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Abstract: Entropic Dynamics is a framework for deriving the laws of physics from entropic inference.
In an (ED) of particles, the central assumption is that particles have definite yet unknown positions.
By appealing to certain symmetries, one can derive a quantum mechanics of scalar particles and
particles with spin, in which the trajectories of the particles are given by a stochastic equation. This is
much like Nelson’s stochastic mechanics which also assumes a fluctuating particle as the basis of the
microstates. The uniqueness of ED as an entropic inference of particles allows one to continuously
transition between fluctuating particles and the smooth trajectories assumed in Bohmian mechanics.
In this work we explore the consequences of the ED framework by studying the trajectories of
particles in the continuum between stochastic and Bohmian limits in the context of a few physical
examples, which include the double slit and Stern-Gerlach experiments.

1. Introduction

Entropic Dynamics (ED) [1] is a unique approach to foundational quantum mechanics with its
emphasis on entropic inference. It is argued, simply, that physics cannot be an exception to the rules
of inductive reasoning; physics is constrained to be consistent with the rules for inference. (ED) is
an exercise in deriving physical laws from inductive inference. The main assumption in (ED) is that
particles have definite yet unknown positions, and that these positions determine entirely the ontic
elements of the theory (One might argue for assuming that momentum, in place of position, is the
ontic quantity, however as we will see the momentum in (ED) is not necessarily defined, except for
certain classes of constraints. Momentum is also dependent on position, it is a coordinate in a derived
manifold from the manifold of positions and so is not as fundamental). All other observable quantities,
such as momentum, spin, electric charge, etc., are necessarily epistemic. This is a slight departure
from the Copenhagen interpretation, which claims that particles have no properties until they are
measured. Other foundational approaches, such as the Bohmian [2] (or causal interpretation) and
Nelson'’s stochastic mechanics [3], also assume ontic positions for particles. These approaches however
also give onticity to the macroscopic variables, such as the wave function ¢(x), and the probability
distribution p(x) = |¢(x)|?. In (ED) the macroscopic variables are also necessarily epistemic.

In the causal approach particles are assumed to follow smooth trajectories whose velocities are
determined by the probability flow [4]. In this way it is a deterministic theory with respect to particle
positions; given initial conditions the trajectory of the particle is known exactly. The uncertainty in
positions can therefore only be blamed on not knowing the initial conditions, or not knowing the
proper Hamiltonian. While entirely consistent with quantum mechanics, it is impossible to determine
whether the Bohmian interpretation is general enough with respect to particle trajectories, since we
cannot set up experiments in which the Hamiltonian is known exactly. Therefore, fluctuations can
always be blamed on a lack of this information and not, necessarily, on some sub-quantum effect that
(BM) has failed to include. Nelson’s stochastic mechanics (NSM) is more general in this regard, since it
begins with a stochastic equation for the motion of particles and proceeds to derive the dynamics of the
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macroscopic variables from these assumptions. While in this way (NSM) is more general than (BM),
it singles out a particular sub-quantum dynamics for particles which is a Brownian motion. Much like
the causal picture, (NSM) gives ontic privilege to the macroscopic variables which is part of the reason
for its downfall [5]. While (NSM) can obtain the Bohmian limit, simply by sending the fluctuations to
zero, they cannot necessarily motivate the generalized dynamics offered by (ED)

Entropic Dynamics allows for a more generalized sub-quantum dynamics which includes the
(NSM) and (BM) limits as special cases. Particle trajectories are derived from the principle of
maximum entropy by incorporating uncertainty in their motion for small steps At. Once we specify
the relevant constraints in the problem, we can find the transition probability for these small steps
P(x'|x). The Lagrange multipliers, or equivalently the constraints, provides a freedom to specify
the sub-quantum dynamics. The family of possible sub-quantum dynamics which reproduce the
Schrodinger equation is potentially infinite, however experiments may constrain these theories once a
proper understanding of quantum gravity is achieved.

2. Entropic Dynamics

In any application of entropic inference, we must supply three pieces of information. The first of
these is the subject matter, the microstates, which is discussed in the next section. We will then have to
supply a prior and any relevant constraints for the problem.

2.1. The Microstates

In general treatments of (ED) we consider the positions, x € X, of N particles in configuration
space, X = Xy X - - - X Xy which are definite yet unknown. Their unknown values are quantified by
a probability density p(x). We also make another assumption, that the particles follow continuous
trajectories; the particles move in short steps [1]. The inference framework allows us to find a large
change by iterating over many small steps, and thus we only need to find the transition probability for
a short step. The principle of maximum entropy tells us that such a probability should maximize the

/ P(x'|x)
S[P,Q|] = /dx P(x'|x)log ———=% o) 1)

relative entropy,

subject to constraints, however first we must specify the prior Q(x'|x).

