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Modified Gravity and Cosmic
Acceleration: Now and in the Early

Universe

Institute of Theoretical Physics

Supervisor of the doctoral thesis: Dr. Alexander Vikman
Study programme: Physics

Study branch: Theoretical Physics, Astronomy
and Astrophysics

Prague 2021



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



Foremost, I would like to thank my supervisor Alexander Vikman for his con-
tinued support, guidance and advice he has given me through the course of my
studies and during the preparation of this thesis. He has been a constant source
of knowledge, feedback and motivation.
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Abstract: We review our previous works which explored the problems of dark
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In the first part, we present extensions of mimetic dark matter. The latter is a
Weyl-invariant scalar-tensor theory able to describe dark matter on cosmologi-
cal scales. In our works we have extended the mimetic construction to vector
fields and Yang-Mills gauge fields. The resulting theories provided a novel Weyl-
invariant and higher derivative formulations of unimodular gravity. We also in-
troduced a mixture of this mimetic dark energy with mimetic dark matter and
showed that it results in k-essence like scalar theory.

In the second part we reviewed a minimal modification of Einstein equations,
in which their trace part is made trivial. This results in the Newton constant
becoming a global degree of freedom. Consequently, the Newton constant is
subjected to quantum fluctuations and uncertainty relations. We find that the
same applies to the effective Planck constant in a certain classically equivalent
formulation of this gravity modification.

Finally, we present an analysis of tensor perturbations in the recently proposed
models of minimally varying cosmological constant. In these theories, extending
Einstein-Cartan gravity, the cosmological constant is allowed to vary by means of
a balancing torsion. These models in general allow for a parity-odd torsion. We
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Introduction
General Relativity (GR) is one of the most successful theories in history, and,
together with quantum field theory (QFT), it is considered to be a cornerstone
of modern physics. GR is remarkably elegant, and, with minimal amount of
free parameters, it has been able to explain such phenomena as the precession of
the Mercury perihelion and to provide numerous unexpected predictions like the
expansion of the Universe, gravitational lensing, existence of black holes and only
recently observed gravitational waves. These unprecedented accomplishments are
significantly underscored by the fact that GR has remained completely unchanged
in the past 100 years withstanding the enormous observational scrutiny.

During the past several decades, we have witnessed substantial advances in
cosmological and astrophysical observations, which revealed that the Universe is
dominated by non-luminous forms of energy. These are the dark matter (DM)
and dark energy (DE). DM has been introduced in order to explain dynamics
of galaxy clusters and the rotation curves of spiral galaxies [1–3], and it is a
crucial ingredient for large scale structure formation. DE drives the late time
acceleration of the Universe [4, 5]. Collectively these are dubbed as the dark
sector (DS). According to the recent precision observations of the anisotropies in
the cosmic microwave background radiation (CMB) by the Planck collaboration
[6], dark matter makes up 26%, while dark energy constitutes 69% of the total
energy density. In contrast, the luminous matter contributes only the remaining
5%.

One can accommodate this dark Universe within the framework of General
Relativity and obtain a very good fit of the cosmological evolution by considering
a very simple effective description of the dark sector. Namely, we can model
dark energy as the cosmological constant (CC), denoted as Λ, and dark matter
as a cold, nearly pressureless gas (cold dark matter - CDM). This simple model
of DS, together with General Relativity and homogeneity and isotropy of the
Universe on large scales, constitutes the ΛCDM model, the standard model of
cosmology, for review see [7]. This theory has been very successful in describing
cosmological evolution, and it provided us with substantial understanding of the
formation of large scale structures, as well as the structure of anisotropies of
CMB, along with the relative abundance of elements [8]. Unfortunately, ΛCDM
has been unreasonably efficient in its predictions, as it achieved the above feats
without any need for a detailed knowledge of the nature of the dark sector. As
a result, despite these spectacular successes, we did not have an opportunity to
learn about the microscopic nature of the dark sector in our Universe yet.

Fortunately, ΛCDM has not been without flaws. Some of them have already
given rise to promising new physics. One of the most prominent examples is the
inflationary paradigm [9–15]. Inflation postulates that the Universe underwent
a period of rapid accelerated expansion in the early epoch of the Universe as
a way to address the problem of (non)existence of magnetic monopoles, as well
as the horizon, the flatness and the homogeneity problems of the hot Big Bang
cosmology, see [7]. It has been shown that inflation provides an origin for the large
scale structures in the Universe [16–22]. The simplest way to incorporate inflation
into ΛCDM is to introduce a novel scalar field, the inflaton, whose potential then
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drives the early accelerated expansion of the Universe.
Maybe the most prominent shortcoming of the ΛCDM is the famous cosmo-

logical constant problem [23–30] and the related problem of dark energy. The
dark energy is made out of several contributions, one of which is the bare cosmo-
logical constant that is introduced as a coupling constant in the Einstein-Hilbert
action. Furthermore, there are multiple other sources of vacuum energy that exist
within the Standard Model of particle physics (SM), which provide a cosmological
constant-like contribution to the total DE. For example, these are the zero point
energies of all quantum fields, the Higgs potential in the electroweak (EW) sector
of SM [7, 31] or the quark and gluon condensates in quantum chromodynamics
(QCD) [32, 33]. These constituents of the total dark energy are many orders
of magnitude larger than the observed value of DE today. We discuss some of
these contributions in Chapter 1. Cancellation of such an unprecedented preci-
sion among seemingly unrelated sources seems to be exceedingly unlikely unless
there is some underlying symmetry at play. However, no such symmetry has been
observed so far. A full resolution of the cosmological constant problem has to
explain how to properly calculate these contributions, why they almost cancel or
why they can be neglected, as well as to provide a mechanism to generate the
needed tiny value of the cosmological constant. This value has to be tiny to be
consistent with current observations of dark energy. This problem has attracted
major attention and presents a very active field of research.

The picture of ΛCDM has been recently challenged further. The measure-
ments of the Hubble parameter coming from CMB anisotropies [6] or baryonic
acoustic oscillation [34, 35] substantially differ from the local measurements [36–
42]. The tension between Hubble parameter values measured in these ways has
been recently reported to have grown to 5σ [42]. This suggests that the sim-
ple cosmological constant may not be sufficient to describe the effects of dark
energy or that the value of the cosmological constant has changed during the
cosmological evolution of the Universe.

The prospects of resolving the dark problems of ΛCDM (for recent summary
see [8]) within the framework of the SM seem to be bleak at best. Indeed, we
are very likely dealing with new physics, possibly of gravitational origin, for re-
view see [25]. The idea of modifying gravity is certainly not new. People have
sought out alternatives and extensions to GR ever since its formulation [43–47].
While this may have been driven by curiosity at first, we now have reasons to
believe that going beyond Einstein’s theory may be inevitable. Indeed, when
considering high energies beyond the Planck scale, one definitely cannot ignore
the quantum nature of the Universe: we must subject gravity to quantization.
However, the quantization procedure does not guarantee a consistent result for
any theory subjected to it. For gravity this leads to a breakdown, as GR fails to
be renormalizable [48–51]. Here we should stress that on scales smaller then the
Planck scale, GR, taken as an effective field theory, is still valid and extremely
successful, see for example [52, 53]. While observational/experimental confirma-
tion of breakdown of GR in high energies is far beyond our reach, it provides
further motivation to consider deviations from General Relativity.

Modified gravity has become an active field of research in addressing many
of the problems of cosmology and the dark sector in particular. Indeed, modifi-
cations of gravity often introduce novel degrees of freedom, which may provide
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us with components of the DS or to drive inflation in the early Universe. A
common approach to modifying gravity is to supplement General Relativity with
additional fields, which interact non-trivially with the gravitational degrees of
freedom or couple universally to matter. The oldest example of this type is the
Brans-Dicke theory [47]. Other examples include the Horndeski scalar-tensor
theories [54–57], a vector-tensor theory (for instance Einstein aether [58]) or a
tensor-vector-scalar theory (TeVeS) [59–61]. A different class of gravity modifi-
cations focuses on changing the self interactions of the metric directly without
explicitly introducing novel variables into the action. A prime examples of such
modifications are the f(R) models [62], see also [10, 63–67], which are the non-
linear generalizations of the Einstein-Hilbert action. It has been shown that these
models can be rewritten as a scalar-tensor theory [68–70]. Another example of
this are the so-called minimally modified gravity theories, which surprisingly do
not introduce any new local propagating degrees of freedom [71–73].

Of particular interest for this thesis is the recently proposed gravity modifi-
cation called the mimetic dark matter [74], which we discuss in more detail in
Chapter 2. This theory builds upon the idea that the ”physical” metric of GR,
whose geodesics correspond to free fall of test bodies, may be a composite object
rather then an independent field. The physical geometry is described through an
auxiliary metric hµν and a novel scalar field ϕ as:

gµν = hµν h
σρ∂σϕ∂ρϕ . (1)

The crucial property here is that the physical metric is invariant under the Weyl
transformations of the auxiliary metric. This degeneracy gives rise to an effective
fluid behavior, which can provide us with a simple model of DM, the so-called
mimetic dark matter. This proposal has attracted a considerable attention in the
recent years, e.g. [75–83], and has been central to parts of our research [84–86].
We discuss first of these works in Chapter 3. In this work [84] we have proposed
a generalization of the mimetic DM scenario, where the physical metric is built
from an auxiliary metric hµν and a vector field V µ as

gµν = hµν
√︂

∇σV σ . (2)

Here the covariant derivative is compatible with the auxiliary metric. The key
idea in our paper was that the above ansatz can be made Weyl invariant by
providing a non-trivial conformal weight to the vector field V µ. This results in
a degeneracy in the physical metric, which leads to an additional vacuum en-
ergy component, arising as a global degree of freedom. In this sense, we obtain
”mimetic dark energy”. We show that this proposal provides the same classical
dynamics as unimodular gravity [87–90], which we review in Section 1.3. In fact,
by going to Weyl invariant variables, it can be directly related to the Henneaux
and Teitelboim unimodular gravity [88]. Due to the underlying Weyl invariance,
our formulation produces equations that are manifestly invariant under any con-
stant change of the vacuum energy. This may be of particular use for addressing
the cosmological constant problem. We show that our proposal can be viewed as
a scalar-vector-tensor theory with a nontrivial universal coupling to matter.

We further expanded upon the above idea in our work [85], which we review
in Chapter 4. There, we considered the possibility that the vector field V µ is
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itself a composite field. Namely, we traded V µ for the Chern-Simons current of
an auxiliary Yang-Mills gauge field Aµ. This produces the following ansatz

gµν = hµν

√︂
FσρF̃

σρ
, (3)

where F̃
σρ is the Hodge dual of the field strength Fσρ. Thus, we utilize the

Pontryagin term to define the physical metric. Our construction is in a sense
complementary to the proposal [82, 83], where the kinetic term of a gauge field
is used for this purpose. Surprisingly, we found that the composite nature of the
vector field does not spoil the classical dynamics of the theory, which are still
equivalent to unimodular gravity. This novel formulation is particularly useful
as a starting point for additional extensions of unimodular gravity, as it involves
fields that are natural to the SM. We show that, by rewriting the theory in (Weyl)
gauge invariant variables, the novel global degree of freedom, which corresponds
to the vacuum energy, obtains an axion-like coupling to the gauge field Aµ. In
this way, it behaves both like a cosmological constant and as the θ parameter
of the gauge theory. This line of thought has been previously suggested but not
explored in [91]. We further discuss the similarity with axion and speculate that
unimodular gravity can be recovered as a particular dynamical limit of an axion
coupled to a Yang-Mills theory.

Following the ideas of mimetic DM [74] and of our mimetic DE [85], we ask
ourselves a natural question: Can the mimetic construction provide us with both
components of the dark sector at once? In Chapter 5 we review a possible ap-
proach to this question, which has been proposed in our paper [92]. There we
consider a more general mimetic substitution, which combines the original kinetic
term of a scalar field (1) and the Pontryagin term (3). For example:

gµν = hµν

⎡⎣Ahσρ∂σϕ∂ρϕ+B
√︂
F̃
σρ
Fσρ

⎤⎦ , (4)

where A and B can in general depend on ϕ. The conformal factor multiplying
hµν can in fact be arbitrarily complicated. We only require that the physical
metric gµν is invariant under Weyl transformations of hµν . We have shown that a
general substitution of the type (4) introduces additional dynamical sector that
is in equivalent to a k-essence theory [93–95] accompanied by an additional global
degree of freedom. This global degree of freedom provides an overall energy scale
for the k-essence1. This resembles what happens in the so-called generalized
unimodular gravity [96, 97]. We show how one can map nearly any k-essence to
an equivalent mimetic description. Interestingly, the mimetic counterpart exists
only for theories that never cross an ultra-relativistic equation of state. We also
discuss the relevance of the Weyl transformation. We show that, in case of Weyl
violating substitutions, the theory may dynamically restore this symmetry and
provide us with k-essence anyway. Finally, we found a class of Weyl violating
substitutions, which produce ordinary mimetic DM with a potential [76].

In Chapter 6 we discuss a modification of Einstein equations that we intro-
duced in [86]. In this work we have proposed a minimal modification of Einstein
equations in which we trivialized their trace in the following way:

Gµν

G
= Tµν

T
. (5)

1For a better readability we briefly discuss k-essence in Section 2.2.
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The trace part of this equation results in a useless identity 1 = 1. Interestingly,
the above equation is scale-free and eliminates the need for the Newton constant.
We show that this theory is in fact classically equivalent to GR, where the New-
ton constant appears as an integration constant or a global degree of freedom.
This occurs in the same way in which the cosmological constant is recovered in
unimodular gravity. We discuss various formulations of this theory and show
that in certain cases the Planck constant also becomes an integration constant.
The promotion of fundamental constants to degrees of freedom has an interesting
consequence. Upon quantization these ”constants” become operators [86, 98] sub-
jected to quantum fluctuations with corresponding uncertainty relations. These
may be significant close to cosmological singularities [86, 99].

In Chapter 7 we switch our focus to Einstein-Cartan gravity (ECG) [100,
101], which we discuss in Section 7.1. For a more detailed review see [102].
Unlike in GR, the form of the Einstein equation in ECG does not force the
cosmological term to be a constant. Indeed, due to the possibly non-vanishing
torsion, the Bianchi identity for the Einstein tensor may be violated. This opens
a possibility of a varying cosmological ”constant” term in the Einstein equation.
This possibility has been explored in [103–105]. In these works the cosmological
constant is promoted to a dynamical field, which is coupled to the topological
terms of gravity providing its dynamics. Interestingly, the cosmologies arising in
these models may admit an unusual parity-odd part of torsion, which is consistent
with the homogeneity and isotropy of the Universe. We discuss these ideas in
Section 7.2. After that, we review our findings from the paper [106] in Section 7.3.
There, we further investigated the above proposal, in particular [105]. We have
found that, in order to recover a valid cosmological evolution in these models,
the parity-odd torsion must be non-vanishing. We further provide an analysis
of the propagation of gravitational waves on cosmological backgrounds. We find
that in these models the speed of propagation of gravity waves is affected by
the parity-odd contributions and differs for the two helicities of the graviton.
Based on this finding, in [106] we put strong constraints on the parameters of the
model from the results of LIGO/Virgo and Fermi/INTEGRAL measurements of
the gravitational waves and electromagnetic signal coming from a binary neutron
star merger GW170817 and GRB 170817A [107, 108]. The theory is still viable
under the new found constraints.

