistema SPE y son consideradas el estado base
en configuraciones mixtas de materia oscura bosónica y materia visible. Estas estructuras
combinan un núcleo central compuesto por un condensado bosónico con una envoltura de
gas bariónico, logrando un equilibrio gravitacional.
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En el contexto cosmológico, las NFBS actúan como posibles semillas de estructuras galácti-
cas en el universo temprano. Durante la evolución del sistema, las interacciones gravitacio-
nales entre múltiples NFBS pueden llevar a fusiones binarias o multinúcleo, un proceso en el
cual los núcleos individuales se combinan formando una nueva estructura más masiva y esta-
ble. Estas fusiones están marcadas por la transferencia de masa, la redistribución energética
y la formación de perfiles de densidad compuestos por ambos tipos de materia.

5.2.1 Sistemas Binarios

Los sistemas binarios de NFBS constituyen una configuración clave para estudiar las interac-
ciones gravitacionales y de materia en modelos mixtos de materia oscura bosónica y materia
visible. Entre las dinámicas más relevantes se encuentran dos escenarios principales: la fu-
sión frontal y la fusión con momento angular. En la fusión frontal, dos núcleos colisionan
directamente en trayectorias opuestas, lo que da lugar a la formación de ondas de choque y
una separación de las componentes de materia. Por otro lado, en una fusión con momento
angular, los núcleos orbitan alrededor de un centro de masa común, generando una redistri-
bución dinámica más compleja marcada por la transferencia de momento angular, posibles
estructuras en forma de disco y mayor estabilidad gravitacional en las etapas finales del pro-
ceso.

Fusión frontal

En un choque frontal entre dos NFBS, la materia bosónica, debido a su naturaleza condensada
y autogravitante, atraviesa el punto de colisión con mı́nima dispersión. Por el contrario, el gas
bariónico experimenta un calentamiento significativo y una redistribución, lo que da lugar a la
formación de ondas de choque. Este comportamiento es análogo al fenómeno observado en el
Bullet Cluster [50], donde se evidencia una separación espacial entre los perfiles de densidad
de materia oscura y materia visible. Este proceso es especialmente relevante a escalas locales,
ya que permite explorar fenómenos similares a los eventos de colisión galáctica a gran escala.

El estudio de la dinámica de una fusión frontal en sistemas binarios proporciona información
crucial sobre la interacción gravitacional, la disipación de energı́a en el gas bariónico y la
estabilidad de los núcleos bosónicos en entornos densos.

Condiciones iniciales. El sistema está compuesto por dos NFBS:

- La primera NFBS, ubicada en (−10, 0, 0), tiene una función de onda central ψc = 1,
una razón de masa MR0 = 0.1 y una velocidad inicial vx0 = 8.
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- La segunda NFBS, con ψc = 2 y MR0 = 0.5, se coloca de forma que el centro de masa
del sistema permanezca en el origen de coordenadas.

Aunque estas estructuras se generan con una ecuación de estado politrópica, su evolución se
modela bajo la ecuación de estado de gas ideal, donde emergen como soluciones atractoras.

Condiciones de frontera. Las condiciones de frontera se configuran para minimizar pertur-
baciones externas. La función de onda se resuelve con condiciones periódicas mediante la
FFT. Para mitigar la propagación de modos fuera del dominio, se implementa una espon-
ja numérica. El potencial gravitacional se calcula con condiciones de Dirichlet utilizando la
DST, mientras que el gas ideal emplea condiciones de flujo saliente.

Efecto Bullet Cluster. La Figura 5.12 muestra la evolución de los perfiles de densidad en la
simulación, con instantáneas tomadas en los tiempos t = 0, 1, 2 y 3. Los contornos azules
representan la densidad de la componente FDM, mientras que los contornos y mapas de
color rojos corresponden a la componente de gas ideal (IG). En el tiempo t = 3, se observa
cómo parte del gas adopta la forma caracterı́stica de una “bala”, reproduciendo los aspectos
esenciales del fenómeno Bullet Cluster.

Análisis de las energı́as. El sistema hidrodinámico, regido por las ecuaciones de Euler, es
inherentemente no lineal, lo que puede generar ondas de choque. Este fenómeno se describe
mediante las condiciones de Rankine-Hugoniot [54], que establecen que una discontinuidad
en la velocidad provoca una transferencia de energı́a cinética KIG a energı́a interna UIG. La
Figura 5.13 muestra que, durante este proceso, la energı́a gravitacional WIG y la energı́a total
EIG permanecen aproximadamente constantes.

En contraste, la componente FDM, al carecer de procesos de disipación térmica, no expe-
rimenta este tipo de transferencia de energı́a. Su energı́a total EFDM permanece positiva,
clasificando al sistema como no ligado. En sistemas binarios, una configuración se conside-
ra ligada si su energı́a total es negativa, permitiendo la estabilización gravitacional [85]. Sin
embargo, en este caso, la falta de ligadura impide la formación de una estructura fusionada es-
table, lo que mantiene separadas las componentes de materia. Tanto la energı́a cinéticaKFDM

como la gravitacional WFDM se mantienen casi constantes, salvo en el intervalo t ∈ [1, 1.5],
donde ocurre la superposición de solitones.

Fusión con momento angular

Condiciones iniciales. Para estudiar el proceso de fusión con momento angular, se utilizan
diferentes configuraciones iniciales variando el parámetro de impacto y0 y la velocidad inicial
vx0. Los valores de y0 considerados son 5 y 10, mientras que la velocidad inicial vx0 se toma
en el rango 0.1, 0.2, 0.3, 0.4 y 0.5, en unidades de código. Las propiedades de cada NFBS se
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Figura 5.12: Evolución de los perfiles de densidad en el sistema FDM-IG durante una fusión
frontal. Las instantáneas corresponden a los tiempos t = 0, 1, 2 y 3, presentadas de arri-
ba hacia abajo. Los paneles de la izquierda muestran los isocontornos de densidad, donde
los contornos azules representan la componente FDM y los contornos rojos la componente
de gas ideal (IG). Los paneles de la derecha muestran la proyección de estos perfiles en el
plano z = 0, con isocontornos para la FDM y mapas de color para el IG. Se observa cómo
la componente IG experimenta calentamiento y redistribución, formando una estructura de
“bala” en la última etapa, mientras que la componente FDM mantiene una mayor coherencia
gravitacional.
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Figura 5.13: Evolución de las energı́as normalizadas respecto a su valor inicial para ambas
componentes en una fusión no ligada. Las energı́as mostradas son: energı́a interna del gas
UIG, energı́a cinética del gas KIG, energı́a gravitacional del gas WIG, energı́a total del gas
EIG, energı́a cinética de la FDM KFDM , energı́a gravitacional de la FDM WFDM y energı́a
total de la FDM EFDM . Todas las energı́as están normalizadas respecto a la energı́a total E
en t = 0.
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mantienen constantes:

La NFBS izquierda tiene un parámetro de orden central ψc = 1 y una razón de masa
MR0 = 0.1.

La NFBS derecha tiene ψc = 1.2 y dos posibles configuraciones de razón de masa,
MR0 = 0.1 y 0.2.

Condiciones de frontera. Las condiciones de frontera aplicadas al sistema son periódicas para
las variables dinámicas, incluyendo el parámetro de orden y las variables conservativas del
fluido. Esto garantiza la conservación de masa y energı́a tanto en la componente FDM como
en el gas ideal (IG). Por otro lado, el potencial gravitacional utiliza condiciones de frontera
de tipo Dirichlet, lo cual permite reproducir escalas dinámicas similares a las de un sistema
aislado. Esta combinación de condiciones de frontera asegura una evolución dinámica cohe-
rente, al tiempo que permite la simulación de perturbaciones externas de forma controlada.

SECCIÓN 5.3

Fusiones entre núcleos FDM y nubes de gas

Un escenario particularmente interesante es la interacción entre la materia oscura y el gas
bariónico. Suponiendo que las estructuras FDM dominan el campo gravitacional de un pozo
potencial, y que una nube de gas se aproxima a dicho pozo, surge la posibilidad de analizar
la dinámica del fluido acoplada a la dinámica de la FDM. Para explorar este fenómeno, rea-
lizamos simulaciones de la fusión entre un núcleo FDM y una nube de gas, modelada tanto
como un gas politrópico como un gas sin presión. El objetivo es demostrar las capacidades del
código para simular estos escenarios y utilizar herramientas de diagnóstico que monitorean
las propiedades evolutivas del sistema FDM+gas.

5.3.1 Condiciones iniciales

El núcleo FDM se asume como la configuración de equilibrio del estado base, un núcleo
perfecto, con una densidad central 1

4π
que define su masa como MFDM = 2.06 en unidades

de código [65]. La configuración de gas puede ser una estrella TOV o una esfera de polvo,
con una masa Mgas correspondiente al 10 % o 50 % de la masa de la FDM. Definimos la
razón de masa como MR = Mgas/MFDM .
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M FDM

Figura 5.14: Esquema ilustrando las condiciones iniciales de la fusión entre el núcleo FDM
y el fluido en el plano xy, con el centro de masa en el origen.