2.2. The Prior

To incorporate our ignorance about the motion of the particles, we can choose a prior that includes
the symmetries in the problem. For N particles, such a prior is a Gaussian,

Q(x'|x) x exp [—; ZanéabeﬁAxﬁ] (2)

where a = {1,2,3} are spatial coordinates, n = {1, ..., N} denotes the nth particle and where «, is
some particle dependent constant for which we can take the limit #,, — oo to impose short steps. Such a
prior quantifies the rotational symmetries present in the problem. In order to break the symmetry,
we impose a family of constraints.

2.3. The Constraints

Depending on the subject matter, we impose a family of different constraints that incorporate the
information that is relevant to the problem. There are two main classes of problems that we will discuss
here, although such a list is not exhaustive. The first concerns scalar particles, or particles without
spin, while the second concerns particles with spin, and hence the second kind requires additional
constraints. Special cases of either approach concern the study of a single particle [6], which we will
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mainly focus on in this paper. The microstates for a single particle is simply three dimensional space,
X C R3.

The Local U(1) Constraint-

The constraints for particles, whether of the scalar or spin variety, also incorporate symmetry
information (much like the prior). The main symmetry group for scalar particles is U(1), the unitary
group in infinite dimensions. This corresponds to a local gauge symmetry at each position x € X and
is represented by the following constraint,

(Ax7) [0a¢p(x) — BAa(x)] = x(x) ®)

where ¢(x) is a field that has the topological properties of an angle (Identifying ¢(x) as an angle field
may seem strange, but there is a deeper reason for this. It will become clear once one introduces spin
into the picture [6], that angle fields are a natural set of constraints for describing rotations), Aisa
connection field that sets the zero of ¢(x) at each x and x(x) is some position dependent constant.
The factor B is identified with electric charge [7].

The SU(2) Constraint -

In order to capture the appropriate rotational properties of the system, we incorporate an
additional set of constraints on the motion of the particle (The results of this section are from joint work
with A. Caticha that will appear in [6]). A useful representation of rotations in R? is a frame field 5 (x)
at each point in space, the dynamics of which will be coupled to the particle motion (The use of frame
fields for describing spin has been used throughout the literature [8-11]). Just like the fields ¢(x) and
A(x), the field 5 (x) is entirely epistemic; it is merely a convenient representation of our information
about the motion of the particle, there is no assumption that the field 5i(x) is “real”.

A frame Si(x) at a point x € X is a triad, sp(x) = {51(x),52(x),53(x)}, whose individual
components span R®. Each frame at x € X can be constructed by rotating the lab frame, which
we denote with the basis vectors ¢, = {¢}, &, &3}, through three Euler angles {x(x),0(x), ¢(x)} which
depend on position. This is performed through the action of a rotor U(x, 0, ¢),

Se(x) = U(x)g U™ (x) = U(x, 6, )& U (x,6, 9) 4)

where
U(x, 6, ¢) = Us () Uy (O)U= (x) = 759/ 2¢ 10 2 i5x/2 ©

The frame is said to be oriented along the 53 direction with constant magnitude; i.e. 5(x) = [5|53(x)
and [S(x)| = |5| = const.. Since the frames can take arbitrary orientation at each x, we would like
to know how the frame changes its direction from x to x’. In the same way that the constraint (3)
involves the displacement being directed along the gradient of an angle, we incorporate the spin by
also coupling the displacement to the gradient of an angle {3(x)

(Ax")0,03 = (Ax") (D4 - §3) = (Ax")(9a)x + cos09,¢9) = ' (x) (6)

which is a combination of gradients along the polar angle x(x) and the precession angle ¢(x) (While
the derivatives of the angles ((x) are well defined, their solutions are in general not integrable) given
in the frame velocity @,. Since the motion of the particle is being directed along the 53 direction, there
is an arbitrariness in the setting of the zero angle of the x(x). This suggests that the x(x) in the spin
constraint (6) plays the same role of a gauge field as the constraint for scalar particles (3), and we will
see that it is only their joint dynamics that contributes to the evolution of the system. Thus in cases of a
single particle with spin, the constraints (3) and (6) can be combined into a single constraint which is
gauge invariant.
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2.4. The Transition Probability
Maximizing the relative entropy (1) subject to the constraints (3) and (6) leads to the transition
probability
a -
P(x'|x) < exp {—Eéabe“Axb + (&' (a9 — BAL) + (@0 - 3)) Ax“} (7)
with Lagrange multipliers &’ and . This distribution is Gaussian, and a generic displacement Ax? can

be written
Ax® = (Ax") + AW* (8)

where the expected displacement (Ax“) is given by

(Ax) = 15 (o (349 — BAy) + (@ 53)) ©)

and the fluctuations obey

(Aw®) =0 and <Aw“Awb>:%5”b (10)