For the most part of this thesis (Chapters 1 to 6), we are using the mostly neg-
ative signature (+,−,−,−), and we work in the natural units ℏ = c = 8πGN = 1.
We make an exception in Chapter 6, where the constants ℏ and GN play a major
role, and thus their presence is restored when needed. Throughout this thesis we
mostly use the reduced Planck mass M2

Pl = ℏc/8πGN except for cases when its
said otherwise.

In Chapter 7 we switch to the signature (−,+,+,+) in order to remain con-
sistent with the choices made in the published version of the work on which
this chapter is based on. The dependence on the Newton constant is being kept
explicit as 8πGN = κ.
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1. Cosmological constant
problem
The cosmological constant problem envelops multiple questions about the vacuum
energies that appear in the Standard Model of particle physics and their interac-
tion with General Relativity. With the advent of QFT, we have learned that the
vacuum states of field theories carry non-vanishing energy density. While these
zero-point energies are often blissfully ignored in the standard treatment of QFT
in Minkowski spacetime, in the presence of gravity, they cannot be neglected, and
they should in principle contribute to the dark energy [23, 109, 110].

The most popularized part of the problem is the apparent disagreement be-
tween the observed density of the dark energy and the theoretical estimates of
the magnitude of zero point energies in the SM. It is often stated that the natural
order of these contributions is of the order of Planck scale (see [26, 111]):

ρvac = M4
Pl

16π2 . (1.1)

Here MPl is the reduced Planck mass defined as M2
Pl = ℏc/8πG. This vacuum

energy is then added to the bare cosmological constant1 ρbare to provide the total
dark energy density that we observe (in absence of additional sources of DE)

ρobs = ρbare + ρvac . (1.2)

This is in stark contrast with the recent measurements of the cosmological con-
stant [6]:

Λobs = 4.24 × 10−84 GeV2 , (1.3)
or in terms of energy density

ρobs = 5.839 × 10−33 g · cm−3 . (1.4)

This value is 120 orders of magnitude smaller then the estimate (1.1). In order to
resolve this disparity, the bare CC would have to cancel out the vacuum energy
contribution with an incredible precision. This requires an unprecedented level
of fine tuning, which is physically unacceptable.

However, we would like to stress that the particular discrepancy above is
only a smaller part of the problem. Indeed, the estimate (1.1) is actually often
regarded as incorrect [26, 29, 112]. Various other attempts to evaluate these
zero-point contributions have been proposed (see for example [23, 26, 29, 109,
112]), producing a range of answers that differ in orders and orders of magnitude.
However, none have been able to provide the observed value of CC. The large
part of the problem and the lesson here is that we currently have no reliable way
of estimating the zero point contributions to the dark energy.

In the following section, we are going to review two approaches to estimating
the zero point energies. First, we are going to discuss the frequently stated

1We will often refer to the vacuum energy density and the cosmological constant interchange-
ably. The two can always be related as Λ = 8πGN ρΛ, where GN is the Newton constant. This
can be extended to other sources of vacuum energy as well.
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proposal, which produces the result (1.1) and relies on a cut-off regularization to
evaluate the zero-point energy. Second, we are going to discuss the dimensional
regularization and renormalization of vacuum energy. We argue that naively
applying these simplified results to the SM particles is generally incorrect.

Furthermore, the zero-point energies are not the only corrections to the dark
energy from the SM sector. There are also vacuum energies that arise from the
non-vanishing potentials of the Higgs field and from the quark and gluon conden-
sates [32, 33]. We are going to briefly review how phase transitions between two
minima of a scalar field potential induces a change in the effective CC. However,
we will not go to further details as these contributions are not the focus of this
thesis.

Finally, we are going to discuss the unimodular gravity as a possible candidate
to avoid the problem of zero point energies altogether.

1.1 Quantum cosmological constant problem
The simplest toy model for calculation of the zero point energies is the free massive
scalar field in Minkowski spacetime given by the action:

S = 1
2

∫︂
d4x

[︃
∂µϕ∂

µϕ−m2ϕ2
]︃
, (1.5)

where m is the mass of the field. Its associated energy momentum tensor is

Tµν = ∂µϕ∂νϕ− 1
2ηµν

(︂
∂σϕ∂

σϕ−m2ϕ2
)︂
. (1.6)

Here ηµν is the Minkowski metric. Upon quantization the field operators can
be expanded in terms of the associated annihilation operators ak and creation
operators a†

k as

ϕ(t,x) = 1
(2π)3/2

∫︂ d3k√
2ωk

[︃
ake

−iωkt+ik·x + a†
ke

+iωkt−ik·x
]︃
, (1.7)

where
ωk =

√
k2 +m2 . (1.8)

The bold-face x and k refer to the spatial components of xµ = (t,x) and the
spatial components of the associated four momenta kµ = (ωk,k) respectively.
The Lorentz invariant vacuum state |0⟩ is defined as the unique state annihilated
by all the operators ak:

ak |0⟩ = 0 . (1.9)

The associated vacuum expectation value of the above energy momentum tensor
is

⟨Tµν⟩ = ⟨0|Tµν |0⟩ . (1.10)

From the above expression, we can infer the vacuum energy density

ρ = ⟨T00⟩ = 1
2

∫︂ d3k
(2π)3ωk . (1.11)
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Due to the vacuum averaging, all the off-diagonal terms of ⟨Tµν⟩ vanish identically.
Furthermore, due to the isotropy of the vacuum, the diagonal spatial terms are
equal and can be characterised by a single quantity, the pressure:

p = 1
3 ⟨Tijδij⟩ = 1

6

∫︂ d3k
(2π)3

k2

ωk
. (1.12)

Both the vacuum energy density and the vacuum pressure are represented as
divergent integrals. This can be naively alleviated by introducing a hard cut-off
scale. Eliminating arbitrarily high frequencies from the integrals renders them
finite. For the above example, we get

ρM = 1
(2π)2

∫︂ M

0
dk k2ωk ≃ M4

(4π)2 , (1.13)

where M is the cut-off mass scale. Taking this as an estimate for the zero point
energy by taking the Planck mass as the cut-off parameter produces the result:

ρM ≈ 10120ρobs , (1.14)

which is famously 120 orders of magnitude larger then the observed value of
the cosmological constant (1.3). We can, however, easily argue that the above
procedure is in fact incorrect. Indeed, introducing the same cut-off regularization
to the pressure (1.12), we find

pM = 1
(2π)2

1
3

∫︂ M

0
dk
k4

ωk
≃ 1

3
M4

16π2 . (1.15)

At the leading order, this produces the equation of state of radiation

pM = 1
3ρM . (1.16)

However, the Lorentz invariance of the vacuum state implies that the energy
momentum tensor of the vacuum is of the form

T vac
µν = const ηµν . (1.17)

Hence the vacuum energy density and pressure should have the following equation
of state

pvac = −ρvac . (1.18)
This is clearly not satisfied by the above results (1.13) and (1.15); therefore, the
Lorentz symmetry is broken. In particular this has been pointed out in [29].

This violation of symmetry can be traced to the hard cut-off regularization,
which explicitly differentiates between the spatial components and the zeroth
component of the four momentum. By performing the hard cut-off in the Eu-
clidean space, the violation of the symmetry can be avoided. The results in the
Minkowski spacetime can be then obtained through analytical continuation. This
naively yields the same expression for the energy density (1.13); however, the re-
sult for the pressure is given by (1.18). Other Euclidean methods point toward
this result as well [113]. So, while the introduction of a hard cut-off in Minkowski
spacetime is arguably incorrect, the result (1.13) cannot be dismissed as easily.
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The breaking of Lorentz symmetry can be avoided in the Minkowski spacetime
by using a different scheme to regularize the divergent integrals (1.11) and (1.12).
This can be done by using the dimensional regularization on which we focus
from now on. The expression for the energy density extended to d spacetime
dimensions reads:

ρdim(µ) = µ4−d

(2π)d−1
1
2

∫︂
dd−1kωk , (1.19)

where µ is parameter with dimension of mass introduced in order to balance the
dimensions of the extra momenta in the integral. Evaluating the integral and
expanding in 4 − d, we obtain

ρdim(µ) ≃ m4

64π2

[︃
− 2

4 − d
− 3

2 + γ + ln
(︃
m2

4πµ2

)︃]︃
. (1.20)

Here γ is the Euler-Mascheroni constant. Performing the same procedure for the
pressure reveals that the resulting energy density indeed has the correct equation
of state:

ρdim(µ) = −pdim(µ) . (1.21)
The above expression (1.20) is clearly divergent in d = 4. We can eliminate this
divergence along with the γ−3/2 term by using the modified minimal subtractions
renormalization scheme [26, 31]. This yields the following estimate for the vacuum
energy density:

ρvac = m4

64π2 ln
(︃
m2

µ2

)︃
. (1.22)

This result is very different from the expression obtained using the hard cut-
off (1.13), as it is fourth order in the mass of the scalar field, not the cut-off
parameter. In this approach, massless fields do not contribute any vacuum energy.
We should note that in comparison with (1.13), the result (1.22) is renormalized
as we have subtracted the divergent terms. We would like to stress that the
meaning of the parameter µ is not entirely clear at this point, which diminishes
the usefulness of the result (1.22).

A similar calculation can be performed for fermion fields as well as vector
fields, giving the same answer up to an opposite overall sign for fermions. The
total contribution of these zero point energies for multiple particles yields the
following sum:

ρvac =
∑︂
i

ni
m4
i

64π2 ln
(︃
m2

µ2

)︃
. (1.23)

The index i denotes the respective particles, ni is the number of degrees of freedom
each particle species carries, as well as the sign of the contribution. This formula
has been naively applied to the particles of the SM [112] to produce the following
estimate:

ρvac ≈ −1056ρobs . (1.24)
We would like to stress that simply evaluating the above expression for the masses
of the SM particles is not really well justified. Indeed, going beyond this basic
approximation, we find that, in general, particle masses run with the energy scale.
Thus, it is a priori unclear, which mass should enter the above formula. This is
even less clear in the SM, where most of the particle masses are generated through
the Higgs mechanism and vanish in ultraviolate (UV) limit.
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Finally, any interactions in the theory can produce further contributions to
the vacuum energy density [26, 30]. These appear from the vacuum Feynman
diagrams in the theory. In fact, the expression (1.22) appears as the first loop
correction in this picture. With each successive loop, we receive additional con-
tributions to the vacuum energy density, which do not diminish for higher loop
orders. Furthermore, while gravitons are massless, they will also produce higher
order loop contributions and should be included in the calculation. These consid-
erations prevent us from obtaining any reliable estimate for the zero-point energy.
Indeed, any result we obtain for a fixed number of loops gets spoiled by including
an additional loop order. Clearly, the zero-point corrections are very sensitive to
the UV regimes of the theory.

1.2 Phase transitions
The zero-point energies of quantum fields are not the only possible contribution to
dark energy. In this section, we will discuss how non-vanishing effective potentials
of scalar fields can induce CC when they undergo a phase transition. We will
demonstrate this on the example of a canonical scalar field in the presence of
gravity with a cosmological constant Λ and a potential V (ϕ). The total action is

S =
∫︂
d4x

√
−g

⎡⎣ − 1
2R − Λ + 1

2∂µϕ∂
µϕ− V (ϕ)

⎤⎦ . (1.25)

Let us consider that the potential has a minimum at ϕ = 0, and that the field
ϕ resides in the associated vacuum. The potential can be in general expanded
around this minimum as

V (ϕ) = V0 + 1
2m

2ϕ2 + . . . , (1.26)

where m is the mass of the scalar. By plugging this expansion into the action,
we can clearly see that the constant term of the potential V0 can be equally well
grouped together with the gravitational sector. Thus, it effectively behaves as a
contribution to the cosmological constant

Λtot = Λ + V0 . (1.27)

These two constituents of the dark energy are indistinguishable, as only the total
vacuum energy is observable. The problem arises when there exists an additional
minimum of the potential with a lower energy. The expansion (1.26) around this
minimum will in general have different parameters:

V (ϕ) = V− + 1
2m̃

2(ϕ− ϕ−)2 + . . . . (1.28)

Here ϕ− is the location of the minimum, and m̃ is the mass of the scalar associated
with the second vacuum. The energy difference between the the vacua is ∆V =
V0 −V− > 0. Clearly, using this expansion in the action (1.25) results in the total
vacuum energy

Λtot = Λ + V− . (1.29)
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Since the second vacuum is energetically preferable, the theory may undergo a
(first order) phase transition and tunnel into the second vacuum. This induces a
change in the the dark energy by ∆V .

A similar effect can result due to the interaction of the scalar with other fields,
for example with a scalar ψ. This interaction may cause an effective change in
the total potential, which can lead to a phase transition. To demonstrate this,
let us assume the following form of the entire potential

V (ϕ, ψ) = V (ϕ) + λ

4ϕ
2ψ2 , (1.30)

where λ is a coupling constant, which we assume to be positive for the purpose
of this discussion. Assuming that the field ψ is in a thermal equilibrium in a
relativistic regime with temperature T ≫ mψ, where mψ is the mass of ψ, one
may replace ψ2 with an average ⟨ψ2⟩T = T 2/12 taken in a thermal state with
temperature T [114]. The effective potential then reads

V (ϕ, T ) = V (ϕ) + λ̃

2ϕ
2T 2 . (1.31)

Here we have redefined λ̃ = λ/24. Clearly, the effective potential now depends on
the temperature. In an expanding universe, this temperature decreases, and the
shape of the potential changes accordingly. This may result in some minima of
the effective potential to become maxima instead. Consequently, a stable vacuum
may turn into a false one. Let us demonstrate this by assuming the potential V (ϕ)
has a maximum at ϕ = 0. The second derivative of the effective potential V (ϕ, T )
at ϕ = 0 is thus

V ′′(0, T ) = V ′′(0) + λ̃T 2 . (1.32)
The first term is by assumption negative. For large enough temperatures, the
effective potential will have a minimum at ϕ = 0, as the thermal correction
overcomes the negative contribution of the V ′′(0). However, once the temperature
drops bellow the threshold T 2 = −V ′′(0)/λ̃, the minimum changes character and
becomes a maximum instead2. The associated vacuum turns to a false one as a
result. The scalar field then rolls away from this false vacuum until it stabilizes in
a new one. The energy difference between the old vacuum and the new one then
induces a contribution to the total dark energy as we have seen in the previous
example.