Las posiciones iniciales de los centros del núcleo FDM y la configuración de gas se establecen
en (MR · x0,MR · y0, 0) y (x0, y0, 0), respectivamente, de modo que el centro de masa se
encuentra en el origen de coordenadas. El momento inicial se aplica a lo largo del eje x,
de manera que el centro de masa permanezca cerca del centro del dominio numérico. Si el
núcleo FDM tiene un momento inicial ~p0,FDM = (p0x/MFDM , 0, 0), el gas tiene un momento
opuesto ~p0,gas = −~p0,FDM . Este momento se implementa en la función de onda de equilibrio
mediante el escalado Ψeq → e−ip0xx/MFDMΨeq, lo que garantiza que el valor esperado del
operador de momento p̂x sea 〈p̂x〉 = p0x.

En resumen, las posiciones y velocidades iniciales del sistema se parametrizan mediante
el parámetro de impacto y0 de la esfera de gas y el momento inicial p0x del núcleo FDM.
Estas condiciones se utilizan para integrar las ecuaciones SPE como un problema de valores
iniciales.

5.3.2 Espacio de parámetros

Presentamos una muestra de fusiones entre núcleos FDM y configuraciones de fluido. Mos-
tramos resultados para dos escenarios principales: i) un gas ideal con ı́ndice adiabático γ =
5/3 y ii) una esfera de polvo con p = 0. Para cada escenario, realizamos simulaciones va-
riando el parámetro de impacto y0 y el momento inicial p0x, con dos valores de la razón de
masa MR = 0.1 y 0.5.
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5.3.3 Gas ideal

Exploramos la fusión entre un núcleo FDM y una estrella TOV con ı́ndice adiabático γ =
5/3. El espacio de parámetros incluye una razón de masa MR = 0.1, 0.5, un parámetro de
impacto y0 = 10, 15, 20 y velocidades iniciales vx0 = 0.1 y 0.2. Simulamos la evolución de
estos encuentros en el dominio numérico [−100, 100] × [−100, 100] × [−50, 50], utilizando
refinamiento de malla (FMR) con dos niveles de refinamiento y una resolución de h = 5/8
en el segundo nivel. En el nivel de mayor refinamiento se utiliza C = 0.1.

La dinámica del sistema muestra que el gas tiende a orbitar el núcleo FDM en sentido horario.
Cuando la estrella TOV se encuentra con el núcleo, la presión del gas fragmenta la estrella
y el fluido circula alrededor del núcleo FDM desde ambos lados, lo que desencadena la
formación de ondas de choque. Los diagnósticos sobre el comportamiento dinámico incluyen
la virialización, la energı́a total, la liberación de momento angular y la evolución de la masa.
En la Figura 5.15 se muestran estas variables hasta t ∼ 1000, para todas las combinaciones
de parámetros.

Las observaciones generales son las siguientes. El gas se relaja hacia un estado virializado,
ya que 2Kgas + Wgas tiende a cero en todos los casos, y su masa también se estabiliza,
lo que indica que el fluido alcanza un equilibrio. El núcleo FDM oscila alrededor de un
estado virial con 2KFDM + WFDM cercano a cero, mientras que su masa MFDM disminuye
con el tiempo debido a que una esponja numérica absorbe la densidad FDM al aproximarse
a los lı́mites del dominio. El momento angular del gas se estabiliza alrededor de un valor
finito, al igual que el momento angular del núcleo FDM en la mayorı́a de los casos. La
energı́a del gas Egas = Kgas+Wgas también se estabiliza, mientras que la energı́a de la FDM
EFDM = KFDM +WFDM , en esta escala temporal, se estabiliza.

La Figura 5.16 muestra una instantánea en tiempo tardı́o de las densidades del núcleo FDM y
del gas para todas las combinaciones de parámetros. Estas simulaciones revelan una distribu-
ción de la densidad de gas en forma de disco en el plano ecuatorial, con diversas morfologı́as,
incluyendo en algunos casos brazos espirales y en otros discos más uniformes. El movimiento
del gas es permanente, y aquı́ solo capturamos una instantánea.

Estas simulaciones se pueden observar más de cerca. Por ejemplo, en la Figura 5.17 mostra-
mos la densidad del núcleo FDM y del gas desde perspectivas superiores y laterales, para el
caso particular y0 = 20, vx0 = 0.2 y razón de masa MR = 0.1, 0.5. El gas se distribuye con
alta densidad cerca del plano ecuatorial, y también aparece una sobredensidad similar a un
bulbo. Por otro lado, el núcleo FDM mantiene una distribución casi esférica.
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Figura 5.15: Fusión entre el núcleo FDM y la estrella TOV. Para todas las combinaciones de
parámetros se muestra en el panel superior izuierdo la cantidad 2K + W para la FDM y el
gas, en el panel superior derecho la energı́a total K + W , en el panel inferior izquierdo el
momento angular total en la dirección z, y finalmente en el panel inferior derecho la masa
normalizada con la masa inicial de la FDM, M0

FDM ≈ 2.06, como función del tiempo.
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Figura 5.16: Fusión entre el núcleo FDM y la estrella TOV. Instantánea en t ∼ 1000 de la
densidad del gas ρ y contornos de |Ψ|2 en el plano z = 0 para todas las combinaciones de
parámetros.
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Figura 5.17: Instantánea en tiempo tardı́o de la fusión entre el núcleo FDM y la estrella TOV,
para el caso vx0 = 0.2 y y0 = 20. (Arriba) Densidad del gas ideal vista desde el eje z, y
(abajo) vista desde el eje x. A la izquierda se muestra el caso con razón de masa MR = 0.1
y a la derecha MR = 0.5.
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5.3.4 Polvo

Ahora exploramos la fusión entre un núcleo FDM y una esfera de polvo utilizando el mismo
espacio de parámetros que en el escenario anterior. A diferencia del caso TOV, que es en sı́
mismo una configuración de equilibrio, en el caso del polvo simplemente usamos el perfil de
densidad de TOV pero establecemos la presión en cero durante toda la evolución. Antes de la
fusión, ocurre una dinámica no trivial, que incluye el colapso libre del polvo hacia su propio
potencial gravitacional.

En este caso sin presión, utilizamos un dominio numérico D = [−50, 50] × [−50, 50] ×
[−25, 25], más pequeño que en el caso anterior, y resolvemos el sistema utilizando un modo
de malla única (unigrid) con resolución ∆x = ∆y = ∆z = 10/16. Para mantener la compa-
ración, el espacio de parámetros incluye los mismos valores orbitales utilizados para la estre-
lla TOV, es decir, con razón de masa MR = 0.1, 0.5, parámetro de impacto y0 = 10, 15, 20 y
velocidades iniciales de la esfera de polvo vx0 = 0.1 y 0.2.

En los diagnósticos de este escenario, se encontraron resultados similares a los del caso de
gas ideal en cuanto a virialización, energı́a total, masa y momento angular. Nuevamente, el
fluido se virializa, adquiere un momento angular finito y su masa se estabiliza. Por otro lado,
el núcleo FDM irradia el momento angular en la mayorı́a de los casos, no se virializa, pero
oscila alrededor de un estado virial y pierde masa de forma continua debido a la expulsión
durante el proceso de fusión.

La Figura 5.18 muestra una instantánea en tiempo tardı́o de la fusión entre las densidades del
núcleo FDM y la esfera de polvo para todas las combinaciones de parámetros. En este caso,
nuevamente, la densidad del fluido se concentra en el plano ecuatorial. Aunque no hay pre-
sión, en algunos casos se forman brazos espirales de alta densidad. El caso con MR = 0.5,
vx0 = 0.1, y0 = 10 ilustra cómo el rápido colapso del polvo antes de la disrupción genera un
pozo gravitacional profundo que también distorsiona la FDM, lo que eventualmente expulsa
ambos componentes del dominio. A diferencia del caso de gas ideal, en varias configuracio-
nes de polvo en la Figura 5.18, la densidad del fluido se distribuye en estructuras con bordes
irregulares.