The Lagrange multiplier &’ plays the role of controlling the relative strength of the fluctuations [12].
In the theory of spin the value of v = 1/2, while B = ¢/c is proportional to the electric charge (The (ED)
framework offers a unique argument for the quantization of electric charge which is a consequence of
the circulation conditions of the spin frame 5(x) and the single-valuedness of the wave function [6,7]).
An important quantity is the ratio of the Lagrange multipliers,

/
h
Y X Lat (11)
o a m
The form of the Lagrange multipliers determines a class of motions,

_ 1 _ 1
¢ =g Y= gapr and

<5abAwﬂAwb> = %U(At)n+l, |Aw| o \/%(At)(nﬂ)/z

for some integer n and constants 1 and ¢, which control the relative strength of the constraints to the

(12)

fluctuations. For n = 0, the particles follow Brownian trajectories, which in the limit of # — 0 and
¢ — 0 recovers the smooth Bohmian trajectories [12].

2.5. Entropic Time

At this point Entropic Dynamics describes a theory of particles which undergo a particular class
of motion depending on the choice of constraints (3) and (6). The next step is to define an entropic
time [13] by associating to the equation,

p(x') = [ dxP(¥|x)p(x) (13)

a notion of duration, supplied by the fluctuations (At). The distribution p(x) becomes the distribution
p(x), and the procedure in (13) has an implicit direction as demonstrated by Bayes’ rule (The update
provided by marginalizing over the transition probability P(x’|x) is not necessarily symmetric.
Updating in reverse is constrained by Bayes’ rule, P(x|x") = P(x)P(x’|x)/P(x")). Much in the way that
time is defined in classical mechanics by the free particle—the free particle moves equal distances in
equal time—entropic time is defined by the free quantum particle; the free quantum particle undergoes
equal fluctuations in equal entropic time.

It’s often easier to work with the differential form of the integral in Equation (13), which can be
found to be,

0tp = —094(v"p) (14)
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where the current velocity v* depends on the class of motion determined by the constraints and (7, 1).
For Brownian trajectories, n = 0, the velocity is,

h .
o = o (o (3 — BA) + (@, - 55) — 3y log p'/?) (15)

and Equation (14) is the Fokker-Plank equation, which includes the appearance of the osmotic term
log p!/2. For the smoother trajectories, 1 = 1, the osmotic term disappears and the velocity becomes
v" = (Ax")/At. The Equation (14) is a diffusion equation which can be rewritten as a functional
derivative, dyp = 6H /5P for some functional H which we eventually identify as a Hamiltonian.
From here the discussion extends to the symplectic and information geometry of the statistical
manifold A from which we can derive a Hamiltonian and Hamilton’s equations by identifying certain
symmetries [1]. These symmetries form the group Sp(2n) N O(2n) = U(n) which are the intersection
of the symplectic group and orthogonal group in (211) dimensions, of which the constraints (3) and (6)
are a subset. The group U(n) also leads to another important consequence, the appearance of a
complex structure. The complex structure allows one to use complex coordinates, which we identify
as wave functions,
i =p /2 /M and  ingl = inpl/2ei®=/M (16)

where p+ = (1/2)(p £ ps) and &+ = (& £ d;). The conjugate momenta to p(x) ends up
being the phase [7], which for the Brownian case is ®(x)/f = yx + a’¢p —logp'/?, and where
ps = pcosf and @, /i = y¢ are conjugate variables incorporating the extra spin degrees of freedom.
The Hamiltonian is,

5 2
Hlpy, ihyi] = /dx (—Zmlﬁi(aa — (i/2)Ad)* s + PLVY+ + L (B FiBy )= ¢*iBZ¢i> (17)

and the associated Hamilton’s equation,

sH _ n*
SyL 2m

oy~ = (00 — (i/2))*¢+ + V= + (Bx F iBy) 5 + B:p (18)
is the Schrodinger equation for the (£) components of the Pauli equation. In the limit that the variables
8, ¢ are not dynamical, the Pauli equation reduces to the Schrodinger equation for a scalar particle.
While we will not go into further detail on these aspects of (ED), for a more detailed discussion see [1,6].