A similar thing occurs for the Higgs field during the electroweak crossover
[7, 31]. The relevant parameters of the Higgs field potential can be determined
completely from the parameters of the SM, which allows us to obtain the energy
difference between the two vacua ∆V [26], see also [116]:

∆V ≃ 1.2 × 108 GeV4 ≃ 1055ρobs . (1.33)
This energy difference then induces a change in the vacuum energy. Since we
measure a tiny cosmological constant today, this suggests that the vacuum energy
should have been huge prior to electroweak crossover. The electroweak transition
is not unique in the SM. A similar argument can be applied to the QCD transition
as well, which produces the following contribution [26]:

∆V ≃ 10−2 GeV4 ≃ 1045ρobs . (1.34)
2This situation may in fact happen in reverse as well, turning a maximum into a minimum

when the coupling constant λ̃ is negative [115].
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1.3 Unimodular gravity
A possible solution to the above problems is unimodular gravity (UG), which has
been originally proposed by Einstein [87]. This modification can be introduced
on the level of equations of motion as a traceless version of Einstein equations;
however, many other classically equivalent formulations exist [88–90, 117, 118].
The Einstein traceless equations read:

Gµν − 1
4Ggµν = Tµν − 1

4Tgµν , (1.35)

where G and T are the traces of the Einstein tensor and the energy momentum
tensor respectively. Since the cosmological constant term is a pure trace term it
is nowhere to be found in the above equation. Due to the modified form of Ein-
stein equations the covariant divergence does not vanish identically and instead
produces a novel differential constraint in the theory. This way the cosmological
constant makes a comeback; however, this time, it enters as an integration con-
stant rather then a fundamental constant. Indeed, taking the divergence of the
traceless Einstein equations we obtain

∂µ(G− T ) = 0 . (1.36)

Therefore any solution of equation (1.35) must satisfy

G− T = 4Λ = const. (1.37)

Substituting this back into (1.35) we obtain

Gµν + Λgµν = Tµν . (1.38)

This is equivalent to the Einstein equations with the cosmological constant. It
should be stressed that any choice of Λ here is valid, therefore the correct con-
clusion is not that UG is equivalent to GR, but rather that UG contains all
GR theories with various cosmological constants. UG only reduces to GR for a
particular choice of this integration constant.

1.4 Actions for unimodular gravity
Unimodular gravity can be derived from an action principle in multiple ways.
Historically the most prevalent way was to vary the action with an additional
condition of keeping the volume element fixed [89, 90]. That is

δ
√

−g = 0 . (1.39)

This condition is usually implemented in a non-covariant way by introducing a
Lagrange multiplier that fixes the volume element to a constant, usually a unity,
hence the name unimodular gravity:

SUG =
∫︂
d4x

⎡⎣ −
√

−g
2 R + λ

(︂√
−g − 1

)︂⎤⎦ . (1.40)
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This formulation has an intriguing advantage: the constraint allows us to elim-
inate all instances of √

−g in the action and thus render the Einstein-Hilbert
action and all its couplings to the matter sector polynomial in the metric com-
ponents [117]. This is potentially advantageous for quantization3. This comes at
a cost of breaking the diffeomorphism invariance, seemingly requiring us to work
with coordinate systems that satisfy the unimodular condition

√
−g = 1 . (1.41)

On the classical level any solution in unimodular gravity in arbitrary coordinates
can be brought to satisfy the unimodular constraint locally via an appropriate
change of coordinates. For this reason the above constraint can be ignored at least
for the purpose of classical solutions. The variation of the action (1.40) gives
us Einstein equations with a cosmological term that is given by the Lagrange
multiplier λ

Gµν + λgµν = Tµν . (1.42)
By utilizing the Bianchi identities and by assuming the covariant conservation of
the energy momentum tensor it follows that λ must be a constant.

The most important form of unimodular gravity for this thesis is due to Hen-
neaux and Teitelboim [88]. In their work, they have performed a canonical anal-
ysis of the above scenario and in the process they have found a way to restore the
diffeomorphism invariance by introducing a novel vector field. This is the first
fully diffeomorphism invariant version of unimodular gravity. The theory also has
a form of an additional Lagrange constraint, which, this time, forces a covariant
divergence of the novel vector field to be 1:

SHT [λ, V µ, gµν ] =
∫︂
d4x

√
−g

[︃
− 1

2R + λ
(︂
∇µV

µ − 1
)︂]︃
. (1.43)

Variation of V µ enforces the constancy of the Lagrange multiplier λ. This way
the spacetime dependence of λ is eliminated by a separate equation of motion
rather then the Bianchi identity. The constraint produces a non-conservation law

∇µV
µ = 1 , (1.44)

for an associated global charge - cosmic time

T =
∫︂
d3x

√
−gV 0 , (1.45)

that is constantly being produced. Equation (1.44) allows us to determine that
the cosmic time measures the four volume between two Cauchy hypersurfaces

T2 − T1 =
∫︂
d4x

√
−g . (1.46)

The cosmic time is an additional global degree of freedom4 in the theory. Due to
the first order nature of the action in both λ and V µ it is easy to check [120, 121]

3It has been reported that the corresponding quantum theory is equivalent to GR in case
of localized perturbative quantities, but inequivalent for non-perturbative quantities on back-
grounds of finite volume [119].

4A global degree of freedom corresponds to a single extra pair of dimensions in the phase
space as opposed to ordinary degrees of freedom which usually contribute a pair per point in
space.
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that its associated momentum is the Lagrange multiplier λ, which plays the role
of cosmological constant. It has been pointed out that this cosmic time does not
have all the appropriate properties to assume the role of actual time [118].

It is noteworthy to mention that neither of the above formulations reproduce
the traceless equations (1.35), as they introduce a Lagrange multiplier that acts
as the cosmological constant instead.

1.5 Eliminating the zero point energies
The crucial property of equation (1.35) is that it is invariant with respect to the
shifts of the trace of both the Einstein tensor and the energy momentum tensor
respectively. Indeed, both transformations

Gµν → Gµν + c1gµν , or Tµν → Tµν + c2gµν , (1.47)

leave the equation (1.35) intact. At this point, c1,2 are seemingly allowed to have
a spacetime dependence; however, from equation (1.36) we can infer that c1,2 need
to be constants. It is exactly this shift that is produced via the zero-point energies
from the previous section (1.17). This property is still manifest in the equation
(1.36) as the partial derivative annihilates the constants c1,2. Seemingly, these
equations are insensitive to any shifts in the vacuum energy and thus we may hope
that this would decouple the vacuum energies from gravity at the semiclassical
level. At the same time, we must note that once we specify Λ, as in (1.37),
the theory reduces to GR and the problem seemingly arises again. From this
point of view, it seems that we have merely hidden the issue away. Whether the
unimodular gravity indeed solves the problem of quantum corrections to vacuum
energy is a matter of ongoing debate. It has been argued that UG does not
do anything to alleviate the issue [27, 30, 122]. On the other hand, it has been
reported that the loop corrections in unimodular gravity indeed do not contribute
to the effective cosmological constant, via a direct calculation in certain models
[123–127]. In this discussion we tend to lean toward the opinion that UG does
decouple the quantum corrections to the cosmological constant.

In order to understand the issue better, let us briefly discuss the nature of
the traceless equations (1.35). Imagine, we are provided with an initial data set
on a given Cauchy surface as we would be in GR. We cannot evolve this data
as we normally would, because one piece of information is missing, namely the
cosmological constant. Indeed, as we have shown, any solution of the traceless
equations corresponds to a solution of the standard Einstein equations with some
cosmological constant. Thus, for each cosmological constant we get a solution of
the Einstein traceless equations. In order to get a unique evolution5 one needs to
pick one of these solutions by hand. This observation is further supported by the
canonical analysis of unimodular gravity, which reveals that the corresponding
phase space contains one additional global degree of freedom [128]. The subtlety
here is in how we specify this solution in our initial data.

In [27, 30] an argument against unimodular gravity has been presented based
on the fact that this freedom is fixed by providing the value for Λ in equation
(1.37). Indeed, if we fix this value, all the vacuum contributions directly affect

5Up to the standard gauge freedoms of GR.
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the trace of the Einstein tensor. So, in order to keep the effective (gravitational)
cosmological constant small, we need to counter these contributions by retuning
our choice of Λ. Alternatively, one can take our choice of Λ in (1.37) and plug it
back into (1.35) to obtain

Gµν + Λgµν = Tµν . (1.48)

This is clearly just the standard GR with a fixed cosmological constant, thus we
have gained nothing.

This issue may be circumvented by choosing our constant of integration with
reference to only a part of the energy momentum tensor. Consider isolating the
quantum vacuum contributions (1.17) to the energy momentum tensor in our
semi-classical limit:

Tµν = Tmain
µν + T vac

µν , (1.49)

where Tmain
µν describes the entire energy momentum tensor up to the vacuum

corrections to the trace. The corrections will be attributed to T vac
µν . Using this

split in (1.36) we obtain

∂µ

(︃
G− Tmain − T vac

)︃
= ∂µ

(︃
G− Tmain

)︃
= 0 , (1.50)

where we have used that the quantum corrections contribute only a constant term
as in (1.17). Integrating this equation we get

G− Tmain = 4Λmain . (1.51)

By definition Tmain does not receive the quantum corrections and thus the cos-
mological constant Λmain is stable. Plugging this result back into the traceless
equations, we see that the vacuum energies do not play any role in gravitational
dynamics

Gµν + Λmaingµν = Tmain
µν . (1.52)

We would like to note that the situation looks to be different when we deal with
the theory given from the Lagrangian (1.40). There the Lagrange multiplier
λ enters the normal Einstein equations exactly like the cosmological constant
would. Thus, we cannot invoke the above argument. From this point of view
it might seem that the Lagrange multiplier λ should obtain corrections from the
zero-point energies. However, despite this, it has been reported that a direct
calculation confirmed that quantum contributions do not affect the observable
cosmological constant in this formulation of unimodular gravity [123, 124, 126].

We would like to stress that our argument does not meaningfully depend on
the above splitting of the energy momentum tensor (1.49). The split is but a
convenient way to present the argument. To make our point stronger, we derive
the same conclusion in another way, while avoiding this arbitrary distinction. We
will instead work with the entire right hand side as it is given in (1.35). This way
we can explicitly see that we never have to worry about any corrections of the
form (1.47) in any of the steps. Let us denote the traceless energy momentum
tensor as

T̃ µν = Tµν − 1
4Tgµν . (1.53)
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At first glance one may think that the above tensor has no information about the
trace of the original energy momentum tensor. However, this is in fact not the
case! We can infer almost the entire trace from T̃ µν , up to its zero mode which
remains obscured. Indeed, consider the following equation for a scalar quantity
τ :

∂ντ = −4∇µT̃ µν . (1.54)

This equation is always integrable since, by assumption, the traceless tensor T̃ µν
originates from a conserved energy momentum tensor. Any function τ that sat-
isfies the above equation can be added to the traceless tensor T̃ µν to obtain a
conserved energy momentum tensor

τµν = T̃ µν + 1
4τgµν . (1.55)

The quantity τ clearly carries the information about the spacetime dependence of
the classical trace of the original energy momentum tensor. The crucial point here
is that τ is calculated from the tracless tensor T̃ µν and as such it does not receive
any quantum corrections. Consequently, the new energy momentum tensor τµν is
free from any correction of the type (1.47) since it is a sum of two stable tensors.
It is this tensor that sources gravitational field in UG. We can show this by taking
the divergence of traceless Einstein equations. Hence we find:

∂νG = −4∇µT̃ µν = ∂ντ , (1.56)

which is trivially solved as
G = τ − 4Λobs . (1.57)

Λobs is an integration constant and as its name suggests it has the role of the
observable cosmological constant. Indeed, plugging the above equation into the
traceless equations (1.35) we obtain

Gµν + Λobsgµν = T̃ µν + 1
4τgµν = τµν . (1.58)

These are again Einstein equations with a cosmological constant Λobs. The effec-
tive energy momentum tensor on the right hand side is given by the novel τµν .
Every term in this equation is invariant under the constant shifts of the vacuum
energy (1.47) and therefore we again see that the value Λobs is stable against any
vacuum corrections.

While, the unimodular gravity is seemingly able to alleviate the problem of
quantum corrections of the cosmological constant it does very little to actually
explain its measured value. Indeed, by decoupling CC from the quantum effects
of the matter sector the only relevant scale left for comparison is the Planck scale.
It seems that UG cannot solve the entire problem, however, it does seem to be a
step in the right direction.
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2. Recap of Mimetic dark matter
and k-essence
In this chapter we introduce two modifications of gravity, which play a key role
in the upcoming chapters. These theories are mimetic dark matter [74] and k-
essence [93–95].

2.1 Mimetic dark matter
The physical geometry of our spacetime in General Relativity is described solely
through the metric tensor gµν which fully describes the gravitational field. As
a way to extend GR it has been proposed that the physical geometry that gov-
erns the motion of free falling bodies may not be a fundamental field itself, but
rather a composite object. In such a scenario one may require additional equa-
tions of motion in order to fully describe the resulting dynamics. A particularly
interesting example of such principle is the disformal transformation originally
introduced in [129], in which an additional scalar field participates on the final
form of the gravitational field. The proposed form of the physical metric is

gµν = C(ϕ, Y )hµν +D(ϕ, Y )∂µϕ∂νϕ . (2.1)

Here Y is the kinetic term of ϕ with respect to the auxiliary metric hµν

Y = hµν∂µϕ∂νϕ . (2.2)

The upper indices metric hµν is meant as the inverse of hµν . The functions C and
D are subject to few constraints, which ensure that the resulting metric have the
expected properties (invertibility, proper signature, etc.). These assumptions are
carefully described in the original paper [129].

Considering the above ansatz (2.1) one may generate novel theories of gravity
by simply inserting this expression into an existing theory of gravity (a seed
theory) that includes a metric gµν as an independent field.

Sdis[hµν , ϕ,Ψ] = Sseed[gµν(hσρ, ϕ),Ψ] . (2.3)

The resulting theory clearly falls in the class of scalar-tensor theories. Indeed, the
action now depends on hµν and ϕ together with any other matter fields Ψ that
have been present in the theory in the first place. The matter sector does not
couple minimally to the metric hµν . Interestingly, for a large class of functions C
and D the novel theory describes the exact same dynamics as the original action.
By applying (2.1) to GR, we find that as long as

C(ϕ, Y ) − CY (ϕ, Y )Y + 2DY (ϕ, Y )Y ̸= 0 , (2.4)

the resulting theory retains the GR dynamics [130, 131]. Note that this relation
has to be satisfied for all possible configurations of ϕ as it has been pointed out
in [132].
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The proposal of mimetic dark matter represents a particular case of disformal
transformation of GR. In the original work [74] the authors have aimed to isolate
the conformal mode of the metric in a covariant manner. This has been achieved
by considering the following composite structure of the physical metric

gµν = hµνh
σρ∂σϕ∂ρϕ . (2.5)

The key idea here is that the right hand side is manifestly invariant under the
Weyl transformations of the auxiliary metric hµν .

hµν → e2ωhµν , (2.6)

where ω is an arbitrary function parametrizing the transformation. This way the
conformal mode of the metric hµν becomes a pure gauge and is in a way replaced
by the dynamics of the scalar field ϕ. By comparing the coefficients in (2.5) with
(2.1) we see that

C(ϕ, Y ) = Y , and D(ϕ, Y ) = 0 . (2.7)

This clearly does not satisfy the condition (2.4) so we can expect deviations from
standard GR dynamics.

The action for mimetic dark matter is obtained by taking the standard Einstein-
Hilbert action for gµν and substituting the above expression for every instance of
gµν .