Una vista en tiempo tardı́o de las densidades para el caso y0 = 20, vx0 = 0.2 con razones
de masa MR = 0.1, 0.5 se presenta en la Figura 5.19. Similar al caso de gas ideal, el polvo
se distribuye en brazos espirales, esta vez en una distribución delgada concentrada cerca del
plano ecuatorial debido a la ausencia de presión. Por otro lado, el núcleo FDM recupera
una distribución casi esférica. Cabe destacar que el gas ideal en la Figura 5.17, para los
mismos parámetros dinámicos iniciales, se distribuye en una estructura más gruesa cerca del
plano ecuatorial en comparación con la distribución delgada del polvo, un comportamiento
esperado debido a los efectos de presión.
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Figura 5.18: Instantánea en tiempo tardı́o (t ∼ 1000) de la fusión entre el núcleo FDM y
la esfera de polvo. La densidad del gas ρ se muestra en blanco, con contornos de |Ψ|2 en el
plano z = 0 para todas las combinaciones de parámetros.
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Figura 5.19: Instantánea en tiempo tardı́o de las densidades en la fusión entre el núcleo FDM
y la esfera de polvo. (Arriba) Vista desde el eje z y (abajo) vista desde el eje x, para el caso
vx0 = 0.2 y y0 = 20. A la izquierda se muestra el caso con razón de masa MR = 0.1 y a la
derecha MR = 0.5.
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SECCIÓN 5.4

Rastreo de la materia oscura a través de la materia bariónica

En esta sección, exploramos cómo la FDM, interactúa dinámicamente con la materia barióni-
ca en diferentes condiciones energéticas. El objetivo es analizar la transferencia de energı́a
entre ambas componentes, ası́ como los efectos gravitacionales que estas interacciones gene-
ran en la evolución del sistema.

Para este propósito, consideramos un modelo donde un núcleo solitónico de FDM está ro-
deado por un halo con un perfil tipo NFW. A este sistema se le añade una distribución de
gas bariónico que inicialmente está en reposo y se caracteriza por una densidad uniforme.
Estudiamos tres escenarios diferentes, definidos por la energı́a interna del gas: baja, media y
alta. En cada caso, evaluamos la evolución temporal de las densidades del gas y de la FDM,
ası́ como la transferencia de energı́a entre ambos componentes.

Los diagnósticos realizados incluyen el seguimiento de las masas totales, la energı́a potencial,
cinética e interna, y el análisis de los patrones de colapso, redistribución y estabilización
del gas. Los resultados proporcionan información crucial sobre cómo la materia oscura y la
materia bariónica influyen mutuamente en entornos gravitacionalmente dominados.

5.4.1 Condiciones iniciales de la función de onda

Como condiciones iniciales para la función de onda Ψ0(~x), consideramos una configuración
obtenida a partir de la evolución de la fusión de 30 configuraciones de equilibrio en caı́da
libre del sistema Schrödinger-Poisson con condiciones de frontera periódicas (ref periodic).
En el panel izquierdo de la Figura 5.20, se muestra la densidad en el plano x−y, mientras que
en el panel derecho se presenta un perfil promedio, el cual tiene un núcleo solitónico descrito
por la ecuación:

ρcore = ρ0,core

[
1 + 0.091

(
r

rc

)2
]−8

, (5.12)

donde rc = 0.28 kpc y ρ0,core = 109M�/kpc3. Este perfil corresponde a una configuración de
equilibrio cuyo núcleo tiene una masa del orden deMsoliton ∼ 11.59ρ0r

3
c ≈ 2.5×108M� y un

radio aproximado de rt ∼ 3.5rc ≈ 0.98 kpc. En la región del halo, para r & rsoliton, el perfil
de densidad es ajustado mediante un perfil NFW, donde rs = 5 kpc y ρs = 5.5×105M�/kpc3.
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Figura 5.20: En el panel izquierdo se muestra la densidad ρFDM de la función de onda en el
tiempo inicial en el plano x − y. El interior del cı́rculo negro corresponde a la región donde
se encuentra el núcleo solitónico, mientras que el exterior sigue un perfil NFW aproximado.
En el panel derecho se muestra el perfil promedio de densidad (lı́nea negra continua) ajustado
al perfil solitónico descrito por la ecuación (5.12) (lı́nea punteada roja) y al perfil NFW (??)
(lı́nea punteada azul), marcando la región de transición en rsoliton ∼ 3.5rc.

Ası́, la configuración inicial de la función de onda consiste en un núcleo solitónico ya formado
y un perfil NFW en la región exterior. A esta configuración se le añade materia bariónica para
analizar los efectos que produce sobre ella.

5.4.2 Condiciones iniciales del fluido

Las condiciones iniciales para las variables hidrodinámicas corresponden a un fluido inicial-
mente en reposo, con densidad y energı́a especı́ficas uniformes en todo el dominio, es decir,
~v0(~x) = (0, 0, 0), ρ0(~x) y e0(~x) son constantes en el dominio. De esta manera, el fluido co-
menzará a acumularse en los pozos de potencial generados por la distribución de materia de
la función de onda. Inicialmente, no hay presión suficiente para detener el colapso, ya que el
gradiente de presión p0 = (γ − 1)ρ0e0 es nulo. Sin embargo, una vez iniciado el proceso, se
generará un gradiente que dependerá de las condiciones iniciales de p0 o, equivalentemente,
de e0 para una densidad fija ρ0.

Dado que la interacción entre ambas distribuciones de materia se produce a través de la gra-
vedad, se espera una transferencia de energı́a entre los componentes del sistema, aunque
la energı́a total debe conservarse. Además, como no hay transferencia de masa, esta debe
mantenerse separada para cada componente. Por ello, durante el proceso de evolución, diag-
nosticamos las siguientes magnitudes.

Exploramos tres escenarios diferentes con una densidad de gas ρ0(~x) = 256.2M�/kpc3
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Figura 5.21: Instantáneas de la distribución de densidad del gas (arriba) y de la FDM (abajo)
en los tiempos t = 2, 4, 6, 8 y 10 Gyr, de izquierda a derecha, en el plano x − y para el caso
de energı́a interna baja.

y energı́as internas e0(~x) = 9.39, 93.9 y 939 MJ/kg, denominadas respectivamente como
energı́a interna baja, media y alta. Los casos de energı́a baja y media corresponden a energı́as
totales del gas con Egas(0) < 0, es decir, la energı́a gravitacional domina sobre la energı́a
interna del gas. En el caso de alta energı́a, Egas(0) > 0, la energı́a interna domina sobre la
gravitacional.

5.4.3 Energı́a interna baja

La Figura 5.21 muestra la evolución de la densidad del gas (arriba) y la densidad de la FDM
(abajo) en los tiempos t = 2, 4, 6, 8 y 10 Gyr. En este caso, podemos observar que la baja
energı́a especı́fica inicial provoca el colapso del fluido en diferentes regiones, generando una
dinámica que sigue los pozos de potencial creados por los patrones de interferencia en la
densidad de la FDM. Por otro lado, la densidad de la FDM mantiene el núcleo solitónico
formado.

El diagnóstico de las cantidades globales se muestra en la Figura 5.22. La parte superior de
esta figura muestra la conservación de cada componente de las masas, que se mantiene con
alta precisión. Por otro lado, en el panel derecho se observa una transferencia de energı́a desde
la materia oscura bosónica hacia la distribución de gas. En este escenario, la energı́a total del
gas deja de conservarse, ya que esta aumenta mientras que la energı́a de la FDM permanece
constante. Esto indica que, en el caso de baja energı́a, el gas no afecta la dinámica de la
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FDM. Lo contrario ocurre con el gas, que, al tener tan poca energı́a, colapsa abruptamente,
comportándose de manera similar a un polvo. Después del colapso, el gas se calienta, pero
pierde estabilidad numérica.

Para ver en detalle cómo ocurre esta transferencia, se muestra cada componente de la energı́a
total de ambas distribuciones de materia en la parte inferior. En el lado izquierdo se observa
cómo la energı́a cinética y la potencial oscilan, lo que indica una transferencia entre ambas
debido a las fluctuaciones en los patrones de interferencia de la densidad. Sin embargo, en
promedio, la energı́a total de la FDM se conserva. En el lado derecho, se observa cómo
tanto la energı́a cinética como la interna del gas aumentan, indicando que el gas adquiere
movimiento mientras se calienta, mientras que la energı́a potencial disminuye, sin compensar
el aumento de las otras dos formas de energı́a.

5.4.4 Energı́a interna media

La Figura 5.23 muestra la evolución de la distribución de densidad del gas (arriba) y de la
FDM (abajo) en los tiempos t = 2, 4, 6, 8 y 10 Gyr. Se observa que un núcleo de materia
bariónica se forma desde etapas tempranas, mientras que fuera de este núcleo, la densidad
adquiere una forma casi esférica, con algunos remanentes de densidad que se mueven dentro
y fuera del dominio periódico. Por otro lado, la densidad de la FDM permanece con el núcleo
solitónico ya formado, al igual que en el caso anterior.

El diagnóstico de las cantidades globales se muestra en la Figura 5.24. La parte superior de
esta figura muestra la conservación de cada componente de las masas. En el panel derecho, se
observa una transferencia de energı́a desde la materia oscura bosónica hacia la distribución
de gas, con un incremento cercano al 1.7 % respecto al valor inicial de la energı́a total ET (0).
Para analizar en detalle cómo ocurre esta transferencia, se presentan los componentes de la
energı́a total de ambas distribuciones en la parte inferior de la figura.