3. Entropic Trajectories

Entropic trajectories are a generalization of the trajectories assumed by (BM) and (NSM).
In Bohmian mechanics these trajectories are smooth, with well defined velocities, that are also
constrained to never cross. They are determined from the probability flow, which for scalar particles is

given by
dz, .o (Ve Yyt
— = O where 7, = o ( v = (19)

where ¥, is the position of the nth-particle. The Bohmian velocity 7, is equivalent to the drift velocity
b in (ED). In (NSM) the equation of motion for the particles is given by the stochastic equation,

d% = b(%, t)dt + dw(t) (20)

The velocity from (19) is not defined in (20) in the standard limit calculus sense and hence one can
only evaluate finite differences. In Entropic Dynamics, it is the displacement (8) which determines the
motion of the particles. The displacement contains the fluctuation term, which is stochastic, hence the
limit in (19) is not always defined. While one can evaluate the limit using stochastic calculus, we will
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relegate that discussion to a future paper. For the collection of simulations in this paper, we will simply
use a unit fluctuation A® in place of the Wiener process Aw, which simulates a random walk on the
unit sphere. A finite time step is simulated by providing a duration At and some prescribed values of
n and 7. The displacement for Brownian motion is then found from,

Ax" = b*At + \/%n(At)l/zAw“ (21)

where b is given from the Bohmian limit. In the examples below, Equation (21) is integrated using the
standard 4th-order Runge Kutta method.

3.1. The Double-Slit Experiment

The double slit experiment (DS) [14,15] is a special case where the wave function can be solved
exactly by assuming that each slit produces a Gaussian wave packet with a width equal to the width
of the slit, 0y, and that the total wave function is represented by a super-position of each packet,

Yi(x,y,t) =
_ i—d—hk,t/m)% . k2t 2 22
(27t?) V4 exp  Lid Pkt /m) oo LI { (ky(]/i —d) - Zny1> + (kxx - hzki;fqt) H 22
where fiky = mvy, ya =y, y, = —y, and 2d is the distance between the slits. The factor ¢ is ¢ =

0o <1 + 2;:% ) . Each wave function ¢;(x, y, t), is found from integrating the Schrodinger equation for a

free particle, iid;p; = — (h*/2m)V2y; with an initial Gaussian wave function. The total wavefunction
is the superposition, ¥ (x,y,t) = N [¢a(x,y, ) + Pp(x, y,1)].

Entropic Trajectories for the Double Slit Experiment
n= 0.00, n= 1.00, N = 200

le—5 Double Slit Trajectories Detector Statistics

— Rho(y,t)
- = = Ent. Traj.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.02 0.04
X = vt le-1 ply)

Figure 1. Cont.
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Entropic Trajectories for the Double Slit Experiment
n= 0.00,n= 0.00,N = 200

1e—5 Double Slit Trajectories Detector Statistics

— Rho(y,t)
= = Ent. Traj.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00 0.00 0.02 0.04
X = vt le-1 ply)

Figure 1. Entorpic trajectories for the double slit experiment with n = 0 and # = 1,0 for N = 200
particles. The black curve (Rho(y, t)) is the probability distribution determined from the wave function
at the detector screen, while the red curve (Ent. Traj.) is the interpolated distribution from the detector
statistics using a fitting polynomial of order 15 to show the shape of the distribution.

We simulated the trajectories of electrons, m = m,, with an initial velocity in the x direction
of 2 x 10° m/s and random initial positions along the y direction sampled according to the initial
Gaussian distribution with standard deviation equal to the slit width, cp = 107® m and with distance
between the slits d = 50p = 5 x 10~ m. The initial velocity in the y direction is set to zero and the
distance to the screen is x; = 0.2 m. One can see that the value of 7 = 1 generates fluctuations which
give rise to similar statistics as the Bohmian limit (Figure 1).

3.2. The Stern-Gerlach Experiment

In a similar way to the Double-slit experiment (DS), we can solve the Pauli equation in the
case of the Stern-Gerlach experiment (SG) [16] by making a few approximating assumptions [17].
Following the arguments in [4,18,19], we assume that the Stern-Gerlach magnet produces a magnetic
field, B = (By + zBY{,)Z, within a region Ax and is assumed to be zero outside this region. Given an
initial particle velocity vy along the x direction, the particle remains in the magnetic field for a time
At = Ax/vy. After the particle leaves the magnetic field, the spinor wave function breaks up into two
packets which can be solved for all ¢ (For detailed calculations see [15,17,20,21]) as,

cos 670 exp —7(2_%7?”)2 + L (muz + he.)
¥(z,t+ At) = (2710p) "2 o (23)
sin%oexp _ (zkBaut)” # (muz —he_)

2
4o
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where 6 is the initial azimuthal angle for 53 with respect to the z axis, u is the packet velocity in the z
direction, A, = upB)(At)?/2m and ¢4 = £¢0/2 F upBoAt/h — p3(B))?(At)3 /6mh, where g is the
Bohr magneton. The width oy of the initial packet is set to the (SG) device opening of gy = 10~* m.