Smim[hµ, ϕ,Ψ] = SEH [gµν(hσρ, ϕ),Ψ] . (2.8)
To obtain the equations of motion we vary with respect to these new fields. As a
consequence of the underlying Weyl symmetry the resulting equations of motion
for hµν have a special form, namely they are traceless. This can be seen by
performing an infinitesimal Weyl transformation of the Lagrangian. Let δWeyl be
the generator of the Weyl transformation

δWeylhµν = 2ωhµν . (2.9)

Then its action on the Lagrangian is

0 = δWeylL = ∂L
∂hµν

δWeylhµν = ∂L
∂hµν

hµν2ω . (2.10)

Since this is true for all ω, we get

∂L
∂hµν

hµν = 0 . (2.11)

The variation of the Lagrangian in this case gives us the equations of motion for
the auxiliary metric hµν up to total derivatives. This implies that the resulting
equation is traceless. This holds for both the metric hµν as well as gµν since they
are conformally related.

Before we derive this explicitly let us show that there is an inherent con-
straint in the theory that is ultimately responsible for the vanishing of the trace.
Following from the ansatz (2.5) the inverse physical metric is

gµν = 1
hµν∂µϕ∂ν

. (2.12)
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Using this we find that the kinetic term for ϕ with respect to the physical metric
is fixed to be unity. Indeed, by direct substitution we get

gµν∂µϕ∂νϕ = hµν

hσρ∂σϕ∂ρϕ
∂µϕ∂νϕ = 1 . (2.13)

Going back to the equations of motion, by varying with respect to the auxiliary
metric hµν we obtain the following equation

Gµν − (G− T )∂µϕ∂νϕ = Tµν . (2.14)

The above equation turns out to be Weyl invariant, which allows us to reduce all
instances of hµν to gµν . This is not surprising since the conformal factor differ-
entiating the physical metric from the auxiliary metric is pure gauge. Therefore,
we cannot ever determine its evolution from a gauge invariant action without
gauge fixing. The gauge invariant information in the theory is fully captured by
the composite gµν and ϕ. For that reason the above equation may be treated as
equation for gµν rather then hµν . Taking the trace of this equation with respect
to gµν reveals that

(G− T )
(︂
gµν∂µϕ∂νϕ− 1

)︂
= 0 , (2.15)

which is satisfied identically due to the mimetic constraint (2.13). The informa-
tion about the traces of the Einstein tensor and the energy momentum tensor are
clearly lost due to this property. The missing information can be recovered from
the equation of motion for ϕ

∇µ
(︂
(G− T )∂µϕ

)︂
= 0 . (2.16)

One can equivalently obtain this from taking the divergence of (2.14) and using
the mimetic constraint (2.13).

Modified Einstein equations (2.14) describe a very simple system, namely, GR
with an additional irrotational dust. In this way, it provides a simple candidate
for dark matter. The velocity potential of the dust is given by ϕ, while the
constraint (2.13) plays the role of normalization of the 4-velocity

gµνuµuν = 1 . (2.17)

It’s energy density is given by

ρmim = G− T . (2.18)

The equation of motion for ϕ (2.16) then has the interpretation of the conservation
of this density as it reads

∇µ(ρmimu
µ) = 0 . (2.19)

To evolve these equations we need to provide an additional initial information
about the energy density ρmim together with the initial data for ϕ and the metric
gµν .

Unlike, in most gauge theories the Weyl symmetry in mimetic gravity is an
empty symmetry [133–135]. This is due to the fact that the conformal mode of
the auxiliary field actually vanishes identically from the action. As a consequence
there is no associated current or constraint resulting from the symmetry. This
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allows us to completely factor out the conformal mode by redefining our degrees
of freedom in terms of pure Weyl invariants [78]. Doing so, brings the theory into
a constraint form where the mimetic constraint (2.13) is enforced via a Lagrange
multiplier

S[gµν , λ] =
∫︂
d4x

√
−g

(︃
− 1

2R(g) + λ(gµν∂µϕ∂νϕ− 1)
)︃
. (2.20)

This form of the action was originally discovered in [77] and it is this action that
is mostly used in the literature. It is noteworthy that this action can arise in
a number of other models, for example in low energy limit of Hořava-Lifshitz
gravity [136] or in the ”pre-geometric” model [137].

The equation (2.14) has a similar property to the unimodular traceless equa-
tions in that both sides are invariant under certain shifts. This time the shifts
are

Gµν → Gµν + c1∂µϕ∂νϕ , and Tµν → Tµν + c2∂µϕ∂νϕ . (2.21)

and can be carried out independently for both Einstein tensor and the energy
momentum tensor. The parameters c1,2 at this stage are seemingly free to have
an arbitrary spacetime dependence. However, upon inspecting the equation of
motion for ϕ (2.16) we find that c1,2 must satisfy

∇µ
(︂
c1,2∂µϕ

)︂
= 0 . (2.22)

This is similar to what happened with shifts of the vacuum energies in (1.47),
where c1,2 are forced to be constant. These solutions for c2 may be interpreted
as the only shifts of the energy momentum tensor of the form (2.21) that respect
its conservation.

2.2 K-essence
While the cosmological constant has been a very good fit for the model of cosmic
expansion, the observational constraints for the dark energy equation of state do
not rule out other candidates. This opens avenues for a slowly changing vacuum
energy that can dynamically relax to a small value. Such theories are often
realized using a scalar field, which, under certain dynamical constraints, is able
to provide a very good candidate for the dark energy component. This behavior is
familiar from the inflationary theories where the same mechanism is employed to
drive the early rapid accelerated expansion of the Universe. This is very intriguing
as these models may leave additional imprint in the Universe in the form of
clustering perturbations, which could be potentially observable [138]. In order
to resolve the dark energy problem, these theories must provide us with a small
vacuum like energy density without requiring equally small parameters defining
the theory in the first place. For the same reason any need for extreme fine
tuning of initial conditions falls flat in resolving the issue. We have to stress that
any such resolution of the DE problem assumes that the cosmological constant
problem is solved through some other mechanism.
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One of the first models that have been proposed along these lines has been the
Quintessence [139–143], which utilizes the standard canonical scalar field with a
potential. The action for such scalar is:

S =
∫︂
d4x

√
−g

(︃1
2X − V (ϕ)

)︃
, (2.23)

with
X = ∂µϕ∂

µϕ , (2.24)

being the kinetic term for ϕ. The associated energy momentum tensor is given
as

Tµν = ∂µϕ∂νϕ− gµν

(︃1
2∂σϕ∂

σϕ− V (ϕ)
)︃
. (2.25)

Upon requiring that the derivatives are time-like this energy momentum tensor
is of a perfect fluid form with the energy density and pressure

ρ = 1
2X + V , and p = 1

2X − V . (2.26)

Hence, we can immediately see that the corresponding equation of state parameter
w is

w = p

ρ
= X − 2V
X + 2V . (2.27)

Consequently w falls in the range w > −1 (given that ρ > 0). The lower bound
corresponds to a solution where the field sits in a potential well, which yields
the entire energy density and pressure. In order to provide the appropriate dark
energy behavior the scalar field must evolve slowly so that the energy density
and pressure are dominated by the potential energy. This regime is referred to
as the slow roll. The potential for the inflaton field is chosen in such a way that
it dominates early universe and then dissipates. The potential for quintessence
must do the exact opposite, it must dominate in late times yet stay hidden in
the early epochs. This presents an additional challenge for the model as its
dynamics are significantly affected by the expansion of the Universe during the
radiation/matter domination era. This has turned out to be a powerful feature
of quintessence as for many potentials [140, 144–149] there exists an attractor
solution, during which the quintessence tracks the dominating form of matter.
This makes the evolution insensitive to the initial conditions and naturally relaxes
the energy density to small values. In order for the quintessence to become the
dominating component in the universe the scalar must exit the tracking solution
eventually. This mechanism provides an elegant solution to explain the current
density of dark energy. However, the mechanism of escaping the tracking solution
is largely controlled by choice of the parameters of the potential [95]. In this sense
one does introduce a form of fine tuning.

The quintessence theory has been further expanded by considering deviation
from the canonical scalar theories. It has been demonstrated that many of the
behaviors that are achieved by considering various potentials in quintessence can
be alternatively driven by a non-canonical kinetic terms. This is further justified
from the point of view of string theory where higher order powers of the kinetic
term appear generically in the effective description of massless scalar degrees of
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freedom. These models have been introduced as k-inflation [150] for early acceler-
ated expansion and later to model dark energy as kinetically driven quintessence
or k-essence [93–95]. The most general action for k-essence has the form

S =
∫︂
d4x

√
−g K(X,ϕ) . (2.28)

where X is again the kinetic term of ϕ. The associated energy momentum tensor
is:

Tµν = 2KX∂µϕ∂νϕ− gµνK , (2.29)
where KX denotes a partial derivative of the Lagrangian density K with respect
to X. Akin to quintessence, as long as the derivatives of k-essence are time-like,
the above energy momentum tensor is of a perfect fluid form with the following
energy density

ρ = 2KXX −K , (2.30)
and the pressure given as the Lagrangian density p = K(X,ϕ). The w parameter
is

w = K

2KXX −K
. (2.31)

Furthermore, the background configurations of the k-essence field provide an
interesting implications for evolution of linear perturbations [151]. Indeed, these
perturbation evolve as a free massive field on an emergent geometry that is formed
by the background configuration of the k-essence and the underlying spacetime
geometry. This geometry first appears on the level of the background equations
of motion:

G̃
µν∇µ∇νϕ+ 2XKXϕ −Kϕ = 0 . (2.32)

We can see that the characteristic of the equation and thus its causal structure
is determined by an emergent metric G̃µν [151–153] which is given as

G̃
µν ≡ 2KXg

µν + 4KXX∂
µϕ∂νϕ . (2.33)

Clearly this metric only supports time evolution in case it retains a Lorentzian
signature, that is

1 + 2XKXX

KX

> 0 . (2.34)

The above expression arises also as the speed of sound for the associated k-essence
fluid [154]

c2
s ≡ KX

2XKXX +KX

. (2.35)

As a consequence the above condition (2.34) is equivalent to hydrodynamical
stability

c2
s > 0 . (2.36)

The evolution of the linear perturbations π of the k-essence field in the absence of
perturbations of the metric itself are determined by a conformally related metric
Gµν . Hence the causal structure that is seen by these perturbations is already
encoded within G̃

µν . The perturbed equations of motion read

1√
−G

∂µ

(︃√
−GGµν∂νπ

)︃
+M2π = 0 . (2.37)
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The metric Gµν is related to G̃µν as

Gµν ≡ cs
4K2

X

G̃
µν
, (2.38)

and G = 1/ detGµν . The effective mass M2 can be found in [151]. The metric
Gµν can be inverted as

G−1
µν = 2KX

cs

⎛⎝gµν − 2c2
s

(︃
KXX

KX

)︃
∂µϕ∂νϕ

⎞⎠ . (2.39)

Interestingly this metric has the form of a disformal transformation [129] of the
physical metric of the underlying spacetime. Since the relation between these
two metrics is in general not conformal, the causal structure is expected to differ
[151].

The key property that has made k-essence a powerful tool for studying the
accelerated expansion of the Universe and dark energy is the presence of tracker
and attractor solutions. In contrast to the tracking potentials in quintessence,
k-essence can be set up in such a way that it tracks the dominant form of matter
only in the radiation-dominated era. On the onset of matter domination the
k-essence leaves this tracker and moves toward the de-Sitter attractor where it
mimics the cosmological constant. K-essence energy density drops several orders
of magnitude during this transition. Despite this drop it eventually becomes the
dominant matter component as the Universe expands. This behavior is generic
for a wide range of possible models and the tracking and attractor behavior set
k-essence on the desired ”track” for a wide range of initial conditions. In this
sense k-essence can provide a natural mechanism to escape the tracking of the
dominant form of matter [94, 95].

This behavior has been found generically in a simpler class of k-essence models
in which the ϕ and X dependence factorizes in the Lagrangian. The dependence
on ϕ has to be ϕ−2 to ensure the existence of the tracking solutions

K(X,ϕ) = 1
ϕ2 p̃(X) . (2.40)

Thanks to the particular ϕ dependence, the equation of motion (2.32) allows for
dynamical regimes in which X = const. This is necessary for the equation of state
(2.31) to become fixed since in this class of models the w parameter depends on
X alone.

The crucial advantage of k-essence over the quintessence is the non-vanishing
speed of scalar perturbations (2.35). Providing a small but non-vanishing cs
makes k-essence useful as a model of dark matter [153, 155, 156]. K-essence has
been also used as a model of superfluids in the limit of zero temperatures and
low energies [157–161]. Unfortunately, the higher powers of the kinetic terms give
rise to various sorts of instabilities and singularities as well as caustic formation
[162–167]. This has motivated search for further extensions of k-essence that
could alleviate these problems [168, 169]. K-essence is also a starting point for
such a gravity modification as the ghost condensate [170].
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3. Mimetic unimodular gravity
This chapter is based on our work ”New Weyl-invariant vector-tensor theory
for the cosmological constant” [84] which has been published in the Journal of
Cosmology and Astroparticle Physics.

As we have suggested in the previous chapter the original mimetic dark matter
scenario [74] shares multiple similarities with unimodular gravity. Indeed, both
theories can be described by modified Einstein equations, that are characteristi-
cally traceless. This tracelessness implies an invariance of these equations under
certain types of shifts of the energy momentum tensor. These shifts are given as
(1.47) for unimodular gravity and (2.21) for mimetic dark matter. Furthermore,
both theories can be described through an additional Lagrange constraint in the
Einstein-Hilbert action. For unimodular gravity this description corresponds to
the Henneaux and Teitelboim unimodular gravity (1.44). For the mimetic dark
matter, this is just the usual description (2.20). In our paper we have aimed to
make this connection concrete by recovering unimodular gravity by modifying
mimetic dark matter.

Prior to our work [84], most efforts at extending the mimetic dark matter sce-
nario have focused on modifications of the seed action. These extensions usually
introduced additional ϕ dependent terms, like a potential for the mimetic scalar
or higher order derivative terms [76, 79–81, 171–174]. Through these extensions
the mimetic dark matter can mimic nearly any gravitational properties of normal
matter. This way mimetic dark matter could be used as a candidate for dark
energy or to drive inflation. The higher derivative terms can further provide non-
trivial speed of sound for the mimetic scalar perturbations or even change the
propagation of gravity waves and thus makes for a more realistic model of dark
matter. However, despite these desirable properties, this route always leads to
the same mimetic constraint appearing in the action.

In our effort we have used a different strategy at extending mimetic dark
matter. Namely, we have changed the mimetic substitution itself. A similar
route has been explored in [82]. Where the authors have considered replacing the
kinetic term of a scalar field by a kinetic term for Yang-Mills gauge field. Aiming
to obtain the Henneaux and Teitelboim constraint (1.44) we have proposed the
following mimetic substitution:

gµν = hµν
√︂

∇σV σ . (3.1)

Here the covariant derivative is compatible with the auxiliary metric hµν . Our
key observation for this construction is that the above ansatz can be made Weyl
invariant by extending the action of the Weyl group onto the vector field V µ:

V µ → ω−4V µ , as hµν → ω2hµν . (3.2)

In our paper [84] we have explored this ansatz in detail, and have confirmed
that it indeed classically reproduces unimodular gravity. We have analyzed this
equivalence both on the level of equations of motion as well as on the level of
the action. We have explicitly shown that by reparametrizing this theory in
terms of (Weyl) gauge invariant variables, the theory reduces to the Henneaux
and Teitelboim unimodular gravity. We have shown that in the original variables
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our model is a higher derivative vector-tensor theory. Higher order derivatives
often signify the presence of the Ostrogradsky instability [175]. In our model this
instability is avoided as a result of the underlying Weyl symmetry. Interestingly,
the Hamiltonian of the theory [128] is in fact unbounded from bellow, but the
unbounded piece is constrained to be a constant.