En el lado izquierdo, se observa cómo la energı́a cinética y la potencial oscilan, mostrando
que existe una transferencia entre ambas debido a las fluctuaciones generadas por los patrones
de interferencia en la densidad. Al final, se estima que la energı́a cinética aumenta aproxima-
damente un 1.3 %, mientras que la energı́a potencial disminuye en torno al 3.0 % respecto al
valor ET (0), lo que indica que la energı́a transformada es principalmente la energı́a poten-
cial. Por otro lado, los componentes de la energı́a del gas muestran un aumento de alrededor
del 2.4 % en la energı́a interna especı́fica y del 0.7 % en la energı́a cinética, mientras que
la energı́a potencial disminuye un 1.4 %. Esto evidencia que la materia oscura bosónica ul-
traligera pierde energı́a potencial, la cual se transfiere al gas en forma de energı́a cinética e
interna.
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Figura 5.22: El panel superior derecho muestra la conservación precisa de la masa de la
función de onda y del gas, ası́ como de la masa total en función del tiempo. A la derecha,
se observa que la energı́a total se conserva, mientras que la energı́a de la función de onda
disminuye en un 1.7 %, y la energı́a total del gas aumenta en el mismo porcentaje con respecto
a la energı́a inicial ET (0). En el panel inferior izquierdo, se muestra la conversión rápida y
oscilatoria entre energı́a cinética y potencial. En el panel derecho, se observa la conversión
entre los diferentes tipos de energı́a del gas, con un aumento en la energı́a cinética e interna
y una disminución de la energı́a potencial con el tiempo.
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Figura 5.23: Instantáneas de la distribución de densidad del gas (arriba) y de la FDM (abajo)
en los tiempos t = 2, 4, 6, 8 y 10 Gyr, de izquierda a derecha, en el plano x − y para el caso
de energı́a interna media.

5.4.5 Energı́a interna alta

La Figura 5.25 muestra la evolución de la distribución de densidad del gas (arriba) y de la
FDM (abajo) en los tiempos t = 2, 4, 6, 8 y 10 Gyr. En este escenario de mayor energı́a, al
igual que en el caso anterior, se forma un núcleo de materia bariónica, seguido por un halo
esférico. Sin embargo, la dinámica de la densidad de la FDM no muestra cambios significa-
tivos respecto a los casos de energı́a baja y media.

El diagnóstico de las cantidades globales se muestra en la Figura 5.26. La parte superior de
esta figura muestra la conservación de cada componente de las masas. En el panel derecho, se
observa una transferencia de energı́a desde la materia oscura bosónica hacia la distribución de
gas, con un incremento cercano al 0.32 % respecto al valor inicial de la energı́a total ET (0).
Para analizar en detalle cómo ocurre esta transferencia, se presentan los componentes de la
energı́a total de ambas distribuciones en la parte inferior de la figura.

En el lado izquierdo, se observa cómo la energı́a cinética y la potencial oscilan, mostrando
que existe una transferencia entre ambas debido a las fluctuaciones generadas por los patrones
de interferencia en la densidad. Se estima que la energı́a cinética aumenta aproximadamente
un 7.15 %, mientras que la energı́a potencial disminuye en torno al 7.34 % respecto al valor
ET (0), lo que indica que la energı́a transformada es principalmente la energı́a potencial, con
una magnitud del 0.32 %.
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Figura 5.24: El panel superior derecho muestra la conservación con alta precisión de la masa
de la función de onda, la masa del gas y la masa total en función del tiempo. En el panel
derecho se observa que la energı́a total se conserva, mientras que la energı́a de la función de
onda disminuye en un 1.7 %, compensada por un incremento equivalente en la energı́a total
del gas respecto al valor inicial ET (0). En los paneles inferiores, el lado izquierdo muestra
la conversión oscilatoria rápida entre energı́a cinética y potencial, mientras que en el lado
derecho se observa el incremento de la energı́a cinética e interna del gas, acompañado de una
disminución gradual de la energı́a potencial.
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Figura 5.25: Instantáneas de la distribución de densidad del gas (arriba) y de la FDM (abajo)
en los tiempos t = 2, 4, 6, 8 y 10 Gyr, de izquierda a derecha, en el plano x − y para el caso
de alta energı́a interna.

Por otro lado, los componentes de la energı́a del gas muestran que la energı́a interna especı́fica
y la energı́a cinética aumentan alrededor de 0.43 % y 0.05 %, respectivamente, mientras que
la energı́a potencial disminuye un 0.16 %. Esto evidencia que la materia oscura bosónica
ultraligera pierde energı́a potencial, la cual se transfiere al gas en forma de energı́a cinética e
interna.

Los resultados presentados en esta sección muestran cómo la interacción gravitacional entre
la materia oscura bosónica ultraligera (FDM) y el gas bariónico depende fuertemente de las
condiciones iniciales de energı́a interna del gas. Adicionalmente, se evidencia la formación
de una estructura NFBS en el centro del halo, donde el núcleo solitónico de FDM se encuentra
rodeado por una distribución esférica de materia bariónica. Los principales hallazgos son los
siguientes:

En el caso de baja energı́a interna, el gas colapsa rápidamente hacia los pozos de po-
tencial generados por el núcleo solitónico de la FDM, formando una estructura NFBS
en el centro del sistema. Durante este proceso, el gas experimenta un calentamiento
significativo, aunque pierde estabilidad numérica debido a la rápida transferencia de
energı́a. La dinámica de la FDM, en cambio, se mantiene prácticamente inalterada.

En el escenario de energı́a interna media, el gas forma un núcleo denso de materia
bariónica desde etapas tempranas, manteniendo la estructura NFBS en el centro del
halo. Se observa una transferencia de energı́a de la FDM al gas cercana al 1.7 % de la
energı́a total inicial. Este escenario muestra un balance más estable entre los distintos
tipos de energı́a, lo que permite una evolución más controlada del sistema.
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Figura 5.26: El panel superior derecho muestra la conservación precisa de la masa de la
función de onda, la masa del gas y la masa total en función del tiempo. En el panel derecho
se observa que la energı́a total se conserva, mientras que la energı́a de la función de onda
disminuye en un 0.32 %, compensada por un incremento equivalente en la energı́a total del
gas respecto al valor inicial ET (0). En los paneles inferiores, el lado izquierdo muestra la
conversión rápida y oscilatoria entre energı́a cinética y potencial, mientras que en el lado
derecho se observa el incremento de la energı́a cinética e interna del gas, acompañado de una
disminución gradual de la energı́a potencial con el tiempo.
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En el caso de alta energı́a interna, el gas desarrolla una estructura similar, con un núcleo
central rodeado de un halo esférico. La estructura NFBS persiste en el centro, pero la
transferencia de energı́a hacia el gas es menor, del orden del 0.32 %. En este escenario,
la energı́a interna del gas domina sobre la gravitacional, lo que ralentiza el colapso y
genera un equilibrio más sostenido.

En todos los escenarios, se observa que la materia oscura ultraligera pierde energı́a po-
tencial, la cual es transferida al gas en forma de energı́a interna y cinética. Sin embar-
go, el grado de transferencia y la respuesta dinámica del sistema dependen del régimen
energético inicial del gas.

Estos resultados muestran cómo las NFBS se condensan en el interior del halo granular,
resaltando la importancia de la interacción entre la materia oscura y la materia bariónica en
la formación y evolución de estructuras gravitacionales. La presencia de un núcleo solitónico
de FDM y su interacción con el gas son factores clave para comprender la dinámica galáctica,
ası́ como la estabilización de estructuras tipo NFBS en el centro de los halos galácticos.



Capı́tulo6
Simulaciones de Materia Oscura Difusa acoplada a un Hoyo

Negro

Un elemento esencial introducido en la fenomenologı́a de la FDM es la presencia de agujeros
negros (BH, por sus siglas en inglés) y su comportamiento dentro de los núcleos de FDM. Por
ejemplo, en [109, 110] se estudian las propiedades del perfil de densidad del núcleo de FDM
bajo diversos regı́menes del gas bosónico y escenarios que incluyen un agujero negro. En
[111] se analiza la interacción entre el FDM y el agujero negro, enfocándose especialmente
en la fricción dinámica y el arrastre de la estela detrás del agujero mientras se desplaza. De
igual manera, en [112] se estudia la fricción dinámica de núcleos de FDM en escenarios de
fusiones con agujeros negros. En [113] se explora la fusión de agujeros negros binarios que
se mueven dentro de núcleos de FDM, en el contexto del problema del último pársec durante
la fusión.