Entropic Trajectories for the Stern Gerlach Experiment
6o = 1.57,n= 0.00, n= 100000.00, N =100

Stern Gerlach Trajectories Detector Statistics

= Rho(z,t)
=— = Ent. Traj.
0.0006

0.0004

0.0002

N 0.0000

—0.0002

—0.0004

—0.0006

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.02 0.04 0.06 0.08
y=v n

Entropic Trajectories for the Stern Gerlach Experiment
6o= 1.57,n= 0.00, n= 0.00, N =100

Stern Gerlach Trajectories Detector Statistics

0.0006 = Rho(z,t)

== = Ent. Traj.

0.0004
0.0002
0.0000
—0.0002

—0.0004

—0.0006
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.02 0.04 0.06 0.08
y=v

n

Figure 2. Entropic trajectories for the Stern-Gerlach experiment with n = 0 and 7 = 0, 10° for N = 100
particles.
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We simulated the trajectories of silver atoms with mass m ~ 1.8e — 25 and an initial velocity along
the x direction of 500 m/s sampled according to the initial wave packet. The magnetic field parameters
are set to By = 5 T and B} = 10> T/m. Assuming the particle remains in the magnetic field for a time
At =2x107% s, the factors Az =10 mand u = 1 m/s.

le—6 ZV5. X

10

05

-0.5

L T A O A A
L T T T T T N T T T T R
L A T T T T T T T T T R

A A A A A T I B T R TR T TR T TR T Y
A A A S S A T T T T T T T T T T T W
AAAAAAA ATV
A Ay Av ey A A A A T T T T T T W W W W WY
A A Ay A A T T T T T T U U W W W S
A A Ay A A A A A A A A T TR TR TR S T S
A AT A A A AN A A B T T TR U U U U N
i AT A AV A A S A I 2 T T T T U U U N N
4—’/1//////;‘;"\\\\\\\\x\x
Rl A A AV AV A A T TR T T U U
DA A A A T T T U W S
D A AV S 2 2 2 T TR U U W N e
TEEL s s s s s e
DA A A T T T T U W
R A A A A T T e
A A A T T T T W N
DI A A A A A T T T W N
TET IS s s NN e e e
R A A B TN NN
TET TS s s e e
e S B N e
DI S A 2 A R U Ve

-1.0

0.0 0.5 10 15 2.0 25 3.0 35 4.0
x=vt le-2
Figure 3. Starting with the initial condition 8y = 71/2, we show the evolution of the direction of the
spin frame over x and ¢ with respect to the xz-plane.

Unlike in the (DS) experiment, the fluctuations are suppressed in this example since the mass of
silver is so much larger than electrons, hence the need for ;7 « 10° before we start to see Brownian
motion (Figure 2).

As we've stated in the introduction and throughout, the spin is entirely epistemic and is not
assumed to be a property of the particle, but rather a property of its motion. Much like in [4], the
above example shows how the epistemic spin frame evolves over space and time (Figure 3). The
two-valuedness of spin measurements is not the same type of quantization that is attributed to the
particle, but rather just a consequence of measurement, as can be seen from the trajectories. By
measuring the particle up or down on the screen, we then assume that the spin must have been up or
down at the magnet. From fig. 3 however, the up and down trajectories are created by the (5G) magnet
and initially the spin is only up in the x direction.

4. Discussion

The (ED) formalism allows for generalized particle trajectories which are not a priori realizable in
other foundational approaches. This freedom is granted by (ED)’s foundation in entropic inference,
which requires us to supply information about the symmetries in the problem through constraints.
As we have seen, the Bohmian and Brownian limits are easily attainable, and both give consistent
results with respect to experiment. It still remains an open question as to what classes of sub-quantum
dynamics are allowable in quantum mechanics, and ultimately in quantum gravity. While at the
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moment we cannot answer the latter, we will address the former question in longer paper which will
extrapolate further on the discussion from section three.

Acknowledgments: We would like to thank A. Caticha, J. Ernst, S. Ipek, P. Pessoa and K. Vanslette for insightful

conversations.
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