For the full text of the paper [84], please see Attachment 1 of this thesis.
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4. Axionic cosmological constant
This chapter is based on our work ”Axionic cosmological constant” [85] that is
available on the server arxiv.org, which will be submitted to a peer-reviewed
journal.

Following our paper [84], we have further investigated the possible modifica-
tions of the mimetic substitutions. We have noticed that our previous proposal
can be alternatively realized by demoting the vector field V µ from an indepen-
dent variable to a composite one. In particular, we have considered V µ as the
Chern-Simons current for a Yang-Mills gauge field Aµ:

V µ = 2EµνσρAνDσAρ , (4.1)

where Eµνσρ is the Levi-Civita tensor defined with respect to the auxiliary metric
hµν and Dσ is the covariant derivative associated to Aσ. The mimetic ansatz thus
becomes

gµν = hµν

√︂
FσρF̃

σρ
, (4.2)

where F̃ σρ is the Hodge dual of the field strength Fσρ. In our paper [85] we have
explored this proposal in detail. We have found that the solutions of the theory
are, in fact, unaffected by the novel composite structure of V µ. In other words, the
above mimetic substitution produces a new formulation of unimodular gravity.
This novel formulation has several notable advantages over our original proposal
[84]. First of all, the Chern-Simons current is naturally a vector field of conformal
weight 4 due to its dependence on the Levi-Civita tensor. This eliminates the
need for the introduction of non-trivial Weyl transformations for the gauge fields
themselves. Secondly, the resulting divergence of the Chern-Simons current is
the Pontryagin term, which, unlike its predecessor ∇µV

µ, does not depend on the
derivatives of the metric. This inherently simplifies the structure of the equations
of motion, which, in this case, results in the Einstein traceless equations (1.35).
Additionally, the appearance of the Pontryagin term in the mimetic substitution
highlights a closer connection of our proposal with the model from [82, 83], where
the kinetic term of a gauge field has been used to provide the mimetic substitution.
Finally, the gauge fields Aµ are very natural objects in the SM. This makes
our proposal [85] an advantageous starting point for further extensions of the
unimodular gravity.

We have shown that our theory can be re-expressed in terms of (Weyl) gauge
invariant variables. There the cosmological constant takes the form of a Lagrange
multiplier, which is linearly coupled to the Pontryagin term. This way the mul-
tiplier obtains an axion-like coupling to the gauge fields Aµ. Consequently, the
cosmological constant is equal to the θ parameter of the corresponding gauge the-
ory. In our work [85] we have suggested that the similarity with axion can be in
fact taken much further. In particular, we have suggested that one can promote
the Lagrange multiplier to a scalar field, and provide it with a potential and a
kinetic term. Surprisingly, doing so has very little consequences for the theory,
which still describes unimodular gravity.

Substituting the ansatz (4.2) in the square root of the physical metric determi-
nant effectively results in a replacement of the metric volume by the Pontryagin
density. In this sense, the notion of volume is given by the Yang-Mills fields
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rather then by the metric. Furthermore, the Pontryagin density is a total deriva-
tive. Any form of vacuum energy induced from quantum corrections enters the
action as a cosmological constant. In other words it only couples to √

−g. Upon
the substitution (4.2) this term turns to a total derivative and thus the induced
vacuum energy naively drops from the action. In this sense we can see why our
proposal decouples the zero-point energies from gravity. This mechanism has
been discovered from a different perspective in [176] prior to our work.

The specific structure of the gauge group in our proposal is unimportant for
most of the discussion. For this reason we work mostly with the U(1) group
for simplicity. We only generalize to non-Abelian groups later on. However, the
gauge group becomes important when we address the existence of solutions of our
theory. The equations of motion in our model correspond to those of unimodular
gravity and as such they are guaranteed to provide solutions. However, on top of
these equations, there is additionally the mimetic constraint. This constraint is
completely decoupled from the physical sector of the theory, yet, in order for our
model to be consistent, we have to guarantee that it is solvable in general. We
have found that this is indeed the case as long as the gauge group contains SU(2)
as a subgroup, and the spacetime is globally hyperbolic. We include a proof of
this existence in the next section.

For the full text of the paper [85], please see Attachment 2 of this thesis.

4.1 Existence of solutions for the mimetic con-
straint

In the above work we have neglected to prove that the mimetic constraint

1 = F a
µνF

⋆µν
a . (4.3)

has a solution for the gauge fields Aµ for arbitrary volume element √
−g. It

turns out that these solutions exist in general as long as the gauge group contains
SU(2) as a subgroup and the spacetime manifold is globally hyperbolic. The
key observation is that any globally hyperbolic spacetime is diffeomorphic to
M = R ⊗ N [177], where the R may be associated with a time direction in the
spacetime. N is a 3-dimensional manifold, which, we further assume, is orientable.
This ensures that N supports a global frame [178] and by extension the entire
spacetime does as well [179]. Let us denote the global basis on N as

eai . (4.4)

The latin index takes on values a = 1, 2, 3. Note, that the global basis is in
general not orthonormal. This basis can be extended to the full manifold M as
eaµ by prescribing

ea0 = 0 , (4.5)
∂0e

a
µ = 0 , (4.6)
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where the 0 direction is associated with the R part of the manifold M . We
consider the following ansatz for the SO(2) gauge fields1

g′Aaµ = αeaµ . (4.7)

Here g′ is the coupling constant of the SU(2) theory. This clearly does not respect
the gauge symmetry as on one hand the gauge fields transform under SO(2),
while on the other side the frame fields do not. The above equation should be
understood as equality of components in a certain gauge. The corresponding field
strength is

g′F a
µν = ∂µ(αeaν) − ∂ν(αeaµ) + α2ϵabce

b
µe
c
ν , (4.8)

= 2∂[µαe
a
ν] + 2α∂[µe

a
ν] + α2ϵabce

b
µe
c
ν . (4.9)

Calculating the Pontryagin density yields

g′2

2 ϵµνσρF a
µνF

b
σρ = 2α2∂µαe

a
νe
b
σe
c
ρϵabcϵ

µνσρ + 4α∂µαeaν∂σebρϵµνσρδab . (4.10)

The only terms that are left after the anti-symmetrization have a single derivative
of α. Terms with two derivatives get annihilated due to the anti-symmetry of
ϵµνσρ, while terms with no derivative have no time components and thus vanish
as well. In total we get

g′2

2 ϵµνσρF a
µνF

b
σρ = 2α2α̇eai e

b
je
c
kϵabcϵ

ijk + 4αα̇eai ∂jebkϵijkδab . (4.11)

We may further simplify this expression by introducing the factor β as2

2eai ∂jebkϵijkδab = −βeai ebjeckϵabcϵijk . (4.14)

Note that β is not an unknown in the problem as it is given completely by the
frame fields that we are using for the construction. Using this definition we may
write

g′2

2 ϵµνσρF a
µνF

b
σρ = 2α(α− β)α̇eai ebjeckϵabcϵijk , (4.15)

= 12α(α− β)α̇e . (4.16)
1Note that the gauge fields and the volume element actually live on the original spacetime

and not on M . These two manifolds are, however, by assumption diffeomorphic. Therefore,
there exists a diffeomorphism which can be used to map these objects from one manifold to the
other. For the sake of simplicity we do not write this explicitly in the equations.

2The function β can be derived from the coefficients of anholonomy ca
bc (see for example

[180]) that are defined for any frame as

∂[µea
ν] + 1

2ca
bceb

µec
ν = 0 . (4.12)

Plugging this into (4.12) we can see that

β = 1
6ϵabccabc . (4.13)

Note that we raised latin indices using δab.
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The e stands for the determinant of the frame fields det(eai ) and it is not equal
to unity since the frame does not need to be orthonormal. Similarly to β, e is a
known quantity fixed by our choice of eai . Plugging this result into the mimetic
constraint we obtain

12α(α− β)α̇e = g′2√−g . (4.17)

This is a first order ordinary differential equation that can be easily solved. In-
deed, integrating both sides along the time direction we obtain

α3 − 3
2α

2β = 1
4
g′2

e

∫︂
dt

√
−g . (4.18)

Since this is a cubic equation we are guaranteed to have at least one real solution
for α. Plugging it back into (4.7) yields the sought after solution for the gauge
fields that satisfies the mimetic constraint.
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5. Mimetic k-essence
This work is based on a yet unpublished work ”Mimetic k-essence”, that will be
made available soon on arxiv.org

As we have seen, the mimetic gravity is able to provide us with both a simple
model of dark matter, in the form of the original proposal [74], or a simple model
of dark energy, in the form of our models [84, 85]. This leads to a natural question:
Can mimetic gravity provide us with both components of the dark sector? In our
work [92] we investigate a possible approach to answering this question. The key
idea in this paper is that the mimetic conformal factor does not need to be made
out of a single term. By allowing multiple fields to participate in the definition of
the physical metric we can propose more complicated mimetic substitutions. We
only require that the physical metric is Weyl invariant. This clearly opens doors
to a vast amount of possible extensions. Indeed, allowing for any additional term
or field in the mimetic substitution increases the amount of combinations we may
consider significantly.

In [92] we have attempted to combine the dark matter [74] with the dark
energy [85] by allowing both the kinetic term of a scalar field and the Pontryagin
term to enter the mimetic conformal factor. This results generically in a k-
essence theory with an extra global degree of freedom, which corresponds to the
overall energy scale of the k-essence. This alternative mimetic description exists
for nearly arbitrary k-essence. A notable exception to this stems from the fact
that the energy component coming from a mimetic theory can never have the
ultra-relativistic equation of state. Trying to find a mimetic description for an
ultra-relativistic k-essence results in the associated conformal factor being ill-
defined. We have found a general method at finding a mimetic description for a
given k-essence.

The effective k-essence Lagrangian arises from the mimetic theory from an
implicit equation. This equation may, in principle, have multiple solutions and
thus our model may provide multiple k-essence theories simultaneously. These
may then appear in superposition once we turn to quantum theory. Such cases
may be engineered through our above method as well.

Finally we investigate the importance of Weyl symmetry of the setup. Inter-
estingly, the conformal mode that typically disappears from the mimetic theory,
becomes an auxiliary field or a Lagrange multiplier. We show that in the for-
mer case this mode can be integrated out of the action leaving us with a Weyl
invariant theory of the above mimetic type. Surprisingly, if the conformal mode
behaves as a Lagrange multiplier, the theory becomes equivalent to GR with
two constraints. If these constraints are compatible with each other the theory
describes mimetic dark matter with a potential, whose overall scale is given by
the additional global degree of freedom, that is still present in the theory. If the
associated potential is flat, then our model provides both mimetic dark matter
and unimodular gravity simultaneously.

For the full text of the paper [92], please see Attachment 3 of this thesis.
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6. Losing the trace of the
Einstein equations
This chapter is based on the work ”Losing the trace to find dynamical Newton
or Planck constants” [86] that has been published in Journal of Cosmology and
Astroparticle Physics.

The origins of unimodular gravity can be traced to the proposal of traceless
Einstein equations [87]

Gµν − 1
4Ggµν = Tµν − 1

4Tgµν . (6.1)

A notable feature of these equations is that the trace is eliminated in a way
that hides any information about the cosmological constant. As we have seen in
mimetic theories one can loose the trace in other ways using additional fields in
the theory. In this sense the original traceless Einstein equations are somewhat
minimal in that they do not require any new field content to postulate.

The work presented in this chapter is based on a single key observation: the
trace part of Einstein equations can be trivialized in another minimal way without
the need to introduce additional fields. Instead of eliminating the trace of each
side of the equation, we propose that the trace is instead made to be equal to 1.
This can be achieved by dividing each side of Einstein equations by its respective
trace as:

Gµν

G
= Tµν

T
. (6.2)

This makes the trace part of the equations a trivial identity 1 = 1. Interestingly,
the proposed modification eliminates the Newton constant from the equation. In
this sense, the above equations (6.2) are scale free. We have shown that this model
is in fact equivalent to ordinary General Relativity with an arbitrary Newton
constant, which enters as a constant of integration in our setup. The comeback
of the Newton constant is very similar to the appearance of the cosmological
constant in Einstein traceless equations (1.35). They both result from the Bianchi
identity and the covariant conservation of the energy momentum tensor. In this
sense, our theory is complementary to unimodular gravity as we have two free
parameters in Einstein equations (GN and Λ) and two ways to eliminate the trace.
Each of them results in one parameter vanishing only to return as an integration
constant.

We further explore various other implementations of our proposal on the level
of the equations of motion and on the level of the action. Drawing on the similar-
ities with unimodular gravity we have found that our model can be realized by a
Lagrange multiplier that is constrained to a constant by an additional vector field,
like in Henneaux and Teitelboim unimodular gravity [88]. The constancy of the
Lagrange multiplier can be alternatively achieved by coupling it to a Pontryagin
term of a gauge field, like in [85]. The Lagrange multiplier in this approach either
couples to the Einstein-Hilbert term of the action, where its plays the role of an
inverse of the Newton constant, or it couples linearly to the entire matter La-
grangian. In the latter option the multiplier rescales the Newton constant, which
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classically provides the same effect. Upon quantization, we have found that the
latter option additionally leads to a rescaling of the Planck constant.

By promoting the Newton constant to a global degree of freedom, the ”con-
stant” becomes an operator upon quantization. Consequently it is subjected to
quantum fluctuations and their corresponding uncertainty relations. These fluctu-
ations may play an important role near cosmological and black hole singularities.
It is interesting to note that the conjugate quantity of the promoted constant
may vary for different formulations. When the Lagrange multiplier couples to
the Einstein-Hilbert term the conjugate quantity to the inverse Newton constant
is the spacetime integral of the Ricci curvature or in other words the Einstein
Hilbert action. In the second case, where the multiplier couples to the matter
Lagrangian, the conjugate quantity is the matter sector action. Note that these
quantities are also subjected to the quantum fluctuations.

For the full text of the paper [86], please see Attachment 4 of this thesis.
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7. Varying cosmological
”constant” in parity violating
Friedman universe
In this chapter we focus on a class of models that allow for a variable cosmological
”constant” without changing the form of Einstein equations. This idea has been
proposed in [103, 104] and developed in [105]. This approach is very different
from the dark energy scenarios like quintessence since the promoted cosmological
constant has no kinetic term. Rather its dynamics are driven by its interaction
with the topological terms of the gravitational sector. In this chapter we first
introduce the framework of Einstein-Cartan gravity, on which the above papers
are based on, and briefly review the above extensions. Then we present our
findings that are based on the work ”Gravity waves in parity-violating Copernican
Universes” that has been published in Physical Review D [106]. In this work
we analyse the propagation of tensor perturbation in the above extensions and
through it we provide constraints on the parameters of the model.