En contextos relacionados con ondas gravitacionales, se ha investigado la dinámica de aguje-
ros negros binarios inmersos en FDM para estimar la extracción de momento angular debido
a los efectos dinámicos de cúmulos de materia oscura dentro del núcleo [114]. Por otro la-
do, en [115] se analiza la eyección de agujeros negros supermasivos (SMBH) debido a la
superposición de modos y la acumulación de efectos tipo caminata aleatoria dentro de halos
de FDM. Además, en [116] se estudia el movimiento de una partı́cula puntual masiva en un
entorno de FDM que incluye su granularidad, mientras que en [112] se analiza la colisión
entre un núcleo de FDM y un BH super masivo (SMBH, por sus siglas en inglés).

Estos estudios consideran al agujero negro como un objeto newtoniano y se centran principal-
mente en los efectos dinámicos asociados a agujeros negros en movimiento. En un contexto
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relativista, también se ha explorado la coexistencia y fenomenologı́a de agujeros negros con
materia oscura bosónica ultraligera. Por ejemplo, en [117, 118, 119, 120] se estudian diversos
efectos de la dinámica de los agujeros negros sobre el campo escalar, incluyendo la fricción
dinámica. Por otro lado, en [121, 122] el análisis se centra en la posible detección de mate-
ria oscura ultraligera mediante su influencia en la fenomenologı́a de ondas gravitacionales,
considerando también el caso con autointeracción [123]. En escenarios cosmológicos, se han
estudiado procesos como la nucleación de nubes escalares [124].

En este capı́tulo, se estudian los efectos de un agujero negro durante la condensación del
núcleo de FDM, siguiendo el método de relajación cinética desarrollado en [13, 125]. Es-
te método utiliza condiciones iniciales aleatorias, lo que permite que la granularidad de la
distribución de FDM se forme en presencia del agujero negro desde el instante inicial.

En nuestro análisis, se considera un agujero negro esférico simétrico en el régimen newto-
niano, incorporando sus efectos gravitacionales en el sistema de ecuaciones de Schrödinger-
Poisson que rige la dinámica del sistema FDM+BH. Sin embargo, se ignora la acreción par-
cial de materia oscura ondulatoria, ya que esta depende de la longitud de onda y el grosor de
los paquetes de onda que se aproximan al agujero negro, como se demostró mediante relati-
vidad numérica completamente no lineal en [126, 127]. También se omiten otros efectos de
acreción no lineales en escenarios no simétricos [128].

SECCIÓN 6.1

Soluciones estacionarias

Construimos soluciones estacionarias para el problema FDM+BH siguiendo [27], cuyas
ecuaciones son equivalentes al sistema:

i~∂tΨ = − ~2

2mB

∇2Ψ +mB (V + V•) Ψ, (6.1)

∇2V = 4πG(ρFDM − ρ̄FDM), (6.2)

donde V• = −GMBH

r
representa el potencial gravitacional debido a un agujero negro de masa

MBH . El problema se resuelve en unidades del código, bajo simetrı́a esférica y asumiendo
una dependencia temporal armónica del tipo Ψ = ψ(r)e−iωt, donde ψ es una función real.
Estas suposiciones llevan a un problema de autovalores para el parámetro ω, imponiendo
condiciones de frontera aisladas en el infinito y regularidad en el origen.
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Este sistema exhibe invariancia bajo la transformación:

{t′,Ψ′, x′, V ′, ρ′FDM ,M ′
BH} → {λ−2t, λ2Ψ, λ−1x, λ2V, λ4ρFDM , λMBH},

donde λ es un parámetro arbitrario. Para construir un modelo fenomenológico de la densidad
de FDM, definimos el invariante α = M2

BH/ψ0 bajo la transformación λ, el cual permite
parametrizar la familia de soluciones del problema de autovalores.

En el lı́mite V• � V o, de forma equivalente, α � 1, el sistema se reduce al caso del átomo
de hidrógeno, cuya solución fundamental es:

ψ(r) = 2

(
1

a0

)3/2

e−r/a0 ,

donde a0 es el radio de Bohr. Por lo tanto, proponemos una fórmula que, en el lı́mite de α
grande, se aproxima a esta solución exponencial:

ρ(r, α) = ρce
− ln 2( r

rc
)
β

, (6.3)

donde ρc es la densidad central, el radio rc se define como el radio donde la densidad dismi-
nuye a la mitad de su valor central, y β es una función dependiente de α que se determinará.

En escenarios puramente FDM, la solución fundamental del sistema SP (e.g., [65]) es difı́cil
de utilizar para ajustes fenomenológicos en estructuras que evolucionan en simulaciones. Por
ello, se propuso una fórmula práctica para modelar núcleos FDM de forma universal [22].
En este capı́tulo, adoptamos un enfoque similar. Dado que las soluciones del problema de
autovalores FDM+BH no se pueden emplear directamente para monitorizar la formación del
núcleo alrededor de un agujero negro, necesitamos un perfil de densidad práctico que permita
ajustar la densidad del núcleo de la solución.

Para ello, proponemos una función que ajusta las propiedades del núcleo. Por ejemplo, para
el radio del núcleo rc, consideramos la siguiente expresión:

rc = 1.3ρc
−1/4 (1 + a1 ln(a2α + 1) + a3α

a4) , (6.4)

con los parámetros: a1 = −0.25355872, a2 = 0.46241994, a3 = 0.0663722 y a4 = 0.33407792.

Además, para cada valor de α, existe un valor asociado de β que, según la fórmula (6.3),
ajusta la densidad obtenida de las ecuaciones (6.1)-(6.2). Este comportamiento se describe
mediante la siguiente ecuación:
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Figura 6.1: (Izquierda) Arriba: autovalor ω como función de α. Medio e inferior: radio del
núcleo rc y la función β como funciones de α, donde los puntos representan soluciones exac-
tas del problema de autovalores y las lı́neas continuas corresponden a los valores obtenidos
mediante las fórmulas (6.4) y (6.5). (Derecha) Comparación entre la solución numérica del
problema de autovalores y la densidad resultante de las fórmulas (6.3), (6.4) y (6.5) para
α = 0, 10, 100.

β =
b1α

b2

αb3 + b4

+ b5, (6.5)

con b1 = −1.08334305, b2 = 0.77866182, b3 = 0.81228993, b4 = 6.72089826 y b5 =
1.84588407.

En la Figura 6.1, se presenta el autovalor ω en función de α (panel superior). Los paneles
intermedios e inferiores muestran el radio del núcleo rc y la función β respectivamente, com-
parando los valores exactos obtenidos del problema de autovalores con aquellos calculados
mediante las fórmulas propuestas (6.4) y (6.5).

En el panel derecho de la figura, se muestra la solución numérica del problema de autovalores
junto con el perfil de densidad obtenido usando las fórmulas (6.3), (6.4) y (6.5), demostran-
do que el modelo propuesto es consistente incluso para valores de α que difieren en varios
órdenes de magnitud (α = 0, 10, 100).

Estos resultados confirman que el modelo propuesto es capaz de reproducir adecuadamente
las soluciones del problema de autovalores y proporcionar un perfil práctico para utilizar en
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simulaciones dinámicas que involucren núcleos de FDM en presencia de agujeros negros.

SECCIÓN 6.2

Dinámica del sistema FDM+BH

El sistema de ecuaciones que rige la dinámica del sistema FDM+BH es el siguiente sistema
de ecuaciones de Schrödinger-Poisson (SP):

i~∂tΨ = − ~2

2mB

∇2Ψ +mVΨ, (6.6)

∇2V = 4πG(ρT − ρ̄T ), (6.7)
~̈xBH = −∇VFDM , (6.8)

∇2VFDM = 4πG(ρFDM − ρ̄FDM), (6.9)

donde V es el potencial gravitacional debido al sistema combinado FDM+BH, mientras
que VFDM es el potencial generado únicamente por la FDM. El agujero negro (BH) se
modela mediante una distribución de densidad aproximada ρBH = MBHδ(~x − ~xBH) '
CMBHe

−|~x−~xBH |2/2ε2 , donde C es un factor de normalización tal que la integral de la dis-
tribución corresponde a la masa total del agujero negro MBH . La densidad total del sistema
es ρT = ρ + ρBH y ~xBH es la posición del agujero negro, el cual responde a la gravedad
generada por la FDM.

6.2.1 Método numérico

El sistema adimensional se resuelve utilizando nuestro código CAFE-FDM [69], el cual
implementa un método pseudo-espectral para discretizar las derivadas espaciales, un esquema
de Runge-Kutta de cuarto orden (RK4) para la evolución temporal de la función de onda, y
la FFT para resolver las ecuaciones de Poisson. Todas las simulaciones se realizan en un
dominio cúbico periódico de lado L, con resolución espacial h.