7.1 Einstein-Cartan gravity
At first sight the description of General Relativity seem to be much different from
the description of the other fundamental forces of the Standard Model [181, 182].
The latter are different realization of the Yang-Mills theory [183] for various
groups and the forces themselves are being mediated by the connection forms
associated to the said groups [184–187]. The Yang-Mills gauge fields Aµ couple
to matter only through the covariant derivative

Dµ = ∂µ + igAcµfabc . (7.1)

Here g is the coupling constant, fabc are the structure constants of the associated
gauge group and the latin indices are indices of the Lie algebra of the group.
The presence of the gauge fields in the covariant derivative ensures that the
differentiated objects transform covariantly under the action of the underlying
group. This is very similar to the covariant derivative of general relativity, where
such compensation is needed in order to preserve the covariant transformation of
derivatives of tensors under diffeomorphisms:

∇µ = ∂µ + Γρνµ . (7.2)

The stark difference between (7.1) and (7.2) is that Aµ is an independent field
while Γσνµ is not. Instead, it is the Levi-Civita connection given through the
standard expression from the metric:

Γρµν = 1
2g

ρσ
(︃
∂µgσν + ∂νgσµ − ∂σgµν

)︃
. (7.3)

The metric itself plays a very different role in the theory. It couples to the matter
sector through the associated volume form and by contracting indices in kinetic
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terms of the matter fields. This clearly provokes the question: Why is the affine
connection in GR not the independent field and how does metric fit into the
picture of gauge theory?

Einstein-Cartan Gravity is one of several theories that tries to bridge the
gap between GR and Yang-Mills by capitalizing on their similarities [188, 189].
It does this by promoting the affine connection in GR to an independent field,
while the metric stays in the picture. This promotion can be done in several ways
as there is a lot of freedom in our choice of the affine connection. These ways
are easily understood by recalling which considerations lead us to the Levi-Civita
connection in the first place. These are the metric compatibility condition

∇µgνσ = 0 , (7.4)
and the requirement of vanishing torsion

Γσµν − Γσνµ = 0 . (7.5)
Upon these two constraints the affine connection is uniquely fixed as (7.3). To
make the connection independent we must abandon at least one of these require-
ments. In Einstein-Cartan gravity we relax the vanishing torsion condition while
keeping the metric compatibility. Note, that a complementary approach is the
Palatini formalism [190, 191] in which the metric compatibility is relaxed, while
torsion is fixed to vanish [25]. There is also the most general approach called
metric affine gravity in which both conditions are relaxed [192].

The curvature tensor for an independent connection has the same form as in
GR and as the field strength for a Yang-Mills field. That is

Rσ
ρµν = ∂µΓσρν − ∂νΓσρµ + ΓσιµΓιρν − ΓσινΓιρµ . (7.6)

Since we have abandoned the symmetry in the lower indices of Γσνµ one has to be
wary of the index order in this expression. Note that the curvature depends purely
on the connection Γσνµ. The Ricci tensor and Ricci scalar can be formed in the
standard way, however, the Ricci tensorRµν no longer needs to be symmetric. The
Einstein-Cartan action is a minimal deviation from the Einstein-Hilbert action:

S[gµν ,Γρισ] =
∫︂
d4x

√
−ggµνRµν(Γ) . (7.7)

In contrast to GR this action is first-order in derivatives. As long as no other
fields in the theory couple to the connection Γρνµ this action replicates GR as
the equation of motion for Γρνµ provides the condition of vanishing torsion. Once
additional couplings are introduced, this is no longer the case. Einstein-Cartan
gravity is usually formulated in a different set of variables than gµν and Γρνµ.
This set is the spin connection ωABµ and the tetrad fields eAµ which appear very
naturally from the need to accommodate spinors on a curved spacetime. In order
to do so, one has to forgo the metric in favor of the tetrad fields. These two are
related by the following relation

gµν = eAµ e
B
ν ηAB . (7.8)

The Latin index is acted upon by an additional Lorentz group1 that is disasso-
ciated from the diffeomorphisms of the spacetime manifold. This Lorentz group

1We use capital Latin indeces from the beginning of the alphabet (A, B, C . . . ) for the
Lorentz group indeces and capital Latin indeces from the middle of the alphabet (I, J, K . . . )
for the SO(3) subgroup indeces.
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is essential for the introduction of fermionic fields. Indeed, there are no spino-
rial representations of general diffeomorphisms and thus we need a new Lorentz
group to define spinors. Using the tetrad fields the affine connection induces a
connection fields for this Lorentz group - the spin connection:

ωABµ = eAν ΓνσµeσB + eAν ∂µe
ν
B . (7.9)

Note that the spin connection can be introduced in GR as well.
In Einstein-Cartan gravity the tetrad eAµ and ωABµ are usually taken to be

the fundamental variables, making the Lorentz group the fundamental group of
this theory2. Furthermore, since these fields only carry a single lower spacetime
index, they can be naturally thought of as differential 1-forms as it is the case in
other gauge theories. The entire theory can be very elegantly described within
the exterior algebra. For a detailed introduction to differential forms, exterior
algebra and exterior calculus see for example [180, 193]. This allows us to drop
all the spacetime indices, keeping in mind that the objects are forms and any
multiplication carried among them is meant to be the exterior product ∧:

eAµ → eA , (7.10)
ωABµ → ωAB . (7.11)

To provide a quick reference for the further sections we list several standard iden-
tities in the language of forms. The exterior covariant derivative is schematically
given as

D = d+ ωAB , (7.12)

here d is the exterior derivative. This allows us to express the torsion 2-form as

DeA = TA , where TA = 1
2e

A
ρ T

ρ
µνdx

µ ∧ dxν , (7.13)

The curvature 2-forms are given as a field strength of the spin connection

RA
B = dωAB + ωACω

C
B , where RA

B = 1
2e

A
ρ e

σ
BR

ρ
σµνdx

µ ∧ dxν . (7.14)

The curvature 2-forms are annihilated by the covariant derivative

DRA
B = 0 . (7.15)

In general the repeated use of the exterior covariant derivative reduces to a mul-
tiplication by the curvature 2-forms. For example

DTA = D2eA = RA
Be

B . (7.16)

The Einstein-Cartan action (7.7) with cosmological constant expressed in terms
of forms can be written as

S[eA, ωAB] =
∫︂
ϵABCD

(︃
eAeBRCD − Λ

6 e
AeBeCeD

)︃
. (7.17)

2One can further consider the tetrads to be a connection for translations of the representation
space of the Lorentz group. This makes the theory a Poincare gauge theory.
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Here the integral sign denotes the integration of 4-forms on a manifold. The
resulting equations of motion for eA are

ϵABCD

(︃
eBRCD − Λ

3 e
BeCeD

)︃
= −2κτA , (7.18)

where τA = 1
2
δS
δeA and κ = 8πGN . The equations for the spin connection ωAB are

ϵABCDe
CTD = 0. (7.19)

The right hand side may be considered to be non-zero in case we consider matter
couplings to the spin connection. These couplings naturally appear in the kinetic
terms of spinors and they cause deviations from GR.

7.2 The varying cosmological constant
In this chapter we introduce some of the ideas that were proposed in the papers
[103–105].

As we have seen in the previous chapters a possible strategy in addressing the
cosmological constant problem is to promote the CC to a dynamical field. This
can be beneficial in multitude of ways. In unimodular gravity the cosmological
constant becomes a Lagrange multiplier, which allows us to decouple the zero-
point energies from the gravitational dynamics. In other proposals the spacetime
dependence may provide a mechanism to relax the value of the cosmological
constant to the unnaturally small value that we observe today. This is exactly
what has been explored in quintessence scenarios and other various dark energy
candidates [143].

Our ability to provide a spacetime variability to the cosmological constant is
severely restricted by the Bianchi identities and the covariant conservation of the
energy momentum tensor. Assuming the standard form of Einstein equations

Gµν + Λgµν = κTµν , (7.20)

and taking the four divergence we quickly find that the only consistent option
is Λ = const. Indeed, any spacetime dependence of Λ must be compensated
somehow. Since the form of the Einstein tensor is fixed in GR, the price must be
paid on the right hand side of the equation by breaking the conservation of the
energy momentum tensor. Consequently, any vacuum solution is still forced to a
constant Λ as the right hand side is conserved identically.

This can be circumvented in Einstein-Cartan gravity. There the Einstein
tensor is made out of torsionful curvature and as a consequence the usual Bianchi
identities do not apply. This allows us to balance the spacetime dependence
of Λ against the torsion contributions in the Einstein tensor, while keeping the
conservation of the energy momentum tensor intact. This makes the varying
cosmological ”constant” possible even in the absence of matter.

These considerations result in a severely constrained space of options we can
look at. Indeed, any kinetic terms for Λ are forbidden as they produce contri-
butions to the energy momentum tensor. In fact, Λ cannot be coupled to the
tetrad anywhere else but the cosmological constant term. By similar reasoning
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one can find that Λ cannot couple to the matter fields either as that would spoil
the conservation of energy and momentum. Indeed, any coupling to matter fields
results in Λ appearing in the matter equations of motion, which are necessary
for the vanishing of the divergence of the stress energy tensor. Λ cannot remain
uncoupled either as that would make it a Lagrange multiplier constraining an
unphysical constraint √

−g = 0. This leaves us only with terms that are purely
formed from the spin connection ωAB and since the spin connection does not
transform homogeneously under the Lorentz group we are in fact left with terms
that depend only on Lorentz invariants of the curvature RA

B(ω).3 This way we
find that Λ may only couple to the Euler term and the Pontryagin invariant4

IEuler. = ϵABCDR
ABRCD, (7.21)

IPont. = RABRAB . (7.22)

The remaining freedom in the choice of this coupling has been fully fixed in
[103, 104] by requiring that the action is parity even and is invariant under the
following swap operation

RAB(ω) ↔ Λ
3 e

AeB . (7.23)

This has lead to a simple extension of the Einstein-Cartan gravity where the Λ is
coupled to the Euler term in such a way to achieve the above invariance [103, 104]:

S[eA, ωAB,Λ] =
∫︂
ϵABCD

(︃
eAeBRCD − Λ

6 e
AeBeCeD − 3

2ΛR
ABRCD

)︃
. (7.24)

Since this action does not include any new terms dependent on the tetrad field
eA the form of Einstein equations remains unchanged as intended:

ϵABCD

(︃
eBRCD − Λ

3 e
BeCeD

)︃
= −2κτA . (7.25)

On the other hand, the equation for the spin connection obtains a non-trivial
right hand side in comparison to (7.19)

T [AeB] = − 3
2Λ2dΛRAB . (7.26)

This produces a non-trivial torsion. Since we have promoted Λ to an independent
field we also obtain an associated equation

ϵABCD

[︃Λ2

9 eAeBeCeD −RABRCD
]︃

= 0 . (7.27)

Remarkably by following the self duality condition this model has fewer free
parameters then General Relativity. Due to this severely constrained nature the
above model unsurprisingly fails to provide a viable cosmology.

3This is allowed since we take ωA
B as part of the gravitational sector, it naturally enters the

Einstein tensor in ECG and it does not couple to matter as we will not consider fermions at
this point.

4One may in general consider functions of these terms but since they are 4-forms this space
becomes limited to only a function of a single variable.
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The above model (7.24) has been further extended in [105], where the require-
ment on parity is lifted. This frees up the coupling of the cosmological ”constant”
Λ to the Pontryagin invariant as well. This can be achieved while retaining the
duality symmetry (7.23), indeed the proposed action has the form

S = −
∫︂ 3

2Λ

(︃
ϵABCD+ 2

γ
ηACηBD

)︃(︃
RAB− Λ

3 e
AeB

)︃(︃
RCD− Λ

3 e
CeD

)︃
− 2
γ

∫︂
TATA .

(7.28)
Note that in order to preserve the duality (7.23) the Holst term [194] appears in
the action, however, its contribution is balanced out by the torsion squared term.
Together forming the last topological invariant in the theory, the Nieh-Yan term

INY = eAeBRAB − TATA. (7.29)

The Nieh-Yan invariant is a novelty in comparison to GR as it vanishes identically
in case of TA = 0 as can be seen from (7.16). Note that this invariant appears
uncoupled and thus is truly a surface term in the action and has zero contri-
bution to the equations of motion. The coupling of Λ to the Pontryagin term
allows us to introduce a single parameter to the theory, the ”Immirzi” parameter
γ. The resulting equations of motion generalize the above equations of motion
(7.25),(7.26) and (7.27) in the following way

ϵABCD

(︃
eBRCD − 1

3ΛeBeCeD
)︃

= −2κτA , (7.30)

T [AeB] + 3
2Λ2dΛRAB − 3

4γΛ2 ϵ
ABCDdΛRCD = 0 , (7.31)

ϵABCD

(︃
RABRCD − 1

9Λ2eAeBeCeD
)︃

+ 2
γ
RABRAB = 0 . (7.32)

On flat (k = 0) cosmological solutions the above system can be characterized by
4 scalars. The standard scale factor which enters through the tetrad fields

e0 = dt, (7.33)
eI = adxI . (7.34)

The next scalar is the cosmological constant Λ(t) and the final pair characterises
the torsion degrees of freedom

T 0 = 0, (7.35)
T I = −T (t)e0eI + P (t)ϵIJKeJeK . (7.36)

The crucial consequence of allowing of parity breaking is the appearance of the
scalar P which has been disregarded in [103, 104]. This results in a new branch of
solutions in the theory with novel degrees of freedom as has been shown through
Hamiltonian analysis [105] of these models. Curiously this branch of solutions
exists even without the parity breaking Pontryagin term (7.24) or in other words
in the limit γ → ∞. Both of the torsion scalars P and T contribute to the
full curvature tensor. Interestingly, P is able to source Weyl curvature even on
homogeneous and isotropic background.
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7.3 Gravity waves in parity-violating Coperni-
can Universes

This section is based on our paper ”Gravity waves in parity-violating Copernican
Universes” that has been published in Physical Review D [106]. Unfortunately, we
have recently found an error in the original manuscript, which we have corrected.
Here we include a revised version of our work.

In our paper [106] we have further investigated the role of the parity-odd
scalar P in the model (7.28). We study the background cosmology in this setting
for finite values of the Immrizi parameter γ. We have found that the scalar P in
general tends to dominate over the other energy components during the radiation
and matter domination era. A large contribution of P is clearly incompatible with
observations. We have found that there exists a tracker solution for P . On this
solution P may remain small in comparison to other forms of energy producing
a viable cosmological history. P is allowed to leave the tracking solution on the
onset of DE domination, which is driven by the varying cosmological constant
Λ. In this dynamical regime it no longer grows. Unfortunately, we have found
that the tracking solution is unstable, and thus we have to fine tune the initial
conditions for P to a high degree so that it stays on the tracking solution for as
long as we need.

We further perform an analysis of linear tensor perturbation in this setting.
We find parity dependent deviations from GR that affect the speed of propaga-
tion of gravity waves. These deviations differ for the left and right helicities of the
wave. This effect depends on the magnitude of both the parity violating back-
ground torsion P and the value of the Immirzi parameter γ. Comparing these
with the observations the gravitational waves and their electromagnetic counter-
part from the binary neutron star merger event GW170817 and GRB 170817A
by the LIGO/Virgo and Fermi/INTEGRAL [107, 108], allowed us to constrain
the value of the Immirzi parameter to γ2 < 10−15. Under these constraint the
model is still able to provide a viable cosmology.

For the full text of the paper [106], please see Attachment 5 of this thesis.
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Conclusion
In this thesis we have discussed various modifications of gravity mostly related
to the cosmological constant problem and to the problem of dark energy.

In Chapter 1 we have provided a brief exposition of the cosmological constant
problem(s). Mainly we have focused on the problem of zero-point energies of
quantum fields. We have argued that these vacuum energies are far from un-
derstood. Indeed, various past attempts at estimating their size result in vastly
different values by orders and orders of magnitude. We have reviewed two ap-
proaches to estimating the zero-point energies for a toy model scalar field: the
Minkowski hard cut-off and the dimensional regularization. The first method
produces an estimate that is quartic in the cut-off mass parameter, while the
second provides a contribution, which is quartic in the mass of the field itself. We
have discussed several flaws of these methods and explained why they cannot be
trusted to provide a prediction for the value of the cosmological constant. Indeed,
the hard cut-off method produces a contribution, which violates the appropriate
equation of state of vacuum energy and as a consequence breaks the Lorentz
symmetry of the vacuum. On the other hand, the dimensional regularization
introduces an arbitrary parameter that, unlike in scattering experiments, has no
entirely clear interpretation. The application of this result to the real world is
rather limited. Indeed, going beyond the free-field approximation, the masses of
quantum fields in general run with energy scale. Thus, it is unclear which mass
should provide the vacuum energy in this approach. This shortcoming becomes
even more pronounced when we consider the SM. There almost all particle masses
are generated by the Higgs mechanism and vanish in the UV limit of the theory.
We have also briefly discussed how vacuum energy may be induced by a transition
of a scalar field from one vacuum to another in either the first or the second order
phase transition or crossover.

We followed this discussion by an introduction to unimodular gravity in Sec-
tion 1.3. We went over several possible ways this theory can be realized. In partic-
ular, we have reviewed how it arises from the Einstein traceless equations, from a
diffeomorphism violating constraint in the action (1.40) or from a diffeomorphism
invariant constraint in the action (1.44). We have argued that unimodular gravity
is subtly different from GR in that it contains solutions of all Einstein equations
with all possible cosmological constants. Note that any particular classical so-
lution is, however, indistinguishable from GR with a corresponding cosmological
constant. We have discussed that in unimodular gravity the quantum fluctua-
tions of maximally symmetric vacuum do not gravitate. This is best seen from
the Einstein traceless equations which are insensitive to any vacuum shifts of the
energy momentum tensor. We have presented a simple argument to support this
conclusion.

In Chapter 2 we have reviewed the theory of mimetic dark matter [74], which
has been a key idea in Chapters 3 to 5. In mimetic dark matter the physical
geometry, gµν , is constructed from an auxiliary metric hµν and a scalar field ϕ
in a Weyl invariant way (2.5). The gauge degeneracy resulting from the Weyl
symmetry leads to a novel dynamical sector in the theory, which, in this case,
corresponds to a simple irrotational dust. We have discussed that this proposal
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can be viewed as a special case of disformal transformation [129]. We have high-
lighted that the underlying Weyl symmetry leads to a traceless Einstein equation
(2.14), which is similar to but also distinct from that of unimodular gravity (1.35).
These equations are insensitive to shifts of the energy momentum tensor of the
form (2.21). This is analogous to the shifts of the vacuum energy in unimodular
gravity. In this sense, mimetic dark matter is related to unimodular gravity. We
made this connection more concrete in Chapter 3 and Chapter 4. In Chapter 2
we have also briefly discussed the theory of k-essence [93–95] in order to introduce
it in preparation for Chapter 5. We have made a short exposition of its origins
and of its basic features. We have highlighted that the background configura-
tions can provide a small sound speed for the propagation of the k-essence scalar
perturbations. This makes this system useful not only as a candidate for dark
energy, but also an interesting model for dark matter [153, 155, 156].

In Chapter 3 we have reviewed our findings from [84]. In this work we have
explored the relation between the mimetic DM and unimodular gravity in detail.
We have found that the mimetic scenario can be modified by introducing a dif-
ferent form of the physical metric, gµν , which, in this case, is constructed from
an auxiliary metric hµν and vector field V µ. In order to preserve the Weyl invari-
ance, which was a key ingredient of the original mimetic proposal [74], we have
extended the action of the Weyl group onto the vector field. In particular, V µ

has a conformal weight 4 in our setting. We have demonstrated that this differ-
ent realization (in comparison to (2.5)) of the underlying Weyl symmetry of the
physical metric results in the simple dynamics of unimodular gravity discussed
in Section 1.3. We have shown that this connection can be made explicit on
the level of the action by going to Weyl invariant variables, in which this theory
reproduces the Henneaux-Teitelboim formulation of unimodular gravity (1.44).
Due to the underlying Weyl invariance, the resulting equations of motion for the
original variables are manifestly invariant under constant shifts of the vacuum
energy. Our model is a novel vector-tensor representation of unimodular gravity
which contains higher order derivatives of the vector field. Our formulation may
also be very interesting in providing a new origin for additional extensions of
unimodular gravity and may facilitate further links with other modifications of
gravity. In particular, a non-trivial Weyl transformation of the vector field allows
us to impose a gauge condition hµνV

µV ν = 1. In this sense our vector construc-
tion becomes similar to Einstein aether [58]. Finally, the equivalence of classical
dynamics may not imply full quantum equivalence. Therefore, our proposal may
represent a distinct theory in the quantum regime.

We pursued these ideas further in our paper [85], which we have reviewed in
Chapter 4. In this work, we have explored an extension of the above idea in which
the vector field V µ is considered as a composite object, namely the Chern-Simons
current of a gauge field Aµ. This change has several advantages. First of all, the
Chern-Simons current is naturally a vector field of conformal weight 4 due to the
determinant of the metric appearing in its definition. Thus, we may achieve the
Weyl invariance of the physical metric without prescribing any non-trivial Weyl
transformation to the gauge fields themselves. Secondly, the mimetic conformal
factor appearing in this proposal is free from derivatives of the metric, which
results in a simpler structure of the resulting equations of motion. Finally, the
gauge fields are a very natural object in field theory as opposed to the unusual
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vector V µ with a non-trivial Weyl transformation. This provides a better starting
point for proposing additional extensions of this theory. The mimetic conformal
factor itself is the square root of the Pontryagin term of the gauge field Aµ. Our
construction can thus be considered as a complementary one to the proposal
[82, 83], which features the kinetic term of a gauge field in this role. Despite the
introduced composite structure of V µ, this theory is still classically equivalent to
unimodular gravity. Therefore, it is not surprising that our model only contains a
single additional global degree of freedom, which corresponds to the cosmological
constant. We have shown, that in (Weyl) gauge invariant variables this degree
of freedom is represented as a Lagrange multiplier constraining the Pontryagin
term to a constant. In this sense the Lagrange multiplier has an axion like
coupling to the gauge fields and therefore plays the role of the θ parameter of
the corresponding Yang-Mills theory as well as the cosmological constant. We
have discussed this similarity further, and we have shown that the model can
be extended to resemble the axion even more. Indeed, one can promote the
Lagrange multiplier to an ordinary scalar field and equip it with a kinetic term,
as well as a potential term without significantly impacting the dynamical content
of the theory. Only after the introduction of a kinetic term for the gauge fields
themselves, the theory becomes significantly different from unimodular gravity.
In this sense unimodular gravity may be naively recovered as a dynamical regime
of an axion, in which the kinetic term of the Yang-Mills fields is suppressed.
It would be very interesting, to see if any of these departures from unimodular
gravity could provide us a selection mechanism for the value of the cosmological
constant.

In Chapter 5 we have reviewed a possible approach [92] to combining the
original mimetic dark matter [74] with our above proposal [85] in an attempt to
produce a ”mimetic dark sector”. The key observation in our work [92] has been
that the conformal factor in a mimetic substitution does not need to consist of a
single term (for example the kinetic term (∂ϕ)2 or the Pontryagin term F̃

σρ
Fσρ).

We can consider various combinations of them instead, only requiring that the
overall conformal weight is 2. Interestingly, we have found that this mixture re-
sults generically in a k-essence theory with an additional global degree of freedom,
which provides an overall energy scale for the k-essence. We have examined the
extent of this correspondence between our mimetic description and k-essence the-
ories to find that our proposal can support almost arbitrary k-essence. The only
exception is when the equation of state of the k-essence becomes ultra-relativistic,
that is when its energy momentum tensor becomes traceless. At these points the
mimetic description breaks down, and the associated mimetic conformal factor
becomes ill defined. We have provided a general method for deriving a corre-
sponding mimetic picture for a given k-essence. We have further discussed the
importance of Weyl symmetry in this picture. Interestingly, we have found that
in models that violate this symmetry the conformal mode of the auxiliary metric
behaves either as an auxiliary field or a Lagrange multiplier. In the former case,
integrating this auxiliary mode out of the action restores the Weyl symmetry dy-
namically. In the latter case, the conformal mode enforces additional constraint
on the theory. In this regime the dynamics of the theory are equivalent to those
of mimetic DM with a potential [76]. The overall scale of the potential is given
by the global degree of freedom of the theory. If the potential is flat (constant),
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this theory provides us with both unimodular gravity and mimetic dark matter
using a single mimetic substitution.

In Chapter 6 we have reviewed our paper [86]. In this work we have proposed
a minimal scale-free modification of the Einstein equations. This modification is
obtained by dividing each side of the original Einstein equations by their respec-
tive traces. Doing so removes any dependence on the Newton constant from the
equations, and thus, the scale is lost. Similarly to unimodular gravity, this change
does very little to the classical solutions of the theory. In fact the model yields
the same dynamics as GR; however, the Newton constant appears as a constant
of integration or a global degree of freedom, rather then a coupling constant. We
have discussed various alternative formulations, of our proposal both on the level
of the action and on the level of the equations of motion. We have highlighted
the additional similarities with unimodular gravity. Interestingly, in some of these
formulations the effective Planck constant ℏ also becomes a global degree of free-
dom. We have discussed that promoting the fundamental constants to global
degrees of freedom has substantial consequences upon quantization. There, all
degrees of freedom are subjected to quantum fluctuations and their correspond-
ing Heisenberg uncertainty relations. Thus, we get quantum fluctuations of the
Newton constant itself. This may be of significance near classical cosmological
and black hole singularities. It would be very interesting to further investigate
the implications of these fluctuations. Furthermore, it has been suggested that
unimodular gravity appears naturally from thermodynamic or emergent grav-
ity settings [195–198]. It would be thus very interesting to see if the scale-free
Einstein equations could arise in a similar manner.

In Chapter 7 we have discussed an extension of Einstein-Cartan gravity. We
have reviewed the Einstein-Cartan gravity in Section 7.1 and the extension itself
[103–105] in Section 7.2. In these models the cosmological constant is promoted
to an auxiliary field, that is coupled to the topological terms of gravity. In par-
ticular, the Euler term (7.21) and the Pontryagin term (7.22). In the setting of
ECG, such couplings give rise to a non-trivial torsion tensor and consequently
to a varying cosmological ”constant”. Interestingly, it has been found that this
setting naturally supports an unusual parity-odd scalar P , which constitutes a
part of the torsion tensor and is consistent with both homogeneity and isotropy
of cosmological solutions. This parity-odd piece further gives rise to a non-trivial
Weyl curvature. In Section 7.3 we have reviewed our paper [106], in which we
further investigate the role of this parity violating piece in the above models. We
have found that the presence of a non-zero P is necessary for obtaining cosmolog-
ical solutions that are compatible with observations. In these potentially viable
solutions, the scalar P tracks the dominating form of matter for most of cosmo-
logical history and leaves the tracking solution on the onset of DE domination.
We found that the tracking solution itself is unstable, and any deviations from
it quickly grow. Thus, the phenomenological viability of this model rests on the
fine tuning of the initial conditions of P so that it finds itself close enough to
the tracking solution. We have performed a technically challenging analysis of
the tensor perturbations in this model, which has been carried out in the first
order formalism. We have found that the speed of propagation of gravitational
waves is in general affected by the parity-odd piece, and that this effect differs
for the left and right helicities of the graviton. These results have allowed us to
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put constraint on the single dimensionless parameter γ in the model. By com-
paring our results with the LIGO/Virgo and Fermi/INTEGRAL measurements
of the gravitational waves and electromagnetic signal coming from a binary neu-
tron star merger GW170817 and GRB 170817A [107, 108] we have been able to
determine that γ2 < 10−15. Under this constraint the theory can still provide
a viable cosmological evolution. Our findings are potentially very interesting
for phenomenological approaches to quantum gravity, where modified dispersion
relations of tensor modes play a major role [199–202]. The chiral modification
that is realized in the above model adds a novel layer to these dispersion relation
modifications. Finally, as we have seen in Section 1.3 and in Chapter 6, the cos-
mological constant and the Newton constant in GR are restricted to a constant in
a very similar fashion. This immediately raises a question whether a similar style
of torsion balancing, that has been employed here to make CC vary, could be used
to support a spacetime varying Newton constant, and if this would imply similar
parity violations. It would be interesting to further explore these mechanisms in
ECG or in the broader context of metric-affine gravities [192].

We hope that we have been able to demonstrate that modified gravity is a very
interesting subject that allows us to provide novel insights to the problem of dark
energy and cosmological constant. As we have discussed, a reliable evaluation
of the zero point energies will likely require knowledge of the UV physics of the
SM, which is likely not going to be understood sufficiently in the near future.
Thus, we feel that modifications of gravity are currently the best tool we have
to address the cosmological constant problem. Additionally, any novel degrees of
freedom that appear due to the modification may be significant for the problems
of DE or DM. Studying modified gravity is particularly exciting at the present
day due to the recent enormous improvements in cosmological observations as
well as gravitational wave measurements. These allow us to directly confront
many of the proposed models with observations and to consequently gain deeper
understanding of gravity.
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[84] P. Jiroušek and A. Vikman, “New Weyl-invariant vector-tensor theory for
the cosmological constant,” JCAP 04 (2019) 004, arXiv:1811.09547
[gr-qc].

[85] K. Hammer, P. Jirousek, and A. Vikman, “Axionic cosmological
constant,” arXiv:2001.03169 [gr-qc].
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[132] P. Jiroušek, K. Shimada, A. Vikman, and M. Yamaguchi, “Conforming to
conformal symmetry,” in preparation .

[133] N. C. Tsamis and R. P. Woodard, “No New Physics in Conformal Scalar -
Metric Theory,” Annals Phys. 168 (1986) 457.