Para la distribución del BH, usamos ε = 0.1h, lo que reproduce resultados consistentes con
[112] en dominios no periódicos, donde se utiliza un potencial gravitacional del tipo V• =
− GMBH√

máx(r2,ε2)
en la ecuación de Schrödinger. Definir el BH mediante la distribución ρBH

permite trabajar también en dominios periódicos.
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6.2.2 Condiciones iniciales

El proceso de relajación cinética que lleva a la condensación del núcleo utiliza condiciones
iniciales aleatorias para el gas bosónico, permitiendo la formación de sobredensidades que
posteriormente colapsan y facilitan la condensación. Siguiendo [13, 125], utilizamos una
distribución gaussiana en el espacio de momentos:

Ψ(~p) = Ae−0.5p2eiS,

donde S es una fase aleatoria en el rango [0, 2π] para cada punto del espacio de momentos y
A es un factor de normalización.

6.2.3 Simulaciones

Se realizaron 32 simulaciones utilizando el mismo tipo de configuración, pero con diferentes
semillas para generar condiciones iniciales aleatorias del sistema FDM y considerando distin-
tas masas de agujeros negros (BH): MBH = M/256,M/128,M/64,M/32. Estas masas se
encuentran dentro del rango utilizado en estudios sobre fricción dinámica [111] y en escena-
rios relacionados con la nucleación de estrellas de axiones por agujeros negros primordiales
(PBH) [124].

Las diferentes semillas para las condiciones iniciales generan evoluciones distintas del sis-
tema FDM en presencia de un BH. Sin embargo, los resultados de las simulaciones pueden
clasificarse en dos escenarios principales:

1. Formación cercana al BH: Un miniclúster de FDM se forma cerca del agujero negro.
Este miniclúster colapsa, se relaja y finalmente condensa su núcleo alrededor del BH.

2. Formación lejana y fusión con el BH: Un miniclúster de FDM se forma más allá
del radio de marea del BH. Su evolución incluye la fusión con el agujero negro, donde
finalmente ocurre la relajación y la condensación del núcleo.

De estos dos escenarios, el segundo es el caso más interesante, ya que ilustra claramente
cómo el BH actúa como punto de condensación para la densidad de FDM.

Para ilustrar la evolución de este caso genérico, se utilizó una semilla especı́fica para generar
la fase aleatoria del FDM en el espacio de Fourier. Esto permitió establecer las condiciones
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iniciales del sistema y estudiar su evolución utilizando las cuatro masas de agujeros negros
mencionadas.

La evolución de estas cuatro simulaciones se presenta en la Figura 6.2, que contiene ins-
tantáneas de la densidad de FDM y la posición del agujero negro en distintos tiempos. En
etapas tempranas (t ∼ 7), se forma un miniclúster cerca de la esquina inferior derecha del
dominio. Con el tiempo, este miniclúster se fusiona con el BH, siguiendo trayectorias distin-
tas según la masa del agujero negro, y la condensación ocurre finalmente en la ubicación del
BH.

6.2.4 Condensación y dinámica del núcleo

Para analizar el proceso de condensación, se monitorea la evolución de la densidad máxima
ρmax a lo largo del tiempo. Los resultados se presentan en la Figura 6.3, donde se observa
que la condensación ocurre: la densidad crece siguiendo una ley de potencias en función del
tiempo a partir de t ∼ 30, lo que marca el inicio del proceso de condensación. Sin embargo,
en etapas posteriores, la densidad máxima disminuye o se estabiliza, en contraste con el
escenario de FDM puro, donde la densidad continúa creciendo indefinidamente [13, 125].

La disminución de ρmax es menos pronunciada para agujeros negros menos masivos y puede
interpretarse en términos del movimiento relativo entre el BH y el núcleo de materia oscura.
El agujero negro, al estar en movimiento, arrastra la materia oscura a su alrededor e impide
que la densidad siga aumentando. Este efecto es más fuerte para agujeros negros más masivos.
En consecuencia, la presencia del BH tiende a aplanar la densidad del núcleo de FDM a largo
plazo.

Movimiento relativo del agujero negro

En la Figura 6.4, se muestra la distancia entre el punto de densidad máxima y la posición del
agujero negro para las cuatro masas consideradas. La evolución de esta distancia no sigue
una tendencia clara debido al comportamiento no lineal y la dinámica granular del FDM.
Cada simulación presenta fusiones entre el miniclúster y el BH en diferentes condiciones,
posiciones y velocidades de fusión, lo que genera patrones variados.

También se analizó la velocidad del agujero negro. En la Figura 6.5 se presenta la compo-
nente x de la velocidad del BH, donde se observan oscilaciones similares a las descritas en
[112] para núcleos esféricos suaves. En las simulaciones actuales, estas oscilaciones son me-
nos regulares debido a que el núcleo no es inicialmente esférico ni suave, sino que presenta
granularidad y dependencia temporal desde su formación.
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Figura 6.2: Instantáneas de la densidad proyectada en un plano que contiene la posición
del agujero negro y es paralelo al plano xy del dominio numérico. La posición del aguje-
ro negro se representa con una cruz amarilla en diferentes momentos de las simulaciones
con MBH = M/256,M/128,M/64 y M/32. La evolución muestra la formación de un mi-
niclúster cerca de la esquina inferior derecha, el cual posteriormente se fusiona con el BH.
Durante la fusión, el agujero negro oscila con respecto al núcleo condensado, como se ob-
serva en las animaciones del material suplementario. Para t ∼ 60, la materia oscura difusa
alcanza el proceso de condensación.
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Figura 6.3: Evolución de ρmax para diferentes masas de agujeros negros MBH =
M/256,M/128,M/64,M/32. Se observa que, para los agujeros menos masivos, la densidad
sigue creciendo hasta t ∼ 60, donde se estabiliza. En cambio, para los agujeros más masi-
vos, la densidad máxima disminuye, evidenciando el efecto del BH sobre la condensación del
núcleo.

Figura 6.4: Distancia entre el punto de máxima densidad de FDM y la posición del agujero
negro para masas MBH = M/256,M/128,M/64,M/32. La falta de una tendencia clara se
debe a que cada fusión ocurre en diferentes condiciones dinámicas y posiciones del dominio.



162 Dinámica del sistema FDM+BH

Figura 6.5: Componente x de la velocidad del agujero negro para MBH =
M/256,M/128,M/64,M/32. Las oscilaciones observadas son consistentes con aquellas
propuestas en [112], aunque menos regulares debido a la granularidad del núcleo de FDM.
Se observan pulsos de recalentamiento para MBH = M/128 y M/64.

En los casos con MBH = M/128 y M/64, se observan pulsos de recalentamiento.en la velo-
cidad, fenómeno también descrito en [112]. Las componentes y y z de la velocidad muestran
un comportamiento similar. Las animaciones incluidas en el material suplementario ilustran
completamente este proceso.

Ajuste del perfil de densidad del núcleo

A pesar de la dinámica compleja, se ajustó el perfil de densidad del núcleo de FDM, no
solo en un instante fijo, sino promediando sobre una ventana temporal utilizando un modelo
fenomenológico. Este modelo emula la solución estacionaria del problema de autovalores
FDM+BH descrita en [27] (véase Apéndice 6.1) y utiliza las ecuaciones (6.3)-(6.5) para el
ajuste.

La Figura 6.6 muestra los ajustes obtenidos al promediar el perfil de densidad en el intervalo
t ∈ [70, 100]. Se observa que la densidad central del núcleo disminuye a medida que aumenta
la masa del BH. Para agujeros negros menos masivos (MBH = M/256,M/128), el perfil de
densidad es similar al del caso sin agujero negro (MBH = 0), lo cual valida la consisten-
cia de las simulaciones. Sin embargo, incluso los agujeros negros pequeños influyen en la
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Figura 6.6: Ajuste del perfil de densidad promediado angular y temporalmente alrededor del
agujero negro, utilizando la fórmula fenomenológica (6.3). El intervalo temporal utilizado
es t ∈ [70, 100]. Se observa que a mayor masa del BH, menor es la densidad central del
núcleo. Para los casos con agujeros negros menos masivos, el perfil se asemeja al caso sin
BH, confirmando la validez de las simulaciones.

condensación al actuar como puntos de atracción para la materia oscura.

Los resultados de nuestras simulaciones demuestran que:

1. Los agujeros negros actúan como puntos de condensación para la materia oscura difusa.

2. La presencia del BH modifica la dinámica del núcleo formado, afectando la densidad
central y la estabilidad del sistema.

3. Los perfiles de densidad resultantes pueden ajustarse utilizando soluciones estaciona-
rias del problema de autovalores FDM+BH, lo que confirma que estos perfiles actúan
como soluciones atractoras.

Estos hallazgos proporcionan evidencia adicional de la influencia significativa que los aguje-
ros negros pueden tener en la formación de estructuras en escenarios de materia oscura difusa
y abren nuevas posibilidades para futuros estudios observacionales y teóricos.
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Capı́tulo7
Conclusiones

En este trabajo se ha desarrollado un nuevo software, creado desde cero. Este avance
consiste en un código que resuelve de manera acoplada el sistema de ecuaciones de SP
y las ecuaciones hidrodinámicas de Euler. Esta herramienta permite simular tanto es-
cenarios de FDM pura como la interacción entre ésta y la materia bariónica, modelada
mediante un gas ideal. Los resultados obtenidos proporcionan información relevante
sobre la formación y evolución de estructuras galácticas.

Las simulaciones de FDM realizadas han revelado información importante acerca del
modelo. En sistemas con escalas inferiores a la longitud de Jeans —donde la expansión
del universo no es determinante— se observa que nubes de gas bosónico se conden-
san, formando mini-clústers. Estas estructuras iniciales se alinean con el estado base
del sistema, una solución estable. Estos núcleos galácticos, posiblemente las primeras
estructuras formadas, dieron lugar a configuraciones más complejas mediante fusio-
nes sucesivas. En particular, se encontró que en fusiones binarias la masa final del
núcleo es aproximadamente el 76.85 % de la suma de las masas iniciales. Este resul-
tado ofrece indicios sobre la formación de galaxias primigenias, caracterizadas por un
núcleo solitónico rodeado de un perfil que decae polinomialmente, conocido como halo
galáctico.

Las condiciones de frontera juegan un papel crucial en la dinámica del sistema y en
sus propiedades globales. El enfriamiento gravitacional y el acercamiento asintótico
al estado base son fenómenos asociados a condiciones de frontera aisladas. Por otro
lado, bajo condiciones de frontera periódicas, se conservan magnitudes globales como
la masa y la energı́a total, lo que genera una redistribución de materia que inhibe el
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enfriamiento gravitacional en la misma escala temporal que en el caso aislado.

Los perfiles de la estructura núcleo-halo pueden generarse a partir de soluciones esféri-
cas con una discontinuidad en la derivada en un punto denominado radio de transición.
En este punto, la solución del solitón se conecta de forma continua con un modelo esta-
cionario. Sin embargo, estas soluciones no son estables y tienden a relajarse hacia una
estructura dinámica similar. Alternativamente, al utilizar perfiles empı́ricos, se puede
resolver un problema inverso para encontrar una función de onda estacionaria que re-
produzca dicho perfil en un promedio espacial o temporal. A pesar de ello, se observa
que estos perfiles también son inestables, ya que el núcleo tiende a acumular masa
desde el halo, fenómeno conocido desde la formación de solitones en los mini-clústers.

Las simulaciones han reproducido diversos resultados conocidos en la literatura, lo que
valida los métodos numéricos desarrollados para la FDM pura. La principal contribu-
ción de este trabajo es la inclusión de un gas ideal como modelo de materia visible,
permitiendo ası́ un estudio más completo de la interacción entre materia oscura y ba-
riónica en entornos galácticos.

Se encontró que el estado base del sistema SPE, denominado NFBS, es un atractor
del sistema. Esta solución surge de manera natural a partir de condiciones iniciales
aleatorias. En este contexto, los solitones que actúan como semillas de estructuras en el
universo primigenio deben contener una contribución de materia bariónica. Este hecho
es relevante, ya que dichos estados también se manifiestan en los centros galácticos,
donde se forman los bulbos.

Los bulbos galácticos, estructuras densas compuestas mayormente por estrellas anti-
guas con poco gas, se explican en este modelo como una manifestación conjunta de
materia visible y materia oscura bosónica. La formación simultánea de un núcleo ba-
riónico y un núcleo FDM explica la elevada densidad estelar observada en el centro de
las galaxias. Además, la contribución bariónica mejora la capacidad del modelo para
reproducir caracterı́sticas observadas, como la distribución de masa, el perfil de brillo
y la dinámica estelar de los bulbos.

Las simulaciones realizadas en este trabajo han permitido explorar en detalle la in-
fluencia de los agujeros negros sobre la materia oscura difusa (FDM) y su papel en los
procesos de condensación y formación de núcleos galácticos. Los resultados muestran
que los BH actúan como puntos de atracción para la materia oscura, promoviendo la
formación de núcleos densos de FDM a su alrededor. Esta condensación se ve modu-
lada por la masa del agujero negro y su dinámica relativa con respecto al núcleo en
formación.

El análisis revela que el movimiento del BH induce oscilaciones en el núcleo de FDM,
afectando la estabilidad del sistema y limitando la densidad máxima alcanzable. Los
agujeros negros más masivos tienden a aplanar el perfil de densidad del núcleo al arras-
trar la materia oscura en su entorno, mientras que los menos masivos permiten una



167

condensación más pronunciada. Además, se observa que incluso BH con masas re-
ducidas influyen significativamente en la dinámica del FDM, actuando como centros
de condensación y promoviendo la formación de miniclústers que eventualmente se
fusionan con el agujero.

La fricción dinámica generada por la interacción entre el BH y el núcleo de FDM con-
duce a patrones de oscilación complejos, especialmente en medios granulares donde
la estructura interna del FDM afecta la evolución del sistema. Estos patrones se ali-
nean parcialmente con resultados previos en medios más homogéneos, pero destacan
la importancia de considerar la granularidad en simulaciones detalladas.

Finalmente, los perfiles de densidad ajustados en torno al BH concuerdan con las solu-
ciones teóricas estacionarias del problema de autovalores FDM+BH, lo que confirma
que los agujeros negros no solo catalizan la condensación inicial, sino que también
estabilizan la estructura del núcleo a largo plazo. Estos hallazgos aportan una nueva
perspectiva sobre el papel de los BH en la evolución galáctica y abren posibilidades
para utilizar la dinámica de la materia oscura difusa como herramienta para estudiar la
presencia y caracterı́sticas de agujeros negros en entornos galácticos.

En conjunto, los avances presentados en este trabajo contribuyen significativamente a
una mejor comprensión de los mecanismos que rigen la formación y evolución de es-
tructuras galácticas. Los resultados respaldan la hipótesis de la materia oscura bosónica
como una explicación viable para las propiedades observadas en galaxias de bajo brillo
superficial. Este estudio sienta las bases para futuras investigaciones en modelos más
completos que consideren la evolución galáctica en escenarios más realistas.
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A
Apéndice

SECCIÓN A.1

Soluciones estacionarias y su estabilidad: Estrellas TOV

Suponemos un fluido autogravitante en equilibrio hidrostático y esféricamente simétrico. Ba-
jo estas consideraciones, las ecuaciones de EP (2.1-2.4) se reducen a

dp

dr
= −ρdV

dr
, (A.1)

dm

dr
= r2ρ, (A.2)

dV

dr
=

m

r2
, (A.3)

las cuales forman un conjunto de tres ecuaciones diferenciales ordinarias para cuatro varia-
bles: la presión p, la densidad ρ, el potencial gravitacional V y la masa m encerrada en una
esfera de radio r. Para cerrar el sistema, se utiliza la ecuación de estado politrópica
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p = Kρ1+1/n, (A.4)

donde K se conoce como constante politrópica y n es el ı́ndice politrópico. Este conjunto
de ecuaciones se resuelve especificando sus valores en la frontera: p(0) = pc, ρ(0) = ρc,
m(0) = 0, V (0) = Vc y ρ(R) = 0 dondeR > 0 se interpreta como el radio de la estrella TOV.
Notemos que el único valor que determina una solución de este sistema es la densidad central
ρc (para una constante politrópica K y un ı́ndice politrópico n fijos), ya que la presión central
pc se obtiene mediante la ecuación de estado (A.4), mientras que el potencial central Vc se
puede elegir de manera arbitraria, ya que el sistema (A.1-A.3) es invariante bajo traslaciones
en el potencial V → V + Vc.

El sistema (A.1-A.4) se puede escribir como una única ecuación diferencial ordinaria de
segundo orden

1

ξ2

d

dξ

(
ξ2dθ

dξ

)
= −θn, (A.5)

la cual es conocida como la ecuación de Lane-Emden [130] y está sujeta a las condiciones
de frontera θ(0) = 1, dθ

dξ
(0) = 0 y θ(ξ1) = 0, donde ξ1 es el primer cero de la solución θ

y se interpreta como el radio del politrópo. Las nuevas variables se definen como ρ = ρcθ
n

y r = αξ, con α2 = K(n + 1)ρ
1−n
n

c . La masa total M y el radio de la estrella R = αξ1 se
relacionan a través de la expresión

R
3−n
n M

n−1
n =

4πK

Nn

, (A.6)

donde

Nn :=
(4π)1/n

n+ 1

([
−ξ2dθ

dξ

]
ξ=ξ1

) 1−n
n

ξ
n−3
n

1 , (A.7)

y la densidad central se puede reescribir como

ρc =
M

4πR3

ξ3
1[

−ξ2
dθ

dξ

]
ξ=ξ1

. (A.8)
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Figura A.1: A la izquierda se muestran soluciones numéricas de la ecuación de Lane-Emden
(A.5), destacando el caso n = 1.5 mediante una lı́nea punteada. En el lado derecho, se pre-
senta el radio de la estrella TOV ξ1 como función del ı́ndice politrópico n, siendo ξ1 ≈ 3.6554
para n = 1.5.