54

http://dx.doi.org/10.1103/PhysRevLett.60.1692
http://arxiv.org/abs/hep-th/9306075
http://dx.doi.org/10.1140/epjc/s10052-015-3767-0
http://arxiv.org/abs/1409.3573
http://arxiv.org/abs/1409.3573
http://dx.doi.org/10.1103/PhysRevD.92.061502
http://arxiv.org/abs/1505.00022
http://dx.doi.org/10.1007/JHEP08(2015)078
http://arxiv.org/abs/1505.01995
http://dx.doi.org/10.1088/1475-7516/2018/01/028
http://arxiv.org/abs/1711.08009
http://dx.doi.org/10.1007/s10701-018-0189-5
http://arxiv.org/abs/1712.09903
http://arxiv.org/abs/1712.09903
http://dx.doi.org/10.1140/epjc/s10052-018-5734-z
http://dx.doi.org/10.1140/epjc/s10052-018-5734-z
http://arxiv.org/abs/1802.03755
http://dx.doi.org/10.1103/PhysRevD.91.064058
http://dx.doi.org/10.1103/PhysRevD.91.064058
http://arxiv.org/abs/1409.8014
http://dx.doi.org/10.1103/PhysRevD.48.3641
http://arxiv.org/abs/gr-qc/9211017
http://dx.doi.org/10.1088/1475-7516/2014/09/002
http://arxiv.org/abs/1407.0825
http://arxiv.org/abs/1407.0825
http://dx.doi.org/10.1103/PhysRevD.89.064046
http://arxiv.org/abs/1308.4685
http://dx.doi.org/10.1016/0003-4916(86)90040-0


[134] R. Jackiw and S.-Y. Pi, “Fake Conformal Symmetry in Conformal
Cosmological Models,” Phys. Rev. D 91 no. 6, (2015) 067501,
arXiv:1407.8545 [gr-qc].

[135] I. Oda, “Fake Conformal Symmetry in Unimodular Gravity,” Phys. Rev.
D 94 no. 4, (2016) 044032, arXiv:1606.01571 [gr-qc].

[136] D. Blas, O. Pujolas, and S. Sibiryakov, “On the Extra Mode and
Inconsistency of Horava Gravity,” JHEP 10 (2009) 029, arXiv:0906.3046
[hep-th].

[137] T. Zlośnik, F. Urban, L. Marzola, and T. Koivisto, “Spacetime and dark
matter from spontaneous breaking of Lorentz symmetry,” Class. Quant.
Grav. 35 no. 23, (2018) 235003, arXiv:1807.01100 [gr-qc].

[138] R. R. Caldwell, R. Dave, and P. J. Steinhardt, “Cosmological imprint of
an energy component with general equation of state,” Phys. Rev. Lett. 80
(1998) 1582–1585, arXiv:astro-ph/9708069.

[139] B. Ratra and P. J. E. Peebles, “Cosmological Consequences of a Rolling
Homogeneous Scalar Field,” Phys. Rev. D 37 (1988) 3406.

[140] I. Zlatev, L.-M. Wang, and P. J. Steinhardt, “Quintessence, cosmic
coincidence, and the cosmological constant,” Phys. Rev. Lett. 82 (1999)
896–899, arXiv:astro-ph/9807002.

[141] L. Amendola, “Coupled quintessence,” Phys. Rev. D 62 (2000) 043511,
arXiv:astro-ph/9908023.

[142] P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark
Energy,” Rev. Mod. Phys. 75 (2003) 559–606, arXiv:astro-ph/0207347.

[143] E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,”
Int. J. Mod. Phys. D 15 (2006) 1753–1936, arXiv:hep-th/0603057.

[144] P. J. Steinhardt, L.-M. Wang, and I. Zlatev, “Cosmological tracking
solutions,” Phys. Rev. D 59 (1999) 123504, arXiv:astro-ph/9812313.

[145] A. de la Macorra and G. Piccinelli, “General scalar fields as quintessence,”
Phys. Rev. D 61 (2000) 123503, arXiv:hep-ph/9909459.

[146] S. C. C. Ng, N. J. Nunes, and F. Rosati, “Applications of scalar attractor
solutions to cosmology,” Phys. Rev. D 64 (2001) 083510,
arXiv:astro-ph/0107321.

[147] P. S. Corasaniti and E. J. Copeland, “A Model independent approach to
the dark energy equation of state,” Phys. Rev. D 67 (2003) 063521,
arXiv:astro-ph/0205544.

[148] R. R. Caldwell and E. V. Linder, “The Limits of quintessence,” Phys. Rev.
Lett. 95 (2005) 141301, arXiv:astro-ph/0505494.

[149] E. V. Linder, “The paths of quintessence,” Phys. Rev. D 73 (2006)
063010, arXiv:astro-ph/0601052.

55

http://dx.doi.org/10.1103/PhysRevD.91.067501
http://arxiv.org/abs/1407.8545
http://dx.doi.org/10.1103/PhysRevD.94.044032
http://dx.doi.org/10.1103/PhysRevD.94.044032
http://arxiv.org/abs/1606.01571
http://dx.doi.org/10.1088/1126-6708/2009/10/029
http://arxiv.org/abs/0906.3046
http://arxiv.org/abs/0906.3046
http://dx.doi.org/10.1088/1361-6382/aaea96
http://dx.doi.org/10.1088/1361-6382/aaea96
http://arxiv.org/abs/1807.01100
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://arxiv.org/abs/astro-ph/9708069
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://arxiv.org/abs/astro-ph/9807002
http://dx.doi.org/10.1103/PhysRevD.62.043511
http://arxiv.org/abs/astro-ph/9908023
http://dx.doi.org/10.1103/RevModPhys.75.559
http://arxiv.org/abs/astro-ph/0207347
http://dx.doi.org/10.1142/S021827180600942X
http://arxiv.org/abs/hep-th/0603057
http://dx.doi.org/10.1103/PhysRevD.59.123504
http://arxiv.org/abs/astro-ph/9812313
http://dx.doi.org/10.1103/PhysRevD.61.123503
http://arxiv.org/abs/hep-ph/9909459
http://dx.doi.org/10.1103/PhysRevD.64.083510
http://arxiv.org/abs/astro-ph/0107321
http://dx.doi.org/10.1103/PhysRevD.67.063521
http://arxiv.org/abs/astro-ph/0205544
http://dx.doi.org/10.1103/PhysRevLett.95.141301
http://dx.doi.org/10.1103/PhysRevLett.95.141301
http://arxiv.org/abs/astro-ph/0505494
http://dx.doi.org/10.1103/PhysRevD.73.063010
http://dx.doi.org/10.1103/PhysRevD.73.063010
http://arxiv.org/abs/astro-ph/0601052


[150] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov, “k - inflation,”
Phys. Lett. B 458 (1999) 209–218, arXiv:hep-th/9904075.

[151] E. Babichev, V. Mukhanov, and A. Vikman, “k-Essence, superluminal
propagation, causality and emergent geometry,” JHEP 02 (2008) 101,
arXiv:0708.0561 [hep-th].

[152] A. D. Rendall, “Dynamics of k-essence,” Class. Quant. Grav. 23 (2006)
1557–1570, arXiv:gr-qc/0511158.

[153] C. Armendariz-Picon and E. A. Lim, “Haloes of k-essence,” JCAP 08
(2005) 007, arXiv:astro-ph/0505207.

[154] J. Garriga and V. F. Mukhanov, “Perturbations in k-inflation,” Phys.
Lett. B 458 (1999) 219–225, arXiv:hep-th/9904176.

[155] D. Bertacca, N. Bartolo, and S. Matarrese, “Halos of Unified Dark Matter
Scalar Field,” JCAP 05 (2008) 005, arXiv:0712.0486 [astro-ph].

[156] R. Akhoury and C. S. Gauthier, “Galactic Halos and Black Holes in
Non-Canonical Scalar Field Theories,” arXiv:0804.3437 [hep-th].

[157] M. Greiter, F. Wilczek, and E. Witten, “Hydrodynamic Relations in
Superconductivity,” Mod. Phys. Lett. B 3 (1989) 903.

[158] D. T. Son, “Hydrodynamics of relativistic systems with broken continuous
symmetries,” Int. J. Mod. Phys. A 16S1C (2001) 1284–1286,
arXiv:hep-ph/0011246.

[159] D. T. Son, “Low-energy quantum effective action for relativistic
superfluids,” arXiv:hep-ph/0204199.

[160] M. G. Alford, S. K. Mallavarapu, A. Schmitt, and S. Stetina, “From a
complex scalar field to the two-fluid picture of superfluidity,” Phys. Rev.
D 87 no. 6, (2013) 065001, arXiv:1212.0670 [hep-ph].

[161] L. Berezhiani and J. Khoury, “Theory of dark matter superfluidity,” Phys.
Rev. D 92 (2015) 103510, arXiv:1507.01019 [astro-ph.CO].

[162] G. N. Felder, L. Kofman, and A. Starobinsky, “Caustics in tachyon matter
and other Born-Infeld scalars,” JHEP 09 (2002) 026,
arXiv:hep-th/0208019.

[163] E. Babichev, “Formation of caustics in k-essence and Horndeski theory,”
JHEP 04 (2016) 129, arXiv:1602.00735 [hep-th].

[164] S. Mukohyama, R. Namba, and Y. Watanabe, “Is the DBI scalar field as
fragile as other k-essence fields?,” Phys. Rev. D 94 no. 2, (2016) 023514,
arXiv:1605.06418 [hep-th].

[165] C. de Rham and H. Motohashi, “Caustics for Spherical Waves,” Phys.
Rev. D 95 no. 6, (2017) 064008, arXiv:1611.05038 [hep-th].

56

http://dx.doi.org/10.1016/S0370-2693(99)00603-6
http://arxiv.org/abs/hep-th/9904075
http://dx.doi.org/10.1088/1126-6708/2008/02/101
http://arxiv.org/abs/0708.0561
http://dx.doi.org/10.1088/0264-9381/23/5/008
http://dx.doi.org/10.1088/0264-9381/23/5/008
http://arxiv.org/abs/gr-qc/0511158
http://dx.doi.org/10.1088/1475-7516/2005/08/007
http://dx.doi.org/10.1088/1475-7516/2005/08/007
http://arxiv.org/abs/astro-ph/0505207
http://dx.doi.org/10.1016/S0370-2693(99)00602-4
http://dx.doi.org/10.1016/S0370-2693(99)00602-4
http://arxiv.org/abs/hep-th/9904176
http://dx.doi.org/10.1088/1475-7516/2008/05/005
http://arxiv.org/abs/0712.0486
http://arxiv.org/abs/0804.3437
http://dx.doi.org/10.1142/S0217984989001400
http://dx.doi.org/10.1142/S0217751X01009545
http://arxiv.org/abs/hep-ph/0011246
http://arxiv.org/abs/hep-ph/0204199
http://dx.doi.org/10.1103/PhysRevD.87.065001
http://dx.doi.org/10.1103/PhysRevD.87.065001
http://arxiv.org/abs/1212.0670
http://dx.doi.org/10.1103/PhysRevD.92.103510
http://dx.doi.org/10.1103/PhysRevD.92.103510
http://arxiv.org/abs/1507.01019
http://dx.doi.org/10.1088/1126-6708/2002/09/026
http://arxiv.org/abs/hep-th/0208019
http://dx.doi.org/10.1007/JHEP04(2016)129
http://arxiv.org/abs/1602.00735
http://dx.doi.org/10.1103/PhysRevD.94.023514
http://arxiv.org/abs/1605.06418
http://dx.doi.org/10.1103/PhysRevD.95.064008
http://dx.doi.org/10.1103/PhysRevD.95.064008
http://arxiv.org/abs/1611.05038


[166] K. Pasmatsiou, “Caustic Formation upon Shift Symmetry Breaking,”
Phys. Rev. D 97 no. 3, (2018) 036008, arXiv:1712.02888 [hep-th].

[167] S. Mukohyama, “Caustic avoidance in Horava-Lifshitz gravity,” JCAP 09
(2009) 005, arXiv:0906.5069 [hep-th].

[168] E. Babichev and S. Ramazanov, “Caustic free completion of pressureless
perfect fluid and k-essence,” JHEP 08 (2017) 040, arXiv:1704.03367
[hep-th].

[169] E. Babichev, S. Ramazanov, and A. Vikman, “Recovering P (X) from a
canonical complex field,” JCAP 11 (2018) 023, arXiv:1807.10281
[gr-qc].

[170] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, “Ghost
condensation and a consistent infrared modification of gravity,” JHEP 05
(2004) 074, arXiv:hep-th/0312099.

[171] J. Dutta, W. Khyllep, E. N. Saridakis, N. Tamanini, and S. Vagnozzi,
“Cosmological dynamics of mimetic gravity,” JCAP 02 (2018) 041,
arXiv:1711.07290 [gr-qc].

[172] H. Saadi, “A Cosmological Solution to Mimetic Dark Matter,” Eur. Phys.
J. C 76 no. 1, (2016) 14, arXiv:1411.4531 [gr-qc].

[173] J. Matsumoto, S. D. Odintsov, and S. V. Sushkov, “Cosmological
perturbations in a mimetic matter model,” Phys. Rev. D 91 no. 6, (2015)
064062, arXiv:1501.02149 [gr-qc].

[174] A. Casalino, M. Rinaldi, L. Sebastiani, and S. Vagnozzi, “Alive and well:
mimetic gravity and a higher-order extension in light of GW170817,”
Class. Quant. Grav. 36 no. 1, (2019) 017001, arXiv:1811.06830
[gr-qc].
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gravitational dynamics: A general view from thermodynamics of
spacetime,” JHEP 12 (2020) 196, arXiv:2009.03826 [gr-qc].

[199] G. AMELINO-CAMELIA, “Relativity in spacetimes with short-distance
structure governed by an observer-independent (planckian) length scale,”
International Journal of Modern Physics D 11 no. 01, (2002) 35–59.

[200] J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy
scale,” Phys. Rev. Lett. 88 (2002) 190403, arXiv:hep-th/0112090.

[201] J. Magueijo and L. Smolin, “Generalized Lorentz invariance with an
invariant energy scale,” Phys. Rev. D 67 (2003) 044017,
arXiv:gr-qc/0207085.

[202] J. Kowalski-Glikman and S. Nowak, “Doubly special relativity theories as
different bases of kappa Poincare algebra,” Phys. Lett. B 539 (2002)
126–132, arXiv:hep-th/0203040.

59

http://dx.doi.org/10.1142/S0218271820300013
http://arxiv.org/abs/1909.02015
http://dx.doi.org/10.1007/JHEP12(2020)196
http://arxiv.org/abs/2009.03826
http://dx.doi.org/10.1142/S0218271802001330
http://dx.doi.org/10.1103/PhysRevLett.88.190403
http://arxiv.org/abs/hep-th/0112090
http://dx.doi.org/10.1103/PhysRevD.67.044017
http://arxiv.org/abs/gr-qc/0207085
http://dx.doi.org/10.1016/S0370-2693(02)02063-4
http://dx.doi.org/10.1016/S0370-2693(02)02063-4
http://arxiv.org/abs/hep-th/0203040


List of Abbreviations
GR - General Relativity
QFT - Quantum Field Theory
DM - Dark Matter
DE - Dark Energy
DS - dark sector
CMB - Cosmic Microwave Background
CC - Cosmological Constant
CDM - cold dark matter
SM - Standard Model of particle physics
EW - Electroweak
QCD - Quantum Chromodynamics
TeVeS - Tensor-Vector-Scalar
ECG - Einstein-Cartan gravity
UV - Ultraviolet
UG - Unimodular Gravity

60



List of publications

• Stephon Alexander, Leah Jenks, Pavel Jiroušek, João Magueijo, and Tom
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