En el lado izquierdo de la Figura A.1 se muestran algunas soluciones numéricas de la ecua-
ción de Lane-Emden (A.5) para un ı́ndice politrópico en el rango n ∈ [0, 5], con un caso de
especial interés para un valor de n = 1.5 representado mediante una lı́nea punteada. En el
lado derecho se muestra el radio de la estrella TOV ξ1 como función del ı́ndice politrópico
n, siendo para n = 1.5, ξ1 ≈ 3.6554. Obsérvese que esta es una función creciente. Existen
algunas soluciones exactas para los valores de n = 0, 1, 2 y 5 [131], en las cuales se muestra
que una estrella con n = 5 tiene un radio infinito, por lo que este valor es una cota para
soluciones fı́sicamente aceptables.

Una ecuación de estado politrópica no es más que un gas ideal en un proceso isentrópico, es
decir, un proceso adiabático reversible en el cual la entropı́a del sistema permanece constan-
te. Durante la evolución de un fluido pueden ocurrir choques hidrodinámicos, lo que implica
una conversión de la energı́a cinética en energı́a interna en un proceso conocido como ca-
lentamiento por choques [132], en el cual se rompe el proceso isentrópico y el gas deja de
comportarse como un politropo perfecto.

Bajo procesos isentrópicos, el ı́ndice adiabático de un gas ideal se relaciona con el ı́ndi-
ce politrópico mediante la expresión γ = 1 + 1/n, y la constante politrópica con la en-
tropı́a especı́fica σ mediante K = eσ/CV , donde CV es la capacidad calorı́fica del gas a
volumen constante. Para gases monoatómicos (como el helio y el hidrógeno, los elementos
más abundantes en una estrella en la secuencia principal), se tiene un valor γ = 5/3 o bien
n = 1.5. En este caso particular, las ecuaciones (A.6) y (A.8) tienen los valores aproximados
K ≈ 0.4242GRM1/3 y ρc ≈ 1.428M/R3.

Entonces, estudiamos la estabilidad de procesos isentrópicos tomando como ejemplo la solu-
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ción para n = 1.5 y considerando una estrella de masa M = 1 y radio R = 10 en unidades
adimensionales. Para ello, la solución numérica corresponde a los datos iniciales de las ecua-
ciones de EP (2.1-2.4). Recordemos que los métodos numéricos solo son una aproximación
a las soluciones en el lı́mite continuo; por lo tanto, este tipo de condiciones iniciales pue-
den tratarse como la solución exacta del sistema estacionario más una perturbación debida
al error de truncamiento de los métodos numéricos. Ası́, la evolución consiste en observar
cuánto afecta esta perturbación a la solución en el tiempo. La evolución se lleva a cabo en el
dominio espacialD = [−2R, 2R]3 durante 100 unidades de tiempo, utilizando una resolución
espacial de h = R/16 y una resolución temporal de ∆t = 0.25h.

La Figura A.2 muestra cinco instantáneas a los tiempos t = 0, 33.33, 66.67 y 100.0 del perfil
de densidad a lo largo del eje x, en las que se presenta cómo evoluciona el gas bajo ambas
ecuaciones de estado. Podemos observar que el sistema se comporta de manera similar inde-
pendientemente de la elección de la ecuación de estado, evolucionando hacia configuraciones
muy cercanas a la densidad inicial. De hecho, en ambos casos, la densidad central, es decir,
la densidad medida en el origen de coordenadas, decrece aproximadamente un 4 %, y no es
posible notar una desviación significativa entre el caso isentrópico y el de un gas ideal, como
se muestra en la Figura A.3.

Sin embargo, sı́ existe una pequeña desviación del proceso isentrópico inicial, lo cual se
debe a los choques hidrodinámicos generados por un artificio numérico. Cabe destacar que la
solución estacionaria solo es válida dentro de la región |~x| ≤ R. En principio, fuera de esta
esfera la solución para la densidad deberı́a ser nula. Sin embargo, numéricamente esto no
es posible, ya que en el lado derecho del sistema discretizado aparecen términos que varı́an
como 1/ρ, lo cual no está definido fuera de esta esfera. Por esta razón, es necesario introducir
un artilugio numérico en dicha región, denominado atmósfera, el cual establece un valor
mı́nimo para la densidad, tı́picamente dentro del rango de los errores de redondeo.

Lo que se ha mostrado hasta ahora es que una perturbación, en este caso debida a la interfaz
atmósfera-estrella, puede interrumpir un proceso isentrópico en un gas ideal y comenzar a
calentarlo mediante los llamados choques hidrodinámicos, como se ilustra en la Figura A.4,
donde se presenta la constante politrópica definida como K = p/ργ para un gas ideal. En
dicha figura, se observa que esta constante deja de ser constante, lo que indica que el proceso
deja de ser isentrópico.

Sin embargo, la dinámica en el interior de la estrella, aproximada mediante una ecuación
de estado politrópica, sigue siendo bastante similar a la de un gas ideal. Esta sensibilidad
es crucial, ya que los choques hidrodinámicos pueden ocurrir fácilmente en presencia de
oscilaciones inducidas por una fuente externa, como se observa en estrellas compuestas por
fermiones y bosones.
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Figura A.2: Instantáneas a los tiempos t = 0.00, 33.07, 66.14 y 100.0 del perfil de densidad
normalizado respecto al valor inicial ρc a lo largo del eje x normalizado respecto al radio
de la estrella R. La lı́nea continua negra corresponde a la evolución mediante una ecuación
de estado politrópica mientras que la lı́nea punteada roja a la evolución con una ecuación de
estado de un gas ideal.

Figura A.3: Densidad medida en el origen de coordenadas como función del tiempo. La lı́nea
continua negra representa la evolución mediante una ecuación de estado politrópica mientras
que la lı́nea punteada roja con un gas ideal.

Figura A.4: Instantáneas de la cantidad constante politrópica p/ργ para un gas ideal en los
tiempos t = 0.00, 7.812, 15.62 y 23.44 en el plano z = 0. Se observa un incremento in-
mediato en su valor en la interfaz estrella-atmósfera debido a los choques hidrodinámicos
provocados por el problema de Riemann en esta zona.
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Kolchin, Anastasia Fialkov, and Lars Hernquist. Galaxy formation with becdm i. tur-
bulence and relaxation of idealized haloes. Mon. Not. Roy. Astron. Soc., 471(4):4559–
4570, 2017.

[26] Xinyu Li, Lam Hui, and Tomer D. Yavetz. Oscillations and random walk of the soliton
core in a fuzzy dark matter halo. Physical Review D, 103(2), jan 2021.

[27] Elliot Y Davies and Philip Mocz. Fuzzy dark matter soliton cores around supermassive
black holes. Monthly Notices of the Royal Astronomical Society, 492(4):5721–5729,
jan 2020.

[28] H. Y. Schive, T. Chiueh, T. Broadhurst, and K. W. Huang. Contrasting Galaxy Forma-
tion from Quantum Wave Dark Matter, ψDM, with ΛCDM, using Planck and Hubble
Data. apj, 818:89, February 2016.

[29] V. Irsic, M. Viel, M. G. Haehnelt, J. S. Bolton, and G. D. Becker. First constraints on
fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. ArXiv
e-prints, March 2017.

[30] E. Armengaud, N. Palanque-Delabrouille, C. Yeche, D. J. E. Marsh, and J. Baur. Cons-
training the mass of light bosonic dark matter using SDSS Lyman-α forest. ArXiv
e-prints, March 2017.

[31] Renée Hlozek, Daniel Grin, David J. E. Marsh, and Pedro G. Ferreira. A search for ul-
tralight axions using precision cosmological data. Phys. Rev., D91(10):103512, 2015.

[32] Brandon Bozek, David J. E. Marsh, Joseph Silk, and Rosemary F. G. Wyse. Galaxy
UV-luminosity function and reionization constraints on axion dark matter. Mon. Not.
Roy. Astron. Soc., 450(1):209–222, 2015.

[33] Tanja Rindler-Daller and Paul R. Shapiro. Angular Momentum and Vortex Formation
in Bose-Einstein-Condensed Cold Dark Matter Haloes. Mon. Not. Roy. Astron. Soc.,
422:135–161, 2012.

[34] Victor H. Robles and T. Matos. Exact Solution to Finite Temperature SFDM: Natural
Cores without Feedback. Astrophys. J., 763:19, 2013.

[35] B. Li, T. Rindler-Daller, and P. R. Shapiro. Cosmological constraints on Bose-Einstein-
condensed scalar field dark matter. prd, 89(8):083536, April 2014.
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[73] Iván Álvarez-Rios, Francisco S. Guzmán, and Paul R. Shapiro. Effect of boundary
conditions on structure formation in fuzzy dark matter. Phys. Rev. D, 107:123524, Jun
2023.
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